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INTRODUCTION. BASIC PROBLEM OF
THERMOELECTRICITY

HE basic problem of thermoelectricity is the
following: Given a system consisting of one .or
several chemical phases and having a specified temperature
distribution, it is required to determine the electronic elec-
trochemical potential at any and all points within the
system as well as at points in the immediate surroundings
of the system. We consider the electrochemical potential
determination in the general sense of deducing this
parameter from the over-all electronic and crystalline
structure of the phases constituting the system; how-
ever, in this Review we shall treat only the thermo-
dynamic aspects of the problem. We include in the
problem the situation in the space immediately ‘sur-
rounding the actual material phases of the system in
order to bring out the significance of the Volta potential
difference. There seems to be some confusion with
regard to the question of what relationship there is, if
any, between the Volta potential difference and ther-

© moelectricity. For this reason we have treated in

Appendix B the subject of Volta potential differences.
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F1c. 1. Cylindrical rod of a single homogeneous chemical phase
carrying steady-state electrical and heat currents; the thermo-
static parameters vary from point to point.

The thermodynamic theory of thermoelectrical phe-
nomena in isotropic media was first worked out by
H. B. Callen! using the Onsager-Casimir methods, and
is presented in more detail in de Groot’s monograph.?
The theory brings out very clearly the important role
played in thermoelectricity by certain “transport” or
“transfer’” quantities which are strictly thermody-
namical in nature and cannot be deduced from the
thermostatic characteristics and parameters of a sub-
stance. We shall see that the thermoelectrically im-
portant parameters such as thermoelectric power are
related in part to these transport quantities and in part
to certain essentially thermostatic quantities, so that
under certain conditions the thermoelectric properties
of some substances can be treated quite properly in
terms of the ordinary thermostatic characteristics of
these substances, the transport contribution being
negligible or nearly so. Now just as thermostatics leads
to relations between the various thermostatic param-
eters of a phase without being able to derive values
of these parameters from the general structural and
atomic properties of the phase, so does thermodynamics
relate the various transport parameters with each
other without being able to derive actual values of
these transport parameters from structural and atomic
properties of the substance. Quantum-mechanical and
statistical-mechanical calculations lead to actual nu-
merical values for certain static parameters such as
specific heats, for example, and from such information
thermostatical methods are used to calculate almost
all other static quantities of interest. Likewise, quantum
mechanics and kinetic theory can lead to actual nu-
merical values for certain dynamic or transport quanti-
ties such as the “heat of transfer’” already mentioned,
for example, and from such information thermodynamic
methods are used to calculate other dynamic param-
eters of interest. The writer hopes that a review of the
thermodynamics of thermoelectricity will stimulate
among theoretical physicists an interest in the quantum
theoretical calculation of these pertinent transfer or
transport parameters, both for metals and for semi-
conductors.

1H. B. Callen, Phys. Rev. 73, 1349 (1948).
2S. R. de Groot, Thermodynamics of Irreversible Processes (Inter-
science Publishers, Inc., New York, 1951), Chapter VIII.
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Finally, it should be mentioned that there are still
conceptual difficulties in the Onsager theory, not the
least important of which has to do with the laws of
decay or regression of fluctuations. Furthermore, the
theory is strictly limear or what might be called a
“first approximation” transport theory. (In this connec-
tion see Sec. I of this Review, on the Benedicks effects.)
For discussions of these more abstruse questions the
reader must refer to the original literature.!

A. ELECTROCHEMICAL POTENTIAL : ITS SEPARATION
INTO CHEMICAL AND ELECTRICAL PARTS

The electrochemical potential i of the component
¢ (an ion, a hole, or an electron) in an isotropic, homo-
geneous, chemical phase 8 is defined for a system in
thermostatic equilibrium as
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Here the phase 3 is supposed to be a part of the complete
system with total volume V and entropy .S, and the
temperature 7" and pressure P are assumed to be uni-
form throughout the entire system. The quantities
G, H, A, and U are, respectively, the total Gibbs energy,
the total enthalpy, the total Helmholtz energy, and the
total internal energy of the entire system, and NV; is
the number of the ith component contained in the
system. If the system is not completely in thermostatic
equilibrium and contains regions in which there exist
gradients of temperature or flows of electrical charge
or both, it is then not exactly obvious how one proceeds
to define the electrochemical potential of the ¢th com-
ponent in an arbitrary spot or region of the nonequilib-
rium system. For our purposes we simply assume that
even in a nonequilibrium system the electrochemical
potential of the sth component in phase 8 is in general
a continuous and differentiable function of position
and of temperature within the single homogeneous
phase. We further assume the usual thermostatic condi-
tion of continuity of the electrochemical potential for
component % in crossing the boundary between two
phases in thermostatic equilibrium. In all situations
with which we shall be concerned the electrochemical
potential g is separable into a chemical potential uf
(without bar) and an electrical potential $# in the form

Bf=pf+qeP, 2

where ¢ is the charge on the component 7. Throughout
this Review we shall always express energies in joules
and charge in coulombs, and a table is given in Appendix
F which gives the MKS units of all thermoelectric

‘parameters of interest to us. From the defining relation

(1) above we see that the electrochemical potential z.?
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and the chemical potential u.? are expressed in joules per
particle (dG/AN), which gives the product ¢;¢# in
joules/particle. Therefore, expressing ¢; in coulomb/
particle we find that the electrical potential ¢ is in
volts. The dissimilarity of units between quantities
with the same label “potential” is regrettable; how-
ever, it seems best to use this very widely accepted
terminology.

Our notation for potentials, while at first seeming
to be unnecessarily cumbersome, is actually simple
and has the important advantage of giving at a glance
all the pertinent information about the potential, as
follows. The symbol for an electrochemical potential
is written uPhase (temp) The har indicates an electrochem-
ical potential; if the bar is missing the symbol refers to
a chemical potential. The phase referred to is written
as a first superscript, the second superscript (in paren-
theses) denoting the absolute temperature of the phase.
The subscript following the symbol tells the com-
ponent. The electrical potential in a given phase, indi-
cated by the symbol ¢Phase temp) js independent of the
nature of the component so that it is not necessary to
add the component-subscript. On the other hand, for a
component with charge ¢ the electrical potential energy
gep°hase ¢emP) does depend on the component and this
dependence is taken care of by the charge factor ¢. Thus
the ¢ subscript in ¢¢, is superfluous. Finally, when all
the potentials refer to the same temperature as in a
completely thermostatic discussion, there is usually no
need for the temperature superscript. Our notation is
a combination and extension of those used by Guggen-
heim? and by de Groot.2

In order to illustrate the meaning of the separation
into a chemical and an electrical part as indicated in
(2) we consider in Appendix A the question of how
one actually measures or otherwise determines nu-
merical values of chemical and electrochemical poten-
tials. It is clear that in all cases an arbitrary reference
level for energies must be decided upon and that all
chemical and electrochemical potentials must refer to
such an arbitrary reference. For a given component the
chemical portion p# can be looked upon as being deter-
mined by the chemical or atomic nature of the phase 8,
while the electrical portion ¢.¢f is determined by the
distribution of electrical charges in the whole system as
well as in the surroundings. The actual separation into a
chemical and an electrical part in most practical cases
is by no means easy and is quite often impossible. On
the other hand, in some cases the separation can be
made in a straightforward way.

B. PRINCIPLES OF STEADY-STATE
THERMODYNAMICS

Consider a cylindrical rod consisting of a single
homogeneous chemical phase, shown in Fig. 1. If the
rod were in a state of thermostatic equilibrium all the

3E. A. Guggenheim, Thermodynamics, An Advanced Treatment
(Interscience Publishers, Inc., New York, 1951).
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thermostatic parameters would have uniform values
throughout. In particular, there would be no tempera-
ture gradients and no gradients of the electronic elec-
trochemical potential anywhere within the phase.r Next
in complexity to thermostatic equilibrium is the situa-
tion called the steady state, and it is this state which
we wish to study by means of the thermodynamic
theory. The still more complicated problem, that in-
volving transient conditions, can under certain conditions
be treated with the general theory, but this does not
interest us here.

For our purposes, a very general steady-state condi-
tion in the rod would consist of having a steady elec-
trical current flowing along the rod together with a
flow of heat along a longitudinal temperature gradient.
Now while thermostatics and thermodynamics furnish
general relations which are independent of any specific
atomic or molecular models of matter, both theories are
statistical in nature; and before either can be success-
fully applied to a given system it is necessary for the
system to satisfy certain statistical requirements. In our
case we must specify that if the rod in Fig. 1 has tem-
perature gradients and electrical currents in it, these
must be such that it is possible to define an electro-
chemical potential at all points in the rod. This is
equivalent to saying that we must be able to assign
values to all the usual thermostatic parameters at
any point in the system. If the temperature gradients
are so large, for example, that the fractional change in
absolute temperature is not extremely small compared
to unity when we go about a mean-free-path length
along the rod, then it will be practically meaningless to
assign values to thermostatic parameters along the rod.5

We shall assume, then, that for all systems of interest
to us it is possible in principle to assign a value® to the
electronic electrochemical potential at all points within
and outside the various phases in the system. The
problem is to relate the electrochemical potential dis-
tribution with the electrical current and temperature
distribution in the system, and it is just this kind of
problem which is solved by the Callen-de Groot method
of applying the general thermodynamic theory of
Onsager and Casimir.

The thermodynamic theory establishes linear rela-
tions between certain “flows” and the generalized
“driving forces” which cause these flows. Special cases
of such relations are the ordinary Ohm’s law, which
says that electrical current (flow) in an isothermal wire
is proportional to the gradient of the electrical potential
in the wire, the proportionality coefficient being the iso-

4 Although the general thermodynamic theory (de Groot, refer-
ence 2, Chapters VII and VIII) is applicable to any and all carriers
of electric charge inside a phase, electrons and ions alike, for
definiteness we shall refer throughout this Review to the electron,
with charge —e (e positive), and the subscript —e on the poten-
tials will be left off unless required for clarity.

( 5 C.) Herring and M. H. Nichols, Revs. Modern Phys. 21, 185
1949).
6 Referred of course to an arbitrary reference level.
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thermal electrical conductivity, a characteristic param-
eter of a given phase; Fourier’s law, which says that
the heat flow across a plane inside a phase without elec-
trical current is proportional to the temperature
gradient at the plane, the proportionality coefficient
being the - thermal conductivity for zero electrical
current. Now when both an electrical current and a
heat current flow simultaneously in a phase there is an
interference or interaction between the two currents,
and this interaction may be described by saying that
each of the two flows can be caused in general by either
or both of the two driving forces, i.e., temperature
gradient and potential gradient. This interaction, and in
fact this manner of expressing it, were known and in-
troduced years before the Onsager theory was devel-
oped. But it was not until the development of this
latter theory that it was found possible in a very
general way to relate the proportionality or inferaction
coefficients with one another in such a fashion as to bring
into the theory the several typical interference phe-
nomena of thermoelectricity. The general way in which
the interaction coefficients are related is based ulti-
mately on statistical-mechanical considerations, and is
finally expressed by a so-called reciprocity relation, or
in our case by the simple equality of these two coeffi-
cients. In order for this equality relation to hold, how-
ever, it is necessary that the two linear relations’ be-
tween the flows and the driving forces contain exactly
the proper, conjugate flows and forces—any arbitrary,
though physically reasonable choice of flow-force pairs
will not necessarily form a proper, conjugate pair. It is
probably this fact that prevented the earlier workers
in irreversible thermodynamics from discovering the
Onsager reciprocity relations empirically. The Onsager-
Casimir theory furnishes general conditions to be met
by the flow-force pairs in order that the reciprocity
relations hold between coefficients, and subsequent
developments have resulted in general formulas for
conjugate forces and flows or currents applicable to a
wide variety of problems. In any given problem in-
volving interference between particle current and heat
or energy current, for example, there are numerous
choices of currents but once these are chosen there is
no choice of conjugate forces. Similarly, it is often con-
venient to change over in a given problem to a new
set of forces; this new choice of forces, however, dictates
the choice of currents. Since the equations relating
currents and forces are linear, it is always possible in a
problem to transform from one set of currents to
another set, if for example the use of a first set makes

7In a more complex problem involving ionic currents as ‘well
as electronic currents, there may be several particle currents in
addition to an energy current, and a correspondingly larger
number of driving forces. In such cases the Onsager reciprocity
relations are most easily expressed by the symmetry Lix=Ly; of
the matrix formed from all the proportionality coefficients. In our
case we are considering electrons only so that we have two currents
and two forces, and consequently two linear relations with Lyp= Ly,
when the flows and forces are properly chosen.
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more physically understandable one aspect of the
problem, while the use of a second set clarifies another
aspect of the same problem. However, the transforma-
tion must satisfy a certain condition laid down by the
theory. We shall see examples of this sort of thing in
our discussion, but for a more satisfying treatment of
the general theory the reader must consult either the
original papers® or, say, de Groot’s monograph? already
mentioned. We want to emphasize the physical aspects
of the theory as it applies to thermoelectricity, and
shall therefore not give an extensive discussion of the
general requirements which the force-current pairs
must satisfy in order to be properly chosen. Instead,
we simply select one particularly suitable set which is
known to be conjugated, and proceed from this starting
point. The general conditions on a force-current pair
will then be stated and applied only briefly later on.
We have mentioned as one force and current pair the
temperature gradient and heat flow current in Fourier’s
law, and as another pair the electrical potential gradient
and the electrical current in Ohm’s law. However, it is
found that if one attempts to use both the temperature
gradient V7 and the electrical potential gradient V¢
as forces and both the electron (or particle) current I
and heat current J, as flows, the interaction coefficients
are not identical; that is, in the two linear relations

I=LuVveé+LiovT,
Jo=LuVe+ LV T,

the interaction coefficients Li; and Ly are not equal,
and the equations are useless. But suppose that instead
of writing Fourier’s law in terms of a heat flow density
and temperature gradient we write it in terms of an
entropy flow density and a temperature gradient. The
concept of an entropy flow vector may be described as
follows. If we consider a plane inside a given phase with
a temperature gradient, we can say that the entropy
flow (density) across the plane at a particular point is
equal to the absolute temperature at this point times
the heat flow (density) across the plane at the same
point. Or, from thermostatics we can write AQ=TAS,
AQ representing heat added to a closed system across
a unit area of its boundary and AS the corresponding
‘“entropy added to the system at temperature 7'.”
If the heat and entropy “transfers” AQ and AS take
place in a time Af, then we can write AQ/At=TAS/At
or in the limit, Q= TS, the vectors now indicating flows
of heat and entropy. Furthermore, suppose that in
Ohm’s law we use the gradient of the electrochemical
potential instead of simply the electrical potential
gradient. Finally, we may use either electrical current
density I or particle current density J., these being related
in our case by I=—eJ,, where —e s the electron charge.
It turns out that for our problem involving the simul-
taneous flow of electrons and of entropy, the negative

8 L. Onsager, Phys. Rev. 37, 405 (1931); 38, 2265 (1931);
Ann. N. Y. Acad. Sci. 46, 241 (1945).
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temperature gradient —V7T and the entropy flow
density J, are conjugate and so are the negative electro-
chemical potential gradient —Va and the particle flow
density J,. In the two linear relations between conjugate
flows and forces we can therefore set the two interaction
coefficients L., and L,, equal to each other, in accord-
ance with the Onsager reciprocity relation. Thus we
arrive at the important phenomenological equations

Je= "'LeeV/-—l“'LesvT,
Js= —LesVﬁ—LsSVT.

©
)

These equations, given by de Groot, form the basis
of our whole treatment of thermoelectricity, including
what we shall later call the nonisothermal Volta effect.
We shall see that these equations lead to a parameter
called the “transport entropy per particle” which plays
a role in thermodynamics comparable to that of the
ordinary “static” entropy per particle in thermostatics.?
We have mentioned that it is often convenient to
transform reldations such as (3) and (4) so as to use other
flows and forces, and that this transformation may
lead to other physically definable and useful parameters.
Therefore we shall next transform the phenomenological
equations (3) and (4) into equations relating particle
flow J, and a ‘“heat flow” J, with their appropriate
conjugate forces; for clarification the flow J, will be
defined in terms of the flows J, and J in such a way as
to relate these to the particular flows used by Callen.!

Following Callen, we introduce a heat current Q as
the difference between the total energy current W and
the electrochemical potential energy current aJ.:

Q=W-al.. ®)
If we associate our entropy current J, with Callen’s
heat current Q in the manner Q=7J,, we can write
(5) in the form

7Y, =W—gl.. (6
Separating the electrochemical potential # into a
chemical part u and an electrical part —e¢ for electrons
we have

TY,= (W+epd)—pde=T,—uJ., )

where we have combined the two terms in parentheses
into a term J, which de Groot also calls a “heat current.”
We have therefore

Jo=pJATJ,. )

Our problem now is to transform-the phenomenological
equations (3) and (4) from the currents J, and J, to the
new currents J, and J,.
The thermodynamic theory shows that the instan-
taneous time rate of entropy production in an irrever-
? The concept of entropy transport is not a new one peculiar to
the Onsager-Casimir theory. In fact, it was used in the older, so-

called “pseudo-thermostatic” theories, to which extensive refer-
ences are given by de Groot in reference 2.
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sible process is given by the sum of products of con-
jugate currents and forces. This rate of entropy produc-
tion cannot depend on the particular choice of conjugate
currents and forces used to describe the process; it
follows therefore that this sum is an invariant. This,
then, is the condition on the transformation which
is laid down by the theory. In the case of steady-state
processes the sum is not only invariant but constant
in time. We write this invariance for our problem in
the form

9)

each term consisting of the product of a current into
its conjugate force. On the left-hand side is the sum
for the J., J, description, and on the right-hand side
is the sum for the new J,, J, description; the forces X,
and X,, conjugate, respectively, to the new currents J,
and J,, are yet to be found. The phenomenological
equations for the new variables are

Jo=M,XA+M,X, (10)
Jq=quXe+quxq: (1 1)

in which the identity of M., and M, is assured by
virtue of (9). Substituting Eq. (8) for J, into (9) and
collecting terms in J, and in J; we find

(Vﬁ+xe+ﬂxq) * Je+ (V T+ qu) : JSE O’

which is identically true for all J, and J,. Therefore,
each quantity in parentheses vanishes and by solving
the two resulting equations for the forces X, and X,
we find

—Je-Vﬂ—Js‘VTEJe'Xe'l'Jq'Xm

Xe= "‘Vﬁ+ (.U'/T)VTr
X,=—{1/T)vT.

12)
(13)

The new phenomenological relations (10) and (11)
become

Je: "‘MeeVﬁ'_‘ (1/T) (MEQ_”Mee)vT7
Jq= —M . Via— (/1) (qu_HMeq)VT’

(14)
(15)

where we have used the Onsager reciprocity relation
M o= M 4. These relations are completely equivalent
to (3) and (4), and while they are no more nor less
general than (3) and (4) they will be used later on to
describe some of the thermoelectric effects from the
viewpoint of an ‘energy of transport per particle”
rather than from the viewpoint of an “entropy of trans-
port per particle.”

We wish next to relate the “M”’ coefficients with the
“L” coefficients. Since the forces —Vi and —VT in
the phenomenological relations are independently vari-
able, the coefficients of each separate force in Egs. (3)
and (14) for J, must be identical; this leads to the
following equations:

Lee=Meey
TLes= Maq—ﬂMae-

(16)
7
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Finally, if we substitute into (8) the expressions (4)
for J,, (15) for J,, and (3) for J,, collect terms in VT
and equate to zero, since Vi and V7 are independent
variables, we find with the help of (16) and (17),

T2Lyy= M gg— 2uM ot 12M ... (18)

Consider now an isothermal cylindrical rod as in
Fig. 1, in which there is a steady electronic current J,
particles per second per unit area; setting VI'=0 in
(3), (4), (14), and (15) and taking the ratios of entropy
and heat flows to particle current, we get

(Jo/I)W o= Les/ Lee= S,
(JQ/JG)VT=0:Meq/MeeEQ*,

The very important quantities .S*, the “transport
entropy per particle” and Q¥ the “transport heat per
particle,” are the parameters which we have previously
mentioned as being of special importance in the
thermodynamic theory of steady-state processes. We
can find other relations which bring out the physical
significance of the transport quantities S* and Q* by
solving (3) for Vi and putting the result into (4), and
by solving (14) for Vi and substituting into (15). In
each case, after collecting terms in J, and in V7, if we
use relations (19) and (20) we find

Js= S*Je+ (1/Lee> (Lesg_LeeLss)v T,
J =0+ /TM..) (M 2—M . M)VT.

(19)
(20)

(21)
(22)

For a single homogeneous chemical phase under con-
stant pressure the coefficients L., Les, Lss and M,
M., M, are functions only of the temperature, pro-
vided there is no magnetic field,!? and since S* and Q*
are defined in terms of some of these coefficients by (19)
and (20), so too are S* and Q* functions only of the
temperature for a given phase. If in Fig. 1, therefore,
we imagine the current densities and temperature
gradients to be uniform over a given cross section,
relation (21) for example has the following significance.
The axial flow of entropy consists of two terms, the first
proportional to the number of particles per second
crossing unit area, each particle transporting an
amount S*, and the second proportional to the tempera-
ture gradient at the cross section. If electrical current
flows in an isothermal phase, we already have the rela-
tions (19) and (20). If no electrical current flows but
there is a temperature gradient, (21) and (22) both
lead to Fourier’s law, if we write J,=7J,; but from
(7) we see that this last equality is valid only for J,=0.

Next we find the relationship between the transport
quantities S* and Q*. This can be done by equating
the factors in front of the V7 in Egs. (3) and (14) for
J., then using (19) and (20). A shorter way is to use
(7), (21), and (22) in the special case of V7=0. Thus
we can find the important relation

TS*=Q*—p. (23)
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Before proceeding with the specific applications to
thermoelectric effects the reader may wish to read
Appendix B, in which are treated several important
applications of the theory to special systems. Also,
because of the fundamental importance of the potenti-
ometric method of measuring potential differences, the
reader may profit by reading Appendix C before Sec. C.

C. SEEBECK EFFECT

Imagine an arrangement like that in Fig. 2 of two
chemically different phases X and R, each of which is
chemically and physically homogeneous' and isotropic.
The two phases and L are leads and are identical homo-
geneous phases; we use small and capital letters to
allow for differences of electrical potential in these two
phases. The arrangement shown is called an X—R
thermocouple, and is the one used in careful and precise
temperature measurements. The absolute temperature
is T at the variable temperature junction between
phases X and R; T at the so-called reference junctions
between phases / and X and between R and L; and
finally Tr (“room temperature”) at the bottom ends
of the leads / and L which are assumed to be connected
to a potentiometer kept balanced so that no electrical
current flows through the thermocouple. We have in-
dicated the electronic electrochemical potential at the
several pertinent points, using the notation explained
in Sec. A. Since the phases / and L are chemically
identical and at 4 and B have the same temperature,
we can easily measure their difference in electrical
potential at points A and B by the use of a
potentiometer.

Using Egs. (X-10)f we can write an expression of
the form

daiD = — ST, (24)

for each phase in the circuit of Fig. 2. The transport
parameter S* is of course generally a function of the
temperature. If we integrate the forms (24) for each
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Fic. 2. Arrangement of thermocouple junctions and leads used

in careful and precise temperature measurements.

10 Physical homogeneity includes for example uniformity of
crystallite size and macroscopic uniformity of strain. The effects
of inhomogeneities will be discussed in Sec. I.

1 Equations X are in the appendices.
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phase between the appropriate temperatures at the
ends of that phase, we find the four relations

To I
ﬁl(To)_ ﬁl(TR) _— Sl*dT’
TR
T
ﬁX(T)_. ﬁX(To) _ Sx*dT,
To 5
- 2
N (25)
ﬁR(To)_ﬂR(T)= — SR*dT’
T
TR
ﬁL(TR)~ ﬁL(To) R SL*dT.
To

Since each junction is isothermal and carries no elec-
trical current, the electrochemical potential is con-
tinuous across each junction. Furthermore, since the
electronic chemical potential in the two identical phases
} and L depends only on the local temperatures, the
values of g!T® and gZ(T® are identical. Therefore,
adding the four expressions (25) and noting the order of
integration, we find

TR
ﬁL(TR)_ﬁl(TR)=f (Sz*—SL*)dT
To
T
+ | (Sg*—SxdT, (26)
To

and since S;*=S.* at each temperature, (26) becomes
upon separation into chemical and electrical parts,

T

¢l(TR)__¢L(TR) = (1/6) (SR*——SX*)dT.

To

(27)

Using (23) we can express (27) in terms of the heats
of transfer and the local thermostatic chemical
potentials,

¢,l(TR) ._.4,L(Tm

=(/e) | L[Qr*—Qx")— Wr—p¥)]1@T/T). (28)

The difference in electrical potential

Exr=Exr(T0,T)=¢!T®—$LT®), (29)

is called the thermoelectric potential difference of the
X-R thermocouple at temperature 7" and with reference
junction temperature To. We see that, provided ter-
minals 4 and B are at the same temperature, the
potential difference 8xr is independent of Tr. In the
symbol &xr the second subscript indicates the reference
material. The thermoelectric potential difference is
usually expressed in volts, millivolts, or microvolts.
Other names are usually used for 8xg, such as for

THERMOELECTRICITY 243
example ‘‘thermoelectric electromotive force,” ‘“thermal
emf,” and so on. We wish to avoid the unfortunate
connotation “force” in this connection and we shall
therefore always use the more appropriate term
“potential difference.”

From (27) it is seen that for a given pair of homo-
geneous and isotropic phases X and R the thermoelectric
potential difference depends only on the temperatures
Toand T of the junctions and not in any way upon the
temperature gradients along any of the phases in the
system. This fact was originally discovered empirically
by Magnus! and is now known as the Law of Magnus.

The derivative Sxr=d8xr/dT, of great impor-
tance in thermoelectricity, is called the relative thermo-
electric power of phase X against R, or relative to R.
The connotation of “power” here is also unfortunate;
however, we can think of no reasonable substitute and
shall therefore make use of this commonly accepted
name. We shall often use the single word thermopower
in place of thermoelectric power. Some writers use the
terms ‘‘thermal emf” and ‘‘thermoelectric power” in-
terchangeably, with corresponding confusion in their
units; this practice is obviously deplorable. The sign
convention almost universally adopted for Sxg is the
following. In Fig. 2 suppose that 7= T+AT with AT
very small, and that therefore ASxr= SxrAT. If for AT
positive A8xr=¢! TR —g¢L({TR) s also positive, then
the relative thermoelectric power Sxr at temperature
To+ (1/2)AT is positive. Or, alternatively, if the ter-
minals 4 and B of the thermocouple in Fig. 2 are con-
nected together when 7T'=T+AT, AT small, the
thermoelectric power Sxr is positive when the thermo-
electrically generated current flows from the reference
phase R to phase X at the warmer junction.

From (29) and (27) we find by differentiation with
respect to temperature,

Sxr=d8xr/dT=d(¢p"T® —$pL{TR) /4T
= (1/¢) (S&*—Sx¥),

which shows that the relative thermopower Sxz depends
on the temperature 7 but not on the reference tem-
perature T g.

From (30) we can write, denoting a third homo-
geneous, isotropic phase by the letter 4,

eSxr=Sr*—Sx*= (Sg*—S4®)+ (S4*—Sx*)
. =eSar+eSxa;
(31)

(30)

or

Sxr=Sxa+S4ar.

Introducing additional homogeneous phases B, C, ---
we can extend (31) to give

Sxr=Sxa+Sap+Spc+- - -+Sir.

Equation (32) is not particularly useful, but its special

32)

11 G, Magnus, Pogg. Ann. 83, 469 (1851).
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Fic. 3. The flow of energy and electrical current across a nonisothermal junction between two chemically

.

case (31) is of great importance in that it allows one
to determine the relative thermopowers of two phases
X and R if the relative thermopower of each is known
against a third phase 4. Or, conversely, if each of the
three relative thermopowers in (31) has been determined
separately by experiment, the extent to which these
values satisfy (31) is a measure of the reliability of the
data and of the homogeneity of the phases used.

D. PELTIER EFFECT AT A JUNCTION BETWEEN
DISSIMILAR PHASES

The total energy flow density W in a phase X is
given by Eq. (5),

WX=QX+ 5XJ,= TJ X+ 5*J.. (33)
Using (21) and (X-8) we find that Eq. (33) becomes
WX=T*Sx* ot 5T~ kx (VD)Y; (34)

a similar expression can be written for the R phase when
the particle current density J, is the same in both
phases:

WE=TES ¥ A gB),—kr(VT)E. (35)

The quantities in Eqs. (34) and (35) refer, respectively,
to the values just to the left and just to the right of the
element 4B of the junction in Fig. 3. The curved arrows
across the boundaries of the phases X and R indicate
an exchange of heat between a reservoir and the phases.
Thus the axial components of the vectors W and v T
as well as the values of z and « would in general vary
as we moved away from the junction, and we should
focus our attention on the values in the immediate
vicinity of the element 4 B. We want to consider here
only the steady-state situation so that if we apply the
energy conservation law to the energy passage through
element AB, assuming a very thin junction we must
have WE=WX or

TES p*Y.— kg (V T) B4 ﬂRJe

“—'TXSX*Je—Kx(VT)X-}-ﬁXJe. (36)

different phases. The Peltier coefficient is Ixr=— (T/e)(Sr*—Sx*).

Now in any ordinary junction between two phases X
and R the axial extent of the junction will be very small
compared with the lateral dimensions of the cylinders
of these phases, as in Fig. 3, so that as indicated in the
schematic variation of temperature 7" in the lower part
of this figure the temperature difference 7X—T'E will be
very small compared with both 7% and TX. Therefore
we make the assumption hereafter that 7'¥=TZ2=T.
Equation (36) can then be written

T(Se*—Sx*) et (a5 —*)J,

—[KR(VT)R*Kx(VT)X:}:O. (37)
The difference between the (isothermal) electrochemical
potentials a% and ¥ is given by (X-17); namely, with
the electric current ¢ flowing rightward from phase X
to phase R,

GR—pX=ciR,=c¢|J|AR,=—¢|J,|AR,.  (38) -
The second quantity in (37) is then
(aF— ) |J.| = (eiR,)- (—i/Ae)=— (1/4) (©*R,), (39)

which represents the Joule heat developed each second
per unit cross section of the junction. According to
Eq. (X-17) the electronic electrochemical potential -
creases along the current (z) direction; the electro-
chemical potential of a positive charge would decrease
along the current direction. Equation (39) refers of
course to the electronic electrochemical potential. The
first term in (37) written with total current ¢ is

T(Sr*—Sx*) [Jo| = = (T/e) (Se*—Sx™) (i/ 4).

Substitution of this expression and (39) into (37) then
gives '

— (T/e) i/ A) (Se*—Sx*)— (#/ )R,

— |kr (V) B—kx(VI)X|=0. (40)
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We now set

HXRE_ (T/e) (SR*—‘Sx*), (41)

and upon substitution into (40) we find the very useful
relation

(i/ A xr— (/A)Re— |kr(VT) B—kx (VT)X| =0. (42)

We call the quantity IIxz the Peltier coefficient be-
tween the X and R phases.

Referring to Eq. (42) and to the temperature diagram
in Fig. 3, we see that it will always be possible to force
the temperature distribution to be flat at least in the
immediate vicinity of the junction, so that the brack-
etted term in (42) vanishes. In this case the junction
is said to be isothermal, and we have

iMxr—#R,=0, for (VI)F=(VI)X=0. (43)

This means that in an isothermal junction in the steady
state, the Peltier heat iIlxr is exactly balanced by the
Joule heat produced at the junction, provided the total
current ¢ is such as to satisfy (43) both in magnitude
and in sense. The sense for positive 7 is indicated in
Fig. 3; namely, positive 7 means that the current (not
electrons) goes across the junction from phase X to
phase R. If 7 is in the opposite direction, ¢ negative, it
is impossible to satisfy (43) and we no longer have a
steady state: the temperature distribution of the junc-
tion region will change with time. The argument given
implies that the coefficient IIxr is positive, and that for
positive 7 and positive IIxz the Peltier effect operates
so as to make the junction behave like a heat sink,
absorbing the always positive Joule heat produced.
Thus our arbitrary convention that positive ¢ means
current flow from X to R fixes the sign convention for
the Peltier coefficient ; that is, a positive Peltier coeffi-
cient Ilxr means that when current flows across the
junction from X to R, heat must be supplied to the
junction in order to maintain a steady state.

Equation (43) tells us that a steady-state, isothermal
junction can be maintained by a balance between the
Peltier heat (sink) and the Joule heat (source) only for
a special value and sense of the current, say 7. For a
current in the same sense but less than 4,, we need to
inject by some means or other an additional amount
of heat (to0—7)llxz or R,(i¢*>—1?) in order to maintain
the original isothermal steady-state situation. If the
current ¢ is in the opposite direction, heat must be
removed; and if R, is not zero we must remove not
only the generated Peltier heat (now a heat source) but
also the always positive Joule heat. In short, in order
to maintain an isothermal steady-state junction, we
must somehow inject into the junction a Peltier heat
illxz which may be positive (add heat) or negative
(remove heat) depending upon the signs of both IIxr
and 1.

It has been customary in discussions of the Peltier
effect to treat only an isothermal junction without
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F16. 4. Hypothetical arrangement for measuring Peltier heat
at a junction. The arrangement is a poor one for actual laboratory
use, but illustrates the meaning of the Peltier heat under certain
conditions, as explained in the text.

resistance, thus leaving out of the analysis the Joule
heating and the flow of heat across sections near the
junction. The usual procedure is to state simply, instead
of our Eq. (42), that in the steady state

{heat injected or removed at the junction} =¢Ilxg, (44)

without giving the details of how the heat is added or
removed at the junction. What we wish to point out is
that, while this procedure leads to a perfectly legitimate
definition of the Peltier coefficient, it invokes a some-
what hypothetical experimental arrangement which has
in fact rarely if ever been used for the measurement of
Peltier heat. In Fig. 4 the small circles represent holes
drilled through the rods X and R at their junction, and
the dots inside the circles represent very fine resistance
wire threaded through the holes and electrically in-
sulated so as to form an ‘““internal junction-heater
element” located right in the plane of the junction it-
self. The diminution of the cross section will of course
increase the effective junction resistance and the elec-
trical current paths will become very complicated in the
vicinity of the junction. However, we can suppose that
for all practical purposes the heater is a strictly planar
heater located exactly in the plane of the junction and
that the total junction resistance is negligible. Even if
this supposition were to be well fulfilled there is still
the difficulty that the arrangement can be used only
when the Peltier heat ¢IIxg is positive. -

The usual way to measure ¢Ilxg is to enclose the
junction in a small calorimeter and to measure the
total heat absorbed from or given out in a certain time
interval to a fluid in which the junction is immersed.
Corrections are made for the Joule term in Eq. (42),
and one method for doing this is to use alternating
current to determine the Joule heat separately. The
calorimetric method involves essentially a measurement
of the surface integral of heat-flow terms of form «v 7T
at the surface of each phase, the integral taken over
the whole surface of contact between phases and sur-
rounding fluid. Strictly speaking, most Peltier heat
measurements made calorimetrically do not involve
a steady-state condition of the junction, and the re-
sulting value for the Peltier coefficient represents a
complicated mean value for the temperature range
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F1G. 5. Scheme for the direct measurement of Peltier heat at
a nonisothermal junction, making direct use of Eq. (42). The
temperature gradient is measured by means of resistance ther-
mometers Ty, T3, +++ Ts.

between the initial and final temperatures. However,
since the Peltier coefficient for most metals varies
slowly with temperature, any errors resulting from this
effect are most likely much smaller than the remaining
errors. In short, we may say that the usual experimental
methods for determining IIxrp make indirect use of
Eq. (42). '

A determination of Ilxr by direct use of (42) seems
to be feasible and could be carried out with an arrange-
ment like the one sketched in Fig. 5. The specimens X
and R are in the form of rods jointed as shown, and
have mounted on them three resistance thermometers
each. Only two thermometers on each rod are needed to
determine the temperature gradients in (42) if the
heat flow is strictly axial, and the third thermometer is
used to determine whether the flow is actually com-
pletely axial. If the flow is not axial the reading of the
third thermometer can be used to make whatever
slight corrections are necessary. The entire composite
rod is enclosed in a radiation shield whose temperature
distribution can be kept close to that in the rods, thereby
making the distribution in the rods very accurately
linear. The rod and shield are in an evacuated con-
tainer. A knowledge of the bracketted term in (42) still
requires the values of the thermal conductivities xx
and kz as well as their temperature variation if we
desire the value of IIxz over a range of temperatures.
However, by forcing (VT)X to vanish by means of
auxiliary heaters at the ends of the rods we can always
eliminate the term xx(VT)X, so that if phase R is the
“reference phase” we measure (or look up in tables)
its kg vs temperature once and for all, and need not
know «x at all.

The Joule term in (42) is easily known once the
contact resistance is known in its dependence on tem-
perature. We give in Appendix D a brief analysis of the
usual laboratory method for determining the contact
resistance between dissimilar metal wires.

Having found R, from Eq. (X-63) and having pre-
viously shown how the heat conduction term in (42)
may be evaluated, we are in a position to deduce the
value of the Peltier heat term ¢IIxg in (42). Obviously
the Peltier heat experiment is carried out with a non-
isothermal junction, possibly with (Vv 7)¥=0, while the
necessary determination of R, is made as pointed out
in Appendix D with the junction region (Fig. 28)
maintained isothermal. The determinations of Ilxz
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and R, of course refer to the values at the same tem-
perature T in Fig. 28 and T=T%=<TE in Fig. 3. So far
as the writer knows, this method for the direct deter-
mination of the Peltier heat has never been used. A
rough estimate of the precision required in the measure-
ment of the gradient (V7)® makes the method seem
feasible.

It will be shown in Sec. F that the Peltier coefficient is
related to the relative thermopower of an X-R thermo-
couple by —IIxrp=7TSxgr, where T is the absolute
temperature of the junction. Equation (31) gives the
additivity rule for thermopowers, and so we have also
an additivity rule for Peltier coefficients, namely

Nxp=Nxs+M4z.

Finally, we should like to comment on the phrase
“Peltier emf” which is sometimes found in the literature.
If we write the first two terms in (42) in the form
(ITxg—1iR,)i, having first multiplied through by the
area 4, we see that each term in parentheses has the
dimensions of an electrical potential and can therefore
be expressed in volts: If we separate (X-17) into
chemical and electrical portions we find

¢R_ ¢¥X=—iR+ (I-"R_#'X)y

showing that in general the product iR, cannot be
called the jump in electrical potential across the junction
unless the phases X and R happen to have identical
chemical potentials. In particular, if the phases X and
R are chemically identical, the quantity iR, will in
fact be just the jump in electrical potential across the
junction. Thus the electrochemical, the chemical, and
the electrical potential changes across the junction
being related as in (X-17) and (46) above, there is
nothing left to call a “Peltier potential difference” or
“Peltier emf.” ‘

(45)

(46)

E. THOMSON EFFECT

Consider a uniform cylindrical rod of a single homo-
geneous and isotropic phase as in Fig. 6, in which there
is an arbitrary temperature distribution and through
the surface of which heat is transferred to or from
the surroundings. There is at first no electrical current
through the phase. V is the volume between cross sec-
tions A and B. The temperature at points in cross
section A is T’=T7(r) and at points in section B is
T'=1T'(r), r denoting position within the section. The
temperature gradients at points in sections A and B
are G(r) and H(7), respectively, both temperature and
gradients varying throughout each cross section. We
formulate the following problem: If we pass a total
electrical current ¢ through the cylinder, how much
total heat must pass per second across the cylindrical
surface between sections A and B in order to maintain
the original temperature distribution and consequently
also the original temperature-gradient distribution?

The total energy current across section A without
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electrical current is found from Eq. (34) to be

fA W4.da= — fA «(T)G(r)-da, @)

where da is an area element in cross section A and the
integral is of course taken over the entire cross section.
Similarly, over section B the total energy current is
given by

j; W2.da= —j; k(T")H(r)-da, (48)

the prime referring to the local values in the section B.
Now with total current 7 flowing the total energy flow
rate across 4 is

f [— (1/e)(TS*+ DI ~(T)G()]-da,  (49)
A

since the T'(r) and G(r) distributions are the same as
in (47); and similarly across B the total energy flow
rate is

f [— 1/e)(T'S*+ @)V —x(T)H()]-da, (50)

the primes again referring to the local values of the
respective parameters in the cross section B. The excess
total energy flow rate out across section B over the flow
rate in across A before ¢ is turned on is (48) minus
(47) or

By — f W(T)H(r)-dat f «(T)G(r)-da, (51)

while the corresponding excess with current ¢ is (50)
minus (49) or

E;———— 1 T’S I+_, J’-da
(/e)L( IJ')
+ 1 TS +p.- J-da— K T’H 7 'da

+ fA «(T)G()-da. (52)

The necessary additional rate of influx of energy in the
form of heat across the cylindrical boundary between
sections A and B in order to maintain the same tem-
perature (and temperature-gradient) distribution as
without electrical current is thus given by (52) minus
(51), or

AE=E;— Ey=— (1/¢) f (T'S*'+ ") -da
B

+(1/0) f (TS*+7)]-da. (53)
A
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F16. 6. The cylinder of uniform chemical composition has a
certain original, steady-state temperature distribution before an
electrical current passes through it. If a current 7 now is made to
flow along the cylinder, how much total heat AE must pass in the
steady state per second across the cylindrical surface between
cross sections A and B in order to maintain the original tempera-
ture distribution? The solution to the problem is given by
Eq. (59).

Each of the quantities in the integrand in (53) has a
value depending upon position within each cross section ;
for example, T at a certain point in cross section A is
not necessarily the same as 7" at the geometrically corre-
sponding point in section B. In particular, although
the surface integrals of the electrical current densities
J and J' over their respective sections A and B must
of course be the total current 4, the densities J and J’
themselves are not necessarily the same at correspond-
ing points in the two sections.

The integral (53) represents the surface integral of the
vector quantity (7S*+a)J over the cross sections A
and B. But since there is no electrical current across the
cylindrical boundary of the phase, the integral can also
be written as extending over the entire closed cylin-
drical surface including the ends A and B. This exten-
sion then allows us to use Gauss’ theorem to write

¢AE=— f (TS*+a)J-da

entire closed
surface

—— f v-[(TS*+a)T1d, (54)

dv being a volume element and the volume integral
extending over the whole volume of the cylinder be-
tween Secs. A and B. The integrand in the volume
integral becomes, since V-J=0,

J.v(TS*+p)+ (TS*+m)v-J
' =J.[TvS*+-S*VT+Vvil;

solving (3) for Vi, using (19), (X-7) and J=—eJ, we
find

J [TvS*+S*VvT+vi]=T)-vS*+ (¢/a) ]2
Putting this into (54) we get

(55)

eAE=—f TJ-VS*dv——ef 1/a)I2dv.  (56)
v

v

The second integral represents the total Joule heat
generated per second by the current and is seen to be
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always positive. In the first integral, since S* depends
only on temperature we can write dS*/dx= (85*/9T)
X (8T/dx) and similar expressions for the y and z com-
ponents of V.S* so that V.S*= (9S*/97)VT. The ex-
pression (56) thus becomes

eAE=— f (T9S5*/0T)J -9 Tdv—e f (1/0)Xdv,  (57)
14 14

or if we set!?
r=—(1/e)T(8S*/0T), (58)
we get finally

AE= f 3V Tdv— f /) Fdv. (59
14 14

Equation (59) gives us the solution to the problem
formulated at the beginning of this section; namely, if
when there is no electrical current flowing through the
cylinder there is a given initial, steady-state tempera-
ture distribution, then if the cylinder is to have this
same distribution after the electrical current is turned
on and a steady state is again established, we must
add total heat to the volume V of the cylinder at the
total rate given by Egs. (59) and (58). The rate at
which heat must be added per wunit volume depends
upon the location of the small volume element within
the phase and is given by

AE/Av=7)-vT— (1/a)J2 (60)
The parameter 7=7(7") is called the Thomson coeffi-
cient and the first term in either (60) or (59) is called
the Thomson heat, although of course these terms
actually represent rates of adding heat. If AE/Av is
expressed in watts per unit volume the Thomson
coefficient has the dimensions of an electrical potential
per degree and can be expressed in volts per degree.
Equation (59) gives the relation between the Thom-
son heat and the total rate of heat addition to the
volume V of the phase, and in order to determine
itself we must apply (59) to an experimental arrange-
ment in which we can remove 7 from under the integral
sign. This can be done most easily by applying (59) to
a long section of thin wire such as indicated in Fig. 7,
in which the temperature gradient and electrical current
density are assumed very nearly uniform throughout
each cross section of area AA4. The distance between
regions of temperature 7" and 74 AT is taken to be Ax.
In this case the Thomson heat term in (59) reduces to

T T+AT

0 o ——

Fic. 7. A long, thin wire may be used in the determination of
the Thomson coefficient by making use of Eq. (63), which is a
special case of Eq. (59).

2 Callen and de Groot (references 1 and 2) have a plus sign in
(58), but their charge carrier is positive whereas ours is —e for
the electron.
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the following simple form, where now J=|J|,

f 1J-VTdv=1(AT/Ax)Ax- (J-AA)=7iAT, (61)
v
and the Joule heat term reduces to
—f (1/0)Jdv
v
=—(1/0)(Ax/AA)(AA-T)(AA-J)=—4R, (62)

giving therefore the experimentally usable relation

AE=riAT—#R, (63)
where R is the total resistance of the length Ax of wire.
The length Ax of wire, total resistance R, is held in a
steady state with a small temperature gradient A7/Ax
and total electrical current ¢ flowing through it. By
measuring AE (watts) calorimetrically, knowing ¢, AT,
and R we can use (63) to find the Thomson coefficient
r=7(T+3AT).

Since the various factors in (58) depend only on the
absolute temperature T, we can integrate (58) to find
the transport parameter .S* in terms of the Thomson
coefficient, and the resulting expression is defined as
the absolute thermoelectric power or absolute thermo-
power of the homogeneous isotropic chemical phase at
temperature 7'; namely,

Sibe= — (1/¢)S%= f (/T)dT. (64)

From (30) and (64) it follows that the relative thermo-
power Sxr of a thermocouple made of two phases X
and R can be found from the difference between their
absolute thermopowers; that is

SXstxabs_SRabs
T T
= [ exmar— [ Gwmar. @)

De Groot? has derived the thermoelectric potential
difference by using two ‘“homogeneous effect” terms
of the form (X-12) for the two phases X and R added
to two “heterogeneous” or ‘“‘contact potential” terms
of the form (X-46). One often finds the first terms re-
ferred to as “Thomson emf’s” and the second terms
referred to as ‘“Peltier emf’s.” We have already dis-
cussed in Sec. D the inappropriateness of the latter
term. The name “Thomson emf” is in our opinion
equally undesirable, inasmuch as the ‘“homogeneous”
term (X-12) is related to the Thomson coefficient only
through the integral relation (64) above, leaving still
the term (1/e)(dp/d7T) in (X-12). In fact, if we add
together the four terms mentioned, namely two of form
(X-12) and two of form (X-46), we find for the thermo-
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T+ OT

Fi1c. 8. The thermoelectric potential difference between points
P and P’ may be expressed as the difference between two “homo-
geneous thermoelectric potential” differences plus the difference
between two ‘“‘heterogeneous” or ‘“‘contact potential” differences,
according to Eqs. (66) and (67).

electric potential- difference of the thermocouple in
Fig. 8 the expression

1/0u®
A8xr= “(—“‘*‘SR*) ATH[¢X(THAT) — g R(T+AD)]
e\ T

1 /70pX
__(_T"‘SX*)AT"' [d,X(T)_.d)R(T)]_ (66)
d

[4

From (X-46) we get

[¢X(T+AT) _¢R(T+AT):|_ [¢X(T) — ¢R(T):|

a 19
=—(¢p¥—¢F)AT=— — X —uF)AT, (67)
aT e dT
and substituting (67) into (66) gives simply
A8XR= (1/8) (SR*—SX*)AT, (68)

the same result as in (30). Thus the “contact potential”
or “heterogeneous” terms (67) are canceled by a portion
(the thermostatic portion!) of the “homogeneous” terms
(X-12).

Finally, we can picture the origin of the thermo-
electric potential difference in a thermocouple in the
following way. From (64) and (X-10) we can see that a
temperature gradient in a homogeneous isotropic phase
X gives rise to an electronic electrochemical gradient
which is characteristic of phase X alone, apart from
whether or not this phase is connected electrically to
any other phase as in a thermocouple. This electro-
chemical gradient can be determined from (X-10) once
the integral (64) has been evaluated from an experi-
mental measurement of the Thomson coefficient and its
variation with temperature. Thus in Fig. 9 if the tem-
perature is initially uniform at 7" throughout the entire
system the electrochemical potential will be uniform
throughout. The temperature of the entire upper
portion is now raised a small amount AZ. The elec-
trochemical potential will in general change everywhere
in the system, but will have a uniform value in the
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lower isothermal region at temperature 7. We use this
value as the zero level or reference level, and the elec-
trochemical potentials at the upper ends of X and R
become with respect to this level AgX= —Sx*AT and
AjR= —Sg*AT, respectively. The difference between
these electrochemical potentials can be measured poten-
tiometrically by connecting two sections R and 7 of
chemically identical and isothermal phases as shown
by the upper dotted regions in Fig. 9. Thus the

measured thermoelectric potential difference is

Axp=0¢F—¢ = (1/e)Ap¥— (1/e)AR*
= (1/6) (SR*“Sx*)AT,
the same as in (30) and (68).

(69)

F. THE KELVIN RELATIONS OF THERMOELECTRICITY

From Egs. (30), (41), and (58) giving thermopower,
Peltier coefficient, and Thomson coefficient in terms of
the transport entropy per particle S*, we can now easily
derive the following relationships between the three
thermoelectric parameters, known as the Kelvin
thermoelectric relations:

Mxp=—TSxr,
rx—tr=T(30Sxr/3T).

(70)
QY

Having settled on a sign convention for each of the
quantities IIxz and Sxg, we can thereby fix the sign
in (70), as can be seen from the following argument.
Imagine a closed thermocouple circuit made of two
phases X and R as in Fig. 10. If the relative thermo-
power Sxr of the couple is positive, current will flow
in the direction of the arrows when the right-hand
junction is AT degrees warmer than the left-hand junc-
tion. When the current flows in this direction the left-
hand junction must become a heat source and the
right junction a sink. For if the reverse were true, the
left junction would cool further and the right junction
would become still hotter, thereby increasing the

R er

—*1 T+AT -i-

R
Mol THAT 7

R |[R X Aﬁx

T l
| !
< —E ~—
REFERENCE LEVEL FOR POTENTIALS

Fi1c. 9. The thermoelectric potential difference ¢p—¢" is simply
(1/e) times the difference AGX—AE, the electrochemical poten-
tial changes being brought about by the temperature change AT ;
thus Afi¥=—Sx*AT and AfiR=—Sg*AT.
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Fi1c. 10. This thermocouple circuit is used to explain the minus
sign in the Kelvin relation (70).

thermoelectric current. This current increase would
result in still further cooling of the left junction and
further heating of the right, and so on. Once started
with a minute AT this thermocouple device would
thus generate an increasing current and would further-
more cool the left junction without any external inter-
action. This being impossible we conclude that if the
relative thermopower Sxr is positive, the left-hand
junction in Fig. 10 must become a heat source so that
with the current I crossing the X-R junction in the
direction from X to R the Peltier heat must be negative.
This explains the minus sign in Eq. (70).

The relations between the various thermomagnetic
coefficients (Hall, Nernst, Ettingshausen, Righi-Leduc)
have been found by Callen.®

G. ANISOTROPY OF THERMOELECTRIC EFFECTS

According to Eq. (21) a particle current density J,
flowing in an isothermal rod has associated with it an
entropy current density given by J,=S*J,, in which the
transport entropy per particle S* depends on' the
chemical nature of the phase and on the temperature.
The value of this parameter S* for a given kind of
particle (electron, say) in a given phase is determined
by the detailed way in which the particle is scattered
as it passes through the atomic lattice of the phase.
One would not be too surprised, therefore, to find that
in a single crystal the value of S* for a given charge
carrier depends in general upon the crystallographic
direction in which the carrier moves or drifts. Since
the absolute thermoelectric power of a phase is deter-
mined by S* it would follow that the thermoelectric
properties of a (noncubic) single crystal would vary
with crystallographic direction. This is in fact the case,
and a considerable amount of thermoelectric data is
available on such pure metal single crystals as zinc,
cadmium, antimony, bismuth, tin, and magnesium."
We wish to discuss next the theoretical aspects of ther-
moelectric anisotropy. We begin by postulating a tensor
formulation of the fundamental thermoelectric equa-
tions applicable to any crystalline or otherwise non-
isotropic as well as nonhomogeneous medium. We then

13H. B. Callen, Phys. Rev. 85, 16 (1952).

4W. Meissner, Handbuch der Experimentalphysik (Leipzig,
1935), vol. XTI, pt. 2.
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apply the general equations to special crystal systems;
of particular importance is the application to “uniaxial”
crystals, since these are the ones most extensively
studied experimentally. The applications of the general
theory lead to the Kelvin symmetry relations and to
Bridgman’s “internal Peltier effect.” Finally, we com-
pare our formulation with those of Kelvin, Bridgman,
Ehrenfest and Rutgers, Meissner, Kohler, and Meixner.

1. The General Equations for Anisotropic Media

We use as a starting point the combination of rela-
tions (21) and (X-8), namely?s
Jo=S*Je— (x/T)VT. (72)
In setting up the general equations we make the as-
sumption that each component of the entropy current
density J & is a linear function of the componenis J ;¢, of
particle current density and of the components V;T of
the temperature gradient, with ¢, j=1,2,3. The tempera-
ture 7' and the electrochemical potential @ are con-
sidered as continuous and differentiable functions of
position (%1, %, ;) within each phase. If an electrical
current flows across a boundary between two media,
there will be cases (as mentioned in Example 6 of
Appendix B) in which the electrochemical potential
cannot be defined within the junction. In such cases,
however, the finite jump in 4 across the junction can be
defined and one needs only to use the appropriate
boundary conditions for &; otherwise such cases in-
troduce no particular difficulties. The relation (72) is
thus replaced by the three equations!®
J#=S8i*T = (kij/ T) 9T/ 9%5), 1,5=1,2,3, (73)
in which the quantities Si;/* form the transport entropy
matrixz and the «;; form the keat conductivity matrix. We
emphasize the fact that the equations (73) are postu-
lates, reasonable extensions of the isotropic Eq. (72),
and that their validity must be checked by experi-
ment. At the present time there is available only infor-
mation on crystals of comparatively high symmetry, to
which the simpler Kelvin and Kohler symmetry rela-
tions are supposedly applicable. Although the Kelvin-
Kohler relations appear to be quite well satisfied by
available data on such crystals, there is still need for
further and more extensive measurements on single
crystals over large temperature ranges.

15 We shall hereafter write the subscripts s and e in (72) as
superscripts to make room for the subscript indices ¢ and j.

16 The presence of two identical subscripts indicates a summa-
tion. Thus (73) is shorthand notation for the three components

Je=Su*1+S15* o +S15* s — = (Ku +x 12 + Eirm )
Jz“_'321*]1+522*J2+523*J3—"‘(Kzl +K22 +K23 )

5= Sa*14Sa* o+ Sa* T 3— T(Kna—acl-}—x”%—z—i_x”b;a) .
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It follows from (73) and (6) that the total energy
current density W, can be written

Wi=TS;i*J i+ aJ i¢—ki;(8T/ 0x;)

= (T'Ss*+ mdi;)J j*—kii(T/ 9%5), (74)
with 5¢j=1 for $=], 5,']"'—"0 for 1#]

We shall also need the anisotropic formulation of
the relation between the electrochemical potential
gradient and the temperature gradient, the isotropic
form of which can be gotten from (3), (19), and (X-7),
namely,

Vi=—ep)e—S*VT, (75)

in which we have used the electrical resistivity p=1/c
instead of the conductivity. Equation (75) derives
from the same basic relation (3) as does (73); that is,
(73) was written as the anisotropic form of (72) or (21)
which in turn was derived from (3). It is clear therefore
that the anisotropic form of (75) must be consistent
with (73) and (74), and a consideration of this question
shows that the only uncertainty in the direct transcrip-
tion of (75) to anisotropic form lies in the order of
subscripts in the transport entropy matrix S;;*. Thus
in (75) the question is, which of the following forms is
the correct one consistent with (73) and (74),

L aT
—= —epyJ =S —,
0x; ax;
or (76)
of T
—=—&pJ = Si*—?
dx; 9x;

The resistivity matrix p;;=p;; and the thermal con-
ductivity matrix k;;=x;; are already known to be
symmetric.” We shall show analytically that the
second form in (76) is the correct one; however, it is
helpful to consider first an intuitive argument for a two-
dimensional case.

If the particle (electron) current densities J1° and J,°
flow through an elemental cube inside the crystal at
uniform temperature, with d7/dx;=0 we have from
(73) for the entropy current densities

J1t=S1u*T 145127 20,
Jot=Su*T1+Sa0* T o0

(7)
(78)

Next we suppose that a temperature gradient with
components 97/dx, and 97/0x, but 97/dx;=0 is
established in the elemental cube and that no electrical
or particle current is allowed to flow. From (75) we see
that there will result a gradient of electrochemical
potential. The question is, which of the following two

17 See W. Voigt, Lekrbuch der Kristallphysik, p. 345, or de
Groot, reference 2, Chapter 4. It has never been shown that for
any arbitrary crystal symmetry the matrix S;;* is symmetric.
The work of Kohler, to be discussed later, gives quantum-

mechanical expressions for a matrix v;;, related to our S;;*, which
are nonsymmetrical in the general case.
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sets of relations follows from (77) and (78):

o oT T
—=~=Su*——Sp*—, A)
6x1 6x1 6x2
op T aT
—=—Su*——Sp*—, (B)
6x2 6x1 6x2
or

ET oT oT
= _Sll*—'—_S2l*—‘) (79)
6x1 6x1 6x2
i oT oT

= —S1g*——Syp*—7? (80)
0%, 0% 0%,

Consider the significance of the ‘‘cross-term com-
ponents” S1,* and Su*. By (77), a particle current
(density) J,° along axis x, contributes to the entropy
current (density) J;* along axis x; through the com-
ponent Sy,*. This means that particle currents along
%, are coupled with entropy currents along x; through
the components S15*. In the same way, by (78), particle
currents along %, are coupled with entropy currents
along x, through the component Ss*. Equations (77)
and (78) relate the currents or fluxes J¢ and J¢, while
Eqgs. (A) and (B) or (79) and (80) relate the “forces”
Vi and VT. We saw in Sec. B that the flux J¢ and the
force —Vi are conjugate to each other, as are the
flux J* and the force —V7T. The present question in
regard to the choice between (A) and (B) or (79) and
(80) brings out the significance of the conjugation be-
tween fluxes and forces. This conjugation means that
Je and — Vg are related by what we may call a direct
coupling, as are J* and — VT, whereas J¢ (or —Vg) is
related to J* (or —V7T) by an interference or indirect
coupling. It will help to refer to J¢ and — Vg as “elec-
trical effects” and to J* and — VT as “thermal effects.”
Thus, electrical effects along axis x, are connected by
interference coupling with thermal effects along axis
x; through the matrix component S1,*, while electrical
effects along axis x; are connected by interference
coupling with thermal effects along axis x, through
the matrix component Sy*. If, from (77), J.¢ con-
tributes to Ji* through Sy.*, then we expect /%,
to be related to dT/dx: through the same matrix com-
ponent Syo*; if, from (78) J1° contributes to J5* through
San*, we expect 9ja/9x1 to be related to 97/9x, through
Sar*. Therefore we recognize (79) and (80) as con-
sistent with (77) and (78) and we reject (A) and (B).

To derive analytically the second of Egs. (76) we
make use of the conjugation of the fluxes and forces
as expressed mathematically in the invariance (9) of

the sum
o oT
0-re(~2) e (-).
ax,- 6xi

It was mentioned in connection withtEq. (9);that the
time rate of internal entropy production per unit

(81)
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volume {(s) at temperature 7" is determined by the
sum of products of conjugate currents and forces, as
in (81). Since this rate of entropy production is inde-
pendent of the choice of fluxes and forces, provided
these are conjugate, the sum (81) is an invariant. (The
total internal entropy production rate is of course the
volume integral of (81) taken over the whole system.)
For steady-state conditions, (81) is not only invariant
with respect to transformations of fluxes and forces but
is also constant in time, and as already mentioned in
Sec. B, steady-state processes are the only ones we
shall consider. We substitute (73) into (81) and find

o oT i
Tg‘(s)=—J¢”—-—]i3 =—7;"
oT ki 0T 0T
=S j—t——— (82)

dx; T Ox; 0x;

= —J-f( % Sﬁ*) o
ax; dx; T dx; dx; J

We see that the terms in «;; account for the ordinary
irreversible heat-conduction contribution to the entropy
source strength. Likewise the terms in J,;® account for
the contributions from the irreversible Joule heating.
In fact, the physical significance of the entropy source
strength {(s) is that it represents the time rate of
change, per unit volume, of the entropy produced by
strictly irreversible effects within the volume. This
quantity {(s) is required by the Onsager theory to be
positive, though not every term in {(s) is individually
required to be positive. Now the entropy of the material
contained within a given volume AV is a constant in
the steady state, since this entropy is a single-valued
function of characteristic parameters of the material in
AV such as the internal energy AU, number of particles
AN, and the volume AV. The internal entropy pro-
duction {(s) resulting from irreversible processes within
AV is carried out by the vector J* at a rate, div J¢, just
sufficient (in the steady state) to balance out {(s) so as
to maintain a constant entropy within AV.
The Joule contribution to 7¢(s) can also be written
piiJiJ j=€pisJ T, (83)
where J;= —eJ;® and p;;=p;; is the resistivity matrix
of the crystal at temperature 7. Equating (83) to the
Joule contribution in (82) we have

on oT
—J f( +sz'*——) =épiiJ T ¢

axi axj
=—J(—=€piJ5%), (84)

and since the particle (electrical) current density com-
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ponents are independently variable, (84) gives

o oT
—+S*—=—piiJ *=epiiJ
ax; dx;

i oT
—=—¢%piJ je— sz‘*_‘,
ox; ox;

(85)
or

(86)

which is the second form in (76).

It is interesting to notice that the Joule heat is not
correctly given in general by E.J;, with E;= — d¢/dx;.
In fact, we can show that this is so even in an isotropic
homogeneous phase, as follows. The correct Joule heat
expression is, when (83) and (85) are used,

1705 _oT
pJ-J=~(——I—S*—)-J

e\dx Jdx
1/0u 09 aT
=—-(—-—-e——+S*—-——-)-]5—

(87)
e\dx Ox dx

€

where we have written du/dx= (0u/0T)(dT/dx) and
E=—93¢/dx. Thus we have pJ*=E-J only for a phase
at uniform temperature, when 97/9x=0. This situa-
tion is analogous to that concerned with the general-
ized Ohm’s law discussed in Example 4 of Appendix B.

2. Volume and Surface Heating Effects

The vector W, in (74) gives the total energy current
density at any point in the crystalline medium. In the
steady state there can be no accumulation of energy
within any infinitesimal volume element and the vector
W ; must be divergenceless. Thus

oW a (Sij*]je) oT aJ ;¢
—=0=T FSi*T o —+ B
g 9/ IT
+J——— Kq,'j“‘—‘). (88)
dx; Ox; ax]-

This relation and the following are thus valid for non-
homogeneous crystalline or crystalline-like media.!® The
third group of terms on the right-hand side of (88)
vanish, since the particle current is divergenceless.
Substitution of (86) into the fourth term on the right-
hand side gives

o oT
]ie —_ eQJiePij]je_ JiESji*_—
ax,- axj
oT
=—€piJ T °=Si* j—, (89)

Xi

18 An example of the latter kind of medium is a nonuniformly
strained body in which the strains give rise to a crystalline-like
anisotropy.
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the last term here cancelling the second on the right-
hand side of (88). Solving for the derivative d(x;;0T/
dx;)/dx; in (88) and writing J,*=— (1/e)J;, where J;
is the electrical current density, we find

a T 1 3(Si*Ty)
— Kir—-) =—piJJi—T ——.
ox;\  0x; e 9x;

(90)

Equation (90) is a general expression for the production
of heat in an inhomogeneous, anisotropic medium,
crystalline or otherwise.

In general the components S;;* of the transport
entropy matrix depend on temperature and on position
in an inhomogeneous medium, so that the derivatives
of S;* in (90) must include spatial as well as tempera-
ture variations. Thus, since in general S;;*=S;*(x;, T),
we must write

aS* (3S¢j*) (GS”*)
9x; - 9x; x5 ax,
and the last group of terms in (90) breaks down into

the three groups

T é)(SzJ J]) (65,-{“)
e 9x; 0x;

().

We shall use the following notation for the four separate
groups of terms in (90) and (92):

&2y

oT T aJ;

dx; e 0x;

(92)

Joule: Qr=—piJiJ;, (93)7
Peltier: Qp= ———T] ( ) (94)
| (Volume
as;;*
Thomson: ( ! ) —, (95) effects)
x7 axw
J;
Bridgman: Qp= ——TS“* (96)
ax,;

Each “Q” represents a heat absorbed per unit volume
per unit time.! Our sign convention agrees with that of
Bridgman,?® absorbed heat being taken as positive.
Ehrenfest and Rutgers? use the opposite convention.
Equation (93) gives the Joule heat evolved and is
therefore negative. If the medium is not homogeneous
there is a volume Peltier heating effect Qp given by (94).

1 The electron charge ¢ here, as throughout this Review, is the
absolute value, the sign having been already absorbed in the
original electrochemical potential separation into chemical and
electrical portions.

2 P. Bridgman, Thermodynamics of Electrical Phenomena in
Metals (Macmlllan Company, New York, 1934), Chap. VI.

21 P. Ehrenfest and A. J. Rutgers, Proc. Acad. Sci. Amsterdam
32, 608, 883 (1929). ’
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Fic. 11. The curve A B represents a general boundary between
two anisotropic media X and R.

Whether the medium is homogeneous or not there is a
Thomson heating effect given by (95). The signs in
(93) and (95) agree with those in (58) and (59). The
last terms (96) describe an effect first predicted by
Bridgman.?2

We consider next the phenomena taking place when
an electrical current crosses a boundary between two
anisotropic media. The generalization of the treatment
in Sec. D follows directly from the formula (74) for
total energy flow W,. Consider a composite system con-
sisting of two different anisotropic and inhomogeneous
media X and R electrically and thermally jointed along
some arbitrary surface 4B as shown in Fig. 11. The
reference axes are ¥;, %, %3 and the crystallographic
axes (or other characteristic axes) of each medium X
and R may be oriented in any way whatever relative
to these reference axes. As in the case of isotropic media,
the joint or contact 4B between X and R will in general
be a very complex transition region of some finite
thickness d. This thickness is of course somewhat
indefinite, varying from place to place along the
boundary, and will depend upon the method used for
joining the two media. Often the main bulk of the
junction may consist primarily of some third material,
for example when two different crystals are cemented
together with Wood’s metal or with soft solder. In such
cases the junction layer of solder may be several
thousandths of an inch thick in many places. On the
other hand if the joining is done by electrical fusing
of the two single crystals, the transition layer or sheath
will probably be a physical mixture of polycrystals of
X and R together with some alloy crystals, and so on.
In almost all cases in which quantitative measurements
are to be made on arbitrarily oriented single crystals
the boundary A B will be a simple butt-joint as in Figs.
3, 5,and 28; in such cases some quantitative estimate
can be made of the “contact resistance” or ‘sheath
resistance” R, provided the resistance matrices p;;¥
and p;;® for the two crystals X and R are known. The
procedure for determining R, in the case of two crystals

2 P, Bridgman, Proc. Am. Acad. Sci. 61, 101 (1926); 63, 351
(1929); Proc. Natl. Acad. Sci. 13, 46 (1927).
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is essentially the same as that already described in
connection with Fig. 28 except for the added complica-
tions resulting from the crystalline nature of X and R.
However, since these complications can be handled in
a straightforward way having little to do with thermo-
electricity, we shall not discuss the details.

Returning to formula (74) and Fig. 11 we see that
since in the steady-state energy and charge cannot
accumulate in the boundary region 4B, the boundary
conditions on total energy current density and electrical
current density are

JEn=J Fn;,

W,;X’}’L,;E WiR'VI/,;,

©7)
(98)

in which #; are the three components of the unit normal
vector which we agree always to point outward from
medium X. The superscripts X and R refer to the
medium in which the current flows. Applying the condi-
tion (98) to (74) and collecting similar terms for the
two media we find

1 1 :
-T (Sij*X]ani_ Sij*RJjanj) +— (ﬁxfixﬂi— ,ELRJ-@'Rni)
€

oY oD oo o

the generalized form of relation (37). The bracketted
groups of terms represent the energy flowing out of the
boundary region (per unit area of the sheath) by
ordinary heat conduction through media X and R. The
middle group of terms give the Joule dissipation in the
resistance R of the sheath; this can be seen as follows.
Writing J,= —eJ ;¢ in (86), we have

o aT

— = ep,-,-Jj i S_"*—"— 28

9x; c’)xj

Now the resistive sheath we assume to be isotropic, so
that p;;=0 for i 7, p;s=p,; and if we further assume
that the second term on the right-hand side of this
last equation is negligible compared with the first, we
find in crossing the boundary

AﬁE ﬂR_ ﬁx': - nz

( )d~eszm,d (100)
as

where s is distance along the normal #; and d is the
thickness of the resistive sheath. Because of (97), it
makes no difference which current components, J,* or
J:EB, are used in the last parentheses in (101), and we
choose J;E. Then in the middle terms of (99), using (100)
and (97) we get

1
- (ﬁXJ"an__‘
€

GRT i) =—(pX— a®)J Pn;
: e

1
=—(—-ep3J;Rmd)]¢Rn,-= —psd(JiRn;)Z. (101)
[
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We can now rewrite (99):

T\ X AT\ 2
[Kijx(——) m—Kin(—) ”i]_Psd(]z'Rﬂi>2
0x,- 6x,~

1
F-T(Se*XT Zn;— Si*BT ;Bn;)=0. (102)
e

Expression (102) describes the heat generation and
transport at the boundary region between inhomo-
geneous, anisotropic media X and R, and is the surface
analog of the “volume” equations (90). We name the
second and third sets of terms as follows:

Joule: gr=—psa(Jm,)?, (103)
Peltier: (Surface
1 effects)
qPE—T(Sij*X]ani_‘Sij*RJjRﬂ/»i). (104)
e .

Each of the “q” represents a heat absorbed per unit
area per unit tlme.
We next set down the definitions

1
HijE—TSij*E H,‘j(T; X1, X2, xg), (105)
€

1 8S¢,~*
Ti= -——T( ) =745 (T; X1, X2, xg). (106)
oT 7 »;

We call II;; the Peltier coefficient matrix and 7;; the
Thomson coefficient matrix for a given inhomogeneous,
anisotropic medium at temperature 7' and at point
%1, %3, X3 within the medium, when referred to rectangu-
lar coordinate axes ®i, ¥s, ¥3. Relations (93) through
(96) for the volume heating effects become, with ¢, j
=1, 2,3,

Joule: Qo=—piJ T, (107),
Peltier: Qp=— ( ) 7 (108)
L (Volume
Thomson : Qr= 'ru] — (109) effects)
x,
aJ;
Bridgman: Op=—1L;;7—; (110)
X

and (103) and (104) for the surface heating effects
become

Joule:
Peltier:
gp=— (LT F— ;% T ;%) - ns.

gr=—p.d(Jm:)’, (111)

(Surface
effects)

(112)
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3. Limitations Imposed on the Thermoelectric
Matrix Components by Crystal Symmetry

For convenient reference we shall list in Table I the
general schemes of matrix components for the entropy
transport matrix S;;* for the six crystal systems. No
proof has yet been given that the thermoelectric
matrices must in general be symmetric; this is in
contrast, for example, to the symmetric matrices
pii=pii and k;=kj. On the contrary, Kohler® has
shown on the basis of a quantum-kinetic treatment that
the thermoelectric matrices are not in general sym-
metric. On the other hand, all pure metals and metallic
alloys that have been studied up to the present time
are of such crystal symmetry that the matrix S;;* is
not only symmetric but has components St¥, Sir*=Sr¥,
Str™ in the principal-axes coordinate system.

4. Thermoelectric Potential Differences in Rods Cut
from Crystals for Which S,;;* Becomes
St*, Sir*=S1* Sur* in Principal-Axes
System. The 15t Kelvin and Kohler
Symmetry Relations

The system we wish to analyze is the one shown in
Fig. 12. The rod 4B is cut from a single crystal of the

TasLE I. The schemes of matrix components for the entropy
transport matrix S;;* for the six crystal systems.

Triclinic Monoclinic Rhombic
Su* Sp* Sis* Su* St 0 Su* 0 0
Sa* Sa™ Sys* Sa* S»* 0 0 S»* 0
Sar* Sp* Sas® 0 0 St 0 0 Si*
Tetragonal Hexagonal Cubic
Su* Sp* 0 Sn* Sp* 0 Su* 0 0
—=Si* Su* 0 —Sp* Su* 0 0 Su* 0
0 O 533* 0 0 533* 0 O Su*

material shown in Fig. 13. The slab CDEF is in the
—amm1 plane, and for crystals with Sp*=Sr* this is
always the case when the || axis is along xrir. We require
here only that the final rod be oriented as shown with
its long axis making an angle § with the xyp or || axis,
and with this long axis lying in the x;—x11 plane. We
then set up a new axis system xy, s, x3, with the x» axis
coinciding with %11, the x; and x; axes rotated (about x,)
through the angle 8 as shown. The temperature gradient
dT/dx; in Fig. 12 can be measured in principle by
probing along a fixed axial line along the length of the
rod AB. Also, from the known thermoelectric properties
of the polycrystalline, homogeneous reference phase R
it is easily possible to deduce the electrochemical poten-
tial difference gX(T? —gX (D between the ends of the
crystalline rod AB once the difference ¢pETR —pr(Tr)
= (1/e) (a"T® — gR(T®)) has been measured potentiomet-
rically, since no electrical current is supposed to flow
through the crystal during this measurement. The

2 M. Kohler, Ann. Physik 27, 201 (1936).
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Fi16. 12. The rod 4B is cut from a crystal for which the transport
entropy matrix S;;* becomes St*, Su*=Sr*, Stur* in the principal-
axes system. The angle between the || axis of the crystal and the
long axis of the rod is 6, as shown in Fig. 13.

electrochemical potential difference between the ends
of the crystal rod is given by

Te :
ﬁX(Tz)_ﬁxm):f (@a%x/dT)dT
T

1

T2
= Seff*XdT7 (113)
T
in which Set*¥ is defined by
X
—= — St X— (114)
6x3 6903

and is to be determined. By taking 7'»— T’y small, one
can write

(6 TR —RT) = (Sg*—Su*X) (T,— T, (115)

using the procedure in Sec. C. From (115) one can thus
determine Se¢¥ =S¥ (6), as a function of the angle
6 between the ||-principal axis and the long axis of the
crystal rod, Figs. 12 and 13. The problem now is to
determine the relationship between Set*X(6) and the

Xm.ll-axis
I g /%3
7"\x/ £

—-AXIS

_ —XgiXgrL-AXIS

—Xp,L-AXIS

~
\Xp—AXIS

F16. 13. The crystal rod 4B of Fig. 12 is cut from the single-
crystal slab CDEF, with orientation angle 6.
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principal values Si**¥ and S*X corresponding, re-
spectively, to =0 and 6=90°. We shall show that the
form of this relationship depends upon the boundary
conditions used in the experiment for measuring Ses*¥.
To simplify the notation, however, we shall omit the
superscript X, since it will be clear that we are now
concerned only with the crystal rod and not with the
reference phase R. ‘

Let us first write out the complete expressions (74)
and (86):

1
Wi=—-T(S1*J1+S12* o4 S15*T5)
€
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I
—= 3(921]1+P22]2+PZ3-73)

X2
- Slz*——— 522*““—_ S32*_'“, (120)
0x1 0%y %3
i
—= 6(P31f1+ P32]2+03313)
6x3
oT a d
—S15F——Sos*——Sp*—. (121)
dx; 0% 0x3

The components .S;;* and «;; can be found in terms of
the principal values St¥, SII*=SI*, Sur* and K1, KII

1 oT oT T =i, ki referred to principal axes by means of the
——gJ1—ki——ki——k13—, (116) usual formulas, namely,
e 0x; 0%y 0x3
1 Si*=c1miSim*T,  Kij= ClitmiKim®, (122)
Wa= —_T(S21*j1+ 522*12+523*Js)
e where the P superscript refers to principal-axes com-
1 oT or oT ponents, and ¢’s are the direction cosines describing the
— =i 2= ker——Kkar——Kag—, (117) P o of . f - i
¢ o1 0 9% transformation of axes as given by the following scheme:
1
W= —=T(Ss*J 1+ S32*To+S355*T 5) ¥ X2 X3 *1 Y2 Xy
¢ 1 aT aT aT X1 €11 Ci12 Ci13 X1 cosf 0 sinB
— =T s~ ky——kgr——ka— (118
e.u 3 K316x1 K32(9x2 K?aaxs; ( ) Xrr | Cax Can Coy = X 0 1 0 (123)
op .
—=e(puJ 1+ p1aTotp1sT3) Zrir | €31 €32 Cs3 ;. |—sinf 0 cosf
o oT The direction cosines of the x, axis relative to xr, %,
—Si*——Sau*——S8u*—, (119) 2 are, respectively, ci1, ca1, €31, €tc. Using (122) and
9%y 9% dxs (123) we find the matrices S;7* and «;; to be
Sn* 512* S13* SI* COS20+S]H* sin20 0 (SI*—SIII*) sin0 cosf
Sor*  Sa* Seg*||= 0 Sr* 0 (124)
d 531* ng* 533* (SI*—SIII*> sinf cosf 0 Sl* sin20+Sm* cos?d
an
K11 K12 Ki3 K1 C0520+K111 sin’d 0 (KI—KHI) sinf cosf
Kol Koa  Kas||= 0 K1 0 (125)

K31 K32 K33

The first set of boundary conditions represent the
isothermal case,” without electrical current, in which
the lateral faces of the rod in Fig. 12 are supplied with
or relieved of heat in such a way as to maintain these
lateral faces at the same temperature at each level zz,
though of course the temperature varies as one proceeds
up the rod. In other words, the temperature-gradient
components d7/dx; and d7/dx. are forced to vanish
while the component up the length of the rod, 97/ duxs,
is finite and in principle easily measurable. The iso-
thermal conditions are therefore

aT oT oT oT
J1=]2=]3=—=———=0, —_—
6001 (9.’)02 6963 8x3

(126)

Using these conditions in Egs. (119), (120), (121), to-

(kr—k111) sinf cosf 0

k1 sin®0+ky11 cos?d

gether with (124) and (114), we obtain the relations

o oT oT
—=—Sy*—=—Sp*—
9x1 x5 dx3
aT
= — (S7*—S1r™®) sinf cosb—, (127)
axs
dii oT
= — Sy —=0, (128)
6962 6x3
i aT oT
—= —Sas*———= - (SI* sin20-|— Snx* COS20)——-
6x3 6x3 6x3
=—Suf—. (129)
é)xg
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From (129) we deduce the important relation
Seff* (0) = S[* sin20+ Sn[* cos20, (130)

and after multiplying both sides by (1/¢)T and using
(105) we find

T ™4 () = M1 sin®0+ Ir cos. (131)
It is customary to set
S[*ES;*, S[[[*—ESII*, IIi= HL,
(132)
=0, k=ky, KI=ku,
so that (131) is written
Trisgthermal () — 11, sin?9+ITu cos?. (133)

Relation (133) was first derived by Kelvin? on the basis
of intuitive reasoning, and is usually called the 1st
Kelvin symmetry relation.

Turning next to the adiabatic case, we set up the con-
ditions under which there is no lateral transfer of energy
allowed across the side faces of the crystal rod; this is
the case which most nearly approaches the usual experi-
mental conditions. We allow electrical current J; to
flow in the x; direction in order to include complications
arising from Peltier and Thomson effects. The adiabatic
conditions then are

W1= W2=]1=Jz=0, W3= Wg, J3=]3 (134)

Inserting conditions (134) into (116) through (121) we
obtain

aT oT oT
0=—-TS1s*Js—k1r—— k10— — k13—, (135)
e 0%, 0% dx3
oT oT aT
0= —-TS23*J 53— Koy—— Koo——— Kaz—, (136)
[ 6x1 axg axs
1 aT aT oT
Ws= ——TSas*]s——ﬁjs“KSI‘_‘—K32'—_K33_—', (137)
e € 6x1 ax2 ax3
£y oT oT
—=¢p13J 3— Sn*——Sor*——S*—, (138)
9% 9%, 0% 0x3
By oT oT oT
——=epgsS 3— S1a*t——Sa*——Ss*—, (139)
axg X1 6x2 ax3
i aT aT
—_—= epssfg—513*———523*'—“—‘533*—"- (14’0)
ax;; 6x1 6x2 axg

First we wish to find the way in which Se¢* depends
on angle 6, thus giving the angular dependence of
thermoelectric power ; for this we set J3=0, and we shall

24 W, Thomson, Trans. Roy. Soc. Edinburgh 21, 153 (1857).
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return afterwards to the Peltier and Thomson effects
resulting from a nonvanishing J.

Therefore, after putting J;=0 in (140), (135), and
(136) we solve (135) and (136) for the two components
dT/dx;, and dT/dx. in terms of d7/dxs. The solutions
are

oT
:Bl—)

6x3

oT (K12K23‘— K22K13) oT

%1 K11kae—Kar® / 0%3

(141)

- = =Fr—.

oT (K21K13—K11K23) oT oT
Bxs

0%y Kook11—K19® / 03

Substituting (141) into (140) with J;=0 we find
of oT
—=— (S1*BrFSas*BatS5*)—.

(142)
axs Gxg
Substituting the appropriate matrix components from
(124) and (125) into (141) and (142) it is seen after
some manipulation including the substitutions (132)

and

—(1/e)S F*=812, —(1/e)Su*=Subs,  (143)
that (142) takes the form
da
—=¢| S,2P® sin20+.S,,2% cos?d
03
Ky
(S"abs__ S_Labs) (____ 1)
Ky aT
+ sin® cos®d |—. (144)

Ky 0x3
sin’0+— cos®
Ku
We shall call (144) the 1st Kelvin-Kohler symmetry
relation, and one sees that multiplication of the brack-
etted term by T gives the relation

Hggiabatic (0) =11, sin26+ H" cos0

Ky
(Hu_ HJ..) ( —_— 1)
K
+ sin% cos%.
Ky
sin%+— cos?0
Ku

(145)

Comparison of (145) with (133) shows that deviations
from the original Kelvin relation (133), in the case of
adiabatically performed experiments, are to be expected
if the thermal conductivity is highly anisotropic, so
that «, differs appreciably from «,. This situation was
clearly pointed out and (145) was derived first by
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Kohler,? although'Stabler? and Reddemann?” had pre-
viously realized that thermal conductivity played a role
in the observed deviations from (133).

5. Transverse Effects in Rods Cut from Crystals for
Which S;;* Becomes S1*, Sir*=Sr* Sur* in
Principal-Axes System. The 274 Kelvin
and Kohler Symmetry Relation

From (127) it follows immediately upon multiplica-
tion by —(1/e)T that under isothermal conditions

Sitansverse (9) = (S1%2%—5,*) sinf cosd,  (146)
which is the 2nd Kelvin symmetry relation ; using (105)
gives another form, namely,
1228 verse (8) = (IT,—IT,,) sinf cosé. (147)
A deeper insight into the physical meaning of (147)
can be obtained from an alternate derivation of this
relation. Suppose that the bar or rod in Fig. 12 is
maintained isothermal throughout by the appropriate
addition and removal (on opposite faces) of heat, and
that an electrical current of uniform density J3 is caused
to flow through the rod, along the x; axis. The conditions
to be maintained are therefore

(148)

Inserting these into the expressions (116) and (117)

X - AXIS
N
/
X~ AXis / \is

Xz~AXIS

Xp-AXIS

X ~AXIS

W;

F16. 14. The Peltier heat at junction AB between two rods cut
from the same single-crystal slab depends on the orientation
angles 6 and ¢’ of the two rods. This Peltier heat, together with
the Joule heat generated at the junction, is given by Eq. (152).

25 M. Kohler, Ann. Physik 40, 196 (1941).
2 . P. Stabler, Phys. Rev. 46, 938 (1934).
27 H. Reddemann, Ann. Physik 29, 286 (1937).
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we find

Wi=—(1/e)TS15*T5, Wao=— (1/e)TSss*T5. (149)

Now Wy.and W, represent in this case the heat which
must traverse the rod laterally, along the x; and x
directions, in order to maintain the zero temperature
gradients, or-isothermal conditions. These amounts of
heat must be supplied and extracted on opposite faces
of the rod. But from (124) it is seen that Sy3* vanishes,
and substitution of the appropriate component .S;3*
from (124) into Wy in (149), followed by use of (105)
and (132), gives again the relation (147).

If we set down the following adiabatic conditions,
without electrical currents,

J1=]2=]3=W1=W2=0, W3=W3, (150)

it can be shown that the resulting axial heat flow gives
rise to a transverse electrochemical gradient da/dx; of
amount

eI T aT aT
—=— (511*——{‘521*““‘}“531*—“
6x1 6x1 6x2 6x3

oT
=— (Su*Bi+ Sa*Bet Ss*)—

Bxg
K1
()
K111
= — (SI* COS29+SIH* sin20)

K1
sin?+— cos%
KIII

(151)

oT
=+ (S*—S1r*) | sinf cosf—,
axg

J

and a transverse gradient dj/dx.=0. The latter result
is to be expected from symmetry considerations. As
before, it is seen that the adiabatic value (151) reduces
to the isothermal value (127) when xr= 1.

The Thomson heat (per unit volume) for a specified
current and temperature distribution can be found by
using relations (109) and (106) together with (124), etc.

6. Bridgman Effect

Consider first a composite, rectangular cross section
rod as shown in Fig. 14. The rod consists of two differ-
ently oriented rods R and R’ whose long axes are
oriented at angles @ and ¢’, respectively, with the || axis
of a crystal with principal-axes components with St*,
Su*=S1¥, Sur*, and as before we set Sr*=Sp*=.5*%
Sur*=S,*. For isothermal boundary conditions, with
j1=12=0, 135]0, and 6T/6)x1= 6T/6x2= 6T/6x3=0
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we can show from (116), (117), (118), and (124) that
Wil —W 3= TJ [ Si*(sin?’ — sin%)
+.S1*(cos?’ — cos?) |— (1/4)22R,,
=—(1/e)TTo(SL*—Sy*) sin(¢’+6)
Xsin(0'—6)— (1/4)#R,,

52)

where W3 is the total energy current density in rod R
and W3 is that in R', Jo=—eJ % 1=Jo4, and 4 is the
cross section area of the junction 4B. The last term, in
R, (the ‘“‘sheath” or ‘“‘contact’ resistance), comes from
relation (X-17). Equation (152) gives the Peltier heat
per unit area of the junction 4 B which must be supplied
in order to maintain the junction temperature fixed
after the electrical current is turned on. The heat
generated at the junction by the Peltier effect is then the
negative of (152). Consider next a ‘“boomerang-
shaped” specimen 4B like that in Fig. 15, cut from a
single crystal whose || axis is indicated by the vertical
hatched lines. The lower portion is cut to make an
angle 0 with the || axis of the crystal, while the upper
portion is cut to make the angle 6’ with the || axis. The
specimen is all one piece, so that there is no soldering
or welding at the “junction” bc. We want to impose
the following conditions on the specimens:

aT 98T 9T 9T 9T oT

6x1 Bxl'

6x2 ale 6x3
=J1=]1,=J2=J2,=0, J3=]3/~=—Jo. (153)

From (117) and (124) we find W,=W,'=0. The heat
entering and leaving the sides of the lower and upper
portions of the specimen, Wy and WY/, respectively, are
also found from (116) and (124):

Wi=— (1/e)T(S.*—Su*) (sinf cosb)J o,

W=—(1/e)T (S*—Sy*)(sinb’ cosd")J.

6x3'

| (154)
(155)

The expressions give the heat entering (and leaving)
per unit area through the lateral faces only at regions
well away from the elbow of the specimen. In the
immediate neighborhood of the elbow the situation is
more complicated, as can be seen from the fact that
the surface segments ab and a’b have no counterpart on
the opposite side of the elbow. In particular, the elec-
trical current density distribution in the elbow region
will be quite complicated, so that if we are to give a
simple analysis of the effects in this region we shall be
forced to idealize the situation in the following way. The
electrical current density is assu ned to be uniform in
magnitude and direction throughout the lower region
up to the line (plane) bc, at which plane it suddenly
changes direction through the angle 6’—6 to flow uni-
formly through the upper region of the specimen. In
this case there is an “unbalanced” influx of heat of
area density W through the plane ab and another “un-
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Fic. 15. The “internal Peltier heat” or “Bridgman heat” at
the elbow of the single-crystal specimen 4B is given by Eq. (160).
This heating effect results from an uncompensated transverse flow
of energy, as explained in the text.

balanced” influx of density Wy through plane a'b.
For a rectangular cross section of width & and of depth
D perpendicular to the plane of the paper (Fig. 15),
the areas ab and a’b are A=A’'=Db tan}(6'—¥0). Ac-
cording to (154) and (1535) there will be in our idealized
case a total influx of heat per unit time through ab and
a’b of amount

W A+W/A'=— (1/e)T(S.*—Sy™*) (sinf cosd

+sind’ cost’)Jo- Db tank (6’'—6). (156)

Furthermore, according to (152) there is a difference
between W5’ and W; resulting from the fact that the
electrical current density Jo flows along different
crystallographic directions in the upper and in the
lower portions of the specimen 4B in Fig. 15. However,
the Joulean contribution is now not that resulting from
a contact resistance R, as in the case of Fig. 14, so that
instead of the term in 2R, in (152) we must apply
Eq. (107). The resistivity matrix is symmetrical and
its components are exactly similar to those for «,; in
Eq. (125) (or Si* in (124)). For our idealized current
distribution in Fig. 15 the total time rate of Joule heat
generation in volume abc is thus simply the volume
density (107) multiplied by the volume %D tan
+(8'—6), with a similar expression for the Joule heat in
volume @’bc. The boundary conditions (153) give rise to
only the single term —p33J; in each region abc and
a'be. Using resistivity components similar to (124) and
(125), together with notation corresponding to (132)
we have

—pijJ5Jj= —P33]32= —]02 (P-L Siﬂ20+p|| COS20)7 (157)
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for volume abc and a corresponding expression for
volume a’bc. The total heat added per unit time to the
volume aca’ is therefore the sum of (156) and the
negative of Db times Eq. (152), with the expression

— (033 >+ pss’ T 5'2) - 30°D tan} (6'—6)
= —102DJ [ p.(sinZ6-+sin’)
+pu (cos®+cos?’) ] tand (6'—0), (158)

substituted for — (1/24) (2R;) in (152). The total heat
added per unit time to aca’ is thus

Q=+ (1/e)TDbJ [ S*(sin%’ — sin?) )

+Su*(cos®’ —cos?d) ]— (1/e)TDbJ

X (S*—Sy*) (sind cosf+sind’ cosh’) -
Xtan} (6’ —0) — 162D J [ p.(sin20+-sin26’)

+ pu (cos®0+cos?’) ] tank (6'—6).

(159)

Using the definition (105) in (159) and dividing by
(Db)J,, we find that the first two terms (without the
Joule contribution) can be written

I106,0)= II;L (sin%’ — sin?0) 411, (cos?’ — cos?)
-+ (IT;— 1) (sinf cosf-+sind’ cost’) tank (0’—86). (160)

Bridgman?® calls the quantity I(6, 6) the “internal
Peltier heat” and Eq. (160) is identical with his equa-
tion (VI-10). The existence of this internal Peltier
effect was first pointed out by Bridgman. If specimen
AB of Fig. 15 were cut along the planes ac and ¢’c and
the two segments joined together again as in Fig. 14,
the relation (160) is not valid unless we ignore the
third term (containing tani(6’'—#6)); this is so even
apart from the question of the Jouleheat at the junction.
Comparison of the results for Fig. 14 with those for
Fig. 15 shows that they differ only by the last term in
(160). One might say that an electron knows that in
Fig. 15 it has not only changed its direction of motion
relative to the crystal’s axes, but that it has actually
changed its direction of motion in space!

Finally, we discuss the general Bridgman terms (110)
as applied to the crystal systems for which the matrix

S:* can be reduced to principal values Sr*=Sp*=.5,*
and Sir*=S,*. We have
aJ 1 aJ aJ3
—Qp=y—+ 11— 13
6x1 6x1 X1
aJ; 0, aJ;
+y—+ 11 + g r (161)
dx J%2 x>
aJ, aJ 0J s
G Mg T+ 53—.
6;\73 6x;; 8x3

As an example of the use of (161) we apply it to the
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Fi16. 16. The electrical current distribution in the ribbon, already
asymmetric because of the anisotropy of resistivity, is made
more complex as a result of the asymmetrical temperature distri-
bution; this latter asymmetry is a consequence of the Bridgman
heat term Eq. (162).

situation in Fig. 16. The figure shows a long ribbon-
shaped crystal cut with its long axis at an angle 6 with
the || axis, and with a centrally located circular hole.
The reference axes w1, %, ¥3 are oriented as shown in
the figure. We have the conditions

aJ, dJy 9Jy A3 AT,

J2= E =———

0x; O0x2 0%y Oxs Ox3

Inserting these conditions into (161) we find

aJ1 aJs dJ, aJ 3
H11—-—+ JEET ——f—— + 5,
. 0x3 dx3

—Qp= (162)

where, for the crystals which concern us here, II;3=II;;.
It would not be an easy problem to calculate the distri-
bution of the electrical current density in this crystal-
line ribbon with a hole, but we can see nevertheless
that the heating Qp (per unit volume) is not symmetri-
cal. This can be seen by a consideration of the signs of
the various derivatives 9J1/dx1, 9J3/0x1, 9J1/9%;,
8J3/ x5 at two geometrically opposite points P and P’.
Thus the Bridgman heat Qz leads to a nonsymmetric
temperature distribution if current is passed through
the ribbon.

If the crystal is cubic so that .S, *=.S* H,=1I,, it
follows from (124) that Sy5* and I1;; vanish, and I, =11,
= II53=1I,;. Because of the divergenceless nature of the
electrical current density, 9J:/8x1+9J3/dx3=0 and
the Bridgman heat Qp in (162) vanishes. In the same
way, if II,=II,, the ‘“‘internal Peltier heat” (160)
vanishes. Cubic crystals are thermoelectrically isotropic.

A curious and interesting consequence of the Bridg-
man effect is illustrated in Fig. 17. Suppose that a long,
thin, noncubic single crystal is either carefully bent or
else grown in the shape of an arc as shown in the figure.
If an electrical current is passed through the bent
crystal rod the current density will not be quite uniform.
But let us assume that the density is nearly uniform
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and of value J3=J,. The angle between current and
crystal axis is the same throughout the length of the
crystal. As shown by the short arrows, there will be in
the isothermal state a heat flow density W, into one
side and, if the rod were straight, an equal flow density
out the opposite side. But if the rod is bent, the outer
surface AA’ is larger than the inner surface BB’ and
the temperature distribution must now change. Thus,
although the electron “‘sees” the same axis orientation
as it proceeds around the bend, the particle seems to
“know” that it is changing its direction relative to some
fixed external reference system.

7. Kelvin Thermoelectric Relations in
Anisotropic Media

In our formulation of the theory, the Kelvin thermo-
electric relations seem almost trivial. From the defini-
tions (105) and (106), together with the definition

Sits=— (1/)S 4%, (163)
it follows immediately that
H,‘j—: - TSijabs, (164)
and
F) Sijabs
Tij= T( ) N (165)
oT x5

for a homogeneous crystalline or anisotropic medium
the #; subscript is superfluous.

8. Comparison with Treatments of Kelvin,
Bridgman, Ehrenfest and Rutgers, Kohler,
Meixner, and Meissner

Meissner! in his treatment of thermoelectric anisot-
ropy considers only the reversible effects of thermo-
electricity, and begins by assuming that heat is
generated (reversibly) by an electrical current, first as
a result of a temperature gradient (Thomson effect),
second by a change of direction of the current (Bridg-
man effect), and third at the boundary between two

\\‘9 §_16l ,//B/l I//é '

[/1]]
SRR

A B

F1c. 17. The Bridgman effect gives rise to a distortion in the
original temperature distribution in the curved single-crystal when
an electrical current is passed through the crystal. This alteration
in the temperature distribution is superposed in a complicated way
upon that caused by Joule heating.
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substances (Peltier effect). He postulates a tensor rela-
tion for these reversible effects, this relation containing
a priori the three terms corresponding to the Thomson,
Bridgman, and Peltier heats and containing certain as
yet undefined tensor components. By applying the
resulting equations to particular cases of crystalline
rods Meissner deduces relationships between these
tensor components. The theory is then applied to
derive the Kelvin symmetry relations.

Kohler®:? develops a general quantum-kinetic theory
for metals of arbitrary crystal form, first setting up
transport integrals suitable for anisotropic electron
scattering. The electrical and heat current densities
are then expressed in terms of these transport integrals.
By next setting up “flow” equations analogous to our
Egs. (4) and (5), with now an electrical potential
gradient and a temperature gradient as generalized
forces, Kohler introduces tensor components v;; (anal-
ogous to our S;;¥) which are expressed in terms of the
transport integrals. In this way he has shown that only
for simplifying assumptions about the electron scatter-
ing does the tensor +;; become symmetric.

Kohler finds the Ehrenfest-Rutgers relations for the
reversible heat generation and an expression for what
he calls the “thermoelectric field intensity” F.t, given
by Eq. (21) of his 1936 paper:

3 0T OR
Fith:z Si] :Sij
=1 dx; O0x;

oT R

axj 6x,-

(166)

in our repeated-index notation. Let us rewrite our Eq.
(86) in terms of current density J, and of chemical and
electrical potential ; also, let us write — (1/¢).S;;*=S,,2b"
and group the terms as follows:

0p 0T 1 du
———pii)j= S —.
0x; ox; e Ox;

(167)

Comparison of (167) with (166) allows us to connect
our results with those of Kohler. First, it is seen
that Kohler’s “thermoelectric field intensity” F;* cor-
responds to our ‘homogeneous thermoelectric potential
gradient” as defined in Example 3 of Appendix B.
Kohler’s F is thus the gradient of the electrical
potential resulting from a temperature gradient after
the p;;J; terms have been subtracted. His quantity R
is simply —(1/¢) times the chemical potential. Sec-
ondly, his S;; corresponds to our S;2%, the absolute
thermopower tensor. In Kohler’s flow equations this
tensor appears with indices reversed, S;;, in agreement
with the situation we discussed in the derivation of our
Eq. (86). The fact that our indices and those of
Kohler are the reverse of each other throughout is of
course trivial. When the time arrives that numerical
data are tabulated for very low-symmetry crystals, it
will be necessary to decide whether a given matrix
component should be called Si;* or Ssi*, for example.
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In his 1941 paper Kohler gives an excellent discussion
of the assumptions upon which the Kelvin symmetry
relations are derived and shows how different experi-
mental boundary conditions lead to more complicated
expressions. We have already derived these expressions
and discussed their significance.

Meixner? gives both a thermodynamic and a kinetic
treatment of thermoelectric effects and discusses ther-
moelectric phenomena in a magnetic field. His treat-
ment quite closely parallels the present treatment in
the forms of the equations, except of course that his
theory is not based on the Onsager-Callen-de Groot
method. One of Meixner’s energy flow equations, for
example, can be shown to be identical with our Eq.
(74) for W, except for the discrepancy that his con-
tains a term {J; instead of our iJ; The quantity ¢
Meixner calls the ‘“thermodynamic potential per elec-
tron,” which is equivalent to our u or chemical potential
per particle.?® Furthermore, he obtains an equation for
the field intensity — d¢/dx; which is exactly identical
with our (86) when i is separated into chemical and
electrical parts and J; is used instead of J;°.

Ehrenfest and Rutgers® begin by postulating the
general anisotropic form (92) for the reversible thermo-
electric effects, and their formulation was the first to
include the Bridgman effect. Irreversible effects were
excluded in their analysis.

Kelvin? derived his symmetry relations on the basis
of intuitive arguments involving the additivity of
Peltier heats resulting from the separate components
of the electric current density vector, and he later
generalized his arguments using heat-flow and ‘“‘emf”
equations in terms of certain matrix components. How-
ever, his treatment was not sufficiently general to
include the Bridgman effect. Bridgman,?? also on the
basis of certain intuitive arguments well described in
his book,? concluded that an electrical current passing
through a corner of a noncubic crystal should absorb
or give out heat in the form of an “internal Peltier heat.”
We have already discussed this effect, and reference is
made to Bridgman’s book. The quantity R used by
Bridgman and by Ehrenfest and Rutgers corresponds
to our chemical potential u.

H. EFFECTS OF CHEMICAL AND PHYSICAL
INHOMOGENEITIES IN AN
ISOTROPIC MEDIUM

We have seen in Sec. C that the thermoelectric
potential difference for a thermocouple consisting of
two homogeneous, isotropic phases depends only on the
temperatures of the two junctions. In particular, if
these two temperatures are the same, there will be a
zero thermoelectric potential difference. This empirical
rule is known as Magnus’ law."! This is no longer true,
and the law of Magnus is no longer valid, if either or
both of the wires composing the thermocouple are not

28 J, Meixner, Ann. Physik 35, 701 (1939); 40, 165 (1941).
® Meixner’s electron charge e is negative.
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F1c. 18. The electrical potential difference ¢"—¢® depends on
the temperature gradients in wire X when this latter wire is
chemically inhomogeneous.

chemically and physically homogeneous. We shall not
discuss the ways in which cold work, impurities, stress
and other irregularities affect the thermopower of a
material.® We wish only to give a short formula to show
that the electrical potential difference of a thermo-
couple measured by a potentiometer depends upon the
temperature distribution along the wires in case the
wires are not homogeneous. Let us suppose that the
reference material R indicated in Fig. 18 is homogenous
while the wire X is not. From Eq. (27) we see that the
contribution to ¢"—¢Z® from the wires R vanishes when
the upper ends of both are at 7" while the lower ends
are at T'g as indicated in the figure. On the other hand,
for the contribution from X we have, using (27) and
(X-10),

e(¢'—¢>R)=f (di/dx)dx
L

=— f S*(x,T)(dT/dx)dx, (168)
0

since in the inhomogeneous wire X the quantity S*
depends on both the position in the wire and the
temperature at this point. If X were homogeneous we
should have S*=S*(T) only and the integral (168)
would vanish, in accordance with the law of Magnus.
But for an inhomogeneous wire it is clear that (168)
does not in general vanish even when the ends are at
the same temperature. In fact, a simple test of homo-
geneity in a wire consists of measuring the potential
difference across a thermocouple made with the wire,
when the ends are fixed in ice water, say, and the
central portion of the wire is held against a block of
solid CO; or passed through a pool of liquid nitrogen.

I. ON THE THERMOELECTRIC EFFECTS
OF BENEDICKS

It was seen in Sec. H that thermocouples made of
chemically and physically homogeneous phases obey
the law of Magnus, at least according to the theory of
irreversible processes as discussed here. We have also
seen that the thermopower of a metal depends upon

¥ A. W. Séenz, Phys. Rev. 91, 1142 (1953).
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crystallographic orientation when the metal is aniso-
tropic either crystallographically or because of strains,
etc. From Sec. H, then, it is clear that a wire which
consists of fairly large crystallites might actually not
obey Magnus’ law. There have been numerous attempts
to show that Magnus’ law does not hold even if the
wires are perfectly homogeneous both chemically and
physically, and the most serious of these attempts were
those of Benedicks and his co-workers.?® Many other
workers have attempted to repeat the findings of
Benedicks but almost all have shown that upon careful
annealing and homogenization of their samples, the
law of Magnus remained valid and the Benedicks
effects were eliminated.’?

In order to include the reported Benedicks effects
in our theory it would not be sufficient simply to allow
the parameters S;* to depend on the temperature
gradient as well as on the temperature itself. In fact,
the theory would need to be extended to a higher
approximation, since the thermodynamics of Onsager
et al. is based on the assumption that a temperature,
entropy density, etc., can be assigned to each point in a
continuous medium. This assumption appears to be
valid if the energy distribution function of the particles
involved in a problem is not too greatly disturbed by
temperature gradients and electrical current flows, for
example. At least in the case of metals it is found that
Ohm’s law and Fourier’s law are very accurately valid
for all practically accessible current densities and tem-
perature gradients. One might say that it does not seem
to be possible experimentally to create enormous
“turbulence” in the electron gas in a metal; the most
violent electrical or thermal treatment applied to a
metal in the laboratory creates only an extremely mild
perturbation on the motion of the electrons inside the
metal. It would seem to be quite safe to say, therefore,
that, although a significant disturbance of the metallic-
electron distribution function would cause deviations
from the theory which we have outlined here and al-
though such deviations might very well introduce electri-
cal effects dependent on temperature gradients as well as
on temperature as required for the Benedicks effects,
it appears extremely unlikely that such a situation
arises under ordinary circumstances with ordinary
metals. In any case the effects reported by Benedicks
and his co-workers seem to be very small and not
particularly reproducible, so that until more affirmative
evidence is produced we shall not deal with these re-
ported effects any further.

The writer wishes to thank Dr. Conyers Herring for
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friendly and constructive criticism. He is also greatly
indebted to Mr. Erik Klokholm and to Dr. D. P.
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3 C. Benedicks, Ann. Physik 55, 1 (1918); 55, 103 (1918);
C. Benedicks and G. Siljeholm, Arkiv Mat., Astron. Fys. 23A,
Nr. 27; 24A, Nr. 1 and Nr. 7 (1933).
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APPENDIX A. ELEMENTARY EXAMPLES OF
SEPARATION OF ELECTROCHEMICAL
POTENTIAL

Example a—Consider a single homogeneous phase
of a certain atomic species, and for definiteness let it be,
say, one kilogram of pure copper. The total Gibbs
energy G is of course an extensive parameter, so that
in the case of a single phase the Gibbs energy per atom
is identical with the partial derivative (dG/dN), where
N is the total number of neutral copper atoms in the
kilogram of copper. This quantity (dG/dN)p, r=G/N
=ucy in this case (since the neutral atom has zero
charge) is just the chemical potential of a neutral copper
atom in the pure copper phase (at the particular P and
T in question). It can be shown from thermostatics
that if we imagine the copper ions Cu** to “react”
with the conduction or “free electrons” of charge —e
(e positive) in the lattice, according to the “reaction”

Cutt+2e=Cu, (X-1)

then the electrochemical potentials ficu**, fi— and oy,
must at equilibrium satisfy the relation :

(X-2)

Here fcy** is the electrochemical potential of the ion
Cu'tt in the solid copper phase at a particular tempera-
ture and pressure, and similarly g_. is the electro-
chemical potential of an electron in the copper. How-
ever, for an uncharged component, the electrochemical
potential is identical with the chemical potential, and
SO ficu'= pcu’. The values of the chemical potential ucye
are easy enough to obtain in principle from straight-
forward electrical-calorimetric measurements and the
relation G=H—T'S. If H is the enthalpy of the kilogram
of copper and S its entropy at temperature 7, then
dH=TdS+VdP and if the calorimetric measurements
are done at constant pressure, dH=T7dS=dQ= (elec-
trical power input) X (time). From this we get the de-
pendence of H on T (except for an arbitrary constant),
and also Cp= (3H/dT)p. The entropy S is

Aot +20_= By’

f (Cp/T)dT= f (3H/dT)(dT/T),

where T is the temperature at the arbitrary “standard
state” at which H=0 by definition. Finally, substituting
the numerical values into G=H—T'S and G/ N = pcy°, we
get the desired numerical values of the chemical poten-
tial pcu® of a neutral copper atom in the solid copper
phase as well as the dependence on the temperature.
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Example b—Now let us suppose that the kilogram
of copper is in the form of a sphere and is always kept
at constant temperature and pressure in vacuum.®
We place a charge of approximately 10 microcoulombs
on the sphere (of radius approximately 0.03 meter for
1 kg of copper). Ten microcoulombs of electrons repre-
sent about 10~° mole (Faraday) of electrons and this
charge would therefore change the weight of the sphere
by roughly 5X 107 g or 5X 1075 percent of the sphere’s
original weight. This minute change can hardly be
expected to affect the chemical properties of the copper.
Yet if we calculate the change in the electrostatic poten-
tial ¢ of the sphere when the 10 microcoulombs are
added, we find a change of about 3 million volts.
Certainly it seems safe in this case to state that the
chemical potential of an electron on the sphere has been
completely unaffected by the addition of the charge
whereas the electrical potential has been very greatly
changed. The change in the electrochemical potential
fi—cC" of an electron on the copper sphere is thus simply
the change —e¢, where —e is the electronic charge in
coulombs and ¢ is the change in electrical potential
inside the metal, in volts, while the chemical potential
p—o%" has remained unchanged.

Let us compare the results of the two examples. We
write Eq. (X-2) in terms of chemical potentials and
electrical potentials:

(X-3)
20 =2y .—2ed, (X'4)
and by substitution of (X-3) and (X-4) in (X-2) we get

ﬁCu°=/-"Cu+*+ 26¢+ 2,“-*6_ 234)
= pouttt Zﬂ—ez MCu®

Ij-CuH' = P‘Cu+++ 2€¢,

(X-5)

the electrical terms cancelling out as they should, since
Cu® is uncharged and fc,® must be identical with ucye.
We have been able to measure fcye or its equivalent
pcy® and we have calculated ¢, but we have not been
able to deduce from these quantities alone the value of
kot nor of u_,, so that we are unable to assign numbers
to the formal separation of fic,o into the parts fc.++
and 2f_.. Similarly, in Eqs. (X-3) and (X-4) we know
only ¢ and have not been able therefrom to deduce
values of ucu**, t—e, fcu*, OF fi_e. It is possible in prin-
ciple to calculate u_., for example, and using Eq. (X-4),
then (X-2), we can compute fc,+ and from (X-3) we
finally get ucy*+, so that all parameters in (X-2), (X-3),
and (X-4) will have been determined. The calculation
of u_, must be based on a specific model, such as the
“free-electron gas’® for instance; hence if the model
is a poor one the value deduced for ucy*+ will be wrong.

3 This illustration is given by E. A. Guggenheim, on p. 331 of
reference 3.

3 The quantity u_. for an ideal free-electron gas in a metal is
given, e.g., by Eq. (5.6), page 81 of Slater’s Introduction to Chem-
ical Physics (McGraw-Hill Book Company, Inc., New York,

1939). 1t is generally called the Fermi energy parameter in the
Fermi-Dirac distribution function.
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APPENDIX B. APPLICATIONS OF THE THEORY
TO SPECIAL SYSTEMS

Example 1. Isothermal Electrical Conduction in a
Single Homogeneous Phase

Writing J=—eJ, for the electrical current density
and using (3) we have

J=eL. . Vi=eL..(Vu—eVep)=—eL, Vo, (X-6)

since the chemical potential is uniform throughout the
homogeneous phase when the phase is isothermal. The
electrical field intensity E inside the phase is minus the
gradient of the electrical potential, so that we can write

J=eL,E=cE,

which is Ohm’s law with o representing the temperature-
dependent isothermal electrical conductivity. This gives
us an easy way to measure the coefficient L., namely,

L..=c/é. (X-7

In Fig. 1, if Rsp is the total electrical resistance (at
uniform temperature) of the cylinder (wire) between
cross sections 4 and B and 7 is the total uniform elec-
trical current in the wire, then Eq. (X-6) can be written

XD (B)—¢XD (A) = A¢pXD =R 45,

where ¢X T (B)—¢pX ™) (A) is the difference in electrical
potential between sections 4 and B. This relation,
Ohm’s law, will be used in Appendix C in discussing
the principle of the Poggendorf potentiometric method
for measuring electrical potential differences between
two separate wires of the same phase (not necessarily
identical with phase X) and at the same temperature.

Example 2. Heat Conductivity without
Electrical Current

From (8) we see that (J,)y,.~0=T'(J,)5.=0 when J,=0,
so that with (21) we find for the heat flow (J,)5.=0

(Jq)1e=0= T(Js)Je=0
= (T/Lee) (Los*— LooLss) VI'=—«VT,

where « is the thermal conductivity for zero electrical
current. Therefore

K= (T/Lee) (LeeLss—L982)7 (X'g)

giving the ordinary thermal conductivity in terms of
the “L” phenomenological coefficients. From (22) we
find directly

«k=(1/TM,,) (M oeM gq— M . 2), (X-9)

the ordinary thermal conductivity expressed in terms
of the “M” coefficients. From (X-8) and (X-9), with
(16) and (17) we can again find after some manipulation
the expression (18).
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Example 3. Electrical Potential Gradient in a
Homogeneous Phase with Temperature
Gradient but no Electrical Current

In this example we consider the practicability of
determining the electrical potential gradient V¢X(™ in
a single homogeneous chemical phase X when there
exists a temperature gradient V7" but no current flow.
Setting J,=0 in Eq. (3) and separating the electro-
chemical potential into chemical and electrical parts,
we have

VXD =—(Los/Le) VT
=—Sx*vTl= VuX‘T)~eV¢X<i). (X-10)
The electrical potential gradient is then
VXM= (1/e)vu* D+ (1/e)Sx*vT. (X-11)

The change in electrical potential in a distance Ax is
then

1 1
A¢X(T) =—AMX(T)+*S)(*AT
[ e

1 /9uX®
= —( +SX*) AT.
e\ oT

(X-12)

Thus in Fig. 19 the change A¢X (P’ in electrical potential
in going from the region at temperature 7" to the region
at T+ AT in the phase X is given in part by the thermo-
static quantity du¥ /9T and in part by the transport
quantity Sx*. This electrical potential difference A¢p* (™
has been called? a “homogeneous thermoelectric poten-
tial difference,” referring to the fact that the potential
gradient exists within a homogeneous phase as a result
of a temperature gradient, whereas the usual ther-
moelectric potential difference (defined in Sec. C)
involves nonisothermal junctions of two different
phases. It is possible in principle to calculate this
internal or homogeneous electrical potential difference
if one can know both the thermostatic property
IuX ™ /JT and the transport quantity S*. It is of course
no easy matter to calculate or otherwise determine these
two properties, although we showed in Sec. C that
S* is essentially the absolute thermoelectric power of

Y
C 1 T 0
T T+ AT
F-X(T) ;LX(T)+A;LX(T)

¢ X(T)+ A¢x('r)

¢ x(T)

Fi1c. 19. Cylindrical rod of a single homogeneous chemical phase
with temperature gradient but no electrical current; the tempera-
ture gradient gives rise to a gradient of the electrochemical poten-
tial, which in turn is separable into gradients of chemical and
electrical potentials.
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Fi16. 20. The “homogeneous thermoelectric potential difference”
X (T+AT) — g X(T) cannot easily be deduced from the potentio-
metrically measured electrical potential difference ¢™(T)—@R(T),

the phase, which is easily measurable. On the other
hand, if we attempt to determine A¢X(™ by experi-
ment, we are again faced with difficulties. Thus, suppose
that in Fig. 20 the phase X is the one shown partially
hatched, with the left end at 7" and the right end at
T+AT, AT being very small. We attempt to measure

 ApX D =X (T+AT) —¢X(T) by connecting two chemi-

cally identical phases (wires)  and R onto the ends of
X as shown. The upper right-hand region is at tem-
perature 7+AT'; all the rest of the system is at 7. We
use two different letters » and R though the two phases
are chemically identical in order to allow for differences
in electrical potentials. We have indicated the electrical
potentials at various points in accordance with the
notation described in Sec. A. The electrical potential
¢"™ is uniform throughout phase » at temperature 7.
But when we consider the situation at the upper left-
hand junction between phases r and X at the same
temperature 7" we can only say that the electronic elec-
trochemical potentials 7™ and gX™ are identical, but
of course this is in general not so for the electrical
potentials. Thus we already face the difficulty of not
being able to evaluate the difference ¢"(™—¢X(D)
unless we have previously determined the difference
between the chemical potentials u"(T)—uX(™_  This
difficulty is comparable with that of knowing the
quantity duX(™ /9T in Eq. (X-12). In the phase R the
electrical potential ¢¥ varies from ¢ET+AT) at the top
to @2 at the bottom. This difference between the elec-
trical potential at the top and at the bottom in phase
R is given by an expression identical with (X-12) except
with R subscripts. The electrical potential at the 74-AT
junction between phases X and R is discontinuous, just
as at the junction between r and X, so that as before
we cannot know the value of ¢XT+AT) — pR(T+AT) with-
out first knowing uX(T+AT)— R(T+AT) We shall see
that it is easy to determine the electrical potential
difference ¢""—¢E™ by experiment, since » and R
represent identical chemical phases and since the
lower ends of » and R have the same temperature 7.
The important point is that in view of the difficulties
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just mentioned we cannot easily use this measured
value of ¢"M—@E(T to determine the internal or

“homogeneous thermoelectric potential difference”
¢X(T+AT)_¢X(T).

Example 4. Electrical Potential Gradient in a
Nonisothermal, Chemically Inhomogeneous
Phase Carrying an Electrical Current

We want to find an expression for the local electrical
potential gradient in terms of local electrical current
density, temperature, and chemical potential gradients.
Using again the symbol J for electrical current density,
with J=—elJ,, upon substitution of (19) and (X-7)
into (3) we find the desired relation

Vo= (1/e)Vut+(1/e)S*vT— (1/0)]. (X-13)

In deriving this equation we have separated the elec-
trochemical potential gradient into an electrical and a
chemical part, and we have taken the current carrier
to be an electron of charge —e. If more generally we
take the carrier to have a charge ¢, the equivalent
expression becomes

Vé=—1/9vu—1/9S*VvT—(1/0)], (X-14)

with J=¢J,. We emphasize that all of our equations are
restricted to systems which have throughout only a
single current carrier, be it electronic, hole or ionic
carrier; the equations are more complicated if there
are two or more types of carriers within a single phase.
Returning to Eq. (X-13) we see that an electrical
potential gradient can be set up by any or all of three
factors; namely, a chemical potential gradient, a tem-
perature gradient, or an electrical current. We have
treated the special case in which Vu=Vv7=0 in
Example 1 (Appendix B), and the case J=0 in Example
3. We shall refer to relations (X-13) and (X-14) as the
generalized Ohm’s law. The current density J and the
temperature gradient V7 are easily and independently
controllable, whereas Vu is not quite an independent
variable. One can set up a certain gradient of u by
making a substance chemically inhomogeneous, but if
a temperature gradient is then established in the sub-
stance there will generally be an additional component
in the gradient of the chemical potential. In other words,
in addition to being sensitive to a composition gradient,
WV is also sensitive to the local temperature gradient.

Example 5. Electrical Potential Gradient in an
Isothermal, Chemically Inhomogeneous
Substance without Electrical Current

If in (X-13) we set VI'=J=0 we find that there is an
electrical potential gradient inside a chemically in-

homogeneous substance given by
eVo=vu, for J=vT=0, (X-15)

provided the substance can carry electrical current by
electrons only. If we write E=—V¢ and call E the
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electric field intensity inside the substance, then we
can compare the present situation with that involving
a very high isothermal column of a gas in a gravitational
field G. In the latter problem we have a vertical pres-
sure gradient brought about by the gravitational field.
There is also in this case a vertical density gradient.
If it were not for the gravitational field, the condition
for mass-motion equilibrium of the gas would be v.P=0,
P being the pressure. But with the gravitational field,
VP cannot vanish and it is just this gradient which
“annuls” the effect of the gravitational field. Similarly,
in the case of Eq. (X-15) the chemical potential gradient
“annuls” the effect of the electric field. The condition
generally laid down for electrical equilibrium (i.e., for
J=0) in a conductor, namely V¢=0 or E=0, is thus
valid only in a chemically homogeneous phase having
a uniform temperature throughout.

Example 6. Change in Electrochemical Potential
across a Resistive Isothermal Junction
Carrying an Electrical Current

Consider an isothermal junction between two differ-
ent homogeneous wires X and R as shown in Fig. 21.
If the total resistance of the X wire is Rx and that of
the R wire is R, it is always found experimentally that
the total resistance of the composite wire 4B is greater
than Rx-+Rpg, the additional resistance R, generally
being called the “contact resistance” of the junction
between the wires. In general, this contact resistance
arises from the fact that in the joining process there is
always formed a sheath of some sort whose composition
is different from that of either X or R. In the case of
two metals X and R, for example, there will always be
formed an alloy-layer or sheath, usually complicated
by the formation also of oxides if the joining is done in
air. For our purposes we can imagine this sheath to be
a fairly well-defined region as shown in Fig. 21.

If there is no electrical current flowing through the
junction and the whole system 4 to B is at a uniform
temperature, then the electronic electrochemical poten-
tial is uniform throughout and is thus continuous as
we pass from phase X to phase R through the resistive
sheath. Suppose now that we pass a total current

RESISTIVE SHEATH, Rg

|L Rx l

L/?

Fic. 21. The jump in electrochemical potential in crossing an
isothermal junction between two wires depends upon the “contact
resistance” and upon the electrical current through the junction.

i
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through the wires and junction. Since the sheath is
certainly not chemically homogeneous we cannot
attribute an electrochemical potential gradient in it
wholly to a gradient in the electrical potential. But
from either (3) or (X-13) we can easily write

V= (¢/a)], (X-16)

again considering the current carriers to be electrons.
If we idealize the sheath structure to be nonuniform
only axially and assume that its chemical properties
are uniform over any given cross section, then we have
from (X-16) for the total change Ag® in electronic elec-
trochemical potential across the sheath,

d de 4 ,
A= f dp= | -—dx=ci f —dv=eiR, (X17)
0

0o o4 0

where i is the total current, p is the isothermal resistivity
at a given cross section, d is the thickness of the sheath
of cross section area 4, and R, is the total resistance of
the sheath, or contact resistance as defined above.
Thus, in passing from phase X to phase R across the
junction, the electrochemical potential undergoes a
discontinuity eiR,. If the two isothermal and homo-
geneous phases X and R happen to be chemically
identical, then the discontinuity in the electrochemical
potential across the junction can be easily measured,
since in this case Afi between the two identical phases
(at the same temperature) is just the difference —eA¢
in electrical potential (times —e) in these two phases at
points very near and on opposite sides of the junction.
If the phases X and R are each homogeneous but
different from each other, the jump in @ can still be
measured, but in a slightly less direct way. This ques-
tion is discussed in Appendix D.

A serious fault in the argument used to derive Eq.
(X-17) is that the sheath or junction will often be so
thin that it may be meaningless to define the space
variation of electrochemical potential within the junc-
tion. If this is so, one must use indirect methods for
determining the jump in potential across the junction.
In some discussions! it is assumed that the electro-
chemical potential is continuous across a real junction
even when current flows through the junction. Although
this assumption is in general not permissible, it may be
used for defining the Peltier heat and Peltier entropy
at a junction, because for this latter purpose one must
necessarily eliminate or in some way separate the
Joule heat in the same way as is necessary in defining
the Thomson heat. (This separation of the Joule heat
will be mentioned again in Sec. D.)

Example 7. Isothermal Volta Potential Difference
and the True Work Function

We consider next two bent rods, having the forms
(with disk-shaped ends) shown in Fig. 22, of different
but homogeneous isotropic chemical phases such as
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Fic. 22. Schematic arrangement for defining the isothermal
Volta potential difference and the true work function; in actual
measurement of Volta potential differences the ends P’ and Q"
are electrically connected.

pure copper and pure silver. In this example we shall
often refer to the phases as metals. We do this only for
convenience, and the analysis holds for other phases
than metallic. The rods are both at the same tempera-
ture and are located in an electric field-free evacuated
space and are each originally uncharged. We discuss
first the situation before the ends P’” and Q' are brought
into electrical contact. We assume first that the sur-
faces are uniform from point to point. In this case the
electrical (electrostatic) potential ,¢° is the same
throughout the vacuum space surrounding the two
metals, including the points P and Q which are, re-
spectively, just outside metal disk X and disk R. We
can refer all electrochemical potentials to the same
zero level as for this uniform electrical potential level
#°. We can let ;a¥ and ,a® be, respectively, the elec-
trochemical potentials of electrons in X and R, and
#% and P be the chemical potentials in X and R.
Let ;0% and ;¢® be the electrical potentials inside metals
X and R. Then we can write

iﬁx‘_‘ iﬂx— 31¢X7

(X-18)
(X-19)

BP=pul—ep®.
The subscripts ¢ refer to the initial states, i.e., before
the regions P”/ and Q”’ are brought into contact.

The true work function eWX of a uniform metal
surface X is defined® as the difference between the
electrical potential energy —e.¢” of an electron in the
vacuum just outside the surface X and the electro-
chemical potential ;z¥ of an electron just inside metal X.
In the present case, with the temperature uniform
throughout rod X and electrical potential ;¢° uniform
throughout the surrounding evacuated space, we do
not actually need the specifications “just inside” and
“just outside.” Thus, the true work function of surface
X is given by

eWX=—eip"— ;5 %. (X-20)

Similarly, the true work function eWZ® of surface R is

eWEB=—ep*— ;ik. (X-21)

3 See Herring and Nichols, reference 5. These authors give a
thorough discussion of the effects of surface “patches,” etc.
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There is no harm in letting the potential ,¢* be the
reference level for the electrochemical potentials, and
this is equivalent to setting ;¢ equal to zero. If we do
this we find that eW¥= — gX and eV ®= — jz®, where
now the electrochemical potentials are referred to the
uniform potential of the surrounding space as zero.
This gives us the physical meaning of the true work
function of a uniform surface X : it is the average energy
required to remove an electron from the bulk of the
metal through the uniform surface X to a position of
rest in the surrounding field-free space, with the pro-
vision that the temperature and pressure of the metal
be maintained constant. The true work function should
not be confused with the photoelectric work function.®
The photoelectric work function refers to the removal of
an electron possessing a particular energy in the metal,
whereas the true work function refers to the removal of
an electron possessing an energy equal to an average
value for the electrons in the conduction band, main-
taining fixed the temperature and pressure of the re-
mainder of the electrons. If the space adjacent to the
surface X is not field-free (which is the case when the
two metals X and R are brought into contact, as in
the Volta effect, see Appendix B), then the true work
function refers to the average energy of removal of an
electron through surface X to a rest position immedi-
ately outside this surface.

Now suppose that the two metal rods X and R are
brought into electrical contact at the ends P and Q”.
If the two metals after contact are maintained at the
same temperature as before, the composite system con-
sisting now of both metals comes to equilibrium with
the electrochemical potential continuous across the
junction and uniform throughout both metals as well
as across the boundaries of the metals and into the
“vacuum” surrounding the system. The evacuated
space around the metals must be considered as having
a very small but finite concentration of electrons; this
‘“‘electron gas” is usually considered as being rare
enough to satisfy the Boltzmann statistics. But we must
be careful to use the same reference level for all poten-
tials, and in this case we cannot use the level existing
in the immediate vicinity of the disks. In fact we shall
see that there is an electric field not only between the
disks but also throughout the region surrounding the
two-metal system. This field becomes negligible in
regions far removed from the system, so that we may
use the potential level in such a distant and field-free
region as a reference for our electrochemical and elec-
trical potentials. Therefore, let G* and a® be the elec-
trochemical potentials of electrons in metals X and R,
u¥ and u® be the chemical potentials and ¢¥ and ¢Z
be the electrical potentials inside the metals. Finally,
let ¢*X and ¢*F be the electrical potentials at point P
just outside surface X and at point Q just outside
surface R, respectively. All these potentials are referred

3 J. A. Chalmers, Phil. Mag. 33, 416 (1942). See p. 428.
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to the level at a field-free region far from the system.
We can then write

X =pX — X, (X-22)
Al =pl—ep® (X-23)
ax=pk. (X-24)

These potentials are all in general different from the
corresponding ones in Egs. (X-18) and (X-19), and
in fact would all, except for the chemical potentials, be
different even if they referred to the same zero level.
The reason for this is that when we connect the two
metals electrically, electrons flow from one metal to the
other for a very short time until the electrochemical
potential is the same on both sides of the boundary at
the junction P”Q"”. This new charge distribution gives
rise to an electric field in the neighborhood of the
compound system, as we can see from the following
considerations. Imagine that we very slowly carry an
electron from point Q to point P, then into the metal
to point P’, to point P” still in metal X, across the
boundary to Q”, then to Q' and finally to the original
point Q. The path from Q to P can be any path what-
ever so long as we remain in the vacuum, since the
electric field is a conservative one. All transfers in-
volved are done under conditions of constant tempera-
ture and pressure of the compound system. The changes
in electrochemical potential of the electron at each
step are given as follows:

Q to P: —ep?X— (—edp*E), (X-25)
Pto P X — (—ep*X), (X-26)
P’ to P iX—pX¥=0, for uniform
temperature, (X-27)
P’ to Q": aB—pX¥=0, atequilibrium, (X-28)
Q" to Q: aB—aR=0, for uniform
temperature, (X-29)
Q' to Q: —ep?R— gk, (X-30)

Since the system after a complete excursion QPP ...Q'Q
is in the same thermostatic state as it was before the
excursion, no chemical changes having taken place and
the temperature and pressure remaining fixed, the
total change in electrochemical potential of the electron
must be zero. The sum of all the changes, (X-25)
through (X-30) added together, is in fact seen to
vanish. The change in electrical potential between
points Q and P is expressible in the customary way
as a line integral of an electric vector between points
@ and P. We have not specified the distance between
the X and R disks, except that it would be difficult to
discuss electrical potentials in the evacuated space be-
tween the opposing disk-surfaces if the separation
between the latter were not large compared with inter-
atomic distances in the two metals. Otherwise the



THERMODYNAMICS OF

geometry of the system has no effect on the electrostatic

potential difference given by (X-25) between points

Q and P. It is obvious from elementary electrostatic

theory that the electric field pattern between the disks

will depend very much on the geometry of the system.
The electrical potential difference

VRXE¢”X_ d)vRy

is called the Volta potential difference between uniform
surfaces X and R, the order of the subscripts in Vgx
indicating that the Volta potential difference is chosen
as positive if the electrical potential increases as we go
from a point just outside R to a point just outside X.
Using the definition of the true work function given
by Egs. (X-20) and (X-21) and keeping in mind the
fact that the reference level for all the potentials in
(X-22) and (X-23) as well as in (X-25) through (X-30)
must be the same, we can write

(X-31)

eWX=—ep*X— X, (X-32)

eWEB= —ep?B— fE, (X-33)

From the reasoning involved in Eq. (X-28), namely
that in thermostatic equilibrium the electrochemical
potential for electrons is uniform throughout our two-
metal system, we now have gX=jZ. Therefore, adding
(X-28) through (X-30) and using the definitions (X-31),
(X-32), and (X-33), we get after rearrangement

eVrx=ed"X —ed""+ (B¥ — %)
= (—e¢*f =) — (= e ¥ —p¥) = eW i~ e,

or finally

VRx=¢vX—¢”R=WR'_‘WX. (X_34)
The Volta potential difference Vrx between two uni-
form metal surfaces R and X is equal to the difference
between the true work functions of these surfaces.

It is interesting to notice that the situation within
the rare electron gas between the plates in Fig. 22,
when the ends P and Q" are connected, is exactly the
same as that inside an isothermal, chemically inhomo-
geneous substance without electrical current, as dis-
cussed in Example 5 above. There it is seen that the
chemical potential gradient “annuls” the electric field
so that no electrical current flows. Here also, in the
space between plates (Fig. 22 with P and Q" con-
nected), the electronic electrochemical potential gra-
dient vanishes, Vi=Vu—eVep=0, but the gradients of
chemical and electrical potential do not vanish. The
gradient V¢ is in fact just the Volta potential gradient.

As pointed out by Herring and Nichols,® the relation
(X-34) is exact if the temperature is uniform throughout
the system, and it is incorrect to add a term equal to the
Peltier heat at the X-R junction. In this connection, we
make two comments. First, the incorrect addition of
this Peltier heat term stems from an insistence on
locating a rather nebulous “electrical contact potential
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difference’” at some special boundary or contact in the
system, according to one or another of the so-called
‘“contact theories” or ‘“‘chemical theories” of contact
potentials. This situation has been cleverly elaborated
and clarified by J. A. Chalmers® in a series of papers in
1942 it is too bad that these papers have not been more
widely read. Chalmers introduces quantities which he
calls internal and external potential differences, and
with these he shows how the “contact theories” can be
brought into harmony with the ‘chemical theories.”
It seems that it should be possible to avoid the use of
Chalmers’ terminology and yet resolve the difficulties,
inconsistencies, and opposing arguments in the same
clear fashion as has been done by Chalmers. It should
be possible to do this without introducing any other
potentials than the electrochemical potential together
with its separation into a chemical and an electrical
part. We have attempted to do so at least within the
limits of the subject matter to which the present Review
is restricted. Chalmers’ treatment of the relation
between the Volta potential difference and the Peltier
heat is incorrect, in our opinion, and this brings
us to our second comment in connection with the
addition of a Peltier heat term to expression (X-34).
The Volta potential difference is essentially a thermo-
static quantity whereas the Peltier heat is a true thermo-
dynamic or transport quantity. Now we have tried to
emphasize the basic difference between thermostatic
and transport quantities; in fact, we stress the basic
independence of these quantities. We would consider it
quite possible and conceivable that two metals, say,
might have identical thermostatic properties, at least
over a narrow temperature range, and yet have radically
different transport properties. This possibility pre-
cludes the existence of relations between essentially
thermostatic parameters and essentially transport
parameters.

Example 8. Nonisothermal Volta Potential
Differences

Consider now a system like that in Fig. 22, except
that the ends P and Q" of the metal rods X and R
have been electrically connected and are at a tempera-
ture T-+AT slightly higher than that of the left-hand
portion of the system. The disks at the left-hand ends
are still at the same uniform temperature 7. We show
the new arrangement in Fig. 23, where the electro-
chemical potentials are indicated at various locations
in the phases X and R. The electrochemical potentials
at points P and Q (in ‘““vacuum”) are equal to each other
and equal to that inside the metals at P’ and Q’;i.e., i
is uniform throughout the left-hand region at tempera-
ture T. The Volta potential difference V zx27*° between
uniform surfaces X and R at temperature 7" is defined
by the relation

(X-35)

GVIcXAT;’éO: ed,vX(T) —_ e(va(T),
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Fic. 23. One arrangement for measuring a nonisothermal
Volta potential difference. The arrangement usually used in the
laboratory is shown in Fig. 26.

where the superscripts vX(7) and »R(7) indicate that
the potentials are the values in the vacuum just outside
surfaces X and R which are at temperature 7. The
superscript notation AT#0 on the Volta potential
difference will be used to indicate that the system is
not isothermal throughout. Thus the “‘isothermal Volta
potential difference” will be denoted by V zx27=0. The
true work functions WX@ and W2 of uniform metal
surfaces X and R at temperature T are defined by

WX = — gpoX (M) — gX(D) (X-36)

eWRD = — oo R(D _ GR(D), (X-37)

Substituting (X-36) and (X-37) into (X-35) one obtains

eV pxAT#0= eI R — g X(D | gR(D —_ gX(I) | (X_38)
We see that this nonisothermal Volta potential differ-
ence differs from the isothermal value given by (X-34)
in that the last two terms in (X-38) cancel in the iso-
thermal case whereas they do not in the nonisothermal
case. Our problem then is to evaluate the difference
between the electrochemical potentials in (X-38). From
Eq. (X-10) we can find the electrochemical potential
in the T4 AT region in terms of its value in the 7" region,
taking the spatial separation of the two regions to be
Ax; this is legitimate if AT is small:

EXTHAD) = gX(D L VXD Ag= g XD — S *VT. Ag,

or

g X (T+AT) — ﬁX(T)_SX*AT.

i (X-39)

The junction at the right-hand side of Fig. 23 is iso-
thermal and has no current flowing through it; there-
fore the electrochemical potentials of an electron in
phases X and R in this region at T4+AT are equal.
Hence when we substitute the electrochemical poten-
tials at 7 from Eq. (X-39) and the corresponding ex-
pression for the R phase into (X-38), the difference
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ARTHAT) — X (T+AT) yanishes and we come out with
eV pxAT70= W E(T) — WX () |- (Sp*— Sx*)AT. (X-40)

When AT=0, (X-40) reduces to the isothermal case
(X-34). We shall see in Sec. C that the difference
Se*—Sx* at temperature T is related to the relative
thermoelectric power Sxz of a thermocouple formed
by the phases X and R in the manner

SR*—Sx*=6SxR. (X-41)
Equation (X-40) becomes
V pxAT50= V pxAT=04 Sy 2 AT, (X-42)

Thus if in Fig. 23 the electrostatic potential difference
between points P and Q is measured with the entire
system at uniform temperature 7', one finds Vpx47=0,
the ordinary isothermal Volta potential difference. If
the junction temperature is raised a small amount AT
while the disks are kept at temperature 7, one finds the
additional®” potential difference SxzAT. We can say
that the incremental increase in the mnonisothermal
Volta potential difference (X-42) is just the relative
thermoelectric power of phase X relative to phase R,
multiplied by AT, and as AT becomes infinitesimally

small,
d VRXAT#O

1
=Sxr=—(Sr*—Sx*). (X-43)
ar e
For finite AT we can write the integral form of (X-43)
as follows: ,

7
VexT#To=V pxT=To4 SxrdT
To

T

1
= VgxT=To}— f (Sp*—Sx*)dT, (X-44)
€ YTy

where now T’ is the temperature at the left-hand region
of Fig. 23 and T is that at the right-hand region. We
emphasize two points in connection with (X-43). First,
the derivative refers to the temperature variation of the
Volta potential difference in a nonisothermal system;
and second, the thermoelectric power Sxr is a strictly
thermodynamic or transport parameter. We shall
presently discuss an equation (Eq. (X-45)) relating the
temperature derivative of the isothermal Volta potential
difference to the derivative of the difference between the
true work functions for the two metal surfaces X and
R. The equation follows simply from relation (X-34)
and is in form quite similar to (X-43), with the funda-
mental difference that the formula to be discussed
pertains throughout to a thermostatic situation whereas
(X-43) pertains, as we have already emphasized, to an
essentially thermodynamic or transport problem. Before

3 For most combinations of metals X and R and a AT of several

degrees the second term on the right-hand side of (X-42) is prac-
tically negligible compared with the first term.
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discussing this thermostatic formula we should mention
that the temperature distribution indicated in Fig. 23
is not the one ordinarily used in such nonisothermal
measurements. The usual arrangement® involves keep-
ing at a uniform temperature all the lower and right-
hand portions (including all junctions) of a system
like that in Fig. 23, and varying the temperature of the
upper plate. The analysis of such a system will be given
presently.

We have emphasized the fact that the Volta potential
difference is highly characteristic of the surfaces of
metals X and R. The extreme importance of the nature
and ‘‘cleanliness” of the metal surfaces in the measure-
ment of the Volta potential difference has been very
clearly demonstrated not only by the widespread dis-
agreement of the numerical values reported in the
literature for the same (bulk) metals, but also by the
direct experimental demonstration®4 that the Volta
potential difference depends upon the crystallographic
planes of the metallic surfaces, even in the case of
cubic crystals.

In Figs. 24(a) and (b) we have shown schematically
the way in which the electric field lines-of-force may be
distributed in the immediate vicinity of a metal surface.
This surface is pictured as being made up of “patches,”
indicated by irregularly-shaped hatched areas in the
figures, whose shape, size, and crystallographic orienta-
tion are determined in a very complicated way both by
the physical treatment and by the chemical nature of
the surface. Figure 24(a) indicates the way in which
the patch fields might look® at the surface of a single,
otherwise homogeneous chemical phase X when this
phase is uncharged and is located in a field-free region;
if there are other phases in the neighborhood (as in Fig.
22), they are all to be uncharged and not yet in electrical
contact. The various potentials mentioned in connection
with Fig. 22 and written in Egs. (X-18) through (X-21)

%A}{{ 7

METAL

(a) (b)

F16. 24. Electric lines of force very near the opposing surfaces of
the metal disks in Fig. 22 in vacuum: (a) before electrical contact
at points P’ and Q”'; (b) after electrical contact at points P
and Q".

38 J. G. Potter, Phys. Rev. 58, 623 (1940).

3 H. E. Farnsworth and R. P. Winch, Phys. Rev. 58, 812 (1940).

4 P, A. Anderson, Phys. Rev. 59, 1034 (1941).

41 “Near the surface” means “near compared with the dimen-
sions of an average patch.”
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Fic. 25. Lines of electrical potential and levels of electrochemical
potentials between opposing surfaces of metal disks in Fig. 22 in
vacuum: (a) entire system at temperature T'; (b) entire system at
temperature T4AT.

refer to appropriate points inside the metal bulk X and
to the point P, not to points very near® the surface
such as points ¢ and b, because we have treated the
surfaces as uniform. The reference level for these poten-
tials is an arbitrary one at some external spot, say out-
side the region immediately surrounding phase X in
Fig. 24(a). It is clear that there is in general a potential
difference between points P and @, or P and b. If the
uniform temperature of phase X is now raised, we can
imagine that the geometrical arrangement of the patches
becomes slightly distorted so that the field pattern
changes somewhat.

Suppose next that we have two phases X and R, as
in Fig. 22, both of which are chemically homogeneous
inside but which contain patches on their surfaces. We
connect the ends P and Q" (Fig. 22) and maintain the
temperature uniform throughout. In Fig. 25(a) we
show the potentials at various points in this electrically
connected two-phase system. The axis of potentials is
horizontal as indicated by the long heavy arrow.
Because of patch effects the electric field between the
plates X and R, after connection is made, becomes like
that shown in Fig. 24(b) rather than like that in Fig.
24(a) which applies before connection is made. There-
fore in Fig. 25(a), in passing from a point very near a
given patch in surface R, on to Q and to P and to a
point near an individual patch in surface X, the elec-
trical potential varies in a manner depending upon
which two end-patches we choose. But if we measure
the electrical potential difference between a point Q
which is ten or twenty “patch lengths” from surface R
and a point P which is ten or twenty “patch lengths”
from surface X, we find that this difference is inde-
pendent of the regions where we begin and end. In
Fig. 25(a), suppose we extend the straight line QP in
both directions until it intersects the X and R surfaces.
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Next we measure the electrical potentials indicated by
these points of intersection, relative to the heavy
vertical line at the left of the diagram. The difference
between these potentials is —eVgx”, where —e is the
electron charge and Vxx? is the measured Volta poten-
tial difference between surfaces X and R at tempera-
ture 7. It can be shown that the Kelvin method for
measuring Volta potential differences, for instance,
actually measures Vzx?.

If the uniform temperature of the system is raised to
T+AT the initial electrochemical potential g¥
=p®™ within the two phases X and R changes to a
new value gXT+AT=gR(T+AT) a5 indicated by the
leftward shift of the heavy vertical line in going from
Fig. 25(a) to (b). From the arguments leading up to
Eq. (X-34) we see that, while with P”" and Q" connected
in Fig. 22 the equality and uniformity of the electro-
chemical potential in both phases gives rise to the Volta
potential difference Vgx, the actual equilibrium value
of this potential does not enter into the expression for
Vrx. But this does not mean that the Volta potential
difference between two phases is independent of the
bulk or volume properties of each phase. The Volta po-
tential difference (X-34) is equal to the difference be-
tween the true work functions of the phases X and R,
and the true work function for a given phase depends
in general as well on the bulk properties of the phase as
on its surface properties. The true work function for a
given surface and phase is independent of how this
phase is electrically connected (or not connected) to
other phases. If one can independently and separately
determine WX and WZ for two phases (at some par-
ticular surface of each), then the Volta potential dif-
ference which will obtain when Vgx is measured be-
tween points just outside these particular surfaces can
be calculated from (X-34).

If we differentiate (X-34) with respect to temperature,

dVex dWE dWX

- ) (X"45)
aT aTr aT

we see that the temperature derivative of Vgx is de-
termined completely by the way in which the true
work functions of X and R vary with 7. This is the
thermostatic formula which we referred to above as
being similar in form to (X-43); i.e., both give a tem-
perature derivative of a Volta potential difference simply
as the difference between two quantities. As already
mentioned, however, in (X-43) the quantities Sz*
and Sx* are transport parameters whereas in (X-45)
dWZE/dT and dWX/dT are essentially thermostatic
quantities.

We now define the so-called “‘contact potential”’ at
an isothermal junction between two phases X and R.
At such a junction, at temperature 7', we have con-
tinuity of the electrochemical potential when no elec-
trical current is flowing; therefore by separating this
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potential into chemical and electrical parts we have
Urx=¢X—¢"=(1/¢) W*—p").  (X-46)

We define this difference between electrical potentials
in phases X and R as the contact potential difference
Ugrx at the junction between X and R, and (X-46)
shows it to be equal to the difference between the
electronic chemical potentials in the two phases. Com-
parison of (X-46) with (X-34) shows that Ugrx and
V rx are not at all identical. Thus whereas V gx can be
measured directly, any attempt to measure Ugx will
involve the kind of difficulties discussed above in
Example 3.

Finally, if in a measurement of the isothermal Volta
potential difference as in Fig. 22 one inserts any number
of metals electrically connected between points P
and Q", an extension of the arguments involved in
Eqs. (X-25) through (X-34) shows that the intermediate
metals between X and R leave (X-34) unaltered. This
fact is known as the Volta law of intermediate metals.
It can be shown that if the metals are each chemically
homogeneous, their presence in the circuit does not
affect the Volta potential difference V zx at temperature
T even if there are temperature gradients in these
intermediate phases, provided that all junctions are
held at temperature 7' and provided that electrons
are the only current carriers.

We mentioned above that the nonisothermal system
for the Volta potential difference which was analyzed
there is not the experimental arrangement actually
used in such work. Therefore we want next to analyze
the system shown in Fig. 26. Here the circuit consists
of two phases X and R, the temperature 7" of which is
uniform throughout except at the upper left-hand region
where it is 74+AT with AT small.

Referring to Fig. 26 we can write, for the noniso-
thermal Volta potential difference and for the true
work functions, the expressions

eV px AT 0= — o B(D) | oo X(T+AT) (X-47)
eW X (T+AT) — _e¢vX(T+AT)_ﬂX(T+AT), (X-48)
eW BT = — oo B(T) — gR(T) (X-49)

The work function and the electrochemical potential at
temperature 7+A7 in (X-48) and (X-49) can be ex-
panded in terms of the values at temperature 7, and
using (X-10) we find

eWX(T—I—AT) = eWX(T)_i_e(dWX(T)/d]‘)AI‘7
GXTHAD) = XD (dgXD /dT)AT
=pXM—Sx*AT. (X-51)

(X-50)

Now since the electronic electrochemical potential is
continuous across the X-R junction at temperature 7',
if we substitute (X-48) and (X-49) into (X-47), then
put (X-50) and (X-51) into the resulting equation we



THERMODYNAMICS OF

come out with
eV pxB8T#0= W B(I) — g X(T)

+[Sx*—e(dWXD/dT)]AT, (X-52)

and since WE™) and WX refer to the same tempera-
ture, we may use (X-34) to get the relation

eV pxAT0= gV pxAT=0

+[Sx*—e(@WXD/AT)IAT. (X-53)

If now the whole system is isothermal and we measure
the Volta potential difference as the upper (X) face is
gradually heated to higher temperature, the rate at
which the nonisothermal Volta potential difference so
measured changes, is given by

e(dV px?T7/dT) = Sx*—e(dWXD/dT). (X-54)

The integral form of this relation for finite AT is

eV pxT*To=¢eV pxT=To
T AW X
+ f [SX*—e ]dT, (X-55)
To dT

in which 7 is the uniform temperature of the whole
system except in the upper left-hand region where the
temperature is 7. Relations (X-52) and (X-54) are to
be compared with (X-40) and (X-43). It is interesting
to notice in (X-54) that the properties of phase R do not
enter at all. Thus while the actual value (X-53) of the
nonisothermal Volta potential difference does of course
depend on phase R, the temperature variation (X-54)
does not. On the other hand, the temperature variation
of the nonisothermal Volta potential difference given
by Eq. (X-43), referring to the arrangement in Fig. 23,
involves the thermoelectric properties of both X and R.

Herring® has derived an expression (his Eq. (29), p.
895) which can easily be shown to be identical with our
(X-55). His equation, with our symbols, is

T AT 1y
eV rxT#To= W E(T0) — o[ X(T) — f f —dT'dT.
To 0 T,
Using the relation

WX =X (To) | f

To

T

(dWXM /dT)dT,
we get part of Eq. (X-55), and using the relation®
T
f (rx/T")dT’ = Sx*>*= — (1/e)Sx*,
0

we get the rest of our Eq. (X-55), thus showing that
our formula is identical with that of Herring.

2 C. Herring, Phys. Rev. 59, 889 (1941).
4 See Sec. E.
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Fi16. 26. Usual laboratory arrangement for measuring
nonisothermal Volta potential differences.

Potter® has found that the temperature derivative
of the true work function for polycrystalline tungsten
between 300° and 900°C is independent of the state of
contamination of the surface. If this is the case for
other materials too, Eq. (X-54) together with Eq.
(X-45) would possibly furnish a method for the meas-
urement of absolute thermoelectric power Sx2bs. This
latter quantity is related to the parameter Sx* by the
expression Sx*= —eSx**%, The usual methods involve
either an integration of the Thomson coefficient (re-
duced by the absolute temperature) or else a compari-

. son by means of the relative thermoelectric power

against a material (e.g. copper) of known absolute
thermopower. Actually, this method is only of academic
interest, since it would probably involve large experi-
mental errors.

APPENDIX C. POTENTIOMETRIC METHOD FOR
MEASURING POTENTIAL DIFFERENCES

The potentiometric method first introduced by
Poggendorf is of such great importance in potential-
difference measurements that we shall consider it in
detail. The most essential part of a potentiometer is a
wire AB of material R and carrying an electrical
current ¢, shown in Fig. 27. The potentiometer is
supposed to measure the electrical potential difference
XY —¢XZ between the regions ¥ and Z inside phase X.
These regions must be connected by an electrical path
which allows electrical current to flow, so that when
the potential difference ¢X*—@Z? is not zero, current
can flow through the galvanometer G.* The leads L
between 4 and ¥ and between B and Z have the same
chemical composition, but are not necessarily the same

4 Tf we consider all the wire between points B and Z in Fig. 27,
including that of the galvanometer-coil, to be of the same chemical
phase, then since all this wire is at the same temperature the
quantities Wr and w7 in Eq. (X-13) both vanish; we are left
with an electrical current density J associated with the electrical
potential gradient ¥¢. Thus if there is an electrical potential
difference between the galvanometer terminals at ¢ and b in
Fig. 10, an electrical current will flow whose interaction with
the fixed magnetic field of the instrument causes the galvanometer
mirror to deflect.



274

ﬁLb=#t.b_e¢Lb

UNIFORM TEMPERATURE

/&XZ= FXZ_e¢XZ

4'—-».
1
x
=
®
>
1<
®
8-
=
<

ARBITRARY | | N
TEMPERATURE  “patH THROUGH WHICH
DISTRIBUTION  c(GRRENT MAY FLOW
AND ARBITRARY

CHEMICAL

COMPOSITION

Fi1c. 27. The potentiometer measures the electrical potential
difference between points ¥ and Z in the chemically identical
phases X. The entire region above the heavy dotted line is at a
uniform temperature.

material as in the rest of the circuit. The whole system
above the heavy dotted line is held at a uniform tem-
perature 7. Below this dotted line the temperature dis-
tribution may be anything whatever. The electro-
chemical potentials are indicated at various important
regions in the system, together with their separation
into chemical and electrical terms. Since in each iso-
thermal, homogeneous phase the chemical potential is
uniform, we have

ﬂRA'— 7RB — 6¢RB_, e¢’“,

(X-56)
(X-57)

ﬁXY_ﬁXZ=e¢XZ_e¢XY‘

At balance, i.e., when there isno current flowing through
the galvanometer,

pLaz ﬁLb or ¢La=¢Lb,
¢Lc= ¢Ld_

Since at balance there is no current flowing through
any junction and since all the junctions (above the
dotted line) are isothermal, the electrochemical poten-
tial is continuous across each junction. Thus we have
the four conditions

(X-58)
(X-59)

=gld or

=@k, ple=p®, &

From Egs. (X-56) through (X-60) we can find the
desired potential difference as follows:

“Ld— XY  oLb— 5XZ
=pX¥, & .

=0 (X-60)

epXY —pXZ= X7 _ gX¥— gLb_ pld— gla__ pLe
= GRP— gRA— opRA_ o4 BB,

or finally
¢XY — pXZ=pRA_ HRB (X-61)
If the regions ¥ and Z are the chemically identical
terminals of a standard cell, the known electrical po-
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tential difference between these terminals (the so-called
“terminal emf”) in conjunction with Eq. (X-6) ap-
plied to the slidewire 4B can be used to calibrate the
instrument.

APPENDIX D. LABORATORY METHOD OF MEAS-
UREMENT OF CONTACT RESISTANCE
BETWEEN DISSIMILAR PHASES

We wish to analyze this method partly because of its
own practical importance, and partly for the insight
it gives into the question raised in Example 6 of
Appendix B. There it was mentioned that if it is
meaningless to assign a spatial variation of electro-
chemical potential within a very thin junction, then
one must use indirect means for determining the jump
in electrochemical potential across the junction. Figure
28 shows the setup for measuring R,. The leads ¥ and X
are composed of phase X and as usual we denote them
by different letters to allow for differences in electrical
potentials. The region inside the heavy dotted lines is
isothermal while the lower ends of the leads X and ¥V
are at room temperature. These leads are electrically
connected to points Px and Pg near the junction and
are the same leads shown connected to Px and Pg in
Fig. 5 as well. Their ends P; and P, (Figs. 5 and 28)
are to be connected to a potentiometer, which gives
X TR —aY (TR If we know the resistivities of the
phases X and R at various temperatures we can find
the temperature dependence of the resistances Arx
and Arz between the probe points and the junction,
as indicated in Fig. 28. The electrochemical]potentials
for an electron at the points Qx and Qr very near the
junction and in phases X and R, respectively, are given
by Eq. (X-17), namely,

at Qx: XD —eiAry,
at Qp: @M +teiArpg,

the values g¥™ and g#™ pertaining to points Px and
Pr. Now the potentiometer gives us ¢X T8 —g¥ (T'R)
so that applying the integrated form of (X-10) as was
done in (25) we can show that

YD) — XD = GV GXT = — i (Ary+Arp+R,)

=e(pX TR —p¥YIR)  (X-63)

(X-62)

!

Ar, Ar, P,
T ~BIx Q1| Qg R R

U S Q— |

) P,

Fic. 28. Arrangement for measuring the “contact resistance”
between dissimilar metal wires. The “probe leads” X and Y are
of the same chemical phase and are connected to a potentiometer.
The “contact resistance” R, is obtained from_ Eq. (X-63).
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This relation can be used in the laboratory for deter-
mining R,, the contact resistance between dissimilar
metal wires.

Returning to the question of determining the electro-
chemical potential jump across a junction when we
cannot clearly assign a spatial variation of g within
the junction, we can see from (X-62) and (X-63) that
the jump is given experimentally by the relation

Apt=e(pX TR — YTt ei(Arx+Arg). (X-64)
Thus it is possible in principle by the use of potentio-
metrically determined electrical potential differences to
find the jump in electrochemical potential across a
junction through which electrical current is flowing.

APPENDIX E. RELATIONS BETWEEN THERMO-
DYNAMIC THERMOELECTRIC PARAMETERS
AND THOSE DERIVED FROM
KINETIC THEORY

It was mentioned in the Introduction that under
certain conditions the thermoelectric properties of some
substances can be treated quite properly in terms of
the ordinary thermostatic characteristics of these sub-
stances, the transport contribution in these cases being
negligible or nearly so. From (64) it is seen that, except
for the factor —e, the absolute thermopower S2b* of a
phase is essentially the transport entropy per charge
carrier S*. And from (23), the transport entropy is
related to the heat of transport per charge carrier Q*
in the manner T'.S*=(Q*—u, where u is the chemical
potential per electron. Although the separation of S*
into two other terms (here Q*/T and —p/T) can be
expressed in many other ways, as can be seen from
Sec. B, the particular form (23) is very useful for
comparing theoretical and experimental thermoelectric
powers, as follows. The usual expression for thermo-
power derived from kinetic theory*® has the form

(,u/eT) - (K2/6K1T)

in which K; and K, are certain transport integrals. By
using series expansions for K; and K, we find another

4 F. Seitz, Modern Theory of Solids (McGraw-Hill Book Com-
pany, Inc., New York, 1940), p. 180.
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form often referred to, namely

=Tl 1 a1
2.
e=p

3¢ Le 1 de

where ! is the mean free path. Thus we associate the
heat of transport Q* in Eq. (23) with the kinetic
quantity K»/K;. Now good agreement between theory
and experiment has been found*® in many cases of
semiconductors, for which only the static contribution
u/T is used. In metals the static approximation is
practically useless and even leads to the wrong sign of
the thermopower.®? In the case of semiconductors,
theoretical calculations of the transport contribution
at low temperatures have been made by Herring® and
by Frederikse.%

APPENDIX F. TABLE OF MKS UNITS FOR
THERMOELECTRIC QUANTITIES

We give in Table IT a list of MKS units which may
be of practical use in connection with thermoelectricity
in theory and in practice.

TasLe II. List of MKS units of practical use in connection with
the theory and practice of thermoelectricity.

Quantity MKS unit
Qs,0p, Qr, OB joule-meter—3-second™!
q7,qp joule-meter—2-second™!
Ppij ohm-meter
T degree (Kelvin)
e coulomb - particle®
Ji ampere- meter™2
X; meter
Sii* joule- degree™-particle™
Si;°bs volt-degree™
IIL;; volt
Tij volt - degree™
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