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INTRODUCTION. BASIC PROBLEM OF
THERMOELECTRICITY

HE basic problem of thermoelectricity is the
following: Given a system consisting of one or.

several chemical phuses and having a specified temperatgre
distribution, it is required to determirIe the electronic elec-
trochemical potential at any and all points within the
system as well as at points in the immediate surroundings
of the system. We consider the electrochemical potential
determination in the general sense of deducing this
parameter from the over-all electronic and crystalline
structure of the phases constituting the system; how-
ever, in this Review we shall treat only the thermo-
dynamic aspects of the problem. We include in the
problem the situation in the space immediately sur-
rounding the actual material phases of the system in
order to bring out the significance of the Volta potential
difference. There seems to be some confusion with
regard to the question of what relationship there is, if
any, between the Volta potential difference and ther-
moelectricity. For this reason we have treated in
Appendix B the subject of Volta potential differences.
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FIG. I. Cylindrical rod of a single homogeneous chemical phase
carrying steady-state electrical and heat currents; the thermo-
static parameters vary from point to point.

The thermodynamic theory of thermoelectrical phe-
nomena in isotropic media was first worked out by
H. B. Callen' using the Onsager-Casimir methods, and
is presented in more detail in de Groot's monograph. '
The theory brings out very clearly the important role
played in thermoelectricity by certain "transport" or
"transfer" quantities which are strictly thermody-
namical in nature and cannot be deduced from the
thermostatic characteristics and parameters of a sub-
stance. We shall see that the thermoelectrically im-

portant parameters such as thermoelectric power are
related in part to these transport quantities and in part
tp certain essentially thermostatic quantities, so that
under certain conditions the thermoelectric properties
of some substances can be treated quite properly in
terms of the ordinary thermostatic characteristics of
these substances, the transport contribution being
negligible or nearly so. Now just as thermostatics leads
to relations between the various thermostatic param-
eters of a phase without being able to derive values
of these parameters from the general structural and
atomic properties of the phase, so does thermodynamics
relate the various transport parameters wj.th each
other without being able to derive actual values of
these transport parameters from structural and atomic
properties of the substance. Quantum-mechanical and
statistical-mechanical calculations lead to actual nu-
merical values for certain static parameters such as
specific heats, for example, and from such information
thermostatical methods are used to calculate almost
all other static quantities of interest. Likewise, quantum
mechanics and kinetic theory can lead to actual nu-
merical values for certain dynamic or transport quanti-
ties such as the "heat of transfer" already mentioned,
for example, and from such information thermodynamic
methods are used to calculate other dynamic param-
eters of interest. The writer hopes that a review of the
thermodynamics of thermoelectricity will stimulate
among theoretical physicists an interest in the quantum
theoretical calculation of these pertinent transfer or
transport parameters, both for metals and for semi-
conductors.

' H. B. Callen, Phys. Rev. 73, 1349 (1948).
s S. R. de Groot, Thermodyrsomics of Irreversible Processes (Inter-

science Publishers, Inc. , New York, 1951), Chapter VIII.
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Here the phase p is supposed to be a part of the complete
system with total volume V and entropy 5, and the
temperature T and pressure 8 are assumed to be uni-

form throughout the entire system. The quantities

G, II, 3, and U are, respectively, the total Gibbs energy,
the total enthalpy, the total Helmholtz energy, and the
total internal energy of the entire system, and E; is

the number of the ith component contained in the
system. If the system is not completely in thermostatic
equilibrium and contains regions in which there exist
gradients of temperature or Rows of electrical charge
or both, it is then not exactly obvious how one proceeds
to define the electrochemical potential of the ith com-

ponent in an arbitrary spot or region of the nonequilib-

rium system. For our purposes we simply assume that
even in a nonequilibrium system the electrochemical
potential of the ith component in phase p is in general
a continuous and differentiable function of position
and of temperature within the single homogeneous
phase. We further assume the usual thermostatic condi-
tion of continuity of the electrochemical potential for
component i in crossing the boundary between two
phases in thermostatic equilibrium. In all situations
with which we shall be concerned the electrochemical
potential p;e is separable into a chemical potential ts,e

(without bar) and an electrical potential qP in the form

p,e=ts,e+gp. (2)

where q is the charge on the component i. Throughout
this Review we shall always express energies in joules
and charge in coulombs, and a table is given in Appendix
F which gives the MES units of all thermoelectric

'parameters of interest to us. From the defining relation
(I) above we see that the electrochemical potential p,e

Finally, it shouM be mentioned that there are still
conceptual difBculties in the Onsager theory, not the
least important of which has to do with the laws of
decay or regression of Quctuations. Furthermore, the
theory is strictly breach or what might be called a
"first approximation" transport theory. (In this connec-
tion see Sec. I of this Review, on the Benedicks e&ects.)
For discussions of these more abstruse questions the
reader must refer to the original literature. "
A. ELECTROCHEMICAL POTENTIAL: ITS SEPARATION

INTO CHEMICAL AND ELECTRICAL PARTS

The electrochemical potential p;~ of the component
i (an ion, a hole, or an electron) in an isotropic, homo-
geneous, chemical phase p is defined for a system in
thermostatic equilibrium as
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and the chemical potential p, t' are expressed in joules per
particle (BG/B'AV), which gives the product q;P~ in
joules/particle. Therefore, expressing q; in coulomb/
particle we And that the electrical potential @t' is in
volts. The dissimilarity of units between quantities
with the same label "potential" is regrettable; how-
ever, it seems best to use this very widely accepted
terminology.

Our notation for potentials, while at first seeming
to be unnecessarily cumbersome, is actually simple
and has the important advantage of giving at a glance
all the pertinent information about the potential, as
follows. The symbol for an electrochemical potential
is written pt p &

Thc baI indicates an electrochem-
ical potential; if the bar is missing the symbol refers to
a chemical potential. The phase referred to is written
as a first superscript, the second superscript (in paren-
theses) denoting the absolute temperature of the phase.
The subscript following the symbol tells the com-
ponent. The electrical poteetia/ in a given phase, indi-
cated by the symbol p "'"i",is independent of the
nature of the component so that it is not necessary to
add the component-subscript. On the other hand, for a
component with charge q the electrical potential energy
qg'""' " ' does depend on the component and this
dependence is taken care of by the charge factor q. Thus
the q subscript in q@, is superfluous. Finally, when all
the potentials refer to the same temperature as in a
completely thermostatic discussion, there is usually no
need for the temperature superscript. Our notation is
a combination and extension of those used by Guggen-
heim' and by de Groot. '

In order to illustrate the meaning of the separation
into a chemical and an electrical part as indicated in
(2) we consider in Appendix A the question of how
one actually measures or otherwise determines nu-
merical values of chemical and electrochemical poten-
tials. It is clear that in all cases an arbitrary reference
level for energies must be decided upon and that all
chemical and electrochemical potentials must refer to
such an arbitrary reference. For a given component the
chemical portion p;I' can be looked upon as being deter-
mined by the chemical or atomic nature of the phase P,
while the electrical portion q;gt' is determined by the
distribution of electrical charges in the whole system as
well as in the surroundings. The actual separation into a
chemical and an electrical part in most practical cases
is by no means easy and is quite often impossible. On
the other hand, in some cases the separation can be
made in a straightforward way.

B. PRINCIPLES OF STEADY-STATE
THERMODYNAMICS

Consider a cylindrical rod consisting of a single
homogeneous chemical phase, shown in Fig. 1. If the
rod were in a state of thermostatic equilibrium all the

3 E. A. Guggenheim, Thermodynamics, An Advanced Treatment
(Interscience Publishers, Inc. , New York, 1951).

thermostatic parameters would have uniform values
throughout, In particular, there would be no tempera-
ture gradients and no gradients of the electronic elec-
trochemical potential anywhere within the phase. 4 Next
in complexity to thermostatic equilibrium is the situa-
tion called the steady state, and it is this state which
we wish to study by means of the thermodynamic
theory. The still more complicated problem, that in-
volving transient conditions, can under certain conditions
be treated with the general theory, but this does not
interest us here.

For our purposes, a very general steady™state condi-
tion in the rod would consist of having a steady elec-
trical current Rowing along the rod together with a
Row of heat along a longitudinal temperature gradient.
Now while thermostatics and thermodynamics furnish
general relations which are independent of any specific
atomic or molecular models of matter, both theories are
stafisticu~ in nature; and before either can be success-
fully applied to a given system it is necessary for the
system to satisfy certain statistical requirements. In our
case we must specify that if the rod in Fig. 1 has tem-
perature gradients and electrical currents in it, these
must be such that it is possible to define an electro-
chemical potential at all points in the rod. This is
equivalent to saying that we must be able to assign
values to all the usual thermostatic parameters at
any point in the system. If the temperature gradients
are so large, for example, that the fractional change in
absolute temperature is not extremely small compared
to unity when we go about a mean-free-path length
along the rod, then it will be practically meaningless to
assign values to thermostatic parameters along the rod. '

We shall assume, then, that for all systems of interest
to us it is possible in principle to assign a value' to the
electronic electrochemical potential at all points within
and outside the various phases in the system. The
problem is to relate the electrochemical potential dis-
tribution with the electrical current and temperature
distribution in the system, and it is just this kind of
problem which is solved by the Callen-de Groot method
of applying the general thermodynamic theory of
Onsager and Casimir.

The thermodynamic theory establishes limeade rela-
tions between certain "Rows" and the generalized
"driving forces" which cause these Rows. Special cases
of such relations are the ordinary Ohm's law, which

says that electrical current (flow) in an isothermal wire
is proportional to the gradient of the electrical potential
in the wire, the proportionality coeKcient being the iso-

4 &!though the general thermodynamic theory (de Groot, refer-
ence 2, Chapters VII and VIII) is applicable to any and all carriers
of electric charge inside a phase, electrons and ions alike, for
definiteness we shall refer throughout this Review to the electron, -

with charge —e (e positive), and the subscript —e on the poten-
tials will be left off unless required for clarity.

5 C. Herring and M. H. Nichols, Revs. Modern Phys. 21, 185
{1949).

6 Referred of course to an arbitrary reference level.



24G CHARLES A. DOM EN I CALI

thermal electrical conductivity, a characteristic param-
eter of a given phase; Fourier's law, which says that
the heat Qow across a plane inside a phase without elec-
trical current is proportional to the temperature
gradient at the plane, the proportionality coefficient
being the thermal conductivity for zero electrical
current. Now when both an electrical current and a
heat current Row simultaneously in a phase there is an
interference or interaction between the two currents,
and this interaction may be described by saying that
each of the two Rows can be caused in general by either
or both of the two driving forces, i.e., temperature
gradient and potential gradient. This interaction, and in.

fact this manner of expressing it, were known and in-
troduced years before the Onsager theory was devel-
oped. But it was not until the development of this
latter theory that it was found possible in a very
general way to relate the proportionality or imteractioe
coegciertts with one another in such a fashion as to bring
into the theory the several typical interference phe-
nomena of thermoelectricity. The general way in which
the interaction coefficients are related is based ulti-
mately on statistical-mechanical considerations, and is
6nally expressed by a so-called reciprocity relation, or
in our case by the simple equality of these two coeffi-
cients. In order for this equality relation to hold, how-
ever, it is necessary that the two linear relations' be-
tween the Rows and the driving forces contain exactly
the proper, conjugate Rows and forces—any arbitrary,
though physically reasonable choice of Qow-force pairs
will not necessarily form a proper, conjugate pair. It is
probably this fact that prevented the earlier workers
in irreversible thermodynamics from discovering the
Onsager reciprocity relations empirically. The Onsager-
Casimir theory furnishes general conditions to be met
by the Qow-force pairs in order that the reciprocity
relations hold between coeKcients, and subsequent
developments have resulted in general formulas for
conjugate forces and Qows or currents applicable to a
wide variety of problems. In any given problem in-

volving interference between particle current and heat
or energy current, for example, there are numerous
choices of currents but once these are chosen there is
no choice of conjugate forces. Similarly, it is often con-
venient to change over in a given problem to a new

set of forces; this new choice of forces, however, dictates
the choice of currents. Since the equations relating
currents and forces are linear, it is always possible in a
problem to transform from one set of currents to
another set, if for example the use of a first set makes

' In a more complex problem involving ionic currents as well
as electronic currents, there may be several particle currents in
addition to an energy current, and a correspondingly larger
number of driving forces. In such cases the Onsager reciprocity
relations are most easily expressed by the symmetry L;I,——Lf,; of
the matrix formed from all the proportionality coefBcients. In our
case we are considering electrons only so that we have two currents
and two forces, and consequently two linear relations with L» =L»
when the Rows and forces are properly chosen.

more physically understandable one aspect of the
problem, while the use of a second set clarifies another
aspect of the same problem. However, the transforma-
tion must satisfy a certain condition laid down by the
theory. We shall see examples of this sort of thing in
our discussion, but for a more satisfying treatment of
the general theory the reader must consult either the
original papers' or, say, de Groot's monograph' already
mentioned. We want to emphasize the physical aspects
of the theory as it applies to thermoelectricity, and
shall therefore not give an extensive discussion of the
general requirements which the force-current pairs
must satisfy in order to be properly chosen. Instead,
we simply select one particularly suitable set which is
known to be conjugated, and proceed from this starting
point. The general conditions on a force-current pair
will then be stated and applied only brieRy later on.

We have mentioned as one force and current pair the
temperature gradient and heat Row current in Fourier's
law, and as another pair the electrical potential gradient
and the electrical current in Ohm's law. However, it is
found that if one attempts to use both the temperature
gradient VT and the electrical potential gradient VP
as forces and both the electron (or particle) current I
and heat current J, as flows, the interaction coef6cients
are not identical; that is, in the two linear relations

I=lnVQ+LnV T,

Jv= Is&V/+I ssV T,

the interaction coefficients L» and L» are not equal,
and the equations are useless. But suppose that instead
of writing Fourier's law in terms of a heat Qow density
and temperature gradient we write it in terms of an
entropy Qow density and a temperature gradient. The
concept of an entropy Row vector may be described as
follows. If we consider a plane inside a given phase with
a temperature gradient, we can say that the entropy
flow (density) across the plane at a particular point is
equal to the absolute temperature at this point times
the heat flow (density) across the plane at the same
point. Or, from thermostatics we can write AQ= TAS,
AQ representing heat added to a closed system across
a unit area of its boundary and hS the corresponding
"entropy added to the system at temperature T."
If the heat and entropy "transfers" BQ and AS take
place in a time At, then we can write AQ//ht= TDS/At
or in the limit, Q = TS, the vectors now indicating flows

of heat and entropy. Furthermore, suppose that in
Ohm's law we use the gradient of the electrochemical
potential instead of simply the electrical potential
gradient. Finally, we may use either electrical current
density I or particle currertt density J„these being related
in our case by I= —eJ„where —e is the electron charge.
It turns out that for our problem involving the simul-
taneous Row of electrons and of entropy, the negative

s L. Onsager, Phys. Rev. 37, 405 (1931); 38, 2265 (1931);
Ann. N. Y. Acad. Sci. 46, 241 (1945).
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temperature gradient —V'T and the entropy Qow

density J, are conjugate and so are the negative electro-
chemical potential gradient —Vp and the particle Row

density J,. In the two linear relations between conjugate
Rows and forces we can therefore set the two interaction
coeKcients L„and L„equal to each other, in accord-
ance with the Onsager reciprocity relation. Thus we
arrive at the important phenomenological equations

J.= L.—ev p Lea—v T,

J,= L„V—p I„V—T.

(3)

(4)

These equations, given by de Groot, form the basis
of our whole treatment of therrnoelectricity, including
what we shall later call the nonisothermal Volta effect.
We shall see that these equations lead to a parameter
called the "transport entropy per particle" which plays
a role in thermodynamics comparable to that of the
ordinary "static" entropy per particle in thermostatics. '
We have mentioned that it is often convenient to
transform relations such as (3) and (4) so as to use other
Rows and forces, and that this transformation may
lead to other physically definable and useful parameters.
Therefore we shall next transform the phenomenological
equations (3) and (4) into equations relating particle
flow J, and a "heat flow" J, with their appropriate
conjugate forces; for clarification the 6ow J, will be
de6ned in terms of the flows J, and J, in such a way as
to relate these to the particular Rows used by Callen. '

Following Callen, we introduce a heat current Q as
the difference between the total energy current W and
the electrochemical potential energy current pJ, :

Q—=W —pJ, . (5)

Separating the electrochemical potential p, into a
chemical part p and an electrical part —ep for electrons
we have

TJ,= (W+eyJ, ) —pJ,—=J,—pJ„ (7)

where we have combined the two terms in parentheses
into a term J,which de Groot also calls a "heat current. "
We have therefore

J,=yJ,+TJ,.

Our problem now is to transform the phenomenological
equations (3) and (4) from the currents J.and J, to the
new currents J, and J,.

The thermodynamic theory shows that the instan-
taneous time rate of entropy production in an irrever-

If we associate our entropy current J, with Callen's
heat current Q in the manner Q = TJ„we can write

(5) in the form

TJ.=W pJ, . —

sible process is given by the sum of products of con-
jugate currents and forces. This rate of entropy produc-
tion cannot depend on the particular choice of conjugate
currents and forces used to describe the process; it
follows therefore that this sum is an invariant. This,
then, is the condition on the transformation which
is laid down by the theory. In the case of steady-state
processes the sum is not only invariant but constant
in time. We write this invariance for our problem in
the form

J. v—p J, v—T=J, X—,+J, X„ (9)

each term consisting of the product of a current into
its conjugate force. On the left-hand side is the sum
for the J„J,description, and on the right-hand side
is the sum for the new J„J,description; the forces X,
and X„conjugate, respectively, to the new currents J,
and J„are yet to be found. The phenomenological
equations for the new variables are

J,=M„X,+M„X„
J,=Mq, X,+M„Xq,

(10)

(11)

X,= —vp+ (p/T)v T,

X,= —(1/T) v T.

(12)

(13)

The new phenomenological relations (10) and (11)
become

J,= —M,.Vp —(1/T) (M„pM„)vT, (1—4)

J,= —M„vp —(1/T) (Mq, yM„)V T, —(15)

where we have used the Onsager reciprocity relation
M„=3f„.These relations are completely equivalent
to (3) and (4), and while they are no more nor less
general than (3) and (4) they will be used later on to
describe some of the thermoelectric eGects from the
viewpoint of an "energy of transport per particle"
rather than from the viewpoint of an "entropy of trans-
port per particle. "

We wish next to relate the "M" coefficients with the
"L" coeKcients. Since the forces —Vp and —V'T in
the phenomenological relations are independently vari-
able, the coeKcients of each separate force in Eqs. (3)
and (14) for J, must be identical; this leads to the
following equations:

in which the identity of M„and M„ is assured by
virtue of (9). Substituting Eq. (8) for J, into (9) and
collecting terms in J, and in J, we find

(vp+X,ypX, ) J,+ (vT+TX,) J,=O,

which is identically true for all J, and J,. Therefore,
each quantity in parentheses vanishes and by solving
the two resulting equations for the forces X, and X,
we find

The concept of entropy transport is not a new one peculiar to
the Onsager-Casimir theory. In fact, it was used in the older, so-
called "pseudo-thermostatic" theories, to which extensive refer-
ences are given by de Groot in reference 2. TL„=M, ~

—p3f„.
(16)

(17)
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Consider now an isothermal cylindrical
Fig. j., in which there is a steady electronic
particles per second per unit area; setting
(3), (4), (14), and (15) and taking the ratios
and heat fIows to particle current, we get

(J,/J, )vr a=L„,/L„=5*, —

(Js/J, )vr,=M,s/M„= Q*. —

rod as in
current J,
V'T=O in
of entropy

(19)

(20)

The very important quantities 5*, the "transpor t
entropy per particle" and Q", the "transport heat per
particle, "are the parameters which we have previously
mentioned as being of special importance in the
thermodynamic theory of steady-state processes. We
can find other relations which bring out the physical
significance of the transport quantities 5* and Q* by
solving (3) for Vp and putting the result into (4), and

by solving (14) for Vp and substituting into (15). In
each case, after collecting terms in J, and in v T, if we
use relations (19) and (20) we find

J,=5*J,+ (1/L„) (L„' L„L„)vT—, (21)

J,=Q*J,+ (1/TM„) (M„' M„M„)v—T. (22)

For a single homogeneous chemical phase under con-
stant pressure the coefFicients L„, L„, L„and M„,
M„, 3f«are functions only of the temperature, pro-
vided there is no magnetic fiel, ' ' and since 5* and Qe
a,re defined in terms of some of these coefficients by (19)
and (20), so too are 5* and Qe functions only of the
temperature for a given phase. If in Fig. 1, therefore,
we imagine the current densities and temperature
gradients to be uniform over a given cross section,
relation (21) for example has the following significance.
The axial fIow of entropy consists of two terms, the first
proportional to the number of particles per second
crossing unit area, each particle transporting an
amount S*,and the second proportional to the tempera-
ture gradient at the cross section. If electrical current
fIows in an isothermal phase, we already have the rela-
tions (19) and (20). If no electrical current flows but
there is a temperature gradient, (21) and (22) both
lead to Fourier's law, if we write J,=TJ„.but from

(7) we see that this last equality is valid only for J,=0.
Next we find the relationship between the transport

quantities 5* and Q*. This can be done by equating
the factors in front of the V T in Eqs. (3) and (14) for
J„ then using (19) and (20). A shorter way is to use

(7), (21), and (22) in the special case of V T=0. Thus
we can find the important relation

(23)

Finally, if we substitute into (8) the expressions (4)
for J„(15)for J„and (3) for J„collect terms in VT
and equate to zero, since Vp and V T are independent
varia, bles, we find with the help of (16) and (17),

T L =Mes 2pM s+)rsM

Before proceeding with the specific applications to
thermoelectric effects the reader may wish to read
Appendix 3, in which are treated several important
applications of the theory to special systems. Also,
because of the fundamental importance of the potenti-
ometric method of measuring potential differences, the
reader may profit by reading Appendix C before Sec. C.

dp '(»= —S *dr, (24)

for each phase in the circuit of Fig. 2. The transport
parameter 5* is of course generally a function of the
temperature. If we integrate the forms (24) for each.

- X(Tp)

-ATo)

T

//////A/////r// j / /8/i j

/

r—x(T)

—R(T)I"

R (Tp)

—L (Tp)

-g(TR ) g(TR) g(TR}

/

8

(-(TR) ~ L(TR) eyL(TR)

FIG. 2. Arrangement of thermocouple junctions and leads used
in careful and precise temperature measurements.

"Physical homogeneity includes for example uniformity of
crystallite size and macroscopic uniformity of strain. The effects
of inhomogeneities will be discussed in Sec. I.

f Equations X are in the appendices.

C. SEEBECK EFPECT

Imagine an arrangement like that in Fig. 2 of two
chemically different phases I and R, each of which is
chemically and physically homogeneous" and isotropic.
The two phases 1 and L are leads and are identical homo-
geneous phases; we use small and capital letters to
allow for diGerences of electrical potential in these two
phases. The arrangement shown is called an X—R
thermocouple, and is the one used in careful and precise
temperature measurements. The absolute temperature
is T at the variable temperature junction between
phases X and R; To at the so-cal1ed reference junctions
between phases l and X and between R and L; and
finally TR ("room temperature") at the bottom ends
of the 1eads l and L which are assumed to be connected
to a potentiometer kept balanced so that no electrical
current Rows through the thermocouple. We have in-

dicated the electronic electrochemical potential at the
several pertinent points, using the notation explained
in Sec. A. Since the phases 3 and L are chemically
identical and at 3 and 8 have the same temperature,
we can easily measure their difference in electrical
potential at points A and 8 by the use of a
potentiometer.

Using Eqs. (X-10)f' we can write an expression of
the form
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p&(TO) p&(TR)—
4TR

S&*dT

p&(T) pX(TO)—
f T

Sx*dT,

(25)

p, (o)—p, ()=— S&dT
T

pTR

p L(TR) p L(Tp) l SL+dT

Since each junction is isothermal and carries no elec-
trical current, the electrochemical potential is con-
tinuous across each junction. Furthermore, since the
electronic chemical potential in the two identical phases
1 and I. depends only on the local temperatures, the
values of p'(T» and p~(T» are identical. Therefore,
adding the four expressions (25) and noting the order of
integration, we And

TR

p&(&R) p&(») ~ I (SP Spa)dT
To

p
T

+
~

(SR* Sx*)dT—, (26)
TO

and since S)*=Si,* at each temperature, (26) becomes
upon separation into chemical and electrical parts,

(27)

Using (23) we can express (27) in terms of the heats
of transfer and the local thermostatic chemical
potentials,

@)(») y&(»)

T

= (1/e) I f(QR*—Qx*)—(pR ))x)j(dT/T) —(28)
JT,

The difference in electrical potential

(29)

is called the thermoelectric potential difference of the
X-R thermocouple at temperature T and with reference
junction temperature To. We see that, provided ter-
minals A and B are at the same temperature, the
potential difference b~g is independent of Tg. In the
symbol Bx& the second subscript indicates the reference
material. The thermoelectric potential difference is
usually expressed in volts, millivolts, or microvolts.
Other names are usually used for Bxg, such as for

phase between the appropriate temperatures at the
ends of that phase, we Gad the four relations

pTo

which shows that the relative thermopower S~g depends
on the temperature T but not on the reference tem-
perature T~.

From (30) we can write, denoting a third homo-

geneous, isotropic phase by the letter A,

eSxR ——SR*—Sx*= (SR*—Sg*)+(Sg*—Sx*)

=eSgR+ eSX~.,
or

SXR SXA+SAR. (31)

Introducing additional homogeneous phases B, C, ~ ~

we can extend (31) to give

SXR=SX~+S~R+SRe+ +S'R (32)

Equation (32) is not particularly useful, but its special

"G.Magnus, Pogg. Ann. 83, 469 (1851).

example "thermoelectric electromotive force, ""thermal
emf, " and so on. We wish to avoid the unfortunate
connotation "force" in this connection and we shall
therefore always use the more appropriate term
"potential difference. "

From (27) it is seen that for a given pair of homo-
geneous and isotropic phases Xand R the thermoelectric
potential difference depends only on the temperatures
To and T of the junctions and not in any way upon the
temperature gradients along any of the phases in the
system. This fact was originally discovered empirically
by Magnus" and is now known as the Law of Magnus.

The derivative SXR=d SXR—/dT, of great impor-
tance in thermoelectricity, is called the relative thermo-
electric power of phase X against R, or relative to R.
The connotation of "power" here is also unfortunate;
however, we can think of no reasonable substitute and
shall therefore make use of this commonly accepted
name. We shall often use the single word thermopower
in place of thermoelectric power. Some writers use the
terms "thermal emf" and "thermoelectric power" in-
terchangeably, with corresponding confusion in their
units; this practice is obviously deplorable. The sign
convention almost universally adopted for Sx& is the
following. In Fig. 2 suppose that T= To+AT with hT
very small, and that therefore 68~~——S~ghT. If for AT
positive AhxR=p"») —p~(») is also positive& then
the relative thermoelectric power Sxg at temperature
T()+(1/2)AT is positive. Or, alternatively, if the ter-
minals A and B of the thermocouple in Fig. 2 are con-
nected together when T= T()+AT, AT small, the
thermoelectric power S~g is positive when the thermo-
electrically generated current Rows from the reference
phase R to phase X at the warmer junction.

From (29) and (27) we find by differentiation with
respect to temperature,

SxR=d&XR/d T= d (—0 ""' 0'"")/d T—
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FIG. 3. The Aow of energy and electrical current across a nonisothermal junction between two chemically
different phases. The Peltier coefficient is Iixs =——(Tle)(Ss* Sx*). —

Wx Qx+pxJ TJ x+pxJ (33)

Using (21) and (X-8) we find that Eq. (33) becomes

Wx= T*Sx*J,+P xJ, «x(V T)x;— (34'l

case (31) is of great importance in that it allows one
to determine the relative thermopowers of two phases
X and E if the relative thermopower of each is known
against a third phase A. Or, conversely, if each of the
three relative thermopowers in (31)has been determined
separately by experiment, the extent to which these
values satisfy (31) is a measure of the reliability of the
data and of the homogeneity of the phases used.

D. PELTIER EFFECT AT A JUNCTION BETWEEN
DISSIMILAR PHASES

The total energy flow density W in a phase I is
given by Eq. (5),

Now in any ordinary junction between two phases X
and 8 the axial extent of the junction will be very small

compared with the lateral dimensions of the cylinders
of these phases, as in Fig. 3, so that as indicated in the
schematic variation of temperature T in the lower part
of this figure the temperature difference Tx—T~ will be
very small compared with both T" and T~. Therefore
we make the assumption hereafter that T~= T~=—T.
Equation (36) can then be written

T(S'a* Sx*)J.+—(t" t )J. —
—$«ii(VT)"—«x(VT) ]=0. (37)

The difference between the (isothermal) electrochemical
potentials p" and px is given by (X-17); namely, with
the electric current i Rowing rightward from phase X
to phase 8,

pa p= ezR, = e
)
—J

~
A, R,= —e'-

~
J,

~
AR, . (38)a similar expression can be written for the E phase when

the particle current density J, is the same in both
phases:

The second quantity in (37) is then

W~= T~Szs*J +p~J «ii(v T)a—
(p~ —p ) ~

J,
~

= (eiR,) (—i/Ae) = —(1/A) (z~R ) (39)
(353

The quantities in Eqs. (34) and (35) refer, respectively,
to the values just to the left and just to the right of the
element AB of the junction in Fig. 3.The curved arrows
across the boundaries of the phases X and E indicate
an exchange of heat between a reservoir and the phases.
Thus the axial components of the vectors % and V'T
as well as the values of p and ~ would in general vary
as we moved away from the junction, and we should
focus our attention on the values in the immediate
vicinity of the element AB. We want to consider here
only the steady-state situation so that if we apply the
energy conservation law to the energy passage through
element AB, assuming a very thin junction we must
have W~= Wx or

T~Srr*J «a(v T)a+ p"J, —
= T Sx*Je «x(V T)"+p J, (—36).

which represents the Joule heat developed each second
per unit cross section of the junction. According to
Eq. (X-17) the electronic electrochemical potential in
creases along the current (i) direction; the electro-
chemical potential of a positive charge would decrease
along the current direction. Equation (39) refers of
course to the electronic electrochemical potential. The
first term in (37) written with total current i is

T(S *—S *)
~
J.i

= —(T/e) (S *—S *)(i/A).

Substitution of this expression and (39) into (37) then
gives

—(T/e) (i/A) (SR*—Sx~)—(z~/A)R,
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We now set

(41)

and upon substitution into (40) we find the very useful
relation

(i/A)IIxii —(P/A)R, —
~limni(V T)~ gx(—~T)

~

=0. (42)

We call the quantity II+& the Peltier coefficient be-
tween the X and E. phases.

Referring to Eq. (42) and to the temperature diagram
in Fig. 3, we see that it will always be possible to force
the temperature distribution to be Qat at least in the
immediate vicinity of the junction, so that the brack-
etted term in (42) vanishes. In this case the junction
is said to be isothermal, and we have

iIIxii —PR, =O, for (&T)~= (VT)x=0. (43)

This means that in an isothermal junction in the steady
state, the Peltier heat iIIxz is exactly balanced by the
Joule heat produced at the junction, provided the total
current i is such as to satisfy (43) both in magnitude
and in sense. The sense for positive i is indicated in
Fig. 3; namely, positive i means that the current (not
electrons) goes across the junction from phase I to
phase E. If i is in the opposite direction, i negative, it
is impossible to satisfy (43) and we no longer have a
steady state: the temperature distribution of the junc-
tion region will change with time. The argument given
implies that the coeKcient IIxg is positive, and that for
positive i and positive IIxg the Peltier effect operates
so as to make the junction behave like a heat sink,
absorbing the always positive Joule heat produced.
Thus our arbitrary convention that positive i means
current Qow from X to E fixes the sign convention for
the Peltier coefficient; that is, a positive Peltier coeK-
cient IIxg means that when current Qows across the
junction from X to E, heat must be supplied to the
junction in order to maintain a steady state.

Equation (43) tells us that a steady-state, isothermal
junction can be maintained by a balance between the
Peltier heat (sink) and the Joule heat (source) only for
a special value and sense of the current, say io. For a
current in the same sense but less than io, we need to
inject by some means or other an additional amount
of heat (io—i)IIxii or R, (i02—i') in order to maintain
the original isothermal steady-state situation. If the
current i is in the opposite direction, heat must be
removed; and if R, is not zero we must remove not
only the generated Peltier heat (now a heat source) but
also the always positive Joule heat. In short, in order
to maintain an isothermal steady-state junction, we
must somehow inject into the junction a Peltier heat
iIIxii which may be positive (add heat) or negative
(remove heat) depending upon the signs of both Iixii
and i.

It has been customary in discussions of the Peltier
effect to treat only an isothermal junction without

FIG. 4. Hypothetical arrangement for measuring Peltier heat
at a junction. The arrangement is a poor one for actual laboratory
use, but illustrates the meaning of the Peltier heat under certain
conditions, as explained in the text.

resistance, thus leaving out of the analysis the Joule
heating and the Qow of heat across sections near the
junction. The usual procedure is to state simply, instead
of our Eq. (42), that in the steady state

{heat injected or removed at the junction} = iIIxz, (44)

without giving the details of how the heat is added or
removed at the junction. What we wish to point out is
that, while this procedure leads to a perfectly legitimate
definition of the Peltier coeKcient, it invokes a some-
what hypothetical experimental arrangement which has
in fact rarely if ever been used for the measurement of
Peltier heat. In Fig. 4 the small circles represent holes
drilled through the rods X and R at their junction, and
the dots inside the circles represent very fine resistance
wire threaded through the holes and electrically in-
sulated so as to form an "internal junction-heater
element" located right in the plane of the junction it-
self. The diminution of the cross section will of course
increase the effective junction resistance and the elec-
trical current paths will become very complicated in the
vicinity of the junction. However, we can suppose that
for all practical purposes the heater is a strictly planar
heater located exactly in the plane of the junction and
that the total junction resistance is negligible. Even if
this supposition were to be well fulfilled there is still
the difficulty that the arrangement can be used only
when the Peltier heat iIIxg is positive.

The usual way to measure iIIxg is to enclose the
junction in a small calorimeter and to measure the
total heat absorbed from or given out in a certain time
interval to a Quid in which the junction is immersed.
Corrections are made for the Joule term in Eq. (42),
and one method for doing this is to use alternating
current to determine the Joule heat separately. The
calorimetric method involves essentially a measurement
of the surface integral of heat-Qow terms of form ~V T
at the surface of each phase, the integral taken over
the whole surface of contact between phases and sur-
rounding Quid. Strictly speaking, most Peltier heat
measurements made calorimetrically do not involve
a steady-state condition of the junction, and the re-
sulting value for the Peltier coeKcient represents a
complicated mean value for the temperature range
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Fxo. 5. Scheme for the direct measurement of Peltier heat at
a nonisothermai junction, making direct use of Eq. (42). The
temperature gradient is measured by means of resistance ther-
mometers TI, T2, ~ ~ T6.

between the initial and final temperatures. However,
since the Peltier coeKcient for most metals varies
s1owly with temperature, any errors resulting from this
effect are most likely much smaller than the remaining
errors. In short, we may say that the usual experimental
methods for determining IIX' make indirect use of
Eq. (42).

A determination of II» by direct use of (42) seems
to be feasible and could be carried out with an arrange-
ment like the one sketched in Fig. 5. The specimens X
and R are in the form of rods jointed as shown, and
have mounted on them three resistance thermometers
each. Only two thermometers on each rod are needed to
determine the temperature gradients in (42) if the
heat Qow is strictly axial, and the third thermometer is
used to determine whether the Row is actually com-
pletely axial. If the Row is not axial the reading of the
third thermometer can be used to make whatever
slight corrections are necessary. The entire composite
rod is enclosed in a radiation shield whose temperature
distribution can be kept close to that in the rods, thereby
making the distribution in the rods very accurately
linear. The rod and shield are in an evacuated con-
tainer. A knowledge of the bracketted term in (42) still
requires the values of the thermal conductivities a~
and ~~ as well as their temperature variation if we
desire the value of IIxjt over a range of temperatures.
However, by forcing (VT)» to vanish by means of
auxiliary heaters at the ends of the rods we can always
eliminate the term ax(VT)x, so that if phase E is the
"reference phase" we measure (or look up in tables)
its ~g vs temperature once and for all, and need not
know a~ at all.

The Joule term in (42) is easily known once the
contact resistance is known in its dependence on tem-
perature. We give in Appendix D a brief analysis of the
usual laboratory method for determining the contact
resistance between dissimilar metal wires.

Having found R, from Eq. (X-63) and having pre-
viously shown how the heat conduction term in (42)
may be evaluated, we are in a position to deduce the
value of the Peltier heat term iIIxz in (42). Obviously
the Peltier heat experiment is carried out with a non-
isothermal junction, possibly with (VT)x=0, while the
necessary determination of E, is made as pointed out
in Appendix D with the junction region (Fig. 28)
maintained isothermal. The determinations of II~g

Finally, we should like to comment on the phrase
"Peltier emf" which is sometimes found in the literature.
If we write the 6rst two terms in (42) in the form
(IIxz —iE,)i, having first multiplied through by the
area A, we see that each term in parentheses has the
dimensions of an electrical potential and can therefore
be expressed in voltsi If we separate (X-17) into
chemical and electrical portions we find

yR yx zE + (pB px) (46)

showing that in general the product iR, cannot be
called the jump in electrica1 potential across the junction
unless the phases X and E happen to have identical
chemical potentials. In particular, if the phases X and
R are chemically identical, the quantity iE, will in
fact be just the jump in electrical potential across the
junction. Thus the electrochemical, the chemical, and
the electrical potential changes across the junction
being related as in (X-17) and (46) above, there is
nothing left to call a "Peltier potential difference" or
"Peltier emf. "

E. THOMSON EFFECT

Consider a uniform cylindrical rod of a single homo-
geneous and isotropic phase as in Fig. 6, in which there
is an arbitrary temperature distribution and through
the surface of which heat is transferred to or from
the surroundings. There is at erst no electrical current
through the phase. V is the volume between cross sec-
tions A and B. The temperature at points in cross
section A is T= T(r) and at points in section 8 is
T'= T'(r), r denoting position within the section. The
temperature gradients at points in sections A and B
are G(r) and H(r), respectively, both temperature and
gradients varying throughout each cross section. We
formulate the following problem: If we pass a total
electrical current i through the cylinder, how much
total heat must pass per second across the cylindrical
surface between sections A and 8 in order to maintain
the original temperature distribution and consequently
also the original temperature-gradient distribution 2

The total energy current across section A without

and E, of course refer to the values at the same tem-
perature T in Fig. 28 and T—=T~—T~ in Fig. 3. So far
as the writer knows, this method for the direct deter-
mination of the Peltier heat has never been used. A
rough estimate of the precision required in the measure-
ment of the gradient (VT)~ makes the method seem
feasible.

It will be shown in Sec. F that the Peltier coeKcient is
related to the relative thermopower of an X-R thermo-
couple by —II+&=TSAR&, where T is the absolute
temperature of the junction. Equation (31) gives the
additivity rule for thermopowers, and so we have also
an additivity rule for Peltier coeKcients, namely

11xz=11x~+11~a
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electrical current is found from Eq. (34) to be

W" da= — «(T)G(r) da,
4a

(47)

where da is an area element in cross section A and the
integral is of course taken over the entire cross section.
Similarly, over section B the total energy current is
given by

t'
W da= — «(T')H(r) da, (48)

the prime referring to the local values in the section B.
Now with total current i Qowing the total energy Qow

rate across A is

L
—(1/e) (TS*+p)J «(T)G—(r)) da, (49)

since the T(r) and G(r) distributions are the same as
in (47); and similarly across 8 the total energy flow

rate is

C

—(1/e) (T'S*'+p') J' «(T') H (r—)) da„(50)
J~

the primes again referring to the local values of the
respective parameters in the cross section B.The excess
total energy Bow rate ogt across section B over the Qow

rate in across A before i is turned on is (48) minus

(47) or

I

I

t

I
I

A 8
FIG. 6. The cylinder of uniform chemical composition has a

certain original, steady-state temperature distribution before an
electrical current passes through it. If a current i now is made to
Row along the cylinder, how much total heat AE must pass in the
steady state per second across the cylindrical surface between
cross sections A and 8 in order to maintain the original tempera-
ture distribution? The solution to the problem is given by
Eq. (59).

Each of the quantities in the integrand in (53) has a
value depending upon position within each cross section;
for example, T at a certain point in cross section A is
not necessarily the same as T' at the geometrically corre-
sponding point in section B. In particular, although
the surface integrals of the electrical current densities
J and J' over their respective sections A and 3 must
of course be the total current i, the densities J and J'
themselves are not necessarily the same at correspond-
ing points in the two sections.

The integral (53) represents the surface integral of the
vector quantity (TS*+p)J over the cross sections A
and B.But since there is no electrical current across the
cylindrical boundary of the phase, the integral can also
be written as extending over the entire closed cylin-
drical surface including the ends A and B. This exten-
sion then allows us to use Gauss' theorem to write

Eo= — «(T')H(r) —da+ «(T)G(r) da, (51)

while the corresponding excess with current i is (50)
minus (49) or

entire closed
surface

(TS*+p)J.da

v t (Ts'+p)J)dv, (54)
J~

E,=—(1/e) (T'S*'+—p') J' da

+ (1/e) I (TS*+p)J da «(T') H (r) d—aJ„

dv being a volume element and the volume integral
extending over the whole volume of the cylinder be-
tween Secs. A and B. The integrand in the volume
integral becomes, since V J=0,

J v(TS*+p)y(TS*+ p)v J
=J [Tvs*+S*vT+vP);

The necessary additional rate of influx of energy in the solvmg (3) for vp „smg (19) (~ 7) and J— eJ, we
form of heat across the cylindrical boundary between
sections A and B in order to maintain the same tem-
perature (and temperature-gradient) distribution as J [Tvs*+S*vT+v p)= TJ vs*+ (e/0) J'. (55)
without electrical current is thus given by (52) minus

(51) or Putting this into 54 we get
7

hE=E; Eo= —(1/e) t (T'—S*'+p')J' da ehE= — TJ vS*dv e, (1/0) J'dv—.J, J~
(56)

+ (1/e) t (TS*+p)J da. (53) The second integral represents the total Joule heat
generated per second by the current and is seen to be
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always positive. In the erst integral, since S~ depends
only on temperature we can write BS*/Bx= (BS*/BT)
&& (BT/Bx) and similar expressions for the y and s com-
ponents of VS*, so that VSe= (BS*/BT)VT. The ex-
pression (56) thus becomes

eaE = — t (TBS*/BT)J V Tdv e,"—(1/o) J'dv (57)

or if we set"

the following simple form, where now J—=
) J ~,

~
.J V Tdv=r(~T/~~)~x. P.~A) =.s~T, (61)

and the Joule heat term reduces to

— I (1/o)J'dv

r=—(1/e) T (BS*/BT), (58) = —(1/o.) (2 x/AA) (AA J) (AA J)= PE —(62)

we get hnally

"v
rJ V Tdv )(1—/o. )J'dv. (59)

giving therefore the experimentally usable relation

AE= riAT —PR, (63)

Equation (59) gives us the solution to the problem
formulated at the beginning of this section; namely, if
when there is no electrical current Rowing through the
cylinder there is a given initial, steady-state tempera-
ture distribution, then if the cylinder is to have this
same distribution after the electrical current is turned
on and a steady state is again established, we must
add total heat to the volume V of the cylinder at the
total rate given by Eqs. (59) and (58). The rate at
which heat must be added per Nnit volume depends
upon the location of the small volume element within
the phase and is given by

AE/Dv = 7 J V T (1/o)J'—(6o)

FIG. 7. A long, thin wire may be used in the determination of
the Thomson coefficient by making use of Fq. (63), which is a
special case of Eq. (59).

"Callen and de Groot (references 1 and 2) have a plus sign in
(58), but their charge carrier is positive whereas ours is —e for
the electron.

The parameter r= r(T) is called the Thomson coeK-
cient and the first term in either (60) or (59) is called
the Thomson heat, although of course these terms
actually represent rates of adding heat. If AE/hv is
expressed in watts per unit volume the Thomson
coefEcient has the dimensions of an electrical potential
per degree and can be expressed in volts per degree.

Equation (59) gives the relation between the Thom-
son heat and the total rate of heat addition to the
volume V of the phase, and in order to determine ~
itself we must apply (59) to an experimental arrange-
ment in which we can remove 7 from under the integral
sign. This can be done most easily by applying (59) to
a long section of thin wire such as indicated in Fig. 7,
in which the temperature gradient and electrical current
density are assumed very nearly uniform throughout
each cross section of area DA. The distance between
regions of temperature T and T+DT is taken to be Ax.
In this case the Thomson heat term in (59) reduces to

where R is the total resistance of the length Ax of wire.
The length Ax of wire, total resistance R, is held in a
steady state with a small temperature gradient hT//Dx
and total electrical current i Qowing through it. By
measuring AE (watts) calorimetrically, knowingi, hT,
and R we can use (63) to find the Thomson coefficient.= r(T+', ~T).

Since the various factors in (58) depend only on the
absolute temperature T, we can integrate (58) to find
the transport parameter S* in terms of the Thomson
coefficient, and the resulting expression is defined as
the absolute thermoelectric power or absolute thermo-
power of the homogeneous isotropic chemical phase at
temperature T; namely,

S " =——(1/e)S*= (r/T)d T. (64)

(rx/T) dT (re/T)d T—. (65)J, 0

De Groot' has derived the thermoelectric potential
difference by using two "homogeneous effect" terms
of the form (X-12) for the two phases X and E added
to two "heterogeneous" or "contact potential" terms
of the form (X-46). One often finds the first terms re-
ferred to as "Thomson emf's" and the second terms
referred to as "Peltier emf's. " We have already dis-
cussed in Sec. D the inappropriateness of the latter
term. The name "Thomson emf" is in our opinion
equally undesirable, inasmuch as the "homogeneous"
term (X-12) is related to the Thomson coeKcient only
through the integral relation (64) above, leaving still
the term (1/e)(By/BT) in (X-12). In fact, if we add
together the four terms mentioned, namely two of form
(X-12) and two of form (X-46), we find for the thermo-

From (30) and (64) it follows that the relative thermo-
power Sxg of a thermocouple made of two phases X
and R can be found from the difference between their
absolute thermopowers; that is

abs S abs
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lower isothermal region at temperature T. %e use this
value as the zero level or reference level, and the elec-
trochemical potentials at the upper ends of I and R
become with respect to this level hpx= —Sx*AT and
Ap~= —Sg*AT, respectively. The difference between
these electrochemical potentials can be measured poten-
tiometrically by connecting two sections R and r of
chemically identical and isothermal phases as shown

by the upper dotted regions in Fig. 9.Thus the
measured thermoelectric potential difference is

FIG. 8. The thermoelectric potential difference between points
P and P' may be expressed as the difference between two "homo-
geneous thermoelectric potential" differences plus the difference
between two "heterogeneous" or "contact potential" differences,
according to Eqs. (66) and (67}.

Ahxa ——y~ —y"= (1/e)Apx —(1/e) ap"

the same as in (30) and (68).

From Eqs. (30), (41), and (58) giving thermopower,
Peltier coefficient, and Thomson coe%cient in terms of
the transport entropy per particle S*,we can now easily
derive the following relationships between the three
thermoelectric parameters, known as the Kelvin
thermoelectric relations:

1 (By,"
gg —

~
+5 a jig' +[yx(r+ar) yz&r+ar)]

char i
1 (By +g +

~
g 2' [yx(r) yn(r) ] (66)

char i &xa= —TSxa,

rx rR T(85XR/BT) ~

(70)

(71)From (X-46) we get

pyx(r+ar& @R(r+6r)j [@x(r) yR(r) j Having settled on a sign convention for each of the
quantities IIxg and Sxg, we can thereby 6x the sign
in (70), as can be seen from the following argument.
Imagine a closed thermocouple circuit made of two
phases I and R as in Fig. 10. If the relative thermo-
power Sxg of the couple is positive, current will Qow

in the direction of the arrows when the right-hand
junction is hT degrees warmer than the left-hand junc-
tion. When the current Qows in this direction the left-
hand junction must become a heat source and the
right junction a sink. For if the reverse were true, the
left junction would cool further and the right junction
would become still hotter, thereby increasing the

and substituting (67) into (66) gives simply

&@xn= (1/e) (5'n*—&x*)&7', (68)

the same result as in (30).Thus the "contact potential"
or "heterogeneous" terms (67) are canceled by a portion
(the thermostatic portion!) of the "homogeneous" terms
(X-12).

Finally, we can picture the origin of the thermo-
electric potential difference in a thermocouple in the
following way. From (64) and (X-10) we can see that a
temperature gradient in a homogeneous isotropic phaseI gives rise to an electronic electrochemical gradient
which is characteristic of phase X alone, apart from
whether or not this phase is connected electrically to
any other phase as in a thermocouple. This electro-
chemical gradient can be determined from (X-10) once
the integral (64) has been evaluated from an experi-
mental measurement of the Thomson coeKcient and its
variation with temperature. Thus in Fig. 9 if the tem-
perature is initially uniform at T throughout the entire
system the electrochemical potential will be uniform
throughout. The temperature of the entire upper
portion is now raised a small amount AT. The elec-
trochemical potential will in general change everywhere
in the system, but will have a uniform value in the

~~,T+QT ~f

R

—T+QT

g-R R

REFERENCE LEVEL FOR P.OTENTI Al S

FIG. 9, The thermoelectric potential difference @"—@"is simply
(1/e) times the difference Apx —d p~, the electrochemical poten-
tial changes being brought about by the temperature change AT;
thus bpx= —Sx*DT and AIJ~= —S~~AT.

rjc potential diQ'erence of the thermocouple in F.THE KELVIN RELATIONS OF THERMOELECTRICITY

Fig. 8 the expression
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'7 +6&
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apply the general equations to special crystal systems;
of particular importance is the application to "uniaxial"
crystals, since these are the ones most extensively
studied experimentally. The applications of the general
theory lead to the Kelvin symmetry relations and to
Bridgman's "internal Peltier eQ'ect. " Finally, we com-
pare our formulation with those of Kelvin, Bridgman,
Ehrenfest and Rutgers, Meissner, Kohler, and Meixner.

R

Fzo. 10. This thermocouple circuit is used to explain the minus
sign in the Kelvin relation (70).

thermoelectric current. This current increase would
result in still further cooling of the left junction and
further heating of the right, and so on. Once started
with a minute AT this thermocouple device would
thus generate an increasing current and would further-
more cool the left junction without any external inter-
action. This being impossible we conclude that if the
relative thermopower Sx~ is positive, the left-hand
junction in Fig. 10 must become a heat source so that
with the current I crossing the X-I'. junction in the
direction from X to E. the Peltier heat must be negative.
This explains the minus sign in Eq. (70).

The relations between the various thermomagnetic
coeKcients (Hall, Nernst, Ettingshausen, Righi-Leduc)
have been found by Callen. "

G. ANISOTROPY OF THERMOELECTRIC EFFECTS

According to Eq. (21) a particle current density J,
Gowing in an isothermal rod has associated with it an
entropy current density given by J,=S*J„in which the
transport entropy per particle 5* depends on' the
chemical nature of the phase and on the temperature.
The value of this parameter S~ for a given kind of
particle (electron, say) in a given phase is determined
by the detailed way in which the particle is scattered
as it passes through the atomic lattice of the phase.
One would not be too surprised, therefore, to find that
in a single crystal the value of S* for a given charge
carrier depends in general upon the crystallographic
direction in which the carrier moves or drifts. Since
the absolute thermoelectric power of a phase is deter-
mined by S* it would follow that the thermoelectric
properties of a (noncubic) single crystal would vary
with crystallographic direction. This is in fact the case,
and a considerable amount of thermoelectric data is
available on such pure metal single crystals as zinc,
cadmium, antimony, bismuth, tin, and magnesium. "
We wish to discuss next the theoretical aspects of ther-
moelectric anisotropy. We begin by postulating a tensor
formulation of the fundamental thermoelectric equa-
tions applicable to any crystalline or otherwise non-
isotropic as well as nonhomogeneous medium. We then

"H. B. Callen, Phys. Rev. SS, 16 (1952).
"W. Meissner, ffandbach der Zzperimentatphysih (Leipzig,

1935), voL Xl, pt 2. .

J'= S*J'—(tt/T) v T. (72)

In setting up the general equations me @sake the as-
sumption that each component of the entropy current
density J is a linear function of the components J,', of
particle current density and of the components V;T of
the temPerature gradient, with i, j= 1,2,3. The tempera-
ture T and the electrochemical potential p are con-
sidered as continuous and diGerentiable functions of
position (xb xs, xs) within each phase. If an electrical
current Rows across a boundary between two media,
there will be cases (as mentioned in Example 6 of
Appendix 8) in which the electrochemical potential
cannot be defined within the junction. In such cases,
however, the 6nite jump in p across the junction can be
dined and one needs only to use the appropriate
boundary conditions for p; otherwise such cases in-
troduce no particular difhculties. The relation (72) is
thus replaced by the three equations"

J,'=S,;*J (tr, ~/T)(BT/—Bx,), i, j=1, 2, 3, (73)

in which the quantities S;;*form the transport entropy
matrix and the a;; form the heat condlctiv~ty matrix. We
emphasize the fact that the equations (73) are postu-
lates, reasonable extensions of the isotropic Eq. (72),
and that their validity must be checked by experi-
ment. At the present time there is available only infor-
mation on crystals of comparatively high symmetry, to
which the simpler Kelvin and Kohler symmetry rela-
tions are supposedly applicable. Although the Kelvin-
Kohler relations appear to be quite well satisfied by
available data on such crystals, there is still need for
further and more extensive measurements on single
crystals over large temperature ranges.

"We shall hereafter ferrite the subscripts s and e in (72) as
superscripts to make room for the subscript indices i and j.

"The presence of two identical subscripts indicates a summa-
tion. Thus (73) is shorthand notation for the three components

BT BT BTJ1'=F11 +1++12 +2++13 J3 &11 +&12 1&13T 8$1 8$2 8$3

1 aT aT aT
+2 =521 ~1+~22 J2+523 ~3 &21 +&22 +&23 sT 8$1 8$2 8$3

1 aT aT aT~ '= ~31*%+~32*%+~33*A——tt31—+~32—+&33-—
T 8$1 l9$2 8$3

1. The General Equations for Anisotropic Media

We use as a starting point the combination of rela-
tions (21) and (X-8), namely"
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It follows from (73). and (6) that the total energy
current density 8", can be written

W;= TS,,*J,'+ pJ,' ~,—, (BT/Bx,)

sets of relations follows from (77) and (78):

OT - BT-

Bxj' ' 8$1 8$2
(A)

= (TS;,*+pB;;)J zg—(BT/Bx;), (74) BT AT

8$1 8$2
(B)with bij=1 for i= j, 8;j=0 for i4 j.

We shall also need the anisotropic formulation of
the relation between the electrochemical potential
gradient and the temperature gradient, the isotropic
form of which can be gotten from (3), (19), and (X-7),
namely,

or
BT BT

S11 S21 )
8$1 8$2

(79)

BT BT

8$1 8$2

(75)V p= e'pJ' —S*VT—,

in which we have used the electrical resistivity p= 1/o.
instead of the conductivity. Equation (75) derives
from the same basic relation (3) as does (73); that is,
(73) was written as the anisotropic form of (72) or (21)
which in turn was derived from (3).It is clear therefore
that the anisotropic form of (75) must be consistent
with (73) and (74), and a consideration of this question
shows that the only uncertainty in the direct transcrip-
tion of (75) to anisotropic form lies in the order of
subscripts in the transport entropy matrix S;,*. Thus
in (75) the question is, which of the following forms is
the correct one consistent with (73) and (74),

Consider the significance of the "cross-term com-
ponents" S»* and S»*. By (77), a particle current
(density) J2' along axis x2 contributes to the entropy
current (density) J~' along axis x~ through the com-
ponent S12*. This means that particle currents along
x& are coupled with entropy currents along $1 through
the components S»*.In the same way, by (78), particle
currents along x1 are coupled with entropy currents
along x2 through the component S»*. Equations (77)
and (78) relate the currents or fluxes J' and J', while
Eqs. (A) and (B) or (79) and (80) relate the "forces"
Vp and V T. We saw in Sec. B that the Aux J' and the
force —Vp are conjugate to each other, as are the
flux J' and the force VT. The —present question in
regard to the choice between (A) and (B) or (79) and
(80) brings out the significance of the conjugation be-
tween Auxes and forces. This conjugation means that
J' and —Vp are related by what we may call a direct
coupling, as are J' and —VT, whereas J' (or —Vp) is
related to J' (or —VT) by an interference or indirect
coupling. It will help to refer to J' and —Vp as "elec-
trical effects" and to J' and —V T as "thermal effects. "
Thus, electrical effects along axis x2 are connected by
interference coupling with thermal eGects along axis
x1 through the matrix component S12*, while electrical
eGects along axis x1 are connected by interference
coupling with thermal eGects along axis $2 through
the matrix component S~~*. If, from (77), J2' con-
tributes to J~' through S~p, then we expect Bp/Bx2
to be related to BT/Bx~ through the same matrix com-
ponent S~2*,. if, from (78) J~' contributes to J2' through
S2~*, we expect Bp/Bx~ to be related to BT/Bx2 through
S2~*. Therefore we recognize (79) and (80) as con-
sistent with (77) and (78) and we reject (A) and (B).

To derive analytically the second of Eqs. (76) we
make use of the conjugation of the ftuxes and forces
as expressed mathematically in the invariance (9) of
the sum

BT
e2p.jJ.e S

Bxj
(76)or

BT
= —e'p„Jj'—S.,*

BxjBxi

The resistivity matrix pij pji and the thermal con-
ductivity matrix K'j Kj ~ are already known to be
symmetric. " We shall show analytically that the
second form in (76) is the correct one; however, it is
helpful to consider first an intuitive argument for a two-
dimensional case.

If the particle (electron) current densities J~' and J2'
Row through an elemental cube inside the crystal at
uniform temperature, with BT/Bx;=0 we have from
(73) for the entropy current densities

(77)A'= S»*A'+S»*J2'&

J2'= Su*A'+S»*J2' (78)

Bp ) f' BT)
t(s)=J"I I+J"I ——

Bx,) E Bx;]
(81)

It was mentioned in connection with&Eq. (9)&that the
time rate of internal entropy production per unit

Next we suppose that a temperature gradient with
components BT//Bx~ and BT/Bx2 but BT/Bx3 0 is-—
established in the elemental cube and that no electrical
or particle current is allowed to flow. From (75) we see
that there will result a gradient of electrochemical
potential. The question is, which of the following two

'7 See W. Voigt, Lehrbgch der Eristcllphysik, p. 345, or de
Groot, reference 2, Chapter 4. It has never been shown that for
any arbitrary crystal syInmetry the matrix S;;* is symmetric.
The work of Kohler, to be discussed later, gives quantum-
mechanical expressions for a matrix y;;, related to our S;;*,which
are nonsymmetrical in the general case.
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volume f(s) at temperature T is determined by the
sum of products of conjugate currents and forces, as
in (81). Since this rate of entropy production is inde-
pendent of the choice of Quxes and forces, provided
these are conjugate, the sum (81) is an invariant. (The
total internal entropy production rate is of course the
volume integral of (81) taken over the whole system. )
For steady-state conditions, (81) is not only invariant
with respect to transformations of cruxes and forces but
is also constant in time, and as already mentioned in
Sec. B, steady-state processes are the only ones we
shall consider. We substitute (73) into (81) and find

p BT Bp,
Ti (s) = —J,' —J = —J,'

&i ~&i

BT Ki& BT BT—S;*J' +—— ' (82)
Bxi T t9$j Bsi

(By ) BT Kjj BT BT
+s~'*

I
+-'

&Bx; ")Bx, T Bx;Bx,

p;jJiJj=e'pijJ,'J,', (83)

where J,= —eJ; and p;;=p;; is the resistivity matrix
of the crystal at temperature T. Equating (83) to the
Joule contribution in (82) we have

(Bp BT)J.e~ +S.,sc (=e'2p .J,eJ.e
&Bx; Bx,)

We see that the terms in ~ij account for the ordinary
irreversible heat-conduction contribution to the entropy
source strength. Likewise the terms in J account for
the contributions from the irreversible Joule heating.
In fact, the physical significance of the entropy source
strength i(s) is that it represents the time rate of
change, per unit volume, of the entropy produced by
strictly irreversible e6'ects within the volume. This
quantity i (s) is required by the Onsager theory to be
positive, though not every term in i (s) is individually

required to be positive. Now the entropy of the material
contained within a given volume AV is a constant in

the steady state, since this entropy is a single-valued

function of characteristic parameters of the material in

hV such as the internal energy AU, number of particles
6$, and the volume DV. The internal entropy pro-
duction f(s) resulting from irreversible processes within

AU is carried out by the vector J' at a rate, div J', just
su%cient (in the steady state) to balance out P(s) so as
to maintain a constant entropy within AV.

The Joule contribution to Tt (s) can also be written

ponents are independently variable, (84) gives

Bp
+S;; = —e'p;,J,'= ep;;J;,

8$i Bxj
or

Bp BT
8 pij Jj8 Sji p

(83)

(86)

1/ By 't BT+s'
( J+z J,

e&BT ) Bx

where we have written By/Bx= (By/BT)(BT/Bx) and
E= —BP/Bx Thus. we have pJ'=E J only for a phase
at uniform temperature, when BT/Bx=0. This situa-
tion is analogous to that concerned with the general-
ized Ohm's law discussed in Example 4 of Appendix B.

2. Volume and Surface Heating Effects

The vector lU; in (74) gives the total energy current
density at any point in the crystalline medium. In the
steady state there can be no accumulation of energy
within any infinitesimal volume element and the vector
8', must be divergenceless. Thus

BW, B(S@*J,') BT BJ,'
=0= T -+S@*J,' +p

~&i Bxi Bxi 8$ '

Bp B ( BT)
(88)

Bx; Bx; 0 Bx;&

This relation and the following are thus valid for non-
homogeneous crystalline or crystalline-like media. "The
third group of terms on the right-hand side of (88)
vanish, since the particle current is divergenceless.
Substitution of (86) into the fourth term on the right-
hand side gives

p 8T
J = —e'J,'pij J,'—J,'Sj;*——

BT
= —e p,,J'J' —S,"@J' (89)

which is the second form in (76).
It is interesting to notice that the Joule heat is not

correctly given in general by E;J;, with E;= —BP/Bx;
In fact, we can show that this is so even in an isotropic
homogeneous phase, as follows. The correct Joule heat
expression is, when (83) and (85) are used,

1 f'Bp BT t
pJ.J=—

(
—+s*

e&Bx Bx&

1 (By B$ BT)
=-~ —.—+s*

[ J ~ (87)
eI Bx Bx Bx)

J"( "p"J") —(84)— ' An example of the latter kind of medium is a nonuniformly
strained body in which the strains give rise to a crystalline-like

and since the particle (electrical) current density corn- anisotropy.
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the last term here cancelling the second on the right-
hand side of (88). Solving for the derivative ct(tc;;r)T/
ctx;)/c)x; in (88) and writing J,'= —(1/e) J;, where J,
is the electrical current density, we find

X3 A

c) ( r)T) 1 r)(S,;*1,)
p;,JJ, T——

ax; ( ax, & e ax;
(90)

c)S;,* (r)Scs*) (c)S,t*) BT
I+I

ax, &ax;)r 0aT)*;gx,
(91)

and the last group of terms in (90) breaks down into
the three groups

T r)(S;;*I;) T t aS,,*)

e &ax, i,
T (r)Sn*) r)T T r)J,

e E aT)', ax; e ax,

We shall use the following notation for the four separate
groups of terms in (90) and (92):

Joule: Qs= p's~'f~)—— (93)'

Peltier: (94)

(Volume
(~S't & ~T '

eRects)
Thomson: Qr = TJ, i i

.——, (95)
e '(aT i.;ax

1 BJ;
Bridgman: Qtt =— TS;;*——

e Bx;
(96)

Each "Q" represents a heat absorbed per unit volume
per unit time. "Our sign convention agrees with that of
Bridgman, 20 absorbed heat being taken as positive.
Ehrenfest and Rutgers" use the opposite convention.
Equation (93) gives the Joule heat evolved and is
therefore negative. If the medium is not homogeneous
there is a volume Peltier heating eRect Qt given by (94).

'~ The electron charge e here, as throughout this Review, is the
absolute value, the sign having been already absorbed in the
original electrochemical potential separation into chemical and
electrical portions.

nP. Bridgman, Thermodynamics of Etectrecat Phenomena en
Meluls (Macmillan Company, New York, 1934), Chap. Vl."P.Ehrenfest and A. J. Rutgers, Proc. Acad. Sci. Amsterdam
32, 698, 883 (1929).

Equation (90) is a general expression for the production
of heat in an inhomogeneous, anisotropic medium,
crystalline or otherwise.

In general the components S;,~ of the transport
entropy matrix depend on temperature and on position
in an inhomogeneous medium, so that the derivatives
of S,;n in (90) must include spatial as well as tempera-
ture variations. Thus, since in general S;;*=S;;*(x;,T),
we must write

+8
FK,. 11.The curve AB represents a general boundary between

two anisotropic media X and R.

Whether the medium is homogeneous or not there is a
Thomson heating effect given by (95). The signs in
(93) and (95) agree with those in (58) and (59). The
last terms (96) describe an eRect first predicted by
Bridgman. "

We consider next the phenomena taking place when
an electrical current crosses a boundary between two
anisotropic media. The generalization of the treatment
in Sec. D follows directly from the formula (74) for
total energy Row S';. Consider a composite system con-
sisting of two diferent anisotropic and inhomogeneous
media X and E. electrically and thermally jointed along
some arbitrary surface AB as shown in Fig. 1j.. The
reference axes are x~, x2, x3 and the crystallographic
axes (or other characteristic axes) of each medium I
and E may be oriented in any way whatever relative
to these reference axes. As in the case of isotropic media,
the joint or contact AB between X and E will in general
be a very complex transition region of some finite
thickness d. This thickness is of course somewhat
indefinite, varying from place to place along the
boundary, and will depend upon the method used for
joining the two media. Often the main bulk of the
junction may consist primarily of some third material,
for example when two different crystals are cemented
together with Wood's metal or with soft solder. In such
cases the junction layer of solder may be several
thousandths of an inch thick in many places. On the
other hand if the joining is done by electrical fusing
of the two single crystals, the transition layer or sheath
will probably be a physical mixture of polycrystals of
X and E. together with some alloy crystals, and so on.
In almost all cases in which quantitative measurements
are to be made on arbitrarily oriented single crystals
the boundary AB will be a simple butt-joint as in Figs.
3, 5, and 28; in such cases some quantitative estimate
can be made of the "contact resistance" or "sheath
resistance" R, provided the resistance matrices p;;~
and p;,~ for the two crystals X and E are known. The
procedure for determining E., in the case of two crystals

n P. Bridgman, Proc. Am. Acad. Sci. 61, 101 (1926); 63, 351
(1929);Proc. Natl. Acad. Sci. 13, 46 (1927).
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J.Xgi—J.Bg.

W;~e;=—W;~e;,

(97)

(98)

is essentially the same as that already described in
connection with Fig. 28 except for the added complica-
tions resulting from the crystalline nature of X and R.
However, since these complications can be handled in
a straightforward way having little to do with thermo-
electricity, we shall not discuss the details.

Returning to formula (74) and Fig. 11 we see that
since in the steady-state energy and charge cannot
accumulate in the boundary region AB, the boundary
conditions on total energy current density and electrical
current density are

We can now rewrite (99):

(gT) x' (gT) R

[ e;—~;; ~ ) e; —p.d(J, g;)'
I cjx;) &Bx;)

1
+ T(S—g*»J;»e; Sg*—RJP e;)=0. (102)

e

Expression (102) describes the heat generation and
transport at the boundary region between inhomo-

geneous, anisotropic media I and E, and is the surface
analog of the "volume" equations (90). We name the
second and third sets of terms as follows:

in which e; are the three components of the unit normal
vector which we agree always to point outward from
medium X. The superscripts X and E refer to the
medium in which the current Rows. Applying the condi-
tion (98) to (74) and collecting similar terms for the
two media we find

Joule:

Peltier:

qg= —p,d (J,e;)', (103)~

1
qp= T(S—g*—J;xe; S;,*RJ—Pg;) (104).

e

(Surface
effects)

1
T(S *»J—»e "S *RJ Re—)+"(p -J e —pRJ e )—

e e

Each of the "q" represents a heat absorbed per unit
area per unit time.

We next set down the definitions

(DT'S
x &aTy R

+ a'x]
I

g' »"
( I

e —=0, (99)
(Bx;) &gx;)

1
II;;= TS,;*=I—I~)-(T; xg,—x2, xa),

e
(105)

the generalized form of relation (37). The bracketted
groups of terms represent the energy Rowing out of the
boundary region (per unit area of the sheath) by
ordinary heat conduction through media X and R. The
middle group of terms give the Joule dissipation in the
resistance E, of the sheath; this can be seen as follows.
Writing J;=—eJ,' in (86), we have

1 (BS
&'j=— T~ il

—= &i(T~ xl& x2& x3) (106)'
e 4 BT)z;

We call II;; the Peltier coefficient matrix and r;; the
Thomson coefficient matrix for a given inhomogeneous,
anisotropic medium at temperature T and at point
x&, x2, x3 within the medium, when referred to rectangu-
lar coordinate axes x~, x2, x3. Relations (93) through
(96) for the volume heating eGects become, with i, j=12 3Now the resistive sheath we assume to be isotropic, so

that p;,=0 for i/ j, pii=—p„. and if we further assume
that the second term on the right-hand side of this
last equation is negligible compared with the first, we
find in crossing the boundary

Joule: (107)-Q~—= —peJ'J~

(Bllvi
Qp—= —

I

E ax;)
Peltier: (108)

Bp, (3pp
~ e; d=

~

—
~

d—ep,J,g;d, (100)
(Bs

(Volume

(109) effects)
BT

Qr=~VJ
~&i

Thomson:

(110)

, (Surface
effects)1 Peltier:=-( ep,J;Re,d—)J,Rg;= —p d(J Re )'. (101)

e qp =——(II;PJ;R—II,,»J;x) e;. (112).

where s is distance along the normal e; and d is the
thickness of the resistive sheath. Because of (97), it BJ;
makes no difference which current components, J;x or»'dgman: QR=
J;R, are used in the last parentheses in (101), and we
choose J R. Thenin the middletermsof (99),using (100) d (103) d (104) f th f }e t'n gect
and 97 we get become
1 1
(pXJ.»g. pRJ Rg.) (p» pR)J.Rg. . Joule qg —=—p d(Jg )'

e e
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3. Limitations Imposed on the Thermoelectric
Matrix Comyonents by Crystal Symmetry

A XI S

I

R(TR)

R(Tp)
Q~, II-AXIS

e

For convenient reference we shall list in Table I the
general schemes of matrix components for the entropy
transport matrix S;,* for the six crystal systems. No
proof has yet been given that the thermoelectric
matrices must in general be symmetric; this is in
contrast, for example, to the symmetric matrices
p;j= pj; and K'j= Kj ' On the contrary, Kohler" has
shown on the basis of a quantum-kinetic treatment that
the thermoelectric matrices are not in general sym-
metric. On the other hand, all pure metals and metallic
alloys that have been studied up to the present time
are of such crystal symmetry that the matrix S;,* is
not only symmetric but has components Sz*, Szz =Sz*,
Szzz* in the principal-axes coordinate system.

R

AXIS

AXIS

p/ pi

y
r(TIt)

—r (TR)

Fzo. 12.The rod AB is cut from a crystal for which the transport
entropy matrix S;; becomes Sz*, Szz*=Sz*, Szzz* in the principal-
axes system. The angle between the

~~
axis of the crystal and the

long axis of the rod is 8, as shown in Fig. 13.4. Thermoelectric Potential Differences in Rods Cut
from Crystals for Which S;;*Becomes
Sz*& Szz*= Sz* Szzz* in Principal-Axes

System. The 1"Kelvin and Kohler
Smm r Rl in

electrochemical potential diGerence between the ends
of the crystal rod is given by

r2

S,I(*xdT, (113)TAsxz I. The schemes of matrix components for the entropy
transport matrix S;;*for the six crystal systems.

y et y e at o s
2

The system we wish to analyze is the one shown in px'r" —px(r"= ' (dpx/dT)dT
Fig. 12. The rod AB is cut from a single crystal of the T1

Triclinic

S~ S~ S~
S2).* S22* S23*
S31* S32* S33*

TetragonalS* S* 0—S12* $1).* 0
0 0 S33*

Monoclinic

S11 S12 0
S21* S22* 0

0 0 S33*

Hexagonal

—S12 S11 0
0 0 S33*

Rhombic

S11* 0 0
0 S * 0
0 0 S33*

Cubic
S11* 0 0

0 Szg* 0
0 0

in which S,gg*x is de6ned by

BT
4X

Bxs

and is to be determined. By taking T2—Tz small, one
can write

e(y~(&x) rt)II(T'a)) —(S&+ S I(ex) (T Tz) (115)
material shown in Fig. 13. The slab CDEF is in the xz—xzzz plane, and for crystals with Szz*=Sz* this is
always the case when the

~~
axis is along x»&. We require

here only that the final rod be oriented as shown with
its long axis making an angle 0 with the xrrr or

~t
axis,

and with this long axis lying in the xz —xzzz plane. %e
then set up a new axis system x&, x&, x3, with the x2 axis
coinciding with xtr, the xt and xs axes rotated (about xs)
through the angle 0 as shown. The temperature gradient
BT/Bxs in Fig. 12 can be measured in principle by
probing along a fixed axial line along the length of the
rod AB. Also, from the known thermoelectric properties
of the polycrystalline, homogeneous reference phase E
it is easily possible to deduce the electrochemical poten-
tial difference &x(r» &x(r ) between the ends of the
crystalline rod AB once the difference P~( a) —P'(r")
= (1/e) (p,"(r» —p" (rs)) has been measured potentiomet-
rically, since no electrical current is supposed to Qow

through the crystal during this measurement. The

r' M. Kohler, Ann. Physiit 27, 201 (1936).

X~, lf -AXIS
X -AXIS

I
~ ~ ~ ~ r~

I
[ /, Bj &' . X&, X&s l-AXIS

——Xg )l AXIS

C

I,
Ii

) po
~ XI ~-AXIS

FzG. 13. The crystal rod AB of Fig. 12 is cut from the single-
crystal slab CDEF, with orientation angle 8.

using the procedure in Sec. C. From (115) one can thus
determine S,I(*x=S.I(*x(|I), as a function of the angle
8 between the ~~-principal axis and the long axis of the
crystal rod, Figs. 12 and 13. The problem now is to
determine the relationship between S,(I* (t)) and the
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principal values S&1*~ and S~*x corresponding, re-
spectively, to 0=0 and 8= 90'. We shall show that the
form of this relationship depends upon the boundary
conditions used in the experiment for measuring S,g~* .
To simplify the notation, however, we shall omit the
superscript X, since it will be clear that we are now
concerned only with the crystal rod and not with the
reference phase E.

Let us first write out the complete expressions (74)
and (86):

Bp
&(P21J1+p22J2+P23J3)

8$2
BT BT I9T—Sl2* --—S22*——Sss*-—, (120)
$1 8$2 8$3

Bp = ~(psz Jz+pssJ2+ pss Js)

QT BT BZ—Sls* —Sss*—S„*—. (121)
$1 8$2 8$8

1
Wz= T(Sll Jl+S12 J2+S13 Js)

e
1 BT BT BT

Pj1 Kl1 K12 K13
e 8$1 8$2 8$3

1
Ws= T(S21 Jl+S22 J2+S23 Js)

e
1 BT BT AT
Pj2 K21 K22 K23 )

e 8$1 l9$2 jtII$3

(116)

S.P= . -S eP .-= . . PSij &li&mjs-) lm ) Kij &li~mj Klee (122)

where the I' superscript refers to principal-axes com-
ponents, and c's are the direction cosines describing the
transformation of axes as given by the following scheme:

The components S;;*and Kij can be found in terms of
the principal values Sr*, SII*=Sr*, Srrr* and Kr, Krr

=Kr, Krrz referred tO prinCipal azeS by meanS Of the
usual formulas, namely,

1
~s T(Ss1 J1+S32 J2+S33 J3)

e
1 BT BT BT——pJs—Ksl K32 Kss-, (118)
e 8$1 8$2 8$3

xr

$1 $2 $3

C11 C12 C18 xr

$II ~21 ~22 ~23 $II

$1 $2 $3

cos8 0 sin8

0 1 0 (123)
Bp = &(P11J1+P12J2+P13J3)
8$1

BT BT BT—Sll*- —Ssl* —Ssi*, (119)
$1 8$2 8$3

$III C31 C32 C33 xzrr —sin~ 0 cos8

The direction cosines of the $1 axis relative to xz, xrz,
xzzz are, respectively, c», c», c», etc. Using (122) and
(123) we find the matrices S;;*and K;, to be

and

S11 S12 S13

S21* S22* S28

S31* S82* S38*

K11 K12 K13

Sz* cos'8+ Srrz* sin'8 0 (Sz*—Szzz*) sin8 cos8

S.
(Sz*—Sizz*) sin8 cos8 0 Sz* sin'8+Sizz* cos'8

'

Kz cos'8+Kiri sin'8 0 (Kr —«zzz) sin8 cos8

(124)

K21 K22 K23

K 31 K32 K33,

KZ

(Kz
—Krrz) sin8 cos8 0 Kz sin'8+Kzrz cos'8

The erst set of boundary conditions represent the
isothermal case, without electrical current, in which
the lateral faces of the rod in Fig. 12 are supplied with
or relieved of heat in such a way as to maintain these
lateral faces at the same temperature at each level ss,
though of course the temperature varies as one proceeds
up the rod. In other words, the temperature-gradient
components BT/Bxz and BT/Bxs are forced to vanish
while the component up the length of the rod, BT/Bxs,
is 6nite and in principle easily measurable. The iso-
thermal conditions are therefore

BT BT BT BT
Jl= Js ——Js ——— —— =0, = —. (126)

8$1 8$2 8$3 8$8

Using these conditions in Eqs. (119), (120), (121), to-

t9$1

BT BT

8$8 8$3
BT

= —(Sz*—Srzz*) sin8 cos8 —, (127)
$8

Bp BT
S28 —————0)

8$2 8$3
(128)

BT BT= —Sss* = —(Sz* sin'8+ Sizz* cos'8)
8$3 l9$3

BT
=——S,1r* . (129)

8$3

gether with (124) and (114), we obtain the relations



TH ERMOD YNAM I CS OF TH ERMOELECTRI CI TY

From (129) we deduce the important relation return afterwards to the Peltier and Thomson eBects
resulting from a nonvanishing J8.

S«' (8) =Si s'n 8+Sr» cos 8~ (1 ) Therefore, after putting Js——'0 in (140), (135), and

and after multiplying both sides by (1/e)T and using
(136) we solve (135) and (136) for the two components
BT Bx1 and BT Bx2 in terms of 8T Bx8. The solutions

105j we fLn
are

II,"g'"" "(8)= IIi sin'8+ IIiii cos'8

It is customary to set

Sz*=Sg*, Szzz*=Si t*, IIz= II~,

IIzzz= II&1 Kz= KJ., Kzzz= Kll

so that (131) is written

(131)

(132)

(K12K22—K22K12$ BT BT
1

BX1 ( K11K22 K21 ) B$2 BX2

BT fK21K12—K11K22) BT BT

BX2 L K22K11 K12 ) BX2 BX2

Substituting (141) into (140) with J2=0 we find

(141)

II,"p" '" '
(8) = 112. sin'8+ IIii cos'8. (133)

Inserting conditions (134) into (116) through (121) we

obtain

Relation (133) was first derived by Kelvin'4 on the basis
of intuitive reasoning, and is usually called the 1st
Kelvin symmetry relation.

Turning next to the adiabatic case, we set up the con-
ditions under which there is no lateral transfer of energy
allowed across the side faces of the crystal rod; this is

the case which most nearly approaches the usual experi-
mental conditions. We allow electrical current Js to
Row in the x8 direction in order to include complications

arising from Peltier and Thomson efI'ects. The adiabatic
conditions then are

Wi ——W2 ——Ji——J2——0, Ws= Ws, Js= Js. (134)

BX8

BT= —(Sis*P1+S22*P2+S22*)
BX8

(142)

Bp = e S2.'b' sin'8+S„cos 8
Bx'q

Substituting the appropriate matrix components from
(124) and (125) into (141) and (142) it is seen after
some manipulation including the substitutions (132)
and

—(1/e)S~*=—S&s™, —(1/e)Si&*=—Siisbs, (143)

that (142) takes the form

1 8T BT BT
& ~ 18 & 8 Kll K12- K18
~v 4T

BX1 8$2 8X8

1 BT BT BT
0= ——TS28 J8—K21——K22—— —K28-~c' Q T

BX1 BX2 8X8

(135)

(136)

Kg
sin'8+ —cos'8

Kfr

(S sbs S sbs)
iIK„) BT

sin'8 cos'8 . (144)
i)$8

We shall call (144) the 1st Kelvin-Kohler symmetry

Ws ————TS»*J2——pJ2 —K21
——K» —K»——, (137) relation, and one sees that multiplication of the brack-

etted term by T gives the relation

gp BT BT
= ep18J8 S11 S21 S81

gg1 gg1 BX2 BX8

()T BT BT
= ep28~8 —S12*--- —S22*-

8$1 8X2 BX8
(139)

B)IL BT BT BT
— ——= ep88J8 —S18*-- —S28* —S88*- — .

8$8 BX1 BX2 I9X8
(140)

First we wish to find the way in which S,«~ depends

on angle 0, thus giving the angular dependence of
thermoelectric power; for this we set J8=0, and we shall

ss W. Thomson, Trans. Roy. Soc. Edinburgh 21, 153 (1857).

II s" ""(8)= 112. sin'8+II„cos'8

K~
sin'8+ —c os'8

K))

sin'8 cos'8 (145)

Comparison of (145) with (133) shows that deviations
from the original Kelvin relation (133), in the case of
adiabatically performed experiments, are to be expected
if the thermal conductivity is highly anisotropic, so
that K~ divers appreciably from K„. This situation was
clearly pointed out and (145) was derived first by
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Wz ———(1/e) Tszs*J2, W2 ———(1/e)TS22*J2. (149)

Kohler "although Stabler" and Reddemann'~ had pre- we Qnd
viously realized that thermal conductivity played a role
in the observed deviations from (133).

S;„,'„,„„„(0)= (S~'"'—S„'b') sin0 cos0, (146)

which is the 2nd Kelvin symmetry relation; using (105)
gives another form, namely,

II;„'„„„„(8)= (112.—II«) sin0 cos0.

A deeper insight into the physical meaning of (147)
can be obtained from an alternate derivation of this
relation. Suppose that the bar or rod in Fig. 12 is
maintained isothermal throughout by the appropriate
addition and removal (on opposite faces) of heat, and
that an electrical current of uniform density J3 is caused
to Row through the rod, along the x3 axis. The conditions
to be maintained are therefore

S. Transverse Effects in Rods Cut from Crystals for
Which S;,* Becomes Sz*, SII*=Sz*& 8III* in

Principal-Axes System. The 2 "~ Kelvin
and Kohler Symmetry Relation

From (127) it follows immediately upon multiplica-
tion by —(1/e) T that under isothermal conditions

Now 8 ~ and 5'2 represent in this case the heat which
must traverse the rod laterally, along the x1 and x2
directions, in order to maintain the zero temperature
gradients, or isothermal conditions. These amounts of
heat must be supplied and extracted on opposite faces
of the rod. But from (124) it is seen that S»* vanishes,
and substitution of the appropriate component 513*
from (124) into 8"z in (149), followed by use of (105)
and (132), gives again the relation (147).

If we set down the following adiabatic conditions,
without electrical currents,

J1 J2 JS ~1 ~ 2 O) ~3 ~ay (150)

ap ( aT aT aT)—= —
)
s„* +s„* +s„*

axz E axz ax2 axs)

8T
(Slz Pl+ S21 P2+Ssl )

Bx3

it can be shown that the resulting axial heat Row gives
rise to a transverse electrochemical gradient ap/axz of
amount

BT BT BT
=J1=J2=0, J3=J3.

BX1 8$2 BX3
(148)

(Sz*cos'0+ Szzz* szn20)

KZ

~ KZZZ

(151)

Inserting these into the expressions (116) and (117)
KI

sin'8+ cos'8
KIII

N~
Xg-AXLES

Ji

~- ge~L
LR'.

2z~

Y

'i 8 'Ri

AXLES

4X tS

.AXLES

BT
+ (Sz*—Szzz*) sin0 cos8 —,

8$3

and a transverse gradient ap/ax2=0. The latter result
is to be expected from symmetry considerations. As
before, it is seen that the adiabatic value (151) reduces
to the isothermal value (127) when Kz=Kzzz.

The Thomson heat (per unit volume) for a specified
current and temperature distribution can be found by
using relations (109) and (106) together with (124), etc.

Wp

FIG. 14. The Peltier heat at junction AB between two rods cut
from the same single-crystal slab depends on the orientation
angles 8 and 0' of the two rods. This Peltier heat, together with
the Joule heat generated at the junction, is given by Eq. (152).

22 M. Kohler, Ann. Physik 40, 196 (1941).
22 H. P. Stabler, Phys. Rev. 46, 938 (1934)."H. Reddenzann, Ann. Physik 29, 286 (1937).

6. Bridgman Effect

Consider first a composite, rectangular cross section
rod as shown in Fig. 14. The rod consists of two differ-
ently oriented rods R and R' whose long axes are
oriented at angles 0 and 0', respectively, with the

~~
axis

of a crystal with principal-axes components with Sz*,.
SII*=SI,SIII*, and as before we set SI*=SII*=S~*,
SIII*=5«*. For isothermal boundary conditions, with
A=A=0, &2—=&o, and aT/axz= aT/axs= aT/ax3=0
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we can show from (116), (117), (118), and (124) that

W, '—W, = TJp'r S~*(sin'8' —sin'8)
tIrl 3

l

IJ =Jp3

+S»*(cos'8' —cos'8) j—(1/A) z~R„

= —(1/e) TJp(Si* S—«~) sin(8'+8)

&(sin (8'—8)—(1/A) z~R„.

(152)

where 8'3 is the total energy current density in rod E
and TV3' is that in R', Jo= —eJO', i = JOA, and A is the
cross section area of the junction AB. The last term, in
R, (the "sheath" or "contact" resistance), comes from
relation (X-17). Equation (152) gives the Peltier heat
per unit area of the junction AB which must be supplied
in order to maintain the junction temperature fixed
after the electrical current is turned on. The heat
generated at the junction by the Peltier eGect is then the
negative of (152). Consider next a "boomerang-
shaped" specimen AB like that in Fig. 15, cut from a
single crystal whose

rr
axis is indicated by the vertical

hatched lines. The lower portion is cut to make an
angle 8 with the

rr
axis of the crystal, while the upper

portion is cut to make the angle 8' with the
rr

axis. The
specimen is all one piece, so that there is no soldering
or welding at the "junction" bc. We want to impose
the following conditions on the specimens:

BT BT BT BT BT l9T

~~1 ~+» ~~2 ~~2 ~~3 ~+3

=Ji=Ji'= Js= Js'=0, Js= Js'=—Jp. (153)

From (117) and (124) we find Wp= Ws'=0. The heat
entering and leaving the sides of the lower and upper
portions of the specimen, W» and 5'»', respectively, are
also found from (116) and (124):

Wi ———(1/e) T(S&*—S„*)(sin8 cos8)Jp, (154)

Wi'= —(1/e) T(S~*—S»*)(sin8' cos8') Jp. (155)

The expressions give the heat entering (and leaving)
per unit area through the lateral faces only at regions
well away from the elbow of the specimen. In the
immediate neighborhood of the elbow the situation is
more complicated, as can be seen from the fact that
the surface segments ab and u'b have no counterpart on
the opposite side of the elbow. In particular, the elec-
trical current density distribution in the elbow region
will be quite complicated, so that if we are to give a
simple analysis of the effects in this region we shall be
forced to idealize the situation in the following way. The
electrical current density is assu n.ed to be uniform in
magnitude and direction throughout the lower region
up to the line (plane) bc, at which plane it suddenly
changes direction through the angle 0'—0 to fIow uni-
formly through the upper region of the specimen. In
this case there is an "unbalanced" inQux of heat of
area density 8'» through the plane ub and another "un-

x'=x
2 2

xI

'tIrt) I

Xp

balanced" influx of density W»' through plane u'b.

For a rectangular cross section of width b and of depth
D perpendicular to the plane of the paper (Fig. 15),
the areas ab and cz'b are A=A'=Db tans(8' —8). Ac-
cording to (154) and (155) there will be in our idealized
case a total in6ux of heat per unit time through ab and
a'b of amount

WiA+ Wi'A '= —(1/e) T (S~*—S«*)(sin8 cos8

+sin8' cos8') J'p Db tan —', (8'—8). (156)

Furthermore, according to (152) there is a difference
between 83' and 8 3 resulting from the fact that the
electrical current density Jo Rows along different
crystallographic directions in the upper and in the
lower portions of the specimen AB in Fig. 15. However,
the Joulean contribution is now not that resulting from
a contact resistance R, as in the case of Fig. 14, so that
instead of the term in i'R, in (152) we must apply
Eq. (107). The resistivity matrix is symmetrical and
its components are exactly similar to those for ~;; in

Eq. (125) (or S,,* in (124)). For our idealized current
distribution in Fig. 15 the total time rate of Joule heat
generation in volume abc is thus simply the volume
density (107) multiplied by the volume stb'D tan
~t(8' —8), with a similar expression for the Joule heat in
volume a'bc. The boundary conditions (153) give rise to
only the single term —p»J3 in each region abc and
a'bc. Using resistivity components similar to (124) and
(125), together with notation corresponding to (132)
we have

—p,,J,J;=—pssJss= —Jps(p& sin'8+p„cos'8), (157)

Vf& J3= "p

Fro. 15. The 'internal Peltier heat" or "Sridgman heat" at
the elbow of the single-crystal specimen AB is given by Eq. (160).
This heating effect results from an uncompensated transverse Qow
of energy, as explained in the text.
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+S„*(cos~0'—cos'8) $—(1/e) TDbJo

)& (S~*—S«*)(sin0 cos0+ sin0' cos0')

)& tan-', (0'—0) —~ b'D Jo' $p~ (sin'0+ sin'8')

+p» (cos'8+ cos'8') $ tan-', (8'—8) ..

(159)

Using the definition (105) in (159) and dividing by
(Db) Jo, we 6nd that the first two terms (without the
Joule contribution) can be written

I(8, 8') —= II~ (sin'8' —sin'8)+ II«(cos'8' —cos'8)

+ (II« —II~) (sin0 cos0+ sin0' cos0') tani~ (0'—0). (160)

Bridgman" calls the quantity I(0, 0') the "internal
Peltier heat" and Eq. (160) is identical with his equa-
tion (VI-10). The existence of this internal Peltier
eRect was first pointed out by Bridgman. If specimen
AB of Fig. 15 were cut along the planes ac and a'c and
the two segments joined together again as in Fig. 14,
the relation (160) is not valid unless we ignore the
third term (containing tan —', (0'—0)); this is so even

apart from the question of the Joule heat at the junction.
Comparison of the results for Fig. i4 with those for
Fig. 15 shows that they diRer only by the last term in

(160). One might say that an electron knows that in

Fig. 15 it has not only changed its direction of motion
relative to the crystal's axes, but that it has actually
changed its direction of motion in

spaces'

Finally, we discuss the general Bridgman terms (110)
as applied to the crystal systems for which the matrix
5,;*can be reduced to principal values 5~*=5zz*=5~*
and Sz~~~=5«~. We have

8Jy BJg ~Jq—Qa = 11ii +IIi2 +11»—
g$y 8$] 8$]

BJg (3J2 8J.=,

+Ki +1122 +11u——
t9$g 8$o

()Jy BJg (9J;&

+113i +K2—+11s~——
()$q 8$g BX I

(161)

As an example of the use of (161) we apply it to the

for volume abc and a corresponding expression for
volume u'bc. The total heat added per unit time to the
volume aca' is therefore the sum of (156) and the
negative of Db times Eq. (152), with the expression

—(p33J32+p33'J3'2) -,'b'D tan-', (0'—0)

= —-', b'DJ, '[p, (sin'8+ sin'0')

+p«(cos'0+cos'0')] tan-,' (0'—0), (158)

substituted for —(1/2A) (i'E,) in (152). The total heat
added per unit time to a|,"a' is thus

Q =+ (1/e) TDbJot Si,*(sin'8' —sin'0)

FIG. f6. The electrical current distribution in the ribbon, already
asymmetric because of the anisotropy of resistivity, is made
more complex as a result of the asymmetrical temperature distri-
bution; this latter asymmetry is a consequence of the Bridgman
heat term, Eq. (162).

situation in Fig. 16. The 6gure shows a long ribbon-
shaped crystal cut with its long axis at an angle 0 with
the ll axis, and with a centrally located circular hole.
The reference axes $~, $2, $3 are oriented as shown in
the 6gure. We have the conditions

BJ2 BJg 8Jg BJg BJgJ =—= =0
8$] 8$2 8$9 t9$2 8$3

Inserting these conditions into (161) we find

BJi |'BJ3 BJiq BJ,
+Iliil + I+ 11» (162)

Bx, &Bx, . Bx, i

where, for the crystals which concern us here, II»= II».
It would not be an easy problem to calculate the distri-
bution of the electrical current density in this crystal-
line ribbon with a hole, but we can see nevertheless
that the heating Qz (per unit volume) is notsymme. tri-
cal. This can be seen by a consideration of the signs of
the various derivatives BJi/Bxi, BJ3/Bxi, BJi/Bx3,
BJ3/Bxa at two geometrically opposite points P and P'.
Thus the Bridgman heat Qe leads to a nonsymmetric
temperature distribution if current is passed through
the ribbon.

If the crystal is cubic so that S«~=S~~, II~=H„, it
follows from (124) that Si3*and IIi3 vanish, and II«= II~
= G~3= III~. Because of the divergenceless nature of the
electrical current density, BJi/Bxi+BJ,/Bx, =o and
the Bridgman heat Qii in (162) vanishes. In the same
way, if II„=II~, the "internal Peltier heat" (160)
vanishes. Cubic crystals are thermoelectrically isotropic.

A curious and interesting consequence of the Bridg-
man eGect is illustrated in Fig. 17. Suppose that a long,
thin, noncubic single .crystal is either carefully bent or
else grown in the shape of an arc as shown in the figure.
If an electrical current is passed through the bent
crystal rod the current density will not be quite uniform.
But let us assume that the density is nearly uniform
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and of value J3=Jo. The angle between current and
crystal axis is the same throughout the length of the
crystal. As shown by the short arrows, there will be in
the isothermal state a heat Qow density 8"& into one
side and, if the rod were straight, ari equal Row density
out the opposite side. But if the rod is bent, the outer
surface AA' is larger than the inner surface 88' and
the temperature distribution must now change. Thus,
although the electron "sees" the same axis orientation
as it proceeds around the bend, the particle seems to
"know" that it is changing its direction relative to some
fixed external reference system.

S '—= —(1/e)S,;*,

it follows immediately that

(163)

and
S.,abs

) (164)

(165)

'7. Kelvin Thermoelectric Relations in
Anisotropic Media

In our formulation of the theory, the Kelvin thermo-
electric relations seem almost trivial. From the defini-
tions (105) and (106), together with the definition

substances (Peltier effect). He postulates a tensor rela-
tion for these reversible effects, this relation containing
a priori the three terms corresponding to the Thomson,
Bridgman, and Peltier heats and containing certain as
yet undefined tensor components. By applying the
resulting equations to particular cases of crystalline
rods Meissner deduces relationships between these
tensor components. The theory is then applied to
derive the Kelvin symmetry relations.

Kohler" "develops a general quantum-kinetic theory
for metals of arbitrary crystal form, first setting up
transport integrals suitable for anisotropic electron
scattering. The electrical and heat current densities
are then expressed in terms of these transport integrals.
By next setting up "Row" equations analogous to our
Eqs. (4) and (5), with now an electrical potential
gradient and a temperature gradient as generalized
forces, Kohler introduces tensor components y,; (anal-
ogous to our S;;")which are expressed in terms of the
transport integrals. In this way he has shown that only
for simplifying assumptions about the electron scatter-
ing does the tensor p;; become symmetric.

Kohler finds the Ehrenfest-Rutgers relations for the
reversible heat generation and an expression for what
he calls the "thermoelectric field intensity" F ", given
by Eq. (21) of his 1936 paper:

for a homogeneous crystalline or anisotropic medium
the x, subscript is superfluous.

BT BR BT BR
P,th

g=l gg& ggs gg&- Qg;
(166)

8. Comparison with Treatments of Kelvin,
Bridgman, Ehrenfest and Rutgers, Kohler,

Meixner, and Meissner

1Vleissner" in his treatment of thermoelectric anisot-
ropy considers only the reversible eGects of thermo-
electricity, and begins by assuming that heat is
generated (reversibly) by an electrical current, first as
a result of a temperature gradient (Thomson effect),
second by a change of direction of the current (Bridg-
man effect), and third at the boundary between two

/ y i
Ig I& gg&( g gI / A

A Q

FIG. 17. The Sridgman effect gives rise to a distortion in the
original temperature distribution in the curved single-crystal when
an electrical current is passed through the crystal. This alteration
in the temperature distribution is superposed in a complicated way
upon that caused by Joule heating.

in our repeated-index notation. Let us rewrite our Eq.
(86) in terms of current density J, and of chemical and
electrical potential; also, let us write —(1/e)S;,"—=S; b'

and group the terms as follows:

(167)

Comparison of (167) with (166) allows us to connect
our results with those of Kohler. First, it is seen
that Kohler's "thermoelectric field intensity" J " cor-
responds to our "homogeneous thermoelectric potential
gradient" as defined in Example 3 of Appendix B.
Kohler's Ii " is thus the gradient of the electrical
potential resulting from a temperature gradient after
the p;,J, terms have been subtracted. His quantity R
is simply —(1/e) times the chemical potential. Sec-
ondly, his S;; corresponds to our S,,'b', the absolute
thermopower tensor. In Kohler's Row equations this
tensor appears with indices reversed, S,;, in agreement
with the situation we discussed in the derivation of our
Eq. (86). The fact that our indices and those of
Kohler are the reverse of each other throughout is of
course trivial. When the time arrives that numerical
data are tabulated for very low-symmetry crystals, it
will be necessary to decide whether a given matrix
component should be called S~3* or S3~~, for example.
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In his 1941 paper Kohler gives an excellent discussion
of the assumptions upon which the Kelvin symmetry
relations are derived and shows how diGerent experi-
mental boundary conditions lead to Inore complicated
expressions. Ke have already derived these expressions
and discussed their signi6cance.

Meixner" gives both a thermodynamic and a kinetic
treatment of thermoelectric eGects and discusses ther-
moelectric phenomena in a magnetic Geld. His treat-
ment quite closely parallels the present treatment in
the forms of the equations, except of course that his
theory is not based on the Onsager-Callen-de Groot
method. One of Meixner's energy Bow equations, for
example, can be shown to be identical with our Eq.
(74) for W, , except for the discrepancy that his con-
tains a term 1 J;inst'ead of our pJ;. The quantity f
Meixner calls the "thermodynamic potential per elec-
tron, "which is equivalent to our p, or chemical potential
per particle;~' Furthermore, he obtains an equation for
the Geld intensity —r)@/Bx, which is exactly identical
with our (86) when p is separated into chemical and
electrical parts and J, is used instead of J,'.

Ehrenfest and Rutgers" begin by postulating the
general anisotropic form (92) for the reversible thermo-
electric effects, and their formulation was the first to
include the Bridgman eGect. Irreversible eGects were
excluded in their analysis.

Kelvin" derived his symmetry relations on the basis
of intuitive arguments involving the additivity of
Peltier heats resulting from the separate components
of the electric current density vector, and he later
generalized his arguments using heat-Qow and "emf"
equations in terms of certain matrix components. How-
ever, his treatment was not sufficiently general to
include the Bridgman eGect. Bridgman, " also on the
basis of certain intuitive arguments well described in
his book, '0 concluded that an electrical current passing
through a,corner of a noncubic crystal should absorb
or give out heat in the form of an "internal Peltier heat. "'

We have already discussed this eGect, and reference is
made to Bridgman's book. The quantity R used by
Bridgman and by Ehrenfest and Rutgers corresponds
to our chemical potential p.

H. EFFECTS OF CHEMICAL AND PHYSICAL
INHOMOGENEITIES IN AN

ISOTROPIC MEDIUM

We have seen in Sec. C that the thermoelectric
potential diGerence for a thermocouple consisting of
two homogeneous, isotropic phases depends only on the
temperatures of the two junctions. In particular, if
these two temperatures are the same, there will be a
zero thermoelectric potential diGerence. This empirical
rule is known as Magnus' law. "This is no longer true,
and the law of Magnus is no longer valid, if either or
both of the wires composing the thermocouple are not

» J. Meixner, Ann. Physik 35, 701 (1939);40, 165 (1941)
~ Meixner's electron charge e is negative.

X=0 t
—S=S (X,T)

yr
Tg

)R
TR

Fra. 18. The electrical potential diR'erence @"—@& depends on
the temperature gradients in wire X when this latter wire is
chemically inhomogeneous.

chemically and physically homogeneous. We shalI not
discuss the ways in which cold work, impurities, stress
and other irregularities aGect the thermopower of a
material. "We wish only to give a short formula to show
that the electrical potential diGerence of a thermo-
couple measured by a potentiometer depends upon the
temperature distribution along the wires in case the
wires are not homogeneous. I et us suppose that the
reference material R indicated in Fig. 18 is homogenous
while the wire X is not. From Eq. (27) we see that the
contribution to Q"—@n from the wires E vanishes when
the upper ends of both are at T whi1e the lower ends
are at Tg as indicated in the figure. On the other hand,
for the contribution from X we have, using (27) and
(X-10),

e(y" y")=) (—dp/dx)dh

S*(x,T) (dT/dx) dx, (168)

since in the inhomogeneous wire X the quantity S*
depends on both the position in the wire and the
temperature at this point. If X were homogeneous we
should have Se=S*(T) only and the integral (168)
would vanish, in accordance with the law of Magnus.
But for an inhomogeneous wire it is clear that (168)
does not in general vanish even when the ends are at
the same temperature. In fact, a simple test of homo-
geneity in a wire consists of measuring the potential
diGerence across a thermocouple made with the wire,
when the ends are fixed in ice water, say, and the
central portion of the wire is held against a block of
solid CO2 or passed through a pool of liquid nitrogen.

~ A. W. Sa.ens, Phys. Rev. 91, 1142 (1953).

I. ON THE THERMOELECTRIC EFFECTS
OF BENEDICKS

It was seen in Sec. H that thermocouples made of
chemically and physicaHy homogeneous phases obey
the law of Magnus, at least according to the theory of
irreversible processes as discussed here, We have also
seen that the thermopower of a metal depends upon
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crystallographic orientation when the metal is aniso-
tropic either crystallographically or because of strains,
etc. From Sec. H, then, it is clear that a wire which
consists of fairly large crystallites might actually not
obey Magnus' law. There have been numerous attempts
to show that Magnus' law does not hold even if the
wires are perfectly homogeneous both chemically and
physically, and the most serious of these attempts were
those of Benedicks and his co-workers. " Many other
workers have attempted to repeat the 6ndings of
Benedicks but almost all have shown that upon careful
annealing and homogenization of their samples, the
law of Magnus remained valid and the Benedicks
efII'ects were eliminated. "

In order to include the reported Benedicks eGects
in our theory it would not be sufEcient simply to allow
the parameters S;;* to depend on the temperature
gradient as well as on the temperature itself. In fact,
the theory would need to be extended to a higher
approximation, since the thermodynamics of Onsager
et u/. is based on the assumption that a temperature,
entropy density, etc., can be assigned to each point in a
continuous medium. This assumption appears to be
valid if the energy distribution function of the particles
involved in a problem is not too greatly disturbed by
temperature gradients and electrical current Qows, for
example. At least in the case of metals it is found that
Ohm's law and Fourier's law are very accurately valid
for all practically accessible current densities and tem-
perature gradients. One might say that it does not seem
to be possible experimentally to create enormous
"turbulence" in the electron gas in a metal; the most
violent electrical or thermal treatment applied to a
metal in the laboratory creates only an extremely mild
perturbation on the motion of the electrons inside the
metal. It would seem to be quite safe to say, therefore,
that, although a significant disturbance of the metallic-
electron distribution function would cause deviations
from the theory which we have outlined here and al-
though such deviations might very well introduce electri-
cal eGects dependent on temperature gradients as well as
on temperature as required for the Benedicks effects,
it appears extremely unlikely that such a situation
arises under ordinary circumstances with ordinary
metals. In any case the eGects reported by Benedicks
and his co-workers seem to be very small and not
particularly reproducible, so that until more a%rmative
evidence is produced we shall not deal with these re-
ported eQ'ects any further.

The writer wishes to thank Dr. Conyers Herring for
reading a large portion of this Review and for his
friendly and constructive criticism. He is also greatly
indebted to Mr. Erik Klokholm and to Dr. D. P.
Detwiler for numerous helpful discussions. To Dr.

"C. Benedicks, Ann. Physik 55, 1 (1918); 55, 103 (1918);
C. Benedicks and G. Siljeholm, Arkiv Mat. , Astron. Fys. 23A,¹.27; 24A, Nr. 1 and¹.7 (1933).

ss
¹ Fuschillo, Proc. Phys. Soc. (London) B65, 896 (1952).

Pcu+++2P e= luou'. - (X-2)

Here p(:„++ is the electrochemical potential of the ion
Cu++ in the solid copper phase at a particular tempera-
ture and pressure, and similarly p, is the electro-
chemical potential of an electron in the copper. How-
ever, for an uncharged component, the electrochemical
potential is identical with the chemical potential, and
so pc„o=pc o. The values of the chemical potential p~„o
are easy enough to obtain in principle from straight-
forward electrical-calorimetric measurements and the
relation G= B—TS. If B is the enthalpy of the kilogram
of copper and S its entropy at temperature T, then
dH= TdS+VdP and if the calorimetric measurements
are done at constant pressure, dH= TdS=dQ= (elec-
trical power input) g(time). From this we get the de-
pendence of H on T (except for an arbitrary constant),
and also C&——(r)H/r)T)I. The entropy S is

(CI/T)dT= (aH/aT)(dT/T),
To

where To is the temperature at the arbitrary "standard
state" at which II=0 by definition. Finally, substituting
the numerical values into G= H TS and G/X= po„o, we-
get the desired numerical values of the chemical poten-
tial p~„o of a neutral copper atom in the solid copper
phase as well as the dependence on the temperature.

F. C. Nix the writer extends his sincere thanks for his
continued interest and encouragement. It is also a
pleasure to acknowledge the financial support furnished
by the Squier Signal Laboratories, Fort Monmouth,
New Jersey, and in particular to mention the valuable
encouragement given by Mr. George Hunrath of the
Squier Laboratories.

APPENDIX A. ELEMENTARY EXAMPLES OF
SEPARATION OF ELECTROCHEMICAL

POTENTIAL

Examp/e a.—Consider a single homogeneous phase
of a certain atomic species, and for definiteness let it be,
say, one kilogram of pure copper. The total Gibbs
energy G is of course an extensive parameter, so that
in the case of a single phase the Gibbs energy per atom
is identical with the partial derivative (c)G/r}1V), where
S is the total number of neutral copper atoms in the
kilogram of copper. This quantity (c)G/c}X)z&=G, /X
=go„o in this case (since the neutral atom has zero
charge) is just the chemical potential of a neutral copper
atom in the pure copper phase (at the particular P and
T in question). It can be shown from thermostatics
that if we imagine the copper ions Cu++ to "react"
with the conduction or "free electrons" of charge —e
(e positive) in the lattice, according to the "reaction"

Cu+++ 2e Cu', (X-1)

then the electrochemical potentials p~„++, p, and p~„o,
must at equilibrium satisfy the relation
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pc+++= iscu+++ 2e4

2p, =2is,—2ep,

(X-3)

(X-4)

and by substitution of (X-3) and (X-4) in (X-2) we get

pcuo=lscu "+2er1i+ 2p, ,—2ep

= iscu+++ 2ls—8= pc~'& (X-&)

the electrical terms cancelling out as they should, since
Cu' is uncharged and p~„o must be identical with p~„o.
We have been able to measure p~„o or its equivalent
pc, o and we have calculated p, but we have not been
able to deduce from these quantities alone the value of
p~„++ nor of p, „so that we are unable to assign numbers
to the formal separation of p~„o into the parts pg ++

and 2fs, . Similarly, in Eqs. (X-3) and (X-4) we know
only p and have not been able therefrom to deduce
values of p~„++, p „p~ ++, or p, . It is possible in prin-
ciple to calculate p „for example, and using Eq. (X-4),
then (X-2), we can compute pc„++ and from (X-3) we
finally get pc„++, so that all parameters in (X-2), (X-3),
and (X-4) will have been determined. The calculation
of p, , must be based on a specific model, such as the
"free-electron gas'"4 for instance; hence if the model
is a poor one the value deduced for p~„++ will be wrong.

8' This illustration is given by E. A. Guggenheim, on p. 33j. of
reference 3.

34 The quantity p, for an ideal free-electron gas in a metal is
given, e.g. , by Eq. (5.6), page 8I of Slater's Ietroductioe )0 Chem-
ica/ Physics (McGraw-Hill Book Company, Inc. , New York,
19391. It is generally called the Fermi energy parameter in the
Fermi-Dirac distribution function.

Exastsp/e b.—Now let us suppose that the kilogram
of copper is in the form of a sphere and is always kept
at constant temperature and pressure in vacuum. "
We place a charge of approximately 10 microcoulombs
on the sphere (of radius approximately 0.03 meter for
1 kg of copper). Ten microcoulombs of electrons repre-
sent about 10 ' mole (Faraday) of electrons and this
charge would therefore change the weight of the sphere
by roughly 5&(10 "g or 5)&10 "percent of the sphere's
original weight. This minute change can hardly be
expected to affect the chemical properties of the copper.
Yet if we calculate the change in the electrostatic poten-
tial P of the sphere when the 10 microcoulombs are
added, we find a change of about 3 million volts.
Certainly it seems safe in this case to state that the
chemical potential of an electron on the sphere has been
completely unaGected by the addition of the charge
whereas the electrical potential has been very greatly
changed. The change in the electrochemical potential
p, " of an electron on the copper sphere is thus simply
the change —eP, where —e is the electronic charge in
coulombs and p is the change in electrical potential
inside the metal, in volts, while the chemical potential
p, has remained unchanged.

Let us compare the results of the two examples. We
write Eq. (X-2) in terms of chemical potentials and
electrical potentials:

APPENDIX B. APPLICATIONS OF THE THEORY
TO SPECIAL SYSTEMS

Example l. Isothermal Electrical Conduction in a
Single Homogeneous Phase

Writing J= —eJ, for the electrical current density
and using (3) we have

J=eL„Vp= eL,.(Vis eV&)—= e'L„—VQ, (X-6)

since the chemical potential is uniform throughout the
homogeneous phase when the phase is isothermal. The
electrical field intensity E inside the phase is minus the
gradient of the electrical potential, so that we can write

J=e2L„E—=o E,

which is Ohm's law with 0- representing the temperature-
dependent isothermal electrical conductivity. This gives
us an easy way to measure the coefficient L„, namely,

L„=o/e'-— (X-7)

In Fig. 1, if R~it is the total electrical resistance (at
uniform temperature) of the cylinder (wire) between
cross sections A and 8 and i is the total uniform elec-
trical current in the wire, then Eq. (X-6) can be written

yx(T) (Ii) yx(ri (g) gyx(T)

where P & &(8)—P & &(A) is the diGerence in electrical
potential between sections A and B. This relation,
Ohm's law, will be used in Appendix C in discussing
the principle of the Poggendorf potentiometric method
for measuring electrical potential differences between
two separate wires of the same phase (not necessarily
identical with phase X) and at the same temperature.

Example 2. Heat Conductivity without
Electrical Current

From (8) we see that (J,)I,=o= T(J,)I,=o when J,=O,
so that with (21) we find for the heat Row (J,)I,=o

where ~ is the thermal conductivity for zero electrical
current. Therefore

tr= (T/L„) (L„L„L,2), —(X-8)

giving the ordinary thermal conductivity in terms of
the "L" phenomenological coe%cients. From (22) we
find directly

a—= (1/TM )(M Mqq M q2) (X-9)

the ordinary thermal conductivity expressed in terms
of the "M" coeKcients. From (X-8) and (X-9), with
(16) and (17) we can again find after some manipulation
the expression (18).
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Example 3. Electrical Potential Gradient in a
Homogeneous Phase with Temyerature

Gradient but no Electrical Current

In this example we consider the practicability of
determining the electrical potential gradient Vpx&r' in
a single homogeneous chemical phase X when there
exists a temperature gradient V'T but no current flow.
Setting J,=O in Eq. (3) and separating the electro-
chemical potential into chemical and electrical parts,
we have

y
x (7 +dr)

R &T+aT)

~~x&T) ~~yx&T) (X 1())

The change in electrical potential in a distance dx is
then

gyx&T) g~x&T)+ S SgT
e e

1 f
&)~x'&F)

+Sx* f&T.
e& aT

(X-12)

Thus in Fig. 19 the change Apx&r& in electrical potential
in going from the region at temperature T to the region
at T+B,T in the phase X is given in part by the thermo-
static quantity Bpx&r'/BT and in part by the transport
quantity Sx*.This electrical potential difference A@x(r)

has been called' a "homogeneous thermoelectric poten-
tial difI'erence, " referring to the fact that the potential
gradient exists within a homogeneous phase as a result
of a temperature gradient, whereas the usual ther-
moelectric potential difference (defined in Sec. C)
involves nonisothermal junctions of two diferent
phases. It is possible in principle to calculate this
internal or homogeneous electrical potential difference
if one can know both the thermostatic property
Bpx&r)/BT and the transport quantity S*.It is of course
no easy matter to calculate or otherwise determine these
two properties, although we showed in Sec. C that
5* is essentially the absolute thermoelectric power of

T+QT
xl T)

y
x(T)

x(T)+& x(~)

y
x(r)+ &~x(r)

F&G. 19. Cylindrical rod of a single homogeneous chemical phase
with temperature gradient but no electrical current; the tempera-
ture gradient gives rise to a gradient of the electrochemical poten-
tial, which in turn is separable into gradients of chemical and
electri'cal potentials.

The electrical potential gradient is then

VP ' '= (1/e)P'P &r'+ (1/e)Sx*gT (X-.11)

&r~
T

Fxo. 20. The "homogeneous thermoelectric potential di6'erence"
( +~» —p &» cannot easily be deduced from the potentio-

metrically measured electrical potential diBerence p"(»—p~(».

the phase, which is easily measurable. On the other
hand, if we attempt to determine Apx&r' by experi-
ment, we are again faced with difFiculties. Thus, suppose
that in Fig. 20 the phase X is the one shown partially
hatched, with the left end at T and the right end aI;
T+AT, AT being very small. We attempt to measure
AQx& '=—Px&r+~ ' —Px&r) by connecting two chemi-
cally identical phases (wires) r and R onto the ends of
X as shown. The upper right-hand region is at tem-
perature T+AT; all the rest of the system is at T. We
use two diGerent letters r and R though the two phases.
are chemically identical in order to allow for differences
in electrical potentials. We have indicated the electrical
potentials at various points in accordance with the
notation described in Sec. A. The electrical potential
p" &r& is uniform throughout phase r at temperature T.
But when we consider the situation at the upper Ieft-
hand junction between phases r and X at the same
temperature T we can only say that the electronic elec-
trochemical potentials p" (~' and px(~) are identical, but
of course this is in general not so for the electrical
potentials. Thus we already face the difhculty of not
being able to evaluate the difference
unless we have previously determined the difference
between the chemical potentials p, "& ' —p, & ' This
difhculty is comparable with that of knowing the
quantity Bpx&r)/BT in Eq. (X-12). In the phase R the
electrical potential P~ varies from P~&r+~r' at the top
to p~(r' at the bottom. This difference between the elec-
trical potential at the top and at the bottom in phase
R is given by an expression identical with (X-12) except
with R subscripts. The electrical potential at the T+hT
junction between phases X and R is discontinuous, just
as at the junction between r and X, so that as before
we cannot know the value of px&r+~r& p~&r+~r) with-—
out first knowing px&~+~~' —p~(~+~~'. We shall see
that it is easy to determine the electrical potential
difference p"&r) —p" &r) by experiment, since r and R
represent identical chemical phases and since the
lower ends of r and E. have the same temperature T.
The important point is that in view of the difficulties
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just mentioned we cannot easily use this measured
value of @"& & —P~& ' to determine the internal or
"homogeneous thermoelectric potential difference"
yx(T+4T) yx(T)

Example 4. Electrical Potential Gradient in a
Nonisothermal, Chemically Inhomogeneous

Phase Carrying an Electrical Current

We want to find an expression for the local electrical
potential gradient in terms of local electrical current
density, temperature, and chemical potential gradients.
Using again the symbol J for electrical current density,
with J= —eJ„upon substitution of (19) and (X-7)
into (3) we find the desired relation

VP= (1/e) Vp+ (1/e)S*VT (1/o.)J. —(X-13)

In deriving this equation we have separated the elec-
trochemical potential gradient into an electrical and a
chemical part, and we have taken the current carrier
to be an electron of charge —e. If more generally we
take the carrier to have a charge q, the equivalent
expression becomes

Vy= —(1/q) Vq —(1/q)S*V T—(1/~) J, (X-14)

with J= tIJ, . We emphasize that all of our equations are
restricted to systems which have throughout only a
single current carrier, be it electronic, hole or ionic
carrier; the equations are more complicated if there
are two or more types of carriers within a single phase.

Returning to Eq. (X-13) we see that an electrical
potential gradient can be set up by any or all of three
factors; namely, a chemical potential gradient, a tem-
perature gradient, or an electrical current. We have
treated the special case in which Vp, = V T= 0 in
Example 1 (Appendix 8), and the case J= 0 in Example
3. We shall refer to relations (X-13) and (X-14) as the
generalized Ohm's law. The current density J and the
temperature gradient VT are easily and independently
controllable, whereas Vp is not quite an independent
variable. One can set up a certain gradient of p, by
making a substance chemically inhomogeneous, but if
a temperature gradient is then established in the sub-
stance there will generally be an additional component
in the gradient of the chemical potential. In other words,
in addition to being sensitive to a composition gradient,
Vp is also sensitive to the local temperature gradient.

electric field intensity inside the substance, then we
can compare the present situation with that involving
a very high isothermal column of a gas in a gravitational
field G. In the latter problem we have a vertical pres-
sure gradient brought about by the gravitational field.
There is also in this case a vertical density gradient.
If it were not for the gravitational field, the condition
for mass-motion equilibrium of the gas would be VP= 0,
I' being the pressure. But with the gravitational field,
VI' cannot vanish and it is just this gradient which
"annuls" the eGect of the gravitational field. Similarly,
in the case of Eq. (X-15) the chemical potential gradient
"annuls" the eGect of the electric field. The condition
generally laid down for electrical equilibrium (i.e., for
J=0) in a conductor, namely V&=0 or E=0, is thus
valid only in a chemically homogeneous phase having
a uniform temperature throughout.

Example 6. Change in Electrochemical Potential
across a Resistive Isothermal Junction

Carrying an Electrical Current

Consider an isothermal junction between two difer-
ent homogeneous wires X and R as shown in Fig. 21.
If the total resistance of the X wire is R~ and that of
the R wire is R&, it is always found experimentally that
the total resistance of the composite wire AB is greater
than Rx+Rz, the additional resistance E, generally
being called the "contact resistance" of the junction
between the wires. In general, this contact resistance
arises from the fact that in the joining process there is
always formed a sheath of some sort whose composition
is diGerent from that of either X or R. In the case of
two metals X and R, for example, there will always be
formed an a11oy-layer or sheath, usually complicated
by the formation also of oxides if the joining is done in
air. For our purposes we can imagine this sheath to be
a fairly well-defined region as shown in Fig. 21.

If there is no electrical current Qowing through the
junction and the whole system A to 8 is at a uniform
temperature, then the electronic electrochemical poten-
tial is uniform throughout and is thus continuous as
we pass from phase X to phase R through the resistive
sheath. Suppose now that we pass a total current i

RKS(ST~YK SHEATH, Rs

Example S. Electrical Potential Gradient in an
Isothermal, Chemically Inhomogeneous

Substance without Electrical Current

If in (X-13) we set VT= J=0 we find that there is an
electrical potential gradient inside a chemically in-
homogeneous substance given by

Rx

iI lI PI
iL rL JL

RR

B

eVP= Vp, for J=VT= 0, (X-15)
S

P +Qp p.

provided the substance can carry electrical current by
electrons only. If we write E= —VP and call E the

FIG. 2i. The jump in electrochemical potential in crossing an
isothermal junction between two wires depends upon the "contact
resistance" and upon the electrical current through the junction.
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4o

$ p4 p
dp'= ——dx= ei

' —dx= eiR„(X-17)
"o 0 A 4o A

where i is the total current, p is the isothermal resistivity
at a given cross section, d is the thickness of the sheath
of cross section area A, and R, is the total resistance of
the sheath, or contact resistance as defined above.
Thus, in passing from phase X to phase R across the
junction, the electrochemical potential undergoes a
discontinuity eiR, . If the two isothermal and homo-

geneous phases X and R happen to be chemically
identical, then the discontinuity in the electrochemical
potential across the junction can be easily measured,
since in this case Dp between the two identical phases
(at the same temperature) is just the difference —

eked

in electrical potential (times —e) in these two phases at
points very near and on opposite sides of the junction.
If the phases X and R are each homogeneous but
different from each other, the jump in p can still be
measured, but in a slightly less direct way. This ques-
tion is discussed in Appendix D.

A serious fault in the argument used to derive Eq.
(X-17) is that the sheath or junction will often be so
thin that it may be meaningless to define the space
variation of electrochemical potential within the junc-
tion. If this is so, one must use indirect methods for
determining the jump in potential across the junction.
In some discussions' it is assumed that the electro-
chemical potential is continuous across a real junction
even when current Qows through the junction. Although
this assumption is in general not permissible, it may be
used for defining the Peltier heat and Peltier entropy
at a junction, because for this latter purpose one must

necessarily eliminate or in some way separate the
Joule heat in the same way as is necessary in defining

the Thomson heat. (This separation of the Joule heat
will be mentioned again in Sec. D.)

Example 7. Isothermal Volta Potential Difference
and the True Work Function

We consider next two bent rods, having the forms

(with disk-shaped ends) shown in Fig. 22, of different

but homogeneous isotropic chemical phases such as

through the wires and junction. Since the sheath is
certainly not chemically homogeneous we cannot
attribute an electrochemical potential gradient in it
wholly to a gradient in the electrical potential. But
from either (3) or (X-13) we can easily write

(X-16)

again considering the current carriers to be electrons.
If we idealize the sheath structure to be nonuniform

only axially and assume that its chemical properties
are uniform over any given cross section, then we have
from (X-16) for the total change hp' in electronic elec-
trochemical potential across the sheath,

&ggrrY///r rA'rr &&8/gA J A'rr'$
//

/+rJ'J r'rrrrrlrirrJ rrgJy
r~ p(i Xr

' 7&&&FF&/~hair'lPllr J're'i' ~ss
r~ P

P

Q

I

gl

FIG. 22. Schematic arrangement for de6ning the isothermal
Volta potential di6'erence and the true work function; in actual
measurement of Volts potential diFFerences the ends P" and Q"
are electrically connected.

pure copper and pure silver. In this example we shall
often refer to the phases as metals. We do this only for
convenience, and the analysis holds for other phases
than metallic. The rods are both at the same tempera-
ture and are located in an electric field-free evacuated
space and are each originally uncharged. We discuss
first the situation before the ends I'" and Q" are brought
into electrical contact. We assume first that the sur-
faces are uniform from point to point. In this case the
electrical (electrostatic) potential, g" is the same
throughout the vacuum space surrounding the two
metals, including the points P and Q which are, re-
spectively, just outside metal disk X and disk R. We
can refer all electrochemical potentials to the same
zero level as for this uniform electrical potential level

,@".We can let gx and gB be, respectively, the elec-
trochemical potentials of electrons in X and R, and
;@~ and, p, ~ be the chemical potentials in X and R.
Let,gx and;PB be the electrical potentials inside metals
X and R. Then we can write

.px .~x s .yx

pB—~B s yB.
(X-18)

(X-19)

The subscripts i refer to the initial states, i.e., before
the regions P" and Q" are brought into contact.

The true work function eS'x of a uniform metal
surface X is defined" as the diGerence between the
electrical potential energy —e,P" of an electron in the
vacuum just outside the surface X and the electro-
chemical potential;p of an electron just inside metal X.
In the present case, with the temperature uniform
throughout rod I and electrical potential, p' uniform
throughout the surrounding evacuated space, we do
not actually need the specifications "just inside" and
"just outside. "Thus, the true work function of surface
X is given by

(X-20)eW» = —e,&'—;px.

Similarly, the true work function eS"~ of surface R is

eWB = —e,&'—,pB. (X-21)
» See Herring and Nichols, reference S. These authors give a

thorou'gh discussion of the eGects of surface "patches, "etc.
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There is no harm in letting the potential, qP be the
reference level for the electrochemical potentials, and
this is equivalent to setting, qP equal to zero If. we do
this we find that e8'~= —;p~and e8"~= —,p~, where
now the electrochemical potentials are referred to the
uniform potential of the surrounding space as zero.
This gives us the physical meaning of the true work
function of a uniform surface X:it is the average energy
required to remove an electron from the bulk of the
metal through the uniform surface X to a position of
rest in the surrounding field-free space, with the pro-
vision that the temperature and pressure of the metal
be maintained constant. The true work function should
not be confused with the photoelectric work function. "
The photoelectric work function refers to the removal of
an electron possessing a particular energy in the metal,
whereas the true work function refers to the removal of
an electron possessing an energy equal to an average
value for the electrons in the conduction band, main-
taining fixed the temperature and pressure of the re-
mainder of the electrons. If the space adjacent to the
surface X is not field-free (which is the case when the
two metals X and R are brought into contact, as in
the Volta effect, see Appendix 8), then the true work
function refers to the average energy of removal of an
electron through surface X to a rest position immedi-
ately outside this surface.

Now suppose that the two metal rods X and R are
brought into electrical contact at the ends P" and Q".
If the two metals after contact are maintained at the
same temperature as before, the composite system con-
sisting now of both metals comes to equilibrium with
the electrochemical potential continuous across the
junction and uniform throughout both metals as well
as across the boundaries of the metals and into the
"vacuum" surrounding the system. The evacuated
space around the metals must be considered as having
a very small but finite concentration of electrons; this
"electron gas" is usually considered as being rare
enough to satisfy the Boltzmann statistics. But we must.
be careful to use the same reference level for all poten-
tials, and in this case we cannot use the level existing
in the immediate vicinity of the disks. In fact we shall
see that there is an electric field not only between the
disks but also throughout the region surrounding the
two-metal system. This field becomes negligible in
regions far removed from the system, so that we may
use the potential level in such a distant and field-free
region as a reference for our electrochemical and elec-
trical potentials. Therefore, let p~ and p~ be the elec-
trochemical potentials of electrons in metals X and R,
px and pa be the chemical potentials and Px and P~
be the electrical potentials inside the metals. Finally,
let p"x and &f

"~ be the electrical potentials at point P
just outside surface X and at point Q just outside
surface R, respectively. All these potentials are referred

"J.A. Chalmers, Phil. iVaag. 33, 416 (1942). See p. 428.

to the level at a 6eld-free region far from the system.
%e can then write

px —px ~yx

p B ~B ~yR

(X-22)

(X-23)

(X-24)

Q to P:
I' to Z':

I" to I'".

&yvx ( &yuR)

px ( ~yeux)

(X-25)

(X-26)

p pr 0) for uniform
temperature, (X-27)

pit t Q/I .

Q" to Q':

Q' to Q:

pR px 0

p~ —p~=0

&ye 8 pR

at equilibrium, (X-28)

for uniform
temperature, (X-29)

(X-30)

Since the system after a complete excursion QPP'. . .Q'Q
is in the same thermostatic state as it was before the
excursion, no chemical changes having taken place and
the temperature and pressure remaining fixed, the
total change in electrochemical potential of the electron
must be zero. The sum of all the changes, (X-25)
through (X-30) added together, is in fact seen to
vanish. The change in electrical potential between
points Q and P is expressible in the customary way
as a line integral of an electric vector between points
Q and P. We have not specified the distance between
the X and R disks, except that it would be difficult to
discuss electrical potentials in the evacuated space be-
tween the opposing disk-surfaces if the separation
between the latter were not large compared with inter-
atomic distances in the two metals. Otherwise the

These potentials are all in general diferent from the
corresponding ones in Eqs. (X-18) and (X-19), and
in fact would all, except for the chemical potentials, be
diGerent even if they referred to the same zero level.
The reason for this is that when we connect the two
metals electrically, electrons flow from one metal to the
other for a very short time until the electrochemical
potential is the same on both sides of the boundary at
the junction P"Q". This new charge distribution gives
rise to an electric field in the neighborhood of the
compound system, as we can see from the following
considerations. Imagine that we very slowly carry an
electron from point Q to point P, then into the metal
to point I", to point I'" still in metal X, across the
boundary to Q", then to Q' and 6nally to the original
point Q. The path from Q to P can be any path what-
ever so long as we remain in the vacuum, since the
electric field is a conservative one. All transfers in-
volved are done under conditions of constant tempera-
ture and pressure of the compound system. The changes
in electrochemical potential of the electron at each
step are given as follows:
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geometry of the system has no effect on the electrostatic
potential difference given by (X-25) between points
Q and P. It is obvious from elementary electrostatic
theory that the electric field pattern between the disks
will depend very much on the geometry of the system.

The electrical potential difference

P' —yvX yvB (X-31)

is called the Volta potential difference between uniform
surfaces X and R, the order of the subscripts in U~x
indicating that the Volta potential difference is chosen

- as positive if the electrical potential increases as we go
from a point just outside E. to a point just outside X.
Using the definition of the true work function given
by Eqs. (X-20) and (X-21) and keeping in mind the
fact that the reference level for all the potentials in
(X-22) and (X-23) as well as in (X-25) through (X-30)
must be the same, we can write

ggTX= g4
vX pX

ggj'B eyvR —pR

(X-32)

(X-33)

or finally
pvX @vB glR glX (X-34)

The Volta potential diGerence Vgx between two uni-
form metal surfaces R and X is equal to the difference
between the true work functions of these surfaces.

It is interesting to notice that the situation within
the rare electron gas between the plates in Fig. 22,
when the ends P" and Q" are connected, is exactly the
same as that inside an isothermal, chemically inhomo-

geneous substance without electrical current, as dis-
cussed in Example 5 above. There it is seen that the
chemical potential gradient "annuls" the electric field
so that no electrical current Rows. Here also, in the
space between plates (Fig. 22 with P" and Q" con-
nected), the electronic electrochemical potential gra-
dient vanishes, Vp= Vp —eV@=0, but the gradients of
chemical and electrical potential do not vanish. The
gradient Vp is in fact just the Volta potential gradient.

As pointed out by Herring and Nichols, ' the relation
(X-34) is exact if the temperature is uniform throughout
the system, and it is incorrect to add a term equal to the
Peltier heat at the X-R junction. In this connection, we
make two comments. First, the incorrect addition of
this Peltier heat term stems from an insistence on
locating a,rather nebulous "electrical contact potential

From the reasoning involved in Eq. (X-28), namely
that in thermostatic equilibrium the electrochemical
potential for electrons is uniform throughout our two-
metal system, we now have px=p~. Therefore, adding
(X-28) through (X-30) and using the definitions (X-31),
(X-32), and (X-33), we get after rearrangement

&4
vX e4 vR+ (pX pR)

—( ~(tv B pR) ( e(tvX pX) —e fP'R ~+AX

difference" at some special boundary or contact in the
system, according to one or another of the so-called
"contact theories" or "chemical theories" of contact
potentials. This situation has been cleverly elaborated
and clarified by J.A. Chalmers" in a series of papers in
1942; it is too bad that these papers have not been more
widely read. Chalmers introduces quantities which he
calls internal and external potential differences, and
with these he shows how the "contact theories" can be
brought into harmony with the "chemical theories. "
It seems that it should be possible to avoid the use of
Chalmers' terminology and yet resolve the difficulties,
inconsistencies, and opposing arguments in the same
clear fashion as has been done by Chalmers. It should
be possible to do this without introducing any other
potentials than the electrochemical potential together
with its separation into a chemical and an electrical
part. We have attempted to do so at least within the
limits of the subject matter to which the present Review
is restricted. Chalmers' treatment of the relation
between the Volta potential diGerence and the Peltier
heat is incorrect, in our opinion, and this brings
us to our second comment in connection with the
addition of a Peltier heat term to expression (X-34).
The Volta potential difference is essentially a thermo-
static quantity whereas the Peltier heat is a true thermo-
dynamic or transport quantity. Now we have tried to
emphasize the basic difference between thermostatic
and transport quantities; in fact, we stress the basic
independence of these quantities. We would consider it
quite possible and conceivable that two metals, say,
might have identical thermostatic properties, at least
over a narrow temperature range, and yet have radically
diferent transport properties. This possibility pre-
cludes the existence of relations between essentially
thermostatic parameters and essentially transport
parameters.

Example 8. Nonisothermal Volta Potential
Di6'erences

gPATWO —eyvX(T) eyv'R(T)
) (X-35)

Consider now a system like that in Fig. 22, except
that the ends P" and Q" of the metal rods I and R
have been electrically connected and are at a tempera-
ture T+hT slightly higher than that of the left-hand
portion of the system. The disks at the left-hand ends
are still at the same uniform temperature l. We show

the new arrangement in Fig. 23, where the electro-
chernical potentials are indicated at various locations
in the phases X and R. The electrochemical potentials
at points P and Q (in "vacuum") are equal to each other
and equal to that. inside the metals at P' and Q'; i.e., p
is uniform throughout the left-hand region at tempera-
ture T. The Volta potential difference V~x~ ~' between
uniform surfaces X and R at temperature 1 is defined

by the relation
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TEMPERATURE
GRADt ENTS

p~(T+~ )—px( +~ ' VaniSheS and We COme Out With

eVRxa ~'=eWR( ' —eW»( )+ (SR* Sx—*)AT. (X-40)

-x (r)
I"

y
V' X (T)

e yFR
(T)

—R(r) I w I
R

R(~mari Sg*—Sx*——eSxg. (X-41)

Equation (X-40) becomes

When AT=0, (X-40) reduces to the isothermal case
(X-34). We shall see in Sec. C that the difFerence
Sg*—Sx* at temperature T is related to the relative
thermoelectric power Sxg of a thermocouple formed
by the phases X and E in the manner

sTvso —P' aT=o+S QT (X-42)

where the superscripts t)X(T) and t)R(T) indicate that
the potentials are the values in the vacuum just outside
surfaces X and E. which are at temperature T. The
superscript notation ~TWO on the Volta potential
difference will be used to indicate that the system is
not isothermal throughout. Thus the "isothermal Volta
potential difference" will be denoted by U&x~ ='. The
true work functions W (T' and 8""(T)of uniform metal
surf)aces X and E at temperature T are de6ned by

e~x(T) —
ed vx(T) x(T)-

egrR(T) eyvR(T) R(T)-
(X-36)

(X-37)

Substituting (X-36) and (X-37) into (X-35) one obtains

FIG. 23. One arrangement for measuring a nonisothermal
Volta potential difference. The arrangement usually used in the
laboratory is shown in I'ig. 26.

LIT&0 1
=SxR ———(SR*—Sx*).

e
(X-43)

For finite AT we can write the integral form of (X-43)
as follows:

Thus if in Fig. 23 the electrostatic potential difference
between points P and Q is measured with the entire
system at uniform temperature T, one finds U~x~ =',
the ordinary isothermal Volta potential difference. If
the junction temperature is raised a small amount, 2 T
whiIe the disks are kept at temperature T, one Ands the
additional" potential difference Sx&AT. We can say
that the incremental increase in the nonisothermal
Volta potential difference (X-42) is just the relative
thermoelectric power of phase X relative to phase E,
multiplied by hT, and as AT becomes infinitesimally
small,

sP' argo s~R(T) sgTx(T)+ pR(T) px(r) (X 38)

Ol
-X(T+b.T) -X(T) (X-39)

The junction at the right-hand side of Fig. 23 is iso-
thermal and has no current Qowing through it; there-
fore the electrochemical potentials of an electron in
phases X and R in this region at T+AT are equal.
Hence when we substitute the electrochemical poten-
tials at T from Eq. (X-39) and the corresponding ex-
pression for the R phase into (X-38), the difference

We see that this nonisothermal Volta potential diGer-
ence differs from the isothermal value given by (X-34)
in that the last two terms in (X-38) cancel in the iso-
thermal case whereas they do not in the nonisothermal
case. Our problem then is to evaluate the difference
between the electrochemical potentials in (X-38). From
Eq. (X-10) we can f)nd the electrochemical potential
in the T+hT region in terms of its value in the T region,
taking the spatial separation of the two regions to be
Ax; this is legitimate if AT is small:

p
x(T+aT) —x(T)+P x(T)gg= px(T) S s+T gg

= V Rx=r'+r— (SR*—Sx )dT, (X-44)
tvr

8 Tp

where now To is the temperature at the left-hand region
of Fig. 23 and T is that at the right-hand region. We
emphasize two points in connection with (X-43). First,
the derivative refers to the temperature variation of the
Volta potential difference in a nonisothermal system;
and second, the thermoelectric power Sx& is a strictly
thermodynamic or transport parameter. We shall
presently discuss an equation (Eq. (X-45)) relating the
temperature derivative of the isothermal Volta potential
difference to the derivative of the diGerence between the
true work functions for the two metal surfaces X and
R. The equation follows simply from relation (X-34)
and is in form quite similar to (X-43), with the funda-
mental difference that the formula to be discussed
pertains throughout to a thermostatic situation whereas
(X-43) pertains, as we have already emphasized, to an
essentially thermodynamic or transport problem. Before

3' For most combinations of metals X and R and a AT of several
degrees the second term on the right-hand side of (X-42} is prac-
tically negligible compared with the erst term.
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Next we measure the electrical potentials indicated by
these points of intersection, relative to the heavy
vertical line at the left of the diagram. The diGerence
between these potentials is —eUgx, where —e is the
electron charge and Vgx~ is the measured Volta poten-
tial difference between surfaces X and E at tempera-
ture T. It can be shown that the Kelvin method for
measuring Volta potential diGerences, for instance,
actually measures V&x .

If the uniform temperature of the system is raised to
T+DT the initial electrochemical potential px(T'
=p~&~' within the two phases X and 8 changes to a
new value px'~+~~'=p~'~+~~', as indicated by the
leftward shift of the heavy vertical line in going from
Fig. 25(a) to (b). From the arguments leading up to
Eq. (X-34) we see that, while with P"and Q" connected
in Fig. 22 the equality and uniformity of the electro-
chemical potential in both phases gives rise to the Volta
potential difference V&x, the actual equilibrium value
of this potential does not enter into the expression for
Vgx. But this does not mean that the Volta potential
difference between two phases is independent of the
bulk or volume properties of each phase. The Volta po-
tential difference (X-34) is equal to the difference be-
tween the true work functions of the phases X and E.,
and the true work function for a given phase depends
in general as well on t:he bulk properties of the phase as
on its surface properties. The true work function for a
given surface and phase is independent of how this
phase is electrically connected (or not connected) to
other phases. If one can independently and separately
determine WX and W" for two phases (at some par-
ticular surface of each), then the Volta potential dif-
ference which will obtain when Ugx is measured be-
tween points just outside these particular surfaces can
be calculated from (X-34).

If we differentiate (X-34) with respect to temperature,

d Vax d H/ z dt/t/x

potential into chemical and electrical parts we have

URx= (t—) (t)—"= (1/e) (p —
)(( ). (X-46)

We define this diGerence between electrical potentials
in phases X and E as the contact potential difference
URx at the junction between X and 8, and (X-46)
shows it to be equal to the diGerence between the
electronic chemical potentials in the two phases. Com-
parison of (X-46) with (X-34) shows that URx and
V~x are not at all identical. Thus whereas Vgx can be
measured directly, any attempt to measure U&x will
involve the kind of difhculties discussed above in
Example 3.

Finally, if in a measurement of the isothermal Volta
potential diGerence as in Fig. 22 one inserts any number
of metals electrically connected between points I'"
and Q", an extension of the arguments involved in
Eqs. (X-25) through (X-34) shows that the intermediate
metals between X and E leave (X-34) unaltered. This
fact is known as the Volta Iaw of intermediate metals.
It can be shown that if the metals are each chemically

homogeneous, their presence in the circuit does not.
aGect the Uolta potential diGerence Vgx at temperature
T even if there are temperature gradients in these
intermediate phases, provided that all junctions are
held at temperature T and provided that electrons
are the only current carriers.

We mentioned above that t,he nonisotherrnal system
for the Volta potential difference which was analyzed
there is not the experimental arrangement actually
used in such work. Therefore we want next to analyze
the system shown in Fig. 26. Here the circuit consists
of two phases X and E, the temperature T of which is
uniform throughout except at the upper left-hand region
where it is T+DT with AT small.

Referring to Fig. 26 we can write, for the noniso-
thermal Volta potential diGerence and for the true
work functions, the expressions

dT dT dT
(X-45)

e V BT&0 tv R(T)+eyvx( T+0 T) (X-47)

we see that the temperature derivative of Vgx is de-
termined completely by the way in which the true
work functions of X and E vary with T. This is the
thermostatic formula which we referred to above as
being similar in form to (X-43); i.e., both give a tem-
perature derivative of a Volta potential difference simply
as the diGerence between two quantities. As already
mentioned, however, in (X-43) the quantities SR*
and Sx* are transport parameters whereas in (X-45)
dWR/dT and dWX/dT are essentially thermostatic
quantities.

We now define the so-called "contact potential" at
an isothermal junction between two phases X and E.
At such a junction, at temperature T, we have con-
tinuity of the electrochemical potential when no elec-
trical current is Rowing; therefore by separating this

eWx(T+0 T) eyvx(T+0 T) px(T+DT) (X 48)

eWR(T) tv R(T) pR(T) (X-49)

The work function and the electrochemical potential at
temperature T+AT in (X-48) and (X-49) can be ex-
panded in terms of the values at temperature T, and
using (X-10) we find

ewx( +~ ) =ewx'T'+e(dW (T)/dT)AT

x(T+0T) —pX(T)+ (d-x(T)/dT)+T-
(X-50)

= px'T' —Sx*DT. (X-51)

Now since the electronic electrochemical potential is
continuous across the X-8 junction at temperature T,
if we substitute (X-48) and (X-49) into (X-47), then
put (X-50) and (X-51) into the resulting equation we
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come out with

LLT&0 egTB(T) egTX(T)

+[Sx* e(d—Wx'r&/d T))hT, (X-52)

and since 8' ( ' and 8' (T) refer to the same tempera-
ture, we may use (X-34) to get the relation

h T+0 e'V h T=O

+[Sx* e(dW—x(r)/dT)]AT (X 53)

The integral form of this relation for finite DT is

et/ x '= et/ zx

pT - ggTX'(T)-

+ Sx*—e dT, (X-55)

in which To is the uniform temperature of the whole
system except in the upper left-hand region where the
temperature is T. Relations (X-52) and (X-54) are to
be compared with (X-40) and (X-43). It is interesting
to notice in (X-54) that the properties of phase R do not
enter at all. Thus while the actual value (X-53) of the
nonisothermal Volta potential diGerence does of course
depend on phase R, the temperature variation (X-54)
does not. On the other hand, the temperature variation
of the nonisothermal Volta potential difference given

by Kq. (X-43), referring to the arrangement in Fig. 23,
involves the thermoelectric properties of both X and R.

Herring" has derived an expression (his Eq. (29), p.
895) which can easily be shown to be identical with our
(X-55). His equation, with our symbols, is

~T ~T yx
eVzxT~TO —elV~(&0) eWx(&) —4T 4T.

~To ~0 T'
Using the relation

W & '=W & '&+ I (dWx'r'/dT)dT,
TQ

we get part of Eq. (X-55), and using the relation~

If now the whole system is isothermal and we measure
the Volta potential difference as the upper (X) face is
gradually heated to higher temperature, the rate at
which the nonisothermal Volta potential difference so
measured changes, is given by

e(d Vgxar~'/d T) =Sx* e(d Wx—&r&/d T) (X-54)

Fro. 26. Usual laboratory arrangement for measuring
nonisothermal Volta potential differences.

Potter" has found that the temperature derivative
of the true work function for polycrystalline tungsten
between 300' and 900 C is independent of the state of
contamination of the surface. If this is the case for
other materials too, Eq. (X-54) together with Kq.
(X-45) would possibly furnish a method for the meas-
urernent of absolute thermoelectric power Sx' '. This
latter quantity is related to the parameter Sx* by the
expression Sx*=—eSx' '. The usual methods involve
either an integration of the Thomson coefficient (re-
duced by the absolute temperature) or else a compari-

. son by means of the relative thermoelectric power
against a material (e.g. copper) of known absolute
thermopower. Actually, this method is only of academic
interest, since it would probably involve large experi-
mental errors.

APPENDIX C. POTENTIOMETRIC 'METHOD FOR
MEASURING POTENTIAL DIFFERENCES

The potentiometric method first introduced by
Poggendorf is of such great importance in potential-
difference measurements that we shall consider it in
detail. The most essential part of a potentiometer is a
wire AB of material R and carrying an electrical
current i, shown in Fig. 27. The potentiometer is
supposed to measure the electrical potential difference
Pxr —Pxz between the regions V and Z inside phase X.
These regions must be connected by an electrical path
which allows electrical current to Rom, so that when
the potential difference P~ —Pzs is not zero, current
can Qow through the galvanometer G.44 The leads I.
between 2 and I' and between 8 and Z have the same
chemical composition, but are not necessarily the same

(rx/T') d T'= Sx'"'= —(1/e) Sx*,

we get the rest of our Eq. (X-55), thus showing that
our formula is identical with that of Herring.

~ C. Herring, Phys. Rev. 59, 889 (1941).
~See Sec. E.

44 If we consider all the wire between points 8 and Z in Fig. 27,
including that of the galvanometer-coil, to be of the same chemical
phase, then since all this wire is at the same temperature the
quantities &p and p'T in Eq. (X-13) both vanish; we are left
with an electrical current density J associated with the electrical
potential gradient p'@. Thus if there is an electrical potential
difference between the galvanometer terminals at a and b in
Fig. 10, an electrical current will Qow whose interaction with
the fixed magnetic 6eld of the instrument causes the galvanometer
mirror to deflect.
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material as in the rest of the circuit. The whole system
above the heavy dotted line is held at a uniform tem-
perature T. Below this dotted line the temperature dis-
tribution may be anything whatever. The e1ectro-
chemical potentials are indicated at various important
regions in the system, together with their separation
into chemical and electrical terms. Since in each iso-
thermal, homogeneous phase the chemical potential is
uniform, we have

RA RB ey-RB eyRA-

-XF -XZ eyXZ WAXY

(X-56)

(X-57)

At balance, i.e., when there is no current Rowing through
the galvanometer,

p La pLb ()I yLa (t Lb

pI c
p

I d Or yLc yLd

(X-58)

(X-59)

Since at balance there is no current Rowing through
any junction and since all the junctions (above the
dotted line) are isothermal, the electrochemical poten-
tial is continuous across each junction. Thus we have
the four conditions

4J RA RA RA -RB RB RB

A ir ir
K R~ -LC LC LCo. p =p -eP ~~ L

-LO LO LO4J o== p =e —e$
G (~)—-cb cb ycbK b=- /

~+ -L4 Ld Ld

z PROBES ~
—XY XY ~XY

yX
X X

m ~

i'ARB ITRARY

TEMPERATURE
Pp TH THROUGH

CURRENT MAY FLOg
AND ARBlTRARY

CHEM ICAI

C 0MPOS l Tl ON

FIG. 27. The potentiometer measures the electrical potential
difterence between points I" and Z in the chemically identical
phases X. The entire region above the heavy dotted line is at a
uniform temperature.

—.X(T) —X(T) ~ - R(T3 ~ - R(T3

tential difference between these terminals (the so-called
"terminal emf") in conjunction with Eq. (X-.6) ap-
plied to the slidewire AB can be used to calibrate the
instrument.

APPENDIX D. LABORATORY METHOD OF MEAS-
UREMENT OF CONTACT RESISTANCE

BETWEEN DISSIMILAR PHASES

We wish to analyze this method partly because of its
own practical importance, and partly for the insight
it gives into the question raised in Example 6 of
Appendix B. There it was mentioned that if it is
meaningless to assign a spatial variation of electro-
chemical potential within a very thin junction, then
one must use indirect means for determining the jump
in electrochemical potential across the junction. Figure
28 shows the setup for measuring E, The leads F and X
are composed of phase X and as usual we denote them
by diGerent letters to allow for differences in electrical
potentials. The region inside the heavy dotted lines is
isothermal while the lower ends of the leads X and I'
are at room temperature. These leads are electrically
connected to points Px and Pg near the junction and
are the same leads shown connected to P~ and Pg in
Fig. 5 as well. Their ends Pr and P, (Figs. 5 and 28)
are to be connected to a potentiometer, which gives

If we know the resistivities of the
phases X and E at various temperatures we can find
the temperature dependence of the resistances dr~
and d,r~ between the probe points and the junction,
as indicated in Fig. 28. The electrochemicalg~potentials
for an electron at the points Qx and QR very near the
junction and in phases X and 8, respectively, are given
by Eq. (X-17), namely,

at Qx' px(r) es7) rx, —
(X-62)

at QR. pR(r)+ebs(, r R,

the values px&~~ and p~'~) pertaining to points Px and
PR. Now the potentiometer gives us gx(FR) —&F(r»
so that applying the integrated form of (X-10) as was
done in (25) we can show that

pF(&) px(&) —pF(&s) px(&s) — ss(grx+gr +g )
—e(px(rs) QY(TR)) (X 63)

-Lc RA Ia ——Rb p I d p-X-F pI b pXZ (X 60)

From Eqs. (X-56) through (X-60) we can find the
desired potential diGerence as follows:

SEXY SyXZ —pXZ pXY pLb pLd pLa p c—
I

I

I p„,
(

PHASE X

a, rx

PHAS E R

dr
~X &R

i I Rs

l

=())'R [

I
I

Y I

or finally

—pRB pRA eyRA ORB

@XF yXZ —yRA ORB (X-61)

If the regions V and Z are the chemically ident. ical
terminals of a standard cell, the known electrical po-

- X(VR)
TR

p,

—Y(TR)
R

P~

FxG. 28. Arrangement for measuring the "contact resistance"
between dissimilar metal v ires. The 'probe leads" X and P are
of the same chemical phase and are connected to a potentiometer.
The "contact resistance" E, is obtained from„'Kq. (X-63).



THERMODYNAM I CS OF THE RMOELECTRI CITY 275

This relation can be used in the laboratory for deter-
mining 8„ the contact resistance between dissimilar
metal wires.

Returning to the question of determining the electro-
chemical potential jump across a junction when we
cannot clearly assign a spatial variation of p within
the junction, we can see from (X-62) and (X-63) that
the jump is given experimentally by the relation

hP'=e(yx&r & @"' "—')+es(Arx+Arre). (X-64)

Thus it is possible in principle by the use of potentio-
metrically determined electrical potential diGerences to
And the jump in electrochemical potential across a
junction through which electrical current is flowing.

APPENDIX E. RELATIONS BETWEEN THERMO-
DYNAMIC THERMOELECTRIC PARAMETERS

AND THOSE DERIVED FROM
KINETIC THEORY

It was mentioned in the Introduction that under
certain conditions the thermoelectric properties of some
substances can be treated quite properly in terms of
the ordinary thermostatic characteristics of these sub-
stances, the transport contribution in these cases being
negligible or nearly so. From (64) it is seen that, except
for the factor —e, the absolute thermopower S' ' of a
phase is essentially the transport entropy per charge
carrier S*. And from (23), the transport entropy is

related to the heat of transport per charge carrier Q*
in the manner TS*=Q* Is, where ls is t—he chemical

potential per electron. Although the separation of S~
into two other terms (here Q*/T and is/T) can b—e
expressed in many other ways, as can be seen from
Sec. 8, the particular form (23) is very useful for
comparing theoretical and experimental thermoelectric
powers, as follows. The usual expression for thermo-

power derived from kinetic theory4' has the form

(Is/eT) (Es//eEtT)—

in which E& and E2 are certain transport integrals. By
using series expansions for Etand Es we find'another

's F. Seitz, iVoderrs Theory of Soleds (McGraw-Hill Book Com-
pany, Inc. , New York, 1940), p. 180.

form often referred to, namely

x'O'T 1 1 Bl
)

3e e l Be

where I is the mean free path. Thus we associate the
heat of transport Q* in Eq. (23) with the kinetic
quantity Es/Et. Now good agreement between theory
and experiment has been found'~~' in many cases of
semiconductors, for which only the static contribution
ls/T is used. In metals the static approximation is
practically useless and even leads to the wrong sign of
the thermopower. " In the case of semiconductors,
theoretical calculations of the transport contribution
at low temperatures have been made by Herring~ and
by Frederikse. ~

TABLE II. List of MKS units of practical use in connection with
the theory and practice of thermoelectricity.

Quantity

Qs, Qs, Qr, Qa

Pij
T
e
Ji
gi

S;;*
S;;~
II;;
Ti7'

MKS unit

joule. meter 3.second '
joule meter~ second '
ohm. meter
degree (Kelvin)
coulomb particle '
ampere meter~
meter
joule degree 'particle '
volt degree '
volt
volt degree '

|e F. J. Morin, Phys. Rev. 83, 1005 (1951).
4' J. P. Andrews, Proc. Phys. Soc. (London) 59, 990 (1947).
4' C. A. Hogarth and J. P. Andrews, Phil. Mag. 40, 273 (1949).
4'Busch, Schmid, and Spondlin, Helv. Phys. Acta 20, 461

(1947).
se R. W. Wright and J P. Andrews, Proc. Phys. Soc. (London)

A62, 446 (1949).
5'G. Borelius and K. Gullberg, Arkiv Mat. , Astron. Fysik,

31A, No. 17, pp. 1—10 (1945).
"G. T. Pnllan, Proc. Roy. Soc. (London) A217, 280 (1953)."C. Herring, Phys. Rev. 92, 857(A) (1953).
"H. P. R. Frederikse, Phys. Rev. 92, 248 (1953).

APPENDIX F. TABLE OF MKS UNITS FOR
THERMOELECTRIC QUANTITIES

We give in Table II a list of MES units which may
be of practical use in connection with thermoelectricity
in theory and in practice.


