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PREFACE

WENTY-SIX years have now passed since the
explicit discovery of the two different modifica-

tions of liquid helium and since the introduction of the
nomenclature "helium I" and "helium II" by W. H.
Keesom. It seems appropriate, therefore, to attempt a
review at this time of the more recent aspects of the
liquid helium problem, the more particularly since it
has received a great deal of detailed attention both
experimentally and theoretically in recent years. In
the somewhat incomplete review that follows attention
has only been directed to work on liquid helium II;
since, being the superQuid phase, helium II appears
to be of greater interest. Only such properties of helium
I have been reviewed as seem of importance in the
interpretation of helium II. No data, either early or
recent, on solid helium or on He' have been included.
Moreover, the authors realize that there are many
matters concerning liquid helium II which are not
commented on herein, matters which have had to be
omitted for the sake of brevity of presentation.

l. INTRODUCTION

1.1. The Liquid-Liquid. Phase Transformation
in Helium

The first hint of the fact that liquid helium undergoes
a modification at the temperature of 2.18'K was
found by Kamerlingh-Onnes (K.11)t in 1911 during
measurements of the density of the liquid. He found
(K.24) that the coefficient of expansion changed sign
at this temperature and also that the density was a
maximum at 2.18'K (see Fig. 1.1). The decisive

experimental evidence for the two modifications of
liquid helium was provided, on the other hand, largely

by %. H. Keesom and his collaborators, and was
furnished by measurements on such assorted physical
properties as, for example, the dielectric constant

*Now at the Department of Physics, Stevens Institute of
Technology, Hoboken, New Jersey.

f References in parentheses refer to the Bibliography at the end
of the article.
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(K.28a and K.28b), and the heat of vaporization
(K.32c), which showed anomalies at the temperature
of 2.18'K. Keesom concluded that two states of liquid
helium exist which pass one into the other at the tem-
perature mentioned. He designated the liquid at
temperatures between 2.18'K and the boiling point
(4.2'K), helium I; and the modification below 2.18'K,
helium II (K.28a, K.27).

Keesom's measurements of the specific heat of
liquid helium (K.32a, K.32b, K.33a, K.35) showed most
convincingly the profound nature of the change. (A
curve showing experimental values of the specific heat
against temperature is given in Fig. 1.2.) Indeed it
was on account of the shape of this curve that Ehrenfest
(E.33) referred to the transition temperature as the
) point.

Further work by Keesom (K.33a) showed that there
was no latent heat at the transition from helium I
to helium II, and that the two modifications could not
coexist in equilibrium. Reviews in greater detail on
these matters have been given by Keesom (K.42),
by Burton, Grayson-Smith, and Wilhelm (B.40), and
by Squire (S.53b).
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FIG. 1.1.Density of liquid
helium in g/cm' versus
temperature from Kamer-
lingh-Onnes and Boks
(K.24).
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2. THE VISCOSITY AND THE "NORMAL" DENSITY

2.1. The Viscosity of Helium I
The first measurements of the viscosity of liquid

helium I were made by Wilhelm and co-workers
(W.35) by a method dependent on the observation of
the torsional oscillations of a cylinder immersed in the
liquid. The results, however, are open to question, as
was pointed out by Kapitza (K.38a), owing to the
probability of turbulent motion occurring in the
measurements.

Later measurements, using the torsional oscillations
of a disk immersed in the liquid, have been carried out
by Keesom and MacWood (K.38b), Keesom and
Keesom (K.41a), Smith (S.50a), and deTroyer and
co-workers (T.51a) in Leiden. The most recent results,
given by the latter authors, are probably the most
reliable and these are shown graphically in Fig. 2.1.

Measurements of the viscosity of helium I have also
been made by flow methods (Poiseuille flow), in which
the rate of How through capillary tubes was observed,
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Fro. 1.2. Specific heat (cal/g-deg) of liquid helium. The circles
give ds, ta of Keesom and Clusius (K.32a) and the squares and
triangles data of Keesom and Miss Keesom (K.32b).

by Johns and co-workers (J.39a) by Bowers and
Mendelssohn (B.49a and B.50c). The results of these
measurements are also shown in Fig. 2.1, from which
it will be seen that both methods yield results in fair
agreement with each other.

The main features of the results may be summarized
as follows: (a) The viscosity rf of helium I is practically
independent of temperature in the temperature range
2.8'K to 4.2'K at a value of about 30 micropoise;
(b) On lowering the temperature through the X tem-
perature (2.18'K), no discontinuity in rf occurs. ' The
value of p, however, decreases markedly on passing
through the X temperature and appears to take on
values, at say 1'K, about twenty-five times smaller
than those at O'K.

In Fig. 2.1 the measured (I.38) values of the viscosity
of helium gas is also included for comparison with the
liquid data. It is noteworthy that the viscosity of
liquid helium I is not much greater than that of helium

gas at the same temperature and that it does not rise
in value with decreasing temperature, as does that of
all normal liquids. This seems to suggest that even
in the liquid form, helium has many gas-like properties,
as might be expected for a liquid of such low density.
It may be of interest to draw attention here to the
recent measurements by Tjerk stra (T.53a) of the
viscosity of liquid helium I under pressure. He em-

ployed pressure from 5 to 50 kg/cm' and found that
as the pressure was raised the viscosity became like
that of a normal liquid, i.e., viscosity increased with
decreasing temperature. The highest viscosity occurring
in this work was about 120)&10 ' poise at a liquid
density of 0.186 g/cm'.

2.2. The Viscosity of Liquid Helium II
The results of the oscillating disk method for the

viscosity in liquid helium II are typified by the curve
given in Fig. 2.1. The results of attempts to measure

'The earlier work of Keesom and co-workers (K.38b and
K.4ia) suggested a discontinuity at T&. This, however, has not
been reproduced by the more recent work.
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Fn. 2.1.Viscosity of liquid helium in p, poise versus temperature.
The circles are data of Bowers and Mendelssohn (B.49a and B.50c),
and the crosses of deTroyer et uf. (T.51a). The broken curve is for
helium gas (1.38).

the viscosity by flow methods in liquid helium II
were, however, anomalous. Such experiments were
first performed by Allen and Misener (A.38a) and by
Kapitza (K.38a) and they showed that the flow of
liquid helium II through narrow channels was quite
unlike the flow of normal liquids and indicated that
the Qow was nonviscous.

The results showed that the Qow of liquid helium II
through the narrowest channels (of width of order of
magnitude 10 ' to 10 ' cm) is almost independent of
the pressure head causing the Qow, and independent
of the length of the path. Moreover, for the smallest
channels, the volume Qow appeared approximately
proportional to the amount of surface present and not
to the cross section. (See subsection 2.5.) Summaries
of this early work have been given, for example, by
Keesom (K.42), Jones (J.39b) and Darrow (D.40).
The later work is discussed below in subsection 2.5.

The most recent estimate for the upper limit of the
viscosity of helium II as measured by flow through
narrow slits has been given by Kapitza (K.41b and
K.41c) and indicates that the viscosity is certainly
less than 10 "poise. This value is to be compared with
that for liquid helium I just above the X temperature
of 2X10 ' poise.

The results of the Qow measurements provided a
conception of flow without viscous losses, a process
which is now referred to as "superfluidity, " a term
coined by Kapitza (K.38a), and which appears to be
the basic feature of helium II.

The contradictory results which gave values for the
viscosity of helium II of less than 10 " poise in the
Qow measurements and of more than 10 ' poise in

oscillating disk measurements were put into a coherent
picture by Tisza (T.38a; T.38b; T.38c; T.40), who put
forward the hypothesis that at Qnite temperatures

the atoms which take part in the "superfluid" flow
represent only a fraction of the total number of atoms,
the remainder providing viscous drag for the oscillating
disk experiments. To account for the experimental
results, therefore, it is convenient to consider liquid
helium II as made up of two constituents, which can
be termed "superfluid" and "normal, " so that the
total density of the liquid may be written:

P =Pa+Pm (2.1)

2.3. The Determination of the Normal Density

The hypothesis of the two-Quid model of liquid
helium II, introduced by Tisza (T.38a; T.38b; T.38c;
T.40) to account for the viscosity problem of liquid
helium II, was implicit in the early theoretical work of
F. London (L.38a; L.38b; L.39a) who suggested that
the ) phenomenon in helium II was analogous to the

TORSION FIBER
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Fro. 2.2. Sketch of Andronikashvili's apparatus (A.46) for
measuring p /p by oscillation of a pile of plates.

where p, and p„are the densities of the superfluid and
normal constituents. Care, however, must be taken in
consideration of this two-fluid model, since the two
constituents do not appear to form distinct separate
phases in con6gurational space, nor does helium II
appear to show any strongly marked space-ordered
structure different from that of helium I. The latter
feature is supported by the x-ray analysis carried out
by Keesom and Taconis (K.36a) and by Reekie.
(R.40, R.47 and R.53a).
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degeneracy occurring in a Bose-Einstein gas. The
hypothesis posed the problem of determining the normal
and super Quid densities experimentally. In 1946
Andronikashvili (A.46) reported measurements whereby
the relative density of the normal constituent, p„/p,
could be measured directly. The experiment, based on
a suggestion put forward by Landau (L.41a), consisted
in measuring the moment of inertia of a pile of closely-
spaced aluminum disks (diameter 3.45 cm, spacing
between the disks 0.21 mm) hung in a bath of liquid
helium II as shown in Fig. 2.2. The superQuid con-
stituent has no eGect on the rotation of the disks.
The normal or viscous constituent, however, will in

part be carried around with the movement of the
disks when they are set in oscillatory motion. By
measuring the variation in the period of oscillation
with change in temperature, it is possible to calculate
the variation of the total moment of inertia of the
oscillating system and hence obtain the relative
density of the normal constituent present at any given
temperature. For details of this calculation see Hollis-
Hallett (H.52a).

The experiment has subsequently been repeated by
Andronikashvili (A.48a) and by Hollis-Hallett (H.50a
and H.52a) and the results are shown in Fig. 2.3. It
will be seen that within experimental error the results
of the two workers are in good agreement.

In order to obtain an approximate interpolation
formulation for the variation of p„/p with temperature,
the results can be expressed in the form:

p-/p = (T'/2'x)', (2 2)

O.lo—

0.05—

~0I

'I.o l.9

Fxo. 2.3. The "normal" density p„in g/cm. ' The full curve
gives Andronikashvili's results (A.48a) and the points are due to
Hollis-Hallet t (H.52a).

where Tq is the X temperature of 2.18'K. Andronikash-
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Fxo. 2.4. Normal fluid concentration p„/p uersxss 2', taken from
deKlerk, Hudson, and Pellam (K.53b). ~ represents data of de
Klerk, Hudson, and Pellam (K.53a). a represents data from
Peshkov's (P.46b, P.48c) and Maurer and Herlin's (M.49d)
second-sound measurements. g represents data from Androni-
kashvili s (A.46) oscillating disks experiments. To avoid confusion,
the overlap between the three sets of measurements is not, shown.

vili's results show that a unique value of o- cannot
hold over the entire range of temperature employed.
It appears that for 1.3'K(T(1.7'K, o-=6.8 and for
1.8'K&T&2.18'K, o-=5.3. These results, therefore,
might appear somewhat at variance with the state-
ments made earlier by F. London (L.45 and L.46a)
and Tisza (T.47) who suggested a single value of
o- equal to 5.5. However at the lower temperature of
measurement, the percentage of the normal constituent
present is small and consequently the possible percent-
age error of measurement is greater than at the higher
temperatures. The value of p„/p, therefore, in the
lower temperature range is more accurately assessed.
from second sound measurements.

The values of p„/p can be calculated from measure-
ments of the velocity of second sound, (see Sec. 9),
as has been done for example by Peshkov (P.46b,
P.48c), by Band and Meyer (B.48a) and most recently
by deKlerk, Hudson and Pellam (K.53b). These
evaluations are in fair agreement with the results of
the direct methods quoted above.

An additional indirect method of assessing p„comes
from measurements of second sound with a Rayleigh
disk, as reported by Pellam and co-workers (P.50a
and P.52b). (See also Sec. 9.6.) These measurements
evaluate the quantity p„/S' at the lower temperatures
(about 1.3'K to 1.6'K), where 8 is the entropy of
liquid helium II per g. Using data on the entropy
previously measured by Kapitza (K.41b), Pellam and
Hanson find fair agreement between their evaluations
of p„and those of Andronikashvili, (A.48a).

Recent measurements of the velocity of second
sound below 1'K by deKlerk, Hudson, and Pellam,
(K.53a) allow evaluation of p„/p in this temperature



J. G. DAUNT AND R. S. SMITH

20

lp-
~Q Q Q X

0
I.O

T{4K)
2.2

Fro. 2.5. The "normal" viscosity p (p poise) in helium D. The
circles are due to Hollis-Hallett (H.52a), the squares due to An-
dronikashvili (A.48a) and the crosses due to deTroyer et at.
(T.51a). The broken curve gives Hollis-Hallett's (H.52b) results
with the rotating cylinder viscometer, as given in a review by
Atkins (A.52a).

region The evaluations given by deKlerk, Hudson,
and Pellam (K.53b), using the specific heat data of
Kramers et al. , (K.52a), are graphically displayed in

Fig. 2.4. If the interpolation formula (2.2) is retained,
then it will be seen that, for 0.7&T&1.5'K, 0- starts
at a high value of 13 and diminishes to about 6; whereas,
for 0.3&T&0.6'K, 0-=4. It would seem therefore that,
with the possible exception of the region below 0.6'K,
a formula of the type 2.2 is entirely inadequate. (See
Sec. 4.7 and 9.4.)

2.4. Oscillating Disks nd Cylinders in Liquid
Helium II

By use of the values of the normal density p„as
discussed previously in subsection 2.3, further deduc-
tions may be made with regard to the viscosity of the
normal constituent of helium II as measured by oscil-
lating disk methods. The results of such measurements
provide only an evaluation of a product term of vis-
cosity)& density. Both Tisza (T.47) and Landau
(L.41a) have pointed out that instead of evaluating
the results as giving gp, where p is the total density of
the liquid, as was done in order to obtain the viscosity
values shown in Fig. 2.1, one should rather consider

40

the experiments as determining the quantity q„p„,
where p„is the viscosity associated with the normal
constituent.

The results for p„,calculated in this way, from the
most recent and reliable measurements on the oscil-
lating disk viscometer in helium II, obtained by
Andronikashvili (A.48b), deTroyer et at. (T.51a), and
by Hollis-Hallett (H.52a) are shown in Fig. 2.5. In
the evaluations made by the latter author, p was
taken from the second sound measurements of Peshkov
(P.46b). It will be seen that the agreement between
the results of the various workers is good.

More recently Hollis-Hallett (H.52b), as reported in
a recent review by Atkins (A.52a), f. has made measure-
ments of the "normal" viscosity p„in helium II by a
rotating cylinder arrangement, in which the torque on
an inner cylinder was measured as a function of the
speed of rotation of a concentric outer cylinder placed
around it. In such an arrangement, the parameter
measured is q„directly, rather than p„p„asobtained
in the oscillating disk viscometer. Unfortunately the
observed couple on the inner cylinder was not linearly
proportional to the speed of rotation of the outer
cylinder as one would expect for normal liquids.
However by extrapolating the results to zero rotational
speed, provisional evaluations of g„could be made and
the results are shown by the broken curve of Fig. 2.5.
It will be seen that p„derived in this way is in good
agreement with g derived from the oscillating disk
method for temperatures from Tq down to about
1.6'K. Below 1.6'K the two sets of results diverge,
those found by the rotating cylinder method lying
lower. This discrepancy at the lower temperatures
may reQect an unreliability in the assumed p„values,
taken from the second sound data and used in evaluating
q„from the oscillating disk experiments.

It is noteworthy that the viscosity p„now shows
relatively little temperature variation, as compared
with the first type of computations shown in Fig. 2.1.
As is shown in Fig. 2.5, q„does not change by more
than a factor of 2 between Tq and 1.3'K. Furthermore,
it appears from both methods of observation (i.e.,
both disk and cylinder methods) that at the lower

temperatures g„begins to show a negative temperature
coeKcient, similar to that occurring in normal liquids
(see liquid hydrogen —K.38c), whereas in helium I
rlrt/BT is positive. This negative temperature coeflicient
of q„below 1.7'K, is of opposite sign to that which

one would expect for a gas type behavior of the
"normal" constituent.

A theory explaining the rise in viscosity g„with
decreasing temperature below 1.7'K has been put
forward by Landau and Khalatnikow (L.49a), based
essentially on the assumption of a rapidly diminishing
number of scattering centers (rotons) with diminution

)Note added in proof.—For full report see Proc. Cambridge
Phil. Soc. 49, 717 (1953).
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of temperature. A fuller discussion of this is given in

Sec. 9.i.

2.5. Flow of Helium II Through Narrow Channels

The superQuid, flow of liquid helium II through very
narrow cha, nnels was observed first by Kapitza (K.38a)
and by Allen and Misener (A.38a). Although the early
work has been reviewed previously (K.42, J.39b, and
D.40), a brief outline of the salient results is of signifi-
cance to a full discussion of the flow phenomena and is
therefore included herewith.

Allen and Misener investigated the properties of
superfluid flow in considerable detail (A.38b and
A.39a) and other workers have also reported early
measurements on Qow through narrow channels,
notably Kapitza (K.41b), Giauque, Stout, and Barieau
(G.38, G.39), and Johns, Wilhelm, and Grayson-
Smith (J.39a).

The method by which Allen and Misener produced
their narrowest capillary channels is of interest and
has been extensively used in other experiments. (See
Brown and Mendelssohn —B.47a.) They placed a
bundle of fine stainless steel wires (about 1000 wires
of about 6)&10 '-cm diameter) in a nickel-silver tube
and drew the tube through a succession of steel dies.
In this way channel widths of order of magnitude
10 ' cm were produced.

The general results obtained by Allen and Misener
with the very fine capillaries can be summarized as
follows 2

(a) The volume flow per second became independent
of the pressure head at temperatures below 2'K.

(b) The velocity of flow was not proportional to the
square of the radius of the channel, as would be expected
for a normal viscous liquid; but instead the velocity
increased with decreasing channel width, indicating
that the flow was predominantly a surface eGect.

(c) The volume flow was not inversely proportional
to the length of the channel as would be expected from

ordinary hydrodynamics; but tended to become
independent of the length of the channel.

(d) The velocity of flow (as determined by measuring

the volume Qow per second and dividing by the channel

cross section) was a function of temperature as shown

in Fig. 2.6. This variation with temperature resembles

very closely both in magnitude and shape that for
flow through surface films (see Sec. 7.1).

' Allen and Misener (A.39a) also made experiments on the flow
of helium II through powder-packed tubes, using powder of
particle size about 10 5-cm diameter. They found a marked de-
pendence of the volume Row on pressure head at all temperatures,
and consequently it could be concluded that the features of Aow
through powders were not necessarily the same as for Row through
capillary tubes. Such conclusions have been drawn by Bowers,
Chandrasekhar, and Mendelssohn (B.SOb and C.53a) from experi-
ments with powders, and by Bowers and White (8.51b), and by
White (W.5ia) from experiments on flow through porous mem-
branes.
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Fio. 2.6. Critical (or maximum) velocity of flow of helium II in
crn/sec through narrow channels at a pressure head of 160 dynes/
cms as measured by Allen and Alfr'sener (A.39a). The upper curve is
for channel diameter 1.2X10 ' cm; the lower for diameter
&.9X10 ' cm.

With such a dependence (or independence) on the
various parameters concerned, it is clear that ordinary
hydrodynamical equations do not apply and that no
value for a viscosity, as normally defined, can be
arrived at for helium II lowing through narrow
channels. For the Qow through intermediate size
channels, the results, as might be expected, showed a
behavior representing a complex mixture of viscous
hydrodynamical flow and of the "superfluid" flow of
the very fine channels. Their quantitative interpretation
therefore is very dificult (see Sec. 8.1). Moreover, as
is discussed in Sec. 4.i, it is now known that superfluid
Qow is strongly dependent on small temperature
diGerences established at the ends of the channels.
Consequently in the asbence of direct observation of
the exact temperatures in the experiments of Allen
and Misener, although presumably they were quasi-
isothermal, a complete quantitative interpretation is
not possible.

The marked similarity of the results obtained with
the narrowest channels with those for Qow through
surface films (see Sec. 7.1), led Allen and Misener to
conclude that there existed two Qows: first a surface
Qow that was superfluid and which could be identi6ed
with the Qow through surface films, and secondly a
volume Qow which perhaps might obey ordinary
hydrodynamics. As the average channel width was
reduced, therefore, the surface or superfluid flow would
become predominant, and resulted in establishing a
critical velocity of Qow, ~.„&,which itself was a marked
function of temperature as shown in Fig. 2.6.

The question of the magnitude of this critical
velocity for superfluid Qow, v„;&, in narrow channels
and its dependence on the channel width has received
much experimental attention; but, as will be seen, the
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TABLE 2, 1. Critical velocities of superfluid Row
through narrow channels.

d
Temp. cm

K x105
&crit

cm/sec

'Itcr it 'd
cm'/sec

X &04

&crit 'd~
cgs units

X&0' Reference

1.2 1.2
1.2 7.9
154 3
1.54 30
158 2
152 3
1.66 10
135 12
Surface Film

1.5 0.2

13
8

40
14
23
20
15
25

40

1.6
6.3

12
42
4.6
6

15
30

0.8

45
71

220
240
105
110
150
275

A.39a
A.39a
K.41b
K.41b
M.47a
M.47a
M.47a
8.52

57 see Sec. 7.4

results obtained are somewhat discordant and it is
not possible at this time to give an accurate picture of
the phenomenon. It is of interest to compare the values
of v„;& obtained by various workers at the lowest
temperatures of measurement where, as is evident
for example from Fig. 2.6, v„;&tends to become tem-
perature independent. Most of the known results are
set out in Table 2.1, which gives the observed values of

as measured by Allen a,nd Misener (A.39a),
Kapitza (K.41b), by Meyer and Mellink (M.47a),
and by Bowers and Mendelssohn (B.52). It is evident
from the Table 2.1 that the agreement between the
various workers is one of order of magnitude only.

It has been suggested, as is detailed in Sec. 7.5, that
for superfluid Qow the following relationship between

v„;tand the channel width d is valid;

wvcrig' d (2.3)

where m is the mass of the helium atom. Numerically
this gives

v„;~d=10 ' cm'/sec, (2.4)

and in the case of helium surface films this is found
experimentally to be approximately correct (see Sec.
7.5 and the values included in the last line of Table 2.1).
For the known results for the superfluid Qow through
very narrow channels, however, as is indicated in
Table 2.1, the observed values of the product v„;t.d
is by no means independent of d, as is suggested by
Eq. (2.3). Moreover, except for the observations of
Allen and Misener using their narrowest channel
(d=1.2X 10 ' cm), this product is numerically much
larger than that demanded by Eq. (2.4). Recent
experiments on the Qow of unsaturated surface films

by Bowers, Brewer, and Mendelssohn (B.51a) also
lead the authors to conclude that v„;&d is not constant.
In the absence of more accurate and definitive experi-
ments on this question, therefore, considerable reserve
should be exercised in the application of Eq. (2.3) to
superfluid Qow phenomena in the bulk liquid through
narrow channels.

Mott (M.49b) has proposed an alternative mechanism
to account for the establishment of a maximum average
velocity of superfluid Row, which would make v„;&

vary with d &, rather than d ' as given by Eq. (2.3).
Mott's model assumes a boundary between the super-
fluid in Qow and the remaining superfluid at rest, and
the surface tension at this boundary would counteract
the tendency for the volume at rest to grow at the
expense of the volume in motion due to the Bernoulli
forces. The critical or ma, ximum velocity of Qow then
would be given when the surface tensional forces could
just maintain the boundary in equilibrium (see Sec.
2.6 for further discussion of this).

Detail of the method of measurement of v„;&by
Kapitza (K.41b) and by Meyer and Mellink (M.47a)
is left until Sec. 4.2.

A number of experiments on the Qow of helium II
through narrow channels have been carried out rela-
tively recently by Mendelssohn and co-workers (Bowers
and Mendelssohn —B.50a and B.52, Bowers, Chan-
drasekhar, and Mendelssohn —B.50b, Bowers and.
White —B.51b) with a view to investigating the pressure
gradients existing within the channels themselves.
Although the results obtained are complex, especially
when the channels were composed of packed powder,
the question of their interpretation overs interesting
problems. The principle of the experimental method is
illustrated diagrammatically in Fig. 2.7 which shows three
reservoirs, A, 8, and C, interconnected by narrow
channels P and Q. A, 8, and C are maintained in the
same liquid helium bath and therefore supposedly at
the same temperature. Superfluid Qow is allowed to
take place from A through 8 to C, initiated by having
the level in A higher than that in C. By the choice of
geometry of the system it can be arranged that in
steady Qow the critical velocity of Qow, v„;&,is reached
in channel P while the velocity, vo, in channel Q is less
than v„;~, or vice versa. It was found that if, for
example, vg &vqzjg and vq=v„;& then in the steady
state the liquid in vessels A and 8 took up the same
level and that level diGerence occurred only between
8 and C. This was interpreted as meaning that super-
Quid Qow could take place from A to 8, at a rate less
than the maximum critical rate, without there being
any pressure gradient across the interconnecting
channel; and, moreover, that all the pressure dis-

continuity was concentrated at the channel showing
the higher "resistance" to Qow. The experiments
showing these results were carried out using channels
of approximately 10 ' cm width, formed either between

FIG. 2.7. Schematic diagram of Row experiments reported by
Mendelssohn and co-workers (B.50a, $.50b, B.52, and C.53a).
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ground-glass surfa, ces or in porous membranes. Other
experiments (B.50b, C.53a) of a similar nature using
powder-filled channels showed more complex behavior.
These results indicate that considerable caution must
be exercised in consideration of the gradient of pressure
in a narrow channel and suggest that perhaps the
pressure gradient exists only at the entrances or exits
of such channels. A brief discussion of such possible
effects has been given by Meyer and Band (M.48a).
Moreover, since such superQuid Qow must be accom-
panied by thermal flow (see Sec. 4.), it would appear
that a full interpretation of the phenomena may depend
on further experimentation in which detailed tempera-
ture as well as pressure measurements are made.

To conclude this discussion on the Qow of helium II
through narrow channels, some remarks on the question
of the frictional forces seem appropriate as, for example,
have been discussed previously by Atkins (A.50b).
From the facts enumerated above tha, t (a) for the
narrowest channels the maximum or "critical"
(average) velocity of flow is independent of the pressure
head and that (b) for velocities of flow less than t.„&
the pressure head is zero or at least very small, it may
be concluded that the frictional force opposing the
Qow is zero or nearly zero for all velocities less than
~„;&and that for velocities greater than v„;~ the
frictional force is extraordinarily large. Such a variation
of the frictional force with velocity is illustrated in

Fig. 2.8 by curve A. Nearly all the evidence on the
flow properties of the surface films also (see Sec. 7)
indicates that the frictional forces involved in surface
61m Qow are also of the type illustrated by the curve A.

There is, however, still some doubt as to the form of
the curve for velocities just below the critical velocity.
For example it has been found by Mendelssohn and
White (M.50a) and by Atkins (A.50b) that for surface
61m Qow out of beakers the velocity of Qow fell slightly
but continuously below the critical velocity when the
pressure head was reduced from values of about 3 mm
of liquid helium to zero; whereas for pressure heads,

dp, greater than about 3 mm, the velocity of flow

remained constant, independent of further increase of
Ap (see Fig. 7.7). This observed smoothing out of the

hP versus velocity relationship for AP—&0, could be
explained by a frictional force diagram given in Fig.
2.8 by the broken part of the curve B. Furthermore,
because of the observed similarities in the behavior
between the Qow through very narrow channels and
the Qow through the surface films, it might be con-
cluded that the modification 8 to the frictional curve
A of Fig. 2.8 could be applicable also to Qow of the
bulk liquid through narrow channels.

An alternative explanation of the diminution of
velocity with diminution of Ap might be found in the
energy balance between potential and kinetic energy.
For free fall, for example, from heights of 3 mm or less
no velocity greater than 24 cm/sec can be expected,
and the velocity versus hp curve should be parabolic

Fio. 2.8. Dependence of
frictional force on velocity
(after Atkins A.SOb). Curve A.
Simple critical velocity theory.
Curve B. Modi6ed critical
velocity theory.
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for any velocity less than v„;&,although this explana-
tion appears to be not supported by the recent observa-
tions of Picus (P.53a), who has examined the film flow
at small pressure heads, or by the experiments of
Mendelssohn and co-workers (B.50a, B.52, B.50b,
B.51b) described immediately above in this subsection;
it seems, as has been emphasized above, that further
experiments are necessary to make a decisive evaluation
of these questions of superQow.

2.6. Flow of Helium II Through Wide Channels

The Qow .of liquid helium through narrow channels
and through surface films is characterized by a critical
velocity and by an almost complete independence of
this velocity on pressure head. This can be interpreted
as indicating that for velocities just equal to v„;&large
frictional forces come into play, which make any
further increase of velocity prohibitively diflicult.

On the other hand, the Qow of helium II through the
wide channels (d &10 ' cm) does not reveal clearly
any "critical" velocity (if a critical velocity exists it
must be very small) and the frictional forces are not
so large as to prohibit a continuous increase of the Qow

velocity with increasing pressure head. The Qow

through wide channels therefore is not characterized
by the complete superQuidity, which is the outstanding
feature of Qow through narrow channels. Therefore, a
study of the properties of Qow through wide channels
in consequence is of interest in evaluating the character
of the frictional forces at play in the nonsuperQuid part
of helium II Qow, forces which are discussed in more
detail in Sec. 8.1.

Detailed experimental studies of the Qow of helium
II through wide channels were made some time ago
by Allen and Misener (A.39a) and by Johns, Wilhelm,
and Grayson-Smith (J.39a). More recently the topic
has been opened up again in the light of subsequent
theoretical development by the experimental work of
Atkins (A.51a) and of Hung, Hunt, and Winkel
(H.52c). All but the latter workers used essentially
the same experimental method, namely that of ob-
serving the isothermal Qow of liquid helium II out
of a cylindrical reservoir of known internal diameter
through a capillary attached to the bottom of the
reservoir. In such a technique corrections have to be
applied for secondary eGects, such as the Qow out of
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different sizes have been measured. This conclusion
can only be avoided by rejecting the data for the
smallest diameter tube used (d=0.262&(10 ' cm).

It is customary to attempt to describe these complex
frictional forces by means of the two fluid theory.
Then, for the case of steady ssotherma/ flow (zero
acceleration of either the superfluid or the normal
Quid), one may write quite generally (see Sec. g)s

u 20--

l5 0
gA

Q + ~X~X
~X

I0 + (
~~&,—o—.

~+ ~-%=X ~~~oP'- o-
K
td l

0

—(p,/p) gradp=F, +F„
—(p„/p) gradP= F„+—F„rI„Vs—v„,

(2 7)5 10 l5

GRAD y tOYNK CQ &)
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where F„is a mutual frictional force due to relative
motion of the superfluid and normal Quid (F,=f(v, v)), —
Ii, and P„areundetermined frictional forces charac-
teristic only of the superfluid velocity v, and of the
normal velocity v, respectively, and where the third
term on the rhs of Eq. (2.7) describes the usual effect
of viscosity.

Various proposals have been overed to describe the
detailed character of the forces Ii„,J"„andI"„,some
of which are outlined below in Sec. 8. The most
extensively investigated proposal is that of Gorter
and Mellink (6.49a) who proposed, in interpreting
data on heat conductivity in helium II (see Sec. 5),
that the dominating term was F„the mutual frictional
force, and that F„wasproportional to the third power
of the relative velocity (v„—v,).

According to Gorter and Mellink then, for isothermal
steady flow under a pressure gradient:

FIG. 2,9. Average Qow velocity as function of pressure head,
according to Atkins (A.51a). Temperature 1.22'K.

Capillary
I

II
III
IV

Diameter
4.40 &(10 2 cm
2.03 )(10 2 cm
0.815)(10 2 cm
0.262)(10 2 cm

Length .

8.04 cm (+)
7.90 cm ()()
8.03 cm (O)
7.76 cm ()

Length
1.75 cm (P)
0.83 cm (Z)

the reservoir upwards through the surface film and
for the existence of possible temperature differences
between the inside and outside of the reservoir. For
details of these corrections, the original papers should
be consulted.

As an illustration of the marked diGerence in the
flow behavior between that in wide channels and that
in narrow channels, the results obtained by Atkins
(A.51a) at 1.22'I for Qow through circular capillaries of
various diameters, as shown in Figs. 2.9 and 2.10, are
typical. In these figures the observed average velocity
of flow is plotted as a function of the pressure head
AP. First, it will be seen that it cannot be concluded
unambiguously that all the curves have a finite intercept
on the velocity axis for Dp= 0, such as would be required
if there existed a "critical" velocity for frictionless
flow, although informed guesses at v„;&can be made.
Secondly, by increasing the pressure head the velocity
continually increases, showing no sign of "saturation"
as in the case of flow through narrow channels. The
slope of the curves does not correspond in general,
however, to what one would expect for normal hydro-
dynamic flow, indicating that the frictional forces
involved are complex in character. It appears that some
combination of a term involving critical velocities
together with other frictional terms is necessary to
describe the results over the whole temperature range.
This conclusion was arrived at by H. Jones (J.39b)
in his detailed analysis of Allen and Misener's (A.39a)
results.

Atkins (A.51a) attempted to interpret these results
by means of the equation

n= ttt(d)+ns (gradp)+vs(d, gradp),

(p,/p) gradp =A p,p„(v„—v,)',

(p /p) gradp= —Ap,p„(v„—v,)'—rl„g'v„,
(2 g)

where A is a constant characteristic of the mutual
friction. As has been shown by Atkins, (A.51a) the
above equations lead to the following evaluation of
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(2 5) Fro. 2.10. Average liow velocity as function of pressure head,
according to Atkins (A.51a}.Temperature 1.22'K.

es ——rr(d) gradp. (2.6)

&nfortunately this forces the conclusion that rr(d) has a
minimum for d=8)(10 ' which is surprising and seems
somewhat arbitrary when it is recalled that only four

Capillary
I

II
III
IV

Diameter
4.40 +10 2 cm
2.03 &(10 ' cm
0.815 &(10 2 cm
0.262 +10 2 cm

Length
48.6 cm
46.6 cm
8.03 cm
7, 76 cm

Symbol

0
0

' For a recent review of this question see also Atkins (A.52a).
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the average velocity of Qow 8 through a cylindrical
capillary of radius r:

p, (—gradpq & d'( —gradp)
I+

p E happ. ) 32'„
(2.9)

+bd I (gra—dp) I, (2.10)

In comparing his experimental results for Qow of
helium II through wide capillaries with this theory,
Atkins (A.51a) concluded that the observed variation
of 8 with gradp was in agreement with that of Eq.
(2.9), indicating that the mutual frictional force would
depend on the third power of (v,—v„).By making the
assumption that in capillary III (see legend to Fig.
2.9) v3 Lsee Eq. (2.5)) was negligible, Atkins evaluated
the Gorter-Mellink constant A and found approxi-
mate agreement with Gorter and Mellink's values.
Moreover A was constant to an order of magnitude.
However, the observed dependence of 8 on d was not
in agreement with the theory. The more recent measure-
ments of Hung, Hunt, and Winkel (H.52c), which are
described brieQy in Sec. 5, also for Qow through wide
capillaries, also indicated that at sufficiently high
relative velocities F,~ (v,—v„)'.However, these new
measurements showed that the constant A (see Eq.
2.8) was not a constant, but depended strongly on
channel width, especially at the lower temperatures
(T-1'K).

Atkins suggested that turbulence should be con-
sidered in Qow through wide channels, but cautioned
that if the fundamental postulate of Landau and
London that curl v, =0 (see Sec. 3) is accepted, turbu-
lence does not seem possible, since turbulence would
not exist in the superQuid and could hardly exist in
the normal Quid for the Reynold's numbers observed
(for the normal fluid R= i28dp„/rI & 750).

However, several years ago Jones (J.39b) indicated
how, in a qualitative way, the results of Allen and
Misener for the Qow in large capillaries could be
interpreted by assuming that turbulent Qow occurred
in some of the capillaries. It is our belief, also, that
among presently postulated or known mechanisms,
turbulence is necessary to explain the behavior of
helium II in wide capillaries. For it seems very signi6-
cant that in their widest capillary Allen and Misener
found that the velocity of flow fell as the temperature
was lowered from the X point, while for streamline
flow the second term of Eq. (2.9) predicts an increase
in velocity. Moreover, no choice of the temperature
dependence of the Gorter-Mellink constant A will

compensate for the behavior of the streamline Qow

term in Eq. (2.9).
In order to show the possibility of turbulence we

will compare Allen and Misener's and Atkins' data
at 1.2'K with the semiempirical formula

TABLE 2.2.

Capil-
lary

Diameter
d, cm

Vcrit at
gP ~0 Vcrit 'd~
cm/sec cgs units

Vcrit 'd
cm~/sec Reference

A

C

4X10-4
8X10 5

1.2X10 5

4 0.08 16X10 4

8 0.07
13 0.04 1.6X10 4 A. and M.

(A.39a)
I 4.4X10 ' 0 5 0.10
II 2.03X10~ 0.7 0.10
III 0.81~X 10 2 1.0 0.08

IV 0.262X10 ' 3 1 0.15

220X 10-4

Atkins
(A.SIa)

81X10—4

+30d'(gradp) &.

dk
(2.11)

When we compare this equation with Allen and
Misener's results (A.39a) we find semiquantitative
agreement with their curves for velocity versus diameter,
the position and value of the minima being predicted
with little error. A comparison of the experimental
results with Eq. (2.11) is given in Fig. 2.11.

2.7. Problem of the Viscous Forces

The question of the nature of the frictional forces,
occuring, for example, in the motion of helium IE
through wide channels, has been investigated experi-
mentally in some detail by Hollis-Hallett (H.50a,
H.52a). These experiments, together with more recent
ones by the same author (H.52b) using a rotating
cylinder viscometer, have been quantitatively dis-
cussed at some length in a recent review by Atkins

in which u and b are constants. The first term in this
equation corresponds to Mott's (M.49b) expression
for the critical velocity (see Sec. 2.5); the second gives
approximately the relationship between velocity, diam-
eter and pressure for classical turbulent Qow.

The constant a of Eq. (2.10) has been determined
from (i) Allen and Misener's data on three specimens
in which Qow took place between close-packed wires,
(it was assumed that in such fine interstices the flow
was pressure independent at 1.2'K), and (ii) from
Atkins' results shown in Figs. 2.9 and 2.10, after
reasonable guesses have been made as to the critical
velocities. The data used are set out in Table 2.2 and
yield the value a=0.07 cgs units. I'rom Table 2.2 also
it is clear that v„;&d: is more nearly constant than is
v.„~d, a feature that was not so marked in Table 2.1.

To check the form of Eq. (2.10) we have plotted log
(v —v„;t) versus log (gradp) from Atkins' data (see
Figs. 2.9 and 2.10) and found that the slopes of these
curves lie between 0.43 and 0.59, so that we may take
the exponent of grad p in Eq. (2.10) equal to 0.5
with sufficient accuracy.

In evaluating b from Atkins' 6gures, we have found
for all curves, and for 5& gradp&15 that 20 &b &40.
If one assumes b=30, Eq. (2.10) can be written:

0.07
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(A.52a), and consequently we will confine ourselves
here to a qualitative outline of the main results.

In his measurements of the viscosity of helium II
with an oscillating disk viscometer (see Sec. 2.4),
Hollis-Hallett extended his observations to larger
amplitudes of oscillation than had previously been
carried out. If 8„is the amplitude of the eth swing of
the disk, then the logarithmic decrement 8 given by

1 eloge„
)

2x' Js
(2.12)

provides a measure of the damping forces acting on the
disk. For an ordinary viscous liquid 8 is independent
of amplitude, as Hollis-Hallett found for helium I.
In helium II, however, he found that the logarithmic
decrement 8 was independent of amplitude for 8(0.1
radian; but that for 8&0.1 radian, 8 increased markedly
with increasing amplitude, especially at the lower
temperatures of measurement.

In order to explain this variation in the damping
term 8 with amplitude it is necessary to introduce
frictional forces which are more complex than that
associated with normal viscosity. The mutual frictional
forces due to the relative motion of the superQuid and
normal constituents of the liquid, as introduced by
Gorter and Mellink (G.49a) and given by (see Secs.
2.6 and 5.5)

F„=Ap,p (v. v)', —(2.13)

presents a possibility of explaining Hollis-Hallett's
results. The solution of the hydrodynamic equations
based on the Gorter-Mellink mutual friction theory
for an oscillating disk in the two-Quid liquid has been
given by Zwanikken (Z.50b) and the results of these
computations are given by the full curve of Fig. 2.12.
In this figure the excess decrement (8—8s) is plotted

I '2 5 l 2 )5 I 2 5 ll 2 i5

lO 5 iO ~ tO-~ tO-2 lO-1

CAPlLLARY SIZE (radius or mean channel width tn cm )

FrG. 2.11.The variation of velocity with capillary size for two
diferent pressure gradients at 1.2'K. The solid curves are taken
from Allen and Misener's experimental results (A.39a) (their
Fig. 6). The broken curves are computed from our Eq. (2.11)
in the text. Lower pair of curves are for gradp=0. 75 dynes cm '.
Upper pair of curves are for gradp=8. 0 dynes cm ~.
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FIG. 2.12. Comparison with the
Gorter-Mellink theory of the
values of the excess decrement
(8—80) found with a single disk
at an amplitude of 0.215 radian
and a period of 3,78 sec. The full
curve is the theory, the circles the
observed results, and the broken
curve p, scaled to 6t the points.
(Hollis-Hallett, H.52a, )

against temperature for observations at an amplitude
of 0.215 radian and of period 3.7 sec. (The excess
decrement is the excess value over the decrement 8p

at zero amplitude. ) Also in Fig. 2.12 are plotted Hollis-
Hallett's observed results and the broken curve plots
p, scaled to 6t the results. It will be seen that the
Gorter-Mellink frictional force, represented by the
full curve, is inadequate to account fully for the
variation of 8 with temperature. It is of interest,
moreover, to note that the excess decrement (5—8p)

appears to be proportional to the superAuid density
p„afeature which may indicate that the signi6cant
frictional force involved is a function of e, only.

These interesting results obtained with the oscillating
disk viscometer at large amplitudes, i.e., for large
peripheral velocities, have been complemented by
further work by Hollis-Hallett (H.52a) on the oscil-
lations of a pile of plates in liquid helium II. This is
essentially a repetition of Andronikashvili's experiment
(A.46), (see Sec. 2.3), in which, however, large ampli-
tudes of oscillation are used. HoHis-Hallett found for
the oscillations of the pile of plates that not only did
the logarithmic decrement 6 increase with increasing
amplitude 9 as for the single disk, but also that the
period of oscillation increased with increasing 0.
From the increase in period it is concluded that the
super Quid constituent is dragged more and more
with the pile of plates at higher velocities, as would
be expected if there were either a force of mutual
friction Ii, or a force of friction J'„between the plates
and the superAuid. The detailed results indicate that,
whereas a mutual frictional force I"„atleast similar to
that postulated by the Gorter-Mellink theory, is
undoubtedly present, there must exist other frictional
forces of unspecified character.

.A further experiment indicating th'e possibility of
dragging the superAuid constituent into rotational
motion has been carried out by Osborne (0.50). In
this experiment a cylindrical beaker (inside diameter
1.4 cm) was rotated about its vertical axis with angular
speeds of from eight to sixteen rps and the shape
of the meniscus was observed. It was found that over a
range of temperature, the meniscus was parabolic and
corresponded to that which would be expected if all
the liquid were rotating with the speed of the beaker.
Osborne concluded that the peripheral velocities
involved (35 to 70 cm/sec) were higher than the
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"critical" velocities for superQuid motion and, hence,
the superQuid constituent was dragged around with
the normal Quid.

This conclusion is in agreement with the conclusions
drawn from the experiments of Hollis-Hallett mentioned
previously. Very little, however, can be deduced from
the experiment concerning small peripheral velocities
of value less than the "critical" velocity; and no
conclusions, therefore, can be drawn regarding the
postulate of Landau (L.41a) and London (L.46a)
that curl v, is zero for subcritical velocities.

Experiments also on liquid helium in rotation have
recently been carried out by Andronikashvili (A.52c),
being in general outline similar to a suggested experi-
ment put forward by H. London (L.46b). A system
of a pile of circular horizontal plates, fitting inside a
copper cylinder similar to that used also by Androni-
kashvili for his determination of p (A.46), was sus-

pended from a torsion fiber in liquid helium II and
set into steady rotation of 0.5 rps at 2.17'K. It was
then cooled to 1.5'K and stopped by means of an
electromagnetic damping arrangement. The damping
was then removed and the system heated to 1.65'K
in 15 sec, so that p„increased from 12 percent to 22 per-
cent in the heating process. If the superQuid was in
rotation at the lower temperature, then, on heating, the
fraction of the liquid transformed into normal Quid

should give up its momentum to the vessel. No experi-
mental evidence of the vessel acquiring such momentum
was observed.

p= pa+pn ~ (3 1)

The macroscopic implications of the two-Quid model,
characterized by this and a few other equations which

we shall presently display, were 6rst extensively
discussed by Tisza (T.38a, T.38b, T.38c, T.40). These
implications we shall describe more fully in Secs.
4.7 and 8.1; here we wish to discuss brieQy the micro-
scopic theories which on the one hand justify this
model and on the other hand elucidate other properties
of helium II. Our treatment will be qualitative and
suggestive rather than exhaustive for neither is there
room in a general review of this nature for' great
detail nor is there need for it since the publication of
Dingle's review of the theories of helium II (D.52a).
Four basic theories will first receive consideration:
that associated with the name of F. London (L.38a,
L.38b), that of Landau (L.41a, L.41b, L. 44a), that
of Green (G.48a, G.48b), and that of Prigogine and

3. THEORETICAL BASES OF THE TWO-FLUID
THEORY

3.1. Gerieral Remarks

It has been shown that the explanation of the
peculiar viscosity of helium II is facilitated by the
introduction of a two-Quid model of the liquid in which

Philippot (P.52a, P.53b, P.53c).) The first of these
chronologically was that of F. London. It predated
and inspired the phenomenological theory of Tisza.

3.2. London's Theory

London (L.38a, L.38b) pointed out the similarity
between the transformation of helium I into helium II
and the degeneration which can occur at suKciently
low temperatures in a perfect Bose-Einstein gas. In
the perfect Bose-Einstein gas the degeneration or
"condensation" consists in a Rnite fraction of all the
particles dropping into the lowest energy state where
they are characterized by a uniform distribution in
configuration space but by only a single momentum;
i.e., they are ordered or "condensed" in momentum
space. This condensation corresponds to a third-order
phase change (there is a discontinuity in the slope of
the specific heat). Below the degeneracy temperature,
given by the temperature of the peak appearing in
the specific heat curve, the particles drop into the
lowest energy level in increasing numbers and the
entropy of the gas drops rapidly toward zero.

Since non-interacting helium atoms would obey
Bose-Einstein statistics, London sought to explain
the properties of helium II by this gas model. The
uniform distribution of the gas in configuration space
he considered to be mirrored by the liquid helium II
in that the latter shows no regularities of structure not
already present in helium I (K.36a, R.40, R.47) and
the ordering in momentum space to be mirrored in the
superQow of helium II. Of course liquid helium is by
no means an ideal gas, so the model is far from perfect;
however, the degeneracy temperature for the model
was found to be 3.13'K in fair agreement with the
experimental value of 2.18'K for the X temperature
of helium II.

In other respects the perfect gas model differs quanti-
tatively from helium. The specific heat anomaly is
much less strong for the gas and the variation of p„
and of the entropy with temperature is slower for
the model than for the experimental substance. $o.

in Eq. (2.2) is only ssfor the gas. f These quantitative
differences prompted London (L.39a) to modify the
theory by changing the density of energy states of
the particles from that appropriate for free particles
to that approximately appropriate for particles moving
in the average potential Geld of their neighbors. In
this way, by an ad hoc choice of the density-of-states
function, London was able to make the theory follow
the experimental specific heat and to increase the
exponent 0- to 5. However, a diKculty arose in this
treatment, in that it was necessary to postulate that
only a fraction (0.136) of the particles "condensed"—even at the absolute zero—in order to obtain the
desired specific heat curve. Such a postulate is in-

$ Note added ie proof.—Feynman's theory was published un-
fortunately after this paper was completed. See Appendix for
references to it and see footnote ~(.
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consistent with the observed entropy (see Sec. 4), and
has since been abandoned by London (L.45).

The conclusion reached originally by F. London,
that modifications of the perfect Bose-Einstein theory
to take account of interatomic forces were necessary,
has been reaflirmed by work of Goldstein (G.41),
Lamb and Nordsieck (L.41c), Becker (B.50b), Leibfried
(L.50b), and Halpern (H.52e and H.52f) who have
considered the effects due to external force fields.

Following London's first paper on the subject, a
great deal of work has been done on the theory of the
Bose-Einstein gas and its applicability and application
to the helium problem. Ke shall refrain from discussing
this work in any detail here. We will, however, mention
a few refinements: Bijl, deBoer, and Michels (B.41)
have discussed a smoothed potential model of a Bose-
Einstein liquid, in which they justify intuitively the
inclusion of an energy gap between the ground state
of the molecules and all excited states. In one modifica-
tion of their theory the value of the energy gap is
taken to be a linear function of the occupation of the
ground state. The result of these measures is to bring
the theoretical specific heat curve into closer agreement
with experiment near Ti. Toda (T.51d) has introduced
the idea of molecules of several helium atoms in equilib-
rium with the ground state in order to justify an energy
gap. His results are similar to Bijl, deBoer, and Michels.
Goldstein (G.46) has considered a Bose-Einstein
liquid in which deviations from the ideal gas character
due to interatomic forces are treated by averaging
over the volume of the system. The resultant eGects
on the order of the transition are discussed.

More rigorous developments of the gas model have
been made by Feynman~~ (F.53a) who has shown that
interactions between helium atoms do not obliterate
the X transition, and by Friedman and Butler (F.53b)
who have approximately treated the partition function
of a Bose-Einstein gas with interactions. Considering
only repulsive forces between particles, Friedman and
Butler obtain 2.4'K for T~, and a profile of the specific
heat more closely resembling the experimental curve
than does the specific heat of the ideal gas.

It should be stated that none of the above theories
gives a specific heat similar to that observed at tem-
peratures below 0.6'K. The observed specific heat
varies as T' in this region (see Sec. 3.3 and Sec. 4)
and is apparently that due to phonons in the liquid.

3.3. Landau's Theory

Landau (L.41a, L.44a) rejected the idea that the
type of statistics obeyed by the helium atoms has
anything to do with the superQuid properties of helium
II. To him, the essential property of helium was its

~~
Note added sn proof The full' presentatio. n—of Feynman's

theory of liquid helium occurred after this paper was completed
in September, 1953. The reader is referred to the original papers
LPhys. Rev. 91, 1291, 1301 (1953); 94, 262 (1954)j, since any
attempt to review this work in a footnote would only do it an
injustice.

remaining liquid down to absolute zero. At absolute
zero the liquid would be in its ground state, which
state was assumed to be free of vorticity. Landau
attempted to prove this assumption by demonstrating
that . vortex motions, which would be quantized,
would require the addition of a finite energy increment
to the system, just as in atomic systems the quantiza-
tion of angular momentum leads to finite energy
increments. The energy increment 4 was assumed to
be positive; i.e., the system with one unit or more of
vortex excitation would have an energy greater than
the ground state. Although this assumption does not
prove that the ground state is vortex free, it is natural
to suppose that vorticity would increase the entropy
of the system, and hence excitation of vorticity would
represent departure from the zero temperature state.

Departures from the ground state could also arise,
as Landau pointed out, from the excitation of one or
more units of sound-wave energy, or "phonons. "
Landau proposed analogously that the unit of vortex
excitation be called a "roton. " States near the ground
state, therefore, were characterized by the numbers and
energies of the phonons and rotons superimposed on
the ground state.

As long as this superposition is valid, the specific
heat and entropy of the system are identical with the
specific heat and entropy of the excitations, which
quantities may be calculated when their energy spectra
are known. For the phonons, as is generally assumed
E=peti, where E is the energy, p is the magnitude of
the momentum of the phonon, and I& is the velocity of
sound. For the rotons, Landau assumed the spectrum

E=6+p'/2p, , (3.2)

where 6 is the energy increment or gap mentioned.
before, p is the linear momentum of the roton, and tt
is the effective mass of the roton. By treating 6 and p,

as adjustable parameters, Landau (L.41a) was able to
fit the specific heat curve of helium below the X point.
To fit the experimental curve in the temperature
range 1'K to 2.18'K the values of the parameters
chosen were t)/k=8 to 9'K, tt=7 to 8 He' masses. s

Landau arrived at the conclusion that the ground
state and the excitations, respectively, play the role of
superQuid and normal Quid. The excitations are
"normal" because they may be scattered and reQected,
and hence show viscosity. If, for some reason such as
the presence of a temperature gradient, the excitations
acquire a drift velocity, their drift momentum per
unit volume may be calculated as a function of that
drift velocity. Landau said that the drift momentum
density divided by the drift velocity is the normal

4 For the phonon specific heat Landau (L.41a) calculated the
value C„q=4.4)&10 'T' cal/g-deg from the observed compres-
sibility data of Keesom (K.36b). This is to be compared with
Cos 5.6X10 'T' cal/g-deg as recently experimentally observed
by Kramers, Wasscher, and Gorter (K.52a). It is to be noted that
for 1.0'K&T&2.18'K, C„p,would be negligibly small compared
with C,of, using the chosen values of 6 and y given above.
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density p„.If p„is less than p, the diBerence is the
density of the ground state p„i.e., p, =p—p„.So
defined, ' p„is an increasing function of temperature
and the temperature for which p„first equals p is the

temperature. The P temperature calculated in this
way —by treating the excitations as an ideal gas—was
found to be 2.3'K, close to the observed P temperature.

To show that the Quid associated with the ground
state was superQuid, Landau considered the Qow of
helium II in a tube and deduced the result that the
helium could not absorb a phonon from the walls
of the tube unless it was Qowing with a velocity relative
to the tube greater than the velocity of sound. By a
similar argument he found that rotons could not be
absorbed at relative velocities less than a "critical
velocity" equal to (2h/Ii)'*. Below the lesser of these
two velocities (they are of the same order of magnitude)
the Qowing helium would not interact with the walls

and, hence, would be superQuid —unless, as Landau
said, some other mechanism yet undetermined limited
the Qow.

By such arguments Landau justified a two-Quid
model. It is a model in which Eq. (3.1) and other
equations of Tisza s macroscopic model have signifi-

cance. However, it is important to understand that
the expression "two Quid" is not to be taken literally
in this treatment. There is but one Quid in which,
because of low temperature, all the modes of motion
are not excited. The excitations present can transport
momentum independently from the Quid as a whole
and act like a normal Quid. The unexcited residue
acts like a superfluid.

In a later paper Landau (L.47a) modified the roton
energy spectrum, and suggested that:

This modification with its three adjustable parameters
was introduced in order to bring Landau's evaluation
for the velocity of second sound (see Sec. 9) into better
agreement with experiment. He proposed tha, t 6/k
=9.6'K, p, =0.77 He' masses, and Ps/k=1. 95)&10s
cm '. Unfortunately, these values of the constants
cannot be checked independently. At best it can be
stated that with these values of 6, p, , and ps Eq. (3.3)
as a whole is not inconsistent with the specific heat
measurements.

%e should make some comments on this theory.
First, we note that the theory has little to say about
the 'A-point transition. It can be made to reQect the
shape of the observed specific heat curve below the
) point but does not predict a X discontinuity in the
specific heat. However, the question of the X dis-
continuity and the associated question of the order of

' Temperley (T.51h) has suggested that at extremely low tem-
peratures this "linear" defInition of p„may difter from the "rota-
tional" one, as measured by the oscillations of piles of plates
(see Sec. 2.3). This difference would arise if in the rotational case
some excited states corresponded to zero angular momentum.
Dingle (D.52a) has expressed a contrary opinion.

the phase change has been discussed by Goldstein
(G.53) who has emphasized the importance of the role
of the phonons even at the transition temperature.
Secondly, it is seen that although the fitting of the
entropy and the calculation of p„depend critically on
the sign and magnitude of the energy gap 6 this
quantity cannot be approached from first principles.
There is no way of telling, for example, whether 6
for liquid He' should be of such sign and magnitude
as to lead also to superQuidity. Lastly, the exact
nature of the "roton" is not clear. About all that may
be said is that the roton is an excitation with an energy
given by Eq. (3.3).

Considerable progress has been made toward render-
ing Landau's theory more rigorous. Kronig and Thel-
lung (K.52b) have given a quantum theory of the
irrotational hydrodynamical field in which the concept
of phonons is made more precise. More recently
Thellung (T.53b) has succeeded in quantizing a
hydrodynamical field containing vortices. His Hamil-
tonian contains a phonon term, a roton term, and an
interaction term. Unfortunately, he has not been able
to determine the energy levels of the rotons.

3.4. Green's Theory

Green's theory (G.48a, , G.48b) is based on the
quantal formulation of the kinetic theory of liquids of
Born and Green (B.47b, B.47c). The essential property
of the quantum treatment, according to Green, is the
distinction between intensive properties when (i)
defined thermodynamically, and (ii) defined by kinetic
theory. Especially important is the difference between
the thermodynamic pressure p, given by the thermo-
dynamic formula p d V= dW (the work done in moving
a boundary), and pi, the kinetic pressure whose
gradient determines the mean acceleration of the
molecules. The thermodynamic pressure is given by a
series, p=p&+ps+ps+ . in which the p; vary in
relative importance with temperature. When p,,
+p,+ become comparable with pi, the liquid
behaves in a manner not predicted by classical thermo-
dynamical formulae; in particular, the first law of
thermodynamics takes different forms depending on
whether the liquid is at rest, undergoing steady motion,
or undergoing periodic motion.

On this difference between classical and quantal
liquids Green based the explanation of the behavior of
He II. A specific calculation showed that s =pi —p first
becomes significant when energies of the order of
2h'/mrts are excited (ri is the interatomic distance for
which the potential energy is a minimum and which
is about 3 a.u. for helium) due to contributions from
the states of angular momentum l=2, 4, etc. This
corresponds to a characteristic temperature To given by

Ts 2It'/mkrts=2. 3'——K (3.4)

which Green identified with the A temperature. Below
this temperature he showed that thermal waves arise:
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these waves propagate heat and. mass in opposite
directions. The anomalous specific heat and density
of helium II were attributed to the presence of these
waves and the mechanocaloric effects (see Sec. 4)
were explained by the same mechanism.

Green, moreover, pointed out that at the charac-
teristic temperature, To the radial distribution function
in the liquid would undergo considerable modification,
such that for T&To the maxima in the radial distribu-
tion function characteristic of a normal liquid disappear,
as shown in Fig. 3.1. Since it is known that the eGect
of the higher angular momentum states, which are
excited for T&TO, is to contribute to the normal
maxima in the radial distribution function, Green
concluded that the unusual features of liquid helium
would disappear above To.

Green considered that the analysis of the density
according to Eq. (3.1) is artificial. He stated that
fluctuations in the pressure can be interpreted as
density Quctuations by the formula gap= s+5x
= Tp(p, /p)+s s (p„/p), but warned that the hypo-
statization of these densities may lead to unreal and
absurd predictions. In his theory the two-fluid model
is all but rejected.

A more complete discussion of this theory is beyond
the scope of this review for the mathematical com-
plexities are great.

Speaking now of its criticism, it must be noted that
several authors have diEered with Green at the very
basis of the theory. They have found that p& ——p
identically. For bibliography on this question the
reader is referred to the review by Dingle (D.52a),
where he will find a further discussion. Another question
concerns the very marked change in the radial distri-
bution function which Green predicts should take
place at the X transition. (See Fig. 3.1.) It is surprising
that the x-ray investigations of Keesom and Taconis
(K.36a) and of Reekie (R.40, R.47, R.53a) have not
shown the existence of such a change.

3.5. Prigogine and Philiypot's Theory

The recent theory of Prigogine and Philippot (P.52a~

P.53b, P.53c) gives a model of the thermal properties
of helium II. No attempt is made to discuss the dy-
namical properties of the liquid. The model is a generali-
zation of the cell model of an ordinary liquid developed
by Lennard-Jones and Devonshire in which the total
partition function for the liquid is obtained from the
partition function at one typical molecule which moves
in a cell determined by the molecule's neighbors.
Prigogine and Philippot generalize this model by
considering the fluctuations in the number of particles
occupying a cell. In ordinary liquids, far from their
critical points, the volume of a cell is only great enough
to accommodate one molecule, but in helium even at
low temperatures, the large zero-point energy of each
atom insures that the volume of a cell (=V,t/E~. t)
is much greater (i.e., about 3 times greater) than the
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FIG. 3.1. The radial distribution function. Upper curve for a
normal liquid; lower curve according to Green (G.4gb) for liquid
helium II at I'K. (Curves due to Mendelssohn, M.49a.)

"hard sphere" volume of the molecule. Therefore,
only in helium may multiple occupation of a cell be
expected. The authors first develop the partition
function for the case that 0, 1, or 2 particles may
occupy a cell and find a specific heat in excess of that
of an ordinary liquid, which excess speci6c heat for a
reasonable choice of energy constants reveals a hump
of about 1 cal/mole degree high at 1.5'K. A second
model in which cells of volume=2V/E are occupied
by 1, 2, or 3 particles yields essentially the same
results for 8-E particles, but for Fermi particles the
specific heat excess is smeared out with a maximum at
a much higher temperature (actually a temperature
near the critical temperature). In summary, this simple
model shows roughly how a X type of specific heat
anomaly may arise in He4, but not be found in He', that
is, the model shows the analog of a Bose-Einstein con-
densation.

In their two subsequent papers, Prigogine and
Philippot show, first, how their model leads to a
negative coefficient of expansion of the liquid below the
"X point, " i.e., the maximum of the specific heat
anomaly; and, second, how a cooperative eGect among
the fluctuations leads to an infinity in the speci6c heat
at Tq rather than a smooth hump. This cooperative
eGect arises, they suggest, because the "excitation
energy" for two molecules in a cell decreases with
increasing number of fluctuations, i.e., as the tempera-
ture is increased.

3.6. Temyerley's Fusion of the Landau and
London Models

London's theory of the Bose-Einstein liquid has
had considerable success in explaining the properties
of liquid helium in the neighborhood of Tj,. Besides the
explanation of the specific heat anomaly, it furnishes
also a logical basis for an explanation of the viscosity
of liquid helium, which in this temperature region is
gas-like rather than liquid-like (see Sec. 2.1). Further-
more, evidence to be discussed in Sec. 3.7 below indi-
cates that the statistics of the particles plays an



PROBLEM OF LIQUID HELIUM

important role in the behavior of the liquid since
liquid He' is in many ways different from liquid He4.

On the other hand, Landau's model is in closer
accord with experiment below T=0.6'K. As has
already been pointed out, the low temperature specific
heat is apparently that of longitudinal phono ns,
while the experiments on second sound (Sec. 9.4) also
indicate that the informal density p„ includes the
effective mass of the phonons as Landau predicted.
In fact, in order for a theory based on the Bose-Einstein
condensation to be successful in the region below about
1'K, it has been necessary to add the phonon specific
heat and mass to those quantities derived for the gas.

In view of these results, Temperley (T.52a) has
concluded that the Landau approach is the proper
one at lowest temperatures, but loses its validity
above say, 0.6'K, while the London model is valid
above, say, 1.5'K. Between these temperatures there
is a transition region in which neither a solid nor an
almost perfect gas furnishes a good approximate model.
In attempting to reconcile the two models named above
Temperley (T.52b) has recently outlined a theory
in which large clusters in coordinate space (showing
the properties of a Debye lattice) are in statistical
equilibrium with small clusters in momentum space
which play the role of the superQuid component. '
The A, transition announces the appearance of the
clusters in momentum space. The possibility of the
formation of the two kinds of clusters in equilibrium
with each other Temperley ascribes to the known fact
that the binding forces in helium are just about strong
enough to form a stable molecule. Because of the
different symmetry properties of He' and He4, Temperly
does not expect He' capable of forming clusters in
momentum space.

3.7. Experimental Evidence Concerning the
Statistical Basis for the X Transition

In attempts to test the merits of these theories
great interest has centered on the question of the
importance of the Bose-Einstein statistics and in

consequence experimental attention has been focused
on the rare helium isotope of mass three. Since the
He' atoms obey Fermi-Dirac statistics, liquid He
should not show superQuidity if, as would seem reason-
able from the large molar volume of He', liquid He'
is as well approximated by an ideal Fermi-Dirac gas
as London has postulated He4 to be by an ideal Bose-
Einstein gas. This criterion was suggested independently
by Pollard and Davidson (P.42), by Franck (F.46),
and by Onsager (0.48a).

6 The thermodynamics resulting from the assumptions of the
occurrence of molecular association below Ty have been discussed
by Rice (R.49 and R.50). Although it is diifrcult to decide un-
ambiguously from the existing experimental evidence whether
such molecular complexes are in fact formed in configurational
space, measurements of the electric polarizability (K.28a, K.28b,
and G.SOc), of the refractivity (J.38), and of the light scattering
(J.43) have failed to reveal any significant difference in these quan-
tities either in liquid helium I or liquid helium II.

The first experimental indications of the probable
importance of the statistics were given by Daunt and
co-workers (D.47a, D.47b) in measurement of the
superQow of dilute mixtures of He' in He4. They found
that the He' atoms did not partake in superQow either
in films or in the bulk liquid, a result confirmed by
Lane and co-workers (L.48a). Subsequently, more
decisive measurements were made on the Qow of pure
liquid He' by Osborne, linstock, and Abraham
(0.49a) who found no superfluidity at any temperature
between 1.05'K and 3.2'K, the normal boiling point.
Later work by Daunt and Heer (D.SOa) on the X

temperatures of solutions of He' in He', with measure-
ments extending to solutions containing 89 percent
He' (which last solution showed a X temperature equal
to 0.38'K), indicated that pure He' could not be
expected to show superQuidity above 0.25'K.

There is, however, one piece of experimental evidence
which complicates the picture presented in the last
paragraph and which has yet to receive satisfactory
explanation. Recent measurements of Hammel and
Schuch (H.52d) indicated an anomalous film flow of
He' out of solutions of He' and He'. The He', comprising
about four percent of the solution, was observed to
Qow through Nmsaturated surface films in the same
manner as does He', i.e., apparently with zero pressure
gradient, although at a much slower rate. However,
these investigators have not detected any superQow
in pure He', so the previous experiments of Osborne,
Weinstock, and Abraham are not contradicted. Since
the presence of the He4 appears to be necessary to
produce this anomalous Qow in the He' through the
unsaturated film, and since no anomalous He' Qow
has yet been observed through saturated films, it is
not to be concluded from these experiments that
He' is necessarily the same kind of liquid as He4.

Other indirect evidence exists that liquid He' is
not completely unlike liquid He'. Many of the detailed
properties of liquid He' were beautifully predicted by
deBoer and Lunbeck (B.48b), using deBoer's "Quan-
tum Law of Corresponding States" (B.48c) without
consideration of the statistics involved. In particular,
the vapor pressure equation was predicted quite
accurately. Of course this is not very strong evidence
against the "Bose-Einstein hypothesis" of F. London;
it is rather evidence that at least some of the properties
of liquids at very low temperatures may be insensitive
to the nature of the particles —or to put the matter
another way, that many properties of He4 (and He')
may be "explained" without a fundamental knowledge
of the system involved. For a parallel example of a
virtual stalemate, the reader is referred to the discussion
of the variation of the ) temperature in He' —He'
mixtures presented by Daunt (D.52b). in a review of
the properties of He' at low temperatures. There it is
shown that a broad range of models, some involving
consideration of statistics and some not, lead to pre-
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FIGs. 4.1 and 4.2. Apparatus used for observing the "fountain
effect" Allen and Jones (and Misener) (A.38c).

dictions that can scarcely be distinguished experi-
mentally.

From our discussion of the experimental evidence
it should appear that it is not necessary to assume that
liquid He' possesses the peculiar properties of helium II.
The experimental evidence seems to point the other
way at present. However specific heat measurements or
vapor pressure measurements at still lower tempera-
tures for liquid He' appear necessary to m.ake the
conclusions more decisive. $

4. THERMOMECHANICAL EFFECTS AND THE
SUPERFLUID AND NORMAL ENTROPIES

4.1. The Therrnomet:hanical Effect
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noticed that their observations were disturbed by a
peculiar Qow of liquid occurring in the opposite direc-
tion to the Qow of heat. The observations, which were
first formally reported by Allen and Jones (A.38c),
were made with an apparatus, illustrated in Fig. 4.1,
consisting of a closed reservoir containing liquid
helium II and connected to the main helium bath
through a narrow capillary channel. Under isothermal
conditions, as would be expected, the liquid levels
inside and outside the reservoir would remain at the
same height. When heat was introduced electrically
inside the reservoir, it was found that liquid Qowed
into the reservoir and, as a result, the inside level rose
above that of the liquid in the bath. This unusual
behavior was strikingly emphasized by the following
experiment of Allen, and Jones, (and Misener) (A,38c),
employing an apparatus illustrated in Fig. 4.2, in
which the reservoir was in the form of a narrow vertical
glass tube partially immersed in a bath of liquid
helium II. The lower end of the tube was constricted
by a multiplicity of fine channels formed by the
interstices of a tightly-packed plug of emery powder.
Heat could be supplied by illuminating the powder

Some idea of the thermal state of the superQuid
and normal constituents of helium II can be experi-
mentally obtained from measurements on the thermo-
mechanical eGects in the liquid. Although no experi-
ments on these efI'ects have been performed more
recently than about ten years ago [except for some

very recent measurements below 1'K brieQy noted by
Sots and Gorter (8.53a) and by Rogers and Berlin
(R.53b)j, it seems appropriate to review here the
earlier results, since in recent years a large number of
theoretical papers have been concerned with the
interpretation of the experiments.

The first experimental observations of the thermo-
mechanical eGects which can be produced were made

by Allen, Peierls, and Uddin (A.37) who in attempts
at measuring the heat conduction of liquid helium II

$ Note added in proof.—Measurements of the specific heat of
liquid He' down to about 0.5'K have just been reported by de
Vries and Daunt /Phys. Rev. 93, 631 (1954)g, Roberts and
Sydoriak LPhys. Rev. 93, 1418 (1954)g and by Osborne, Abraham,
and Weinstock /Phys. Rev. 94, 202 (1954)g. No X anomaly was
observed.

FIG. 4.3. Photo of helrum
II fountain. (Courtesy of
the Research Laboratory of
Electronics, Massachusetts
Institute of Technology and
A. D. Little, Inc. )
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FIG. 4.4. Diagram of apparatus used for observing thermo-
mechanical effects, etc (After Kapitz. a, K.41b) H is a heater coil;
T1 and T2 resistance thermometers.

with a lamp external to the cryostat, and it was found
that on illumination liquid helium Rowed so quickly
through the powder into the tubular reservoir that it
was ejected from the top of the tube in the form of a
fountain. Evidently the superRuid constituent of the
liquid, which alone could Row easily through the pow-
der, is constrained to move in a direction towards the
source of heat.

A photograph of such a helium "fountain" is shown
in Fig. 4.3. Not unnaturally this thermomechanical
effect in liquid helium II has subsequently acquired
the title of "The Fountain Efkct."

These exploratory qualitative measurements of
Allen and co-workers were followed by quantitative
observations by Allen and Reekie (A.39b) who used
powder-filled tubes to form the narrow channel between
the helium reservoir and the bath, by Kapitza (K.41b)
who employed optically polished glass disks to form
narrow channels, and by a group of workers at Leyden
University, namely Duyckaerts (D.43), Keesom and
Duyckaerts (K.47a), Mellink (M.47b), and Meyer
and Mellink (M.47a) all of whom used apparatus
essentially similar to that of Kapitza.

It was shown, moreover, by Daunt and Mendelssohn
(D.39a) that the fountain effect could also be obtained
with the helium reservoir linked to the bath of liquid
helium II by means of a surface 61m only. This result
was confirmed by Strelkov (S.40) and more recently
by many others (see Sec. 7), and has been given a
detailed interpretation by Daunt and Mendelssohn
(D.50b). Finally, the fountain effect has also been
shown by Long and Meyer (L.50a and L.52a) to
occur between two volumes connected together only
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FIG. 4.5. Plot of the volume flow V in cm'/sec of helium II and
of the temperature difference b, T on either side of the narrow
channel against heat input to the hotter volume as observed by
Kapitza (K.41b).

by an adsorbed unsaturated helium film below the
X temperature. (See Sec. 6.4.)

4.2. The Thermomechanical Effect and,
Entropy Determination

Kapitza (K.41b), and Meyer and Mellink (M.47a)
used the thermomechanical effect in helium II to
make measurements of the diGerence between the
entropy of the liquid partaking in the superRuid Row
and that of the bulk liquid. Kapitza's apparatus is
diagrammatically sketched in Fig, 4.4. It consisted of
a Dewar vessel having a narrow channel between it
and the surrounding helium bath, the channel being
formed between two optically polished glass plates.
The mean channel width could be adjusted between
3X10 ' and 30)(10 ' cm, and this range of channel
width was suKciently narrow to ensure that pre-
ponderantly only the superRuid constituent of the
liquid could pa, ss through during the periods of experi-
mentation. Resistance thermometers were placed
inside and outside the Dewar vessel and an electrical
heater was mounted inside. On supplying heat to the
liquid inside the Dewar vessel the superRuid part of
the helium II Rowed from the bath through the narrow
channel into the Dewar, and the rate of Row was
determined by direct observation of the rate of rise of
the inner level. Figure 4.5 gives a typical plot of the
simultaneously observed rate of flow V in cm'/sec
and the temperature difference d T between the inside
and outside as a function of the rate of heat input Q.
For small heat inputs the volume Row V was linearly
proportional to Q and this result can be expressed by:

Q=pV T 5$, (4.1)

where p is the liquid density and where AS is the entropy
di6'erence per gm between the superRuid and the bulk
liquid. T.AS, therefore, is the heat absorbed per gm
of liquid on passing from the superRuid state into the
bulk liquid. The values of hS obtained in this way by
Kapitza 6t on a smooth curve obtained by drawing
the AS values of Table 4.1"as a function of temperature.

'The AS values given in Table 4.1 are also experimentally
observed results due to Kapitza (K.41b) but were obtained by
the method described in Sec. 4.5.
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TABLE 4.1. Entropy evaluations from the mechano-caloric
eIIect by Kapitza (K.41b).

2.105
2.04
1.965
1.880
1.746
1.580
1.470
1.345
1.33

zS
joules jg-deg

1.33
1.10
0.91
0.735
0.49
0.284
0.18
0.11
0.1.0

A correction of course must be applied, as was pointed out by
Meyer and Mellink (M.47a), for the heat liberated by the vapor
in the Dewar when it condenses to a smaller volume to accommo-
date the inQowing liquid.

Meyer and Mellink (M.47a) reported similar results.
In order for Eq. (4.1) to be valid, it is necessary for

the following two conditions to hold:8 first none of the
heat input Q must be dissipated in raising the tempera-
ture of the liquid which is in the reservoir. As can be seen
from Fig. 4.5 Kapitza observed no change in the tem-
perature inside the Dewar (AT =0) for all flow rates be-
low some critical Qow rate V„;~indicating that this con-
dition was in fact met for small heat inputs. Secondly,
none of the heat Q must be dissipated by conduction
through the narrow channel. As is shown in Sec. 5, the
true heat conductivity of the liquid is small, heat trans-
port being due to circulation of the superQuid and nor-
mal constituents in opposite directions. In the absence
of any significant Row of normal Quid through the nar-
row channel, therefore, as was the case in these experi-
ments, the heat dissipated by conduction through the
narrow channel was small. Confirmation of this comes
from the observation that the results for AS were inde-
pendent of the width of the channel over the range
3)&10 ' cm to 30)&10 ' cm.

It is to be noted in Fig. 4.5 that Kapitza's work.
showed that at a relatively well defined critical velocity
of flow the linear dependence of V on Q broke down and
at the same time temperature differences AT began
to be set up between the inside and outside of the
Dewar. Presumably at this critical liow rate V„athe
superQuid character of the Row through the channel
breaks down and excess heat is required to provide
for the viscous irreversible processes then introduced.
In this way, therefore, critical velocities of Row can
be computed, and the results of the observations of
Kapitza and of Meyer and Mellink of these clltical
velocities have already been presented in Sec. 2.5.

M eyer and Mellink (M.47a) reported that for
velocities through the narrow channels greater than
the critical velocity the heat absorbed per g of liquid
as it Qows from the channel into the bulk liquid, or
vice versa, diGered considerably from that found for
Row velocities less than the critical velocity. The
exact nature of the irreversible processes involved

for fiow velocities greater than critical and the exact
location of the temperature diGerences then set up
are not readily defined. A possible mechanism, however,
involving temperature gradients just at the entrance
or exit of the channels has been brieQy discussed by
Meyer and Hand (M.48a).

16 k4 1T'
C g

——~'———
27

15 h' p ui'
(4.2)

where I& is the longitudinal velocity of sound. Using
the value of I&——237 m/sec given by extrapolating to
low temperatures the recent measurements by Atkins
and Chase (A.51b), one gets

C~q =0.020T' cal/mole-deg,

which is in excellent agreement with the measured
C.,~ below 0.6 K.

4.3. Syeci6c Heat Measurements and the
SuyerQuid and Normal Entroyies

The measurements reported in the previous section
on the thermomechanical eGect allow an evaluation to
be made of hS, the diGerence in entropy per g between
that of the superQuid constituent of liquid helium II and
that of the bulk liquid. In order to evaluate either
independently, comparison must be made with the
total entropy of liquid helium II in bulk, as determined
by direct calorimetric observations. These observations
have been made often during the past 20 years.

Early measurements of the specific heat of liquid
helium II between 1'K and 3'K were made by Keesom
and Clusius (K.32a), Keesom and Miss Keesom
(K.32b, K.35) and are illustrated in Fig. 1.2. Measure-
ments between 0.6'K and 1.5'K with paramagnetic
salts as the cooling agents have been made by Keesom
and Westmijze (K.41d) and by Hull, Wilkinson and
Wilks (H.50b), and the results indicated that the
specific heat was approximately a sixth power function
of the absolute temperature in this temperature range.
The most recent measurements are those of Kram, ers,
Wasscher, and Gorter (K.52a) which extend down to
0.25'K and which indicate that: for 0.25'K &T&0.6'K.,
C„t——0.0223T' cal/mole-deg, for 0.7'K &T& 1.4'K,
C„t=0.106T'~ cal/mole-deg, and which also indicate
that above the T' temperature-dependent region the
specific heat cannot be very accurately described by a
single power of T but rather appears more like an
exponential function.

Evidently the T' region of the temperature de-
pendence of the specific heat indicates that longitudinal
compressional waves exist in the liquid (i.e., phonon
excitation), as is evident by comparison of the theoreti-
cal value with the experimental value of the specific
heat. The absolute value of the phonon specific heat
is given by: )as has been further discussed recently by
Kronig and Thellung (K.52b) $
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FIG. 4.6. The entropy
of helium II from data of
Kramers et al. (K.52a).
The ordinate plots
log105, where S is in
joules/g-deg.
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Evidently the much higher values of C,.t obtained
at temperatures above 0.7'K than would be expected
from phonon excitation indicate the establishment of
other excitations, the possible nature of which have
been briefiy discussed in Sec. 3 above.

Using the results of the earlier of these specific heat
measurements, computations of the total entropy S
have been made by Gorter, Kasteleijn, and Mellink
(G.SOa), and by Band and Meyer (B.48a). As these
computations were made before the recent observations
of Kramers eI al (K.52a),. they were based on an
erroneous extrapolation for the specific heat of liquid
helium as a T' function from 1'K down to O'K. The
computations implicitly assumed the well established
conclusion that helium remains liquid down to O'K.'
These computations have now been superseded by
the more recent ones of Kramers eI al. (K.52a), using
a T' extrapolation for the specific heat from 0.6'K to
O'K, and these new evaluations are given in Table
4.2 and are shown in Fig. 4.6. This figure is plotted
logarithrnically and it will be seen that even above
0.9'K the curve is not linear. This means that if it is
desired to express S by the relation, as has been sug-
gested by Tisza (T.47) and by London (L.45),

S/Sx = (T/T), )&, (4.3)

then a unique value of $ cannot accurately describe
the results even over the temperature range 1'K to
2.1'K. From Fig. 4.6 it is apparent that very approxi-

' Some recent work by Cwilong (C.52a} on the measurement of
the melting curve appeared to throw doubt on this conclusion, but
it was subsequently withdrawn (C.S2dl.

mately $ equals 6.7 for the temperature range
0 9'K&T.&1 45'K, a. nd $ equals 5.4 for 1.45'K&T
(2.1 K.

If now the values of hS, of Table 4.1, computed
from the experimental results of the thermomechanical
effect of Kapitza (K.41b), be compared with the
calorimetric determinations of the total entropy S
given in Table 4.2, then it will be found that hS and
S are essentially the same within the probable experi-
mental error. Since AS is the diGerence in entropy
between that of the bulk liquid and that of the liquid
taking part in superQuid fiow, one must conclude from
these results, as was pointed out by Kapitza (K.41b),
that the liquid that partakes in superguid jato has sero

entropy. This very fundamental result has also been
arrived at by other experimental lines of approach, as
is discussed as follows in Sec. 4.5, and it can be regarded
as well established. The result can also be expressed
by saying that the "normal" constituent of liquid
helium II carries all the entropy of the liquid.

It should be remarked parenthetically here that the
possible existence of a T' region of the entropy of the
liquid below about 0.7'K was suggested in 1938 in
preliminary statements of results of measurement of
the specific heat of liquid helium II by Pickard and
Simon (unpublished, but see Bleaney and Simon,
B.39a); yet it was not until 1952 that its existence was
definitely proven experimentally by Kramers, Wasscher,
and Gorter (K.52a). Such a T' variation of the specific
heat at the lowest temperatures was, however, inter-
preted by the earlier group of workers as indicating that
the "anomalous" region of liquid helium II had been
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0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
2.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
2.05
2.20
2.15
2.18
2.186

Csat
joule/g-deg

0.0051
0.0068
0.0098
0.0146
0.0332
0.0343
0.0510
0.0743
0.1042
0.142
0.191
0.250
0.322
0.410
0.516
0.634
0.780
0.944
1.127
1.330
1.572
1.83
2.11
2.46
2.80
3.19
3.63
4.27
4.95
5.82
6.92
8.61

11,6
14.3

S
joule/g-deg

0.00169
0.00215
0.00276
0.00358
0.00475
0.00644
0.00885
0.0122
0.0168
0.0227
0.0304
0.0402
0.0523
0.0672
0.0853
0.1069
0.132
0.162
0.197
0.238
0.284
0.336
0.395
0.461
0.535
0.617
0.709
0.812
0.929
1.061
1.215
1.40
1.53
1.57

passed in reducing the temperature below 0.7'K
and that one was dealing with a remanent "lattice"
type entropy. Such a view, essentially postulating a
lower "transition" temperature at about 0.7'K, below
which therrnomechanical eGects, etc. , should disappear,
had also been taken by Tisza (T.47 and T.49a) and

by Kurti and Simon (K.38d), the latter authors using
the hypothesis to explain their observation of very
small heat conductivities of liquid helium in the tem-
perature range 0.2'K to 0.5'K. Recent measurements
of the velocity of second sound (see Sec. 9.4), however,
as well as the results reported in this section and in
section 4.5, clearly show that the "phonon" entropy,
evidenced by the T' specific heat region, belongs only
to the normal constituent of helium II and that, as
observed above, the superfiuid constituent of hehum Il
has sero entropy at atl temperatures from O'E to T&,.

One may recall here that in a superconductor, which
provides another example of superRuid Row, Daunt
and Mendelssohn (D.38a, D.46a) have shown experi-
mentally by measurement of the Thomson heat that
the electrons engaged in superQow are also energetically
at absolute zero. In both cases, for helium II and for
superconductors, as has been re-emphasized by
Mendelssohn (M.45), the superfiuid particles remain in
the same energy states that they have at the absolute

TABLE 4.2. Smoothed values of the specific heat, C„&,and the
total entropy S of helium Il according to Kramers, Wasscher, and
Garter (K.52a}.

zero, although the rest of the material may be at
finite temperatures. The evident similarity between
the phenomena of superQow in helium II and in super-
conductors, for which the superfluid constituent in
each has zero entropy, has been a subject for much
speculation and discussion by many authors, for
example by Landau (L.41a), Daunt and Mendelssohn
(D.42 and D.46b), Mendelssohn (M.45), F. London
(L.45).

4.4. The Mechano-Caloric Effect

The primary feature of the thermomechanical eGect,
or "Fountain" effect, was that on application of heat
superQuid helium II Qowed towards the source of heat.
If the eGect were reversible, it would be expected, as
was first suggested by Tisza (T.38a, T.38c), that
superRuid Qow should be accompanied by a develop-
ment of heat (or cold). This reverse effect, the mechano-
caloric effect, was erst experimentally observed by
Daunt and Mendelssohn (D.39a,), using an arrange-
ment as shown in Fig. 4.7. Liquid helium II was
allowed to Qow out of a closed Dewar vessel through
a plug I' filled with one powder, through which the
Qow was substantially superQuid owing to the narrow-
ness of the channels. Measurement of the temperature
of the liquid remaining in the Dewar vessel by means
of the resistance thermometer T indicated a momentary
temperature rise, showing that the liquid removed by
the superRuid Qow was in a lower thermal state than
that of the liquid as a whole. Moreover, on lowering
the vessel, so that the liquid now Rowed from the bath
into the vessel, the liquid in the vessel was found to
cool. The results corresponded approximately to an
entropy of the superQuid constituent equal to zero.

Fzc. 4.7. Apparatus used
by Daunt and Mendelssohn
(D.39a) for observing the
mechano-caloric eGect. P
is packed powder plug; T is
resistance thermometer.
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Similar experiments were subsequently carried out
by Kapitza (K.41b) who observed the flow of liquid
helium II into a thermally isolated bulb through a
narrow slit formed between two optically polished
glass disks, the experimental arrangement being the
same as that described in Sec. 4.2 and illustrated in
Fig. 4.4. He also found that if the liquid level in the
bulb was set higher than that in the main helium bath,
so that superQuid Qow took place from the bulb into
the bath, the temperature inside rose. The thermal
isolation of the bulb was suKciently good to allow
the level differences and the temperature di8erences
to be maintained for long periods of time and conse-
quently estimates could be made of the equilibrium
dependence of the temperature difference AT between
the temperature of the liquid helium II in the bulb and
that in the bath, on the pressure difFerence Dp between
them. The results obtained are given in Fig. 4.8, in
which it will be seen that at least for small temperature
difFerences there is a linear relationship between Ap
and DT at each average temperature of measurement.

Similar accurate measurements of the same kind
have been made for flow through narrow slits (d &10 '
cm) by Meyer and Mellink (M.47a) and their results
for Ap/BT as a function of temperature T are given
in Fig. 4.9. These results are in good agreement with
those of Kapitza and represent very satisfactorily the
relationship between the so-called "fountain pressure, "
Ap and the corresponding temperature differences
that are set up between two volumes of helium II
connected by a very narrow channel.

%hen the channel is made wider, as has been in-

vestigated for channel widths from 1 micron to 100

IO
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Frc. 4.9. Observed fountain pressure in cm liquid helium per
0.001'I temperature diAerence as a function of temperature.
Points are data of Meyer and Mellink (M.47a). The full curves
give the theoretical values from Eq. 4.4. The upper curve is 5
times greater scale than lower one.

microns by Keesom and Duyckaerts (K.47a) and by
Mellink (M.47b), the relationship between the fountain
pressure Ap and the temperature difFerence AT becomes
more complicated than is found for the very narrow
channels. This is due to the fact that for the wider
channels some Qow of the normal or viscous constituent
of the liquid helium II can take place through the
channel, and this Qow takes place naturally from the
volume at higher pressure to that at the lower pressure,
i.e., in a direction opposite to that of the superQuid
Qow. This circulation of matter results in a large heat
transfer from one volume to the other through the
channel and, as a result, the fountain pressure cannot
be maintained without a continuous supply of heat
being injected into the hotter volume. Such a process
is more properly discussed in connection with other
observations on the heat conductivity of helium II
and is postponed to Sec. 5.

4.5. Further Evaluation of the SuyerQuid
and Normal Entroyies

As is discussed in Sec. 4.7, the following formula,
first proposed by H. London (L.38c and L.39b), is

applicable to these measurements of the fountain
pressures and their accompanying temperature differ-
ences for Qow of liquid through very narrow channels:

(dp/dT)ar p phS, ——(4.4)

0
0

2 0 6 8 iO l2 J4 l6

lL p (cm. liquid helium)

where p is the liquid density and DS is the entropy
diGerence between the entropy S per g of total Quid

in bulk and the entropy S, per g of superfluid that
takes part in superQuid Qow." If now the values of
58 obtained from this formula 4.4, using observed
values of dp/dT (Table 4.1 sets out the values obtained
in this way by Kapitza (K.41b)), be compared with
the calorimetric determination of the total entropy S,
given in Table 4.2, then it will be found that AS and
S are essentially the same within the experimental
error. It is concluded, therefore, as from the experiments

Fro. 4.8. Observed relation between hT and Ap for fountain
effect From Kapitza . (K.41b). AT is plotted in millidegrees against
b,p in cm of liquid helium.

' A more sophisticated signi6cance for this quantity has been
given by Gorter (G.49b) which is discussed in more detail in
Sec. 4.7.
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reported in Sec. 4.2, that the liquid that Partakes in
ssiperguid gow has sero entropy. This conclusion has
been re-emphasized in recent brieQy reported experi-
mental work by Rogers and Herlin (R.53b)."

It might be remarked here that the evaluation of
A5 from Meyer and Mellink's results on the thermo-
mechanical eGect in the temperature range 1.0'K to
1.4'K appears about 10 percent greater than the total
entropy, as computed by Gorter, Kastelijn, and
Mellink (G.50a) . The latest evaluations of S by
Kramers ef ul. (K.52a), however, have largely removed
this discrepancy.

A brief report of recent observations of the fountain
effect below 1'K by Bots and Gorter (B.53a) suggests
that deviations from Eq. (4.4) occur below 1'K.
Comment, however, is withheld pending further
detailed information.

4.6. The Mechano-Caloric Effect as a
Cooling Agent

The fact that the mechano-caloric eGect results in
heatings and coolings being created through the agency
of superQuid Qow has suggested this process as a
possible cooling method. Kapitza (K.41b and K.41c)
has reported the results of preliminary experiments to
this end in which he states that temperature drops of
0.4'K had been easily attained. No detail of his experi-
mental arrangements, however, was given.

The method has been discussed and criticized in
detail by Simon (S.50b). His criticism was not of the
experimental feasibility of using the mechano-caloric
eGect as a cooling agent, but rather concerned the lack
of usefulness of helium as a working substance on the
grounds of its small and monotonously decreasing
entropy as O'K is approached.

4.7'. Theories of the Thermomechanical Effect

The qualitative explanation of the experiments
discussed above was given by Tisza (T.38a, et seq.).
Seizing on London's suggestion that helium II may
be a partially condensed Bose-Einstein liquid, Tisza
gave a qualitative explanation of the fountain effect
and predicted the inverse mechano-caloric eGect. As
has been noted, Tisza split the liquid into two Quids.
The superQuid, whose density he took to be a function
of T only, possessed no viscosity and exerted no
pressure; the normal Quid exhibited both. When
helium II passed through a fine capillary, the normal
Quid was left behind because of viscous drag, where-
upon the increase in superQuid density induced a
temperature gradient (and a pressure gradient). In a

"From a detailed numerical analysis of the results of measure-
ment of second sound (see Sec. 9.4) Koide, Matsudaira, and Usui
(K.52d), using the thermodynamic theory of Usui (U.51a), have
proposed giving the super6uid entropy S, small finite values in
order to account for discrepancies between theory and experi-
ment. These discrepancies, however, are not larger than about 3
.percent, and it appears to us possible that the experimental errors
may account for them.

capillary so fine that the normal Quid-would be com-
pletely immobilized the Qow could be reversible, and
Tisza recognized that the reverse e6ect is the fountain
eGect: a temperature gradient gives -rise to a-gradient of
the superffuid density and hence to a pr'essure gradient.
Tisza later (T.38c) extended these ideas by noting
that if the superQuid has no entropy, as the Bose-
Einstein theory suggests, liquid Qowing through a
fine capillary leaves its entropy behind and produces a
heating eGect in the vessel being emptied and a cooling
eGect in the vessel being 6lled. This is the mechano-
caloric eGect.

A quasi-thermodynamic theory of these eGects was
given by H. London (L.38c; L.39b). London employed
a method analogous to Kelvin's method for deriving
the thermoelectric equations in which it is assumed
that reversible eGects can be treated separately from
irreversible eGects. He considered a helium circuit
consisting of two reservoirs joined by two Qow paths,
one path through a fine capillary, the other through
an engine. The two reservoirs were at different tem-
peratures and pressures. The analog of the thermal
emf was (dp/dT) for the helium in the reservoir,
the analog of the Peltier heat was the heat left behind

by the superQuid helium entering the 6ne capillary,
and the analog of the Thomson heat of the helium
Qowing in the capillary up or down a temperature
gradient was introduced, also. When London introduced
Tisza's assumption that the superQuid particles are
particles in the ground state of the system and therefore
Qow reversibly, i.e., without interaction, through the
capillary so that the Thomson heat vanished, he
arrived at Eq. (4.4) for (dp/dT), the "thermal emf, "
and at (4.1) for the mechano-caloric coeliicient, the
"Peltier heat. "

Before proceeding further in this discussion of
theories of these effects, we give the following derivation
of Eq. (4.4), which may be of interest because of its
simplicity and which is essentially the argument
presented by Tisza (T.47) . Since the experiments
discussed in the early parts of Sec. 4 have shown that
in sufficiently small capillaries and for su%ciently small

velocities, Qow of superQuid helium is reversible, while

the theories outlined in Sec. 3 also support this point of
view, purely thermodynamic arguments may be
considered to apply. Imagine two thermally isolated
vessels connected by a capillary so fine that only
superfluid can pass (or connected by the superfluid
film) and let one be characterized by the coordinates

(P,T) and the other by the coordinates (P+AP, T+AT).
For equilibrium to obtain in the system the Gibbs
function per g of superQuid must then be the same
in both vessels. This implies (since the Gibbs function
per gm of normal particles must equal the Gibbs
function per gm of superfluid particles) that

G(p, T) =G(P+Ap, T+AT),
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or in the bmit of small d, T

1
gradG=O= —gradp —S gradT,

p

where the thermodynamic quantities 6 and 5 are
per g of hotel Quid. This is, of course, H. London's
equation

gradp/gradT= pS. (4 5)

The unusual thing about this application of the equilib-
rium condition is that diGerent temperatures obtain
in the two vessels. Reversible Qow between two
reservoirs at different temperatures is possible, of
course, only because the Quid taking part in the Qow

(and linking the reservoirs) has zero entropy. If the
substance which Qows possesses entropy then there is
thermal conduction and hence production of entropy
in the process, so that the rigorous derivation of the
fountain effect should be made according to the disci-
pline of irreversible thermodynamics.

It should be pointed out that a derivation of Eq.
(4.5), essentially equivalent to the one given here, has
been given by Temperley (T.52a) in a paper in which
he discusses the theoretical "no-man' s-land" between
the London and the Landau theories. His derivation,
however, comes after some rather special arguments.
We have taken the point of view here that, thanks to
the observed properties of the superQuid, the simplest
thermodynamic arguments apply.

A possible interpretation of Eq. (4.5) is that even
in the absence of a hydrostatic pressure gradient a
"fountain pressure" acts on the superQuid helium in
the presence of a temperature gradient. One is thea
led to postulate that the usual term in gradp in t'he
ordinary hydrodynamical equations must be supple-
mented in the case of helium II with a term involving
gradT to give the proper equations of motion. The
same result may be obtained by generalizing intuitively
the argument leading to Eq. (4.5), i.e., by saying that
in the absence of equilibrium the superQuid connecting
the two reservoirs will be accelerated in the direction
of decreasing Gibbs function. Therefore, since gradG
is a force per unit mass,

the negative gradient of the Gibbs function but in
which the effects of temperature are wholly neglected.
(These matters of the hydrodynamical equations are
discussed more fully in Sec. 8.1.)

Equation (4.6), while it is adequate to describe the
behavior of the superQuid in oscillatory processes such
as occur in second sound (see Sec. 9), does not give more
than a qualitative insight into the Qow of superfluid
through a capillary or a surface film from a higher to a
lower level. In the first place such Qows are charac-
terized by a critical velocity which implies additional
terms in (4.6). In the second place in, say, steady-state
Qow through a capillary continuity requires that
gradG vanish inside the capillary so that at least part
of the gradients of p and T must occur in a complicated
way in the reservoir before the superfluid enters the
capillary. Furthermore, every Qow from one level to a
lower or from one temperature to a higher involves a
dissipation of free energy: Eq. (4.6) says nothing
about this, that is, how the superQuid loses its mo-
mentum and gets mixed with the bulk liquid in the
"lower" reservoir.

To return to H. London's equation (Eq. 4.4) and
its history: first, it is clear that such a fountain pressure
equation can always be derived from the hydro-
dynamical equations as a special result for static
conditions (compare Sec. 8.1) (unless, of course, the
fountain pressure equation has already been used in
the derivation of the hydrodynamic equations. ) Such
conclusions drawn from the hydrodynamics are subject
to the limitation that most hydrodynamical discussions
leave out or drop by the way all irreversible eGects.
As an example, we obtain from the hydrodynamical
equations derived by Dingle (D.49), in which the
superQuid as well as the normal Quid is considered to
carry entropy,

grad p/gradT = p (S—S,), (4 7)

where S, is the entropy per gm of superfluid.
Gorter (G.49b) has offered a revision of H. London's

equation based on reasonings applied to a quasi-
thermodynamic model for reversible Qow of both
constituents in a wide capillary. He obtains for the
analog of Eq. (4.5)

de, /Ck = —gradG,

or in linear approximation

(»8& (pal
I= —

I

—
[ gr«p+p S gradT

E aI)
(4.6)

t' BS) p
gradp/gradT=px(

&ax)
'

p

This reduces to London's equation only if

S= x(BS/Bx),, r

(4.8)

(4.9)

This equation is the same as the linear approximation
to Landau's (L.41a) hydr odynamical equation for
the superQuid and in fact the "derivation" given here
is essentially the same as his.

Equation (4.6) which is a generalization of (4.5)
may also be thought of prohtably as a generalization
of ordinary hydrodynamics in which the acceleration is

Equation (4.9) leads to the result that

S=xS0(p, T), (4.10)

which is a generalization of an assumption made by
Tisza (T.47) that S=xf(p) only. Note that Eq. (4.10)
shows that S and x need not vary in the same way with
temperature (although over much of the superfluid
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temperature range they do approximately), since

Usui (U.51a) has also derived Eq. (4.8, 4.9, 4.10)
and has pointed to the distinction to be made between
(aS/Bx), ra, nd (BS/Bx) ~

Dingle (D.51) has criticized Gorter's work severely.
He neither agrees with the result nor justifies the
treatment. According to Dingle, Gorter has implicitly
equated the concentration x of the normal Quid to
the efFective mass, whereas if these quantities be
defined and derived in the manner in which Landau
does, they are not equal. It should be pointed out in
this respect however, as has been shown by F. London, "
that if the entropy be derived from the Gibbs function

G(p, T,x), in the usual manner, then Eq. (4.9) follows
immediately, if one assumes S, (the superfluid entropy)
equals zero; and this without any appeal to a particular
microscopic model or to a Gedanken experiment.

Some authors have objected to the use of thermo-
dynamics or quasi-thermodynamics in the derivation
of equations describing the fountain and mechano-
caloric e8ects. For example, Meixner (M.38) in an
interesting paper in which the analogy between the
fountain efFect in helium and thermoelectric efFects in
conductors is emphasized, questions the validity of
H. London's use of the second law of thermodynamics
in his derivation. Meixner calculates the production
of entropy in a helium circuit consisting of two reservoirs
at di6'erent temperatures connected by two capillaries.
He suggests that no experimental arrangement can
make the irreversible effects (those due to thermal
conductivity and viscosity) small compared to "Peltier"
heat, so that the methods of thermodynamics need not
be expected to yield correct results.

In any ordinary system these objections are certainly
valid: rigorous treatments of problems of this kind
must employ the methods of irreversible thermo-
dynamics. This has been done in the case of helium II
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FIG. 5.1. Observed heat conductivity of liquid helium I
due to Grenier (6.51c).

~ We are indebted to the late Professor F. London for kindly
pointing out to us this conclusion presented in the manuscript of
his book, 'SuperQuids, Vol. II."

by de Groot and his co-workers (G.47a; G.50b; G.51a;
G.51b). (See especially, G.50b and G.51b.) De Groot
et al. obtain expressions for the fountain pressure and
the mechano-caloric efFect for the general case of two
Quids which can undergo a chemical reaction: 1 2.
They then introduce the special assumptions usually
made for helium II, (i) that the two fluids react
infinitely rapidly, (6) that only the superfluid flows
through the capillary, and (iii) that the superfluid
does not interact with the walls of the capillary, i.e.,
that it is transferred in bulk. In this case their equations
reduce to Gorter's equations, i.e., Eq. (4.8) and the
appropriate analog of Eq. (4.1), namely,

(tIS )
Q= pVTxl —I.

E ax)
(4.11)

There is, of course, no conQict between the thermo-
dynamic and the irreversible-thermodynamic approach
to the problem of helium II. (E.g. , in helium II the
irreversible sects discussed by Meixner apparently
do not arise in small capillaries, so that H. London's
equations are directly applicable. ) On the one hand
the authors last quoted have preferred to proceed
in as general a manner as possible, applying their
results to helium II as a special case. One might say
that they admit nothing special about helium II
until they have to. The authors referred to earlier, on
the other hand, have preferred to emphasize the peculiar
properties of helium II—the vanishing entropy and
viscosity of the superQuid —and as a consequence
have felt justified in taking the simple thermodynamic
point of view.

5. HEAT TRANSPORT

5.1. Heat Conductivity in Liquid Helium I
The heat conductivity of liquid helium I has been

measured between Ti and 4.2'K by Grenier (G.51c)
and by Bowers and Mendelssohn (B.51c) and a solitary
observation at 3.3'K has been reported by Keesom
and Miss Keesom (K.36c). The results of all these
authors are in good agreement with each other, and
they indicate that helium I behaves normally with
a relatively small value of the heat conductivity. The
results obtained by Grenier, using a mo'di6ed Lee' s
disk method are shown in Fig. 5.1, in which it will be
seen that the heat conductivity increases approxi-
mately linearly from a value of 4.5)&10 ~ cal/deg-cm-
sec at 2.24'K to 6.3&&10 ' cal/deg-cm-sec at 4.2'K.

It is interesting to note that the heat conductivity
shows no indication of anomalously large values just
above Tq. This lack of any apparent preparation for
the X transition as the temperature is reduced towards
T& in the macroscopic property of the heat conductivity
is in marked contrast to definite signs of such prepara-
tion revealed in the viscosity measurements (see Sec.
2.1), in the attenuation of first sound (see Sec. 9.1)
and in the observation of the specific heat (see Fig. 1.2).
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It is to be noted also that if the simple gas kinetic
formulation is used for theoretical computation of the
heat conductivity, namely,

3.0 Watt-ce

X=2.SIC„ (5.1)

one obtains a value of the same order of magnitude as
the observed value. At 4.2'K the gas kinetic value is
4.4X 10 ' cal/deg-cm-sec and the variation with
temperature is essentially the same as for the observed
heat conductivity, indicating once again that helium I
can in 6rst approximation be treated e6'ectively as
a gas.

j= Q/A = E AT/1, (5.2)

where j is the heat current density, Q the total heat
current, A the cross section of the capillary, X the
heat conductivity, AT the temperature diBerence
between the ends of the capillary and I the capillary
length. Instead the following general conclusions were
arrived at:

(a) the heat current Q was proportional to the total
cross section of the capillary, as is expected from
Eq. (5.2).

(b) the heat conductivity IC was independent of
the length of the capillary, as is expected in Eq. (5.2).

(c) the heat current density j is proportional to
the third root of the temperature gradient, i.e., j~
(dT/dl)&, a result totally unexpected from Eq. (5.2)
and a result which renders it meaningless to quote
numerical values for a "heat conductivity, "as normally
understood. For the temperature range 1'K to j..6'K,

j=0.623T'(dT/dl) & watts-cm '. (5.3)

5.2. Heat Transyort in Liquid Helium II
The heat conductivity of liquid helium II was

noticed at an early date by Keesom (K.35) and by
Kurti, Rollin, and Simon (K.36d) to be appreciably
much larger than that of helium I and the 6rst direct
observations of the apparent heat conductivity were
reported by Keesom and Miss Keesom (K.36c), who
found that through capillaries of 0.6 mm diameter
the heat conductivity of helium II reached values of
about 200 times that of copper at room temperatures
or about 5&(10' times greater than that of helium I.

Early measurements of the heat conductivity of
helium II, all using wide capillaries (of diameter
from 0.2 mm to 1.6 mm), were reported by Allen,
Peierls, and Uddin (A.37), Keesom, Keesom, and Saris,
(K.38e), Allen and Ganz (A.39c), Kapitza (K.41f),
Keesom and Saris (K.40a) and by Keesom, Saris,
and Meyer (K.40b), some review of which has already
been given by Keesom (K.42) and by Darrow (D.40).
All these measurements showed that it was sot possible
to describe the heat transport in capillaries containing
helium II by the usual equation for heat conduction,
namely,

2.0

0
I.O l. 5

I

2,0 2.2K

FIG. 5.2. Observed heat current density in watts/cm' in liquid
helium II through wide capillaries against temperature as re-
ported by Keesom, Saris, and Meyer (K.40b). The numbers at-
tached to the curves give the temperature gradient X10' in deg/
cm. The full drawn curves were calculated from Eq. (5.3). The
broken curves give the experimental results.

Some data are shown in Fig. 5.2.
The results of these early measurements clearly

showed that heat transport in helium II was an unusual
process, which could not be explained by the formalism
of heat conduction. Instead the two Quid theory,
developed by Tisza (T.38a), provided an insight into
the mechanisms involved in the heat transport process.
In considering two volumes of helium II connected by
a capillary, such as was used for the measurement
of the heat transport, Tisza proposed that there was a
circulation of mass between them, such that the super-
Quid constituent of the liquid would move without
viscous losses towards the source of heat (as in the
fountain effect) and such that the "normal" constituent
would move in the opposite direction at a rate deter-
mined by the frictional forces that may be present.
Such a circulation of mass would provide a mechanism

for transportation of very large heat currents, as was

first clearly emphasized by H. London (L.38c), in a
manner analogous to the Peltier eGect, as follows:
the superQuid on arriving at the volume at the higher
temperature would be "excited" and would thereby
absorb heat in amount given by Eq. (4.1), since an
amount of heat T AS per g would be required to
convert the superQuid into bulk liquid; similarly at
the entrance to the capillary at the colder volume a
corresponding amount of heat would be released. The
total heat transport Q, therefore, would be in this

process,

Q=M ThS, (5 4)

where 3f is the mass Qow of either constituent. There
would in addition be an extra amount of heat carried

by the normal Quid given by M C. hT, but this
clearly is negligibly small compared with that of



198 J. G. DAUNT AND R. S. SMITH

Eq. (5.4)." This qualitative explanation has been
further amplified and put on a Armer quantitative
basis by many authors since that time (see Secs.
5.4 and 5.6) and it is now accepted as being correct.

It is of interest to outline in passing some of the
early experiments of Kapitza (K.41f), in which he
demonstrated elegantly the existence of the circulating
mass currents that accompany heat transportation.
In one series of experiments he connected a closed bulb
containing a heater to the liquid helium II bath by
means of a horizontal capillary of diameter 0.55 mm,
and suspended on a torsion balance. a Qat vertical disk
just in front of the exit of the capillary, as shown in
Fig. 5.3. When the liquid inside the bulb was heated,
the disk was found to be forced away from the capillary
exit, as if a jet of liquid was issuing therefrom. By
relative movement of the parts of the apparatus, he
studied the topology of the jet and found it to be of
diameter the same as that of the capillary. Moreover,
he found from measurement of the reaction force that
the jet velocity was of order of magnitude 5 cm/sec.
It is interesting to note that he found the disk and
torsion balance a more sensitive method of detecting
heat inputs to the bulb than by direct measurement
of the temperature changes within the bulb with a
phosphor-bronze resistance thermometer.

In another series of experiments he attached the
bulb and capillary to the torsion balance and measured

Fxc. 5.3. Diagram of
apparatus used by Ka-
pitza (K.41f) for ob-
serving the helium jet.
The bulb and vane
system were immersed
in liquid helium II. II is
a heater, T a ther-
mometer.

BULB

VANE

"Heat current given by the amount 3f C„hTis, of course,
that which is normally associated with convection. Without
postulating fantastically high velocities of liow (104 to 10' cm/sec)
through the capillaries, it is impossible to account for the observed
heat currents by this convection process alone. The process asso-
ciated with Eq. (5.4), i,e., a kind of Peltier process, must in fact be
operative, and in order to distinguish it from ordinary convection,
we term it here, following London, "internal convection. "

TABLE 5.1. Temperatures above which the linear relationship
between the heat liow Q and the temperature difference DT is
invalid. (From Meyer and Mellinlr, M.47a. )

Channel width
(microns)

10
5
2

0.3

Temperature
(oK)

1.3
1.6
1.9
2.1
2.16

the reaction forces directly. He found, not unexpectedly,
that helium jet issuing from the capillary had the same
properties as obtained previously. From these experi-
ments it was concluded that the observable jet was
due to the motion of the normal constituent down the
capillary away from the source of heat. The superQuid
motion through the capillary towards the source of
heat is unobservable.

5.3. Heat Transport Through Narrow Channels
(Experimental)

In considering the process of heat transport in liquid
helium II in more detail, it is necessary, as in the
problem of mass Qow through tubes, to distinguish
between the effects occurring (a) in heat transport
through narrow channels and (b) heat transport
through wide channels. The "internal convection"
process outlined above in Sec. 5.2 demands that there
exist a "normal" mass Qow away from the source
of heat equal in magnitude to the superQuid mass Qow
towards the source of heat. For extremely narrow
channels, therefore, it would be expected that the Qow
of the normal constituent would be negligibly small,
owing to its finite viscosity, and hence the heat trans-
port also by the internal convection process would be
expected to be negligibly small. As the width of the
channel is increased, more and more normal constituent
could Qow through, and hence it would be expected that
this Qow together with the associated heat transport
would be limited by the boundary conditions imposed
on the normal Qow. These boundary conditions, for
so called narrow channels (width 0.1 to 10 microns)
seem with few exceptions to be those associated with
Poiseuille laminar Qow of the normal constituent
through the channel, i.e., conditions determined largely
by surface viscous forces. In case (b), for the so-called
wide channels (with 10 microns to 2 mm), the bound-
ary conditions are not so clearly defined. It appears
however, as is described below in Sec. 5.6, that the
main forces limiting the normal Qow are due to mutual
friction between the superQuid Qow and the normal
Qow throughout the whole cross section of the channel.
In practice the outstanding observable diGerence be-
tween case (a) and case (b) is that in the former case
the heat Qow is accurately proportional to the tem-
perature diBerence between the ends of the channel,
whereas for case (b) the heat Row is approximately
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Fxo. 5.4. Observed heat Bow, Q
(full curve) as a function of tem-
perature difference AT across a
5 micron channel as measured by
Hung, Hunt, and Winkel (H.52c).
The upper broken curve plots the
linear relation between Q and b,T
and the lower broken curve the
cube root relation between Q and
~T. (Q (nT)t. )
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proportional to .the third root of the temperature
gradient, a feature mentioned in Sec. 5.2.

The 6rst observations on the heat Qow through
narrow channels were made by Allen and Reekie
(A.39b), using channels formed between the interstices
of tightly packed fine powder. They noted that at
the lowest temperature of measurement (1.24'K) the
heat flow Q was proportional to the temperature
difference AT between the ends of the channels.
Later measurements made with narrow channels, by
Keesom and Duyckaerts (K.47a), Mellink (M.47b),
Meyer and Mellink (M.47a) and by Hung, Hunt, and
Winkel (H.52c), using apparatus essentially the same
as that reported by Kapitza (K.41b) and as illustrated
in Fig. 4.4, have all shown that for sufIiciently low
temperature and sufficiently narrow channel Q varies
directly with AT. They have shown, moreover, as
would be expected, that the change over from the
region where Q~DT Lease (a)j to the region where

Q cc (AT)' Lease (b)j is also a function of temperature.
Table 5.1, taken from Meyer and Mellink, tabulates
the temperatures for various channel widths above
which the linear relationship between Q and AT no
longer is observed. An illustration of the change over
from one region to another, taken from the work of
Hung, Hunt, and Winkel (H.52c), is given in Fig. 5.4.

The work referred to above on observation of heat
Row through narrow channels has led to the following
conclusions:

(1) at sufficiently low temperatures (see Table 5.1)
the heat current density j is proportional to the
temperature diGerence DT.

(2) insuflicient evidence exists for formulating the
variation of the heat Row as a function of the length
of the channel.

(3) the heat current density is not independent of
the channel width. Instead j appears to vary with
some power of the channel width d between 1 and 2.
The data are unfortunately not too accurately known
for the channel widths themselves, and it appears that
the variation of j with d is also a function of
temperature.

(4) the heat current density is a strong function of
temperature for constant temperature difference DT.
For a 5 micron channel Mellink (M.47b) reports that
j~T"; for a 1 micron channel Meyer and Mellink

(M.47a) report j~ T' and for diminishing channel
width they report diminishing variation with T.

(5) numerical values for the observed "heat conduc-

TABLE 5.2. The experimental and theoretical values X,» and
Eth„,of the apparent heat conductivity of helium II through
narrow channels. Channel width is d. Channel length is $. Taken
from London and Zilsel (L.48b).

T Zexp +theor +exp/+ theor

microns cm 'K cal/deg-cm-sec Authors

1.75 0.275 1.960 17.2 10.2
1.705 3.5 1.86
1.476 0.61 0.32
1.223 0.066 0.032

1.69 K.47a
1.88
1.92
2.05

1.15 0.275 2.170 24
1.989 17.1
1.799 5.35

15.5
5.28
1.55

1.55 K.47a
3.25
3.45

1.0 O.i 2.159 31
1.948 21.4
1.802 12.4
1.411 1.05

10.8
3.06
1.19
0.060

2.9 M.47a
7.0

10.4
17.5

0.75 0.275 2.097 30.2
1.600 1.85
1.403 0.39

4.3
0.156
0.031

7.0 K.47a
11.8
12.5

0.5 O. i 1.659 2,48 0.108 23
1.315 0.354 0.0064 55
1.274 0.277 0.0043 64
1.086 0.124 0.0006 202

M.47a

0.3 O. i 1.652 1.92
1.558 1.35
1.358 0.48
1.226 0.25

0.0365 54
0.018 75
0.0034 140
0.00097 260

M.47a

tivity" as computed by use of Eq. (5.2) are tabulated
in Table 5.2. LThis table is taken from the work of
London and Zilsel (L.48b).$ Table 5.2 shows that even
in the narrowest channels the apparent heat conduc-
tivity is many orders of magnitude greater than that
of helium I.

gradp = tI„V'v„, (5.5)

where v„is the velocity of the normal constituent.
Next one notes that this pressure gradient is the
"fountain" pressure gradient set up because of the
temperature gradient across the channel. The connec-
tion between the fountain pressure and the temperature

5.4. Heat Transport Tjnough Narrow Channels
(Theoretical)

The theory of the heat transport in helium II
through narrow channels has been discussed in detail

by London and Zilsel (L.48b) on the basis (a) of heat
transport being by the "internal convection" process
and (b) of the limitation of the mass flow in the circu-
lation being given by laminar (Poiseuille) flow of the
normal constituent through the channel. The matter
has been discussed further by Andronikashvili (A.49),
by Gorter and Mellink (G.49a) and by Atkins (A.52a).

A formulation for the heat Row can be obtained as
follows: erst, if the only limitation to the Qow is due
to the viscosity q of the normal constituent Rowing
laminarly through the channel, then the pressure
gradient in the channel must be given by
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gradient has been discussed earlier in Sec. 4.5 and is
given by Eq. (4.4). Using Eq. (5.4) for the total heat
current, therefore, and combining with Eqs. (4.4) and
(5.5), one obtains for a parallel-sided channel of width d
and unit breadth:

Q: E&ge&&p ' d gl'adT:
p'$'Td'

gradT, (5.6)
128

where $, the entropy per g of liquid, has been identified
with AS, and where E~h, is the apparent heat conduc-
tivity.

Values of E&h„,from Eq. (5.6) have been computed
by London and Zilsel (L.48b), using experimentally
determined values of S and p„.They also used for
comparison the values of d and gradT occurring in the
experimental measurements of Keesom and Duyckaerts
(K.47a), and of Meyer and Mellink (M.47a); the
results of their computations are set out in Table
5.2. It will be seen that E~~„,is of the same order of
magnitude as E, for channel widths d greater than
about 1 micron. For channel widths less than 1 micron,
however, the theoretical evaluations are far too small.
For one of the smallest channels used by Meyer and
Mellink, namely 0.3 microns, E, ,/E„i,„,reaches
values as high as 260 at 1.23K.

Whereas the approximate agreement between X&I,„,
and E, ~ for channel widths of from 1 to 10 microns
is satisfactory, the marked discrepancies for the smaller
channels is disturbing. Gorter and Mellink (G.49a),
who also noted these discrepancies, consider them to
be due to the fact that for the smallest channe1s the
width d becomes comparable with the mean free
path which determines the viscosity, and that the
"normal" Qow is then analogous to Knudsen Qow in
low pressure gases. No satisfactory quantitative
explanation, however, has yet been given for the
anomalously high heat Qow through channels of width
less than 1 micron, and one must conclude that much
work remains to be done in the elucidation of this
problem.

Since the dependence of $ on temperature in the
liquid helium temperature region is very marked (see
Sec. 4.3) and since iI„does not vary greatly in this
temperature region (see Fig. 2.5) it is clear from Eq.
(5.6) that the heat conductivity E~q.„couldbe approxi-
mately considered as being proportional to T", where
n is a number between 10 and 15, in approximate
agreement with the experimental observations. London
and Zilsel (L.48b) have suggested v=12.2, but in

view of more recent measurements of $ and q„since
the time they wrote their paper, this value should be
revised. The diminution in the observed value of e,
as noted by Meyer and Mellink (M.47a), with decreas-
ing channel width must presumably be associated with
the anomalously high heat conductivities in the
narrowest channels, and remains unexplained.

S.S. Heat Transport Through Wide Channels
(Experimental)

The early measurements and the results of these
measurements of the heat transport through wide
channels (diameter from 0.2 mm to 1.6 mm) have been
noted already in Sec. 5.2. More recent work on
heat transport, in the region where the heat flow Q
is not linearly proportional to the temperature diGerence
AT has been carried out by Keesom and Duyckaerts
(K.47a), by Mellink (M.47b), and by Hung, Hunt,
and Winkel (H.52c). The interest in this work lies
in the information it yields concerning the resistive
forces acting throughout the bulk of the liquid, i.e.,
across the whole cross section of the channel.

The apparatus used in this work was the same as
that used by the authors in their observations on
narrow channel heat transport, as illustrated in principle
in Fig. 4.4. The channel widths employed varied be-
tween 1 and 15 microns, for which by operating at a
sufficiently high temperature (see Table 5.1) the heat
flow Q was observed to be nonlinear in dependence
on AT.

The results obtained were the same in character as
those for the very much wider channels (see Sec. 5.2),
namely, (a) the total heat current Q was approxi-
mately proportional to the cross section 3 of the
channel and (b) the heat current density j (j=Q/A),
was found to vary with (AT)&. Measurements were
not made extensively enough to determine the inQuence
of the length of the channel on the results.

The most recent results of Hung, Hunt, and Winkel
(H.52c) indicate that the nonlinear region, i.e., the
region in which Q ~ (AT)'*, may not extend right down
to zero heat input. It appears that for channels from
1 to 5 microns width as employed by them, linearity
between Q and AT exists for sufficiently small heat
input, even at temperatures above those critical values
tabulated in Tables 5.1.

Such a change-over from the (dT)& region to the
linear region has already been illustrated in Fig. 5.4.

In many of the measurements on heat transport
reported by the above authors, as well as the early
measurements of Allen and Reekie (A.39b), the
pressure difference across the channel connecting the
two volumes of liquid helium II was measured as
well as the other pertinent parameters Q and hT.
This pressure di8erence is the so-called fountain
pressure, caused by the application of heat to the
hotter volume of helium II and fundamentally due,
on the two-Quid theory, to the motion of the superQuid
constituent towards the source of heat. When wide

channels are used, however, the fountain pressure
cannot be maintained without a continuous supply
of heat being provided in the hotter volume, due to
the fact that "normal" Qow takes place along the
fountain pressure gradient and heat is transported to
the colder volume by the "internal convection" process.
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t2 ce He in detail by Gorter and Mellink (G.49a) and by Gorter,
Kasteleijn, and Mellink (G.SOa). The explanation is
based on the assumption that there exists a force
of mutual friction between the superQuid and normal
constituents when in relative motion given by,

I'r=+pspn(va vn)—) (5.7)

«I
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FIG. 5.5. Plot of observed fountain pressure Dp,b, in cm of
liquid he1ium against heat Row Q in watts through a channel 10.5
microns wide, at various constant temperatures as reported by
Mellink (M.48b}.

In the case of extremely small channels, it is possible,
as has been discussed in Sec. 4.4 to maintain fountain
pressures once initiated for considerable periods of
time without further application of heat, and ideally
one supposes that these periods could be made in-
definitely long by considering channels impervious to
the Qow of the normal constituent.

The main results of these measurements of the heat
Qow and the fountain eGect across wide channels
indicate:

(a) at constant temperature there is a strict pro-
portionality between the heat current Q and the
observed fountain pressure Dp,b, regardless of whether

Q is linearly proportional to hT or not. This fact was
first noted by Allen and Reekie (A.39b), and data
collected by Mellink (M.48b) clearly illustrating this
result are given in Fig. 5.5.

(b) the ratio of the observed fountain pressure to
the temperature difference Ap, b,/DT is not in general
equal to phS, as found for the narrow channels (see
Sec. 4.S). The ratio Ap, b,/AT is found to be a complex
function of the temperature, channel width, and hT,
and a typical curve due to Mellink (M.48b) showing
the variation of Ap, b, with T for various constant
values of AT at a channel width of 5 microns is shown
in Fig. 5.6. In this 6gure the computed values of
pDS. AT or rather pS AT are shown by the broken
curves.

5.6. Heat Transyort Through Wide Channels
(Theoretical)

A possible explanation of the nonlinear va, riation of
the heat flow Q of helium II through wide channels
with the temperature difference AT, has been put
forward by Gorter (G.48c) and has been discussed
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Fzo. 5.6. Observed fountain pressure in cm of liquid helium
as a function of temperature for various constant values of AT
due to Mellink (M.48b). Measurements made for channel width
of 5 microns. The broken lines give the theoretica1 maximum foun-
tain pressure as presented in Eq. (4.4).

where P„is the force per unit volume and where 3 is
a term which may be temperature dependent. The
inQuence of the mutual frictional force proportional
to the cube of the relative velocity on the isothermal
Qow of helium II, etc. , has already been noted in Secs.
2.6 and 2.7.

Under the inQuence of such a frictional force, acting
on the superQuid as well as the normal Quid, the simple
expression for the fountain pressure given in Eq. (4.4)
is no longer valid, since the Eq. (4.4) was deduced on
the assumption of no irreversible forces such as F,.
For Qow of superQuid in this case the theoretical
fountain pressure gradient pS gradT is larger than the
actual observed pressure gradient gradp, b, because of
the mutual friction. We have, therefore, in the steady
state,

pS gradT= gradp, b,+App (v,—s„)'. (5.8)

By measuring, as was done for example by Hung,
Hunt, and Winkel (H.52c), grad T and grad p,b, for
stationary Qow or for Qow with negligible acceleration
through channels, it is possible from Eq. (5.8) to
compute the mutual frictional term F„.

To determine the heat Qow by the "internal con-
vection" process when the mutual friction is present
it is necessary to combine Eq. (5.8) with some equation
relating the heat current density j with grad p. To
do this, anticipating Sec. 8.1 somewhat, one combines
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the two hydrodynamical equations of motion for the
superQuid and the normal Quid as proposed by Gorter
and Mellink, and one obtains,

gradPobs = tInV' vttt (5.9)

which together with the basic equation for the internal
convection process (Eq. 5.4) gives

pSTd'
g=— gradpobt

123
(5.10)

for linear Qow, for example, in a parallel-sided channel
of width d. This Eq. (5.10) is interesting in that it
indicates that the normal Quid motion is entirely
determined by the boundary conditions imposed by
the walls of the channel even when mutual friction is
present. It shows, moreover, that an exact linear
proportionality should exist between the heat current
density j and the observed fountain pressure gradient
gradp, b, across the channel regardless of whether
gradP, b, satisfies the simple relation (4.4) or the more
complex one Eq. (5.8). This latter result is satisfactory
as it serves to explain the experimental results first
noted by Allen and Reekie (A.39b), which indicate that
j~d,P,b, . (See Fig. 5.5.) lt should be noted here,
however, that this linear relationship between j and
Dp,b, as exemplified in Eq. (5.10) would be lost theoreti-
cally, if irreversible forces other than those of mltgal
friction were assumed to act on the superQuid motion.

By combining Eq. (5.8) and (5.10) it can readily
be shown that

gradT=—
129. 'g-

p'S'Td' S(p,ST)'
(5.11)

For narrow channels the first term on the right-hand
side of Eq. (5.11) is the dominant term determining
the heat Qow, and it will be seen to be the same as
the linear equation (5.6). As d the channel width
becomes larger, the first term on the right-hand side
diminishes and eventually one would expect that
grad T~ j'. This variation of j with the cube root of
the temperature gradient is what is observed in practice.
Indeed it was because of this observed variation that
Gorter and Mellink assumed the mutual frictional
term t „would vary with the relative velocity cubed,
i.e., with (v,—v„)'.

As is explained in some detail in Secs. 2.6 and 2.7,
it is not clear that the mutual frictional term of Gorter
and Mellink is sufficient to explain all the observations
on the normal viscosity, heat conductivity, etc, in
spite of its initial success, a success emphasized also
by the extensive computations of Nakajima, Tomita,
and Usui (N.50a) which were made with Gorter and
Mellink's mutual frictional term. Moreover it may be,
as the results obtained by Hung, Hunt, and Winkel
(H.52c), (some of which are illustrated in Fig. 5.4)
clearly show that the mutual frictional term is essen-

tially absent until some critical velocity of Qow is
reached. This conclusion, that Qows below critical
are essentially frictionless, had previously been arrived
at by Chandrasekhar and Mendelssohn (C.51) and by
Atkins (A.51a) from observations of flow through
surface films and through wide channels, respectively.
The suggestion has been put forward that

&r=~pspn[(vs vtt) &crit7 ~ (5.12)

e= W/AT, (5.13)

and found that for small temperature differences
(AT(10 "K) e was approximately proportional to
7'. His results are shown in Fig. 5.7.

Similar measurements using, however, a more
indirect technique have subsequently been made by
White, Gonzales, and Johnston (W.53a), and their
results conhrm approximately in magnitude and tem-
perature dependence the results of Kapitza (K.41f).
Using observations on second sound, Osborne (0.51)
has come also to the same conclusions.

Gorter, Taconis, and Beenakker (G.51d) have given

Recently Kasuya (K.53e) presented in a short note an
interpretation of the results of Hung, Hunt, and Winkel
(H.52c) using a mutual frictional force of the type
given in (5.12) together with an ad hoc frictional force
on the superQuid motion proportional to ~,'. He
calculated the critical velocities resulting from this
phenomenological approach. A more detailed discussion,
however, must await further information.

In general it seems clear, as is shown also in Sec. 8.I,
that there are many possible choices for the irreversible
terms in the hydrodynamic equations of motion, and
their intensive study, either theoretically or experi-
rnentally, is now only beginning.

5.'7. Boundary Layers

Apart from the problem of heat transport within
liquid helium II itself, interesting studies have been
made of the heat transport across the solid-liquid
boundary of a surface immersed in liquid helium II.
The first studies of this were made by Kapitza (K.41f).
His apparatus consisted of metal parallelepipeds which
contained internal resistance thermometers and heaters
and which were suspended freely by fine wires in a
constant temperature bath of liquid helium II. Dissipa-
tion of heat in any one parallelepiped resulted in its
temperature increasing above that of the helium bath
due to the finite thermal boundary resistance across the
solid-liquid surface. Kapitza found that this thermal
boundary resistance was in first approximation in-
dependent of the nature of the solid surface, and that
the temperature drop across the surface was located in
a thin liquid layer near the surface less than IO ' cm
thickness. He measured, moreover, the thermal transfer
coefficient n, i.e., the number of watts that can be
dissipated per cm' per degree rise in temperature
given by
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a formal interpretation of the thermal transfer coeK-
cient across solid boundaries to liquid helium II. They
consider the motion of the superQuid and normal Quid
perpendicular (in the z direction) to a solid surface
and use the conclusion that, if in this case the tem-
perature is assumed continuous at the boundary,
normal fluid must be transformed into superfluid (or
vice versa) near this boundary. This transformation
requires a different temperature (T) near the boundary
than far out in the liquid (Tp) if the transformation
proceeds at a finite conversion rate. Using their notation
by putting x equal to the fraction of normal Quid
present (x=p„/p), then they assume that the increment
in x is linearly proportional to (T Ts). Then con-—
tinuity of x requires

divxv„+u(T—To) =0, (5.13)

and the total conduction of heat 5' from unit surface
will be given by4

W= ri„pTS* )t gradT= con—stant, (5.14)

where X is the normal classical type coeffKient of
thermal conductivity of the liquid. The first term here
describes the internal convection process of heat
transport.

Equations (5.13) and (5.14) yield an exponential
solution for T given by

T Tp AT exp (—z/8), — —— (5.15)

and, hence,
S'

e= = =P,pTaS*/x jl-
AT

(5.16)

and from which the effective thickness 8 of the liquid
layer supporting the temperature drop is given by

P= xX/p Ta5*. (5.17)

'4 Here S* represents —x(SsG/BxeT) or x(8S/Bx) which Gorter
(6.49b) has introduced instead of the simpler picture presented
elsewhere in this article.

l.6 l.7 l.8 l.9 R.O 2.l 2.2
= T~K

FiG. 5.7. The value of the thermal transfer coefficient n across
a solid-liquid surface in liquid helium II (in watts/cm -deg) as a
function of temperature t Kapitza (K.41f)g.

gf+g/I (5.18)

where 8' is the result of the third type of wave motion
introduced earlier by them (for the limit oi=0), and
where 8" is the contribution resulting from relaxation
as discussed by Gorter, Taconis, and Beenakker. They
give, for 8',

Xr/)p
Ss* Ts. (5.19)

(Note here that 5*has the significance recorded above. )
Recently Khalatnikov (K.52c) has suggested that

the thermal transfer at the boundary is preponderantly
due to radiation of sound from the vibrations of the
solid. At the time of writing insufficient detail on this
paper is available.

6. THE SURFACE FILMS (SATURATED AND
UNSATURATED)

0.1. The Film Thickness and Syeci6c Heat

It was first pointed out by Rollin (R.36), and by
Rollin and Simon (R.39) that films are formed on all
solid surfaces which dip into liquid helium. These
films have been the subject of numerous investigations
(perhaps chiefly of their thickness and rate of flow)
since the films are one of the most characteristic
manifestations of helium II.

The thickness of the film was first measured by
Daunt and Mendelssohn (D.38b and D.39b) and by
Kikoin and Lazarew (K.38f). The first pair mentioned
employed a large surface of copper (of area 103 cm')
held by a string near the surface of a bath of liquid
helium. Sy means of a small wire attached. to the
copper and dipping into the bath, a film could move
onto the copper at the temperature of the bath. Subse-
quently the copper was removed to room temperature
and the quantity of helium evaporated from it in this

It is to be noted that a must be associated with a
relaxation time for superQuid to normal conversion,
which appears also in theories by Gorter ef al. (G.50a)
of the attenuation of second sound (see Sec. 9.7). By
using this connection between a and the results of
measurement on second sound, Gorter and co-workers
(G.51d) concluded that formula (5.16) is not in dis-
agreement with experiment.

A further development of this problem has been
made by Kronig and co-workers. In considering the
theory of the propagation and attenuation of first
and second sound (see Sec. 9.1) in liquid helium II,
Kronig and Thellung (K.50) concluded that a third
type of wave motion is possible, namely, one which
has an almost purely imaginary wave number and,
hence, one which is aperiodic in space with exponential
damping. They associate this with surface eftects near
solid-liquid boundaries and concluded that the liquid
thickness over which such effects are appreciable are

- less than or equal to 10 ' cm. Kronig, Thellung, and
Woldringh (K.52h) in extending this theory, write for
the eGective thickness 8,
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Fro. 6.1. Specific heats in cal/g-deg of adsorbed helium (after
Frederikse, F.49a): curve (1) 3—4 layers, curve (2) 5—6 layers,
curve (3) 7—9 layers, curve (4) 9—12 layers, curve (5) liquid helium
in bulk. The number of layers indicated here are as given by
Frederikse. For a re-interpretation see Sec. 6.3.

process was observed by noting the increase in height
of the level of the liquid in the bath. By this method
they could detect films of thickness equal to or greater
than 10 ' cm. The results gave an average thickness of
the helium surface 61m of 3.5)&10 cm, essentially
independent of temperature for temperatures between
1.59'K and 2.14'K. Above the X point (2.18'K) the
thickness was found to be less than 10 ~ cm.

Using a diGerent experimental arrangement which
also depended on the evaporation of the film from a
large surface, Kikoin and Lazarew (K.38f) found an
average film thickness, measured at an unstated
temperature, of from 2 to 3&(10 ' cm. These authors
also imply the qualitative result that the 61m forms
very rapidly; they speak of a "jump" in the bath level
as the helium rushes onto their large sample.

We should digress a moment from our discussion of
film thickness to mention a difFiculty in the interpreta-
tion of the data on films and the resolution of that
difficulty. The thickness measurements just discussed
are really volume measurements —volumes of the
bulk liquid. In order to proceed to a thickness it must
be assumed that the density of the helium 61m is
substantially the same as that of the bu1k liquid. That
this is justified by more than expediency may be
claimed perhaps from Frederikse's measurements of
the specific heat of adsorbed helium films (F.49a).
The speci6c heats were measured in a calorimeter in
which known quantities of helium gas were allowed to
be adsorbed on a surface of jeweller's rouge (FesOs) of
surface area about 4000 m'. The results appear in Fig.
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FIG. 6.2. Results of Burge and Jackson (B.51d) for film thick-
ness as a function of temperature for various heights H. The
Nicol rotational angle AN is proportional to the film thickness.

6.1. It was found that, for the thinnest films of helium
measured, about 4 layers thick according to Freder-
ikse, the speci6c heat divers profoundly from the
bulk value, showing no ) point, but that after about
20 layers the average specific heat is almost iden-
tical with that for the bulk helium. The experiments
show very prettily a smearing out of the X transi-
tion and its disappearance as the film is made thinner.
From these results it is reasonable to conclude that
the average properties of the usual film )100 layers
thick are very close to those of the bulk liquid.

The experiments quoted above yield only average
thicknesses and say nothing about the variation of
film thickness with height above the bath. But intuition,
and perhaps the image in the mind of water wetting
a glass, suggest that the film thickness may vary with
height. The experiments of Jackson and Burge (J.49a
and B.51d) were designed to measure this variation
and to test the theories of the film which had already
been put forward.

Jackson and Burge have performed an elegant series
of measurements of the thickness of the surface film
in sitN. Their method, based on the method used by
Rothen (R.45) for the measurement of the thickness of
barium stearate layers, allows the thickness of the
helium film adhering to a stainless steel mirror, the
lower end of which dips into a bath of liquid helium II,
to be assessed from measurement of the state of
polarization of light reRected from the mirror. Incident
plane polarized light when rejected from the 61m-
covered mirror is elliptically polarized, the eccentricity
and orientation of the ellipse giving a measure of the
film thickness. (Of course, one must know the index
of refraction of the film. As in the similar situation
mentioned above, the bulk property is used for want of
better data. ) The main advantage of this method is
that the film thickness can be measured at diGerent

heights above the bath. Measurements can be made
on stationary or on Rowing 61ms equally well. Some
of Burge and Jackson's results (B.51d) for stationary
6lms are shown in Figs. 6.2 and 6.3. In these figures,
B is the height above the bath level and AS is a
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d= ds/H"' (6.1)

where do is the film thickness at a height of one cm.
This form was used because it had already appeared
in some of the theorizing on the film thickness. However,
in the experiments s was found to vary both with
temperature and with the height H. That is, even at a
fixed temperature Eq. 6.1 is only an approximation.
For example, in the measurements on the stationary
61m s, ,=2.5 at 2.1'K and increased to s, ,=3.5 at
1.1'K, but (at an unspecified temperature) s varied from
2.9 to 3.1 as B varied from 0.25 cm to 1.2 cm.

Unfortunately the results for s quoted in the pre-
ceeding paragraph must be corrected by the addition
of the increment reported by Jackson and Henshaw

(J.53). Since Jackson and Henshaw have not yet
given de6nitive values of the corrected thickness, we
shall not recompute s for their experiments. Bowers,
in two recent papers (B.53b and B.53c), has added
some important data to this discussion. Bowers has
investigated the thickness of static helium films above
and below Tq for both saturated and unsaturated films.
His method consisted in weighing the film formed on
an aluminum foil by means of a microbalance built
into his cryostat. In his experiments with saturated
films below Tq, Bowers used a foil 7.6 cm high which
dipped into liquid helium II by means of a fine wire
tail about 3 cm long so the thicknesses he measured
were average values with H, , (Eq. 6.1) about 5 cm.
By integrating Eq. 6.1 over his foil, Bowers found his

"Henshaw and Jackson (H.51) using the same technique,
however, have published a curve showing a small monotonic
variation of the thickness with temperature. It is not clear to us
which results should be taken as de6nitive.

number proportional to the film thickness. It will be
seen

(a) that at a given height H the 61m thickness
varies little with temperature between the extremes of
temperature used, " namely, 1.1'K to just below Tz,
a result which is in agreement with that previously
obtained by Daunt and Mendelssohn (D.39b).

(b) that the 61m thickness falls to an immeasurably
small value at the X point (2.18'K) and above, again as
previously observed (D.39b). The behavior near the
X point could be reproduced when the bath temperature
was either slowly rising or slowly falling. These results
near T~ are of some theoretical significance, as we
shall discuss later. Subsequent observations by Jackson
and Henshaw (J.53) show, however, that above Ti
the helium film is about 10 layers thick. This observa-
tion requires that a constant thickness of about 10
layers must be added to the results obtained from Figs.
6.2 and 6.3. This surface film is easily removed by
radiation falling on it.

Burge and Jackson attempted to express the variation
of film thickness with EI at a given temperature by
means of the formula

160 =

!20—

80-

I
I

2.I80 2.l 82
T (~K)

2.l8 4 2. l8 6

Fro. 6.5. Results of Burge and Jackson (8.51d) for film thickness
as a function of temperature near Ty. The Nicol rotational angle
hX is proportional to the 61m thickness. The full circles refer to
the upper temperature scale; the open circles to the lower.

results represented by

n= 295/H'f* (6.2)

where e is the number of layers and a=2.0%0.3.
Bowers warns that 295 does not necessarily lead to the
film thickness at 1 cm above the Quid since his foil was,
on the average, much higher than this. t For his method
of relating n with the film thickness see Bowers
(B.53d).j These results for s do not agree with the
results already quoted of Jackson and co-workers or
with Atkins (see following). By averaging Eq. (6.2)
over the heights involved, Bowers obtains agreement
with the much earlier results on the 61m thickness of
Daunt and Mendelssohn (D.39b). Above Ti Bowers
found a 61m about 10 layers thick in agreement with
Jackson and Henshaw (J.53). Bowers also notes that
the 61m thickness is extremely sensitive to radiation.
With regard to the variation of film thickness with
temperature, Bowers and Burge and Jackson are in
very satisfactory agreement.

The results quoted in the previous paragraphs are
for stationary films. By placing a heat source on the
top of their steel mirror, Burge and Jackson were
also able to observe films moving across their mirror.
They found that in the Qowing film the thickness at a
given height was as much as 20 percent greater than
in the stationary 61m. Also they found that the variation
of thickness with height was different in the two cases.
In 6tting the data from these experiments on Qowing
films to Eq. (6.1) the authors found that now s varied
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rather than free energy is considered; but if the ob-
served approximate constancy of 61m thickness between
1'K and 2'K is adduced to justify the theory in this
temperature range then there is no reason for the 61m's
not persisting in the helium I region. Schiff suggested
that the observed di6erence in the film thickness for
helium I and helium II could be accounted for by the
Qow properties in the two phases: in the superQuid
region the superQow of matter forms the film when the
temperature is lowered and balances any evaporation
from the 61m as the temperature is raised, whereas
in the helium I region viscosity prevents the formation
of the film and permits the evaporation of any film
already formed below the X point when the temperature
is raised through the X point. Burge and Jackson have
discussed this point at some length, however. Jackson
and co-workers have shown experimentally that the
film falls abruptly to a very small value ( 10 layers)
at the X point and that the temperature of its abrupt
fall is independent of the rate at which heat is supplied
to the film. This appears to preclude the possibility
that the extinction of the film at Ti occurs merely
because of the Qow properties of the helium II 61m.

Bijl, deBoer, and Michels (B.41) have approached
the problem of the film from a di8erent point of view.
They consider all helium atoms in the 61m to. be
particles in an ideal Bose-Einstein gas which have
condensed into the lowest energy level. This lowest
energy is determined by the thickness d of the 61m.
The part of the wave function that depends on motion
perpendicular to the wall is sinusoidal, the energy for
each particle being

g= h2/Smdn (6.4)

where h is Planck's constant and m is the mass of
the helium atom. If the gravitational potential energy
is added to this zero-point energy, and the number of
particles per unit area of the film is taken to be pro-
portional to the thickness: n=Ed, then the energy
per unit area of film at the constant height B is

E= Kd (mgH+h'/Smd') (6.5)

the number of particles available to form the 61m
falls to zero.

However, it should be noticed that Eq. (6.5) contains
only positive terms. At equilibrium E=2EdmgII, so
that there is no apparent reason for the 61m's forming
at all. To overcome this difBculty it is necessary that
an interaction with the wall must be introduced —some-
thing powerful enough to lift particles from the bath
level where the energy given by Eq. (6.4) would be
practically zero. Any reasonable wall potential however
may be expected to alter the wave functions, and hence
the dependence of the energy on the thickness. Another
serious objection has been offered by Mott (M.49b),
who pointed out that the sine wave functions required
by Eq. (6.4) imply a great variation of density across
the film, with all the particles concentrated at the
center of the film. For any interaction among the
particles this could not correspond to the state of lowest
energy. A more reasonable wave function would have
constant amplitude over most of the 61m and, therefore,
would not result in an energy varying as d '.

A more sophisticated theory of the film was given
by Temperley (T.49b). He started with a one-dirnen-
sional wave equation which included the van de Waals
energy of the helium atom in the presence of the wall
and in the presence of the other helium atoms in the
61m; that is, the other helium atoms furnish a self-
consistent field. His wave equation is

(s+d+x)'
)2 P

14 =0. (6.7)
(s+x)' (s+d+x)'i

In this equation s is the atomic diameter, d is the film
thickness, k2 is a measure of the energy of the atom
due to the presence of the wall, and P is a measure of
the energy of the atom in the 6eld of the other 61m
atoms. By means of a variational treatment, Temperly
found the lowest energy level of this problem to be

The thickness d at constant H is found from the fact
that dE/dd= K(mgH —h'/Smd') =0. Thus, at equilib-
rium,

h'
p by'

I o+—I,
32~'m & d')

(6.8)

d = (h'/Sm'g) IH-&. (6.6)

This variation of d with H is in agreement with the
result of Bowers and is perhaps not too far from the
experimental findings of 8urge and Jackson. The
constant factor in Kq. 6.6, which contains no arbitrary
terms, is within a factor of 5 or so of the observed
value of do, certainly a striking result. To conclude,
on this theory the change in the gm thickness on
passing through T& is explained qualitatively by the
initial assumption that film particles are Bose-Einstein
particles in their lowest state. As the temperature is
raised through the ) point, the film vanishes because

where a is a constant depending on s and I,, and b

is a constant depending on 0 and /. The gravitational
energy is added to Eq. (6.8) and the equipotential is
taken as the equation of the 61m surface: i.e.,

mgH (h2/32m'm) {a+5/d'}'= c—onstant. (6.9)

The experimental data hardly admit an accurate
evaluation of the constants but Temperley finds an
order of magnitude agreement between the slope of
the film surface as determined from Eq. (6.9), using
his values of u and b on the one hand and the experi-
mental results of Jackson and Burge on the other.
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F?G. 6.5. Adsorption isotherms of helium on jeweller's rouge &n

cc (S.T.P.)/m' as a function of saturation at 4.21'K—lowest
curve: 3.02'K, 2.42'K, 2.25'K, 2.14'K, 2.01'K, 1.80'K, and
1.59'K—top curve. Due to Strauss /see Long and Meyer (L.53a)].

0.3. The Unsaturated Helium Film—
Static Properties

The unsaturated helium film is the film which is in
equilibrium with its vapor at less than the vapor
pressure. Its properties have been measured by several
investigators with —it must be admitted at once—most
divergent results. The results and the concomitant
problems involved have recently been reviewed by
Long and Meyer (L.53a), to whom the reader is

referred for further detail; but endings announced

since their review are not. in keeping with all the
results surveyed by them.

The chief subjects for study are the adsorption
isotherms. Such isotherms have been obtained yd b

Incidentally, the form of Eq. (6.9) emphasizes the fact
that an Eq. like (6.1) may be entirely inadequate to
fit the experimental results. Indeed, we have already
mentioned the wide variations of z which arise when

the experimental results are inserted into Eq. 6.1.
Temperley has also given a qualitative prediction

of the variation of film thickness with temperature.
He expected the thickness to have a Rat maximum

0
(when plotted against temperature) at about 1.8 K
and to fall to zero at the X point. This prediction is
not in agreement with the experimental results shown
in Fig. 6.2. I.S-
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. Fzo. 6.6. Adsorption isotherms of helium on 0.5 m~ of glass for
various percentages of saturation due to Brewer and Mendelssohn
(8.53e). The broken line indicates the temperature of the onset of
super6uidity as a function of percentage saturation.

"Similar unpublished experiments by W. B. Gager and one of
us (J.G.D.) carried out in 1952 using horizontal piles of brass,
glass, and Al plates separated by wire spacers 0.005 cm diameter,

Keesom and Schmidt (K.33b) on glass; Keesom and
Schweers (K.41e) on glass; by Kistemaker (K.47b)
on glass; by Long and Meyer (L.49b) on jeweller's
rouge; by Sheaffer, Smith, and Wendell (S.49) on
carbon; by Frederikse and Gorter (F.50) on jeweller's
rouge and steel; by Mastrangelo and Aston (M.51a)
on TiOs, by Strauss [see (L.53a)j on jeweller's rouge;
by Brewer and Mendelssohn (B.53e) on glass; and by
Bowers (B.53d) on aluminum foil.

The general pattern obtained is indicated by Fig.
6.5, which shows Strauss' isotherms on Fe203,' however
there are deviations from the pattern. Frederikse and
Gorter's results are similar to Strauss', whereas Long
and Meyer found that below Tz the isotherms could
be superimposed on one another. More startling,
however, is the result of Brewer and Mendelssohn
shown in Fig. 6.6, which implies that for T&Tq the
isotherms fall lower on a plot such as shown in Fig. 6.5.

Besides the discrepancies noted above, there is
considerable uncertainty as to the maximum thickness
of the adsorbed film below the X temperature for p,
the observed vapor pressure, just less than ps, the
saturated vapor pressure. Kistemaker's data, when
re-evaluated by Frederikse and Kistemaker [see long
and Meyer (L.53a), p. 11j led to a thickness just
below saturation of 150 layers. Long and Meyer
(L.49b) reported a comparable 6gure. Bowers, however,
(B.53d) observed not more than 20 layers up to 99.92
percent saturation. Another divergent result has
recently been reported by Brewer and Mendelssohn
(B.53f) [see also Brewer and Mendelssohn (B.53g)j
from experiments in which a helium II film was de-
posited on a stack of glass plates spaced about $0 4

cm apart and the "run-oG" subsequently collected
and measured after the temperature of the plates
had been raised above T~. The amount of helium
exceeded by a factor of ten or so the amount to be
expected for the usual helium II 61m. '~ The excess

2.0—
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they attribute to the formation of clusters due to an
anomalous surface tension.

Despite the inconsistencies already mentioned for
nearly saturated or saturated films, the isotherms may
be discussed conveniently in terms of the B.E.T.
[Brunauer-Emmett-Teller (8.38)j theory of multilayer
adsorption for small values of (p/pp). The theory
predicts the shape of the isotherms and also permits
the evaluation of certain physical constants of the
adsorbate. ln particular, one may obtain the volume
of the 6rst layer of the absorbate from the isotherm
data. Helium deviates from the theoretical behavior
in that the volume of the first adsorbed layer as calcu-
lated from the isotherms is about four times as large
as the volume of a unilayer having the properties of
helium in bulk. This indicates that the first adsorbed
layer has a higher density than bulk liquid helium.
The factor four is just the ratio of the volume of atoms
having liquid spacing to the volume of close-packed
helium atoms whose diameter is that of the hard-sphere
approximation. The exceptionally large volume of
the bulk liquid is attributed to the high zero-point
energy [see Simon (S.34), and Benewitz and Simon
(B.23)): in the adsorbed film the large attractive
forces of the wall overcome the zero-point repulsion
and bring about close packing, so that the 6rst layer
is essentially a two-dimensional solid rather than a
liquid layer. This result leads to a re-interpretation of
Frederikse's data on the speci6c heat of the adsorbed
61m. (See Fig. 6.1.) Frederikse's first four layers are
really one highly compressed layer which has the
properties of a two-dimensional solid —as the speci6c
heat shows.

The modification of the B.E.T. theory necessitated
by the anomalous packing of the 6rst layer mentioned
above has been undertaken by Band (B.49b) and by
Aston and Mastrangelo (A.51c). Both attempts lead
to improved agreement between theory and experiment
for values of (p/ps) suKciently small. (Deviations from
the B.E.T. isotherms are quite generally observed for
values of (p/ps) greater than about 0.4.) Band (B.51e)
has also given a possible explanation of the adsorption
isotherms in terms of the condensation of an ideal
Bose-Einstein gas into layers of a two-dimensional

gas bound to a surface by an energy W(n), where e
is the number of the layer counting out from the solid
surface. The shape of the resulting isotherm depends
on the relationship between 8" and m. Unfortunately,
the best fit to the data does not occur for the most
reasonable choice of this relationship.

Note added se proof.—Recently Tjerkstra, Hooftman,
and von der Meydenberg [Physica. 19, 935 (1953))
have used an ingenious differential McLeod gauge to
measure the adsorption isotherms of He II on glass.
Within the limits of accuracy of their measurements

also yielded anomalous values for the apparent saturated Glm
thickness (~SOXIO ') for the brass and Al. The results for the
glass were not anomalous.

the isotherms taken at temperatures from 1.5'K to Ty

cannot be distinguished from one another.

0.4. SuyerQuid Properties of Unsaturated Films

Long and Meyer have reported on experiments
undertaken to detect superQuidity in adsorbed films

(L.50a and L.52a). In one set of experiments (their
method I) they found that as they lowered the tem-
perature of their system superQuidity began at a
definite temperature below 2.18'K, which temperature
decreased as the 61m thickness decreased. However,
in another set of experiments (their method II)—in

which presumably their system was nearer to mechani-
cal equilibrium —superfluidity appeared at Ti, (bulk)
for films of all thicknesses. The latter would appear to
favor the conclusion that the X point is not a function
of the 61m thickness. However, experiments by Bowers,
Brewer, and Mendelssohn (B.51a) on heat transfer
in unsaturated 6lms support the opposite conclusion.
These investigators found that for a given ratio (p/p. ,r)
the heat current, itself presumably linked to super-
Quidity, decreased as the temperature rose. For a thin

film the heat current fell to zero at a low temperature;
whereas for a thick 61m the extinction of the heat
current occurred at a higher temperature. Recently
Long and Meyer (L.52c) have repeated the experiments
of Bowers, Brewer, and Mendelssohn and find results
in agreement with these investigators. The tempera-
tures at which heat Qow just begins in these experi-
ments, moreover, agree for given 61m thicknesses with
the temperatures found in method I of reference
L.52a, indicating a variation of Tq with film thickness.

Further data on this point has been furnished by
the work of Brewer and Mendelssohn (B.53e) mentioned
in Sec. 6.3 and shown in Fig. 6.6. The onset of super-
Quidity came at increasingly lower temperature as the
thickness of the film was decreased, but did not appear
to correspond to any anomaly in the observed isotherm.
Brewer and Mendelssohn maintained therefore that
by examination of the isotherms no indication can be
seen of the change from superQuidity to nonsuper-
Quidity in the adsorbed film.

6.5. Theories of the Unsaturated Film

Besides comparing the observed isotherms with
theories of adsorption isotherms several authors have
attempted more far-reaching thermodynamic inter-
pretations of the data. These efforts include calculations
to correlate the adsorption isotherm data (Sec. 6.3)
with the data on superfluidity (Sec. 6.4) and inspections
of the isotherm data for evidence of a X transition.
(The onset of superfluidity as the temperature is
lowered does not necessarily coincide with the appear-
ance of thermodynamic anomalies. ) Deductions con-

cerning the speci6c heat, entropy, enthalpy, etc.
have been made from the adsorption data, for example,

by Mastrangelo and Aston (M.51a and A.51c); by
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Fro. 7.1. Film transfer out of a glass vessel as a function of time. Daunt and Mendelssohn (D.39c). The curve plots the
liquid level in the vessel as a function of time.

Meyer and Long (M.52); by Long and Meyer (L.53a
and L.53b), and by Rice and Widom (R.53c). In
view, however, of the divergences among the data
discussed in Sec. 6.3 the writers of the present article
feel that arguments based on the derived thermody-
namic quantities are scarcely to be relied on.

Of a somewhat diGerent nature are the discussions of
the helium 61m in terms of the properties of an ideal
Bose-Einstein assembly. Osborne (0.49b) has shown
that a two-dimensional Bose-Einstein gas does not
show a condensation comparable to that found in a
three-dimensional gas, but rather a gradual "accumu-
lation" into the lowest quantum state. This accumu-
lation occurs at a temperature very much smaller
than the condensation in the bulk gas. Ziman (Z.53a)
has investigated the properties of slab-shaped as-
semblies. If L; is the 6nite length of the edge of such an
assembly, and L &L„=L„the X temperature is less
than that of the cubical assembly (L,)s. By assuming
that helium liquid both in bulk and in films can be
divided into "domains" of the order IO 5 cm on an
edge, Ziman was able to find a change of X temperature
with thickness of the ideal Bose-Einstein 61m which
represents quite well the behavior of the onset of
superQuidity in the experiments of Bowers, Brewer,
and Mendelssohn (B.51a) already discussed.

7. FILM FLOW RATES

V.l. Early Experimental Results

The remarkable properties of Row of the surface
films formed from helium II, observed and investigated
by Rollin and Simon (R.36; R.39) were the subject
of extensive study by Daunt and Mendelssohn (D.38b,
D.38c, D.39b, D.39c). The general properties of the
Row of the surface 61ms found by them have been
reviewed frequently (K.42, B.40, D.40, K.48, M.49c,
S.53b), but in view of the relevance of the early results
to some recent investigations, it is considered that a
brief summary of them would be of value. For detail
of the experimental procedures, however, the previous
reviews should be consulted.

The first investigations of Daunt and Mendelssohn
were con6ned to isothermal conditions in which the
Row of helium II took place from one reservoir to
another through the interconnecting surface 61m.
The run of a typical experiment is graphically displayed
in Fig. 7.1, which shows a plot of the height of the
liquid in a glass beaker of helium II measured as a
function of time, the transfer from the beaker to the
bath taking place through the 61m on the surface of
the beaker. It will be noticed that, except for an
anomalous region where the inner level is near the
rim of the beaker, the rate of drop of the inner level
is constant and that it remained constant even when,
as at minute 33, an abrupt change was made in the
difference in height between the two levels. From an
extended series of measurements Daunt and Mendels-
sohn concluded that for temperatures below the X

temperature:

1. Under isothermal conditions liquid helium II
always collected at the lowest available level.

2. This transfer of helium from one reservoir to
another took place in a film formed on the solid surface
between the reservoirs.

3. The rate of transfer was practically independent
of the difference in height between the levels. "

4. The rate of transfer was independent of the
material of the substrate.

5. The rate of transfer was proportional to the width
of the connecting surface.

6. The transfer from one reservoir to another was

restricted by the narrowest part of the connecting
surface a,bove the height of the upper level. At places
below the upper level liquid could collect in drops
from the film. "

' Daunt and Mendelssohn observed a small variation of the
rate of transfer with height when observations were made over
height differences as large as 6 cm. The variation in the rate was
approximately 2 percent per cm change in height.

' Elegant visual con6rmations of this have been provided
recently by Jackson and Henshaw (J.53), and by Ham and Jack-
son (H.53) using an optical technique (see also Sec. 7.4).
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7. The rate of transfer was within experimental
error independent of the length of the connecting film.

8. The rate of transfer measured in cc of liquid
transferred over glass surfaceg per cm width of con-
necting film per sec was a function of temperature,
the numerical values being given in Fig. 7.2.

Other experiments of Daunt and Mendelssohn
(D.39a, D.39b), as well as those of Rollin and Simon
(R.39), showed that under nonisothermal conditions
the helium Qow in the film took place towards the
region sustaining the maximum heat inQux at a rate
identical with that obtained under isothermal
conditions.

HEIGHT (crn)

-0
MINUTES

20 25

FIG. 7.3, Film transfer out of glass vessels plotted against time
for dilferent conditions of the glass surface (see text). Bowers and
Mendelssohn (B.50e).

Fxo. 7.2. The film
transfer rate over
glass surfaces in cm'/
cm width-sec as a
function of ternpera-
ture. Daunt and Men-
delssohn (D.39b).
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7.2. Recent Measurements Over Glass Surfaces

The established picture, codified above, was ques-
tioned in 1948 and early 1949 by the experiments
of Atkins (A.48c) and of de Haas and van den Berg
(H.49), which yielded results strongly at variance with
those quoted above. As a consequence, interest was
renewed in helium film Qow phenomena, and much
work was done on this topic between 1949 and 1952,
all of which has led to the unequivocal re-establishment
of the early results of Daunt and Mendelssohn.

In view of the theoretical significance of the transfer
rates in 6lms, a significance which is discussed later,
some comment on the work of Atkins and of de Haas
and van den Berg may be of value. The experiments of
Atkins concerned the isothermal Qow of liquid helium
II out of glass beakers through the surface 61m and
he found that his results were not in agreement with
the fi'ndings of Daunt and Mendelssohn summarized

by items 3, 5, 7, and 8 in Sec. 7.1. Atkins (A.48c)
observed transfer rates more than 5 times greater
than those given in Fig. 7.2 for the same temperature,
and he found that marked variations with the length
of the connecting film existed.

Atkins, moreover, reported a dependence of the
transfer rate on the difference in levels and for constant
level difference the transfer rate depended in a com-
plicated way on the width of the connecting 61m and
on the geometry of the beaker arrangement. de Haas
and van den Berg reported brieQy experiments also
on the isothermal Qow of helium II out of glass beakers.

They reported transfer rates as high as 140X10 '
cm'/cm width-sec at 1.4'K (see the value of 7.5X10 s

cm/cm width-sec given in Fig. 7.2) with a strong
dependence on the level difference. de Haas and vaii
den Berg attributed their result to the fact that in
the experimental arrangement employed by them no
radiation from external sources fell on the surface 61m.

Subsequent experimenters observing the transfer
through the film, also out of glass beakers, and using
a variety of techniques, however, have all found
transfer rates closely similar to the early results of
Daunt and Mendelssohn. This confirmatory evidence
for the accuracy of the early work was obtained, for
example, by Lane and co-workers (W.49, F.49b),
Eselson and Lazarew (E.51), Boorse and Dash (B.50d),
and also later by Atkins (A.50b), and de Haas and
van den Berg (B.51f) themselves.

However, it has been largely through the recent
work of Mendelssohn and co-workers that the physical
phenomena underlying the abnormal results of Atkins
(A.48c) and de Haas and van den Berg (H.49) have
been understood.

In a series of elegant experiments Bowers and
Mendelssohn (B.49c, B.50e) have shown that the
abnormal sects observed by Atkins and by de Haas
and van den Berg are of a secondary character and
do not reQect the properties of pure 61m transfer.
From a comparison of the techniques employed by
the diferent workers, Bowers and Mendelssohn
concluded that the marked variations apparent in the
abnormal results might be due to variations in the
condition of the substrate of the film and in particular
due to contamination of the substrate by condensed
gases. They therefore carried out experiments on the
isothermal Row of helium II out of glass beakers
through the surface film, introducing controlled con-
tamination of the substrate. The result of a typical
series of experiments is given in Fig. 7.3, showing the
height of the liquid helium II inside a glass beaker as
a function of time. Curve 1 gives the result for a very
pure surface of the glass beaker. The Qow, again except
for a short region near the rim of the beaker, is in-

dependent of the difference in levels (see Fig. 7.1) and
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FIG. 7.4. Experimental arrangement used by Bowers and Men-
delssohn (3.50e) to investigate the possible effect of radiation on
film transfer rates.

corresponds to a transfer rate equal to that previously
reported by Daunt and Mendelssohn (D.39c). Curve
2 shows the results after a thin layer of solid air had
been deposited on the surface of the beaker. This
layer was obtained by allowing helium gas with a small

air impurity to condense down into the helium vessel.
Here the initial transfer rate has been increased a
little, but the main features of the Row remained the
same. Curves 3, 4, and 5 represent the results after
three further successive condensations of air were
allowed to solidify on the beaker at about 2'K. It
will be seen that the character of the transfer was
completely altered. The initial transfer rate was
increased many fold and its variation with level diGer-

ence assumed the character reported by Atkins (A.48c)
and by de Haas and van den Berg (H.49). Curve 5

represents a "saturation" curve, in that further deposits
of air gave no appreciable change in the results. It is
to be noted that these deposits of condensed gases
were quite transparent and colorless and that similar
results were obtained using H2 and Ne as the impurity
condensate. Moreover deposition of the solid impurity
occurred immediately the impure gas was introduced
into the system, regardless of whether the beaker
was out of or submerged in the liquid helium II.
After raising the temperature of the contaminated
beaker to room temperature and cleaning its surface

by continued pumping, the results of curve 1 could
be reproduced.

'NO RADIATION

Io 20
MINUTES

50 40 50

FrG. 7.5. Typical results for 6lm transfer obtained by Bowers
and Mendelssohn (3.50e) using the arrangement of Fig. 7.4.
The curve plots the liquid level inside the beaker as a function of
time when filling.

It was concluded, therefore, that the high transfer
rates, the level diGerence dependence of the transfer
rate, and other abnormal results were due to contamina-
tion of the substrate, the random and probably granular
character of which could amply explain the complicated
nature of the results observed by Atkins and by de Haas
and van den Berg. It is probable, moreover, in view of
many of the results obtained with the transfer over
metal surfaces, that the increase in the transfer rate
over contaminated surfaces is due to the increased
perimeter due to the deposit.

The possibility of there being an eGect on the transfer
rate due to incidence of external radiation of the film

surface, as had been suggested by de Haas and van
den Berg, was also investigated by Bowers and Mendels-
sohn (B.50e). In their experiments, they suspended
a glass beaker 8 (see Fig. 7.4) in liquid helium II,
the beaker being enclosed in a copper vessel C in
which two narrow slits had been cut so that the level
of the liquid in the beaker could be observed. This
arrangement was situated inside another copper
shield S and could be rotated by the support E so
that the beaker either was completely shielded from
outside radiation or could be viewed for level measure-
ment. The transfer of helium II out of the beaker was
observed alternately with and without radiation, and
the results are shown in Fig. 7.5. As will be seen from
the curve of Fig. 7.5, all the points lie on the same
straight line, showing that no change in the transfer
rate occurred while the radiation was excluded. The
absolute value of the transfer rate, moreover, was in

agreement with the early work (D.39c) as would have
been expected for clean surfaces. This result on the
absence of any eGect of radiation was subsequently
confirmed by Atkins (A.50b).

Further work by Brown and Mendelssohn (8.50f)
on the Qow out of clean glass beakers of diGerent
geometrical shapes also confirmed the early work of
Daunt and Mendelssohn and indicated that the
anomalous results of Atkins were of a secondary
character induced by surface contamination.

HEIGHT (cm )
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Mendelssohn and White (M.50a) made detailed
studies of the film transfer rates over uncontaminated
glass surfaces as a function of temperature and their
results together with the early results of Daunt and
Mendelssohn (D.39c) and the later results of Webber,
Fairbank, and Lane (W.49) are shown in Fig. 7.6.
It will be seen that the agreement of all these measure-
ments amongst themselves is satisfactory. Mendels-
sohn and%hite suggested an expression of the following

type to describe their results:

Fzc. 7.7. The 61m
transfer rate over glass
as a function of
level difference (pressure
head). Atkins (A.SOb).
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Fro. 7.6. Film transfer rates over glass surfaces in cm3/cm
width-sec as a function of temperature. The full curve is due to
Mendelssohn and White (M.50a), the curve marked ————
due to Webber et af (W.49), and that marked. due
to Daunt and Mendelssohn (D.39c).

where E is the transfer rate in cm'/cm width-sec,
and where o. lies between 6 and 8. The experimental
uncertainty unfortunately does not allow a more exact
determination of 0.. The constant A lies between
7.3&(10 ' and 7.65)&10 ' cm'/cm width-sec for glass,

Mendelssohn and White, moreover, confirmed the
early results of Daunt and Mendelssohn (a) that the
transfer rate was sensibly independent of the height
of the film and (b) that when the level is very close
to the rim of the beaker the transfer rate is higher.
They also reported that when the difference between
the levels is less than about 3 mm, the transfer rate
appears to be lower. A similar eGect was reported also

by Atkins (A.50b), using clean glass beakers, and this
is shown in Fig. 7.7. No satisfactory explanation of
these end eGects has been given, although an interesting
observation has been made by Jackson and co-workers
on them, to be described below. The question of the
film Row at very small level diGerences has again been
taken up experimentally by Picus. In a preliminary
communication (P.53a) he reported full transfer rates,
(corresponding to those observed at large level differ-

ences) even for level diGerences as small as 1&&10 ' cm.

Further comment, however, is withheld pending
further information.

Kith regard to the temperature dependence of the
transfer rate Ambler and Kurti (A.52b) have recently
reported measurements below 1'K. They observed
the transfer out of a glass beaker that had been cooled
to temperatures as low as 0.15'K by direct contact
with a paramagnetic salt. Their preliminary results
are shown in Fig. 7.8. There was a scatter in the
numerical values of the transfer rate from one experi-
ment to another, and all of them were higher than the
accepted ones (M.50a) for glass in the temperature
range 1'K to 2.18'K. However in Fig. 7.8 the results
have been "normalized" by putting all the observed
values equal at 1.2'K. The interesting part of the
results is the apparent steady rise in the transfer rate
at temperatures below about 0.5'K. Lesensky and
Boorse (L.52b) have made flow measurements over
copper surfaces down to 0.75'K and their results
tend to show this transfer rate rise below 1'K also.

'7.3. Measurements of Flow over Metal
and Plastic Surfaces

In their early work Daunt and Mendelssohn (see
Sec. 7.1) reported that the transfer rate of helium II
through surface films was the same over polished
copper as over glass. They noted however that over
drawn copper wires the transfer rate was somewhat
higher. This question of the inhuence of the substrate
(uncontaminated) on the transfer rate has been
experimentally investigated a great deal in the past few
years, and it appears that the results are somewhat
complex.

Observations of the transfer rate of helium II over
copper, stainless steel, lucite, Fe, and Pb in various
states of preparation have been made by Boorse and
Dash (B.50d, B.50g, B.51g), on Pt and Ni by Mendels-
sohn and White (M.50a, M.50b), on stainless steel by
Jackson and Henshaw (J.50), on Lucite and Perspex
by Chandrasekhar (C.52b) and on stainless steel by
Chandrasekhar and Mendelssohn (C.52c). The general
shape of the curves for the variation of the transfer
rate with temperature for the Qow over metal surfaces
was found to be the same as that over glass, although
in general the absolute values were much higher. For
example Boorse and Dash (B.51g) report a transfer
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FIG. 7.8. Film trans-
fer rates over glass
below 1'K. Ambler and
Kurti (A.52b).

rate over etched copper as large as 50X10 ' cm'/cm
width-sec at I.5'K.

In connection with the measurements of Row out of
opaque beakers, which must be performed to obtain
the transfer rates over metallic surfaces, the method
of Boorse and Dash (8.50d, 8.50g, 8.51g) is of interest.
in that it diGered from the optical methods employed
by all other workers. In their method the dielectric
property of liquid helium was employed to indicate the
total amount of liquid between the walls of a cylindrical
capacitor. Variations in height of the liquid helium
contained in the annular space of the capacitor were
observed as changes of electric capacity, by observing
changes in the frequency of a resonant circuit containing
the capacitor. The capacitor served in this way as a
depth gauge, and was located within the beaker of
the material over whose surface the transport rate was
to be measured.

The surfaces of metals and plastics as obtained from
an average machine shop are in general rougher and
more prone to surface defects than those of annealed
glass. It is to be expected, therefore, that such surface
irregularities associated with metals and plastics
would cause higher transfer rates than those over
smooth uncontaminated glass surfaces, in the same
way that the artificial introduction of surface irregu-
larities on glass by the solidi6cation thereon of gaseous
impurities (see Sec. 7.2) increases the transfer rates.
That this conclusion is correct is evidenced (a) by
the work of Boorse and Dash (8.50g, 8.51g) who
showed that, whereas the transfer rate, 8, at f.5'K
over machined copper was 14.8X10 ' cm'/cm width-
sec, the same vessel when etched showed a value of E
equal to 49X10 ' cm'/cm width-sec at the same
temperature and who found that the surface roughness
of the etched surface was easily visible with a micro-
scope, (b) by the work of Chandrasekhar (C.52b) who
found that the transfer rate over Perspex at j..5 K
changed from 16.0X10 ' to 10.7X10 ' crn'/cm width-
sec when the commercial polish was further smoothed
by rouge polishing, and (c) by Chandrasekhar and
Mendelssohn (C.52c) who found that the transfer
rate over stainless steel of exceptionally high finish

was identical with that over clean glass (8=8.OX10 ~

cm'/cm width-sec), whereas the same surface after
it had been brought to red heat, thus destroying the
smooth 6nish, and then lightly polished gave a value
of E= 12.8X10 ' cm'/cm width-sec.

It would appear, therefore, especially from the
recent work of Chandrasekhar and Mendelssohn
mentioned above, that the transfer rate over substances
other than glass does not diGer from that over un-
contaminated glass, if the other substance can be obtained
im ae equalLy smooth state, a result which was shown to
be so for copper in the original work of Daunt and
Mendelssohn. This conclusion has been essentially
reconfirmed by recent work of Smith and Boorse
(S.53a).

It presumably must also be concluded that the
increase in transfer rate over rough surfaces is due to
their increased periphery available for Qow, as is the
case in the contaminated glass surfaces. This is further
discussed in subsection 7.5.

Finally an item may be mentioned which rejects the
complexity of 61m transfer over rough surfaces, namely,
the observed maximum (8.50g, 8.51g, C.52b) at
about I.5'K in the curve plotting the transfer rate as
a function of temperature for Row over Lucite and
Perspex. Chandrasekhar (C.52b) suggested that this
may indicate the existence of two competing mecha-
nisms of transport, one a pure superQuid transfer
as over glass, and the other a syphoning process through
the semicapillary nature of the rough surfaces. There
does not appear to be sufhcient evidence on the
processes, however, to conclude in detail the mechanisms
involved, particularly since Smith and Boorse (S.53a)
do not observe such a maximum. It would appear that
further work would benefit by exact specifications of
the microstructure of the various surfaces employed.

T
oK

1.3
1.S
1.7
1.9

R
cm3/cm width-sec

16.9&10 ~

16.9
16.8
16.1
aa.8

d
cm

1.63X10 6

1.63
1.66
1.82
1.94

merit
cm/sec

u~ (critical)
cm/sec

105
110
114
118
118

aThe values given in columns 1, 2, and 3 are taken from D. G. Henshaw
and L. C. Jackson, "Symposium on low temperature physics, " Proc. Natl.
Bur. Standards 185 (1952), and from private communications from Dr. L, C.
Jackson.

'7.4. Determination of the Velocity of Flow

In order to determine the velocity of Row in the
film the measurements on the transfer rates, which
measure the volume Qow of liquid per cm width of
film per sec, must be supplemented by data on the
film thickness. To this end one elegant series of measure-
ments, in which the film thickness and the transfer
rates were measured simultaneously, have been carried
out by Jackson and Henshaw (J.50).

TABLE 7.1.@
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R
cml/cm width-sec

'l.4X10 ~

7.8
8.15

cm

19X10 6

2.1
2.3

Vcrit
cm/sec

39
37
35

~ These values are numerically diferent from those presented
by Henshaw and Jackson, since the latter authors calculated the
film velocity on the outs@'e of the beaker. The velocities on the
outside are not the criticnl velocities, since the transfer rate is
limited by the narrowest film width above the upper liquid
surface.

Their apparatus is illustrated diagrammatically in
Fig. 7.9. It consisted of a cylindrical stainless steel
beaker A which had a 2 mm wide Rat strip ground on
its outside parallel to the axis and polished to form a
plane mirror. A barium stearate film was laid down on
this mirror and the thickness of the helium film moving
over it could be determined by the optical method
developed by Jackson and described above in Sec. 6.1.
A glass capillary tube 8 was attached to the bottom
of the beaker by means of a Kovar-glass seal E and
this allowed observations of the liquid level in the
beaker. It was possible thus to observe the volume
rate of emptying or filling of the beaker and to measure
the moving film thickness simultaneously. The results
obtained are collected in Table 7.1 following in which
the film thickness d was observed at a height of 1 cm
above the outer liquid bath level.

Column 4 of Table 7.1 gives the critical velocity of
film Row on the inside surface of the beaker at 1 cm
height above the helium level, obtained by dividing
the transfer rate E (column 2) by the film thickness d
at 1 cm height. "This computation implicitly assumes
that (a) the average density is the same as the bulk
liquid density, (b) the film on the inside of the beaker
varies with height in the same way as the observed
film on the outside, and (c) that the whole of the liquid
in the film is moving with the same average velocity.

Assumptions (a) and (b) above are probably valid.
Assumption (c), however, is open to question. If,

, instead of assumption (c) above, one assumes that only
the superRuid constituent in the film moves and that
this superRuid constituent is given by the bulk super-
fluid density, p„(see Sec. 2), the average critical
velocity v, for superRuid Row in the film is given by
Column 5 of Table 7.1 in which the values of Column
4 are multiplied by p/p, .

The following conclusions may be drawn from these
results:

(1) The value of the average critical velocity, 8, for
superRuid Row in the film is sensibly independent -of

temperature. The theoretical interpretation of this is
discussed below in Sec. 7.5.

(2) The numerical values of 8, are about 110 cm/sec,
which are greater by a factor of about two than the
values calculated according to Eq. (7.2). Whether this

TABLE 7.2.

FIG. 7.9. Appara-
tus used by Jackson
and Henshaw (J.50)
for simultaneous
measurement of film
Aow and thickness.
A is steel beaker
with glass tube I3
attached to it by
Kovar seal E. C is
copper shield with
viewing window, 8'.
E is liquid helium
thermal shield and
S is suspension.

discrepancy really indicates the lack of validity of
Eq. (7.2) is open to doubt, since (a) the transfer rates
given in Table 7.2 are about twice those obtained for
helium film transfer over glass and over highly polished
stainless steel (see Sec. 7.2 above), and (b) the film
thickness in these experiments was measured for films
on a barium stearate subsurface, whereas the critical
transfer rates were for Row over stainless steel.

A further observation reported by Jackson and
Henshaw concerns the condition of the film during
transfer out of a beaker when the inner level is within
a few millimeters of the rim of the beaker. As was
initially reported by Daunt and Mendelssohn (see
Sec. 7.1) the transfer rate is anomalously high for the
first few mm of level fall starting with a full beaker.
After the inner level has fallen below this anomalous
region, the transfer rate takes on its characteristic
pressure independent Row as described in detail above
in Sec. 7.2. By using their optical method of observing
the film thickness, Jackson and Henshaw noted that
in the anomalous Row region bright specks due to the
formation of drops of liquid could be seen in the field
of view, and that these drops were about ~ to ~ mm
Iong and moved downward comparatively sluggishly
with a velocity of about 1 cm/sec. When the transfer
had settled down to its characteristic pressure in-
dependent Row, the drops disappeared.

Simultaneous measurements of the film thickness
and transfer rates for Row over glass surfaces have been
carried out by Atkins (A.50b). The transfer rates were
observed by direct observation of the rate of emptying
or filling of the glass beakers and the film thickness
was computed, as described above in Sec. 6.1, from
observation of the oscillations of the liquid level in
the beaker about the equilibrium level. The results
given by Atkins are tabulated in Table 7.2, which are
smoothed values taken from his curves showing the
filling of a beaker at 1.47'K. In this table the diBerent
values of d all at the same temperature of 1.47'K
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correspond. to diferent heights above the liquid bath
level of from 0.5 to 3.5 cm. These results indicate first,
that the film thickness on glass is not greatly diferent
from that quoted by Jackson and Henshaw (Table 7.2)
for films on barium stearate and secondly, that the
critical velocity tt„;&has a value of about 37 cm/sec.
This critical velocity v„;t,obtained by dividing Column
1 of Table 7.2 by Column 2, will also be essentially
the same as the average critical velocity of superQuid
Qow 8, since at a temperature of 1.47'K the superQuid
density is almost the same as the total density. The
value of 37 cm/sec for v, is in good agreement with the
prediction of Eq. (7.2) discussed below.

Using a technique, as yet only very brieQy described,
of observation of film Qow along copper spirals, Knudsen
and Dillinger (K.53d) also report a velocity of 37
cm/sec at 1.3'K, and a film thickness of about 2X10 '
cm, which results are in very remarkable agreement
with those of Atkins above.

V.S. The Critical Velocity in Films and Its
Interpretation

The characteristic velocities of Qow in the film of
about 50 cm/sec, as reported in the previous sub-
section, are relatively small and correspond to the
velocity that would be attained, for example, by
frictionless free fall under gravity through distances of
only about 3 mm. All measurements of the isothermal
Qow out of beakers, as for example the one shown in

Fig. 7.1, involve diGerences in level or pressure heads
considerably greater than 3 mm. Consequently, it
must be concluded that there is some mechanism
which limits the film Qow velocity to these relatively
low "critical" velocities, regardless of the pressure head
causing the motion, as is indicated by the observed
independence of the film Qow rate on pressure head.

The facts that these critical velocities of 61m Qow

are unaffected by the length of, the path traversed and
that the film can perform relatively undamped oscil-
lations (see Sec. 6.1) indicate that at these critical
velocities, and at smaller velocities, there is essentially
no frictional resistance to the Qow." The 61m Qow

therefore can be considered as superQuid Qow. It can
be shown, furthermore, that for velocities greater than
the critical velocities, the resistance to Qow increases
sharply to unmeasurably large values. This question
has been investigated by observing nonisothermal
film Qow, as described below.

As was shown initially by Rollin and Simon (R.39),
film Qow can be caused by thermal gradients as well as
gravitational gradients, and the velocities reached in
such Qow are identical with the critical velocities
observed in isothermal Qow under gravity. This film
Row under a thermal gradient, the film moving towards

I Kasnya (K.53f) has tentatively explained the damping of the
oscillations as being due to slow temperature equalization via the
common copper boundary and has also concluded that the motion
of the superQuid is perfectly frictionless.

the source of heat, has subsequently been investigated
in some detail by Daunt and Mendelssohn (D.39b,
D.39c) particularly in their initial experiments on
the thermomechanical effects in films (D.39a, D.50b)
and by Daunt et al. (D.47a), by Atkins (A.48c), by
Brown and Mendelssohn (B.50f), and by Chan-
drasekhar and Mendelssohn (C.51)." In the most
recent work, which is by the latter authors, helium
II was made to Qow through the film into a completely
enclosed Dewar vessel through a narrow slit above
the liquid surfaces, by introducing a source of heat
electrically inside the Dewar as is shown in Fig. 7.10.
Also in Fig. 7.10, the measured rate of Qow is shown
as a function of the heat input at 2.09'K. It will be
seen that the Qow increased linearly with heat input
until a critical value (2.4)&10 ' cm%ec) was reached
and thereafter further increase in the heat input
produced no measurable increase in the Qow rate.
The sharp break in the curve can be interpreted as
indicating that for velocities below the critical value
the Qow is frictionless, and that large frictional eGects
must prohibit velocities greater than the critical.

The observed fact that the Qow through films,
whether produced by gravitational or thermal gradients,
is superQuid until it reaches a limiting critical value,
which is a unique function of temperature, seems of
primary importance in the phenomena of liquid
helium II. The same eGect also appears in the Qow

through very narrow channels in the bulk liquid
(see Sec. 2.5); although for flow in the bulk liquid,
even in the narrowest channels, the eGects are not
always quite so clear cut as for Qow in films. The eGect
has been likened by Daunt and Mendelssohn (D.42)
to the limiting superQuid current density permissible
on the surface of a superconductor above which critical
current, as is well known, superconductivity is de-
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FIG. 7.10.Apparatus and results of Chandrasekhar and Mendels-
sohn (C.51) in observations of Glm liow, showing liow rate as a
function of heat input inside the reservoir.

~ The signi6cance of these sects to the design of cryostats has
been recently studied experimentally by Ambler and Kurti
(A.52d).
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~nv d=k. (7.2)

The statement by London (L.45) is that the rate of
transfer in grams transferred per second through one
cm width of surface divided by the number of super-
Quid particles per cc has the dimensions of angular
momentum and appears to be numerically equal to A.
London showed, moreover, that in the cases where
su%cient data are available, this quantum relationship
holds not only for helium II films but also for the super-
Quid Qow of electrons in superconductors, thereby
reinforcing the analogy between superconductivity and
liquid helium II proposed by Daunt and Mendelssohn
(D.42).

The relationship of Eq. (7.2) indicates that regardless
of the value of film thickness d the transfer rate R
in cm /cm width-sec is constant, since If. is proportional
to ed. Thus although the film thickness varies with
height above the liquid surface, R should be independent
of this height; and this is experimentally so to a high
degree of approximation. The experimental evidence for
this height invariance of R seems to be well established
for heights up to about 6 cm. (See Sec. 7.1 and for ex-
ample Fig. 7.7.) Recently, however, Eselson and Laza-

stroyed. (i.e., the "threshold current. ") These authors
further suggested the hypothesis that the variation of
this. limiting volume Qow with temperature can be
associated. with the variation of the density of the
superQuid constituent that can partake in superQuid
Qow. Such a relationship would imply a temperature
independent maximum velocity for superQuid Qow.
The results obtained for film Qow in helium given in
the preceding subsection, are not in contradiction with
this hypothesis. By use of this hypothesis, the value
of the fractional "normal" density p„/p, i. e. the ratio
of the density of the normal constituent to the total
density, can be evaluated from the curves for the rate
of volume Qow. Unfortunately, the rate of Qow curves
(see Fig. 7.6) are not known with sufhcient accuracy
to permit exact computation. However, the formula
7.I given for the Qow rate as a function of temperature
with n equal to 6, is the same as formula 2.2 for
L1—(p„/p)$. Realizing the limitations in accuracy,
therefore, the values of p„/p that can be obtained in
this way are in general agreement with those obtained
directly by Andronikashvili and others (see Sec. 2.3)
in the same temperature range and do not contradict
the hypothesis of a temperature independent maximum
speed for superQuid Qow.

In connection with Qow velocities in films a further
interesting observation has been made by Bijl, de
Boer, and Michels (B.41), independently by F. London
(L.45), and, moreover, implicitly adopted sometime
previously by Gogate and Rai (G.44a): namely, the
product of the average momentum of the superQuid
atoms moving at their critical velocity multiplied by
the film thickness is of the order of Planck's constant,
i.e.,

rew (E.52) have reported peculiar variations with
height. A description of the exact nature of these eHects
is unfortunately not yet available to us. Kasuya (K.53e)
has suggested that the mutual friction term due to
Gorter determines the film trarisfer rate at large heights.
He concluded that E should vary as (Ap)I at large
heights. No experimental evidence in favor of this is
yet available.

A further conclusion that can be drawn from Eq.
(7.2) is that, although the film thickness may vary from
one substrate to another, again the total transfer rate
R should be independent of the nature of the substrate.
This is in agreement with the latest experimental data
on film flow over stainless steel (C.52c), which give
identical R values as for Qow over glass. Measurements
of the film thicknesses on different substrate materials,
however, would be of interest.

Various attempts have been made to accoun t;

theoretically for the existance of critical velocities of
superQuid Qow in liquid helium II and for their numeri-
cal values. Landau (L.41a) considered the initiation of
viscous resistance to Qow just above the critical velocity
by studying the interaction of the liquid at rest with
a wall moving through it, He postulated that the motion
of the liquid must begin with the excitation of either
phonons or rotons. For the former process the relative
velocity must be larger than the velocity of sound,
~i (i.e., v.»t, &Ni), and for the second process v.»t, must
be greater than (2A/p)I, where 6 and p, have the signifi-
cance described in subsection 3.3." However, the
absolute values given by these inequalities make
e„;,=104 cm/sec, which is well beyond the observed
limit. A thermodynamic argument put forward later
by Ginsburg (G.44b) also resulted in a e„;tmany
orders of magnitude too great.

In 1949 Ginsburg (G.49c) reiterated in some detail
an argument previously put forward by Daunt and
Mendelssohn (D.46b) that, by taking account of the
zero-point energy, ~„;~should be associated with the
zero-point velocity that is conferred by the uncertainty
principle on a particle confined to a space of linear
dimension equal to the film thickness, d. This immedi-
ately results in the Eq. (7.2). This viewpoint has been
further developed by Mendelssohn (M.45) who has
supposed that both for superQuid Qow in liquid helium
II as well as for superconductivity the transport of
mass is carried out by diGusion which is due to zero
points motion. Such a process would give a temperature
independent average velocity of Qow, and the relation-
ship given by Eq. (7.2) would be automatically satisfied.

Mott (M.49b) has proposed an alternative mecha-
nism to account for the establishment of a maximum
average velocity of superQuid Qow, which would make
e„;&vary with d &, rather than d ' as given by Eq. (7.2.)
Mott's model has already been brieQy outlined in
Sec. 2.5. The experimental evidence to date, however,

~ See also R. B.Dingle (D.52a) for further discussion of s„;t.
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(4= —gradp+g
~

—grad divv —curl curlv ~,

0p—+divpv= 0,
Bt

(8.1)

(8 2)

does not allow a completely clear choice between this
model and that summarized by Eq. (7.2.)

A possible and tempting explanation for the existence
of the critical velocity ~„;&has been put forward by
one of us, (R.S.S., unpublished), in which the 61m is
regarded as being a collection of idealized chains of
lattice constant a~ and all of length d, all parallel to
the s axis, i.e., perpendicular to the film substrate
surface. Now if the lattice of the substrate (of lattice
constant apnea&) is moved along the x axis with velocity
v relative to the 61m, the lower ends of each chain will

be subject to periodic forces, the fundamental fre-
quency of which will be vp ——v/ap. Waves will be gener-
ated in the chains as a result; but, for given d and ~

su%ciently small, the reQected waves will be of such
phase that the chain will absorb no energy from the
moving crystal. As v is increased, however, the chain
will finally resonate, the lowest energy phonon will be
created in the chain and energy will be absorbed from
the crystal. This velocity will be the critical velocity
v„;~at which viscosity is first displayed and it will

clearly be given when

Gp' pp= Gp(Qy/X~px) = Splat/4d, (7 3)
where N~ is the velocity of sound in the chain.

It is of interest to note that the formula 7.3 developed
above indicates that v„;td is constant. Moreover, if
one uses the typical numerical values of ao and the
known value of I& in liquid helium, one obtains
v„;~d=10 ' cm'/sec which is in agreement with the
experimental findings.

It is to be noted that this somewhat idealized picture
assumes that the film possesses no microscopic rigidity,
as has been explicitly pointed out previously in the
theory of Tisza (T.47). Otherwise the shear forces
set up by the moving crystal substrate would lead to
wave propagation in directions other than that per-
pendicular to the substrate with fundamental fre-
quencies much lower than (u~/4d) and hence interaction
would occur at vanishingly small relative velocities.

8. TWO-FLUID HYDRODYNAMICS

8.1. The Thermo-Hydrodynamical Equations

The usual hydrodynamical equations of a single
Quid must be augmented in the two-Quid theory in
order to account for the extra sects that can arise.
In the usual one-Quid case the motion of the Quid in
the absence of exterior forces is determined by the
Euler equations, the equation of continuity, and the
boundary conditions. The equations are

Ds Bv

p =p +pv'gladv
Dt Bt

where the volume viscosity coefficient has been set
equal to zero in accord with the Stokes' approximation. "
In this section we shall devote ourselves to the question
of what equations replace (8.1) and (8.2) in two-fluid
hydrodynamics.

We have already (in the section on viscosity)
discussed how the density of helium II is split. In the
same way it is natural to split the mass current density
(the momentum density) into two terms. Thus,

Density: P=Ps+Pay (8.3)

a(PS)
+div(pSv„)=0,

Bt
(8 5)

where 5 is the entropy per gm of the total liquid. This
means that the normal Quid only carries entropy.
Some authors prefer to assume only that the entropy
of the superfluid is as yet unmeasurably small; we will
assume that it is zero, i.e.,

pS= p„S„, (8.6)

(where S„is the entropy per g of the normal con-
stituent) rather than

pS= P,Ss+peSn.

If Eqs. (8.3) and (8.4) are put into the equation
of continuity (8.2) we get two equations whose sum
is zero, thus:

Dp~
+div(p. v„)=I',

(8.7)
~ps

+div(p, v,) = —I'.
Bt

In (8.7) I' is the rate of production of normal fluid

per unit volume: in most discussions of two-Quid
hydrodynamics the approximation has been that F is
equal to zero.

%e have still not written the two Quid analogs of
(8.1). At the present time the exact equation .(one for

'4 See Lord Rayleigh, The Theory of Sound, Vol. II, p. 34S.

Momentum density: j=pv= p,v,+p„v„.(8.4)

Consistent with the ideas expressed in Secs. 2, 4, and 5,
v, and v„in (8.4) may be quite di6'erent depending on
the experimental conditions, in particular any one of
v, v„and v„may be zero while the other two are not.
Also consistent with results outlined in Secs. 2, 4, and 5
is the concept that a di6'erent viscosity a8ects the Qow

of the normal Quid from that acting on the superQuid.
From these results we are led to take g, =0, g„/0.

Also from the above mentioned results (or as an
assumption consistent with the theories discussed in
Sec. 3), we may write an equation for the conservation
of entropy (when irreversible processes are absent or
negligible) of the form
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Dv„/Dt and one for Dv,/Dt) are not known with
certainty. Equations which are linear in the velocities
and which are valid in the limit of small velocities are
known, but terms in the squares of the velocities have
been given differently by diferent authors. The 6rst-
order equations, neglecting irreversible eGects, on which
all are agreed are

necessary for Dingle in his review has given them
considerable attention. However, we will list the
equation of motion of the superQuid component given

by each author (using a standard notation as far as
possible) and then comment briefly on the terms which

appear.

Landau:
BVn p„

p = ——gradp —p,S gradT,
Bt

(8.8)

Dv,
ps

Dt

ps pn= ——gradp+p, S gradT+p, grad —(v„—v,)' .
p 2p

t9Vs ps
p, = ——gradp+ p,S gradT.

Bt p

The two equations are first given (in a somewhat
different form) by Tisza (T.40) in 1940, although he
had already written one of them earlier ((T.38b) and
(T.38c)) whereby the other was implicit. Tisza wrote
the terms which are here proportional to gradT, as
terms proportional to the gradient of an osmotic
pressure p„;however, when H. London's equation
(see Sec. 4.7) for the fountain pressure is used for this
osmotic pressure, Eqs. (8.8) follow. In arriving at
(8.8) Tisza assumed that P (Eq. 8.7) is zero; this
assumption is always made when deducing Eq. (8.8).
LA clear and complete derivation of the hydrodynamical
equations in erst-order approximation is given by
Dingle (D.49).]

The same equations follow from the treatment of
Landau (L.41a), although from a different starting
point: Landau assumed that the Gibbs function of
helium II with excitations present (i.e., with normal
fluid in motion) equals the Gibbs function of the pure
superQuid plus the kinetic energy of the excitations
relative to the superQuid. If the conservation of mo-
mentum is also invoked, Eqs. (8.8) follow as the linear
approximation.

In a later paper, in which he derived the equations
for second sound (see Sec. 9.2), Tisza (T.47) employed
a method which also leads to Eqs. (8.8). Dingle (D.49)
has used this method to arrive at (8.8). The equations
may also be obtained from Hamilton's principle applied
in a linear approximation.

When a better approximation than (8.8) is sought,
one finds conQicting results. Equations with terms
quadratic in the velocities have been derived (or
postulated) by several authors: Landau (L.41a),
Gorter and Mellink (G.49a), Nakajima, Tomita, and
Usui (N.50a), Zilsel (Z.50a), Temperley (T.51c),
Prigogine and Mazur (P.51b), Usui (U.51a), and
Dingle (D.52a). The interest in these equations stems
chieQy from the fact that the superQuid shows some-
thing like a critical velocity (see Sec. 7); a complete set
of hydrodynamical equations would elucidate the
critical velocity (or critical region of velocity) whereas
Eqs. (8.8) have obviously nothing to say on this matter.

We have not space to display and discuss the theories
of all these authors in any detail, nor is it completely

Gorter and Mellink:

p, = ——gradp+p, x~
—

~
gradT Ap—,p„(,vv—)'

Dt p 0 ax)

Nakajima, Tomita, and Usui:

DVs
ps

Dt

ps r
= ——gradp+ p,S gradT ——(v„—v,)+f.

p 2

Zilsel:

DVs
ps

Dt

p p
grad(v„—v,)'

2p

p, n s= ——gradp+ p,S grad T+
p

DVn pnp„=——gradp —p,S gradT-
Dt p

Temperley:

grad(v„—v,)'
2p —r (v„—v,).

Dv, p, r
p, = ——gradp+ p,S gradT ——(v —v,).

Dt p 2

Prigogine and Mazur:

Dv, p, (85)
p, = ——gradp+ p,x~

—
~

gradT
Dt p & ax)

Dingle:

pnps ps
grad(p„—p,)——P (v —v, )

p

+l (v„—v,)'(v„—v,).

DVs ps
p, = ——gradp+ p,S gradT

Dt p
pe=V n—es

+pa grad
2p J,

As has been mentioned before, Landau arrived at his
equation by postulating the form of the Gibbs function
in a "two Quid. "To obtain a complete set of equations,
he also used the conservation laws (mass, entropy,
momentum, and energy must be conserved in reversible
processes) .
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Gorter and Mellink obtained their equations by
generalizing Eq. (8.8). The last term on the right: in
their equation is the force due to mutual friction
(already discussed in Secs. 2 and 5) which acts with
equal magnitude but opposite sense on each Quid:
this they postulated in order to explain the heat Qow

experiments. " The second term on the right of their
equation contains the combination x(riS/rix), (x=p„/p),
which follows from a generalization of Tisza's entropy
postulate (see Sec. 4.7) made by Gorter (G.49b).
If Eq. (8.6) is correct, this combination is just equal
to S of (8.6).

Nakajima, Tomita, and Usui derived their equations
from the conservation laws. The vector f is a splitting
factor introduced because the conservation laws alone
give only the behavior of the sum (p, (Dv, /Dt)
+p„(Dv„/Dt)).The third term in their equation marks
the appearance of I' (Eq. 8.7) in the equations. These
authors have a term of similar form in their expression
for (Dv„/Dt). In discussing their equations in the light
of experiment, Nakajima et al. set I' equal to zero, and
take f to be Gorter and Mellink's mutual friction force.

Zilsel obtained his equations by using Eckart's
(E.38) variational principle. This principle bears a
formal resemblance to Hamilton's principle; however,
it is not a formulation of classical mechanics because
the motion of particles is not followed and velocities
rather than displacements are varied. We have written
both of Zilsel's equations in order to show that they
are not symmetrical in I' as are those of Nakajima et ul.
and Temperley. Zilsel shows that the asymmetry is
consistent with the concept that the superQuid particles
are "condensed" in the sense of the Bose-Einstein
condensation. It is a peculiarity of Eckart's principle
that curl v, =0 appears automatically —recall that
this condition was postulated by Landau. Notice, also,
that a term appears in Zilsel's equations which is very
similar to the last term in Landau's equation.

Temperley's equations derive from the conservation
laws. They are also symmetrical in I'. (We have changed
Temperley's notation somewhat by using the relation-
ship between I' and (DS„/Dt) implied by (8.5), (8.6),
and (8.7).)

Prigogine and Mazur derived their equations by
using the methods of irreversible thermodynamics.
Beside using the conservation laws these authors
introduce the concept of two partial pressures each of
which acts on one of the Quids. The equation we have
written here is a combination of Eqs. (3.41) and (5.2)
of their paper. The p's appearing in their equation are
the chemical potentials of the two Quids which need
not be equal if x=p„/p has not its equilibrium value.

'.s Kasuya (K.53c) has suggested supplementing the Gorter-
Mellink mutual friction with a superQuid friction force of the form
f,= -Bp,(v,)' with B=0 for v. (v.»~. This ad hoc addition would
enable one to describe experimental results somewhat better than
the mutual friction term alone. It is obvious how the hydrodynam-
ical equations are to be modi6ed in this case.

It can be shown that Prigogine and Mazur's term in

grad (Ii„—Ii,) is equivalent to Zilsel's term in grad
—', (v —v,)'. The last term in Prigogine and Mazur's
equation is equivalent to the Gorter-Mellink mutual
friction, which is postulated by these authors in order
to obtain the Gorter-lVlellink equations.

We have omitted Usui's equation since it diGers from
that of Nakajima, Tomita, and Usui only in that
x(BS/c)x) replaces 5.

A general comment is in order on all equations
containing a term proportional to I'(v„—v,). In all
derivations made from the conservation laws some
arbitrariness exists as to the way this term is to be
divided between the two Quids, and the divisions
displayed represent additional assumptions. On the
other hand, Zilsel's asymmetrical splitting follows
from the assumption that Eckart's principle may be
applied to the problem.

Dingle's equation is a generalization of Landau's
equation. Whereas Landau explicitly limited his
considerations to terms involving (v„—v,)', Dingle has
extended the calculation to include all powers of the
relative velocity.

A complete set of thermohydrodynamical equations
(for a nonviscous, nonheat-conducting, fiuid) which
includes the definitions (8.3), (8.4), and (8.6), the
conservation laws (8.5) and (8.7), and Euler equations
such as (8.8) have usually been derived, in whole or in

part, by thermodynamic arguments. Quite recently,
however, Kronig (K.53g) has used a statistical me-

chanical approach to derive the Eqs. (8.5) and (8.8) in

linear approximation. Kronig's derivation is based
on the notions of Landau (L.41a) and applies rigorously
only to that region in which it may be assumed that the
only excitation present in the Quid are phonons which
are in local equilibrium, i e., below about 0 6'K.
Kronig's work is an extension and modi6cation of
similar results pertaining chieQy to the second-sound
velocity derived by Dingle (D.52c), and Ward and
Wilks (W.51b) and (W.52). These other results will

be cited in Sec. 9.3 on second sound. H. A. Kramers
(K.52e) undertook an analysis along the same lines

as that of Kronig just discussed. Kramers considered
excitations of a general character of which phonons and
rotons are special cases. Kramer's work, however, leads
to an expression for the second-sound velocity (see
Sec. 9) which is correct only in the limit T—+O'K.

Work in the same spirit as Kronig's, but starting
from the Bose-Einstein gas model has been under-
taken by Bogolubov (B.47d) and Zilsel (Z.53b). Bogolu-
bov considers a nonperfect gas and by using second
quantization shows that in the case of small inter-
actions, the excited states of the gas can be described as
a perfect Bose-Einstein gas of "quasi-particles. " The
energy spectrum of the quasi-gas is not known precisely,
but it is shown that for special forms of E(p) (essentially
that E(p) be not convex toward the p axis as p—+0)
the gas divides into excited and condensed fractions
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which may have diGering average velocities if the
relative velocity be small enough.

Zilsel has similarly discussed the possibility of two
velocity 6elds in a Bose-Einstein gas, ending the same
sort of restriction on the energy spectrum. In particular
he considers the spectrum of Bijl, de Boer, and Michels
(II.41), and discusses how a critical velocity can arise.

8.2. Experimental Investigations on the
Nonlinear Equations of Motion

Few experiments have been performed to test or
differentiate between the nonlinear equations just dis-
played. The flrst-order equations (8.8) have been veri-
fied, chiefly by the experiments on second sound (Sec.
9.). It has been mentioned that the complete equations
should display the effect of a critical velocity. However,
it is not obvious how such a velocity arises; Fried and
Zilsel (F.52) have used Zilsel's equations to obtain
a criterion for the validity of the linear equations.
They 6nd that the linear approximation loses validity
at v, d=5&(10~ cm'/sec in rough agreement with
Kq. 7.2.

The equations of Gorter and Mellink also lead to a
rather smeared out critical velocity since the mutual
friction term increases very rapidly with relative
velocity. Gorter and Mellink's equations are the only
equations which have been compared with observations
in a thoroughgoing way. The original formulation was
made in order to explain the experimental findings on
heat conduction. These experiments, together with
other experiments designed to test these equations,
have been reviewed above in Secs. 2 and 5, and have
also been discussed at some length in a recent review
by Atkins (A.52a).

From these experiments we must conclude that the
equations of Gorter and Mellink do not describe
completely the behavior of helium II. Unfortunately
the other equations proposed and listed above have
not been subjected to experimental test.

9. FIRST AND SECOND SOUND

9.1. The Velocity and Attenuation of First Sound

The two separate velocity fields in helium II give
rise to the possibility of two types of wave motion in
the Quid. This fact was first perceived and investigated
by Tisza (T. 38b el seq.). In the absence of any tempera-
ture gradient the Eq. (8.8) may be summed to give the
one fluid hydrodynamical equation, thus ordinary (first)
sound is possible in which waves of density or pressure
may be propagated at constant entropy with the
velocity

(9.1)

The erst measurements of the velocity N~ were made
by Findlay, Pitt, Grayson-Smith, and Wilhelm (F.38),
using an ultrasonic standing wave technique and
generating the sound waves at 1.338 Mc/sec by a
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Fro. 9.1. Velocity ol first sound iii (m/sec) in liquid helium, due to
Atkins and Chase (A.Slb).

quartz crystal oscillator immersed in the liquid helium.
Subsequent measurements have been made by Pellam
and Squire (P.47) using pulse techniques at 15 Mc/sec
and by Atkins and Chase (A.51b), also using pulse
techniques at 14 Mc/sec. All the results are in good
agreement with each other and a graph showing the
value of the velocity of 6rst sound I& as a function of
temperature under saturated vapor pressure due to
Atkins and Chase is given in Fig. 9.1.This graph shows
an anomalous minimum at the X temperature of 2.18'K
due to the transformation from liquid helium I to
liquid helium II. The maximum at about 2.5'K,
corresponding to a minimum in the adiabatic com-
pressibility, is also of interest. The agreement between
all workers using different operating frequencies shows
that, at least above 1.6'K, the dispersion is small ((1
percent) .

One of the striking features of the curve is the sharp
dip at T~. Atkins and Chase studied this region in
detail and concluded that it was impossible to know
if there was a discontinuity here (as would be expected
from Ehrenfest's relations, if the transition were of
second order). They supposed, on the other hand,
that both branches of the N~ ~eels T curves, above
and below T&, may drop together to much lower
values than have yet been observed.

From Fig. 9.1, noting that the measurements extend
to 1.2'I and that the curve appears to be Qattening
out, it is possible to make an informed extrapolation
of the value of Nj to absolute zero, particularly since
on theoretical grounds (rip/rip), is expected to be
practically constant from this temperature down.
Atkins and Chase's extrapolation gives Nj=237&2
m/sec as T-+O'K.

The pulse technique of measurement, first used by
Pellam and Squire (P.47) allowed them to observe
the attenuation of erst sound and their results for the
attenuation coeKcient n are shown in Fig. 9.2 by the
full curve. Subsequent measurements of n at 14 Mc/sec
have been made by Atkins and Chase Lunpublished but
see Atkins (A.52a) and (C.53b)] in substantial agree-
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(see A.52a). The broken curve above 1.6'K gives the theoretical
evaluation of n made by Pellam and Squire (P.47) using classical
methods. The broken curve below 1.6'K gives Khalatnikov's
(K.50b) calculation of n, obtained by fitting his results to experi-
ment at the high temperature end. Curve due to Atkins (A.52a).
~ Measurements of Pellam and Squire (P.47). + Measurements of
Atkins and Chase (see A.52a).

ment with the earlier work of Pellam and Squire. The
more recent workers extended the measurements to
temperatures below 1.6'K, where Pellam and Squire
left off, and these results down to 1.2'K are also
included in Fig. 9.2. The very high attenuation in
liquid helium I as Tz is approached is noteworthy, as
is also the steady rise in n in liquid helium II as the
temperature is reduced.

The theoretical value of the attenuation coefficient
e shown by the broken curve of Fig. 9.2, above 1.6'K
was calculated by Pellam and Squire by assessing
separately the contribution to absorption due both to
viscous losses and to the thermal conduction by
strictly classical methods. [See, for example, Bergman
(8.39b).$ It will be seen that down to 3'K the agree-
ment between theory and experiment is good, due
probably, as pointed out by Pellam and Squire, to the
monatomic character of the helium which, therefore,
disposes of relaxation phenomena connected with
inner degrees of freedom in molecules or with associa-
tion. On the other hand, the marked increase in

the experimental value of n below 3'K is outstanding,
apparently leading to infinity at Tz. The same authors
have suggested that this is due to forced transitions
from liquid helium I to liquid helium II taking place
locally at temperatures around T& caused by the
pressure variations in the sound waves. This explana-
tion is in line with that put forward by Keesom (K.42)
in explanation of the specific heat curve just above
Ti. Pippard (P.51a) has considered in detail this
question of local Quctuational transitions from helium
I to helium II and vice versa. He derived expressions
for the velocity and attenuation of erst sound in an
inhomogeneous Quid containing spherical inclusions
of compressibility different from that of the matrix
in which they are embedded. In applying these results
to liquid helium he noted that compression of helium
II inclusions would cause them to cool, whereas com-
pression of the helium I matrix causes it to be warmed.
The subsequent trend to equilibrium must be charac-
terized as a relaxation process, which would provide
anomalous absorption of pressure waves. By making
plausible assumptions in order to apply the theory to
liquid helium, he has accounted for the observed Ni

versus T curve around Tq and has found that anomalous
attenuation in liquid helium I near T& can be explained
by considering the inclusions in it of liquid helium II
to be of size of about 850 atoms.

The rise in attenuation in liquid helium II with
falling temperature was discussed by Pellam and
Squire. They noted that normal viscous and conductive
losses were entirely inadequate to account for the
observed rise and they suggested that it might be
due to dissipative effects again of a relaxation type.
In assessing the magnitude of the contribution to n

by ordinary viscous losses, the evaluations of p„given
in Sec. 2.4 (see Fig. 2.5) could now be used, with
results in agreement with Pellam and Squire. Moreover,
a theoretical computation of q„is now available, due to
Landau and Khalatnikov (L.49a). In view of the use
made subsequently of their computation by Khalatni-
kov (K.50b) in his theory of the attenuation of first
sound in liquid helium II, some comment on it might
be appropriate here.

Landau and Khalatnikov's (L.49a) theory of the
viscosity of liquid helium II has as its basis the detailed
picture of the liquid due to Landau, such that the
normal constituent is a "gas" of excitations —phonons
and rotons having the energy spectra given in Sec. 3.
The theory is built in terms of the momentum scattered
from one layer of the gas of excitations into an adjacent
layer, when the two layers have slightly different;
macroscopic velocities. In order to do this the cross
sections of scattering of phonons by phonons, phonons
by rotons, and rotons by rotons were first ca1culated,
and from them the collision integrals which give the
rate of change of the distribution function. It turned
out that the rotons behave like heavy particles and
the phonons like light ones. Rotons are scattered only
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by rotons at all temperatures, and such processes
contribute a temperature independent term to the
viscosity. Above 0.9'K the effect of phonon-phonon
collisions is small compared to phonon-roton collisions,
whereas below this temperature phonon-phonon colli-
sions may not be neglected and contribute the major
e6'ect below 0.7'K. The problem is further complicated
because the rate of creation and destruction of phonons
is not negligible compared to the rate of scattering
processes, in fact, below 0.9'K the first rate is the
greater, while above 0.9'K the second is. This entails
two separate calculations of the viscosity, one valid
below about 0.8'K and the other valid above 1.0'K.

The details of these heroic calculations cannot be
reproduced here. It is found that the phonon contribu-
tion to the viscosity is strongly temperature dependent.
When this contribution is subtracted from Androni-
kashvili's experimental data (A.48a), the constant
roton viscosity is found. The final expressions for the
viscosity coefficientss (in poise) are

rIX10 '=I+8.7X10 'T'exp(A/kT), T)1.0'K,
(9.2)

rIX10'= 7.8X10 '[Tl exp( —6/kT)+4. 8X10 'T'j '

T&0.8'K.

Viscosities in the interval between 0.8 and 1.0'K are
found by interpolation. It is apparent that at fairly low
temperatures g ~ T '; this is due to the phonon-
phonon scattering.

The authors claim only a limited accuracy for their
work owing to the uncertainty in the value of certain
parameters such as 8'6/tip' and tips/tip. By making
plausible assumptions as to the magnitude of these
terms, however, agreement with experiment is fair.
More importantly, on the other hand, they believe
the temperature dependence has been obtained with
sufhcient accuracy.

Good use of the above theory has been made by
Khalatnikov (K.50b) in describing the attenuation of
first sound. He pointed out that in the pressure wave
the local nonequilibriurn phonon and roton densities
can revert back to the equilibrium values only in
finite times and this provides a relaxation mechanism
which causes attenuation. He considered two relaxa-
tion times, characterizing the two most important
collision processes by which equilibrium is established,
namely: phonon-phonon collisions and phonon-roton
collisions. From this he was able to assess the tem-
perature variation of the attenuation coefficient due to
relaxation effects and he found that n should increase
rapidly as the temperature is reduced. By fixing the
absolute values by fitting on Pellam and Squire's
experimental results above 1.6'K, Khalatnikov arrived

"Unfortunately, it is not immediately clear whether these re-
sults of Eq. (9.2) really give q or whether they give y . In arriving
at the numerical evaluations, however, Landau and Khalatnikov
compared their results with the experimental values of g„.

at the curve shown in Fig. 9.2 by the broken curve
below 1.6'K.

More recently Khalatnikow (K.52f and K.52g) has
considered these eGects in more detail and has shown
that three coeKcients of second viscosity should be
considered together with a coe%cient analogous to the
coeKcient of heat conductivity in ordinary liquids.
He asserts, however, that these newer considerations
do not change the conclusions regarding the attenuation
of first sound reported earlier (K.50b), but that for
second sound they should lead to appreciable absorption
at frequencies of 10' cps.

Kronig, Thellung and Woldringh (K.52h) have also
developed a relaxation theory to account for the
attenuation of first sound. Using the two Quid model
previously investigated by Kronig and Thellung (K.50a)
they have considered the relaxation of one Quid to
the other and concluded from a comparison of experi-
mental values of o. that near Ty the relaxation time
must be either less than about 10 "sec or greater than
about 10 ' sec.

( ~T l p. '

E (I(1/5'„')) p„
(9.3)

where S„'is the entropy of the normal constituent per
gm of iota/ liquid.

In order to reduce Kq. 9.3 for the velocity of second
sound to numerical values, Tisza adopted a number of
assumptions partly based on experimental evidence.
These were:

(a) The entropy, S ' of Eq. (9.3) was taken to be
the observed total entropy of the liquid in the tem-
perature range 1'K to the X point. This was based on
the experimental evidence (outlined in Sec. 4) which
showed that the entropy of the superQuid constituent
was negligible in this temperature range.

(b) The superfluid as well as the normal constituent
was taken to be capable of sustaining compressional
(Debye) thermal excitations. As a result it was supposed
that at a sufficiently low temperature (0.4'K(T

9.2. Tisza's and Landau's Equations for Second
Sound.

Besides the Quid motion corresponding to first sound,
in which the density oscillates at any point in the Quid,
Tisza (T.38b) first recognized that another wave
motion, in which the density and the pressure (to 6rst
approximation) remain constant but in which the
entropy (or the temperature) fluctuates, is also possible.
(In such a motion the normal and superfluid move 180'
out of phase. ) In his 1947 paper Tisza discussed the
two wave motions more thoroughly, showed that the
coupling between density waves and entropy waves
is indeed very small, and arrived at the equation for
the velocity of the temperature wave, Ns, (the so-called
"second sound"),
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(1.0'K) mechano-caloric effects would disappear. This
hypothesis, however, was neglected in the calculations
of N2 between 1'K and T~. Its eGect would be that at
temperatures below the second transition temperature
second sound would be completely damped out.

(c) By a quasi-thermodynamic argument it was

suggested that p„S (T )"
p Sg (Ty)

(9.4)

(9.5)

The numerical constant was first given by F. London
(L.46a) and the exponent 5.5 represented the best fit
of Eq. (9.4) to the experimental results Lsee Eq. (2.2) and

(4.3) of Secs. 2.3 and 4.3j.Equation (9.5) was found to
represent with some accuracy the experimental values
of es (see Sec. 9.4) between 1.2'K and T&,. It is to be
noted, however, that for lower temperatures Eq. (9.5)
expresses N~ as a monotonously decreasing function
as T decreases, such that for T~o, N2~0. This is

markedly at variance with the experimental findings.
Landau, too (L.41a), derived from his hydrodynam-

ical equations two velocities for propagation of waves—which he called waves qf first and second sound.
Landau's nomenclature persists —perhaps because the
idea of "second sound" is vaguely exciting —although
the second motion is almost purely a temperature
wave and cannot be excited by ordinary mechanical
means (such as a microphone) since in the first order
there are no density or pressure variations. Starting
from the assumption that the entropy of the superAuid

constituent is zero, Landau obtained the equation for
the second sound velocity

p, 5'T'
N2= p„c

ps
(9.6)

Here C is the specific heat.
Although the formulas for the velocity of second

sound given by Tisza and Landau are almost identical,
the two authors interpreted the quantities which appear
therein differently. The basic ideas proposed by Landau
were:

(a') The entropy S„'of Eq. (9.6) was taken to be
the observed total entropy S of the liquid for all
temperatures below T~.

(b') Only the normal constituent was taken to be
capable of sustaining phonon excitation. Hence

in the temperature range 1'K to Tz, where the Debye
phonon excitations were neglected. This relationship,
as shown in Sec. 4, is a fair approximation to experi-
mental results in the temperature range 1.6'K to T~.

By use of items (a) and (c) Tisza arrived at the follow-

ing type of expression for N2..

mechano-caloric eBects and second sound should be
observable at infinitely low temperatures.

(c') The value of p„/p was assessed in two different
manners:" (1) by appeal to experiments such as those
of Andronikashvili (A.46 and A.48a} (see Sec. 2.3);
(2) from Landau's microscopic theory of liquid helium
II (L.41a and L.47a) which gives an explicit expression
for p„in terms of the parameters 6, p, , and ps (see
Sec. 3.).

The first explicit computation of N2 as a function of
temperature using Landau's theory was by Lifshitz
(L.44b), who used Landau's earlier (L.41a) evaluations
of the microscopic parameters 6 and p to provide a
knowledge of p„.The result was in qualitative agree-
ment with experiment (see Sec. 9.4) between 1.2'K
and T&, but more importantly it showed that u2 should
rise in value markedly at about 1'K and eventually
Ratten out, as was emphasized erst by Landau, to a
value given by Ni/V3 as T~O'K. This remarkable rise
at the lower temperatures, due to the significance of
the phonon field in this region, has been amply con-
6rmed by subsequent experiment. Lifshitz's evaluation
of N2, which was found to be only in qualitative agree-
ment with experiment, has been revised by Landau
(L.47a) who introduced new numerical data for 6, p,
and ps from which p„could be computed. The revised
scheme led to a dependence of N2 on T which agrees
roughly with Tisza's equation above about 1.5 K,
possesses a minimum at about 1.1'K, rises rather
steeply below this, and then levels off to the value
ui/%3 as T approaches zero.

To anticipate the results of experimental 6ndings
(see Secs. 9.4 and 9.6) somewhat, it appears, first, that
in the temperature range 1.2'K to Tq both theories are
qualitatively in agreement. Secondly, in the tempera-
ture range below 1.2'K Tisza's interpretation fails,
partly perhaps due to the inbexibility of the relationship
(c), but more significantly because the assumption (b)
prevents the rise of 02 at lower temperatures. Thirdly,
the evaluation of 02 by Landau indicates the importance
of the phonon contribution to the normal entropy at
lower temperatures and enables a numerical estimate
to be made for it (see Sec. 4.3). This contribution
indicates that Landau's hypothesis (b'), namely, the
existence of mechano-caloric sects down to absolute
zero, is correct.

In writing Eqs. (9.1) and (9.6) we have neglected
the coupling between the density waves and the tem-
perature waves. This coupling, which is proportional
to the difference between the specific heats C~—C„
divided by C„,is indeed negligible in helium lI. This
point has been discussed by Lifshitz (L.44b), Peshkov
(P.48a), and Dingle (D.50c).

sr Currently the va1idity of Eq. (9.6) is undisputed and, in-
stead of inserting evaluations of p„into it to obtain predictions
regarding u&, it is customary to use Eq. (9.6) together with the ob-
served values of N2 to compute p„.
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9.3. Other Equations for Second Sound

Several derivations and discussions of the equations
of second sound besides those of Tisza and Landau
have been presented by various authors. We shall
mention a few but not all of these. For a more complete
summary the reader is referred to the review of Dingle
(D.52a), previously mentioned.

Gogate and Pathak (G.47b) have given an elemen-
tary derivation of the equation for the velocity of
second sound, which, while not completely rigorous,
is very suggestive. The equation is the same as Landau's.
Gorter, Kasteleijn, and Mellink (G.50a), and Usui
(U.51a), on the other hand, have obtained a somewhat
different equation starting from Gorter's (G.49b)
equation for the entropy, S*=x(BS/Bx), where x=p„/p,
mentioned previously in Sec. 4.7. They obtain
Gorter, Kasteleijn, and Mellink:

First among these discussions are those of Ward and
Wilks (W.51b; W.52). They developed an analogy
between phonons and photons in order to arrive at
Landau's value for the second-sound velocity in the
limit T 4;—i.e., u2 ——I&/V3. They brieliy discussed the
possibility of second sound in crystals, the investigation
of which had erst been proposed by Peshkov (P.46a).
(The analogy used by Ward and Wilks suggests the
possibility of second-sound waves in a photon gas also,
but, as was pointed out by F. London (L.51), photons
do not satisfy condition (ii) given above. )

Later, Ward, and Wilks obtained the same result by
applying Boltzmann's equation to the excitations.

Dingle has also considered this problem (D.52a;
D.52c), proceeding along lines similar to those of
Ward and Wilks. Dingle displayed the thermodynamic
functions of the excitation gas and derived the result
that

e22= x(1—x)G„(forhigh frequencies). (9.7) N22= TS'p/C„p„, (9.9)

Usui e22= x(1—x)S,T, . (9.8)

(Throughout this section and in Sec. 9.7 subscripts on
ther nodynamic functions indicate partial diAerentia-
tions. ) Gorter et a/. have another equation for the
velocity for low frequencies which is discussed brieRy
in Sec. 9.7. To the approximation that (9.7) and (9.8}
are correct, they are also equivalent. (In one of them
G„,has been neglected, in the other, G„z.These
quantities are probably negligible. )

Nakajima and Shimizu (N.50b; N.51) have used
Usui's equation to evaluate numerically the second-
sound velocity, using two diferent equations for the
entropy of helium II versls temperature —one based
on Landau's model, the other based on a generalization
of Tisza's model in which the phonon entropy is
included in the normal entropy. When they use
Landau's model, they find that the low-temperature
limit of e2 is just three-fourths of the value predicted
by Landau, which result is, as is discussed in section
9.4, if anything, too low. With regard to these equations,
Dingle (D.51) has questioned the validity of Gorter's
entropy equation.

Some ingenious derivations of the velocity of second
sound have been given in which no recourse is made to
any two-fiuid theory. In all discussions of this sort
the excitations of the Quid are treated like a gas of
particles Do11owing Landau (L.41a)j. From this

viewpoint second-sound waves are density waves in

the gas of excitations or "particles. " In order that
such waves propagate, the "particles" must satisfy
certain conditions (discussed more fully in the refer-
ences cited following) among which are (i) only elastic
collisions occur between particles, (ii) the mean free

path of the excitations must be short compared with
the wavelength of the second sound, and (iii) dissipative
processes must not attenuate the second-sound motion
too severely for detection.

which differs from Eq. (9.6) by a factor (p/p, ) so that
agreement of the two arises only as T~O. Dingle has
suggested (D.52a) that the difference between (9.6) and
(9.9) is due to the neglect of the ground state; The
derivation of the two-fiuid equations by Kronig (K.53g)
already mentioned in Sec, 8 carries this approach to
the problem of second sound in helium to its conclusion
inasmuch as Kronig found it possible to take the
momentum of the ground state into account.

As we have just indicated, there has been considerable
speculation as to the possibility of second-sound
propagation in media other than helium II. Dingle
(D.52.a) has recently calculated the velocity N2 to
be expected in several diferent media. Of course, the
restrictions mentioned above must be met. In particular,
if one is interested in the possibility of second sound in
liquid He', it might be inferred from the fact that He'
apparently never becomes superfiuid )see Sec. (3.7)j
that dissipative processes in He' might prevent the
propagation of second-sound waves in this -Quid.

Nevertheless, investigations on second sound in pure
liquid He' would be of extreme interest and signi6cance.

9.4. Experiments on Second Sound

The first experiments on second sound in liquid
helium II were performed by Peshkov. In a series of
beautiful experiments reported from 1944 to 1949
(P.44, P.46a, P.46b, P.48b, P.48c, P.49a), Peshkov
explored the temperature region from the X point down
to slightly above 1.0'K.

Peshkov used standing wave techniques: waves of
temperature or entropy were generated at one end of
a tube filled with liquid helium II by means of a heater
consisting of a flat coil of wire through which a sinu-
soidal current was passed. Another Qat-coiled phosphor-
bronze resistance thermometer normal to the axis of
the tube served as a detector and it. could be moved
up and down the tube. The relationship between
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FrG. 9.3. The velocity of second sound u2 as a function of
temperature. The broken curve shows the results of Peshkov
(P.44, P.46b, P.48b, P.48c, P.49a). Above about 1.25'K this
broken curve also represents the results of Lane and co-workers
(L46c, 1.4/b), of Pellam (P.48d, P.49b), and of Osborne (0.48b),
all of which are in good mutual agreement. The full curve, which
is the hest 6t to the observed results shown by the circles, is due
to Maurer and Herlin (M.49d).

wavelength and frequency could be studied either by
producing resonance of the temperature waves in
the tube and measuring the resonance response curve,
or by moving the detector nearer or farther from the
heater and observing the spacing of nodes and antinodes
of temperature variation. Peshkov used frequencies
from 10 to 104 cps and detected no dispersion in the
waves. His results are shown in Fig. 9.3 by the broken
curve. It will be n.oted that the value of second-sound
velocity u2 rises rapidly from zero at T~ and reaches a
maximum of 20.3 m/sec at about 1.65'K, which value
is approximately maintained over a wide range of
temperature. Before finally increasing to much higher
values below 1'K, however, the value of N2 passes
through a minimum of about 18.4 m/sec just above 1'K.

Peshkov (P.48a; P.48b) also studied certain subsid-

iary eGects which we have not here space to discuss com-
pletely. One interesting experiment consisted in produc-
ing second sound, by placing a porous filter in front of an
ordinary acoustic transducer. Between the transducer
and the 6)ter normal and superfluid moved together
producing density, or first sound, waves; in the filter
the normal Quid was slowed by viscous drag while the
superQuid was not, giving rise to a relative motion
of the two Quids and thus second sound beyond the
filter.

In reaching to lower temperatures, it was Peshkov
(P.48c) who erst found that contrary to Tisza's Eq.
(9.5) the second-sound velocity passes through a
minimum just above 1.0'K, thereby furnishing experi-
mental evidence for Landau's assumption that the
density and entropy of phonons contribute to the
normal Quid.

Other measurements of the second-sound velocity

have been carried out by Lane, Fairbank, Schultz, and
Fairbank (L.46c, L.47b) using a somewhat different
method. In their arrangement a cylindrical Lucite
cavity containing a heater at the bottom as a source of
periodic temperature waves was partially filled with
liquid helium II. At the top of the cavity a magnetic
microphone was mounted, which served as a detector,
According to a suggestion which had been put forward
by Onsager, the "second sound" induced in the liquid
was converted into normal sound in the vapor at the
liquid surface with a high percentage transmission
of energy. The pressure variations of the normal
sound in the vapor, therefore, could activate the micro-
phone. As the level of the liquid in the cavity fell
slowly, it was found that resonances could be observed,
and knowing the length of the liquid column at each
resonance, it was possible to determine the velocity
u2 of the temperature waves to within ~0.5 percent.
The results obtained were in agreement with the work
of Peshkov, as given in Fig. 9.3.

More recent work on the second sound velocity has
been done using pulse techniques developed by Pellam
(P.48d, P.49b) and Osborne (0.48b). A short heat
pulse (of about 10 ' sec duration) is delivered to the
helium and picked up by a receiver. Both input and
received pulse are displayed on an oscilloscope screen.
For details of the experimental arrangements, the
original papers must be consulted. The velocity is
given by the ratio of the path length to the time incre-
ment between delivered and received pulses, the time
increment being directly observed with the oscilloscope.
This method has the advantage of convenience (reso-
nance conditions do not have to be achieved) and of a
low average power transmitted to the helium. This
second advantage becomes more and more important
as the temperature is lowered, and the entropy of
helium II diminishes.

The results of these experiments provided ample
confirmation of the accuracy of the measurements
previously made by Peshkov, and by Lane and co-
workers. They provided also the result that no measur-
able dispersion exists for second sound over a wide
range of frequencies, as was found also by Peshkov.

In order to provide further theoretical insight into
the mechanism of second sound, measurements below
a temperature of about T.I'K, the lower limit of the
range used in the work quoted above, were of interest.
Results of such measurements have been reported
during the past few years, first by Peshkov down to
1.03'K (P.48c), then by Maurer and Herlin (M.49d)
and by Peshkov (P.52c) down to 0.86'K and then by
Pellam and Scott (P.49c), Atkins and Osborne (A.50c),
and by de Klerk, Hudson, and Pellam (K.53a) to
temperatures obtained by paramagnetic cooling. The
results of Maurer and Berlin's and of Peshkov's work
are given in Fig. 9.3 in which the older data is also
included. These results, as already mentioned, indicated
for the first time the existence of a minimum in the
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N2 eersls T curve at about 1'K and the beginning
of a rapid rise in N2 below 1'K. These results; therefore,
were the first to allow an unambiguous choice between
the basic assumptions of Tisza on the one hand and
of Landau on the other hand (see Sec. 9.2) made in
their interpretation of the second-sound equation for
liquid helium II.

The results for N2 in the paramagnetic cooling region
of temperature obtained by Atkins and Osborne
(A.50c) and by de Klerk, Hudson, and Pellam (K.53a)
both using pulse techniques are shown in Fig. 9.4.
Leaving aside for the moment the question of the
accuracy of the temperature measurement in Atkins
and Osborne's data (later work has shown the tem-
perature data to be in doubt), we note their results
as a milestone in the measurements of the velocity
of second sound. They observed that N2 increases very
markedly at about 0.4'K and then appears to "level
oG."Extrapolating their results to O'K they obtained
Ns(0) =152 m/sec —a value which is about 10 percent
higher than that expected from Landau's result:
Ns(0) = er(0)/v3.

Very recently de Klerk et a/. , working in the same
temperature interval, found evidence of somewhat
diGerent behavior. First, they observed the steepest
rise in temperature to come at about 0.6'K rather than
at 0.4'K. This they explained by noticing that the
apparatus of Atkins and Osborne had a very small
warm-up time so that the helium involved probably
never came to the low temperature of the paramagnetic
salt used to cool it. Atkins and Osborne had reported
the salt temperature rather than the helium tempera-
tures. H. A. Kramers (K.52e) pointed out some time
before the publication of the results of de Klerk et ul.
that the steep rise in N2 as a function of T should occur
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at about the same temperature at which the 2's de-
pendency of the specific heat first became apparent,
i.e., at the initiation of the pure phonon region. The
measurements of Krarners et al. (K.52a) on the speciic
heat indicated that this temperature was about 0.6'K.
It was therefore very reassuring when this was shown
to be so by the experiments of de Klerk et al.

Furthermore, de Klerk et al. found that, for the
lowest temperatures they have obtained, down to a
nominal 001'K, the velocity of second sound is
considerably above the Landau value and apparently
is still increasing with diminishing T. (They report
velocities as high as 192 m/sec. ) These results are
shown in Fig. 9.4.

De Klerk, Hudson, and Pellam have tentatively
listed three possible explanations of their results, as
follows:

(1) It is possible that the high velocity found is a
real property of second-sound propagation; that is,
the prediction of Landau concerning the low-tempera-
ture limiting velocity is in error.

(2) The effect may be a shock-wave phenomenon
of the type observed by Osborne (0.51).

(3) The effect may be the result of a long mean free
path of the phonons.

As to the erst of these explanations little, of course,
can be said. However, Dingle (D.52d) has recently
made some calculations on the behavior of rectangular
or 8 function pulses in viscous or conducting media.
The eGect of the damping is to spread the pulse and
to destroy its symmetry, so that the beginning of
the received pulse arrives before the time t= a/Nps

(where um is the velocity computed from Eq. (9.6)).
If one evaluates the velocity n, t,„t,with respect to the
"start" of the pulse it will be too high. Dingle obtains
at 0.2'K

Nss= N„t,,~(1—60$ rf). (9.10)

Evaluating" this equation he Ands the observations of
Atkins and Osborne (who measured to the start of
the received pulse) in agreement with Landau's predic-
tion. This form of the correction to the observed
velocity fails at the lowest temperature used by de
Klerk et cl. On the other hand, if other points on the
received pulse are used in the measurements, velocities
several times smaller than those reported may be
obtained. For this reason Pellam has suggested using
pulsed carrier waves for the determinations so that
the velocity at a particular frequency may be obtained.
However, although C% pulses have been generated
by de Klerk et al. , the contribution of the CW frequency
has not been discriminated in the received signals.

Considering next the possibility of shock waves, it is
clear that they will become serious as the temperature

's In order to use (9.10) Dingle had to abandon Landau and
Khalatnikov's value of v (v=1 poise at 0.2'K) and use the ap-
proximation of Tisza (T.47) that g ~ T&. Even with this assump-
tion the approximation formula (9.10) fails at 0.06'K.
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is lowered since any nonzero heat input into the system
will cause an appreciable temperature rise in a medium
of vanishing entropy. If such shock waves cannot be
avoided they will lead in the limit, according to de
Klerk, Hudson, and Pellam (K.53a), .to an apparent
velocity of second sound equal to the velocity of first
sound. Shock waves have been discussed by Temperley.
(T.51c) and Khalatnikov (K.51b). Khalatnikov has
criticized Temperley's work as being based on erroneous
hydrodynamical equations. Khalatnikov starts from
Landau's equations which he solves to second order.
He obtains

1
Nstart +20M 2&2 ~nl &n2 y

T rE' ( C
no —— ——— in( uso '—

[

C BT. E T)

(9.11)

(9.12)

and v„»and v„2are the normal Quid velocities just ahead
and just behind the shock front. As the temperature
changes n2 changes signs, so that in some regions of
temperature a front-edge shock and in othersa back-
edge shock wave develops. As T—&0, if the normal
velocity is zero ahead of the shock front,

Ny

Nstart W g~n. (9.13)

Since v„becomes very large but cannot exceed ur,

p1+u3'q
+start~N1

3 )
(9.14)

Shock waves have received considerable attention in

the recent reviews of Dingle (D.52a) and Atkins
(A.52a).

The third possible explanation of the observed
velocity lies in a long mean free path of the phonons,
as has been suggested by Ward (W.53b), Gorter
(6.52), and Atkins (A.53). This may be explained as
follows: That second sound arises at all requires a
"local temperature" to be established in the liquid.
Such a local temperature, implying local equilibrium,
can only occur if the mean free path of phonons in

the liquid is very much shorter than the wavelength
of second sound. If the mean free path of the phonons
becomes macroscopic at low temperatures, as has been

'

suggested by the theory of viscosity of Iandau and
Khalatnikov (L.49a) (see Sec. 9.1), equilibrium may
not be established in the pulse transit distance. In
this case, the heat pulse will be transmitted with the
velocity of the phonons, i.e., with the velocity of
6rst sound.

In a recent investigation to test the mean-free-path
effect Kramers, van den Berg, and Gorter (K.53h)
have compared the propagation of pulses in two
cavities, one 3 cm and the other 6 cm long, between
0.1 I and 1.0'K.

At the lowest temp'eratures the sharp start of the
pulse had a velocity equal to 230 m/sec. As the tem-
perature was raised the velocity decreased and the
start of the received pulse became unsharp. This
occurred at a lower temperature in the 6 cm cavity
than in the 3 cm cavity, and up to 0.8'K the measured
velocity was smaller in the longer cavity than in the
shorter. At 0.8'K the velocity found was in agreement
with that measured by other workers. The results
therefore appear to confirm the postulated mean-free-
path eGect.
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FIG. 9.5. The velocity of second sound as a function of tempera-
ture and pressure from Maurer and Herlin (M.51c). The experi-
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shown. The maximum deviation of points from the curve is ~1
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9.5. The Effect of Pressure on the Second
Sound Velocity

Measurements of the eGect of pressure on the second
sound velocity have been made by Peshkov and
Zinoveva (P.48e) in the temperature range 1.3'K
to Tq using pressures from the saturation vapor pressure
to the freezing pressure, and by Maurer and Berlin
(M.51b, M.51c), and by Mayper and Herlin (M.53)
who extended the temperature range to well below
1'K using pressures up to 25 atmos. Above 1'K
the results, as taken from the publication of Berlin
et al. , are shown by the family of isobars given in Fig.
9.5. It will be seen that the maximum in the u2 versus
T curve shifts to lower temperatures as the pressure is
increased. As Peshkov and Zinoveva pointed out, a
plot of the line of the maxima (on a p versus T, plot)
has dT/dp(0 and is parallel to the X line.

At very low temperatures (about 0.4'K, not shown
in Fig. 9.5) the second-sound velocity rises sharply
in the same manner as reported by de Klerk et al.
(K.53a); however, as is suggested by Fig. 9.5, the
greater the pressure the lower is the temperature at
which the increase occurs. After the sharp increase in
velocity there is a leveling oG, as is to be expected,
but here the curves cross and the ultimate velocity
as the absolute zero is approached is higher, the higher
the pressure.

These results are of some theoretical signi6cance.
They support the assumption first made by Landau
that only the phonons comprise the normal Quid at
lowest temperatures. The sharp rise in the velocity
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of second sound occurs at about the temperature at
which the phonon entropy becomes, an, appreciable,
fraction of the total entropy, and. the limiting, ve}ocity
at O'K is proportional to the velocity. of. ;6rst sound.
Because the first sound velocity .increases with in-
creasing pressure, and because the;phonon entropy

, varies inversely as the cube of the 6rst sound velocity,
increasing the pressure of the helium II should lower
the temperature at which the' velocity increase occurs
and should also increase its limiting value. Both of
these eGects are observed. Like de Klerk, Hudson, and
Pellam (K.53a), however, Mayper and Herlin observe
that the limiting velocities obtained are greater than
those to be expected from Landau's value: ar/v3.

Kondoh, Nakajima, and Shimizu (K.51c) have
compared the results of Maurer and Berlin in the
range above 1'K with calculations based on Usui's
equation for the second-sound velocity, Eq. (9.8).
They obtain qualitative, not quantitative agreement.

9.6. The Rayleigh Disk and the Pitot Tube
in Second-Sound Field. s

Besides the measurements in which the second-sound
velocity was of primary interest, there have been
elegant experiments by Pellam and co-workers designed
to test the two-Quid hypothesis. They have carried out
an extensive series of experiments with a thermal pitot
tube and with a thermal Rayleigh disk in second-sound
6elds.

In the experiments on the thermal pitot tube by
Pellam (P.50b), standing waves of second sound were
set up. in liquid helium II in a cavity one-half wave-
length long. The apparatus (see Fig. 9.6) was ingeniously
constructed so that the pressure of the helium II could
be measured at the midpoint of the cavity (the antinode
of the wave) and. at the end of the cavity (the node of
the wave) by using the liquid helium itself as the
manometric Quid. The Quid pressure was found to be
higher at the node. Pellam explained this by an intuitive
generalization of the Bernoulli equation in which a
term accounting for the relative motion of the super-
Quid and normal Quid is included, namely:

(II q'
&pss+pgh+p+&p(p /p ) ~ ~

constant, (9.15)
& pST)

where II=pST'v„ is the heat current. The inclusion of
this fourth term in Eq. (9.15) shows that where the
kinetic energy of relative motion of the two Ruids is

high, the pressure is low, and vice versa —a conclusion.

in agreement with the observations. Notice that in

this experiment a pressure variation proportional to
the square of the particle velocity was detected; as
mentioned before, there is no pressure Quctuation

proportional to the erst power of the velocity. Only
qualitative results' of the experiments, however, have
so far been reported.

Pro. 9.6. Diagram
of Pellam's (P.sob)
thermal pitot tube.
Dotted line within
horizontal cavity A
represents distribu-
tion of heat Qow
density (8 is a plane
electric heater sur-
face) for condition
of resonance. The
resulting forced dif-
ference in the levels
within the vertical
tubes (as well as
the net elevation due
to capillarity) is ex-
aggerated here.
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The use of a thermal Rayleigh disk for the exploration
of second-sound fields was erst suggested by Pellam
and Morse (P.50a); complete experimental results have
recently been reported by Pellam and Hanson (P.52b).
The fundamental idea in these experiments is that each
Quid in liquid helium II will acct a Rayleigh disk as
if the other were not present, because the disk responds
to the square of the particle velocity rather than to
the erst power. It is well known that the maximum
torque which can be exerted on a small disk suspended
in a sound field is given by the expression"

r = (4/3) a'pn', (9.16)

in terms of the radius of the disk, u; the density of the
Quid p,' and the Quid velocity e. %e can write such an
equation for both the superQuid and the normal Quid
in helium II:

r„=(4/3) a'p„e„',
r,= (4/3)asp, e,s.

(9.17)

~ See reference 24, p. 44.

In a second-sound 6eld the total torque is just the
sum of the two terms (9.17). The two velocities are
linked by the condition that the mass current density
Eq. (8.4) is zero, and they can be replaced by the
heat current H by the Eq. H=pSTs„.Thus, as was
shown in detail by Pellam (P.52b),

4 p 4 p (H)'
(7)A, (r.)A,+(——r,)A, a'p e„——'--a'—p

~

-~ . (9.18)
3 p, 3 p &pST).

The experimental arrangements used for the observa-
tion of the Rayleigh disk in liquid helium II by Pellam
and co-workers is diagrammatically shown in Fig. 9.7.
The disk D a —,'-inch galvanometer mirror, is suspended
from a 6ne copper ribbon II in the center of a cylindrical
horizontal cavity E. A light beam reQected from the
disk to a conventional scale indicates small deQections
of the mirror produced by the second-sound field.
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for p„(A.48a) and Kapitza's entropy data (K.41b)
have been used. The agreement of experiment and
theory provides a consistent check on all quantities.
This has already been pointed out in Sec. (2.3). A
little juggling of Eqs. (9.6) and (9.18) leads to an
expression for the speci6c heat in terms of torque, heat
current, and u2. Thus the Rayleigh disk can be used
as a calorimeter. Pellam and Hanson evaluate C, in
this way and obtain good agreement with other experi-
menters.

Pellam's approach to the equations of the thermal
pitot tube and the thermal Rayleigh disk was intuitional
rather than rigorous. Compare, on this point, Pellam's
discussion of mechanical energy Row, radiation pressure,
and transmission of heat current at a "classical"
boundary for thermal pulses (P.49d). It is, therefore,
very satisfactory that Usui (U.51b) has derived the
equations appropriate to each experiment from the
equations of motion of Nakajima, Tomita, and Usui.
In particular, Usui has verified that the total torque
acting on the Rayleigh disk is just the sum of the two
Eqs. (9.17). As Vsui pointed out, these experiments
on the pitot tube and the Rayleigh disk mark the first
appearance of the terms (v grad) v which are present
in the equations of motion.

Fn. 9.7. Diagram of apparatus used by Pellam and co-workers
(P.52b) for observations with a Rayleigh disk in liquid helium II.
(See text for explanation of symbols. )

The second sound is produced by means of a Rat
electrical heater element F forming one vertical end of
the cavity E which heater is energized sinusoidally.
Standing waves of second sound are produced in the
cavity by tuning the frequency of the heater current
approximately to the fundamental resonance. At a
given temperature, the torque on the disk is measured
as a function of the frequency of the periodic heating,
and from the shape of the resonance curve the eQ'ective

heat current at the center of the cavity can be computed.
From the frequency at maximum response, i.e., maxi-
mum torque, the second-sound velocity can be
reckoned; it is found to give agreement with the other
previously quoted results for this quantity. The torque
itself is more interesting. It follows from Eq. (9.17) and
the condition of no net mass Row that the Quid con-
stituent which has the lesser density contributes the
greater torque, and indeed as either density vanishes
the torque becomes infinite. Thus near the X point the
torque is almost entirely due to the superRuid, while at
and below about I.2'K the torque is due almost entirely
to the normal Quid. Theory is beautifully supported by
experiment, each Quid does make its expected con-
tribution to the torque as is shown in Fig. 9.8, taken
from Pellam and Hanson's paper, thus giving elegant

support to the two-Quid theory.
The theoretical curve in Fig. 9.8 follows from Eq.

(9.18) if p„and 8 are known Andr. onikashvili's data
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the expected torque for the superRuid; and represents
r~(H')q„, that predicted for both. The circles are the Observed
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9.'I. Attenuation of the Second Sound

Equations expressing the eGect on the propagation
of second-sound waves of irreversible processes (due
to viscosity, thermal conductivity, and a finite relaxa-
tion time governing the conversion of super Ruid
helium II into normal Quid at places where one of
them is above its equilibrium concentration for the
local temperature) have been discussed, in whole or
in part, by Dingle (D.48, D.50c); Usui (U.51a);
Kronig and Thellung (K.50a); Garter, Kasteleijn, and
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Mellink (G.50a); Kronig, Thellung, and Woldringh
(K.52h); Khalatnikov (K.50b, K.52f, K.52g); and
Band and Meyer (B.48a, B.48d, M.48d, B.49d).

Dingle derived expressions for the at tenuation
coefficient o, of second-sound waves propagated in a
large vessel due either to viscosity alone, or to thermal
conduction alone. (n is the reciprocal of the distance
in which the amplitude of the disturbance is reduced
by the factor 1/e. ) These coeKcients are:

Viscosity alone: o.„=(p,/p ) (2&~'/3pN2'), (9.19)

Thermal Cond. alone: nx ——Ecv'/2pC„N'23. (9.20)

In these equations g is the viscosity coefficient for
shearing, E is the coefficient of thermal conductivity,
and C, is the specific heat. Usui also discussed the
eGects of viscosity and arrived at an equation equi-
valent to (9.19). Kronig and Thellung carried out a
similar analysis starting from more general equations
which include coefficients of viscosity, thermal con-
ductivity, and cubic expansion. They arrived at a
cubic equation for the square of the wave vector, k

(k;=&o/m;). The three roots of this equation correspond
to three types of wave propagation: first sound, second
sound, and, newly named by the investigators, "third
sound. " Third sound is a skin or surface effect (see
Sec. 5.7),. since the wave vector k3 is almost a purely
imaginary quantity: the motion, caused by viscous
drag, dies out in about 10 ' cm. (These waves are not
the usual viscosity waves found in all viscous liquids.
The usual viscosity waves, which are also found in
helium II, are characterized by the condition that the
square of the wave vector is a purely imaginary
quantity. ) Of more interest here is the fact that Kronig
and Thellung's waves of second sound are attenuated
with a coeKcient which is just the sum of the two
terms already given by Eqs. (9.19) and (9.20), if the
Stokes relationship between the shear and the volume
viscosity coefficients is assumed.

Gorter, Kasteleijn, and Mellink also considered the
effect of relaxation on the second-sound velocity. They
assumed that a characteristic parameter p related to a
relaxation time, exists such that for nonequilibrium
(dT/dt)=PG . Introducing this into the equations of
motion yielded the result that N2 is frequency
dependent: at high frequencies (M))PG, &) Eq. (9.7)
holds; at low frequencies (the opposite inequality) Eq.
(9.7) must be divided by the factor (1—G»Grr/G', r).
Kronig, Thellung, and Woldringh have discussed the
effects of relaxation somewhat more thoroughly by
expanding the equations of Kronig and Thellung
(K.50a). They state that for second sound their results
dier from those just quoted to an extent which lies
beyond the precision of the present measurements.
They do not calculate the dependence of the attenua-
tion coefficient on the relaxation time.

Khalatnikov has discussed the relaxation process in
terms of the emission and absorption of phonons and
rotons which bring about equilibrium. This is an

extension of the work of Landau and Khalatnikov
(L.49a) on the viscosity mentioned above (Sec. 9.1).
His results require the introduction of certain experi-
mental data. Kith such data he finds that relaxation
phenomena lead to an additional attenuation which
(at 2'K for example) is given by n= 2X10 "cv'. At the
same temperature Eqs. (9.19) and (9.20) yield
o.,= 7)(10 "or' and nz =4)(10 "~'. Unfortunately,
since the theories of Dingle and of Kronig and Thellung
are macroscopic, while Khalatnikov s is microscopic,
it is not clear whether all the attenuation coefficients
are additive.

Sand and Meyer also have considered the eftects of
relaxation. To do this they have introduced two
relaxation times. The first relaxation time 7~ charac-
terizes momentum exchange between normal and super-
Quid and introduces a damping term into the wave
equation. Thus, if s is proportional to the displacement
of the normal constituent from the center of mass of a
Quid element, they write:

1
(8's/BP)+ (Bs/B—t) =v,2 grad divs.

7g
(9.21)

The second relaxation time v~ characterizes the rate of
thermal adjustment between the constituents. r2 is
apparently related to the characteristic time of Gorter
and co-workers and Kronig and co-workers. xi is
introduced purely ud hoc. Band and Meyer's assump-
tions lead to the result that at very low frequencies the
second-sound wave equation goes over into a thermal
diffusion equation.

For the frequencies employed in second-sound
measurements (ca 10' cps) the attenuations given by
(9.19) and (9.20) are exceedingly small in the range
of temperature from 1'K to 2'K. However, near the
X point (n„) and (ax) become very large, since here
p, and N2' approach zero. At low temperature also, e~
becomes large as the specific heat vanishes.

The experimental data concerning attenuation are
very slight and somewhat contradictory. Pellam
(P.48d, P.49b) has found n to increase with temperature
varying from 10 2 cm ' at 1.65'K to 0.25 cm ' at
2.1'K while above this last temperature it increases
very rapidly in qualitative agreement with the predic-
tions of the last paragraph. Osborne (0.51), however,
has found much smaller attenuations which are practi-
cally temperature independent up to about 2.17'K.
The difference in the magnitude of the effect found by
the two experimenters is explained at least in part
by differences in important frequencies: Pellam was
using rectangular pulses of 150 psec duration, Osborne.
600 psec pulses, which difference introduces (roughly)
a factor of 16 in the expected attenuation coefficients.
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Appendix (Added in proof)

Since September 1953, when this paper was com-
pleted, many articles on liquid helium II have been
published. The following list, which makes no claim to
completeness, has been compiled to indicate the rate
of publication on liquid helium (excluding articles on
solid helium, He' or He') up to May, 1954.
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R. P. Feynman, Phys. Rev. 91, 1291 and 1301 (1953);
94, 262 (1954).

H. N. V. Temperley, Proc. Phys. Soc. (London) A66,
995 (1953).

J. M. Ziman, Proc. Roy. Soc. (London) A219, 257
(1953) and Phil. Mag. 45, 100 (1954).

P. R. Zilsel, Phys. Rev. 92, 1106 (1953).
G. V. Chester, Phys. Rev. 93, 1412 (1954); 94, 246

(1954).
O. K. Rice, Phys. Rev. 93, 1161 (1954).

Vapor Pressure 3Ieaslrernents

R. A. Erickson and L. D. Roberts, Phys. Rev. 93, 957
(1954).

Worley, Zemansky, and Boorse, Phys. Rev. 93, 45
(1954).

Expansion Coegcient

K. R. Atkins and M. H; Edwards, Phys. Rev, 93, 14I6
(1954).

Capillarity and Surface Tension

K. R. Atkins, Can. J. Phys. 31, 1165 (1953).
C. T. Lane and R. V. Dyba, Phys. Rev. 92, 829 (1953).

Vi scosi ty

A. C. Hollis-nallett, Proc. Cambridge Phil. Soc. 49, 717
(1953).

I'onntain EIect

C. A. Reynolds, Phys. Rev. 93, 1118 (1954).

Films

K. R. Atkins, Phys. Rev. 92, 1571 (1953).
R. Bowers, Phil. Nlag. 44, 1309 (1953).
A. C. Ham and L. C. Jackson, Phil. Mag. 44, 1403
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B. Smith and H. A. Boorse, Phys. Rev. 92, 505 (1953).
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Tjerkstra, Hooftman, and van der Meydenberg,
Physica 19, 935 (1953).
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