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GENERAL INTRODUCTION

'HE equation of state of gases may be expressed in
the form

pe =kT(1+Be '+Ca '+ )

where p is the pressure, e is the volume per molecule,
k is the Boltzmann constant, and T is the (absolute)
temperature. In this expression 8, C, , which are
functions of the temperature, are called the second,
third, ~ ~ virial coeKcients. These coe%cients indicate
the deviation of a real equation of state from that of the
ideal gas. It is a great success of statistical physics
that these virial coe%cients have been given in terms of
the interaction between molecules, or the intermolecular
potential. In fact, each virial coe%.cient is represented
as an integral of a function of the intermolecular
potential.

Besides the equation of state, the viscosity, isotopic
thermal diffusion, and other transport properties of a
gas are also intimately related to the intermolecular
potential. In fact, each one of these properties is ex-
pressed in terms of effective cross sections for molecular
collisions, which are also determined by the intermolecu-
lar potential.

The objective of the present article is to collect in-
formation about intermolecular potentials obtained
from these properties of gases, particularly that by
Japanese workers in recent years. In order to make the
limits of our problem clear, we confine ourselves to
pure, nonpolar, nonquantum gases.

For our purpose it is advisable to use suitable models
of molecules. A suitable model must have both of the
following two merits: (1) The model approximates

real molecules (accuracy). (2) Necessary integrals can
be evaluated for the model (integrability).

A molecular theory of matter is usually based upon
the assumption that the total potential energy is equal
to the sum of the potential energies between pairs of
molecules. We also have to assume this additivity of the.
intermolecular potential.

the expressions for the second and the third virial.
coeKcients, derived from statistical mechanics, ' are

B=——,') f(r„)dry———2n.
"o

f(r)r'dr) (1.2)

C= —
3 ~,1f(rq2) f(r$3) f(r23)drgdrm, (1.3)

where
87 s=—8X,lP;ZSt', ,

(x,, y;, s,) being the position of the molecule i.
There is a temperature, T~, such that

B(T)&0 for T& Te,

B(T)&O for T&T,.

The T& is called the Boyle temperature, because Hoyle's'
law holds better for this temperature than for other
temperatures. Relative to the Boyle temperature, let
us define a volume ~& by

dBq.o=( T
E dT) r=r,

'

It may be suitable to call this e& van der Waals'
molecular volume, since it is equal to the term con-
cerned with molecular volume in van der Waals'

I. THE SECOND AND THE THIRD VIRIAL
COEFFICIENTS FOR SPHERICAL MOLECULES

1. Introduction

For spherically symmetric molecules, such as the
rare gases, the potential energy between molecules, U,
is a function only of the distance between the centers of
molecules, r. In terms of r... the distance between two
molecules i and j, and by means of a function

f(r) = expt —U(r)/kT] 1, —

*This work was carried out at the University of Wisconsin
U. S. Naval Research Laboratory, Madison, Wisconsin.

' J. E. Mayer and M. G. Mayer, Statistica/ Mechanics (John
Wiley and Sons, Inc. , New York, 1940).
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TABLE I. Hoyle temperature Tz and van der Waals
volume e~ for the rare gases.

2. Square-Vfe11 Potentia12

Ne
A
Kr
Xe

123
410
594
772

vB A3

35.5
67.4
78.5

114
for r &0-

U(r)= —o for a&r&go.
0 for go (r

(2.1)

The simplest model for which both the second and the
third virial coefFicients have been calculated is that of
the square-well potential:

equation of state. The values of T& and e& for the rare
gases are given in Table I.

Taking the characteristic values T~ and v~ as units,
let us consider dimensionless "reduced virial coe%-
cients"

(Ti B(T) ) Ti C(T)

& T~) os (T~ & r~'

(Fig. 1). Here o means the collision radius between
molecules or, in our case of one-component gases, the
diameter of a molecule

Substituting (2.1) into (1.1), we have

for r(0.
f(r) =~ x for o &r&go

. 0 for go&r,

m which 8* is normalized as

B*(1)=0, LdB*(&)/dt], =,=1.

where
x= exp(o/kT) —1. (2.2)

TABLE II. Second and third virial coefficients for the rare gases.

65.2
90.6

123
173
223
273
373
473
573
673

BA3

—34.8—13.6
0.2

10.7
15.1
17.7
19.7
21.7
22.8
22.8

C )&10 2 A6 Reference

15.5
12.2
6.1
5.5
6.3
7.0

'The 8* and C* for the rare gases, which have been ob-
tained from observed values given in Table II, are
shown in Figs. 2 and 5 in the following two sections.

~

U(r)

I

I

l

I

Ot—
I

I

I

I

I

I

FIQ. 1. Square-dwell
potential.

The second virial coefficient (1.2) is expressed as a

linear function of this x:

Xe

173
223
273
323
373
423
473
573

273
323
373
423
473
523
573

290
323
373
423
473
523
573

—106.8—62.7—36.7—18.3—7.1
1.9
7.8

18.6

—104.5—71.1—47.9—31.2—18.5—9.5—1.9

—229—184—135—100.9—75.4—55.2—39.1

~ ~ ~

46
33
31
27
27
~ ~ ~

76
62

48
44
45
44

17.5
146
113
96
84
74
67

in which
B=4oor 1—(g' —1)xh, (2.3)

is the volume of the molecule.
Relations between T~ and ~ and between v~ and vp

are calculated to be

g3
=ln

g3 ~
(2.4)

4vp

g3
=g' ln

g —1

The third virial coeKcient can be expressed as a
cubic function of x;

' L. Holborn and J. Otto, Z. Physik. 33, 1 (1925)." Beattie, Brierley, and Barriault, J. Chem. Phys. 20, 1615 (1952).
e Beattie, Barriault, and Brierley, J. Chem. Phys. 19, 1222 (1951).

3C I(o& 3xI&»+3xoI &g x I~a (2.6)

2 T. Kihara, nippon Sugaku-Buturigakukaisi 17, 11 (1943).
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Here I~'& are values of J'J'dr&drs integrated over the
following regions.

l ': r»&o-, r]3({T, rg3&{T;

I&'): o.&r»&ga, r~3&o, r23(o. ,
I&'): o-&r»&ga, o-&res(go. , r23&o",

I"): o-&r» &go, «r j.3&g&, «r~3& g{T.

Let W(a, b, c) generally be the value of J"J'drrd»
integrated over the region

rj.3&b,

Since 8 is symmetric with respect to a, b, c, it is suf6-
eient to calculate it in the case a~b, a&c. It is clear
that 5' is given by

t.o-

c'
J3

l I. 6 p 1 =' g. a+

1

0

o ge

~ A

x Xe

— /=2, 0
t, 6

p, C

W(a, b, c)=4~ ) V(a, b, r)r'dr,
0

in which V(a, b, c) means the volume of the overlapping
yart of two spheres of radii a and b having a distance r
between centers:

V(a, b, r) = (vr/12) [r' —6r(a'+b')+8 (a'+b')
—3(a' —b')'r 'j

when a b& r &—a+b,
= (4rr/3) b'

when r &a—b.

Ke obtain, therefore,

W(a, b, c)= (s /18) [a'+b'+c'+18a'b'c'
+16 (b'c'+ c'a'+ a'b')
—9fa'(b'+ c')+b'(c'+ a')+c'(a'+b') }]

when a&b+c,
= (16m'/9) b'c'

when a~ b+c.

In terms of this function, I&" in (2.6) are given by

-$,0 x

FIG. 2. Reduced virial coeScients compared
square-well potential.

T
TB

3.0
with curves for the

p,

U(r) = =Up- —
rn rm

m rp'&" e (rp'& ~

m —m(rP e—m(r)
X, ~&0, ~&~&3,

Lennard-Jones' evaluated the second virial coefficient
(1.2) in the form of a power series. Integrating by parts,

1. The third virial coeScient C* is sensitive to the
shape of the potential, whereas the second virial coeK-
cient 8* is insensitive to it.

2. If the bowl of the assumed potential is not su%-
ciently wide, the calculated C* is too small.

3. The adequate value of g for the rare gases is
about 2.0.

3. Lennard-Jones Potential

Assuming that

I~P&= W(o, o, o.),
Io&= W(go, o, o)—I"&,
I~s& = W(go go, o) —I"'—2IO&).

I&'& =W(go, go, go) —I&P& —3I&'&—3I&s&.

l.0-

C

Thus we obtain Anally

C=2e '[5—(g' —18g'+32g' —15)x
+ (—2g'+36g' —32g' —18g'+16)x'

—(6g' —18g'+18g' —6)x'j for g& 2,
= 2ep'[5 —17x+ (32g' —18g'—48)x'

—(5g' —32g'+18g'+26) x'j for g ~ 2.
For example

C= 2ep'(5 —17x+136x'—162x') for g=2.

Figure 2 shows these virial coeKcients in the reduced
forms. From Fig. 2 and consulting Fig. 3, we see the
following facts:

Fn. 3. Re-
duced third virial
coefficient calcu-
lated for the
square-well po-
tential.

/

1

f

I

I. g

I I

tl
ll

I &l li l I & I

'Lennard-Jones, Proc. Roy. Soc. {London) A106, 463 {1924),
Proc. Phys. Soc. (London) A43, 461 (1931).
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he first obtained from (1.2)

22r I" 1 dU(r)

3 ~p kT dr
exp—

U(r)

kT

First we carry out the integration with respect to E.
Integrating by parts we have

f(r12)f(r13)f(r23)R dR
p

Expanding exp(/3/r kT)' of expl —U(r)/kT] into a
power series and integrating term by term, he obtained

t&f(r12)f(r13)f(r23)
R'dR. (3.5)

~6 aR

2m-t' )1 &3/n m (tnt 3q—y'

n (kT) ~ ( n )t!
~ kT~ m/n

kT& ~)

Here the product of f functions can be written as the
(3 2) sum

f(r»)f(r»)f(r23) =f"'—f"'—f"'—f"'
+f(r„)+f(r,3)+f(r„),

in which

Two neutral nonpolar molecules at a suKciently
large distance apart attract, each other with a potential
inversely proportional to the sixth power of the dis-
tance. It is reasonable, therefore, to choose m=6.

The expression (3.2) can be transformed into

where

22r (U6 y@=~6R8]
3 (kT)

(3.3)

3 1 //tm —3q t nq t( tn q
«"-"&8+3&/"

~3(s)=-- p —I
~n~t! E n ) (tn) tn n8 )—

(The suflix 3 indicates that this function is one of the
P, in section 9. In the case m=6, m=12, the I", are
given in Table X.) In the case n8= 6, the Hoyle tempera-
ture, TJ3, and the van der Waals volume, ~~, are related
to the model constants as follows:

kT~ ——4.57Up, ~~——1.00' p' for m =9;
kT~ =3.44Up, v~ = 1.20rp' for m=12.

3 f(r12)f(r18)f(r28)ttrlttr2

kTa= 1.17Vp, egg =2.46rp' for e= ~.
The series expansion technique can also be applied

to the third virial coe%cient. 4 I.et us transform the
integration variables of (1.3) as follows:

f&"=exp[ (k—T) '{U(r12)+U(r»)+U(r23)) j—1,

f ' =expL —(kT) '{U(r12)+U(r13))$
f&2&=expL —(kT) '{U(r&2)+U(r23))7—1,

f/3&=expL —(kT) '{U(r13)+U(r23)j]
For m&6, the integral of the sum of these seven terms

can be evaluated by the sum of the seven integrals,

Fxo. 4. The (x, y)
domain of integration
for (3.4).

each integral concerning each term. Therefore, in the
same way as that of Lennard-Jones, we can expand
(3.5) into

y
6/n

nt kT)

/ kT~ m/n

kTI, ~)
where

1 (tn8 —6q 1+("+2/"
)

(1+&"+~")""t!&n) (1+p+~n)m/n),

r1g )r13, r12)r23
f(r12)f(r18)f(r28)~rlttr2

(1+(n) 6/n
$m t

at p t8) j (g +2)$ n) p

f(r»)f(r»)f(r»)

XR6dRd26d(y') (3.4)
where (see Fig. 4)

R—r (2.2+y2)R2 —r 2 [(1 2.)2+y2)R2 —r2 2

4 T. Kihara, J. Phys. Soc. Japan, 3, 265 (1948); 6, 184 (1951).

(1+~n) 6/n

(1P~n) m/n

p, &m

(P+~n) 6/n, +1+8+n6,
I (p+.~n)m/n

$=R/r13= (26'+y2) ', 2/=R/r28 ——L(1—2)2+y2j '.



Thus we obtain

4'(Xi""
I Z y' c~«~(y') (3 6)

n LkT) r 0 Jp Jt

I.O

In the case we need, m= 6, C~ becomes indefinite. Ke
may, however, take the limit m—+6, since in the original
form this value is not any singular point:

oNe/
p ~3K

~ f~n l2

r

(1+P)(1+~+) (]+(n) (]n+r/n)
lim Cg=ln +P ln A

(n(1+.]n+~n)1+Pn+. &n

- J.O-(1+~")(~.+~.)
+t/6 ln

x )(e

~"(1+e+~")
Let us fix m equal to 6, and confine ourselves to the
(6, n) potential

T
Ts

3.0Q
I at I I I \ I ) | I I 'I 1 I

0 l.o 2.06 (rpg" n (rp) 6

U(r) = Uo
n 6L—r) n 6i. r—) . (3.7) FIG. S. Reduced virial coefficients compared with curves for

Lennard-Jones (6, e) potential.

hereafter.

4. Inverse-Power Repulsive Potential

tential is not suKciently wide for molecules of the rare
TABLE III. Coefficients in the series expansion (3.8) of the third
. virial coeScient for Lennard-Jones (6.9) and (6.12) potentials.

0
1
2
3

5
6
7
8
9

10
11

+1.561—2.940
+0.929

0.716
0.503
0.291
0.105—0.04—0.14—0.20—0.23—0.23

+1.383—2.562
+1 215

0.766
0.343
0.047—0.112—0.168—0.164—0.134—0.098—0.067

When the attractive part of the intermolecular poten-
tial is negligible, the model

U(r)=), r " X)0 n)3 (4 1)

may be used. The exponent e may be seen as a measure
of the hardness of the molecules.

In this case the (/+1)-th virial coefficient is written
in the form b. (X/kT)'"/", b. being independent of the
temperature. In particular, from (3.2), the second virial
coe%cient is

Our result (3.6) may be written as

C= 10rp' P 7, (n)r—

2s (n —3y ( X ps/"

3 E n & i kT)

(3 8) and, from (3.8), the third virial coefficient is

(4.2)

where
vr(X q'™~ ( 6 Usy"

Vp — 1 p

6 t.kT) 6 in —6 kT)

y 1/(kT)6/an(6 Up/ in 6)/ 'n

2 2kT( X) 12En—6kT)

56r' ( X q '/"
c=

18 t kT)
(4.3)

The values of yp(n) are given in Table IV.
This inverse-power repulsive potential, and therefore

the results (4.2) and (4.3), can be applied to gases at

The values of y, (n), which have been obtained by
numerical calculation of the double integrals, are given
in Table III.'

Comparison with observed values is shown in Fig. 5.
Consulting the conclusions of the preceding section,
we see that the bowl of the Lennard-Jones (6, 12) po-

' In the case of (6, 12) potential, a highly accurate table for C
is given by Bird, Spotz, and Hirschfelder, J. Chem. Phys. 18,
1395 (1950).

12
15
18

yo(n)

2.032
1.561
1.383
1.291
1.233
1.000

TABLE IV. Numerical factor in the third virial coefficient (4.3)
for the inverse nth power potential.
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extremely high temperatures, such as gases produced Here g is the relative velocity, b the impact parameter,
by detonations. ' 0 the deflection angle in the orbit of relative motion, and

II. CRITICISM OF THE I.ENNARD-JONES
XOTENTIAI.

S. Transport Properties of Gases

In Sec. 3 we came near concluding that the bowl
of the Lennard-Jones (6, e) potential with n=12 is too
narrow for molecules of the rare gases. So long as
we use the (6, e) potential we will have to choose
@&12if we want a wider bowl. In reality, however, the
state of affairs is not so simple since the choice of small
e exerts some inhuence on properties of the gas at high
temperatures.

Transport properties of a gas at moderate densities
can be expressed in terms of effective cross sections
0(') (,.) defined by'

0'" =~'* P'"V'"+' exp (—V') d V
«j 0

ln which

~2rrkTq
'*tr X

fbi' („&=
I

& ~* i &2uT&

(~e) 1/(n 6)—

2&T &Xs)

(5.2)

The functions F„'(f)have been calculated for (6, ~)
potential, ' i.e.,

(5.3)

V= (m*/2kT) lg, no*= reduced mass.

In particular, when the Lennard-Jones (6, n) poten-
tial

U(r)=Xr " Ij,r '—

is adopted, the 0&')(,) are given in the form

(1—cos'8) gMb,

l= 1, 2, ~; r=l, 1+1, k+2,

(5 1)
(5.4)

TAuxz V. Functions de6ned by (5.2l for l6, ~l potential l5.3l, and, for (6, 12) potential, ' i.e. ,
g being given by (5.4).'

0.00
0.01
0.02
0.03
0.04
0.05

0.5000
0.5017
0.5036
0.5056
0.5077
0.5099

1.5000
1.5034
1.5068
1.5102
1.5137
1.5173

1.OOOO

1.0036
1.0074
1.0116
1.0159
1.0205

4.0000
4.0106
4.0218
4.0335
4.0457
4.0585

2Uo

2kT X IT
(5.6)

V(.)=——= V,
I

—
(

—2] —), (5.5)
r» rs (r) kr)

0.075
0.100
0.125
0.150
0.175
0.200

0.5159
0.5225
0.5296
0.5369
0.5444
0.5521

1.5268
1.5369
1.5478
1.5595
1,5719
1.5849

1.0330
1.0468
1.0617
1.0774
1.0939
1.1115

4.0927
4.1299
4.1700
4.2127
4.2578
4.3053

The results are given in Tables V and VI.
The viscosity, q, of a pure gas is given by

SAT 3 (0&'&(3)
1+—

I

80''&(2) 49 &0&s&(2) 2P
(5.7)

0.250
0.375
0.500
0.625
0.750
0.875
1.000

1.125
1.250
1.375
1.500
1.625
1.750
1.875
2.000

0.5674
0.6048
0.6401
0.6733
0.7045
0.7338
0.7614

0,7874
0.8119
0.8351
0.8571
0.8780
0.8981
0.9172
0.9357

1.6126
1.6872
1.7648
1.8426
1.9189
1,9929
2.0635

2.1308
2.1945
2,2551
2.3125
2.3673
2.4197
2.4698
2.5183

1.1464
1.2376
1.3264
1.4090
1.4846
1.5537
1.6167

1.6753
1.7294
1.7800
1.8275
1.8725
1.9153
1.9560
1.9950

4.4055
4.6777
4.9615
5.2403
5,5053
5.7530
5.9828

6.1963
6.3950
6.5809
6.7556
6.9205
7.0771
7.2262
7.3689

(compare Appendix). Figure 6 shows calculated
curves and observed values of the reduced viscosity

ri(nzkT) &rI~&,

where m is the mass per molecule, and Tg and vg are
taken from Table I.

The isotopic thermal diffusion ratio ky is given by
(compare Appendix)

15 ~ ~ ~ ~ m'(2) —» "(1)

8 (»+ N, )s m, + m, fl&'~(2)

a The values are taken from M. Kotani, Proc. Phys. Math. Soc. Japan
24, 76 (1942).

T. Kihara and T. Hikita, Fourth Symposium oe Combustion,
(Williams 8r. Wilkins Company, Baltimore, Maryland, 1953), p.
458.

7 S. Chapman and T. G. Cow&ling, The 3IathemaHca/ Theory of
Non- Vniform Gases (Cambridge University Press, London,
1939).

where m. &/rg& is the ratio of the masses of the two lcinds

of molecules (m,)~s), and ~r/(~r+ Ns) and»/(»+&s)

M. Kotani, Proc. Phys. -Math. Soc. Japan 24, 76 (1942).
T. Kihara and M. Kotani, Proc. Phys. -Math. Soc. Japan 25,

6O2 (i.953).
'0 Hirschfelder, Bird, and Spotz, J. Chem, Phys. 16, 968 (1948);

17, 1343 (1949).
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TAaLz VI. Functions defined by (5.2) for (6, 12) potential (5.5),
g being given by (5.6).'

).0- g +

0.000
0.025
0.050
0.075
0.100
0.150
0.200

0.250
0.375
0.500
0.625
0.750
0.875
1.000

1.125
1.250
1.375
1.500
1.625
1.750
1.875
2.000

F '(r)

0.5063
0.4950
0.4912
0.4889
0.4873
0.4857
0.4853

0.4858
0.4897
0.4964
0.5050
0.5150
0.5259
0.5376

0.5499
0.5626
0.5756
0.5887
0.6019
0.6151
0.6283
0.6413

F,t(g)

1,4344
1.4073
1,3976
1.3909
1.3859
1.3789
1.3745

1.3720
1.3710
1.3756
1.3842
1.3960
1.4104
1.4270

1.4456
1.4657
1.4872
1.5099
1.5336
1.5581
1.5833
1.6092

F2'(0)

1.1564
1.1201
1.1070
1.0982
1.0916
1.0828
1.0779

1,0755
1.0779
1.0883
1.1046
1.1251
1.1486
1.1749

1.2028
1.2321
1.2622
1.2930
1.3240
1,3549
1.3857
1.4162

4.433
4.310
4.264
4.232
4.207
4, 171
4.146

4.129
4.111
4.117
4.141
4, 179
4.228
4.286

4.353
4.425
4.503
4.586
4.672
4.761
4.852
4.944

-05 I.O

F1G. 7. Reduced thermal diffusion ratio compared with curves for
I.ennard-Jones (6, e) potential.

From the discrepancies at high temperatures shown
in Figs. 6 and 7, we may draw the following conclusion:
In order to explain the transport properties of neon and
argon (perhaps also krypton and xenon) at high tem-
peratures it is necessary to choose e& 12. In other words,
the repulsive wall of the intermolecular potential for
rare gases is harder than that of the (6, 12) potential.

a The values are taken from T. Kihara and M. Kotani, Proc. Phys. -Math,
Soc. Japan 25, 602 (1943). Appendix to Section 5

The effective cross sections (5.1) depend, in general,
are their mole fractions. The "reduced thermal diffusion
ratio, "

'N&tl2 m& —m2 ' l5 2Q&'&(2) —50"&(1)

8 0&'&(2)

is shown in Fig. 7, together with Stier's" observations,

-n $- I

(O)„[7&
&I T&IIII V

-o, 6

T 0&'&(r) =0&'&(r+1)—(r+-', )0&"(r).
dT

In particular, if P(') do not depend on the relative speed
g, 0&'&(r) are independent of the temperature. Although
the derivatives of 0«& (r) do not necessarily vanish for
real molecules, the absolute values for

T' nd' (&1&) T' Qd&(2&)

1=1) 2) ''
Qo& (1) d T' Q&'& (2) dT'

are always small.
The expression (5.7) for the viscosity is an approxi-

mation which has been obtained by neglecting deriva-
tives of the second and higher orders and also neglecting
third and higher powers of the first derivative. This ap-
proximation is simpler and more accurate, and therefore
more convenient for numerical calculations, than Chap-
man and Cowling's~ second approximation

"0,7

where

SkT ( b, P

20&'&(2) ( b»bg2 —b&p)

bg& ——40&'& (2),

b&2 ——7Q "&(2) —20&2& (3),

FIG. 6. Reduced viscosity compared with curves for
Lennard-Jones (6, e) potential.

"I-.G. Stier, Phys, Rev. 62, 548 (1942).

301
bye —— 0&'& (2)—70&'& (3)+f1&'&(4) "

12
"The accuracies of these two approximations are quantitatively

compared by E, A. Mason, J. Chem. Phys. (to be published).
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Similarly we obtain the thermal diGusion ratio for
isotopes (5.8), which is simpler and, nevertheless, more
accurate than Chapman and Cowling's first approxi-
mation,

S3S9 5$$ f/2
kg=

(rti+ n,)' r&t,+m,

15[20&'&(2)—50&"(1)j[50&'&(1)+0&"(2)jX-
0&'&(2) [550&'&(1)—20Q&'& (2)+40&'& (3)+80&'&(2))

As regards the thermal conductivity for monatomic
gases, our approximation is

25hT 2 t 0&'&(3) 7p '
C.— 1+—

160&'&(2) 21 EQ&"(2) 2J

neighbors in the cubic structure. In order to explain
the stability of the cubic structure in comparison to the
hexagonal one, we must therefore choose a potential
with a more or less wide bowl, in so far as the additivity
of the intermolecular potential is assumed,

Let us further assume, besides the assumption of the
additivity, that the zero-point energy does riot play
any essential role regarding the stability of the cubic
closest packing structure. (The solid helium seems to be
hexagonal!) Then we can straightforwardly calculate
the crystallization energies of these two lattice struc-
tures. "The comparison by means of the Lennard-Jones
(6, I) potential is shown in Fig. 8, from which it follows
that the Lennard-Jones potential cannot explain the
absolute stability of the cubic structure.

If we choose for another example

where C„is the heat capacity at constant volume for
thc unit IQRss.

U(r) = Uo
6 rt(ro —r)

CXP
n —6 to

(rop e

~—6& r)

6. Stability of Crystal Structures

Before we draw our final conclusion, we want to
examine another property of rare gases.

Neon, argon, krypton, and xenon crystallize at low
temperatures in a lattice of cubic closest packing. For
this lattice structure, the number of nearest neighbor
molecules around one molecule is j.2, the number of
second Dearest neighbors, which are 2~ times farther
away from the original molecule, is 6; and the third
nearest neighbors are 3: times farther away. For hex-
agonal closest packing, on the other hand, the number
of hrst nearest neighbors is also 12, that of the second
nearest neighbors, which are 2' times farther away, is
also 6; but the third nearest neighbors are (2+a3) & times
farther away, a little nearer than the third nearest

~h
&&&s

iZ iW ~S ~8

W

the cubic structure can become more stable than the
hexagonal structure for n&8.675 (see Fig. 8). Two
Lennard-Jones potentials, rt =9, and 12, and the poten-
tial (6.1) with the critical value it =8.6"IS are compared
ln Fig. 9.

Thus we obtain the following result: In order to ex-
plain the stability of the cubic structure as compared
to the hexagonal one, we have to choose a potential
bowl wider than that of the Lennard-Jones (6, 12) po-
tential in so far as the additivity of the intermolecular
potential is assumed. This is in accordance with the
conclusion reached in Sec. 3 which is also based on the
assumption of additivity.

Of course the assumption of additivity for the poten-
tial is not strictly true. However, the result obtained
on the basis of this assumption is more useful than a
result bRscd on the assumption of some RrbltiRry devlR-

tion from the additivity.
Now, consulting the result of Sec. 5, let us draw our

final conclusion. The real ir&terr&toleeular potential for rare
gases has a wider bowl and a harder repulsive wal/ thae
the Lertrtard Jo&Ms (6, 12)-potential.

Although the Lennard-Jones potential cannot be
considered as completely satisfactory, it is still highly
valuable, since the value of a molecular model consists

chief in its ability to be treated mathematically.

FIG, 8. Relative stability of the cubic closest packing structure
to the hexagonal; Cq jC, is the ratio of the crystallization energy
of the hexagonal to the cubic. Curve "u" is for I.ennard-jones
I'6, n) potential, curve "b" is for the potential (6.I),

III. THE SECOND VIRIAL COEFFICIENT FOR
NONSPHERICAL MOLECULES

Having treated of monatomic gases, we investigate
in this part the second virial coefficient of polyatomic
molecules. Our way of proceeding is again to introduce
a suitable model by use of which the second virial coe%-
cient can be integrated analytically. The erst two sec-
tions are preliminaries and our model of molecules will

be introduced in the last section.

"T.K~hara and S. Koba, J. Phys. Soc. Japan 7, 348 I,'1952).



Now we consider two convex bodies labelled 3 and 8
and in each body choose a coordinate origin Og and Og.
The supporting function, the r function, the volume,
and the surface area will be denoted by

H~(8, q), u(8, v),

I'io. 9. Width of the bowl of intermolecular potentials. The full
line is for I.ennard-Jones (6, 12) potential, the broken line for
I-ennard-Jones (6, 9) potential, the chain line for the potential
(6.1) with m=8.675.

V. Rigid Convex Body

A body is called convex if any line segment whose
end points are inside lies entirely in that body.

Let us choose a coordinate origin 0 inside a (Axed)
convex body and take coordinates of direction 0 and q

(0~8~~, 0~ q ~ 2'). For any direction (8, q), there is
one and. only one plane which is in contact with the
convex body and whose normal from the origin is
in the direction (8, q). This plane is named the sup-

porting plane in the direction (8, q); the perpendicular
distance from the origin to the supporting plane is called
the supporting function, when it is considered as a
function of 8 and p. The supporting function will be
denoted by H(8, q). Let us further denote by (H)A„ the
average value of H(8, p) with respect to all directions:

must be first evaluated.
Considering the identity

(81~ 81ii
Xi + i

d8dy,
&81 8P

8 ( Brg) 8 (8rgI+
88 & 8y) ay & 88

(Bra Br') (81ii &rgp

&88 aq) & 88 apj
(Br' Br'

X
&88 81 )'

H Ji(8, rp), rii(8, y), Vii, Sii,

respectively. Keeping Og and the orientation of 3
fixed, and keeping the orientation of 8 also fixed, let
us move 8 around A keeping contact from outside.
Then the locus of O~ forms the surface of another con-
vex body, whose r function is

r(8, «)=1~(8, V)+1~*(8, V),
where

rii*(8, q) = —rii(m —8,
'—y),

see Fig. 10(b). The volume of this third convex body,

(81~ Bric
&~a=s t ~(1~+ra ) ) +

J 0 ( 88 88 J

(H)A, = ~ H(8, y) sin8d8d p,
4~ &o "o

which is independent of the choice of the origin O.
Let us first assume that the convex body has a smooth

surface and that each supporting plane has a contact of
the first order with the convex body. Let r(8, q) be the
radius vector from the origin to the contact point of
the body with the supporting plane in the direction
(8, q); compare Fig. 10(a). Then the surface area 8 and
the volume V of the convex body are given by

FIG. 10. Convex
bodies and their sup-
porting planes.

respectively.

$2%

gag~
~ o 88 Bq

(8
r

(
—X—)d8d

&88 8g)
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f'Bragi* Brg) (BrA Brs*~
X /+r~.

( X
/

d8dg
~l B8 Bp ( B8. Bp

grated over the whole surface of the convex body,

t1f 1 1y
m=—

, -f —+—fds,J 2&m, g2)
(7 6)

where R& and E2 are the principal »dll of «rva««. "
J „qB8 B&]

' In terms of M, (7.5) becomes

since the integral of the divergence expression vanishes.
Making use of this relation and the other similar one, we
obtain

1
2] V+—mS f.) (7 7)

V =V+V+ I Ir *
( X id8dp
& B8 B~)

t' Brg Brs
+ I rg

~
X ~d8dp,

B8 By j
oI' ln tcrIQs of thc suppol tlIlg ful1ctlons

V~a= V~+ Va

+ i Hs(~ 8, v) —X d8dv
80 8y

Brg Bfg
+ J' H~{8, p) X d8dp.

cI9

Up to this point the orientation of the convex body B
has been kept fixed. The next step is to take the average
with respect to all orientations of the body B.When Hg
in the third term on the right-hand side is averaged with
respect to orientations of the body B, the value no
longer depends on 8 and q and is equal to (Hii}A„.The
average value of the third term, therefore, is (Hii}AvSA',
the fourth term is similarly (H~}A,Sii. Hence the average
value of' V~~ becomes

8. Parallel Bodies of a Convex Core

Definition: Let C be any convex bo'dy. A convex
body formed by all points whose distances from C are
smaller than or equal to —,'p is called the parallel body of
C in the distance &p. I et us call the original body C the
core of the parallel bodies.

e first consider as the core a convex polyhedron.
Let the length of each edge be li, l2, , 4 (S being the
number of edges of the polyhedron) and the angle of the
ith edge be n; (i=1, 2, . LV).

A parallel body of this polyhedron in the distance

~p ls composed of scveI'Rl pRrts of R sphere of dlRIIlctcl'

p, several parts of a circular cylinder of diameter p, and
several parts of a plane. The surface integI'al of the
mean curvature, 3f, of this parallel body is therefore
given by

2
M= —X (surface area of all spherical parts)

p

+—X (surface area of all cylindrical parts).
p

Since the spherical parts, when they are gathered to-
gether, form a complete sphere„we have

(V&&)A VA+ VB+p4)A, &~+(H~)A t-iB. (7.4)

N p+-XP (s —o.,)—l, =2~p+Mo. (g.1)
p i j 2

(8.2)

2

After we have obtained this relation it is no longer
necessary to assume that the convex body has a smooth p

surface and that each supporting plane has a contact
of the first order with the convex body.

If the two convex bodies A and B are of the same
shape, i.e., if Vg= Vg ——V, Sg=5g=Sand Hg=Hgg=H,
(7.4)' becomes Mo ——-', Q (m n;)t;—

2(V+ (H}A,S). (7.5}

The neat formula (7.4) or (7.5) was recently found
by Isihara;" the improved proof given above is partly
due to Minkowski. "

For the evaluation of (H)A„ the following theorem is
useful: 4s(H)A„ is equal to the mean curvature inte-

'4 A. Isihara, J. Chem. Phys. 18, I446 (1950); A. Isihara and
Y. Hayashida, J.Phys. Soc. Japan 6, 40 and 46 (1951);T. Kihara,
J. Phys. Soc. Japan 8, 686 (1953).

'5 H. Minkowski, Math. Ann. 57, 447 (I903).

is the surface integral of the mean curvature for the
core. Similarly, the surface area 5 of the parallel body is

where So is the surface area of the core; and the volume

'6 As regards the proof, compare for example, Y. Honnesen and
%.Fenchel, Theori der konwxen Eoer per (Ergebnisse der Mathe-
matik und ihrer Grenzgebeite, Bd. 3, Heft I, Julius Springer,
Berlin, 1934).
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V is TABLE VIII. Interatomic distances. '

V= —p'+ p~op'+ pSpp+ Vp
6

(8 4)

Vo being the volume of the core.
Although we have been considering a polyhedron as

the core, (8.1), (8.3), and (8.4) hold for parallel bodies
of any convex core, since any convex body can be repre-
sented as a limit of polyhedrons.

In particular, when the core is a perpendicular prism
of height l, area of the base f, and circumference of the
base c, we have

Vo= fl, S=o2f+ /c, Mp=7cl+(7c/2)c .(8.5)

From (8.5), taking the appropriate limit, we obtain

Vp=0, So=2f, iVp= (7r/2)c, (8.6)

Molecule Bond Distance in A

H —H 0.74
N —N 1.094
C—0 1.15
C—H' 1.093
C—F 1.42
C —C 1.33
C—H 1.087

(Angle H —C—H is 2 tan '(2&) = 109'30'.)
C6H6 C—C 1.39

C—H 1.08

H2
N2
CO2
CH4
CF4
C2H4

' The values are taken from L. Pauling, The Katgre of the Chemical Bond
(Cornell University Press, Ithaca, New York, 1948), pp. 167-172 and p. 196.

the surface area So, and the surface integral of the mean
curvature Mo of the core are also tabulated.

For spherically symmetrical molecules the second
virial coeKcient 8 can be written in the form

Core Sp Mo

TABLE VII. Volume Vp surface area Sp and surface integral of the
mean curvature Mp of convex cores. 8=

r=o

—U(r)
1—exp dbp (r),

kT

Sphere
(radius a) 3 '4~a'

Rectangular parallelopiped
(length of each edge
tI, t2, l3) tft2t3

Regular tetrahedron
(length of one edge l) 6 '2 &t3

Regular octahedron
(length of one edge l) 3 .'2&t3

Circular cylinder
(length l, radius a) ma't

Circular disk
(radius a) 0

Rectangle
(length of each side tI, l2) 0

Regular triangle
(length of one side l) 0

Regular hexagon
(length of one side l) 0

Thin rod
(length l) 0

3&t2

3~2t2

2 a(a+t)

2m'a

6l tan '(2&)

12l cot '(2&)

( a+t)

2tIt2

2-13:tm

~(tI+t..)
2 '3mt

3&3t2 37rt

2 (lll2+l1l3+t2t3) vr (lI+t.+t8)

where bp(r) is the second virial coefficient for a rigid
sphere with diameter r: bo(r) =2prrp/3. Similarly, for our
core model 8 is given by

p
P=OO- —U(p)

1—exp db (p)+ b (0).
kr

In this expression b(p) is the second virial coefficient
for the rigid parallel body of our molecular core in the
distance —,'p.

By consulting the statistical mechanical procedure of
deriving (1.2), it is clear that b(p) is equal to one-half
of (7.7),

b(p) = V+—MS,
4x

for a thin plate (l=p), and

Vo=O, So=0, Mo (8.7)

TABLE IX. The cores of molecules.

Hydrogen H~: thin rod connecting 2 H's (length 0.74A)

Vp=o, Sp=o, 3fp =2.32A.

for a thin rod (f=p, c=0).
The values of Vo, So, and ufo for several typical

shapes are given in Table VII.

9. Core Model

We assume an appropriate convex core inside each
molecule and define the intermolecular distance p as
the shortest distance between two cores. The inter-
molecular potential U is assumed to be a function of p
only, U= U(p), for which U(0) = ~.

In order to determine the core of a molecule, it is
necessary to have information about the interatomic
distances (and bond angles if any) of the molecule.
We prepare, therefore, Table VIII. Consulting this
table we fix our cores as in Table IX; The volume Vo,

Nitrogen Ng. thin rod connecting 2 N's (length 1.094A)

Vp ——0, Sp=0, Mp =3.44A.

Carbon dioxide CO2'. thin rod connecting 2 0's (length 2.30A)

Vp ——0, Sp=0, Mp = 7.23A.

Methane CH4. regular tetrahedron connecting 4 H's
(length of one edge 1.785A)

Vp =0.670A3 Sp = 5,52A Mp = 10.23A.

Carbon tetrafluoride CF4. regular tetrahedron connecting 4 F's
(length of one edge 2.32A)

Vp = 1.47A', Sp= 9,32A', Mp = 13.30A.

Benzene CSHs. regular hexagon connecting the mid-point of each C —H bond
(length of one side 1.93A)

Sp= 19.4A', M'p= 18.2A.Vp ——0,

Ethylene C&H4. rectangle connecting the mid-point of each C —H bond
(length of each side 0.89A and 1.95A)

Vp=o, Sp =3,47A') Mp =8.92A.
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where M, S, and V are given by (g.1), (8.3) and (p 4) TAnLK XI.The second
viriaicoefhcient

for�nonsphericai�molocttlo.

respectively. We have, - therefore,

2m ( 1
b(p) =—ps+Mops+

l So+—Moo lp

+ l Vo+ ~oSo
l (9 2)

4~ )
If we assume, furthermore, the I.ennard-Jones func-

tion for U(p)

f po)" oo (po)
U(p)= po

/

—
l

—
/

—l, n)no)3,
n m—( p ) nm—E p )

we obtain

2or ir Uo) ( Uoq
&=—po'&sl I+~ops'~sl

i f2) &.I2)

+I S+—ufo' lpop I

4~ ) i I T)
1

+l Vo+—MoSo l, (93)

H2

CO2

T'K

65.1
90.0

123
173
223
273
323
373
473

143
173
223
273
323
373
423
473
573
673

273
323
373
423
473
573
673
773
873

BA3

—30.3—9.2
4.9

15.1
20.0
23.2
25.1
25.7
26.0

—132—86.0—43.8—17.2—0.4
10.2
19.1
25.5
34.3
39.0

—241—170—119—84.0—56.6—22.5
—2.6
10.0
20.1

Reference

—10g1PZ

—0.4—0,3—0.2—0.1
0.0

0.1
0.2
0.3
0.4
0.5

F3(z)

—9.859—6.138—4.003—2,673—1.795

—1.189
-0.7587—0.4465—0.2170—0.0469

F2 (z)

—5.211—3.008—1.776—1.027—0.5424

—0.2151
0.0132
0.1758
0.2930
0.3779

F1(z)

—1.784—0.7761—0.2221
0.1091
0.3198

0.4600
0.5562
0.6234
0.6710
0.7045

TABLE X. Functions in the second virial coeScient (9.3)
for the core model (9.4).

CH4

CF4

273
298
323
348
373
398
423

273
323
373
423
523
573
673

—89.6—72.1—57.6—46.1—35.9
—27.2—19.3

—184—117
—71.6
—43.2—2.1

15.4
38.2

0.6
0.7
0.8.
0.9
1.0

1.1 '

1.2
1.3
1.4
1.5

1.6
1.7
1.8
1.9
2.0

0.0794
0.1729
0.2415
0.2911
0.3259

0.3493
0.3638
0.3715
0.3737
0.3718

0.3668
0.3594
0.3501
0.3396
0.3281

0.4392
0.4829
0.5134
0.5336
0.5459

0.5521
0.5534
0.5510
0.5457
0.5381

0..5287
0.5179
0.5062
0.4937
0.4806

0.7279
0.7436
0.7536
0.7591
0.7611

0.7603
0.7575
0.7528
0.7468
0.7396

0.7320
0.7228
0.7135
0.7038
0.6937

a The values are taken from T. Kihara, Nippon Buturigakukaisi 2, 11
(1947). The functions

G, (z) =—[ZF, (z)g, s =1, 2, 3,
d
dz

which are necessary for investigation of the Joule-Thomson effect, are also
tabulated in the same paper.

CgH4 273
298
323
348
373
398
423

—280—234—197—166—142—121—104

C6H6 316
33i
353
372
398

—2160—1890—1610—1520—1220

a The data are due to Holborn and Otto; the values are taken from Fowler
and Guggenheim, Statistica/ Thermodynamics (Cambridge University Press,
Cambridge, 1939), p. 283.

b K. E. MacCormack and W. G. Schneider, J. Chem. Phys. 18, 1269
(]950).

o A. Michels and G. W. Nederbragt, Physica 3, 569 (1936).
d K. E. MacCormack and W. G. Schneider, J. Chem. Phys. 19, 845, 849

(1951).
e A. Michels and M. Geldermans, Physica 9, 967 (1942).
f Francis, McGlasham, Hamann, and McManamey, J. Chem. Phys. 20,

1341 (1952).
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r" ( m s I s)
F,(s)= 1—exp~ — —+ ——'~ d(P)

"p E m —m$" e mf —)

f,+ l 1 ( m l [(n—m) t+s]/n.

Em) &~ m—)
For the case m=6„&=12,namely

thc values of Fp(s), Fp(s), Rncl FI(s) Rl'c glvcll ill Table X.
Making use of this table and observed values of the

second virial coeKcient given in Table XI, we can de-
terlninc pp and Up/t'I the results are given in Table XII.
Figure 11 shows the parallel body of the core in the

TAsl, K XII. The constants in the model (9.4) when
the core is chosen as in Table IX.

H2
N2
CO,
CH4
CF4
C2H4
C6H6

2.81
3.47
3.36
1.92
2.48
2.5
3 4a

39.4
124
309
378
372
470
830

R This value of po is taken from the lattice constant of graphite, since
observed values for benzene are not suKcient to determine both po and-"Uq.

0 I 2. 3 0 5A

Fj:G. 11. Shape and size of molecules according to the core model.

distance of —,'p~, which represents the shape and the size
of each molecule.
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