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GENERAL INTRODUCTION

HE equation of state of gases may be expressed in
the form

pr=ET(14Br1+Cr-24- - .),

where p is the pressure, v is the volume per molecule,
k is the Boltzmann constant, and 7T is the (absolute)
temperature. In this expression B, C, ---, which are
functions of the temperature, are called the second,
third, ---virial coefficients. These coefficients indicate
the deviation of a real equation of state from that of the
ideal gas. It is a great success of statistical physics
that these virial coefficients have been given in terms of
the interaction between molecules, or the intermolecular
potential. In fact, each virial coefficient is represented
as an integral of a function of the intermolecular
potential.

Besides the equation of state, the viscosity, isotopic
thermal diffusion, and other transport properties of a
gas are also intimately related to the intermolecular
potential. In fact, each one of these properties is ex-
pressed in terms of effective cross sections for molecular
collisions, which are also determined by the intermolecu-
lar potential.

The objective of the present article is to collect in-
formation about intermolecular potentials obtained
from these properties of gases, particularly that by
Japanese workers in recent years. In order to make the
limits of our problem clear, we confine ourselves to
pure, nonpolar, nonquantum gases.

For our purpose it is advisable to use suitable models
of molecules. A suitable model must have both of the
following two merits: (1) The model approximates

* This work was carried out at the University of Wisconsin
U. S. Naval Research Laboratory, Madison, Wisconsin.

real molecules (accuracy). (2) Necessary integrals can.
be evaluated for the model (integrability).

A molecular theory of matter is usually based upon.
the assumption that the total potential energy is equal
to the sum of the potential energies between pairs of
molecules. We also have to assume this additivity of the:
intermolecular potential.

I. THE SECOND AND THE THIRD VIRIAL
COEFFICIENTS FOR SPHERICAL MOLECULES

1. Introduction

For spherically symmetric molecules, such as the
rare gases, the potential energy between molecules, U,
is a function only of the distance between the centers of
molecules, . In terms of #;;, the distance between two
molecules 7 and 7, and by means of a function

J)=exp[—U(r)/kT]—1, 1.1y

the expressions for the second and the third virial
coefficients, derived from statistical mechanics,' are

B=—} f Flr)dri=—2n fo "o, (12)

——1 f f Fr) frio) f(rag)dridra,  (1.3)

where
dr;=dx.dydz,

(%, ¥:, 2:) being the position of the molecule 2.
There is a temperature, Tz, such that

B(T)>0 for T>Ts5,

B(T)<0 for T<Tp.
The T is called the Boyle temperature, because Boyle’s-
law holds better for this temperature than for other

temperatures. Relative to the Boyle temperature, let
us define a volume vp by

dB
V= (T—'—) .
dT/ r=r1p

It may be suitable to call this v van der Waals”
molecular volume, since it is equal to the term con-
cerned with molecular volume in van der Waals”

1J. E. Mayer and M. G. Mayer, Statistical Mechanics (John
Wiley and Sons, Inc., New York, 1940).
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TasiE I. Boyle temperature 7'p and van der Waals
volume vp for the rare gases.

TB°K B A3
Ne 123 35.5
A 410 67.4
Kr 594 78.5
Xe 772 114

equation of state. The values of 75 and v for the rare
gases are given in Table 1.

Taking the characteristic values 75 and vp as units,
let us consider dimensionless “reduced virial coeffi-

clents”
p(D)2D, (1)
Ts UB Tg Vg

in which B* is normalized as

B*(1)=0, [dB*(t)/dt]1=1.

The B* and C* for the rare gases, which have been ob-
tained from observed values given in Table II, are
shown in Figs. 2 and 5 in the following two sections.

‘TABLE II. Second and third virial coefficients for the rare gases.

T°K B A3 C X102 A6 Reference
Ne 65.2 —34.8 15.5 a8
90.6 —13.6 12.2
123 0.2 6.1
173 10.7 5.5
223 15.1 6.3
273 17.7 7.0
373 19.7 e
473 21.7
573 22.8
673 22.8
A 173 —106.8 v 8
223 —62.7 48
273 —36.7 46
323 —18.3 33
373 —-7.1 31
423 1.9 27
473 7.8 27
573 18.6 (X
Kr 273 —104.5 76 b
323 —71.1 62
373 —479 54
423 —31.2 48
473 —18.5 44
523 —-9.5 45
573 —-19 44
Xe 290 —229 175 °
323 —184 146
373 —135 113
423 —100.9 96
473 —75.4 84
523 —55.2 74
573 —-39.1 67

a L. Holborn and J. Otto, Z. Physik. 33, 1 (1925).
b Beattie, Brierley, and Barriault, J. Chem. Phys. 20, 1615 (1952).
¢ Beattie, Barriault, and Brierley, J. Chem. Phys. 19, 1222 (1951).
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2. Square-Well Potential?

The simplest model for which both the second and the
third virial coefficients have been calculated is that of
the square-well potential :

o for r<o
U(r)={——e for o<r<go (2.1)
0 for go<v

(Fig. 1). Here ¢ means the collision radius between
molecules or, in our case of one-component gases, the
diameter of a molecule.

Substituting (2.1) into (1.1), we have

—1 for r<o
fr)=< x for o<r<go
0 for go<r,
where
x=exp(e/kT)—1. (2.2)
| UGr)
|
|
!
! G go Fic. 1. Square-well
Of-—-—- —- —- = potential.

The second virial coefficient (1.2) is expressed as a
linear function of this «:

B=4y[1— (g8—1)x], (2.3)
in which
™
'Z)()E“tf3

is the volume of the molecule.
Relations between 7'z and e and between vy and v
are calculated to be

€ g
—=In , (2.4)
Ty g—1
v g
—B=g3 In (2.5)
4’00 g3—1

The third virial coefficient can be expressed as a
cubic function of «;

3C=TO—3xl V4322 @ — 53], (2.6)
2 T, Kihara, Nippon Sugaku-Buturigakukaisi 17, 11 (1943).
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Here I are values of S fdridr, integrated over the
following regions.

I©: rp<o, r3<0,  753<0;

I o<rp<go, r3<o, 73<o;

I®:  o<r;p<go, o<riz<go, ryu<o;
I®: o<rp<go, o<ri<ge, o<rya<go.

Let W(a, b, ¢) generally be the value of S fdridr,
integrated over the region

712<a, 7’13<b, 1’23<C.

Since W is symmetric with respect to a, b, ¢, it is suffi-
cient to calculate it in the case a=b, a=c. It is clear
that W is given by

W(a, b, c)=4x f V(a, b, 7)r*dr,
0

in which V (e, b, ¢) means the volume of the overlapping
part of two spheres of radii ¢ and b having a distance
between centers:

V(a,b,r)=(z/12)[r*—6r(a®+b>)+8(a3+5%)
_3(a2_b2)2r—1]
when ¢—b=r=a-Jd,

= (4m/3)b?
when 7<a—b.

We obfain, therefore,
W(a, b, c)= (w*/18)[ a®+b5-+ct+ 184252
+16 (0c*+c*a*+a®h®)
—H{at (0?04 (P a)+cH (a0 } ]
when a=<b-c,
= (167%/9)b%*
" when e=b+c.

In terms of this function, 7¢® in (2.6) are given by
I®O=W(o, o, 0),
IW=W(go,0,0)—ID,
I®=W (g0, go, 0)—I®—2] O,
I®=W((go, go, go)—I O =31V -3]®,
Thus we obtain finally
C=2v[5— (g°—18g*+32¢°— 15)x
+ (— 254364 — 32g°— 18g2-+16)a
— (6g5—18¢*4-18¢2—6)x*] for g=2,
=206?[ 5— 17+ (32¢°— 18g2—48)x?
— (5g5—32¢°4-18g24-26)2%] for g=2.
For example
C=202(5—172+13622—1622%) for g=2.

Figure 2 shows these virial coefficients in the reduced
forms. From Fig. 2 and consulting Fig. 3, we see the
following facts:
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F16. 2. Reduced virial coefficients compared with curves for the
square-well potential.

1. The third virial coefficient C* is sensitive to the
shape of the potential, whereas the second virial coeffi-
cient B* is insensitive to it.

2. If the bowl of the assumed potential is not suffi-
ciently wide, the calculated C* is too small.

3. The adequate value of g for the rare gases is
about 2.0.

3. Lennard-Jones Potential

Assuming that
A m 70\ n 7o\ ™
U<r>=————=Uo[ ()~ (_) ] G.1)
VA 4 n—m\ v n—m\v7r

A u>0, n>m>3,

Lennard-Jones® evaluated the second virial coefficient
(1.2) in the form of a power series. Integrating by parts,

- c x
1.0
Fic. 3. Re-
duced third virial
coefficient calcu- -
lated for the
square-well po- O-5F
tential, |
o 1
0

3 Lennard-Jones, Proc. Roy. Soc. (London) A106, 463 (1924),
Proc. Phys. Soc. (London) A43, 461 (1931),
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he first obtained from (1.2)

2r 1 dUW)
B=—— | —
3J, kT ar

ex [—U(r)]r"df'
U I

Expanding exp(u/r"kT) of exp[—U(r)/kT] intc a
power series and integrating term by term, he obtained

r AN\ » tm—3\y*
p=-=(=) o )—, (3.2)
n \kT =0 n ¢!

N (kT) min
YE—\—_— .
ET\ A
Two neutral nonpolar molecules at a sufficiently
large distance apart attract each other with a potential
inversely proportional to the sixth power of the dis-

tance. It is reasonable, therefore, to choose m=6.
The expression (3.2) can be transformed into

27l‘ Uo
B=—7#F; (—),
3 kT
where

3w 1 stm—3\/n\t/ m [(n—m) t+3] [n
1

(The suffix 3 indicates that this function is one of the
F, in section 9. In the case m=06, n=12, the F, are
given in Table X.) In the case m =6, the Boyle tempera-
ture, T, and the van der Waals volume, vp, are related
to the model constants as follows:

(3.3)

kTp=4.5TU,, vp=1.00r for n=9;
ETp=3.44U,, v3=1.20r for n=12;
ETp=117U,, vp=246r# for n= o,

The series expansion technique can also be applied
to the third virial coefficient.* Let us transform the
integration variables of (1.3) as follows:

C= —%fff(”m)f(ﬁa)f("za)dﬁd”

1

712 >713,

= % i ((”ﬁ f " ) ) [0

X R*dRdxd (y?),

frio) f(r13) f(r28)dTids

712 >723

(3.4)
where (see Fig. 4)

() R=nd, [(1—2f+yIR=r.
4T, Kihara, J. Phys. Soc. Japan, 3, 265 (1948); 6, 184 (1951).

R=712,
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First we carry out the integration with respect to R.
Integrating by parts we have
— [ 10 10 )RR
0

f“’ 9f(r12) f(r13) f (res)
0 OR

O

R%dR. (3.5)

Here the product of f functions can be written as the
sum

f(r12) f(r1a) f(r2s) = fO— fO— fO— f®
+ f(r12)+ f(r13)+ f(723),
in which
f(o) = exp[—-— (kT)“l{ U(r)+ U(713)+ U("%)}]_ 1,
fO=exp[— (RT){U (r12)+U(r15)} ] 1,
f®=exp[— (RT)H{U (r12)+ U (r25)} ]—1,
f®=exp[— (RT){U (r1s)+U(r:s)} ]—1.

For m> 6, the integral of the sum of these seven terms
can be evaluated by the sum of the seven integrals,

3
Fic. 4. The (x,%)
domain of integration
for (3.4).
yR
1 |

I——— xR —

i R |
each integral concerning each term. Therefore, in the
same way as that of Lennard-Jones, we can expand
(3.5) into

where
1 /im—6 14-gmtgm ¢
Y Ly PR s
2 " (14 gr-nmymin
_(1+£n)6/n{_.___.§.n—_lt
()
nm t
— 1+ ")6'"{*———}
T Ay
m. m t
— e+ ,.)6,,,{_____} +1+£6+n6],
T Gy

g=R/ru= @+ n=R/ra=[(1—a)+y" ]
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Thus we obtain

472 (1 -y}
i )
n l—O 1—(1 —y2)}

In the case we need, m=6, C1 becomes indefinite. We
may, however, take the limit m—6, since in the original
form this value is not any singular point:

Cdxd(y?). (3.6)

_ A+E) A () )
lim Ci=In |- £6 In:
m->6 +&+n gr(14-Em )
A9 (&™)
+7 In—m——.
(141

Let us fix m equal to 6, and confine ourselves to the

(6, ) potential
6 7o\ " n 70\ &
() -=(0)] e
6\ 7 —6\7r

n—
Taste III. Coefficients in the series expansion (3.8) of the third
virial coefficient for Lennard-Jones (6.9) and (6.12) potentials.

Ur)= Uo[

hereafter.

¢ v¢(9) ve(12)
0 +1.561 +1.383
1 —2.940 —2.562
2 +0.929 +1.215
3 0.716 0.766
4 0.503 0.343
5 0.291 0.047
6 0.105 —-0.112
7 —0.04 —-0.168
8 —0.14 —0.164
9 —0.20 —0.134
10 —0.23 —0.098
11 —-0.23 —0.067

Our result (3.6) may be written as

(3.8)

t=0

T/ A\¥" =7 6 Up\d¥n
v0=_(_) =-—r°3( BT ’
6\ kT 6 \nu—6 kT

y 1 u (kT)“/" nyg 6 Up®dn
2 2T\ \ _IZ(n—6kT) '
The values of v:(n), which have been obtained by
numerical calculation of the double integrals, are given
in Table IIL.°
Comparison with observed values is shown in Fig. 5.

Consulting the conclusions of the preceding section,
we see that the bowl of the Lennard-Jones (6, 12) po-

C=100 3 7:(n) (g)

where

51In the case of (6, 12) potential, a highly accurate table for C
is given by Bird, Spotz, and Hirschfelder, J. Chem. Phys. 18,
1395 (1950).
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Fic. 5. Reduced virial coefficients compared with curves for
Lennard-Jones (6, #) potential.

tential is not sufficiently wide for molecules of the rare
gases.

4. Inverse-Power Repulsive Potential

When the attractive part of the intermolecular poten-
tial is negligible, the model

U(r)=n", (4.1)

may be used. The exponent #» may be seen as a measure
of the hardness of the molecules.

In this case the (v+1)-th virial coefficient is written
in the form &,(A\/kT)*"/", b, being independent of the
temperature. In particular, from (3. 2), the second virial
coefficient is

A>0, 7>3

(DG e
() (A 4.
3 n kT
and, from (3.8), the third virial coefficient is
=" () @3)
“\er

The values of vy(n) are given in Table IV.
This inverse-power repulsive potential, and therefore
the results (4.2) and (4.3), can be applied to gases at

TasLE IV. Numerical factor in the third virial coefficient (4.3)
for the inverse nth power potential.

n yo(n)

6 2.032
9 1.561
12 1.383
15 1.291
18 1.233
%) 1.000
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extremely high temperatures, such as gases produced
by detonations.$

II. CRITICISM OF THE LENNARD-JONES
POTENTIAL

5. Transport Properties of Gases

In Sec. 3 we came near concluding that the bowl
of the Lennard-Jones (6, #) potential with #=12 is too
narrow for molecules of the rare gases. So long as
we use the (6,#) potential we will have to choose
n<12 if we want a wider bowl. In reality, however, the
state of affairs is not so simple since the choice of small
n exerts some influence on properties of the gas at high
temperatures.

Transport properties of a gas at moderate densities
can be expressed in terms of effective cross sections
Q®,y defined by’

Q(D(’)zﬁf dDO VI exp(—V2)dV,
0

¢(l>=f (1—cos'0)gbdb, (6.1)
0

=125 r=l, I+1, 42,---.
TaBLE V. Functions defined by (5.2) for (6, «) potential (5.3),
¢ being given by (5.4).2

¢ Fi(g) Fal(§) F2(5) Fg2(r)
0.00 0.5000 1.5000 1.0000 4.0000
0.01 0.5017 1.5034 1.0036 4.0106
0.02 0.5036 1.5068 1.0074 4.0218
0.03 0.5056 1.5102 1.0116 4.0335
0.04 0.5077 1.5137 1.0159 4.0457
0.05 0.5099 1.5173 1.0205 4.0585
0.075 0.5159 1.5268 1.0330 4.0927
0.100 0.5225 1.5369 1.0468 4.1299
0.125 0.5296 1.5478 1.0617 4.1700
0.150 0.5369 1.5595 1.0774 4.2127
0.175 0.5444 1.5719 1.0939 42578
0.200 0.5521 1.5849 1.1115 4.3053
0.250 0.5674 1.6126 1.1464 4.4055
0.375 0.6048 1.6872 1.2376 4.6777
0.500 0.6401 1.7648 1.3264 49615
0.625 0.6733 1.8426 1.4090 5.2403
0.750 0.7045 1.9189 1.4846 5.5053
0.875 0.7338 1.9929 1.5537 5.7530
1.000 0.7614 2.0635 1.6167 5.9828
1.125 0.7874 2.1308 1.6753 6.1963
1.250 0.8119 2.1945 1.7294 6.3950
1.375 0.8351 2.2551 1.7800 6.5809
1.500 0.8571 2.3125 1.8275 6.7556
1.625 0.8780 2.3673 1.8725 6.9205
1.750 0.8981 2.4197 1.9153 7.0771
1.875 09172 2.4698 1.9560 7.2262
2.000 0.9357 2.5183 1.9950 7.3689

a The values are taken from M. Kotani, Proc. Phys. Math. Soc. Japan
24, 76 (1942).

8 T. Kihara and T. Hikita, Fourth Symposium on Combustion
(lellams & Wilkins Company, Baltimore, Maryland, 1953), p

7 S. Chapman and T, G. Cowling, The Mathematical Theory of
Non-Uniform Gases (Cambridge University Press, London,
1939).
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Here g is the relative velocity, & the impact parameter,
6 the deflection angle in the orbit of relative motion, and

V= (m*/2kT)}g, m*=

In particular, when the Lennard-Jones (6, #) poten-
tial

reduced mass.

U(r)y= r—r—pur$

is adopted, the QW are given in the form

2wkT
wm=( )( )rl@),
2ET

in which
1/(n—6)
2kT( )\“)

The functions F,'(¢) have been calculated for (6, =)
potential,® i.e.,

(5.2)

—ur~8 for r>a
Ur)= [ (5.3
© for r<a,
1w
f=——, (54)
2 kTab
and for (6, 12) potential > i.e
u 7o\ 12 7o\ ©
Ulr)=———= Uo[(——) —2(—~) ], (5.5)
2 7 r
1 MZ ZUQ
O N (5.6)
28T N kT
The results are given in Tables V and VI.
The viscosity, 5, of a pure gas is given by
SkT [ 3 /Q®(3) T\?
(o) e
seo@)l ' 10\ao(2) 2

(compare Appendix). Figure 6 shows calculated
curves and observed values of the reduced viscosity

n(mkT)tvgt,

where m is the mass per molecule, and 7'z and vp are
taken from Table I.

The isotopic thermal diffusion ratio kr is given by
(compare Appendix)

M— iz 200(2) —5QM (1)

15 VAU 2
, (5.8)
Q®(2)

T8 (matm2)? mat-mg

where m1/ms is the ratio of the masses of the two kinds
of molecules (;>m,), and 7,/ (n14n2) and 1,/ (n1+n,)

8 M. Kotani, Proc. Phys.-Math. Soc. Japan 24, 76 (1942).

9T, Kihara and M. Kotani, Proc. Phys. -Math. Soc. Japan 25,
602 (1953).

10 Hirschfelder, Bird, and Spotz, J. Chem. Phys. 16, 968 (1948) ;
17, 1343 (1949).
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TaBLE VI. Functions defined by (5.2) for (6, 12) potential (5.5),
¢ being given by (5.6).®

iy () Fal (¥) Fa2(6) Fg(§)
0.000 0.5063 1.4344 1.1564 4.433
0.025 0.4950 1.4073 1.1201 4310
0.050 0.4912 1.3976 1.1070 4.264
0.075 0.4889 1.3909 1.0982 4.232
0.100 0.4873 1.3859 1.0916 4.207
0.150 0.4857 1.3789 1.0828 4171
0.200 0.4853 1.3745 1.0779 4.146
0.250 0.4858 1.3720 1.0755 4.129
0.375 0.4897 1.3710 1.0779 4.111
0.500 0.4964 1.3756 1.0883 4.117
0.625 0.5050 1.3842 1.1046 4.141
0.750 0.5150 1.3960 1.1251 4.179
0.875 0.5259 1.4104 1.1486 4.228
1.000 0.5376 1.4270 1.1749 4.286
1.125 0.5499 1.4456 1.2028 4.353
1.250 0.5626 1.4657 1.2321 4.425
1.375 0.5756 1.4872 1.2622 4.503
1.500 0.5887 1.5099 1.2930 4.586
1.625 0.6019 1.5336 1.3240 4.672
1.750 0.6151 1.5581 1.3549 4.761
1.875 0.6283 1.5833 1.3857 4.852
2.000 0.6413 1.6092 1.4162 4944

a The values are taken from T. Kihara and M. Kotani, Proc. Phys.-Math.
Soc. Japan 25, 602 (1943).

are their mole fractions. The “reduced thermal diffusion
ratio,”

kT*Ek )

[ n1Mg Wh—’”lg]_l 15 2QM(2) —50M(1)
rfl——m—mmm —— _———
(m1+-19)? my+ms 8 Q®(2)

is shown in Fig. 7, together with Stier’s! observations.

"""L logiol7 (MKTYT v, )

’”‘Jm(T/Tu)
los ) 0.5 7o

.08 L

F16. 6. Reduced viscosity compared with curves for
Lennard-Jones (6, #) potential.

L. G. Stier, Phys. Rev. 62, 548 (1942).
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Fic. 7. Reduced thermal diffusion ratio compared with curves for
Lennard-Jones (6, #) potential.

From the discrepancies at high temperatures shown
in Figs. 6 and 7, we may draw the following conclusion:
In order to explain the transport properties of neon and
argon (perhaps also krypton and xenon) at high tem-
peratures it is necessary to choose #>>12. In other words,
the repulsive wall of the intermolecular potential for
rare gases is harder than that of the (6, 12) potential.

Appendix to Section 5

The effective cross sections (5.1) depend, in general,
on the temperature as

d
T80 =00+ )= 0+ D).

In particular, if $® do not depend on the relative speed
g, 2 (r) are independent of the temperature. Although
the derivatives of @® () do not necessarily vanish for
real molecules, the absolute values for

Tt dQO(1) Tt dQO(2)
Q1) 4Tt Q®(2) 4Tt

ey f=1,2, e

are always small.

The expression (3.7) for the viscosity is an approxi-
mation which has been obtained by neglecting deriva-
tives of the second and higher orders and also neglecting
third and higher powers of the first derivative. This ap-
proximation is simpler and more accurate, and therefore
more convenient for numerical calculations, than Chap-
man and Cowling’s” second approximation

SkT b12?
n= (H— ),
20®(2) b11b22— 0192
b11=4Q®(2),
b1a=TQ(2) —2Q®(3),

where

301 .
b= (2)— 790 (3)+Q® (4). 2
2

12 The accuracies of these two approximations are quantitatively
compared by E. A, Mason, J. Chem. Phys. (to be published).
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Similarly we obtain the thermal diffusion ratio for
isotopes (5.8), which is simpler and, nevertheless, more
accurate than Chapman and Cowling’s first approxi-
mation,

VAUZ)
- (n1+mn2)? my+-my
15020 (2) — 520 (1) J[520 (1) +0(2)]
QO(2)[5500 (1) — 2020 (2) 4400 (3)+822(2) ]

TMI—me

kr

As regards the thermal conductivity for monatomic
gases, our approximation is

25kT 2 /Q®(3) T\?
oY)
162®(2) 21\Q®(2) 2
where C, is the heat capacity at constant volume for
the unit mass.

6. Stability of Crystal Structures

Before we draw our final conclusion, we want to
examine another property of rare gases.

Neon, argon, krypton, and xenon crystallize at low
temperatures in a lattice of cubic closest packing. For
this lattice structure, the number of nearest neighbor
molecules around one molecule is 12, the number of
second nearest neighbors, which are 2} times farther
away from the original molecule, is 6; and the third
nearest neighbors are 3% times farther away. For hex-
agonal closest packing, on the other hand, the number
of first nearest neighbors is also 12, that of the second
nearest neighbors, which are 2} times farther away, is
also 6; but the third nearest neighbors are (2+%)* times
farther away, a little nearer than the third nearest

Fic. 8. Relative stability of the cubic closest packing structure
to the hexagonal; ®,/®. is the ratio of the crystallization energy
of the hexagonal to the cubic. Curve “a” is for Lennard-Jones
(6, ) potential, curve “b” is for the potential (6.1).
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neighbors in the cubic structure. In order to explain
the stability of the cubic structure in comparison to the
hexagonal one, we must therefore choose a potential
with a more or less wide bowl, in so far as the additivity
of the intermolecular potential is assumed.

Let us further assume, besides the assumption of the
additivity, that the zero-point energy does not play
any essential role regarding the stability of the cubic
closest packing structure. (The solid helium seems to be
hexagonal ) Then we can straightforwardly calculate
the crystallization energies of these two lattice struc-
tures.!® The comparison by means of the Lennard-Jones
(6, ) potential is shown in Fig. 8, from which it follows
that the Lennard-Jones potential cannot explain the
absolute stability of the cubic structure.

If we choose for another example

¢ expn(ro-y)* z (3)6], 6.1)

n—06 70 n—o6\ 7

vi-v]

the cubic structure can become more stable than the
hexagonal structure for #<8.675 (see Fig. 8). Two
Lennard-Jones potentials, #=9, and 12, and the poten-
tial (6.1) with the critical value »=28.675 are compared
in Fig. 9.

Thus we obtain the following result: In order to ex-
plain the stability of the cubic structure as compared
to the hexagonal one, we have to choose a potential
bowl wider than that of the Lennard-Jones (6, 12) po-
tential in so far as the additivity of the intermolecular
potential is assumed. This is in accordance with the
conclusion reached in Sec. 3 which is also based on the
assumption of additivity.

Of course the assumption of additivity for the poten-
tial is not strictly true. However, the result obtained
on the basis of this assumption is more useful than a
result based on the assumption of some arbitrary devia-
tion from the additivity.

Now, consulting the result of Sec. 5, let us draw our
final conclusion. The real intermolecular potential for rare
gases has a wider bowl and a harder repulsive wall than
the Lennard-Jones (6, 12) potential.

Although the Lennard-Jones potential cannot be
considered as completely satisfactory, it is still highly
valuable, since the value of a molecular model consists
chiefly in its ability to be treated mathematically.

III. THE SECOND VIRIAL COEFFICIENT FOR
NONSPHERICAL MOLECULES

Having treated of monatomic gases, we investigate
in this part the second virial coefficient of polyatomic
molecules. Our way of proceeding is again to introduce
a suitable model by use of which the second virial coeffi-
cient can be integrated analytically. The first two sec-
tions are preliminaries and our model of molecules will
be introduced in the last section.

13T, Kihara and S. Koba, J. Phys. Soc. Japan 7, 348 (1952).
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F16. 9. Width of the bowl of intermolecular potentials. The full
line is for Lennard-Jones (6, 12) potential, the broken line for
Lennard-Jones (6,9) potential, the chain line for the potential
(6.1) with n=38. 675

7. Rigid Convex Body

A body is called convex if any line segment whose
end points are inside lies entirely in that body.

Let us choose a coordinate origin O inside a (fixed)
convex body and take coordinates of direction 6 and ¢
(0=6=m, 0= ¢=<2r). For any direction (§, ¢), there is
one and only one plane which is in contact with the
convex body and whose normal from the origin is
in the direction (0, ¢). This plane is named the sup-
porting plane in the direction (4, ¢); the perpendicular
distance from the origin to the supporting plane is called
the supporting function, when it is considered as a
function of 8 and ¢. The supporting function will be
denoted by H(8, ¢). Let us further denote by (H)a the
average value of H (0, ¢) with respect to all directions:

(Hyp= f f H(0, o) sinfdbd ¢, (7.1)

which is independent of the choice of the origin O.

Let us first assume that the convex body has a smooth
surface and that each supporting plane has a contact of
the first order with the convex body. Let r(d, ¢) be the
radius vector from the origin to the contact point of
the body with the supporting plane in the direction
(8, ¢); compare Fig. 10(a). Then the surface area S and
the volume V of the convex body are given by

ar or
S——ff —|dfd o (7.2)
a0 do
and
27 r
y=1 f f ( ——)d&dgo, (7.3)

respectively.
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Now we consider two convex bodies labelled 4 and B
and in each body choose a coordinate origin O4 and Osg.
The supporting function, the r function, the volume,
and the surface area will be denoted by

HA(G, ¢)7 rA(OJ ¢)7 VA’

HB(O: ¢): 1’1;(0, ¢): VB: SB:

respectively. Keeping O4 and the orientation of 4
fixed, and keeping the orientation of B also fixed, let
us move B around A keeping contact from outside.
Then the locus of Op forms the surface of another con-
vex body, whose r function is

r(ea ¢)=rf1 (0) g0)+1'13*(9, ¢))

S4,
and

where
1‘3*(0, (P) = 13(7_0’ - ‘P);
see Fig. 10(5). The volume of this third convex body,

(91’,:_ 61'13
Vap= 3ff(l'A+l'B*)[( )
a6 a0
6rB

ora *
X <—+ )]da@,
de Odo
arg

a ary a
Lo (e ()]
a9 de de a0

must be first evaluated.
Considering the identity

dra Ory drg* dry
=2rp*- »—X»—)—m-( X—
900 Jo a0 do
dry Oorg*
_—rAn
a de

Fic. 10. Convex
bodies and their sup-
porting planes.
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we have

org* arA dra  Jrg*
G Sy | L
(9<p a6 do
rg Ory
~2]‘1‘1‘3 ( )d0d§0,

since the integral of the divergence expression vanishes.
Making use of this relation and the other similar one, we
obtain

ory O0ru
Van=Vat Vit f f rg* (—~><- i
do

al'B 61’3*
+ffrA ( )d0d¢>
do

or, in terms of the supporting functions

Vap=Va+Vs
aI‘A
+ [ [Hst—0, 0
a0
~—><—1d0d¢.
a9 de

+ f f 2.0, 0|

Up to this point the orientation of the convex body B
has been kept fixed. The next step is to take the average
with respect to all orientations of the body B. When H s
in the third term on the right-hand side is averaged with
respect to orientations of the body B, the value no
longer depends on 8 and ¢ and is equal to (H g)s. The
average value of the third term, therefore, is (H g)aS4;
the fourth term is similarly (H 4)S 5. Hence the average
value of 'V 45 becomes

(Vasw=Va+Vp+(HpwSa+Ha)nS 5.

After we have obtained this relation it is no longer
necessary to assume that the convex body has a smooth
surface and that each supporting plane has a contact
of the first order with the convex body.

If the two convex bodies 4 and B are of the same
shape,ie.,if Va=Vp=V, Sy=Sp=Sand Hy=Hp=H,
(7.4) becomes

4
dfd e
@

(7.4)

2(V4-(H)nS).

The neat formula (7.4) or (7.5) was recently found
by Isihara;“ the improved proof given above is partly
due to Minkowski,!s

For the evaluation of (H)s the following theorem is
useful: 4w(H)» is equal to the mean curvature inte-

(7.5)

4 A, TIsihara, J. Chem. Phys. 18, 1446 (1950); A. Isihara and
T. Hayashida, J. Phys. Soc. Japan 6, 40 and 46 (1951); T. Kihara,
J. Phys. Soc. Japan 8, 686 (1953).

18 H, Minkowski, Math. Ann. 57, 447 (1903).
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grated over the whole surface of the convex body,

11 1
M—Ef—(—+— as,
2\R, R,
where R; and R, are the principal radii of curvature.!®
In terms of M, (7.5) becomes

1
2(V+——MS).
4

8. Parallel Bodies of a Convex Core

(7.6)

(1.7

Definition: Let C be any convex body. A convex

body formed by all points whose distances from C are
smaller than or equal to 4p is called the parallel body of
C in the distance 3p. Let us call the original body C the
core of the parallel bodies.
Bt We first consider as the core a convex polyhedron.
Let the length of each edge be 1, Iy, - - -, Ix (V being the
number of edges of the polyhedron) and the angle of the
ith edge be a; (=1, 2, ---N).

A parallel body of this polyhedron in the distance
1p is composed of several parts of a sphere of diameter
p, several parts of a circular cylinder of diameter p, and
several parts of a plane. The surface integral of the
mean curvature, M, of this parallel body is therefore
given by

2
M =-X (surface area of all spherical parts)

P

1
+—X (surface area of all cylindrical parts).
p

Since the spherical parts, when they are gathered to-
gether, form a complete sphere, we have

2
M=-X (surface area of a sphere of diameter p)

0
+- XZ (m— a) li=2mp+M, (8.1)
P =1
Here
N .
M=3% (r—a)l; (8.2)
=1

is the surface integral of the mean curvature for the
core. Similarly, the surface area S of the parallel body is

S=mp*+Mop+So,

where Sy is the surface area of the core; and the volume

(8.3)

16 As regards the proof, compare for example, T. Bonnesen and
W. Fenchel, Theorie der konvexen K oerper (Ergebnisse der Mathe-
matik und ihrer Grenzgebeite, Bd. 3, Heft 1, Julius Springer,
Berlin, 1934).
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™
V= gp3+%M '+ 5Sop+ Vo, (8.4)

Vo being the volume of the core.

Although we have been considering a polyhedron as
the core, (8.1), (8.3), and (8.4) hold for parallel bodies
of any convex core, since any convex body can be repre-
sented as a limit of polyhedrons.

In particular, when the core is a perpendicular prism
of height /, area of the base f, and circumference of the
base ¢, we have

Vo'—‘—_ﬂ, So= 2f+6l, Mo=7l'l+ (7!"/2)6 (85)
From (8.5), taking the appropriate limit, we obtain
V0=0, So=2f, Mo= (7I’/2)C, (86)

TasLE VII. Volume V, surface area .S, and surface integral of the
mean curvature M, of convex cores.

Core Vo So Mo

Sphere
(radius @)

Rectangular parallelopiped
(length of each edge

3 Y4gad 4ma? 4ra

I, by I hidds  2(ldetlilstlols) w(li4-l4-15)
Regular tetrahedron

(length of one edge /) 67127%3 342 6] tan™1(2%)
Regular octahedron

(length of one edge /) 371213 3#22 121 cot™1(2%)
Circular cylinder

(length /, radius a) wa?l 2ma(a+1) (ra+1)
Circular disk

(radius a) 0 2wa? ’a
Rectangle

(length of each sidel1,1;) 0 201, w(l+12)
Regular triangle

(length of one side /) 0 271342 271371
Regular hexagon

(length of one side ) 0 3432 3wl
Thin rod

(length 1) 0 0 wl
for a thin plate (!=0), and

Ve=0, So=0, Mo=mnl, 8.7

for a thin rod (f=0, ¢=0).
The values of V,, Sy, and M, for several typical
shapes are given in Table VII.

9. Core Model

We assume an appropriate convex core inside each
molecule and define the intermolecular distance p as
the shortest distance between two cores. The inter-
molecular potential U is assumed to be a function of p
only, U= U (p), for which U (0)= c.

In order to determine the core of a molecule, it is
necessary to have information about the interatomic
distances (and bond angles if any) of the molecule.
We prepare, therefore, Table VIII. Consulting this
table we fix our cores as in Table IX; The volume V,,

COEFFICIENTS
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TaBLE VIII. Interatomic distances.®

Molecule Bond Distance in A
H, H-H 0.74
N N-N 1.094
CO. C-0 1.15
CH, C-H" 1.093
CF, C—F 1.42
C.H, C-C 1.33

C-H 1.087
(Angle H—C—H is 2 tan™1(2%) = 109°30'.)
CeHs C-C 1.39

C—H 1.08

a The values are taken from L. Pauling, The Nature of the Chemical Bond
(Cornell University Press, Ithaca, New York, 1948), pp. 167-172 and p. 196.

the surface area .Sy, and the surface integral of the mean
curvature M of the core are also tabulated.

For spherically symmetrical molecules the second
virial coefficient B can be written in the form

B= f mw[l—-exp_:;(r)]dbo(r),

r=0

where bo(r) is the second virial coefficient for a rigid
sphere with diameter #: by(7) = 27#*/3. Similarly, for our
core model B is given by

p=00

B —Ulp)

[1— exp }db (0)+5(0). (9.1)

p=0

In this expression b(p) is the second virial coefficient
for the rigid parallel body of our molecular core in the
distance 2p.

By consulting the statistical mechanical procedure of
deriving (1.2), it is clear that b(p) is equal to one-half
of (7.7),

1
b(p) =V+—MS,
4

TaBLE IX. The cores of molecules.

Hydrogen Ha: thin rod connecting 2 H's (length 0.74A)
V=0, So=0, My=2.32A.
Nitrogen N2: thin rod connecting 2 N’s (length 1.094A)
Vo=0, So=0, Mo=3.44A.
Carbon dioxide COg: thin rod connecting 2 O's (length 2.30A)
Vo=0, Se=0, Mo=".23A.

Methane CHg: regular tetrahedron connecting 4 H's
(length of one edge 1.785A)

Vo=0.670A3, So=35.52A?%, My=10.23A.
Carbon tetrafluoride CF4: regular tetrahedron connecting 4 F's
(length of one edge 2.32A)

Vo=14T7A3, S0=9.32A2 Moy=13.30A.
Ethylene CsHy: rectangle connecting the mid-point of each C—H bond
(length of each side 0.89A and 1.95A)

Vo=0, So=3.47A2, My=8.92A.
Benzene CsHe: regular hexagon connecting the mid-point of each C —H bond
(length of one side 1.93A)

Vo=0, So=19.4A2, My=18.2A.
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where M, S, and V are given by (8.1), (8.3), and (8.4), Tasre XI. Thesecond virial coefficient for nonspherical molecules.

respectively. We have, therefore,

2 1 T°K B A3 Reference
™
b(p)=—p3+ M op*+ (So—l-——M & o H. 65.1 —303 a
3 dr 90.0 —92
123 49
1 égg 15.1
20.0
+ (V0+—MUSO). (9.2) 273 232
T 323 25.1
373 25.7
If we assume, furthermore, the Lennard-Jones func- 473 26.0
tion for U (p)
N, 14713 —132 a8
n 173 —86.0
m 00 n 00 m !
223 —
Ulp)= Uo[ (—) - (—) ] n>m>3, 5 —58
‘ 373 10.2
we obtain 423 19.1
4;3 25.5
I U, U, 573 343
B= _Po3Fe( ) +M0902F2( ) 673 390
3 kT kT
CO, 273 —241 b
1 Us 323 —170
+(So+—M02)PoF1(*—) ig; _130
4 kT o
473 —56.6
1 573 —22.5
673 —2.6
+ ( Vot—M oSo), 9.3) 773 10.0
4 873 20.1
TaBLE X. Functions in the second virial coefficient (9.3) CH, 273 —89.6 o
for the core model (9.4).® 298 —-72.1
323 —57.6
—logioz Fs3(2) Fa(2) F1(2) g?g : gg;
—-04 —9.859 —5.211 —1.784 398 —27.2
—-0.3 —6.138 —3.008 —0.7761 423 —19.3
—0.2 —-4.0(7)3 —1.776 —0.2221
—0.1 —2.673 —1.027 0.1091 _
0.0 —1.795 —0.5424 0.3198 CF. m —ie ¢
0.1 ~1.189 —0.2151 0.4600 f}g —ﬁg
0.2 —0.7587 0.0132 0.5562 e
0.3 —0.4465 0.1758 0.6234 523 —2.1
0.4 —0.2170 0.2930 0.6710 573 154
0.5 —0.0469 0.3779 0.7045 673 38.2
0.6 0.0794 0.4392 0.7279 CH, 273 — 280 .
0.7 0.1729 0.4829 0.7436 208 234
0.8 0.2415 0.5134 0.7536 323 —lo7
0.9 0.2911 0.5336 0.7591 348 —166
10 0.3259 0.5459 0.7611 373 Z 142
. 398 —121
1.1 0.3493 0.5521 0.7603
12 0.3638 0.5534 0.7575 423 —104
1.3 0.3715 0.5510 0.7528
1.4 0.3737 0.5457 0.7468 Ce¢Hs 316 —2160 f
1.5 0.3718 0.5381 0.7396 331 —1890
353 —1610
1.6 0.3668 0.5287 0.7320 372 —1520
1.7 0.3594 0.5179 0.7228 398 —1220
1.8 0.3501 0.5062 0.7135
1.9 0.3396 0.4937 0.7038
2.0 0.3281 0.4806 0.6937 a The data are due to Holborn and Otto; the values are taken from Fowler

and Guggenheim, Statistical Thermodynamics (Cambridge University Press,

Cambndge 1939), p. 283.

a The values are taken from T. Kihara, Nippon Buturigakukaisi 2, 11 b K. E. MacCormack and W. G. Schneider, J. Chem. Phys. 18, 1269

(1947). The functions

(1950).
o A. Michels and G. W. Nederbragt, Physica 3, 569 (1936

).
d d K. E. MacCormack and W. G. Schneider, Chem Phys. 19, 845, 849
Gs(2) =E[ZF3(Z)], s=1,2,3, (1951). o
e A. Michels and M. Geldermans, Physica 9, 967 (1942).
which are necessary for investigation of the Joule-Thomson effect, are also f Francis, McGlasham, Hamann, and McManamey J. Chem. Phys. 20,

tabulated in the same paper.

1341 (1952).
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where

@ m 2 n 3z
ro= [ [1—exp(— ~+-——)]d<ss>
0 n—méE* n—mEm

s w1 tm—s
2R
7 t=0 f! n
n t m [(n—m) t-+s]/n
()G
m n—m

For the case m=6, n=12, namely

R (CECIIS

the values of F3(2), F»(z), and F1(z) are given in Table X. F
Making use of this table and observed values of the H

second virial coefficient given in Table XI, we can de- ; ;

termine po and U,/k; the results are given in Table XII.

Figure 11 shows the parallel body of the core in the
CH, CF,
TaBLE XII. The constants in the model (9.4) when Ot 2 3 4 5A

the core is chosen as in Table IX.
F16. 11. Shape and size of molecules according to the core model.

e Uo/k°K distance of 3po, which represents the shape and the size
H, 2.81 39.4 of each molecule.
N, 3.47 124
CO, 3.36 309 ACKNOWLEDGMENT
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