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I. INTRODUCTION

ROM the measurements of the cross section of low-

energy neutron-proton scattering, it became evi-
dent to physicists' ' ' in the early days that the inter-
action of the neutron and the proton is spin-dependent.
According to these authors, there is a 'S state that
plays a role in the theoretical formula for the 'S scatter-
ing similar to that played by the ground state of the
deuteron for the 'S scattering. Experiments on the
scattering of neutrons by ortho and para-hy-drogen have
led to the conclusion that the 'S state is a virtual state
having a negative binding energy.

%bile the bound state is a familiar concept in quan-
tum mechanics, the true nature of the virtual state has
been a subject of much discussion during the subse-

quent years, and various definitions of the virtual
level of the deuteron have appeared in the literature.
In view of the interest this subject has received, it is
desirable to clarify the theoretical background of the
definitions that have been proposed.

The object of this article is not to give a compre-
hensive exposition of the motives that led to the various
definitions of the virtual level, but rather to elucidate
some of the definitions from the viewpoint of the theory
of S matrix (scattering matrix)' and the theory of R
(derivative) and Q matrices. "' After a brief general
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Bethe and R. F. Bacher, Revs. Modern Phys. 8, 82 (1936); See
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No. 1 (1945); 22, No. 19 (1946).' E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947); T.
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review in Part II, we shall confine our attention to the
following definitions: (1) definitions which are based
on the analogy of the 'S virtual state with the 'S bound
state, and which fit in a simple way into the theory of
the S matrix; (2) a definition that identifies the 'S
virtual level with the lowest 'S resonance level accord-
ing to the theory of the 8 matrix. From a general
formula connecting the S and R matrices, one can
derive a simple connection between the two kinds of
definitions. There have been scattered remarks on
this subject in the literature. It is our purpose to give a
connected account. It should be mentioned that the
term "virtual level" has been given different meanings
in the literature. In this article we use it only for the
energy levels that form the basis of one-level representa-
tions of the low-energy neutron-proton 'S scattering
cross section. As usual, we use the term "resonance
level" for the energy levels that occur in resonance
scattering and resonance reactions. It is beyond the
scope of the present article to discuss in detail the theory
of resonance, and we shall merely mention brieQy the
definitions of the resonance level that have been given in
terms of the S, R, and Q matrices.

In dealing with the neutron-proton system we shall
confine our attention to the central-force approxima-
tion and the S states. The matrix elements of the S, Jt',
and Q matrices that concern us are simply functions
of the momentum or energy of the relative motion of
the two nucleons.

II. DEFINITIONS OF THE VIRTUAL LEVEL

A. Approximate Dehtion

The wave equation for the S states of the neutron-
proton system is, for the center-of-mass frame of
reference,

[—(d/dr)'+ V(r) ju (r) =Eu(r).

Here r is the distance between the nucleons, E and
V(r) are the total energy and the potential energy,
divided by the factor h'/2nt, nt being the reduced mass
of the nucleons. ' For the scattering problem, there is a
continuous spectrum of energies EA, =k' extending from
k=0 to k= ~, and the wave Eq. (1) corresponding
to an energy EI, is of the form

[(d/dr)'+k'jug(r) = V(r)ul, (r) (2).
The wave function ui, (r) vanishes at r=0 and has the
asymptotic expression

ui(r) = const sin[kr+5(k)]
'" The quantity E will be referred to as energy for brevity.
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or
0.(k) =4m sin'[8(k)]/k'

(r(k) =4m/k'{1+cot'[8(k)])

(4)

(5)

At low energies we have approximately

for large r, b(k) being the phase shift. The scattering
cross section is given by

E~= —y'. Its wave function for r~& a is

N(r) = const exp( —yr) (11)

with y&0. The continuity of u(r) and its derivative at
r= a requires

(Vo—y')& cot[(Vo—y')'u]= —y. (12)

where

and therefore

cot[8 (k)]= —n/k,

n= —lim k cot[h(k)],
k-+p

0 (k) =4'/(k'+n').

(7)

The solutions of this equation have been discussed by
SchiG' and by Mott and Massey. ' There is only one
solution of Eq. (12) for the deuteron because Vo is only
slightly larger than the critical value (s/2a)'. Breit
and his collaborators"" have expressed the scattering
cross section in terms of k and y. Their result is

The quantity n is the reciprocal of Fermi's scattering
length.

The connection between the scattering cross section
and the bound and virtual states arises from the follow-

ing situation. It is known theoretically that the exist-
ence of a bound state for the deuteron depends on the
sign of the scattering length. If n&0, there is a bound
state whose energy is approximately E = —n'. On the
other hand, there is no bound state if o.&0. These con-
clusions have been drawn from the mathematical
scheme of wave mechanics. ' ' A simple derivation of
these conclusions provided by the theory of the S
matrix will be given in Sec. IIIB. The first of the
above two possibilities holds for 'S. In this case the
scattering cross section can be expressed in terms of the
binding energy of the ground state of the deuteron
according to the approximate formula

0 (k) =4s/ (Eg+ I E.I ). (9)

In the case of 'S, the second possibility holds and there
is no bound state. However, Eq. (9) is still valid if one
introduces a virtual state whose energy is numerically
equal to n'. It is customary to speak of a positive binding
energy if the state is real, a negative binding energy if
it is virtual.

B. Exact Definitions for the Square-Well Potential

The definition of the virtual level given above is
approximate. Exact definitions have been given, with-
out reference to the scattering formula, for the case of a
nuclear potential having the shape of a square well,

[u„(r)]'I V (r) I
dr =maximum,

Jp
(16)

NI, (r) being normalized in the energy scale. For the
square-well potential, Eq. (16) reduces to

~(k) = [4~/(k'+v')][1+(vo)+G2(vo)'
+G h )'+ ] (13)

where the coeKcients G„are even functions of k and y.
In the case of 'S, the value of t/'p is slightly smaller

than (~/2a)'. The value of y that satisfies Eq. (12)
is now negative and the wave function given by Eq. (11)
is no longer permissible. It now becomes necessary to
introduce a virtual level. The choice of reference 10
amounts to using Eq. (12) also for 'S, with the under-

standing that y is negative, and the magnitude of the
energy of the virtual level is defined to be y'. This
choice for the virtual level was designed to make the
expansion expressed by Eq. (13) valid also for 'S. It
appears natural from the viewpoint of the theory of the
S matrix, as will be seen in Sec. IIIB.

A slightly diferent choice" is to define the energy of
the virtual level as the positive energy k'=p' for which

(d/dr)ug(r)/mp(r) = k (r= u).

This leads to the condition

(Vo+7')' cot[(VO+7')'~]=7 (7&o) (15)

for the virtual level.
According to a general definition given by Hulthen, ""

the virtual state is the positive-energy state k such that

V(r) =
—Vo (r(a)

0 (r& a).
(10)

&a

fuq (r) ]'dr =maximum.
Jp

(17)

As a preparation for our later general discussions we
shall discuss some of these definitions that are better
known. ~

In the case of 'S, there is a bound state of energy
6 J. M. Blatt and V. F. Weisskopf, Theoretical nuclear Physics,

(John Wiley and Sons, New York, 1952).
'There is an extensive collection of definitions of the virtual

level for the square-well potential in a recent article by O. Berg-
mann, Acta Phys. Austriaca 5, 240 (1951).

'L. I. Schiff, Quantum Mechanics, (McGraw-Hill Book Com-
pany, Inc. , New York, 1949).

'N. F. Mott and H. S. W. Massey, Theory of Atomic Collisions
(Oxford University Press, Oxford, 1949).

"Breit, Thaxton, and Kisenbud, Phys. Rev. 55, 1018 (1939);
C. Kittel and G. Breit, Phys. Rev. 56, 744 (1939).

"L.Rosenfeld, nuclear Physics (Interscience Publishers, New
York, 1949), Chap. 5.

"M. S. Plesset and F. W. Brown, Proc. Natl. Acad. Sci. U. S.
25, 600 (1939)."L.Hulthbn, Arkiv. Mat. Astron. Fysik. 29, No. 1 (1942).
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Flugge, Huckel, "Wu, and Foley" have shown that
it is possible to take the lowest energy X' satisfying the
equation

cot[(Vp+X') ~a7= 0 (18)

to be the virtual level. Equation (18) is the condition
for the derivative of up(r) to vanish at r=a, k=X.
Treating k and P as small quantities, these authors
obtained the following formulas:

g. (k) = 47r (1—X'a')/[k'+ (k' —X')'a'/4], (19)

0 (k) =4'/[k'+ (k'+ X')'a'/4].

Equation (19) is the result of reference 14, including the
correction factor (1—)Pa') given in their later publica-
tions. Equation (20) is the result of reference 15. These
results are consistent with each other, as can be seen
by transferring the factor 1—X'a' in Eq. (19) from the
numerator to the denominator and retaining only the
first two terms in the expansion in powers of k' and
X'. The cross sections given by Eqs. (19) and (20) de-
crease, monotonically with energy, but the ratio of
g. (k) to 4~/Ep has a maximum at k=X according to
both formulas. For k«X, Eq. (20) may be replaced by"'

(k) =4 /[k+ (~V/2)q. (21)

As will be seen in Sec. IVA, Eq. (18) is the condition
for resonance levels adopted by many authors. Eisen-
bud" has discussed the formula of Flugge and Huckel
from this point of view. Eisenbud's energy of resonance
includes, besides )', the level shift.

A similar formula has been derived by Schi6. ' For
low energies SchiG's result reduces to

g (k) =4~/[k'+ Vg cot'(Vpa')'*j (22)

This is the same as Eq. (21), since

(Vga' ) ' cot(Vpa') l

= [(gr/2)' —X'u']i cot[(gr/2)' —Va'$l
(23)= -X'a'

for small X. The case of resonance at zero energy occurs
when Vp = (~/2a)' and X =0. The use of Eq. (18) for the
virtual level has also been discussed in reference 12 and
by Bohm. "

The condition for resonance levels expressed by Eq.
(18) may also be written in the more general form

cot[ka+8(k)] =0 (k =X). (24)
"S. Flugge and E. Huckel, Phys. Rev. 73, 520 (1948); F..

Huckel, Z. Naturforsch. 3, 134, 308 (1948).
'5 T.. Y. Wu and H. M. Foley, Phys. Rev. 73, 1117 (1948}."'Comparison of Eq. (21) with the lowest approximation for

Eq. {13)gives
v'= (~~'/2l' (21a)

which is a special case of a formula to be given in Sec. IVB.
Since (a))' is of the order 0.2, the ratio y'-/&' is of the order
1/20. Numerical values given in the literature are about 0.06
Mev for the energy p2 and 0.9—1.9 Mev for the energy X'.

' L. Eisenbud, Phys. Rev. 73, 1407 (1948)."D. Bohm, Quantum Theory (Prentice Hall, Inc. , New York,
1951),p. 262.

A difII'erent condition for the resonance levels has been
adopted by Sexi" and Bergmann, namely

cot[8(k) j=0. (25)

C. The Theory of Effective Range

The theory of effective range developed by
Schwinger, "Blatt and Jacksongg and Bethe and Long-
mire" is an improvement on the approximate treatment
of Sec. IIA. In the shape-independent approximation for
low-energy 'S scattering, the phase shift is given by

kcotg(k)j=- +-;r,k (27)
or

k cot[b(k)]= —y+-', rp(y'+k'). (28)

Here o. is the reciprocal of the scattering length, ro is a
constant known as the effective range, y is connected
with the binding energy and wave function of the bound
state according to the relations E~= —p' and gg(r)
=const exp( —yr) for large r. The relation between n
and p is given by the equations

p(1—-', erg) =n, (29)

y= [1—(1—2nrg)'1/rg. (30)

The observed values of o., y, ro and 1—2nr~ are all posi-
tive. Substitution of Eqs. (27) and (28) into Eq. (5)
gives

o (k) = 4/gr[ k+( n+ 'rgk'—)'j- (31)

(k) =4 /(k'+y') [1—y o+ (k'+y')r, '/4j, (32)

respectively. Equation (32) gives the connection be-
tween r and the binding energy y'.

In the case of the 'S scattering, Eqs. (27) and (31)
hold with the appropriate values for n and ro. The
numbers ro and 1—2o,ro are still positive, but n is now
negative and so, by Eq. (30), y is also negative. Hence
there is no bound state. However, Eqs. (28), (29), (30),
and (32) remain mathematically valid. As pointed out
in references 20, 21, one can introduce a virtual level
whose energy is numerically equal to p'. Equation (32)
gives now the connection between 0 and the virtual
state instead of the bound state. Blatt and Jackson
have discussed this question from the viewpoint of the
theory of the S matrix. We shall give a more detailed
discussion in Sec. IIID.

"T.Sexi, Z. Physik. 115, 571 (1940)."J. Schwinger, Lecture Notes on Nuclear I'hysics (Harvard,
Cambridge, 1947)."J.M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).' H. A, Bethe, Phys. Rev. 76, 38 (1949); H. A. Bethe and C.
Longmire, Phys. Rev. 77, 647 (1950).

This condition will be discussed in Sec. IVA.
For the same square-well potential, the condition

for the decaying states is

(Vp+k, g) l cot[(Vp+kP) ~aj=ik„(26)
where k. is a complex number. The general condition
corresponding to Eq. (26) will be given in Sec. IIIB.
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III. THE VIRTUAL LEVEL ACCORDING TO THE
THEORY OF THE 8 MATRIX

A. The Functions 8 and f

S(k) =exp[29(k)].

From Eq. (33) we obtain

S(k) = {cot[8 (k)]+i)/ f cot[8 (k)]—i),

The matrix elements of the 5 matrix for the 5 states
having a particular value of spin are represented by the
function

(33)

J
exp(2i~r)

l
V(r)

l
dr& ~ (i~)0),

0

(44)

then f(k) is regular in the region Im k&0 and continu-
ous on the real axis. In the region Im k) 0, the analytic
continuation of f(k) exists in the problems we shall be
concerned with, but it has, in general, singularities.
The generalization of Eq. (41) for complex values of k is

f(k*)*=f( k)—

If the potential energy satisfies the equation

cot[~(k)]= i[S(k)+I]/[S(k) —1].
Because of Eq. (33), Eq. (4) may be written as

(33) then the function f(k) is regular in region Im k&~.
Levinson25 has shown that, for potentials satisfying

the condition

limf(+k, r) exp(+ikr) =1.
/~00

(37)

The solutions f(&k, r) are complex conjugate of each
other, and satisfy the relation

f(k, r) (d/dr) f( k, r) f( —k, r) (d—/dr)—f(k, r) = 2ik (38).
Hence for k/0 there is no solution f(&k, r) that van-
ishes at r=0. The solution of Eq. (2) that satisfies the
requirement for a wave function at r=0 must be a
linear combination of the form

n„(r) =const[f(k) f(—k, r) f( k)f(k,—r)].—(39)

Comparing Eq. (3) with the asymptotic expression of
N&(r) given by Eq. (39), we find

S(k) = f(k)/f( —k).

On account of the relation

(40)

one can write
f(k)*=f(—k), (41)

&(k) ="gLf(k)]. (42)

It can be shown that f(~)=1. Hence one can set
b(~) =0.

The functions f(&k) and S(k) are defined above
for 0& k & ~, but may be extended by analytic continua-
tion to the complex plane. It has been shown by
Jost and Bargmann that, if

J" Ivr( )l dr&~r, (43)

"R. Jost, Helv. Phys. Acta 20, 256 (1947};R. Jost and W.
Kohn, Phys. Rev. 8?, 977 (1952); Kgl. Danske Videnskab
Selskab Mat-fys. Medd. 27, No. 9 (1953).

~'V. Bargmann, Phys. Rev. 75, 301 (1949); Revs. Modern
Phys. 21, 488 (1949}.

J. Meixner, Z. Naturfursh, 3, 75 (1948).

~(k) = (~/k')
l
S(k)- 1 l'. (36)

The function S(k) can be expressed in terms of the
functions f(+k).22 '4 These functions are the values of

f (&k, r) at r=0, where f(&k, r) are two linearly inde-
pendent solutions of Eq. (2) specified by the asymptotic
behavior

r2lV(r)ldr&~,
0

(45)

the phase shift at k=+0 is connected with the number
of bound states m by the relation

5(+0)=mar if f(0)WO,
l

8(+0)= (m+-,')ir if f(0)=0. I

Hence S(0)=&1 for the two cases.

(46)

B. Bound, Virtual, and Decaying States
While the function f(k) does not vanish for any real

nonvanishing k, it may have imaginary zeros. Corre-
sponding to any real number p that satisfies the equa-
tion

f(—iv) =0 (47)

there is a solution f( ip, r) of E—q. (1) that vanishes at
r= 0 and varies as exp( —yr) for large r, with E= —y'.
If y is positive, the function f( iy, r) satisfies —the re-
quirements for the wave function of a bound state. On
the other hand, a negative y does not correspond to a
bound state.

As a result of Eq. (40), any y that satisfies Eq. (47)
often satisfies also the equations

S(—i~) =0, (48)

Thus Kramers' relation should be more precisely stated
as follows: Eq. (47) is equivalent to Eqs. (48), (49) if

25 N. Levinson, Kgl. Darfske Videnskab Selskab Math-fys.
Medd. 25, No. 9 (1949).

S(iy) = ~, (49)

and vice versa. The connection between the bound
states and the zeros and poles of S(k) was first ob-
served by Kramers. 4 Subsequent investigations have
shown that there are exceptions. ""For Eq. (47) does
not necessarily imply Eqs. (48), (49) if

f(iy) =0, (So)

while Eqs. (48), (49) do not necessarily imply Eq. (47) if

f(iv) = ~. (51)
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and
S(k) = (iy+k)/(i7 k), —

cot[6 (k)]= —y/k.

(53)

The quantity y here tak.es the place of the quantity n
of Sec. IIA. As before, the scattering cross section is
approximately given by

0.(k) = 4~/(k'+y'). (55)

If p&0 there is a bound state having the energy
E~= —y' and we can express 0.(k) in the form

o (k) =4ir/(Ek+ i 8, i ) . (56)

If y(0 there is no bound state, but one can retain
Eq. (56) by introducing a virtual state whose energy is
numerically equal to p'.

This situation is the same as in Sec. IIA. However,
our discussion suggests the following exact definition of
the virtual state. A real number y satisfying Eq. (47)
corresponds to a bound or virtual state according as
y is positive or negative. If the magnitude of the
potential energy is varied so that p decreases from
a positive value to a negative value, a bound state dis-
appears and is replaced by a virtual state. Interpreta-
tion of the virtual state along this line has been pro-
posed by several authors. The definition of virtual state
expressed by Eq. (12) and that mentioned in Sec. IIC
are consistent with this interpretation.

It should be noted that the validity of the preced-
ing considerations depends on the assumption expressed
by Eq. (52). This is true of the special problems in
which the question of virtual state has arisen.

Besides zeros and poles on the imaginary axis, there
are complex zeros and poles that are of physical in-
terest. They are related to what are usually called the
decaying or radioactive states. ' '" Without entering
into a detailed discussion, we shall merely mention the

26 W. Heitler and N. Hu, Nature 159, 776 (1947).

f(iy) is neither zero nor infinite. Otherwise there may be
zeros of f and S that do not coincide.

A negative imaginary zero of S(k) that is not a zero
of f(k) has been referred to as redundant or false zero
in the literature. Since f(k) is regular in the region
Im k&0, a number y that satisfies Eq. (51) must be
p6sitive. If Eq. (44) holds, there is no solution of Eq.
(51) for p&~ and therefore no redundant zero in the
region —x&1m k&0. An example of f(k) that satisfies
both Eq. (47) and Eq. (50), but not Eqs. (48), (49),
has recently been given by Jost and Kohn.

The connection between the existence of a bound
state and the sign of the scattering length mentioned in
Sec. IIA follows immediately if f(k) is regular and has
one and only one simple zero —ip near the origin, so
that

f(k) = const (k+iy) (52)

in this neighborhood. For we have then, on account of
Eqs. (40) and (35),

analogs of Eqs. (47), (48), and (49) for the decaying
states, namely

f(—k,) =0, (57)

S(—k,) =0,

S(k,)= ~,
f(k,*)=0,

S(k.*)=0,

S(—k,*)=~.

(58)

(59)

(57)'

(58)'

(59)*

In these equations k, stands for a complex number.
The complex energies E,=k,' have played an important
part in the theory of o, decay'7 and the theory of reso-
nance scattering and reactions. "

f(k, r) = exp (—ikr) (r &~ a) (60)

f(k, r) = f (k' —k) exp[ik'(r —a)1+(k'+ k)

&& exp[ —ik'(r —a)j) exp( —ika)/2k' (r & a) (61)

with k'= (Vo+k')'. Hence

f(k)=[cos(k'a)+ik sin(k'a)/k'j exp( ika), (62)

so that the general conditions expressed by Eqs. (47)
and (57) reduce to Eqs. (12) and (26), respectively.

(ii) The attractive exponential potential

V(r) = —Uo exp( —r/a) (Vo) 0):
In this case

f(k) = (z/2) "I'(1+v)J„(s),

(63)

(64)

with v=2iak, and z=2aVO'. The function f(k) is singu-
lar at v= m(ri=1, —2, ) or k=im/2a For v& . rI,,

—
Eq. (64) may be written as"

(65)

where the j, „are zeros of z "J„(s).For s~& 0, v real, the
equation'

J„(z)=0 (66)

gives an infinite number of curves starting from the
points v= —e on the v axis with s increasing mono-

"G. Gamow and C. L. Critchfield, Theory of Atomic Nudeus
and Nuclear Energy Sources (Oxford University Press, Oxford,
1949).

28 J. Humblet, Mem. soc. roy. scien. Liege 12, No. 4 (1952); N.
G, Van Kampen, Phys. Rev. S9, 1072 (1953}.See also the previ-
ous papers mentioned in. these publications."VV. Magnus and F. Oberhettinger, Specia/ Functions of Math.
Physics (Chelsea Publishing Company, New York, 1949), p. 25.

C. Examples

The following potentials provide simple illustrations
for the bound states and their passage into virtual states
according to the discussion of the preceding section.

(i) The square-well potential: In this case
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tonically with v. These curves cross the s axis at the

points sl ——2,40, s2 ——5.52, etc. A bound state disap-

pears at every critical point Vp ——(z„/2a)'.
(iii) Hulthen's poteritial" "

D. The Effective-Range Theory in
Factorized Form

To see the connection of the bound and virtual
states of Sec. IIC with the function S(k), we write

k cot@(k)]&ik= (rp/2) (k&iy) (k~iy'). (76)

Here

V(r) = —Vp exp( —r/a)/[1 —exp( —r/a)]
(—~ &Up& ~): (67)

Comparison of Eqs. (27) and (76) gives

(68)
v+v'=2/«,

yy'= 2n/rp

y.= (Vpa' n')—/2an,

y„'=n/2a.

It follows from these equations that p and p' both
(69) satisfy the quadratic equation (29). The numerically

smaller root is given by Eq. (30). The other root is

A bound state disappears at every critical point
U, = (n/a) .

(iv) An Eckart potentiaP' "
v'= L1+ (1—2 «o)']/ro.

Substituting Eq. (76) into Eq. (34) we obtain

(79)

with
f(k) = (k+'v )/(k-iv '),

yi ——(1/2a) (Vpa' —2)/(Vpa'+2)
t

(71)

(72)

There is a bound state when Vpa &2.

In examples (iii) and (iv) the function f(k) is of the
form

V(r) = —Up exp( —r/a)/[1+ (V,a'/2) exp( —r/a)]'
(Vpa'& —2): (70)

Here

f(k) = ( k+iy) /( k iy'), — (81)

S(k) = (k+i~) (k+iy')/(k iq) (k —iq'), —(80)

showing that $(k) has two pairs of zeros and poles

The connection between ~i"y and the bound and
virtual states of Sec. IIC is consistent with the general
definit;on suggested by the theory of the S matrix.
As has been mentioned in Sec. IIIB, there may be zeros
and poles of S(k) that have no connection with any
bound or virtual state. This is the case with ~iy.
Jost and Kohn have shown the function f(k) for the
deuteron is of the form

f(k) = II (k+'v-)/(k-6-'),

where S may be finite or infinite. Hence

(73) which shows that iy' is—a zero of $(k) but not a zero
of f(k).

Using Eq. (76) or Eq. (80) we obtain the factorized
form

(74)
a(k) =4~(v+v')'/(k'+V') (k'+~") (82)

where

n 1

.= (k+'v. )/(k-iv. ), (75)

for the scattering cross section. This formula is identical
with Eq. (32), though it looks somewhat simpler.
Factorization of S(k) and o.(k) is possible also for the
higher approximation in the expansion of k cot[6(k)],

and a.„' is given by Eq. (75) with y„' instead of y„. The
zero —iy„of the factor o-n corresponds to a bound or
virtual state according as y„& or (0. The zero —iy„'
of o-„' is a redundant zero and p„' is always positive.
If we take the argument of each factor o.„or o-„' to be
zero when k~+~, then, as k—&+0, the argument of
o-n becomes &x or 0 according as y„~~or =0, and the
argument of o-„' becomes m. Thus the validity of Levin-
son's theorem expressed by Eq. (46) is obvious for the
class of problem specified by Eqs. (73)—(75). Special
examples of this general theorem can also be found in
the books of Bethe' and Mott and Massey. '

' L. Hulthen, Ark. Mat, Astron. Fysik. 28A, No. 5 (1942).

k cot[( (k)]= n+ ', rpk' T—k'-—(83)

The equation

k cot[~(k)]~ik= —T Q (k~iv'"')
n=l

determines four numbers y("&. The functions 5 and o.

can be factorized as follows:

S(k) = g (k+iy "')/(k —ip "')

(86)
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IV. THE VIRTUAL LEVEL ACCORDING TO THE
THEORY OF RESONANCE LEVELS

A. The Functions R and Q

Wigner and Teichmann have considered a Q matrix"
that shows resonance features like the R matrix. The
Q matrix is connected with the S matrix by the general
relation

The R matrix of Wigner and Eisenbud reduces in the
present problem to the derivative function R(E)."For
real nonnegative E, the function R(E) is defined by

S= (1+iQ)/(1 —iQ)

Q(E) = tan[6(k)] (96)

R(E)= [ug(r)/(d/dr)ui, (r)]„„ (87)

cot@(k)]=[kR(E) sin(ka)+cos(ka)]/
[kR(E) cos(ka) —sin(ka)], (89)

sin'[8(k)] = [kR(E) cos(ka) —sin(ka)]'/
[k'R(E)'+1]. (90)

It follows from Eqs. (33) and (88) that the functions
R and 5 are connected by the following formulas:

R(E)= (1/ik) [S(k) exp(2iku) —1]/
[S(k) exp(2ika)+1], (91)

S(k) =exp( —2ika)[1+ikR(E)]/[1 —ikR(E)]. (92)

The function R(E) admits of an expansion of the form

where E=EA, ——k' and a is the range of the short-range
interaction. The variable E is, in general, a complex
number. The function R is the reciprocal of the loga-
rithmic derivative of uk(r) at r= u, which we shall de-
note by L(E). The connection of the latter with the
resonance levels has been investigated by Feshbach,
Peaslee, and Weisskopf. ' "

We shall confine our attention to the function R for
those problems in which V(r) vanishes for r) a but is
arbitrary otherwise. We have then

R(E)= (1/k) tan[ka+b(k)],
and so

is related to the Q matrix in the same way as the func-
tions R(E) and S(k) are related to the R
matrices. It follows from Eqs. (5) and (96) that

o.(k) = 4m./k'(1+ [1/Q (k)]') . (97)

The condition for resonance expressed by Eq. (25)
may be written in the form"'

Q(E.)= ~. (98)

where
Q(E) = (2klr )/(E —E,),

Ep= 2n/ro

(99)

(100)

is a resonance energy according to Eq. (98). Equation
(100) shows that E, is positive for 'S and negative for
'S. Substituting Eq. (99) into Eq. (97) we find

~(k) =4~/[E+ (E E,)'rp'/4]. — (101)

This is just Eq. (31) written in a slightly different form.
In the neighborhood of a resonance level E&„R(E) is

approximately given by

R(E) =o)g/(Eg —E). (102)

B. Ore-Level Formulas

It is the object of this section to discuss representa-
tion of the low-energy scattering cross section by means
of a low-energy resonance level Eq or E,.

Equation (27) of the effective-range theory may be
rewritten as

R(E)=P co),/(Ei, E), —

where coy and Eg are real numbers, coy&0. This is a
special case of a general result of references 5, 31. It
shows that R is a meromorphic function of E whose
poles Eq are all on the real axis. When E~——E~, the
derivative of ui, (r) vanishes at r=a. The energies Eq
are often referred to as the resonance energies because
of their relation to observed resonance levels. The con-
dition for such resonance energies may be put in the
form"'

(103)

(104)

~= —K/~~,

r o
——2 (co~a —1)/(ug.

Conversely, given Eq. (27) we obtain Eq. (102) by
using Eq. (88). Owing to the approximations we have
made, the values of n and ro given by Eqs. (103) and
(104) are only nearly the same as the values of these
constants in the effective-range theory. The corre-
spondence between the resonance levels Eq and E,
is given by the relation

R(Eg) = ~. (94)

31 E. P. Wigner, Ann. Math. 53, 36 (1951);Proc. Camb. Phil.
Soc. 47, 790 (1951); Revista Mexicana de Fisica 1, 91 (1952);
Am. Math. Mon. 59, 669 (1952); W. Schutzer and J. Tiomno,
Phys. Rev. 83, 249 (1951)."Feshbach, Peaslee, and Weisskopf, Phys. Rev. 71, 145 (1947).3"For positive values E&=)P. Eq. (94) is equivalent to Eq. (24).
There may also be negative values Ey and E~ that satisfy Eq.
(94) and Eq. (98) below.

E,=Ei/(1 —~&a) . (105)
"As mentioned by these authors, the Q matrix is equal to

Heitler's E matrix multiplied by a numerical factor.~' As has been mentioned in Sec. IIIB, a further condition for
resonance levels expressed in terms of the function S exists in
the literature.

(93) Using this one-level formula, we see that, for small E
and Ez, Eq. (89) may be approximately written in the
form of Eq. (27) with
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We have seen in Sec. IIID that Eqs. (27) and (80) are
equivalent. There is therefore a simple connection
between Ez and the energy E~ of the 5 matrix theory. "
Using Eq. (103) we obtain approximately

f E,
f

=
f
E.

f

= (K/~~)'. (106)

The scattering cross section can be given in terms
of E& as follows. From Eqs. (4) and (90) we obtain,
expanding in powers of E and 8& and retaining only
the first two terms in the numerator and denominator,

These formulas are generalizations of Eqs. (19) and
(20), respectively. Eq. (108) is identical with Eq. (101).
For E«

f
Ez f, f E, f

the denominators of Eqs. (101) and
(108) are approximately equal to E+(E„ro/2)' and
E+(E&/co&)', respectively. These are the same as the
denominator E+ fE f

in Eq. (9).
In the case of the square-well potential the function

""Eqs. (103)—(106) are valid for small Ez. For E&))co&'/4 we
find from Eqs. (92) and (102) that 5(k) has zeros near k=~E),&

+m) /2 and poles near k= ~Ey& —i~g/2.

~(k) =4~{1 (a—/~~) fE(au, —2)+2E),])/
[E+(E—E),)'/cog']. (107)

Similarly, from Eqs. (5) and (89),

a(k) =4ir/{E+ [Eg+ (~),a—1)E]'/a)g') . (108)

E(E) is given by

E(E)= tanL(UO+E) 'a]/(Uo+E) i. (109)

Cdg = 2/al (111)

K= (~/2a)' —Uo (112)

for the lowest Eq. From Eq. (112) it follows that Eq is
positive for '5 and negative for '5. By Eq. (105),

(113)

showing that E~ and E, are opposite in sign.
The condition for the bound states and the various

definitions for the virtual level can also be stated simply
in terms of the logarithmic derivative 1.(E). The
Eqs. (12), (15), and (18) for the square-well poten-
tial determine the zeros of the functions 1.( x')+x, —
L, (x') —x, and I (x'), respectively. Given any suitable
function of 1.(&x'), there is a one-level representation
for a low-energy scattering formula.

The writer wishes to thank Dr. T. Y. %u for valuable
dlscusslons.

34E. C. Titchmarsh, Theory of Functions (Oxford University
Press, Oxford, 1939), p. 113.

It can therefore be expanded in the form"

R(E)= (2/a) P f (e+ ')'-(7r/a)' V—o
—E] ' (110)

n=O


