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1. INTRODUCTION

IN the present paper we treat the stationary velocity
distribution, especially drift velocity, of ions in a
static, homogeneous electric field in the absence of a
magnetic field.

Our main assumption is that the number-density of

ions,
nsz(c)dczj:oo j:w wa(c)dudvdw, (1.1)

is much smaller than that of gas molecules,

ZV-‘—':ffl(Cl)dCL (12)

Here c(%,v,w) and f(c) are the velocity and the
velocity-distribution function of the ions; ¢; (w1, vy, w1)
and fi(¢,) are those of the gas molecules.

Fi1c. 1. Vector representation of relative velocity.

* This work was carried out at the University of Wisconsin
U. S. Naval Research Laboratory, Madison, Wisconsin.

1 In my previous article of the same title (T. Kihara, Revs,
Modern Phys. 24, 45 (1952)), hereafter referred to as A, I quoted
several passages from my book Imperfect Gases. This book was
originally written in Japanese and published in 1949. Although
the whole text was translated into English in the United States
(by U. S. Air Force in U. S. Air Force Technical Reports),
the distribution of the translation is unfortunately limited. There-
fore, I want to publish a revised version of the parts to which the
previous article is related. In consequence, references in footnotes
2, 3, and 5 of Part A are to be rewritten as Eq. (3.1), Eq. (2.8),
and Section 2 of Part B, respectively.

Under this assumption, f; takes the Maxwellian dis-

tribution,
my \? mice?
) eXp(_ )7 61=]C1i, (1.3)
2rkT 2kT

ﬁ=N(

which remains unchanged by the electric field. Here m,
is the mass of a gas molecule; # and T are the Boltz-
mann constant and the absolute temperature, respec-
tively. Moreover, the Boltzmann equation becomes
linear with respect to f:

@ﬁszf (f'1—ffvel (g, 0) sinfdfdedc;,
E=|E[,

m ow

when the z axis is taken in the direction of the electric
field E. Here ¢ and m denote the charge and the mass
of the ion, respectively; f'fi’—ff1 is the abbreviation
for f(c")fi(e/)—f(¢e)fi(e1), ¢’ and ¢, are the final
velocities of the ion and the gas molecule encountering
with initial velocities ¢ and ¢; with diffraction angle 6
for the orbit of relative motion; I(g, 6) sinfdfde indi-
cates the differential cross section for scattering into the
solid angle sinfdfde for the relative speed g=|c—c;|
=|c’—c¢/| (see Fig. 1).
In terms of the function

to which f would reduce in case of no electric field, let
f=1O(1+9). (L.5)

Then the Boltzmann equation can be expressed as

ek of
— = —NfO]®,
m 0w

(1.0)

Here ] is a linear operator operating on any function
¢(c) of the velocity of ions,

1
Jd):ﬁffffl(qb—cb’)gl(g, 0) sinfdédedc;, (1.7)

¢—¢' being the abbreviation for ¢(c)—¢(c’).
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When we define the inner product of two functions,

¢(c) and ¥(c), by

(6,9)=" f FOspde, (18)
the operator J is symmetric,
W, Jo)= (9, J¥), (1.9)
and positive-definite,
(¢, J¢) 0. (1.10)

Multiplying both sides of (1.6) by —é¢(c)dc and
integrating, we have

eE
- ———¢>dc— N | fO¢]ddc.

m

Integrating by parts on the left side and using the
relation J(14®)=J® and the symmetric property of J
on the right side, we obtain
elE i)
— —de=N f flede.
ow

m

With average value symbols defined by

1
| e d y
W nfﬂc

this relation becomes

eE / 3¢ )
- ,_) = N(Jb)n. (1:11)
m \ow/
In particular, when w is taken for ¢, we have
eE/m=N{Jw)u. (1.12)

2. HEAVY IONS IN A LIGHT GAS
First,

=% f f f Fule— Vgl (g, 0) sinfdbdede;  (2.1)

will be transformed generally.
In terms of the velocity of the center of mass and
the relative velocity before encounter,

my m
G= ¢+ ¢, g§=c—cy, (2.2)
mitm  mtm
we have
c= G+ g)
mi+m
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and, since G remains unchanged by the collision,

"l (g, 6) sinddbdede,
leJmefffx(g £)¢1 s, 0) sinddbdedes

where g’ is the relative velocity after encounter.
Taking two unit vectors perpendicular to g and to
each other, we can express g’ as

¢'= g cosf+gh sinf cose+gi sinf sine
(see Fig. 1). Therefore,
2T

c=—
N m1+m

ffflg(l—cos())gl(g, 6) sinfdédc;.

In terms of effective collision cross sections between
the ion and the molecule, which are defined by

S0 = f (1—cos'6)gI (g, 6) sinddd, 1=1,2, ---, (2.3)
0
we have
2 " ff (l)d
C=— go C1,
I N my+m ' '
namely
2T my
Je=— [ fle—cpsie, @)
N m1
or, in terms of the z component
T femwisvde (9)
Jw=— f 1(w—w1)pWde, 2.5
N my+m

Up to this point no approximations have been made in
the calculations.

Now, we treat the special case where the mass of
an ion is sufficiently large in comparison with that of a
gas molecule, i.e., m>>m;. Let us consider the problem
on the condition that the drift velocity of the ions is
much smaller than the thermal velocity of the gas
molecules; ie.,

(w)a)2<KET /m. (2.6)

The effective cross section ¢® is a function of the
reduced mass mym/(m+m) and the relative speed g.
In the present case the former can be put equal to m;,
and the latter is

= (c2—2¢1- c+A)i=c1—ey-¢/er.
Hence the cross section becomes
c-c1 9p
¢V (g)=¢D(c1)—
C1 661

Inserting this in (2.5) and denoting ¢®(c;) by ¢®
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anew, we obtain

N mi+m 0D w;?

— cl,

Jw= wfflqb(l)dcl—{-wffl

27r my c1

the integrals of odd functions of ¢; vanishing. The first
term on the right-hand side is equal to

0
drw f f19Pcidey,
0
and the second term is

W 4 © W
—w f fl 61d01— ——w

fr
0 dcy

C 13d(f 1

@ 4ar mi *©
= — 47w f f1¢<1)612d61+—‘—w— f f1¢(1)614d61.
0 3 kT 0

We have, therefore,

2r  my 4w omy
Jw_‘“_“—‘“”ﬂ— f1¢(0614d61
N mi+m 3 kT
16 mi ®°
=— ww%f exp(—VH)VipWaV,
3 my+m 0

V= ('ml/ZkT) %61.

In terms of weighted mean values of the effective
cross sections, defined as

Q0 ()=t f OV exp(— V2)dV,
0

r=I0 41, -
mm 1 \?}
V=( —) g 2.7
m+m 2kT
we obtain finally
16 my
Jw=Aw, A=— —QM(1). (2.8)
3 m;-{—m
Inserting (2.8) into (1.12), we have
eE 3 mi+m eE
(W= = 2.9

mNN 16 myn NQW(1)

The mobility of heavy ions in a light gas is independent of
the field strength, so long as our condition (2.6) holds.
Let us find the velocity distribution function. First,

%ffffl(w”—w’z’)gl(g,0)d6ded01

Jwn)=

TARO KIHARA

will be evaluated for any positive integer p. Considering

r m »
wWP—w 'P= ( z+ —gz) - (Gz+ : gz,)
mi+m my-+m

my
Fp (g:—g/)G",
my+m

we have, after a procedure similar to that used in ob-
taining (2.5),

() 2r m
Jawn)=
]\Tml

211' my

N ml—i—mp ffl(w w)

my p—1
X (w+~—~w1) o Pdey:

m1+m

Bearing in mind that mw? and mw.* are of the same
order of magnitude, we can carry out calculations
similar to the above and obtain

: ET
nww=xpmw~p@—4ﬁwﬂ——} (2.10)

m

where \ is the same as in (2.8), which is a special case
of (2.10). When this is rewritten as

d(w?) kT d*(wP)
J(w?)= )\[w — ]
dw m  dw?
it is easy to see that the relation
d® kT d*®
Jo= )\(w——— ——) (2.11)
dw m dw?

holds for any function ® which is expressed by a power
series in w and does not depend on the other com-
ponents of c.

Anticipating that ® in (1.5) and (1.6) is an analytic
function of w only, and does not depend on the other
components, % and v, we make use of (2.11). After
some manipulation, we have

ET
¢E df V}\( *f  of )

—_— =]

m ow

— —tw—tf
m ow? ow

or, in terms of (w)a,

—nl+w4wmi+fo

m Ow?

From this differential equation it is evident that f can
be obtained by replacing w in f© by w— (w)a. Namely,
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we obtain

() " et (o)) |, (2.12)

in accordance with our anticipation. T/e velocity dis-
tribution of heavy ions in a light gas is M axwellian around
the drift velocity, so long as (2.6) holds.

3. MAXWELLIAN MODEL OF COLLISION
CROSS SECTIONS

The Maxwellian model is defined by the idealization
that the scattering coefficient I(g, 6) is inversely pro-
portional to the relative speed g. For this model each
¢® becomes independent of g, and the mathematical
handling is simple without any assumption as regards
the ratio of the mass of an ion to that of a molecule.

In this case, (2.5) is reduced to

Juw=2mpO— 1, 3.1)
mi+m
Hence we have, by use of (1.12),

eE  myt+m

2 ON  mym '

(W=

For the M axwellian model, the mobility times gas density,
N(w)n/E, is independent of the field sirength and the
temperature.

When ¢® does not depend on the relative speed,
QM(1) is equal to 3mp®/8, and Eq. (3.2) can be re-
written as

3 mi+m eE

(Ww=—
16 mm NQ® (1)

(3.3

which is identical with (2.9). This formula, which is
valid in these two idealized cases, is the first approxi-
mation to a more detailed expression to be derived in
the next section.

Equation (3.1) indicates that w is one of the eigen-
functions of the symmetric linear operator J, and the
corresponding eigenvalue is 2w¢®@m;/ (mi+m). Let us
make a little preparation to investigate other eigen-
functions and eigenvalues.

Sonine polynomials S,,™ (x) are defined by the ex-
pression

xs
(1—s)~"1exp ( I

-

Z Sn™ (x)s”, (3.4)

where 0<s<1, and « and m are real. In particular,

Sp@=1, S,O(x)=m+1—x. 3.5)

(3.2)
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Since
(1—s)—m1(1—f)—m1

Xf exp[—x( +———+-—-)]x’”dx
0 1—s 1-—¢

) 1—
=(1—s)"1(1—¢)~1 f exp[—ax—(s)(;;)t)]xmdx
o —5)(1—

= (1—st)~""1I'(m4-1),

we obtain, by equating coefficients of s?¢2, the orthogo-
nality relation,

® T (m+p+1)
—_

f 7S (£)S,® (3) 7= o (36)
0

where 6,4 is unity for p=¢ and zero for p#g¢. Differ-
entiating each side of (3.4) with respect to x, we have

— S ™ () = = S ™D ().
dx

3.7
Multiplying each side of (3.4) by 1—s, we have a
recursion formula,

Spi =S, m_S, &1 (3.8)

By differentiating (3.4) with respect to s and replacing
m by m—1, and # by n—1, we have another relation

MSp D () = 8Smyn " (%) = 1Sy W (). (3.9)
Finally, by combining (3.8) and (3.9), we have
S ™ (%) = 1S i1V (%) = (m+1)Sp1™ (x). (3.10)

In terms of these Sonine polynomials, we define
functions of ¢ by

meA\"?  sw mc?
= (_-) P (——)S %<r>(~—), 341
1 BT l . H BT ( )
l: r=0,1,2, -,

P; being Legendre polynomials. Then each ¢, is a
polynomial of degree /427 in the components of c;
and the orthogonality relation is given by

1
W@, Py ) =— ff(‘))tlfz"’tﬁz'("’tic
n

2 11
— ——T (l+ 7'+ l)all'arr' (312)
2l+1 iyl
Let us specialize ¢ in (1.11) to ¢;@. Since, by use of
(3.7) and (3.10) and similar relations for the Legendre
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polynomials, the relation

28T\ * 81,&,(”
(=) o s (o D
m w
¥1419=0) can be derived, we obtain generally
(2T )= L1 I+ 5+7) W11

= (D],
E=(eE/mN) (m/2kT)*.

(3.13)
(3.14)

where

In particular, for the Maxwellian model each ¢, is
an eigenfunction of the operator J:

=N, (3.15)

This can be directly ascertained for /+2r small; in

terms of
W—( ) =
2kT 2kT
and
m
MlE MQE y (316)
m1+m my+m

the eigenfunctions and eigenvalues for [+27=<3 are as
follows:

Y@ =1, M (0)=0;

DO = No(1)=2wM19p®;
bo® =g_02 MO)=47M M0 ;
P © —3W2——

M=l (AU 30 3H )
D = wl(s/2)—c7],
N (1) =2m M1 (M 2¢O+ 3M 2¢O+ 2M M o6 @) ;
%O = (5/2)Wi—3we,
N(3) =M (— 3M 2O+ 6M
+OM MO+ 5M 7).

In general,
MND>0 for 1427>0.

Inserting (3.15) into (3.13), we have
FHDN O )= E[L(+3+) W1 @)
— (D@ "),

from which it is evident that (—1)"y;™), is positive
and proportional to E+?,

By this system of equations each ;') can be
expressed in terms of the N\, (1) :

W=/ N (DNo(2) - - - Mo (D),
@oDhwv=—28%/No(1)N1(0),
&3 [ 4 . 5 ]

3OO M)

(3.17)

1=1,2, - -,

Y=

TARO KIHARA

etc. Since
2 n 2 1
Zk—T< Whn —‘—=EE,(W w3
= — 3 (Yo D+ (P2)n)
2 e 1
3 Ao(l)lAI(O)_ko(Z)]
= 2m DM 2 /Ao (1A1 (0DNo(2) >0,
and
P — (@) Hu—3%

=522~ oD In—3Y1 D))
1Er4 23
*5xo(l)lxo(z)Txl(o)_M(U]
2M 28
TN OMONE)

[(M1p®+2M (20 —$®)]>0,

it follows that the velocity distribution is less sharp than
the Maxwellian distribution corresponding to the same
temperature.

In order to argue more in detail, let us assume be-
tween an ion and a gas molecule an attractive potential,
inversely proportional to the fourth power of the dis-
tance. For this type of Maxwellian model we have the
following numerical values:!

¢6®@/p10=0.70, ¢®/p®=1.2,
By use of these it can be shown that
(= (@)a))n— (u*)n>0,

(= (@)n))n>0.

and

These inequalities provide information concerning the
deviations from spherical symmetry and plane sym-
metry of the velocity distribution: the distribution of the
z component of ion velocities is less shavp than that of
the other components; its rate of decrease in the rear is
steeper than that in the front, the maximum laking place
at a negative z component of the velocity.

4. GENERAL THEORY OF MOBILITY

In the two preceding sections we have treated special
cases; the general case will be dealt with in this section.
Except for the Maxwellian model, the ¢, defined
by (3.11) are not necessarily eigenfunctions of the linear
operator J. However, since J is spherically symmetric,

we can let
WiP=2 ars (DY, (4.1)

! The first value is taken from H. R. Hassé, Phil. Mag. 1, 139
(1926) ; H. R. Hassé and W. R. Cook, Phil. Mag. 3, 977 (1927)
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with
ars()= @@, Y1)/ @, ). (4.2)
In particular, a,,(1)=0, since J is positive-definite.
Inserting (4.1) into (3.13), we have

(HDZs an (D@ )ne= 8L+ 3+ W11
— (D)@ "] (4.3)

(Y1,1."=0), from which it is evident that (;®)a is an
even function of E for / even and an odd function of E
for I odd. Hence the drift velocity and the mobility are
odd and even, respectively. Equation (4.3) can be
solved by means of successive approximations as
follows:

The nondiagonal coefficients, a.(I) for r=s, are con-
sidered to be small, since they vanish in the case of the
Maxwellian model. Therefore, we can determine the
first approximation, which will be referred to as (¢ )aa1,
from

(5 anr O D)= ELLI+F+ )11

— (D)W1) (4.4)

It is evident that (—1)"(:")u is positive and pro-
portional to the (I4-27)th power of the field strength.
In particular,

ao (D @)= 6,

eE 1

Nm aoo(l).

or

<7,0>Av1 = (45)

The second approximation can be determined from
the equation to which (4.3) reduces when the first
approximations are inserted into terms with non-
diagonal coefficients. That is,

O YmrCaon 1)+ 201 (D1 Ot/ G Ot - - -1= 6,
" Ele GO
<w>m=%[§0 aor(l)%w%] L (46
Now we must evaluate
aur (D)= @19, T10)/ @, 1)
ST e o). @)
270+ (5/2)]

By the definition of the Sonine polynomials, (; ", J;©)
is the coefficient of s in the expansion of

m 1 mc?

s
— —(1—s5)" 6P ff“’) exp(——————— wJwde, (4.8)
2kTn 1—s2kT J
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J[f dv dur

Vs, W

jj‘f duw dv

ys., w - (w)AV

(W, >0

o)

F1c. 2. Asymmetry of the velocity distribution of ions
with a positive drift velocity.

which is equal to, by virtue of (2.5), (1.3), and (1.4),
(mym)*

;; my+m (2wkT)?

T  mm

(1—s)= 6/

Xff exp(— A)w(w—wi)p Vdedey,

where
micy> 1 me

2T 2T

1—s 2T

In terms of the velocity of the center of mass, G, and
the relative velocity, g, given by (2.2), we have

1 m+m
A=— [(1—M )G+ M M2(1— M 1s)g

1—s 2kT
+2M1M23G‘g]

(G=|G|, g=|8|), where M, and M, are given by
(3.16). By use of a new variable

MIMQS

G'=G+

g =[G,

-
this can be transformed into a quadratic form:
1—'M18 m1+m 1 1 mim
2kT
(G, g) a(G, g)~1
a(c; 01) a(Gy g) ,

o2

1—Ms 26T mut-m~

1—s

we can substitute dG’dg for dede,. Furthermore, for

w(w" wl) = (Gz+Mlgz)gz

1—s

=({G/+ Mgz)gz
( l—Mls '
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we can substitute

1 1—5

3 1'—M1S

Mg,

because ¢ is a function of g. By use of all these real-
tions, and by integration with respect to G/, (4.8) is
transformed into

8 0
~Mymt f (1= Mys5)= G
3 0

V2
X exp(—

1— 15

)V4¢ WJV, (4.9)

mim 1 3
V=( ———) g
my+m 2kT

Consulting the definition of Q®(1), (2.7), we see
that (4.9) divided by 8M/3 is equal to QW (1) in which
T is replaced by T (1—M:s). (4.9) is, therefore, equal to

8 w (—1) ar
M. (M sT)—Q®(1).
3 =0 7! arr

Hence it follows that

r

)r
ML T)"
o AL

8
1@, j,l,l(o)):ng QW (1), (4.10)

(Making use of the relation
d
T— 90 () =00+ )= (120 (),

or from (4.9) directly, we can express (4.10) in terms
of QW (1), QW (2), -+, QW (r41). We prefer, however,
not to rewrite for the present purpose.)

1,00

B

08

0.6

o4
02t 1
M,
0 1 1 1 |
0 02 0% 06 o0F 10

F16. 3. Values of the factor g8, in the coefficient &;.
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N (W>Av
E

|
1
[}
'
'
!
]
]
1
'
1
'
1

T

] ST P8

To TB

Fi16. 4. Mobility times gas density for infinitesimal field strength
as a function of temperature. Points 4 and B correspond to
4 and B in Fig. 5, respectively.

Inserting (4.10) into (4.7), and consulting (4.5) and
(4.6), we obtain finally

3 mi+m ek
(Whna=— _— (4.11)
16 mm NQO®(1)
3 my+m eE[ » (b,-T)r ar —1
(Whar=— —[ ——Q“)(l)] , (4.12)
mm Nlr=o ¢! dT7
where
3 7['%7'! (— 1)1-(1//1(7-))’“1
(b)r=- M. (4.13)
AT+ G/2)] @i
The b, are positive and proportional to E?", except that
bo = 1

In the case of the Maxwellian model, for which Q¥ (7)
is independent of T', our first and second approximations
coincide with each other. For heavy ions also, subject
to the condition (2.6), the second approximation be-
comes identical with the first, because &, b2, - - -, which
can be expressed in the form

my
b1‘=_(<w>AV)26h r= 1) 27 )
2kT

with B, remaining finite for the limit M;—0, vanish.
In these two cases the first approximation is exact, as we
already know.

In general cases let us content ourselves with the
second approximation. The mobility is then given by
the right-hand side of (4.12) divided by E. The rela-
tionship shows that an increase of E? and an increase
of T have a somewhat similar effect on the mobility.
The weaker the field is, the more accurately holds the
similarity. For a sufficienily weak field, mobility times
density is a function of one variable, T (1+51).



VELOCITY-DISTRIBUTION OF POSITIVE IONS

(E/N)?

0

Fic. 5. Mobility times gas density as functions of (E/N)?
E and N being the field strength and the number-density of gas
molecules, respectively (see Fig. 4).

As regards

my
bi=——((w)n)*B1, (4.14)
2kT
we obtain

4 ago(1) ano(1)
ﬁl=—M2[ . (4 5 )]
15 an(1) a11(0)
which can be approximated by the value for the Max-
wellian model

=iM2l'7\o(1) (4)\0(1) 1 M(D)]
15 MON A2 M(0)
=3(12Mo+5M 1@ /)

X (AM+3M 16/ )
X (M 243U 2 2MM @ /6 0) 1,

Qo0 (1)
Qoo (2)

Figure 3 shows B; for ¢®/¢® =0.70.

According to experimental results, the temperature
variation of the mobility times gas density for in-
finitesimal field strength has a maximum at a certain
temperature, T, as shown in Fig. 4, indicating that
QW (1) has a minimum at that temperature. Consulting
this fact, our theory can predict the following field
variation of the mobility.

For temperatures a little lower than 7', the mobility
first increases with the field strength, then takes a
maximum and finally decreases; for temperatures higher
than T, the mobility decreases from the beginning
(see Fig. 5).

The temperatures T’y are such as are given in Table I.
Since T is usually higher than room temperatures, the
mobility usually must first increase with the field
strength. In fact, measurements by Mitchell and Ridler?
on the mobility of Lit, Nat, K+, Rbt, Cst, NH;t,

2 J. H. Mitchell and K. E. W. Ridler, Proc. Roy. Soc. (London)
Al46, 911 (1934).

851

Nat(NHj3), and Nyt in N, as well as those by Hershey?
on the mobility of K+ in H,, He, Ne, and A correspond
to the case T'<T\,. It is regrettable that many recent
measurements made at the Bell Telephone Laboratory*
are lacking in weak field regions and cannot be used
for the present purpose.

Recently Wannier® at the Bell Telephone Laboratory
tackled the same problem as the present article. After
he treated some special cases, such as the case of an
extremely high field and the case of the Maxwellian
cross section, he concluded: “It is to be hoped that a
more satisfactory way of proceeding can be found.”
The present author hopes that the way of proceeding
developed in this section will be satisfactory.

5. MOBILITY IN A WEAK FIELD

When the electric field is infinitesimal, both the first
ahd the second approximations of the drift velocity are
given by the right-hand side of (4.11). The aim of this
section is to derive a more accurate formula in this case,
chiefly in order to have some information about the
accuracy of our formula (4.12). (We can use the experi-
mental results of the mobility in a weak field for the
purpose of determining the force between an ion and a
molecule. An accurate expression is desirable for this
purpose, t00.)

When the electric field is sufficiently weak, Eq. (4.3)

reduces to
2o G (D@1 @)a= 88,010,
or
@i Npy=0 for I%1 (5.1)
and for /=1,
Zs ars<\b1(a)>Av= 85r0, (52)
where

a=a,(1).

Let the first approximation, (1)1, be determined

by
arr("p 1 (r)> . garo,

and the #th approximation, (¢1™)ux, be determined by
arr(\bl (r)>Avn+Zs (1 —5rs)ars<\b1(8)>kvn—1= 85r0

TaBLE I. The temperatures corresponding to
the minimum of Q@ (1),

To Reference
Het in He ca 300°K a
N.*in N» ca 700 a
Cs*in He 210 b
Natin He ¢a 600 b
Li* in He ca 700 °
K+in A 400 °

a A, M. Tyndall and A. F. Pearce, Proc. Roy. Soc. (London) A149,
426 (1935).
b A, F, Pearce, Proc. Roy. Soc. (London) A155, 490 (1936).
e K. Hoselitz, Proc. Roy. Soc. (London) Al177, 200 (1941).

3 A, V. Hershey, Phys. Rev. 56, 908 (1939).

4J. A. Hornbeck, Phys. Rev. 84 615 (1951)' R. N. Varney,
Phys. Rev. 88, 362 (1952); 89, 708 (1953

5G.H. Wanmer, Phys. Rev. 83, 281 (1951),87 795 (1952).
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(n=1II, I1I, - - -). Then we obtain, for instance,

(g aro
W1 D= —[67‘0 — (1—6,0)—

QAry Qoo

Arsso
+Zs (1_673) (1'—530) ]

. As5a00
In particular, for r=0

©  QosAso
<w>AvIII=<w>AvI|:1+Z ]

s=1 AssQo0

(5.3)

Let us adopt
(w>AvI(1+d<)1dm/dudoo)

as an approximation to (w)s. Since we have

Q01810

a11Q00

Qoo @01 Q1o

@11 Qoo Qoo

2 Qoo ( T dow (1))2
T S5ay  \QW(1) 4T
and ago/ay1 can be approximated by the value for the
Maxwellian model,

No(1)
M(1)

= (M2+3M 2+ 2M M@/ 0) L,

we obtain

(w)a= (Whar (14-4), (5.4)

where
A=Z(M24-3M 2+ 2M M@ /o ®)1
dInQW(1)\?
x(ar ——). 69
dInT

in which 0.7 can be substituted for ¢®/¢p®.
The A is large when My=1—M; is small. For M,
sufficiently small, we have

A Z(dInQ(U(I))2
s\ dmr /’

TARO KIHARA

which takes the value

1 4\?2
A= 1_;) : (5.6)
when the inverse power potential
w(r)=nr—s (5.7)

is assumed between the ion and the molecule.

Moreover, in the case of M3<1, the problem can be
treated exactly.® The precise value when (5.7) is adopted
is related to the first approximation as

(‘ZU)AV 16 2 2

=—r(3—-—)r(2+—).
(wynt O s s
The numerical values of (5.8) and 14A, obtainable
from (3.6), are as follows:

(5.8)

s o 12 4 2
1+A 1.100 1.044 1 1.100
(5.8) 1.132 1.056 1 1.132

Since the actual case corresponds to such values of s as
455512, the accuracy of (5.4) is satisfactory, and
Eq. (4.12) is accurate within the error of 6M? percent,
at least for weak fields.

ERRATA FOR PART A

In the second term on the left-hand side of (2.2),
change dc to ar.

Four lines above Eq. (A.1), change (¢ to |{c)u ]2

Five lines above Eq. (A.2), change 1—coslf to 1—cos'd.

First column of Table II, change He, He, --- to
He, Ne, - - -.

Egs. (10.1) and (10.5), take out the absolute value
symbols.

6S. Chapman and T. G. Cowling, The Mathematical Theory of
Non-Uniform Gases (Cambridge University Press, London, 1939),

p. 187



