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M. Annis,* W. CuestoN,} anpD H. PRIMAKOFF

Washington University,} St. Louts, Missourt

The problem of the estimation of parameters determined statistically from physical measurements is
discussed. Emphasis is placed on the fundamental role played by the prior probability distribution for the
parameter. The validity of “maximum likelihood” estimation is examined with particular reference to the
case of the estimation of a parameter which actually has an unique but (originally) unknown magnitude.
Situations in which the prior probability distribution for the parameter is completely unknown are treated
and a method is described for the calculation of this distribution from appropriate experimental data.
Many examples are given throughout from the field of cosmic radiation.

I. INTRODUCTION

HE current paper is the outgrowth of an attempt
by the authors to understand certain statistical
considerations associated with the determination of
elementary particle parameters on the basis of cosmic-
ray measurements. We could not discover the answers
to several questions which appeared relevant to the
problem in any references easily available to physicists
and were therefore forced to work out the conclusions
below—many of our results are no doubt implicitly or
perhaps even explicitly contained in the literature on
probability and statistics. Nevertheless, we communi-
cate these results in their present form in the hope that
others may possibly find them useful, and with the
intention of arousing further interest in the subject.

In physics, a situation frequently arises in which one
desires to determine a physical quantity, which we shall
call 6, characteristic of either a class of individual
particles (e.g., the mean-life of a class of individual
(unstable) particles of the same kind) or a class of
systems of particles (e.g., the temperature of a class of
stars) ; however, this physical quantity 8 cannot in any
sense be “measured” directly. Instead, one measures
directly another set of # quantities, x;, %2, ¥3---%n,
which we shall call x;, which are not related to 6 in a
simple one-to-one fashion (i.e., § is not uniquely de-
termined by the set x;). What we do know on the basis of
some theoretical consideration is the probability that
the set wx; lie in the interval dx; (i.e., that, simul-
taneously, x; is between x; and x14dx1, x2 between x,
and xo+dx,, etc.) for a given value of . We shall
denote this probability function by G(@; %1, %2 - - %)
Xdx1dxz- - -dxny=G(0; x;)dx;. (In our notation, the
quantity before the semi-colon is a parameter and the
quantities after the semi-colon are variables.) However,
having measured the set «; directly, we should like to
know the probability that 8 lies in d@ for these given
values of the set x;, We shall denote this latter
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probability (the so-called posterior probability) by
H(x1, %2---%,;0)d0=H (x;;60)d0. The question now
arises: “What relationship, if any, exists between the
two probability functions G(0; »;)dx; and H (x,; 6)do?”

In order to answer the question posed above, we de-
fine another probability function (the so-called prior
probability), P(6)dd. P(6)df is the probability that, in
the type of experiment performed, 6 lies in df, inde-
pendent of the values of the x;. In the same manner,
we may define the probability that, in a measurement
of the set x;, the x; lie in dx;, independent of the values
of 6. We designate this latter probability by the expres-
sion Q (w1, %2, - - %a)d%1- - - dx,=Q (x:)dx:.

It is not superfluous to mention that all the four
probability functions defined may be understood, in a
physical context, in the sense of the corresponding,
in principle observable, relative frequencies; the nor-
malizability of these probability functions with respect
to their variables may then be demanded. It should
also be mentioned that our whole treatment can be
generalized in a straightforward manner to the case of
the existence of several parameters 6y, ---, 0n; the
essential conclusions obtained below are also valid in
the case of such a generalization.

II. CASE OF KNOWN PRIOR PROBABILITY
DISTRIBUTION

An intimate relationship exists among the probability
functions defined in Sec. I. To exhibit this relationship,
we define a function S(6, x,)d0dx; as the simultaneous
probability that @ lies in df while the set «; lie in dx;. By
the rules of combining probabilities, this simultaneous
probability is the probability that the «; lie in dx; for
given 6, multiplied by the probability that 6 lies in db,
independent of the values of x;; i.e.,

S0, x;)dxd6=P60)do-G(0; x.)dx;. (1a)

On the other hand, this simultaneous probability can
also be expressed as the probability that 6 lies in df for
given values of the x; multiplied by the probability that
the #; lie in dx;, independent of 9; i.e.,

S(B, x,-)dxid0= Q(x,)dx.H(x,; o)de. (lb)
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Combining the results of Egs. (1a) and (1b), we may
write a relationship between G(8; x:)dx; and H (x;; 6)d8
usually attributed to Bayes, namely,

O (%) H (v:; 0)dwidd=P0)GO; x)dbdx;  (2a)

(2b)

or

H(xi;6)=P0)GO; x:)/Q ().

Equation (2b) may be written in a slightly altered form
if we remember the normalization of H(x;;6). Inte-
grating both sides of Eq. (2a) over the variable 9, we
note that

Q(xo)di- f H (i3 6)d8= Qi)
=[fP(0)G(6; xi)de]-dxi, (2¢)

it being understood that all integrals contained in this
paper extend over the complete range of the integration
variable unless otherwise explicitly stated. Therefore,
we see that
POGO; ;)
H(wi; ) =—— (2d)

f POG®; x)d0

We can also write an expression analogous to Eq. (2¢)
for the probability function P (§), via Eq. (2a). This is

P)= f Q) H (x;; 0)dx;. (2e)

One should now remember that G(6; x;)dx; is usually
known on the basis of theoretical considerations. It is
to be noted, therefore, that any statements we make
about H (#;; 6) must depend upon our knowledge of the
function P(0)d6. If this last function is known via some
physical theory and/or a set of previously performed
experiments, Eq. (2d) offers us an exact solution for
the posterior probability function H (x;;6)d8; i.e., we
can state what the probability is that 8 lies in df with
our measured values of the set x,. It is also obvious from
Eq. (2d) that H(x;;0)d9 cannot be determined if
P(6)dd is completely unknown. In many cases, it is,
however, not necessary that P(6)d9 be completely
known as a function of 6 in order to make statements
with significance in a probability sense. Such cases will
be discussed in detail in subsequent sections of this
paper.

We shall now examine more carefully the case where
P(6)dd is a known function of the parameter 4. The
existence of the probability function H (x;;60)d8 allows
us here to answer the question, “What is the prob-
ability that the parameter 6 lies in d6 for a given set of
the #;?”” The answer to this question is given by ex-
hibiting H (x;; 6) as in Fig. 1(a) or 1(b).
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F1G. 1. The posterior probability function, H (x:; ), plotted as
a function of 4, (a) in the case where a single estimate of 6 might
be given, and (b) in the case where no single estimate of 8 can be
quoted.

When H (x;; 6) has the form shown in Fig. 1(a) (i.e., a
single, well-defined peak), there is little doubt that one
can quote a single value of 6 which has “statistical sig-
nificance.” On the other hand, if H(x;;6) looks some-
what as in Fig. 1(b) with widely different 6’s having
comparable probabilities, it is perhaps unwise to quote
a single value for . However, in a particular case, the
information in Fig. 1(b) could conceivably still be
valuable.

When H(x;;6) is well peaked as in Fig. 1(a), it is
frequently useful to quote a single “statistically sig-
nificant” value or estimate for 8, viz., 6., with an ap-
propriately defined standard deviation. (One should
point out that this standard deviation is taken as the
standard deviation of the posterior probability distri-
bution about 6. and hence is one measure of the
statistical accuracy of the estimate.) Of course one can
also easily answer any question concerning the prob-
ability of 8 lying within a certain range about 6es. This
procedure is only useful if the value of 8. and the
standard deviation is not sensitive to the method used
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to calculate .5 (assuming a “reasonable” method is
used). A “reasonable” estimate of 8 is one which lies
somewhere near the probability maximum in Fig. 1(a).
From Eq. (2b), it is evident that H(x;;0) might be
well peaked if P(f) is well peaked, even though G(8; x;)
is not a well-peaked function of 8. Hence, a ‘“‘reasonable”
estimate of # must take into account both P(f) and

More explicitly, any “reasonable” method of esti-
mating @ should have a standard deviation, ¢(f.s), not
much larger than the minimum possible value of this
quantity (see Eq. 7). 62(est) is defined by

0* (Bers) = f (OO0t H (553 6)d0=F— 20 0o, (3)
where

f 0°H (x;; 6)d0=6".

1. One method of evaluating es; is to quote fest="0m 5.,
where 0, is the value of 6, for which H (x;;60) has a
maximum; i.e., 6 p. is the most probable single value
of 8. The defining equation for 6;,.,. is

0H

—(;; 0)] =0 4)

a6 0=0m.p.

and the standard deviation, from Eq. (3), is
0'2(0mp)=02"“2é 0m.p.+0m.p.2- (5)

2. Using Eq. (3), it is possible to choose a value of
0.5t which minimizes the standard deviation of the esti-
mate. To do this, we differentiate Eq. (3) with respect to
0.5t and set the derivative equal to 0, yielding a defining

H(®,;m)
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Fic. 2. The posterior probability, H (¢:; IT), plotted as a func-
tion of II=pcB. The relative position of the different estimates of
11 is also shown.
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equation for 8. One finds

Best=é (6)

with standard deviation
2 (0)=6—p. )

3. To minimize the relative standard deviation, we
solve Eq. (3) for 6®(fest)/best?, and set the derivative of
this quantity with respect to fes equal to zero. We
obtain

0,=02/8 8)
with relative standard deviation

a*(6)) /02 =1—62/6~. 9)

Example from the Theory of Multiple
Coulomb Scattering

One measures the n-projected angles of multiple scattering of a
particle in the # plates of a multiplate cloud chamber and from
this scattering data, one desires to find an estimate of II= pcg for
the particle (p=momentum; cB=velocity), assuming that II
does not change while the particle is traversing the chamber. In
this case the parameter 6 becomes the physical quantity II and
the x; become ¢;, the projected angle of multiple scattering in the
ith plate.

From the theory of multiple Coulomb scattering, the probability
that ¢; lies in doi, f(¢i)dei, is given as

J(@i)des= (2rGQ)~* exp{ —:*/2GQ}d¢:. (10)

Equation (10) is an approximation, good only for ¢:2<2GQ,
where G and Q are defined by Olbert.! However we shall assume
that Eq. (10) holds for all ¢, the resultant error in the final
answer being less than 10 percent.

In the above approximation, G depends only on the material
in the plates, while Q depends on the material in the plates, and in
addition, is inversely proportional to II2. Hence we can define a
quantity 4 independent of II by the equation

A=T(2GQ)* (1
so that Eq. (10) becomes
f(@:)d¢i= N1l exp{ —:*I1/ A%} deps,

where N is a normalization factor, independent of ¢; and II.
Since the angles of multiple scattering in the % plates are
statistically independent, it is evident that

G{I; ¢s) = f(d1) f(d2) - - - f($n)
2
=N1nnn exp _A_2 El ¢i2}~

(12)

(13)

Let us now assume that the prior probability distribution for II is
a power law, i.e.,
<1,

14
=1, (14

0;
PO =0 o,

where N, is a normalization factor, and v is an empirically de-

termined constant (y~3 in many cases). H (¢:; II) may then be

evaluated from Eqs. (2d) and (13), (14) yielding

0; m e nI<II,
A

N3II*™7 expy —— z ¢i2}§ I =10,. (15)

H(¢pi; M=

z =1

H (¢:; D) is plotted in Fig. 2 as a function of II.

1S, Olbert, Phys, Rev. 87, 319 (1952).
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The most probable value of II is, from Eqgs. (15) and (4),

nsy

N>, (16)

AL :
P (m/2) A2 )7
i=1
where m=n—v. Using Eq. (3), we find that the corresponding
standard deviation is (for <K, p.)
o (n.p.) =Ilwa.p.{2+1/m—2(2/m)T (1+m/2) /T G+m/2)}}. (A7)

Under the same assumption, the mean value of II, i.e., the
estimate of II which minimizes the standard deviation, is (Egs.
(15) and (6))

'(14m/2)

(H>Av=l,—(m/1 (Ex #2374, (18)
with standard deviation (Eq. 7)
o (W) = (g 2 DG Em/D) 1] (19)

2 T4m/2) )

and the estimate of II which minimizes the relative standard devia-
tion is (Egs. (15) and (8))

M= (/= "1 TEE DA (3 g, 0
with standard deviation (Eq. (9))
3 2 T(14m/2)\}
a(nl)_nl{l—mH-F—Z(%er/z) . @1)

Each of these estimates is shown in Fig. 2. For all of these
estimates

Lim o (Megt) = Mest (2m) . (22)

(For m=6, Eq. (22) agrees to within a few percent with Eqs. (17),
(19) and (21).)

From Egs. (16) to (21) it is evident that for m= (r—v)>6,
and for MoK, p.; Mm.p., (II)a and II; are nearly the same. If
n>>v, all of these estimates are effectively independent of P(IT),
the prior probability distribution in II, so that uncertainties in
detail about P(II) make little difference in the II estimates.

We have mentioned previously that whenever it is
desired to ascribe a numerical value to a statistically
determined physical parameter such as 6, it is essential
that at least some aspects of the nature of the prior
probability function P (6)d6 be known. We have treated
the case in which P(#)df is a known function of 6.
It is, however, not necessary that P(6) be completely
known as a function of 8; on the other hand, one must
at least know whether P(6) is: (1) a continuous func-
tion of 6, (2) a linear combination of é functions of 6, or
(3) a single é-function of §. Put in another way, one
should know: (1) whether all values of 6 are possible,
(2) whether only certain discrete values of 8 are possible,
or (3) whether 8 has a certain unique but as yet un-
known value. On the other hand, if P(8)df is completely
unknown, steps must be taken, in general, to delimit
at least some of its aspects. Such steps will now be
described.

III. PROCEDURE FOR FINDING AN UNKNOWN
PRIOR PROBABILITY DISTRIBUTION

In the previous section, we have assumed that the
prior distribution in the physical parameter, P(0)d0, is
known. This is often not the case. Indeed, in some situa-
tions this prior distribution may actually be the chief

821
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Fic. 3. A plot of N;(x(), the number of times the variable x had
the measured value x%), versus .

quantity which is sought. Before we outline the pro-
cedure for finding P(f) under these circumstances, we
shall describe the experimental work that must be done.

The experiment described in II (i.e., the observation
of a set of the x; for one particular value of 6) is re-
peated M times. If P(6) is a function which is different
from zero for more than one value of 6, then one expects
that 6 will not be unique in this set of M experiments.
Each of the experiments will, in general, correspond to a
different value of 6. Let us assume for simplicity that
there is only one value of x in each of the M experi-
ments (i.e., in each experiment G(6;x;) becomes
G(9; x)); then the result of the experiments will look,
for example, somewhat as illustrated in Fig. 3, where
N;j(x)Ax is the number of times that the measured
value « falls between x) — (Ax/2) and x@ 4+ (Ax/2), Ax
being the difference between adjacent x(?’s. Since 8 is
not fixed during the M experiments, we do not expect
N;(xD) to be well peaked unless P(0) is well peaked.
To convert the NV ;(x(?) to a relative frequency distribu-
tion, we remember that

f‘, NN Az=M,

=1
so the distribution sought is simply
Fi) =N j(=9)/ M,

where F;(x(")Ax is the relative frequency with which
x lies between 2P —Ax/2 and P+ Ax/2. In the limit
of small Ax and large M, F;(x(") becomes F(x), a
continuous distribution in x. It is to be noted that the
(prior) probability distribution for x, previously called
Q(x), must now be identified with the relative fre-
quency distribution in x, F ().

The problem then is to find P(§) having been given
F(x) from experiment and knowing the distribution
function, G(9; «), from theory. By use of Eq. (2c), we
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find
Lim F,(a9)=F(x)=Q(x) = f PO)G®; x)ds. (23a)

Ax—0

Equation (23a) is a linear integral equation of the first
kind, and has a unique formal solution for the unknown
function, P(6), viz.,

P@O)= f P){GO; ))'dx',  (23b)

where

f (GO; +)}GO; v)do=6(x—2').  (23¢)

Thus, in the case where P(6) is unknown one must
repeat the measurement of x (8 ot fixed) to determine
F(x)=Q(x) and then use Eq. (23b) to calculate P(6).
Of course, in the special case where P(f) is a linear
combination of & functions of 6 or a single § function of
6, Eq. (23b) will simply indicate that fact.

Comparison of Egs. (23b) and (2e) (or of Egs. (2c)
and (2e)) should not lead one to the conclusion that
H(@x';0)={G(0;")}"; this conclusion is obviously
wrong, if only because H(x';0) depends on P(f)
(see Eq. (2b)) and {G(0;«')}* does not. More ex-
plicitly, if H (x'; 6) were equal to {G(8; «")} %, Eq. (23¢)
would indicate that

fH(x’; 0)G@; x)do=d6(x—x'),

and this last is impossible since H and G, being both
probability distributions, are everywhere positive as
functions of 6 for any «/, x. Thus the reasons for the
validity of (23b) and (2e) are quite different ; the former
follows from (23a) as a consequence of the é function
relation between G(0; x) and {G(#; )}, the latter on
the other hand follows from (2a) as a consequence of
the interconnected definitions of Q(x), P(6), G(6; x),
H(x;0) in Egs. (2).

Example from the Theory of Multiple
Coulomb Scattering

Many particles are observed to reach the end of their range in
one of the plates of a multiplate cloud chamber. The problem is
to estimate the masses and relative frequencies of occurrence of the
different particles. We shall assume that each particle is observed
to penetrate # plates before reaching the end of its range.

Following Annis et al.2 we define a variable, #;, by the relation-
ship

ni=¢:R;%, (24)

where ¢; is the projected angle of scattering in the 7th plate,
and R; is the residual range of the particle in the sth plate. The
exponent a=0.553 for all materials, and is defined by the equation

R/me= Az /me)V, (25)
where II= pcB as before, m is the mass of the particle, R is the range
of a particle with given II, and 4 z is a constant for a given scatter-

2 Annis, Bridge, and Olbert, Phys. Rev. 89, 1216 (1953).
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ing material. Equation (25) allows us to write the distribution in
7: in a form analogous to Eq. (11);

S )= (2m) "™t exp{—n*/20%}, (26)

where p is a constant for a given particle, independent of the
residual range, and depending on the mass of the particle through
the relation p~m!'~% From Eq. (26) it is evident that p has the
dimensions of #;.

Let us now define the mean square value of the 5; by the equa-
tion

n
st=n"t 2 9,
=1

@n

and let G(p; s)ds be the probability for given p (i.e., given m),
that s lies in ds. Then,

Go; )ds=f - [ 1) fo)dm - -dnay

the region of integration in Eq. (28) being over those values of
the #; for which Eq. (27) holds. The integral in Eq. (28) can be
readily performed and the result is

G(p; 5)=Bp~ s 1 exp{ — (1/2)ns?/p?},

where B is a constant independent of p and s.

Let us now suppose that we have observed M particles reach the
end of their range in the chamber and we calculate s for each of
these particles. If F;(s¥) As is defined as the relative frequency
with which s lies between s®—(As/2) and s®+(As/2), the
(nermalized) F;(s®) function might look somewhat as shown in
Fig. 4. In this case, Eq. (23a) has approximately the form (if
M—» and Ap—0)

(28)

(29)

Fi(s@)=2Z Pi(eD)G(p; sD)Ap, (30)
i=1
where P;(p)Ap, is the (unknown) probability that p lie between
p@—Ap/2 and pP+Ap/2. Here Ap is at our disposal, and since p
has the dimensions of s, let us take Ap=As. It is evident from Fig.
4, that the right-hand side of Eq. (30) is zero for ¢>N. This im-
plies that P;(p?) <0 for some values of j (since G(p™@; s®) is
always positive), but since P; (o) is a probability, P; (o) =0 for
all j. The contradiction arises because of the experimental ap-
proximation that F;(s®)=0 for 2> N. In other words, we can say
immediately that P;(o@)=0 for p® <s® and for p>s¥ to
the approximation considered here, and the sum in Eq. (30) be-
comes a finite sum over those values of o between s® and s®.

F (S(i))

R S(Z) s s S(i)

FiG. 4. The form that the data might take in a measurement
of the multiple scattering of many particles. The relative fre-
quency Fi(s®) of different values of s® is plotted versus the
measured s®.
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If one places

Ap=As,
Fi(s®) = f;, 31
Pi(p)=pj,
and
(Ap)G(p'P); s@) =gy,
Eq. (30) becomes
N
fi=2ﬁfgii; 1:=1,2,"‘,N, (32)
=1

where f; and the g;; are known and the p; are unknown. There
are NV equations in Eq. (32) with N unknowns, so that we can solve
immediately for the p;. Explicitly,
N
pi=gi"| Zl fiGi, (33)
P
where [g;:| is the determinant of the g;; and Gj; is the cofactor of
g;i- In addition, the “statistical errors” assigned to the p; are re-
lated to the “statistical errors” in the f;’s by the equation
N
() =gl 2 G2 (f), 34
i=1
the €(f;) being conventionally calculated from the experimentally
determined f; (i.e., €(fi)=f:).
Our final solution has then the form shown in Fig. 5. The

horizontal “errors” are simply the channel widths Ap and the
vertical “errors” are the e(p;) calculated from the e(f;) by Eq. (34).

Example : The Measurement of Mean Lives
of Unstable Particles

M individual unstable particles are observed to decay in the gas
of a very large cloud chamber. It is desired to find the relative
abundances and the mean lives of the different species of unstable
particles present. In this case, F;(#®V)As is the observed relative
frequency with which the particle life span ¢ lies between
t®—At/2 and $94-At/2, P;j(rD)Ar is the unknown relative
abundance of particles with mean life 7 between 7()—A7/2 and
7@ 4A7/2, and

G(r;t)=7"texp{—t/r}. (35)

Then, exactly as in the previous example, we have, approxi-

P=Pi(p")

c
B ] i_rll

¢

Fic. 5. A possible result of the calculation described in the text
concerning the spectrum of masses incident on a cloud chamber.
The relative frequency of occurrence of different values of
pWrumi~0= js plotted as a function of p), Note that the result
is consistent with two discrete mass values.
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mately,

N
Fi(t®) =2 P;(rD)G(D; 1) Ar, (36)
i=1

whence, setting fi=F;(t), P;(rD)=p;, (Ar)G(r@, tD)=g;;,
Eq. (33) follows as before (analogous to the previous case, one can
take Ar=At=life-span channel width in the F;(¢?) histogram).
If now, for example, p;Ar=P;(rD)Ar is “large” (=1) for only
one 7, one has reliable evidence of the existence of only a single
species of unstable particles with mean-life near +(.

IV. CASE OF COMPLETELY UNKNOWN AND OF DELTA-
FUNCTION TYPE PRIOR PROBABILITY
DISTRIBUTION

In this section we shall treat two related problems.
In both problems, a measurement of a set of the x; is
made on a single system which is one of a class of sys-
tems, the value of the parameter 6 being fixed for the
set of the x;. It is desired to estimate the value of 8
corresponding to the set x;. The difference between the
problems lies in our knowledge of the (prior) proba-
bility, P(6)d8, that @ lies in df. Problems of type 1 are
those in which we have no prior knowledge whatever
about the value of 8 for any of the systems. Problems of
type 2 are those in which we know that in each system
of the class of systems considered, the value of 8 is
fixed and the same, i.e., P(0)d0=46(0—0,)d9; however
the numerical value of 6y is unknown.

The occurrence of situations in which P (8)=86(6—600)
is generally accepted by physicists as a valid descrip-
tion of the properties of a certain class of systems (e.g.,
a certain type of elementary particles) about which it is
known that several parameters other than 6 (i.e.,
¥, x-++) have the same value for all the systems
in the class. The systems are then assumed to be iden-
tical in every way and are therefore characterized by
the same value of the § parameter (=#6,). Thus in the
example of elementary particles, # may be the mean
life of the particular type of particles, ¢ the mass of this
type, x the charge, etc.

Problem of Type 1

A p meson enters a multiplate cloud chamber and scatters
through angles ¢; upon traversing the # plates of the chamber. It
is desired to find the product II= ¢ for the meson. Here II is the
same for every member of the set ¢;; however, we do not know
the (prior) probability that II lies in dII independent of the data
on the particular scattering angles ¢;.

Problem of Type 2

Measurements are made of the life spans (f;) of a number, N,
of “u mesons” selected by the parent particles (= mesons) from
which they are born, the daughter particles (electrons) into which
they decay, etc., i.e., the identification of these particles as
“u mesons” is independent of the measurements of the #. It is
desired to find the mean life, 7, of the x mesons. Here we know
that P(r)dr=38(r—ro)dr by our selection or sorting procedure
but we do not know the numerical value of 7.

We first consider problems of type 1, i.e., problems
where no independent information whatever is available
about P(§). The first thing that is evident is that in
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this case there is no rigorous way lo find H(x;;0), ie.,
there is no way to estimate # and to quote a standard
deviation in this estimate which may not be grossly
in error. To justify this statement, we need only ex-
amine Eq. (2b) for H (x;; 6). Since we have no informa-
tion about P(f), we must make some assumption about
the form of P () in order to estimate 6 (e.g., we might
take P(6)=constant). Having made this assumption,
it is then a simple matter to use one of the methods
described in-Sec. II to estimate 6, and then to evaluate
the standard deviation in this estimate. However, P ()
is here actually unknown, and may have a form which
makes our estimate of § differ from the true ¢ by an
amount large compared to the quoted standard devia-
tion (e.g., P(f) may be sharply peaked for values of 6 at
which G(0; x;) is flat and small.) Hence, we see immedi-
diately that there is a certain degree of arbitrariness in any
procedure one adopts in the case where P(6) is completely
unknown; this arbitrariness can eventually be removed
only if enmough individual measurements of the set x;
are made so that, as in the previous section, an integral
equation for P(9), Eq. (23), can be set up and solved.

Let us, however, consider a possible, yet ultimately
arbitrary, procedure, in the case in which P(6) is com-
pletely unknown and only one measurement of the set
x,1s available. We suggest, essentially following Laplace,
that in this case, the least unreasonable choice for P(f)
is P(f)=constant. We further suggest that one take
Best aS O p., defined by (see Eq. (4))

9H (x;; ) aG (0; %)
_—] =const———
30 Jo=om.p. a0

and that one quote a ‘‘statistical error” or ‘“figure of
merit” for the estimate, e(0m.p.), given by (see below—
Eq. (47) et seq.)

] ~0, (7)

3 ~

€Om.p.)= { ~ o logG (6; xi)]azom,p, | z. (38)

In view of the necessary arbitrariness of this or any
other procedure for estimating # when P(6) is com-
pletely unknown, it is always well to indicate explicitly
that P(0) has been taken as constant in the derivation
of such an estimate.

One reason for suggesting the estimate of Eq. (37) is
that this estimate has an interesting property, observed
by many authors and by R. A. Fisher,? in particular,
which allows one to resolve a certain ambiguity in the
problem. The ambiguity in question is the following.

In any physical problem, the choice of 8 is usually not
unique. There may be many different physical quanti-
ties, related one to another in a simple one-to-one
fashion, which might be chosen as 6. For example, in
the case of radioactive decay of a group of nuclei of
the same species, 6 can be taken as either the mean life

3 Fisher, R. A., Contributions to Mathematical Statistics (John
Wiley and Sons, Inc., New York, 1950).
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7, or the reciprocal mean life, A=1/7. If one assumes
Pi(7) is a constant, this is not consistent with taking
P2(\) constant. Indeed,

an
Py(r)=Py(\)|—

dr

=P2(>\)T_2.

Hence, Pi(7)=-constant and P;(\)=constant are two
very different physical assumptions.

If one now takes 7 as 6, and the corresponding P;(7)
as constant, one can find a 7y.p.. If one takes A\ as 6,
and the corresponding P»(\) as constant, one can simi-
larly find Am.p.. However, it turns out that Ap.p.
=1/7m.p., 50 that the arbitrariness in the choice of the
parameter 8 (with the corresponding P (f) always taken
as constant) does not lead to any ambiguity in the
estimate 6y .p.. This property holds in general and is
perhaps the strongest reason for adopting the 6y, .
estimate.

To prove the last remark we let §=6(¢) be any function of ¢,
where ¢ is a new parameter. We must then prove that 6. . is equal
to 6(pm.p.), where On . is calculated assuming Po(f) = constant,
and ¢m.p. is calculated assuming P¢(¢)=constant. '

Om.p. is defined by Eq. (37), i.e.,

aG®; xi)] _
a6 0=0m.p. =0,
and ¢m.p. is defined, similarly, by
9G(0(4); xi)]
P ¢ =¢m.p.

(39

=0. (40)

But
o (¢)
do
If do(¢)/dé does not equal zero, we can write Eq. (40) as

2L 0@ m) =27 0@); -

G
200, =0 &
so that from Eqs. (39) and (41), it is evident that
0(¢m p.) =0, .y (42)

which is to be proved.

We now treat problems of type 2, (P(8)=48(8—0)
with 6y unknown). Almost all physical problems
eventually reduce to this type since, when the physical
situation is sufficiently well understood, a large number
of particles (or systems of particles) all with the same ¢
can be isolated. The physicist then conducts his further
investigations on these “completely sorted” particles
or systems of particles only.*

This problem is no different in principle from the one
treated in Sec. III. We define G(6; x)dx as the proba-

4 A general comment can be made regarding this “completely
sorted” situation where P(6) =8(@—0) (fo unknown). Using Eq.
(23a), one has Q(x)=SP(0)G(6; x)d0=G(6o; x), so that if Q(x)
is found by the procedure described in Sec. III, a previously un-
known functional form of G(0; %) (the probability of finding x,
knowing 8) may be determined. This method is clearly followed in
deducing physical laws from experimental data. On the other
hand, it is quite evident from Eq. (23a) that if nothing is known
concerning P(f), a previously unknown G(6;x) cannot be de-
duced from the experimental data summarized by Q(x). Un-
fortunately, this latter situation is usually encountered when the
“sorting” Is incomplete.
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bility, for fixed 6, that the measured quantity x lies in
dx. (For simplicity, we again assume that the set x;
measured in any single experiment has only one
member, x.) Exactly as before, we measure a large
number of x’s, x®, - @ and so can define a dis-
tribution in %, F(x)=Q(»). In this case, however, we
know that @ is unique, and all we wish to find is this
unique value of 6.
The solution for P(§) is (from Eq. (23b))

P@)= f F(){G6; ))'d, (43)

and, of course, we would hope that this solution is con-
sistent with the original assumption that P(f) is a
6 function about the unique value of §(6=86,). Moreover
6 can now be immediately found. If, on the other hand,
our solution is not consistent with the § function assump-
tion, we immediately suspect a systematic error of some
kind.

The rigorous solution to the problem, given by
Eq. (43), suffers however from several disadvantages:

1. It is rather laborious for practical calculation. The
steps that have to be carried out are summarized in the
examples done in Sec. IIT.

2. It is difficult to assign a ‘“‘statistical error” or
“figure of merit” to the estimate of 6. There is strictly
no meaningful probability statement that can be made
about any estimate in the case where P(6) is known to
be a single 6 function, e.g., the statement, ‘6 has a
probability of 0.1 to be greater than, say, ;" is ob-
viously meaningless since this probability, by hypothe-
sis, is either 1 or 0. However, it is still useful to have
some number which is a “figure of merit” for the esti-
mate. This number cannot have a relation to any state-
ments about probability (=relative frequency), but
instead must indicate, in some well-defined but ulti-
mately arbitrary sense, the experimenter’s estimate of
the over-all precision which may be assigned to the
value of 6.

There is, however, another approach to the present
problem, which, as we shall see, is free from both of
these disadvantages. In this approach one defines,
essentially following R. A. Fisher,® the “likelihood
function,” G(6; x1x2- - - %), as

GO; %1 %)
=G(0; 20)G0; ) - G(0; 500),

(xi=a®);  (44)

G(0; %1- - -xar) is formally identical with the previously
defined function which gives the probability, that for
given 6, the set x;=x® lies in dx;. This likelihood func-
tion, considered as a function of 6 with the x; given,
will, as we show later, have a very sharp maximum at
some value of 8, 0=46,, if M is large enough. 0; is then
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taken as the “maximum likelithood” estimate of the
actual unique value of 6, 6,. More precisely, 6; is de-
fined by the equation

oG
—(8; ;.. xM)] =0, (45)
a6 0=0;

formally, the same equation which defines the estimate,
Om.p., calculated from the corresponding H (x;;6) with
P(0) taken as constant (see Eq. (4)). A justification of
this procedure of estimating 6, by 6;, based on physical
arguments, may now be attempted as follows:

Suppose that the likelihood function G(6; 3, - - -, xa7)
becomes an infinitely sharply peaked function in 6 as
M approaches infinity, i.e., suppose

%Hn G(@; X1.. .xM)~6(0—0');

6 = %im function of #;. . .%a. (46)

-

(In all of the examples treated in this paper, Eq.
(46) is obviously satisfied.) Put in another way, Eq.
(46) states that for sufficiently large M, the value of 6,
0=0"(x1- - -xn), is determined uniquely by a set of
values of the «;. It is evident from Eq. (45) that 6; as
defined by Eq. (45) is then the same as # defined in
Eq. (46), at least in the case where M is sufficiently
large. Hence, if Eq. (46) holds, the likelihood function
gives (for finite M):

(1) a relatively easy way to find the estimate
0;(xy, - -, x2), and

(2) a well-defined but nevertheless ultimately arbi-
trary “figure of merit” or ‘“statistical error” for this
estimate. For with M large but finite, the “width” of
the likelihood function tells us how close we are to the
optimum situation where G(8; x;- - - ¥3) becomes an in-
finitely sharply peaked function of 6. We therefore sug-
gest that this “figure of merit” be defined as the quanti-
tative measure of the width of G(8; #1- - -xy), i.e., we
define®

92 -3
@)= ——logG0;x;.. .xM)] }
96? 0=0;

! G laZGJ ]_; 47
={—G1— . 4
06% lo=0;

This definition of €(6;) is motivated by the fact that for
large but finite M, G(0; «1- - - x) is well approximated

SIn Eq. (47) we have implicitly assumed that the set x; is
given exactly by the measurements. However, if any #; is itself
uncertain as a consequence of the limited precision of the x;
measurement, then the e(f;) has an additional contribution.
This contribution is discussed in Sec. V and shown to be small
with proper design of the experiment, in cases of practical interest.
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(as in all the examples of this paper) by

G(O; X1.. .xM)’—‘_—’G(Gl; X1.. .xM)
92

Xexpi— logG(@; ;. . .xM)] .%(0——0;)2}. (48)
a6? 0=6;

The expression for 6; given by Eq. (45) (with the
“statistical error” given by Eq. (47)) is (for M large but
finite) a good approximation to 6 when Eq. (46)
is true. However, Eq. (46) must hold in every case where
0 actually has a unique value 0==0o, with, in addition,
Lim s (%1 - - 221) being just equal to 6,. For, suppose
Eq. (46) with 6’=6, did not hold as M—co. This would
mean that, as M— o, § was not uniquely determined as
8y by the set of the wx;, and this is counter to our hy-
pothesis that each member of the set of the x; obeys
the probability distribution G(#; x) with §=6,. Hence
as M— o, the likelihood function G(§; #:- - - %) must
approach an infinitely sharply peaked function of 6
centered at 6’ (x1, - - -, xar) =00, so that 6;(x1- - %) —b0
as M—o,

As we have mentioned previously, the physical
quantity one chooses as 6 is not unique; thus there are
many quantities related in a one-to-one fashion any
one of which can be chosen as the parameter 6. The
previous discussion shows that the maximum likelihood
estimate of 6, 6; given by Eq. (45) is independent of
this lack of uniqueness. However, ¢(6;), as given by
Eq. (47), will in general depend in a sensitive way on
the choice of the parameter 6; thus from Egs. (47), (39),
{40), we have

do (¢
6(91)=€(¢z)| © ] . (49)
¢ do=9¢1

d

Example : Measurement of Mean Life of a Moving
Particle in a Cloud Chamber; the Mean Life
Assumed Unique

In this example we assume that by means of an experimental
sorting procedure we have isolated a set of identical particles
each of which has the same mean life, 1/A=1/X,. If a particle has
mean life 1/, then

exp{ —N}\d¢ (50)

is the probability that it will decay in d¢ at 7. However, if the ob-
serving chamber is of finite size, and if T is the maximum value of ¢
that can be observed, then the probability of observing a decay
in dt at t=T becomes

G(\; Hdt=exp{—N} (1—exp{—NT})"\dt, (51)

and the corresponding likelihood function is (4P =t¢; is the life
span of the jth particle and 7 is the maximum value of ¢ that
could be observed)

M
G\t t)=11 exp{ —MN@D}(1—exp{—AT;} )\, (52)
=1

The maximum likelihood estimate of A is now given by (Eq. (45)),

M M
1N=M"1Z D+ M1 3 TilexpinTi}—1)1  (53)
7=1 i=1
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Equation (53) can be solved for \; by a process of iteration. In
the case where T';>>1/A;, the solution for \; becomes

M
1/ N=2mean+ M1 2 Ti(exp{T;/tmean} —1)7}, (54)
=1

where
M
tmean=M"1 2 D,
=1
For the “figure of merit,” Eq. (47) gives
M
M) =M(M—2Z (NT))? exp{—NT;}/[1—exp{—NT;} )74, (55)
=1
where the effect, for given M, of the finite 7'; in increasing e(\;)
is clearly shown.®

Example

If the decay of the individual particles is detected by a counter
with background rate b, then G(X\;#)d#, the probability per
particle of observation of a count in d¢, is

G(\; t)dt= (b+N exp{—N¢}) (0T +1—exp{—\T})ds;
S eosna=1, (s6)
whence

G\ b tu)= ﬁ (b4-N exp{ —ND}) (BT +1—exp{ —AT})L (57)
=1

(T;=T=maximum possible observed value of t@=¢; T is de-
termined from the time at which the counting rate is reduced to a
value near the background rate.) The maximum likelihood esti-
mate of A is, if b<\; exp(—NiT),

T exp{—N\T}
~ |
VNS ety E T cep(—NT)
b M
+FM—1 2 (1—Nity) exp{Niti};  (58)
11 =1

and since for large M,

X T (where f(¢) is any func-
~1 AP . Dt
w1 2 fe)= [ 60 o gt J (59)
we obtain
T exp{—\T}
o~ |
/NS meunt bT+H1—exp{—NT}
__ﬁl_ﬁe;-ﬁ
+d—eq4—mr}2 M) (60)

For small b, e(\;) is given in terms of A; again by Eq. (55).

Example

The very fact that physical situations exist in which a “sorting”
procedure can be performed to separate particles with a unique
value of @ implies that workers in different laboratories can carry
out the same sorting procedure, and then estimate the unique
value of 8. The question arises, ‘“How must one proceed in order
to combine these estimates of  from the different laboratories
to form a ‘combined estimate’ and what is the ‘statistical error’ or
‘“figure of merit’ of this ‘combined estimate’?”

We will show how one proceeds in a simple case and quote the
results for one other simple case.

Consider that N different laboratories have carried out the
same sorting procedure to isolate a group of particles and have
then estimated the unique value of the reciprocal mean life No.
Calling the jth’maximum-likelihood estimate of o, (A1);, and

8 See Fretter, May, and Nakada, Phys. Rev. 89, 168 (1953);
W. L. Alford and R. B. Leighton, Phys. Rev. 90, 622 (1953) ; M. S.
Bartlett, Phil. Mag. 44, 249 (1953).
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assuming that the maximum measurable time T is infinite, we
find the likelihood function for the jth laboratory is (see Eqgs. (52)
and (53))

J
Gi(\; t) =N exp{—\ 2 &}, 61)
b1

where J is the number of particles seen to decay by the jth labora-
tory, i.e., J=J ().
From Eq. (61)

7(7)

1/0)i=T() 2 4 (62)
k=1

with “statistical error,”

L) 1=T7H(F) (M);e
The over-all likelihood function is

N J()
GO\ (W) ) =TI N exp{—\ 2 #}
7=1 k=1

N exp{—x Z TG/}, (63)

where

N
M=2 J(j).

=1

It is evident from Eq. (63) that A, the combined maximum likeli-
hood estimate of A, is given by

(64)

/=01 2 TG/ 0 ©9)

and
e(N) =M\

In practice, however, one does not in general know the values of
the J(j), hence it is useful to express our result for \; and e(\;) in
terms of the (A;); and e[ (\;);]. From Egs. (63-65) we obtain

N
El )i/ {eL )i TP

1/n= (66)

N
E} {03/ {L )1

and
N
() =m0 2 (O3 (L D"

Referring now to the problem of combining mass values from N
different laboratories, we call (p;); the maximum likelihood esti-
mate of the parameter po by the jth laboratory (according to
example of Sec. ITI, po~(m)™°-47), and the corresponding “statis-
tical error.” A calculation similar to the one carried out above
gives

N
El {(00);}4/{ e (p0)i]}?

pit=

- (67)
2 (G0 L)

and
N
{elp)) 2=pi2 El {(02) i}/ (e[ (o1} 1}%

where p; is the combined maximum likelihood estimate of po and
€(p1) is the corresponding “statistical error.”

We note from Egs. (66) and (67) that the rule for combining
estimated mass values is not the same as the rule for combining
estimated reciprocal mean lives. In general, the rule for combining
the (est);= (01); depends on the functional form of the corre-
sponding G(o; X1yttt x-f(i))-
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V. EFFECT ON THE ESTIMATES OF IMPERFECT
EXPERIMENTAL PRECISION IN THE DIRECTLY
MEASURED QUANTITIES

It sometimes arises in practice that one can easily
derive from theory an expression for G'(0; vy, - - -, yn)
=G’ (0; y;), where G’ (0; v;)dy; is the probability that the
quantities y; lie in dy; for given 6, but that the y; cannot
be “measured exactly.” However, one can ‘“measure
exactly” a set of quantities x; which are related to the y;
through another probability distribution. For instance
one may have

N
g(ys; x)dws= 2m) V2] o;

=1

Xexp{— (x;—y;)*/20}dx;;  (68)

i.e., each of the x; may be distributed statistically in
Gaussian fashion about the y;. In this case, the likeli-

hood function becomes

GO;%1...xn)=G(0; x2)

= f f G'0;99g(yi; x)dy:.  (69)

Let us now expand G’ (6; v;) in a Taylor series about the
values y1=1w1, y2= 1, etc.:

¥ 9G"(0; %s)
G;y)=G 0; yi=x)+ 2 (yi—x)——
=1 X
N *G’ (0; x,-)
+3 (yi—%5) (Yp—ap)——+...;  (70)
i k=1 0x ;0%

and let us introduce the additional assumption that
g(ys; %:), considered as a function of the y;, is sharply
peaked for y;~x;, whereas G'(9; v;) is relatively slowly
varying in the region of y;~x;. Then, substituting Eq.
(70) into Eq. (69) and neglecting terms above 2nd
order in (y;,—«;) in Eq. (70), we get

N G (8; %)
GO;%)=G0;2)+3 2 off———+

=1 X5

(71)

Equation (71) can be used in Eq. (2) to derive the
posterior probability H (8; «;) or it can be used directly
to estimate 8 from the exactly measured «; in the case
when 6 is independently known to be unique (see
Sec. IV). If f is unique the maximum likelihood estimate
of 6, 8;, is given by

(S

=0,

63G, (0; x,')
+ 72
]a (12)

oG’ (0; x;)
[ { Z 0','2 I
a0 =1 909«
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while if 8 obeys a known prior distribution law, P(6),
6, is given by

OH' (6; x5)
[ +3 2 o
a0 =1

*hH’ (0 H x,)
|
30922

(S0

] =0, (73)
=07

where

F@w%dWWWmQ/fP@OWWM&

The relative “error” in 6, €(8;)/6; will not be changed
appreciably if the correction terms in Egs. (72) and (73)
are not large, i.e., if ¢#/x? is not large. If the correction
terms are large, the formulas in (72) and (73) are in-
adequate; therefore in either case it is of little use to
derive from them a new formula for €(6;). In this situa-
tion, the problem must be re-examined and improved
methods to measure the y; devised.

Example from the Theory of Multiple Coulomb
Scattering. “Noise Level Scattering”

Let us consider again the example treated at the end of Sec. IT.
We shall now assume that each of the » measured angles of
‘“apparent” multiple scattering ¢: obeys a Gaussian distribution
about the corresponding ‘“real” angle of multiple scattering s,
with standard deviation o. The magnitude of ¢ is a measure of the
“noise level scattering.” In this case (see Eq. (73) and Eqgs. (13)
and (15)),

6—-11
Vi
Xi—Pi
o;—0¢=constant

(74)

and

2 n
H'(II; ¢;) = constII™ exp —IA—IE z ¢i2},
=1
where m=n—~ as before, and we assume (<K p. Substituting
in Eq. (73), and remembering that the second term in Eq. (73)
is small, we find
Mn.p. = (m/2)}4{ Z ¢:2— (n—2v)a?} 1 (75)
i=1
Comparison of Eq. (16) with Eq. (75) shows that the estimate of
II=pcB is increased when one takes into account the noise-level
scattering.

The formula given in Eq. (75) does not at first glance agree
with the formula given by Olbert.! (We have o2, where Olbert has
202.) The reason for this apparent discrepancy is a difference in the
definition of ¢ from the one used by Olbert. A possible method of
measuring the ¢ we have defined in Eq. (68) is given below.

Allow N tracks of very great momentum to penetrate the plates
of the cloud chamber. (The momentum must be great enough so
that the real scattering is negligible compared to the noise-level
scattering.) In this case the distribution in scattering angles is
given by Eq. (68) with y;—y;=20 and x;—¢:; i.e.,

N N
g(o; di)dgi= (2m) Ve~V exp{— (1/20%) 2 ¢} 1L dg;  (76)
=1 =1

is the probability that for fixed (unique but unknown) o each of
the ¢; lie in d¢;. ¢ can now be estimated from g(o; ¢:) by the
method of maximum likelihood (Sec. IV), and is given by

N
a={N"12Z ¢/} a7
i=1
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VI. THE “ESTIMATE DISTRIBUTION”"

Suppose an experiment is performed in which the in-
formation is available that the parameter 6 is unknown
but fixed and unique (6=6o) for the set x;=x®. The
likelihood function for the experiment may then be con-
structed, namely G(0; x;)dx;, and an estimate of the
parameter fes;= fost(%1, -, %n), €.g., the maximum
likelihood estimate ;= 0., may be calculated. We now
ask “What is the probability that e lies in dfeg if the
value of the parameter is assumed to be 6y?” This ques-
tion may be answered by constructing the function
R(Bo; Oest)dBest which is the probability that . lies in
et for 6 assumed to be Go; R(0o; Oest)dess is given by
Eq. (78):

R (6o; Best)d0e5t=f. . .fdxl. .. dxnG 0o 1. . . xx), (78)

where the integration over the set dx; is carried out
under the restriction imposed by the equation

eest.S_ fest (xl e xN) éeest+ doest' (79)

Thus,
R (00 5 0est)d0est

=[f.‘.fdx1...deG(eo;xl--~xN)

X 8 (Bost— fost (2. . .xN))]d(?est. (80a)

The probibility function R(6;6est) will be called the
“estimate distribution” and can be used to answer
questions of the type: “What will be the probability
that 6. is, €.g., equal to or greater than some 8, if the
value of the parameter 8 is assumed to be 6?” This
probability, J (8o, 8.), is obtained directly from the esti-
mate distribution R(0p; fest), and is

0

J<907 Oa) = R (00; 0esb>deest,

2

(80b)
with J (8, — 0 )=1.

Using Eq. (80a), we find averages over the estimate:
distribution can be expressed as follows:

<0est>E faesbR (60 5 oest)doest

=ffest(x1. .. 28)G(0o; %1. . .xn)dxy. . .dxn, (8la)
<(0est—90)2>5f (aest_eﬂ)zR (00; oest)doest
= [ Gualin. w0

XG(O(], X1. . .xN)dxl. . .de, (81b)

etc. It can then be proved’ (under suitable restrictions)

" Cramer, H., Mathematical Methods of Statistics (Princeton:
University Press, Princeton, 1946), Chapters 32 and 33.
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that for Oes= fest(%1, **+, Zn)=0;, Oes “converges in
probability” to the true value of §=6,, i.e.

One can also show” (under suitable restrictions) that
(01—00)%)<{(Oest—00)%) (81d)

for any fixed finite N and any 6.6, Equations
(81c) and (81d) constitute additional powerful argu-
ments in favor of maximum likelihood estimation in the
case of an unique but unknown parameter.

Suppose a single charged particle which stops in a multiplate
cloud chamber has a certain angle of multiple scattering in each
of the plates of the chamber. From these angles of multiple scatter-
ing (and the range) one can estimate the mass of the particle:
0.5t =mass estimate=a definite function of the multiple-scattering
angles. One can then calculate the probability that a particle of
known mass, e.g., a proton, appears to exhibit a mass equal to or
greater than the above 6., i.€., appears to scatter as little or less
than the observed particle. This calculation involves constructing
the estimate distribution for fes, (Egs. (80)) and hence the estimate
distribution for the angles of multiple scattering. However, ques-
tions of the inverse type—‘What is the probability that a particle
which scatters the observed amount is, say, a proton?”’—are
meaningless since this probability is, by hypothesis, one or zero.

As a further illustration of the use of the estimate
distribution, suppose a “sorting’ has been made in two
experiments with the result that for each experiment
the information is available that the parameter 6 has an
unique value (which may be different, in general) in
the two experiments. Then the simultaneous probability
that the estimate of 0 from the first experiment lies in
dfes ™V and that the estimate of 6 from the second experi-
ment lies in dfes® for a unique value of 6, 6, assumed
the same in both experiments, is

R (00 5 oest(l), aest(2))d9est(1)d‘9est(2)
=R (00 ’ Hest(l))doest(l)R (00 ; 0est(2)>d0est(2)

Example

Suppose two experiments are performed on the life spans of two
sets of unstable particles. In addition, it is assumed on the basis
of the sorting procedure used that within each experiment the
particles are identical. It is now desired to know if the results of
the two experiments are consistent with the assumption that the
mean life of both sets of particles is the same, in other words, if
the fwo sets of particles are the same. The probability in experi-
ment 1 that the estimate of 7 lies in drest® for a unique mean life
assumed equal to 7o is given by Eq. (80a). We shall take this
estimate to be

N
TestW =7V =fpeenP=N"1 2 £,

=1
(See Eq. (54) with T;— ), where NV is the number of life spans
measured in experiment 1. Then

N
R(TO; Test(l))d‘l’est(x)= [fdtl(l) . 'dtN(l) i1 o1

i=1
N
Xexp{ —#t:®/70}8 (7ot~ N1 Z ti“))]dresc‘”
=1
and by use of the integral representation of the § function

s(e—a)=(Qm) [ explia(s—a)}de,

829
the integral over d#V- - -dixn® may be performed yielding
R(TO; Test(l))d'resb D
1N(NTest(1))f eXP{lﬁ}dﬁ {drest(l))
2 T0 —= {B— %N'regg(‘)/'ro}N\ Test®
Finally, via the calculus of residues,?
R(TO; Test(l))dTest

NN /Test(l)
“W=-DN\ 1

In a similar manner, the estimate dlstnbutlon for the second
experiment, again for a unique mean life assumed equal to 7, is.

R(TO; Test(z))dTest<2)
(Test(2))M ex { MTest(Z)
(M D!

where M is the number of life spans measured in experiment 2.
Thus

R (1'0; ’rest(l)y Tes(;(z))d‘rest(ndTest(Z)

NTest( 1d‘l'est
Test™

exp (82)

d'rest
@)

Test

__N¥ MM (7D (745@) M
(N—=D!1(M—1)! TVHM
‘NTest(‘)+MTest(2) 1 d’fest(l) d"'est<2)
exp{ 7o f Test(l) Test(z) ’ (83)

so that the simultaneous probability for experiment 1 to yield
a value of 7o between 7est® — €(Test™) and Tesy ™ +e(7estt), and
experiment 2 a value of Tes, between 7est® —e(7est®) and 7es @
Fe(7est @) is

(To} Test

f‘rest<2) +e(1est®)
Test® —e(Test®)
X d7est ™ dresy®!. (84)

If now this last expression calculated from the observed #®,
1@ (see Egs. (54) and (55)) is “very much less than one,” what-
ever the choice of 7o, it is not “likely” that the mean life of both
sets of particles is actually the same. If, on the other hand, a value
of 7o can be found for which this expression is not “very much
less than one,” it is “likely” that both sets of particles have the
same mean life, 7o. (From Eq. (83) we find that in the optimum
situation in which reu(‘):rest@), €(Test ™) = €(Test @), and 7o is.
taken as 7estV, Eq. (84) gives approximately one-half.) Obviously,.
both of the preceding qualitative statements can be made quanti-
tative by a definite (though ultimately arbitrary) numerical speci-
fication of “very much less than one,” and “likely.”

Test(D) 4-€(Test W)

Test) =€ (TexstM)

w/ (2)/)

y Test

Example

Another interesting case of the use of the estimate distribution
involves the following problem previously considered and solved.
by Sard and Sard.® In a cosmic-ray counting experiment the ob-
served number of coincidences in a certain time interval is x,

8 In this problem, the integral on the right-hand side of Eq. (78)
may be performed directly because of the simple relationship for
Test, Namely

b%
Teat=(1/N) 2 4.
i1

In this case
R(70; Test)dTest= 10N exp{— N7est/ 70} f dty- - -din,

where the integral is the volume in N-dimensional ¢ space con--
tained between the two hypersurfaces defined by 7est and e,
+d7est. This volume is proportional to (7est)¥ 'd7est, S0 that

N
R(7o; 7est) =4 T") Tost * €Xp{— N7est/70}

in agreement with Eq. (82). The normalization constant 4 may

be determined by requiring that /"R (70} Test)d7est=1. This simple:

method of evaluating the right-hand side of Eq. (78) will work

whenever G(6o; «;) can be written as a function of 6, and @est only ..
9 A. Sard and R. Sard, Rev. Sci. Instr. 20, 526 (1949).
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the calculated number of chance coincidences in the same time
‘interval is 8, and the parameter 6 to be estimated is the mean
number of true coincidences in the time interval. It then follows
that the probability distribution for «, given 6, i.e., the likelihood
-function, is Poissonian :°

0 x
60;9="TE exp— 049)). ®9)
“The maximum likelihood estimate of 6, 8;, is then given by
aG(0; x)] . _
Py bty 0; whence, 6;=x—8. (86)

By use of Egs. (78), (79), the estimate distribution with fes=06;
=x—4, is given as

R(oo;oest)doesb=jc(oo; x)dx

with

0est+6§ X< 0e5t+6+d0est;
:s0 that
R (00; Oest)dBost= 6(005 9est+ﬂ)d0est

(‘] +6) Gestt
= (ZOW—‘H?)' exp{ — (o+8) }dfest-
es .
“Thus the Poissonian property of G(6o; x) implies that R (603 fest)
with 6est=0; is also Poissonian in the variable fest+-8. Further the
“statistical error” or “figure of merit” assigned by Eq. (47) to 6,
‘is given by

@87

&(6) =x, (88)

:so that we can write
Bo=~ (x—pB) =t

in agreement with the results of Sard and Sard.® It is also possible
to calculate (for Best=01=x—4)

'(0e5t> = <0est+6> —B
Ef(gest+6)R(00;aest)doest"‘ﬁ

-f (oest+ﬁ>{“’—°ﬂ3)—omj exp(—00+9) |

(oest+B) !
Xdoest—3=00; 10 (89)
and similarly
<9est2> = feesc2R (00 H Gest)daest =002+ (60+B) 3y (91)
:so that
<aesh2>_ <0est>2=00+ﬁ= <0est>+6- (92)

Equation (92) can be used as a check on the internal consistency
of the coincidence counting data. Specifically, Eq. (92) gives
(since Besy=01=2x—p3)
M M M
M1 Z (sM=B2—{M1 I (xV=p)PR=M"1 2 ™M, (93)
=1 v=1 v-1
‘where x(") is the number of coincidences during a definite time
interval vy (say, one day).

VII. CONCLUSION

In this paper we have attempted to find a relation-
ship between the probability functions H (x;;6) and
G (0; x;)dx; defined in Sec. I. In other words, we have
attempted to answer the question, “How does one pro-

10 The estimate distribution R(8o; fest)@fest permits the defini-
tion of the so-called “unbiased” estimate through the relation

1B0={fest) Efdeestoest-R (00; Best)
= [ Festlre - 2x)G 003 21 +-wm) -+ -z, (90)

.any, fest, satisfying the condition in Eq. (90) being called “un-
biased.” Thus any fest is unbiased provided that its average over
the estimate distribution is equal to the true (or assumed) value
0o of the parameter 8. Eq. (89) shows that the fest=0; of the present
.example (N=11]) is unbiased. (It is to be noted that Eq. (81c)
proves the “unbiasedness” in general of maximum likelihood
estimates only in the limit N—c.)
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ceed to estimate a physical parameter 6, given a set x;
of physical data related to § through a theoretically
derived and/or experimentally confirmed probability
function G(0; x;)dx;; in addition, what statistical sig-
nificance does this estimate and any quoted ‘error’
possess?”’

The above problem has, of course, been treated in the
literature in great detail. In fact, R. A. Fisher® has
actually constructed a “maximum likelihood” theory of
estimation essentially independent of the prior prob-
ability P(8). On the other hand, in the present paper we
attempt to formulate a treatment of estimation con-
sistent with a partial knowledge of P (). Specifically:

1. If P(f)df is known initially, the procedure to fol-
low is given in Sec. II. If a single measurement of the
set x; is made, the corresponding value of 6 can be esti-
mated and meaningful probability statements can be
made concerning this estimate, 0.y ; €.g., we can give
the probability that 6 lies between fes+o(fest) and
oest —a (Gest) .

2. If P(6)d8 is initially completely unknown, one can
always find it on the basis of sufficient experimental
data using the procedure in Sec. III.

3. If P(6)dd is initially completely unknown and
only one measurement of the set x; is made, there is an
intrinsic degree of arbitrariness in any estimation
procedure. Nevertheless we suggest in Sec. IV that in
this case one take all values of 6 as having the same
prior probability and that one quote an estimate 6y 5.
formally equivalent to the ‘“maximum likelihood”
estimate. The corresponding “‘statistical error” in 6y, p.
as well as 0y, . itself, however, are now quantities about
which one can make no statements which are meaning-
ful in the sense of probability =relative frequency.

4. If P(6)d6 is initially known to be a single é func-
tion about an unknown value of 8 [ P (6) =& (6—6o) where
6y is unknown ], and if one measurement of the set x; is
made, the procedure is similar to that in (3) above, but
we believe that its justification rests on firmer ground
(Sec. IV). One can here quote an estimate of 6, the
“maximum likelihood” estimate, and a “figure of
merit” (or “statistical error”) for this estimate (see also
Sec. V). However, it is still intrinsic to the problem that
no really meaningful probability statement (in the sense
probability =relative frequency) can be made about the
“statistical error” associated with the estimate. On the
other hand, this “statistical error,” and indeed the
estimate itself, possesses a significance in the sense of a
suitable statement of the relative degree of belief which
can be objectively assigned to the possible 6 values; we
feel that such a significance is greater when P(6)
=§(0—0o) with 6, unknown, than in the corresponding
case just above where nothing is known about P(6)
(see also Sec. VI).
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