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l. INTRODUCTION

'N the present paper we treat the stationary velocity
~ ~ distribution, especially drift velocity, of ions in a
static, homogeneous electric field in the absence of a
magnetic field.

Our main assumption is that the number-density of
ions,

f(c)dc= ', f(c)dldodw, (1.1)j

Under this assumption, fi takes the Maxwellian dis-
tribution,

t
m, )l t mtct'q

f =»I
I expl —

I
ci= lcil (13)

t 2~kT) E 2kT )
which remains unchanged by the electric 6eld. Here m&

is the mass of a gas molecule; k and T are the Boltz-
mann constant and the absolute temperature, respec-
tively. Moreover, the Boltzmann equation becomes
linear with respect to f:

is much smaller than that of gas molecules,

X= fi(Ci)dCi.
J

eE Bf
(f'Jt' ffi)gr(g, —tl) sintidtldedct,

(12) m aw
~= IEI,

Here c(N, e, w) and f(c) are the velocity and the when the s axis is taken in the direction of the electric
velocity-distribution function of the ions; c, (ui, oi, wi) field E. Here e and m denote the charge and the mass

and f,(c,) are those of the gas molecules. of the ion, respectively; f'fi' ffi is the—abbreviation
for f(c')fi(ci') —f(c)fi(ci), c' and ci' are the final
velocities of the ion and the gas molecule encountering
with initial velocities c and c1 with diGraction angle 8
for the orbit of relative motion; I(g, ti) sintidede indi-
cates the differential cross section for scattering into the
solid angle sin8dede for the relative speed g= I

c—cil
ci'I (see Fig. 1).

In terms of the function

( m )' t' mes)
f&"—= ssI

I expl — I, c= lcl, (1.4)
E2ekT) ( 2kT)

to which f would reduce in case of no electric field, let

(1.5)f=f"'(1+C')

Then the Boltzmann equation can be expressed as

FIG. 1. Vector representation of relative velocity.

*This work was carried out at the University of Wisconsin.
U. S. Naval Research Laboratory, Madison, Wisconsin.

t In my previous article of the same title (T. Kihara, Revs.
Modern Phys. 24, 45 (1952)),hereafter referred to as A, I quoted
several passages from my book Imperfect Gases. This book was
originally written in Japanese and published in 1949. Although
the whole text was translated into English in the United States
(by U. S. Air Force in U. S. Air Force Technical Reports),
the distribution of the translation is unfortunately limited. There-
fore, I want to publish a revised version of the parts to which the
previous article is related. In consequence, references in footnotes
2, 3, and 5 of Part A are to be rewritten as Eq. (3.1), Eq. (2.8)
and Section 2 of Part 8, respectively.

eE Bf
Xfts' JC—

st 88)

Here J is a linear operator operating on any function
p(c) of the velocity of ions,

1
JP=—

~ ft Q y')g&(g, 0) sinededed—c„(1.7)
g J

Q
—$' being the abbreviation for $(c)—$(c').
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VELOCITY-DISTRIBUTION OF POSITIVE IONS

1 mi
Jc=—

~ fi(g—g')gI(g, 8) sln8d8dedci,
iV mi+m &

r
(4' 4') =

J f&4'dc

When we define the inner product of two functions, and, since 6 remains unchanged by the collision,

y(c) and P(c), by

the operator J is symmetric,

(0, Je)= (4, J0),

and posltlve-de6nlte)

where g' is the relative velocity after encounter.
Taking two unit vectors perpendicular to g and to

(1.9) each other, we can express g' as

g = g cos8+gll s1118 cose+gi sll18 slue

(1.10) (see Fig. 1). Therefore,

Multiplying both sides of (1.6) by —Q(c)dc and
iritegrating, we have

eE t Bf
dc=IV Jff&'&&JCdc.

8$ ~ O'R

27i. t'ai
Jc=—

~

~ fig(1 —cos8)gI(g, 8) sin8d8dcl.
X ml+m J

In terms of efFective collision cross sections between
the ion and the molecule, which are de6ned by

Integrating by parts on the left side and using the „, f'

relation J(1+4)= JC and the symmetric property of J
on the right side, we obtain

eL" t BP—
~~ f dc=i'lT

J fJ&dc
Pl ~ BK

With average value symbols de6ned by

1
(4) =-J f4d

this relation becomes

27[' miJc=- » figgl"dci
far m, +m &

2'" '%yJc=-

f�i(c

el) l—fi&"d ci,S ml+m ~

or, ln terms of the 8 component

27K

Jm =— fi(w —wi)Po&dcl.
X mi+m ~

(2 4)

In particular, when re is taken for P, we have

eE/m =X(Jve)„.

2. HEAVY IONS IN A LIGHT GAS

Up to this point no approximations have been made in
the calculations.

Now, we treat the special case where the mass of

(1 12) an ion is su%ciently large in comparison with that of a
gas molecule, i.e., m&5m~. Let us consider the problem
on the condition that the drift velocity of the ions is
much smaller than the thermal velocity of the gas
molecules; i.e.,

((w) A,)'«0T/mi. (2.6)
Jc=—«

'

~ fi(c c')gI(g, 8) sin—8d8dcdc, (2.1)gJ JJ
will be transformed generally.

In terms of the velocity of the center of mass and
the relative velocity before encounter,

The effective cross section Pol is a function of the
reduced mass mim/(mi+m) and the relative speed g.
In the present case the former can be put equal to m~,
and the latter is

g= (cl —2cl c+c )~=. cl—ci c/ci.

m
ci+ c, g= c—cl)

mi+ m mi+ m

Hence the cross section becomes
2.2

Ill sel'tlllg tllis 111 (2.$) aild dellotlllg y(1) (cl)
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anew, we obtain will be evaluated for any positive integer p. Considering

X m&+m ay&» m&'

Jw=w ~ f&p")dc&+w f& dc„
J Oc& c&

( m&
w —w' =! G+ g ! —

! G+
~&+m )

my

m&+m )

the integrals of odd functions of c~ vanishing. The first
term on the right-hand side is equal to

=:p (g —g')G. ',
m&+ m

c
42rW f)g('&CpdC),

aJ p

and the second term is

1 O(t ('& 42r " Op('&

w —
f& c&dc&= w

~ f& c& dc&

Oc, 3 J, Oc,

00 4' mg
= —42rw ' f)(k("c&2dc)+ w—~ f&(t&")c) dc&

3 kTJ,

2' m]
J(w") =— p „I"f g.G." '0")«

cV m&+m

27f ml
p i" f)(w —w&)

X m&+m
my

w) ! y('&dc&;
m, +m

we have, after a procedure similar to that used in ob-
taining (2.5),

Ke have, therefore,

2x mg 4x mi
f&g("c&'dc&

X m, +m 3 kT ~(&

16 m&
W2rl ezp( —V') V'g('&d U,

3 m, +m

V= (mr/2kT)*'c2.

In terms of weighted mean values of the effective
cross sections, defined as

iT
J(w") = X p'w" p(p —1)w"— (2.10)

where X is the same as in (2.8), which is a special case
of (2.10). When this is rewritten as

d(wv) kT d2(wv)
J(w")=X w

d'N m d'N

Bearing in mind that mm' and m&mI' are of the same
order of magnitude, we can carry out calculations
similar to the above and obtain

Q()) (1)—2rg g(l) V2r+2 exp( V2)dV

r=l, l+1,
( m&m 1

&m, +m 2kT)

we obtain finally
16 mg

Jw= Xw, X=— —0&') (1)
3 mg+m

Inserting (2.8) into (1.12), we have

eE 3 m&+m eE
~ Av=

mlA 16 m&m XQ('& (1)

(2 7)

(2 8)

(2.9)

it. is easy to see that the relation

( dC kTd2C~
!JC=&

I
w——

dw 1n dw2)
(2.11)

eE Of (kT O'f Of
=ATX! +w +f !,

1n Ow (m Ow Ow )

holds for any function 4 which is expressed by a power
series in m and does not depend on the other com-
ponents of c.

Anticipating that C in (1.5) and (1.6) is an analytic
function of m only, and does not depend on the other
components, 2t and v, we make use of (2.11). After
some manipulation, we have

The mobility of heavy ionsin a light gas is independent of
the f(,eld strength, so long as our condition (2.6) holds.

Let us find the velocity distribution function. First,

1
J(w")=—" ~" I f, (w& w")gI(g) &)d&d—edc&

J J

or, in terms of (w)A,

kT O'f Of
+ (w —(w)A. ) +f=o

m BK~ 8Ã

From this differential equation it is evident that f can
be obtained by replacing w in f(o) by w —(w)A, . Namely,



m ) ~ m
f=nf f

exp — (u'+e'+ (w—{w)A,)'},(2.12)
(2~uT) 2er

(1 s)-oo—1(1 t)-ooo-1

(' s
exp —h) 1+ + ~

h"(&&h

&0 ( 1—s 1—t]
lQ accordance with. oux' Rntlclpatlon. Tke Mlocttg dis-
tribution of hea&)y ions in a light gas is Mahwellian around
the drift ()elocity, so long as (2.6) holds.

(1 s)-m-1 (1 t)-ooo-&
h(1 st)—

cxp
,

S GX

{1—s)(1—t)-

3. MXXWZr, LIAN MODEL OZ COLLISrom
CROSS SECTIONS

The Maxwellian model is de6ned by the idealization
that the scattering coefficient I(g, t&) is inversely pro-
portional to the relative speed g. For this model each
oto(&) becomes independent of g, and the mathematical
handling is simple without any assumption as regards
thc I'Rtlo of thc mass of RIl ion to thRt of R Inolcculc.

In this case, (2.5) is reduced to

= (1—st)- -'I'(m+1),

wc obtain, by equating codFicients of s&P, the orthogo-
nality relation,

e *S (»(h)S «)(h)h"ch=
I'(m+ p+ 1)8„„(3.6)

where b~, is unity for P=(f and zero for Ppq. Differ-
entiating each side of (3.4) with respect to h, we have

Jw=2m&» "& w
o

m&+ m
(3 1) —S„'"&(h)= —S„~&(" '&(h).

dS
(3 't)

Hence we have, by use of (1.12), Multiplying each side of {3.4) by 1—s, we have a
recursion formula,

eE m&+m
Av=

2m@(')S mph'
(3.2) l(~) —g (~) g (~-&) (3 8)

3 m&+m eE
{w)A,

———
16 m&m NQ"&(1)

(3.3)

which is identical with (2.9). This formula, which is
valid in these two idealized cases, is the 6rst approxi-
mation to R DloI'c dctRllcd cxpI'csslon to bc dcI'lvcd ln
the next section.

Equation (3.1) indicates that w is one of the eigen-
functions of the symmetric linear operator J, and the
corresponding eigenvalue is 2mot o)m&/(m&+m). Let us
Dlakc R little px'cpRx'Rtlon to investigate othcI' clgcn-
functions and eigenvalues.

Sonine polynomials S, '"&(h) are defined by the ex-
pI'Csslon

hS ) oo

(1—s) ' exp~ —
~

= p S„("&(h)s", (3.4)
1—s)

where 0&s & 1, and x and m are real. In particular,

For the JI/IameelBue model, the nsobiHty times gas density,

N(m)A, /E, is independent (&f the f&eld strength and the

temperature.
When 4~') does not depend on the relative speed,

0&')(1) is equal to 3~ot &u/8, and Eq. (3.2) can be re-
written as

Ily differentiating (3.4) with respect to s and replacing
ns by m —I, and n by e—I, we have another xelation

mS„(" ') (h) -hS +—g(" '& (h) =nS y(") (h) (3.9).

Finally, by combining {3.8) and (3.9), we have

mS„&"&(h) —hS +g("-'& (h) = (m+n)S &
&")(h). (3.10)

In tcI'Ins of these Sonine polynoDlials, wc dc6nc
functions of c by

(mc ) (w) (mc
I &I —IS+ )I

I (3»)
(2kT) E c ) I 2kTi

l r=o j. 2

I'& being Legendre polynomials. Then each &P&(r) is a
polynomial of degree t+2r in the components of c;
and the orthogonality relation is given by

j.
()P((r) &P&,

(r')) t f(0)y&(r)&P&, (r')(te
e~

2 I——I'(t+ r+ e;)8&pb„,. (3.12)
21+1 or~ r!

S &'&=1, S„")(h)=m+1—h.
Let us specialize P in (1.11) to &Ir&("). Since, by use of

(3.5) (3.7) and (3.10) and similar relations for the Legendre
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polynomials, the relation

t
2kTi l ai)»&(")

(i+2)i i =l(l+2+r)A i"-(t+—1))p(+i'" "'
&m) aw

etc. Since

Av g ~ Av

2kT 2kT

where
—(i+1)(@+i" ")A ] (3 13)

h =—(eE/mÃ) (m/2k T):. (3.14)

()Pi+&( ') =0) can be derived, we obtain generally

(l+ 2)(JA'"')A = h[l(l+-'+r)(A —i )A.

and

=--:«~. »"+«. ».,)
2 b' j. 1

3 XO(1) Xi(0) Xo(2) .
I

= 2m@("»g'MP/Xp(1)P i(0)Xp(2)) 0,

( m

i w, C'=—
&2kT) 2kT

In particular, for the Maxwellian model each»Pi(") is
an eigenfunction of the operator J:

J»P "'=X„(l)»P '"'

This can be directly ascertained for l+2r small; in
terms of

~ Av Av

2kT
= 3 (2(A"')"-()l0'")A.-3Q i"')A')

1 b' 4 2 3
+

3 Xo(1) Xo(2) X (0) Xo(1) J

and
m$

M g=—,3E2-=
mi+m mi+ m

(3.16)

2mMg'P
[Mi»b(2)+2M2(2&(') —(b('i)]) 0

Xo(1)X (0)X0(2)

the eigenfunctions and eigenvalues for l+2r(3 are as
follows:

X»)(0) =0;
&0(1)=2~M)y");

Xi(0)=4~M(M2(b(";

In general,
X,(l))0 for l+2r) 0

Inserting (3.15) into (3.13), we have

(t+-')l( (i)Q' '"') = h[t(t+-'+ )(4'- '"')
~

—(i+1)Q)+i'" ")A], (317)

from which it is evident that (—1)"(»pi("))A, is positive
and proportional to E'+'".

By this system of equations each (»p&("))A, can be
expressed in terms of the X„(l):

»

8'i"')»=l h'/&o(1)l(o(2) ' ' &o(t)» l='1» 2» ' ' '»

«0"))A.= —2h'/l(o(1)l i(0),

2 83 -4 5-
(Pi"))A,= ——

3 Xp(1)l(i(i) Xo(2) Xi(0)

»ISA(0) = 1

1bi(') = W,

P (i) —3 g2

(0) 3 lf»2 i+
4(2) =»rM)(4MA»b&')+3M)ib"));

P ' =W[(5/2) —C],
Xi(1)= 2»rM)(Mpy("+3M22it»("+2M)M2$(')) .

P, (') = (5/2) W' —-'W(,"

Xo(3) =7rM)( —3M' ("+6M2'y(')

+9M )Meit»(')+ 5M pi)I»(A)).

it follows that the ()elocity distribution is less sharp than
the Maxwellian distribution corresponding to the same
temperature.

In order to argue more in detail, let us assume be-
tween an ion and a gas molecule an attractive potential,
inversely proportional to the fourth power of the dis-
tance. For this type of Maxwellian model we have the
following numerical values

4, (&)/y(i) —0 70 y(&)/y(i) —1 2

By use of these it can be shown that

and
((w —

(w)A ) )A (u')A, )0,

((w —(w) A,) ')„)0.

4. GENERAL THEORY OF MOBILITY

In the two preceding sections we have treated special
cases; the general case will be dealt with in this section.

Except for the Maxwellian model, the »P)(") defined
by (3.11) are not necessarily eigenfunctions of the linear
operator J. However, since J is spherically symmetric,
we can let

J4«(")=Z. a-(l)4 ", (4 1)
' The 6rst value is taken from H. R. Hasse, Phil. Mag. I, 139

(1926);H. R. Hasse and W. R. Cook, Phil, Mag. 3, 977 I'1927).

These inequalities provide information concerning the
deviations from spherical symmetry and plane sym-
metry of the velocity distribution: the distribution of the
s component of ion velocities is less sharp than that of
the other components; its rate of decrease in the rear is
steeper than that in the front, the marimum taking place
at a negatioe s component of the velocity
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with
a„(l)= (PI", Jgi'"')/g 1",Pi"). (4.2)

In particular, II„„(l) 0, since J is positive-definite.
Inserting (4.1) into (3.13), we have

(1'+ -', )g, „(l)(y,t &)„„=h[f(ty-', + )(yi, &"&),„

mim (mim) l

(]—s)
—(olo)

kT mi+m (20rkT)'(1+-) -(f)Q' '"')
~

= &[l(f+-+ )(4'- '"')
~

())1)+Ii "—=0), from which it is evident that (QI&"&)A„ is an
even function of 8 for / even and an odd function of E
for t odd. Hence the drift velocity and the mobility are
odd and even, respectively. Equation (4.3) can be
solved by means of successive approximations as 0
follows:

Fro. 2. Asymmetry of the velocity distribution of ions
with a positive drift. velocity;

sidered to be smaH, since they vanish in the case of the
Maxwellian model. Therefore, we can determine the
first approxiination, which will be referred to as g I'"')A, which is equal to, by virtue of (2.5), (1.3), and (1.4),
from

—(~+1)(4'&+I'" ")A I) (4 4)

It is evident that (—1)"(p)'"))A„i is positive and pro-
portional to the (f+2r)th power of the field strength.

In particular,

oo(1)(4' "') = »

where

X i exp( w)II)—(II) wi)y—&'&dcdci,

'Hsycy 1 mc
A=

2kT 1—s 2kT

ol
eE 1

(II))Avi
=

)Vm «0(1)

The second approximation can be determined from
the equation to which (4.3) reduces when the first
approximations are inserted into terms with non-
diagonal coefFicients. That is,

In terms of the velocity of the center of mass, 6, and
the relative velocity, g, given by (2.2), we have

1 mi+m
A= [(1 M is)G'+ M I—M0 (1 Mos)g'—

1—s 2kT
+2MIMosG gj

(G=
~
Gi, g=

hagi),

where MI and MI are given by
(3.16). By use of a new variable

or

g'I )Avii[«0 (I)+Iiol (I)()tv'I )Avi/()tv'I )Avl+

Q i")A I
(I)o)A II— 2 bio (1)

Xm =0 (pito&)A, I.

Now we must evaluate

MgMgs6'= 6+
1—$

g,

Since

1 Mis mi+m —1

1—s 2kT 1—Mis 2kT mi+m

(4.6)
this can be transformed into a quadratic form:

II&(W—II)I) = (G,+Mig, )g,

fi t f th 1 1 (~ ( ) ~ (0)) we can substitute dG'dg for dcdci. Furthermore, for
y t e e nitiono t e Sonine po ynomia s, (yg ",)yg

is the coefFicient of s" in the expansion of

m 1 p ( s mc'i
—(1—s) t""

i f&" exp' — it)&JII)dc, (4.8)
2kTII & ( 1—s 2kTj

1—s
G.'+ Mig. Ig.

1—Mis
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we can substitute

1—s
M)g',

3 1—Mgs

because P&') is a function of g. By use of all these real-
tions, and by integration with respect to 6, (4.8) is
transformed into

8 00

—Miir& (1—3fis) ("i)
3 Jp

V'
Xexp

l

—
l
V'g("d V (4.9)

1—&is)

niim 1
lg

&mi+m 2kT)

Consulting the definition of 0('&(1), (2.7), we see
that (4.9) divided by SlV)/3 is equal to 0('&(1) in which
T is replaced by T(1—Mis). (4.9) is, therefore, equal to

I

l

I

I

I

I

I

I

1

I

I

I

I

i

TQ

FIG. 4. Mobility times gas density for infinitesimal field strength
as a function of temperature. Points A and B correspond to
A and B in Fig. 5, respectively.

Inserting (4.10) into (4.7), and consulting (4.5) and
(4.6), we obtain finally

8 (-1)" d'
3fi Q — (M)sT)" 0 "&(1).

3 p rI dTr

Hence it follows that

3 mi+ni eE
~ Avr=

16 mim 1V0")(1)
(4 11)

8 (—1)" d"

(P, (r) Jf, (o)) =—Mi (M,T)" 0(') (1). (4.10)
3 rf dT"

(Making use of the relation

3 mi+m eE ~(b„T)' d-'

(w)A~zz =— —P 0 ' (1), (4.12)
16 mmmm Ã ~p rt dTr

where

or from (4.9) directly, we can express (4.10) in terms
of 0(') (1) 0('&(2), . 0('&(r+1). We prefer, however,
not to rewrite for the present purpose. )

The b„are positive and proportional to E'", except that
bp= j..

In the case of the Maxwellian model, for which 0(') (r)
is independent of T, our first and second approximations
coincide with each other. For heavy ions also, subject
to the condition (2.6), the second approximation be-
comes identical with the first, because bI, b~, ~ ~ ~, which
can be expressed in the form

0.6

00 0.2. Of 0. 6
I

o. S'

FzG. 3. Values of the factor p1 in the coefficient bl.

((w)A) &
2kT

with P„remaining finite for the limit M)~0, vanish.
In these two cases the first approximation is exact, as we
already know.

In general cases let us content ourselves with the
second approximation. The mobility is then given by
the right-hand side of (4.12) divided by E. The rela-
tionship shows that an increase of E' and an increase
of T have a somewhat similar eGect on the mobility.
The weaker the field is, the more accurately holds the
similarity. For a sugciently weak field, mobility times
density is a function of one ()arguable, T(1+bi).
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FIG. 5. Mobility times gas density as functions of (E/Ã),
E and Ã being the field strength and the number-density of gas
molecules, respectively (see Fig. 4}.

As regards

we obtain

PEJ

((~)A )'pi,
2kT

(4.14)

4 aoo(1) r' aoo(1) aoo(1) &t

P, =—M, (4 +5
15 aii(1) ( aoo(2) aii(0) )

whlcli CRn be Rpp1oxlmatcd by thc VRluc fo1 thc Max-
wellian model

Na+(NHo), and N,+ in No as well as those by Hersheyo
on the mobility of K+ in H2, He, Ne, and A correspond
to the case T&TO. It is regrettable that many recent
measurements made at the Sell Telephone Laboratory4
are lacking in weak Geld regions and cannot be used
for the present purpose.

Recently %annier~ at the Bell Telephone Laboratory
tackled the same problem as the present article. After
he treated some special cases, such as the case of an
extremely high Geld and the case of the Maxwellian
cross section, he concluded: "It is to be hoped that a
more satisfactory way of proceeding can be found. "
The present author hopes that the way of proceeding
developed in this section will be satisfactory.

5. MOBILITY IN A VfEAK FIELD

%hen the electric GCM is infinitesimal, both the first
ahd the second approximations of the drift velocity are
given by the right-hand side of (4.11).The aim of this
section is to derive a more accurate formula in this case,

chief in order to have some information about the
accuracy of our formula (4.12). (We can use the experi-
mental results of the mobility in a weak fMld for the
purpose of determining the force between an ion and a
molecule. An accurate expression is desirable for this
purpose, too.)

When the electric field is suSciently weak, Eq. (43)
1cduccs to

-~o(1) ( ~o(1) ~o(1)p—
P,=—M, (4 +5

15 4(1) ( Xo(2) Xt(0)) .
=

oo(12Mo+SM&p&'&/po&)

X (4Mo+3Mig&'&/y&'&) —'

and for /=1,

where

g. a„(&)g it'&)A. = @&,o&io,

g i&"&)A„——0 for /g 1

g, a,.(4t")o,=@,o,

a„=—a„(1).

(5 1)

(5 2)

X (Mio+3Mo'+2M&Mop&'&/@o&) —'.

Figure 3 shows Pi for P&o&/Po& =0.70.
According to experimental results, the temperature

variation of the mobility times gas density for in-
finitesimal field strength has a maximum at a certain
temperature, To, as shown in Fig. 4, indicating that
Qo&(1) has a minimum at that temperature. Consulting
this fact, our theory can predict the following Geld
variation of the mobility.

For temperatures a little lower than T'0, the mobility
first increases with the Geld strength, then takes a
maximum and finally decreases; for temperatures higher
than To, the mobility decreases from the beginning
(see Fig. 5).

The temperatures To are such as are given in Table I.
Since To is usually higher than room temperatures, the
mobility usually must Grst increase with the Geld
strength. In fact, measurements by Mitchell and Ridler~
on the mobility of Li+, Na+, K+, lb+, Cs+, NH3+,

J.H. Mitchell and K. E.W. Ridler, Proc. Roy. Soc. (London)
AI46, 911 (1934).

Thar.z I.The temperatures corresponding to
the minimum of O(i) (1).

He+ in He
N~+ in N2
Cs+ in He
Na+ in He
Li+ in He
K+ in A

cu 300 K
cu 700

210
cu 600
cu 700

400

Reference

a A. M. Tyndail B.nd A. F. Parce, Proc. Roy. Soc. (London) A149.
426 (1935).

"A. F. Pearce, Proc. Roy. Soc. (London) A155, 490 (1936).
e K. Hoselitz, Proc. Roy. Soc. (London) A177, 200 (1941).

'A. V. Hershey, Phys. Rev. 56, 908 (1939).
4 J. A. Hornbeck, Phys. Rev. 84, 615 (1951); R. N. Varney,

Phys. Rev, 88, 362 (1952); 89, 708 (1953).
& G. H. %'annier, Phys. Rev. 83, 281 (1951);87, 795 (1952).

Let the first approximation, (fr&"&)A„q, be determined

by
a„g i'"&)A,r = h&,o,

and the eth approximation, (Pr&')«„, be determined by

a„Q t'"&)A..+P, (1—&„)a,.git'&)o.. i= b&.o
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(n= II, III, ). Then we obtain, for instance,

~ro
(Pl )A III ~ 0 (1 ~ 0)

Qpo

which takes the value

1 ) 4y'

10& s)
(5.6)

mrs~so+~' ( "') ( ") when the inverse power potential
~ss~oo-

In particular, for r=0
a os+so

(II)A III (2&)A I I++
'=1 ~ss~00-

I,et us adopt
(2&1)AvrI (1+oplolp/&Ill&100)

(5.3)

N(r) =Xr-' (5.7)

is assumed between the ion and the molecule.
Moreover, in the case of M2((1, the problem can be

treated exactly. ' The precise value when (5.7) is adopted
is related to the first approximation as

as an approximation to (w)A„. Since we have

~01~10 ~00 ~01 ~10

~11~00 ~11 +00 ~00

(22)A, 16 ( 2) ( 2q=—I
l

3—li l
2+- i.

(w)A, I 92r E s2 E s)
(5.8)

2 app t' T dQ&I&(1) ) '
!MI2l

5 &III EQ&I&(1) dT j

we obtain
(~)"=:(~)AI (1+~),

where

'(MI'+ 3M 2'+ 2M— IM,Q &'&/P &»1) I—
( d lnQ &12 (1)) '

dlnT ) '

(5.4)

in which 0.7 can be substituted for P&"/P&'&.

The 6 is large when %2=1—M1 is small. For M2
sufIiciently small, we have

2 (d lnQ&I& (1)) '

54 dlnT )

and app/&I» can be approximated by the value for the
Maxwellian model,

&0(1)—(M 2+3M 2+ 2M My&2)/y&I)) —1

XI(1)

The numerical values of (5.8) and 1+6, obtainable
from (5.6), are as follows:

1+6
(5.8)

1.100
1.132

12
1.044
1.056

2
1.100
1.132

ERRATA FOR PART A

In the second term on the left-hand side of (2.2),
change Bc to Qr.

Four lines above Eq. (A.1), change (c2)Ay to l(c)Apl'.
Five lines above Eq. (A.2), change 1 cosl to 1——cos'0.
First column of Table II, change He, He, ~ to

He, Ne,
Eqs. (10.1) and (10.5), take out the absolute value

symbols.

' S. Chapman and T. G. Cowling, The Mcthemutica/ Theory of
Non-Uniform Gases (Cambridge University Press, London, 1939),
p. 187.

Since the actual case corresponds to such values of s as
4&s&12, the accuracy of (5.4) is satisfactory, and

Eq. (4.12) is accurate within the error of 6MI2 percent,
at least for weak fields.


