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I. DEFINITION OF THE ANGULAR
CORRELATION PROCESS

" T is a welI-known fact that the coincidence observa-
- ~ tion of two radiations emitted by a nucleus yields
a correlation in their relative propagation directions.
Th.ls fRct which wRS first polQtcd out by Dunwol th
(22),' has been utilized very extensively as a method for
measuring various properties of nuclear energy levels,
and rather elaborate development of the theory is now
available thanks to the Cohorts of many investigators
(30, 57, 65). In the following we shall attempt to syn-
thesize these various theoretical developments with

* This paper is based on work performed for the U. S. Atomic
Energy Commission at the Oak Ridge National Laboratory.

f Now at Yale University.' Numbers in parentheses refer to references which are arranged
a,lphabetically in bibliography at end of paper. Equation numbers
are prefixed by the customary abbreviation "Eq." wherever
ambiguity may arise. The bibliography should represent a fairly
complete guide to the literature as of September, 1952.

particular emphasis on the interpretation which must
be given to the various possible formulations of thc
theory (Sec. II). At the same time it is our purpose to
discuss in detail the various special cases of angular
correlation with which the experimentalist is apt to be
confronted (Sec. III, IV, and V), and to provide a
reasonably complete set of numerical results so that
the present article, it is hoped, can be used as a "hand-
book" of angular correlation, so far as the theory is
concerned. %e shall not attempt a discussion of specihc
experimental results inasmuch as such discussion as is
pcrtlQcnt Rt plcscnt will bc glvcn ln R cojnpRnlon article
by Frauenfelder (34, see also 21 and 35). However, as
will be seen from the following, it is necessary to recog-
nize the relation of the theory, as it appears here, to the
circumstances under which the observations may be
carried out.

The simplest type of angular correlation process con-
sists of the measurement of the coincidence rate of two
successive nuclear radiations as a function of the angle
between the propagation directions of these radiations.
%e shall refer to such a process as a direction-direction
(double) cascade. The principal information obtainable
from such a measurement. is the angular momenta of the
nuclear levels involved and that of the emitted radia-
tions. In addition, in all cases except emission of elec-
tromagnetic radiation a determination of relative
parity can be made. The case of y correlations in which
at least one of the transitions is not a pure multipole
also provides a more sensitive means of obtaining the
mixing ratio (ratio of intensities of magnetic to electric
multipoles) than total intensity (for example, conver-
sion coeKcient) measurements do. ' Possible generaliza-
tions and alternative processes in which one is interested
are: (1) the polarization-direction correlation in which,
for one of the radiations, the polarization state is also
measured (thereby 6xing relative parity for pure multi-
pole y-radiation) and (2) the case of nonsuccessive
radiations where more than two radiations are involved
in the cascade. The latter case, in which one may also
observe the propagation vectors of two radiations only,
is properly classified as a triple correlation, Sec. V.
This list of alternative correlations processes is not
meant to be complete, In particular, in the above we
have omitted reference to the correlation process in a
magnetic held (internal or external) which merits

2An additional parameter depending on nuclear structure re-
sulting from the correlation observation is the relative phase of
electric and magnetic multipole matrix elements, see further Sec.
II and references (3) and (55).
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separate consideration, Sec. IV. In the following refer-
ences to the angular correlation without qualifying
phrases or adjectives will generally be concerned with
the direction-direction double cascade in which the
radiations are emitted consecut. ively.

From a descriptive point of view a simple physical
explanation of the existence of the angular correlation
can be given as follows: If v, e consider only one transi-
tion, either the first or second, then clearly the angular
distribution of the emitted radiation is isotropic. Proofs
of this result too numerous to mention have been given
in the literature; it is moreover obvious (or expected,
to say the least) from the fact that no direction in
space has been singled out. Each substate (magnetic
sublevel of an isolated nucleus) emits anisotropically
but on summing over these substates with equal popu-
lations and random (relative) phases, so that: the sum
is incoherent, the total intensity is independent of
angle. However, in the angular correlation process the
angular distribution of one radiation is observed when
it is known that the other has a fixed direction. The
prescription of a fixed direction, of course. , singles out a
direction in space; stated otherwise, the observation of
the aforementioned propagation vector acts as a kind of
projection operation in giving different weights to the
various substates. In other words it gives information
about the substates of the nuclear level formed after the
emission of this radiation. In particular it asserts that
these sublevels are not uniformly populated. ' Conse-
quently, the radiation subsequently emitted will not be
isotropic Lexcept in very rare cases where isotropy
results as an accident (9)].

This rather elementary point is belabored in order to
emphasize the fact that the quantitative description of
the angular correlation process depends critically on
the fact that we are considering an isolated nucleus.
It is also clear that isolated here means that there is no
appreciable interaction depending on the orientation
of the nuclear spin in the intermediate state of the
cascade. Even more specifically, the assumption is that
the mean life for emission of the second radiation is
short compared to the precession period of the nuclear
spin, in the intermediate state, under the infIuence of
possible spin couplings.

Ke may now examine the circumstances under which
this assumption may realistically be regarded as valid.
In general, it is clear that the only interactions of im-

portance are those for which the energy splittings in the
intermediate state are of the order of or larger than the
total width of this intermediate state.

We first consider direct interactions. Then there are
two well-known types of spin couplings to be consid-

ered: (1) the coupling of the intermediate state mag-

' As an example, in the emission of spinless particles the mag-
netic quantum numbers (defIned with respect to the propagation
direction) of the two states connected by the transition must be
the same. Thus, in the simple case of a j=0—+j= 1 transition, only
one of the substates (m=0) is populated.

netic moment to a magnetic field and (2) the coupling
of the quadrupole moment in the intermediate state to
an electric field gradient. Since the intermediate state
angular momentum j must fulfill j~&1 in order to have
an anisotropic correlation neither of these couplings
can be ruled out a priori. It is evident that the presence
of such spin-couplings will attenuate the correlation in
the sense that it will be more isotropic than that of a
bare nucleus. Experimentally it is observed that the
correlation can be wiped out entirely, although a de-
tailed description of the physical circumstances giving
rise to this eGect cannot be given at present:.

We may now examine the importance of the spin-
couplings listed below.

(1) Magnetic Coupling

Here we are primarily concerned with hyperfine
fields. The multiplet splitting caused by hyperfine
interaction ranges from 10 ' to about j. cm ' corre-
sponding to precession periods 7.hg, in the range 10 to
10 " or perhaps 10 " sec.' Therefore, for some cases,
high energy and small angular momentum of the second
radiation, no coupling effect would be important.
However, a majority of cases, for which angular correla-
tion would be a useful tool, fall into the range of lifetime
corresponding to important hfs coupling perturbative
eGects. An indication of how these affect the angular
correlation is given in Sec. IV. Of course, no difFiculty
arises if for the ground state the electronic shell has
zero angular momentum, J,=O. However, even if such
were the case the electron shell cannot be expected to
remain in the ground state, or indeed, to remain in any
stationary state. The nuclear recoil in a heavy particle
reaction and/or excitation and ionization resulting from
P-emission or IC capture which will initiate the cascade
in almost every case will also initiate a chain of elec-
tronic transitions. Thus, following K capture (or in-
ternal conversion, as well) the emission of Auger elec-
trons and x-rays transfers a E hole to the outer orbits
and, in the case of the former, results in the formation of
a multiply-charged ion (20). While these electronic
transitions generally proceed very rapidly L10 "—10 "
sec—see (62)], it is to be expected that in most cases
a non-negligible magnetic interaction will occur in the
equilibrium state. In those cases in which J,=O for the
ground state, one may attempt to eliminate the magnetic
coupling by providing the radioactive nucleus with an
environment such that the transition to the electronic
ground state is very rapid. Presumably this is what is
accomplished by the surface film technique [embedding
in thin metallic layers formed by evaporation, electro-
deposition, etc. (1, 33, 73) and by the use of dilute ionic

4 This, of course, is based on the very reasonable assumption
that nuclear magnetic moments in excited states are of the same
order of magnitude as ground state moments. It also involves the
equally reasonable assumption that the electronic states involved
in the correlation have roughly the same properties as those
involved in optical transitions.
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solutions (48, 73)j. However, the physical processes
involved are not very well understood at present, Rnd

there is no a priori method whereby one may be sure
that all spin-coupling has been eliminated.

(2) Quadrupole Coupling

The quadrupole interactions may be as large as 100
megacycles, or v g 10 8 sec. While not as large as the
magnetic interaction, the quadrupole interaction can-
not be ignored for a very appreciable number of cas-
cades (1a).Little needs to be added to the above except
to say that the formation of an environment which has
the property of eliminating magnetic interactions must
also eliminate held gradients at the nucleus.

It mould seeyn that an alternative procedure, which
avoids the complications of imperfectly understood
solid-state properties of thin films and the properties
of dilute solutions could be utilized wherein the correla-
tion is observed in a strong external magnetic held.
Then, under conditions of complete Paschen-Back
effect the spins are decoupled even if quadrupole coup-
ling is present. As discussed in Sec. IV, one of the radia-
tions must then be parallel, or nearly parallel, to the
held. However, the very preliminary and admittedly
meager experimental evidence Lcorrelation in Ni'0,

(36)] indicates that little or no decoupling takes place
even with helds of the order 10' gauss. There seems to be
no reason to doubt the validity of the reasoning with
regard to spin decoupling by such a held for an isolated
atom. In the actual source the presence of indirect
couplings between neighboring ions may explain the
failure of the strong 6eld method. The presence of such
couplings would, of course, imply an CBect of chemical
environment on the angular correlation. Even if this is

the case a combination of a strong held and suitably
prepared (magnetically dilute) sources may produce the
desired spin decoupling. Vjhether one uses these sources
with or without a magnetic held, an additional compli-
cation arises in observing charged particles due to
multiple scattering which is necessarily present with
the requisite thicknesses. However, corrections can be
made if the scattering is not excessive (32). Even with
thin sources the presence of a strong held could be
tolerated only for correlations not involving light
charged particles.

In any case the difhculties discussed above are such
that little or no help can be expected in the way of
quantitative calculations. Certainly, the technique of
preparing suitable sources which is closely associated
with the question of understanding the concomitant
physical problems, is largely an experimental one.
Nevertheless, the starting point for the analysis of any
experimental results must be the theory for the isolated,
uncoupled nucleus. This must be so whether the angular
correlation is regarded as a method of nuclear spectros-
copy or as a method of investigating nonstationary

state processes in the solid (or liquid) state. " For this
reason, and because the purely nuclear aspect of the
theory is so well developed, we restrict our attention
chieQy to the angular correlation mithout spin-coupling.
The only noteworthy exception is the case in which hfs
Rild other llltcI'nRl coupllllgs CRIl bc eliminated. Then
the application of a magnetic field, for which the coup-
ling is completely defined, permits a determination of
the intermediate state gyromagnetic ratio and magnetic
moment by comparison with the zero-field correlation,
(2, 5). This will be discussed in Sec. IV. It goes almost
without sRylng t4.Rt., foI' pur'poses of nuclear spectros-
copy, every effort to eliminate the essentially unknown
spin-coupling should be made. To the extent that this
can be done the results of this paper wouM apply to
the observed correlation, and the correlation measure-
ment becomes an extremely valuable tool for the in-
vestigation of nuclear properties. It shouM be empha-
sized, however, that in many cases the spin-coupling
CGects are either too small to be observed or are small
enough so as not to render ambiguous spin (and parity)
assignments. Recent experimental results on Co" shows
that when care is taken in the preparation of sources
and in making appropriate corrections for geometry
and statistics the agreement with theory is excellent.

II. GENERAL FORMULATION

A. Introduction

It is our purpose in this section to set, up the problem
of the angular correlation of successive nuclear radia-
tions in the most general fashion possible in order to
provide a common framework for the discussion of the
various specialized problems of practical interest. The
detailed applications appear in succeeding sections. The
common features of all correlation problems is to be
found in the fact that they involve an initial nuclear
state of sharp angular momentum j'I and parity that
undergoes successive transformations either emitting
ox' RbsoI'bing I'Rdlatlons thI'ough lIitcl mediate nuclcRr
states of sharp angular momenta j„jt, with sharp
panty and terminating as a nucleus with sharp angular
momentum j2 and parity. The properties of the radia-
tions, the observation or lack thereof of their directions
of motion, polarization properties, the presence or ab-
sence of perturbation of the intermediate nuclear states
by external fields (magnetic (hfs) and possibly quad-
rupole interactions) condition the specific correlation
discussed. Our general assumption of sharp angular
mon1enta and parity for the nuclear states is restrictive,
however, and distinguishes the correlation problem
from, say, the closely related problem of thc angular
distribution of nuclear reactions (15, 16). One addi-

' lt is perhaps worthy cf note that this interweaving of nuclear
and atomic as well as solid-state physics arises from the fact that
we are interested in the aegelar properties of the nuclear transi-
tions and because the nuclear lifetimes are long enough to com-
pare with the characteristic transition times for the atomic and
solid state processes.



732 L. C. 8 IE DENHARN AN D M. E. ROSE

tional restriction will be made in the general formula-
tion: namely, that the initial and final nuclear states
are randomly oriented. This is a mild delimitation of
the problem, excluding only such specialized processes
as the radiations from oriented nuclei in certain crystal-
line lattices at very low temperatures (72). It turns out
that in several instances such problems can nonetheless
be treated as special cases of our formulation. In any
case such processes are not our immediate concern.

The initial and final transitions thus occupy a pre-
ferred position in this formulation, and focusing our
attention on the two transitions leading from and to
these states we can write the general correlation func-
tion in the form

W(A, , A, ; A', A", ) Sp(jrmrIFIr(Ar) I j m )*
X(jtmrIIIr(Ar) I j,m ')S(m m '; m m ')

X(j.m. I &2(As) I jsms&*(j.m'IIIs(As) I jsms) (1)

Here the summation P is over m~, m, m ', m„,m„',
ms, and the symbol P refers to the averaging over all
of the unobserved properties of the radiations. As indi-
cated irrelevant constant factors have been omitted
since we are interested only in the dependence of the
correlation function on observed parameters AI and A2

such as propagation directions, polarization. 9'e omit
scale factors in the sequel usually without comment.
Further, in Eq. (1) Pr(A&) is the interaction Hamil-
tonian for the emission of the initial radiation described
by the set of vectors A& and IJ& describes the emission
of the second radiation in a similar way; S(m,m, ;
m„m„')is, a matrix that describes all the other proper-
ties of the correlation (the intermediate radiations and
extraneous perturbations, see Secs. IV and V). The
vectors A', A" describe intermediate observed
radiations and are contained in the 5 coefficient. For
the emission of two successive radiations this matrix
represents the spin coupling of the nucleus in the inter-
mediate state with extranuclear fields. In the following

sections the form of this matrix will be derived in detail
as it is needed for the cases of interest. For the simple
case of two successive radiations (double cascade), i.e.,
where only the initial and final radiations occur and the
intermediate state of spin j,=j„=j is unperturbed,
S(m,m, ', m„m„')=b(m m )8(m 'm„').In such cases the
superQuous subscripts u and e will be omitted. For the
same case but with the intermediate state perturbed

by hfs, or for the case where but a single unobserved
radiation connects intermediate states j, and j„and
the states j,and j„areunperturbed [see reference (42)j
S=l(m, m, ', m„——m„')f(m„m,', m„).This particular
form may be deduced in general for those cases that do
not introduce any new angular information. The case of
an external magnetic field with incomplete Paschen-
Back eGect constitutes an example to the contrary.

We may rearrange Eq. (1) so as to bring it to the

more useful form:

W(A, AsA'A" )
PE&"(m,m, ')S(m,m, '; m„m„')E&"(m„'m„).(2)

The summation is to be carried out over m, m ', m„
and m„',and we have defined:f,

E&"( m, m, ') S=&P (j&mrIIItI j.m.)*

with St designating an average over the unobserved
properties of radiation I; E' is defined in a similar
manner. These E matrices are Hermitian so that
E(mm') =E'(m'm). The interpretation of the Ematrices
is given below in Sec. II-B.

The rearrangement leading to Eq. (2) is of more than
calculational interest, since it allows one to break the
angular correlation problem. into much simpler parts:
the initial and final transitions (which may now be
considered independently and, moreover, involve the
same kind of treatment), and the link between these
radiations which depends on spin-coupling in the inter-
mediate state. The E matrices can be greatly simplified
by the methods of Racah (63, 64, 65), as originally
shown by Gardner (38). To do this we first expand
the interaction Hamiltonian Hi for the emission of a
particle along the quantization (z) axis in terms of
tensor operators with definite angular momentum,
parity, and time-reversal properties:

IIr(At) = P n(LM, w,' At)T(LM, vr; Xt). (4)
L, M, m'

Here the n(LM, s; A) are variables that characterize
the particle emitted, and the T(LM, s) are irreducible
nuclear operators of degree L (see Eq. (5) below) with
parity s =+1.The arguments Xt refer to nuclear con-
figuration and spin coordinates. Note that I. can be a
half-integer as well as an integer. For a transition with a
definite angular momentum and parity change, i.e.,
a pure multipole transition, only a single one of the
T(LM, s) enters. In the following sections, then(LM, w)
or their equivalent are given explicitly for the cases of
interest. For the present purpose it suffices to say that
the n(LM, w) are characteristic parameters of the
particles; for example, for alpha particles the n(LM, w)
vanish unless m = (—)z and 3II=O since the projection

f Pote added iN proof.—We recognize that, strictly speaking,
the H operators are not Hermitian but are the emission'(or
absorption) parts of Hermitian operators. Actually in Eq. (2)
8("(m 'm ) should be replaced by a density matrix constructed
in the same way except that H2 is replaced by H2+. The distinction
between these two density matrices is a phase (—)", [see Eq. {38),
for example), which would appear in every correlation function.
However, except in the impractical case in which the circular
polarization of two y-rays is measured, v will be an even integer,
and the distinction is academic.
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of orbital angular momentum along the axis of motion

(z axis in the present notation) must be zero and no

spin angular momentum is involved. In this case the
parity is related to the angular momentum L by
~= (—)z. For y-rays M = &1 only, because of the
transverse character of the electromagnetic field, and
now for given L (multipolarity) the m. index essentially
characterizes the transitions as electric or magnetic.
Other cases in which we shall be interested, especially
Dirac particles, are somewhat more complicated and
will be examined in connection with the special cases
treated in the sequel.

If we are interested in the radiation emitted in an
arbitrary direction, we make use of the rotational prop-
erties of the T operators and transform them to a
new set of a,xes. The operators T(LM, ~) transform as
(2I.+1) dimensional irreducible representations of the
3-dimensional rotation group, that is

T(LM, e. ; Xi) =Q T(Lv, , ~; Xi')D(L, pM; (R), (5)

where the X& and X&' refer to the original and rotated
coordinate system, respectively. The argument R of
the rotation matrix D is a rotation, with Euler angles

aPy, such that the coordinate system describing the
radiation (propagation vector and polarization direc-
tion) is carried over into the quantization coordinate
system. The three Euler angles are necessary, so far as
problems considered below are concerned, only in the
case of emission of linearly polarized light. If the ob-
servation of the radiation does not include a measure-
ment of linear polarization, the angle y is ignorable and
can be set equal to zero. In this case the azimuth angle
n is meaningful only in the E matrix but, as will be seen
and as is to be expected, for the correlation only a single
angle P will be pertinent. However, until the two links
in the correlation function are formed the rotation (R

will define a direction (a, P) which will coincide with the
propagation direction. With f denoting the Nest vector
in this direction we shall write f as argument of the
rotation matrix in this case. (We follow the practice
of using boldface German letters for unit vectors. )

Introducing Eq. (4) and Eq. (5) into Eq. (3) and
dropping the subscript a we find

Et'& (mm') =giga*(LM, rr) cr (L'M', x ')

XD*(L, IJM)D (L', p'M')( jtmt I
T(Lp, x) Ijm)*

X(jimi I
T (L'p', ~')

I jm'), (6)

and the summation is now over nsi, L, M, p, x and
L', M', y', w'. Now the Wigner-Eckart theorem (77)
gives

(jimil T(L~, ~) I jm)
=CVtLj; mim —mi) (jtllT(L~) II j)b(~, ~,~.), (7)

where m ~ and m- are the parities of the nuclear states and

C(j iIj; mtm —mi) is the vector addition coeKcient or

Wigner coefFicient' corresponding to the addition of
j& and L with components m& and m —m& to give a
resultant j with component m (19), while (jillTII j)
is a reduced matrix element. "IWe 'use now Ithe rela-
tion (77)

D*(L, pM) = (—)~ &D(L,——p, —M) (8)

and the Clebsch-Gordan series (77)

Using Eqs. (7), (8), and (9) in Eq. (6) yields

L"'(mm') =&tZ(—) "'"'(itllT(L~)llj)*
X (j]IIT(L'rr)llj)a*(LM, 7p)

Xa(L'M'rr)C(j tLj; mtm —mi)

XC(j iLj'; mi m' m, )C(LL'—v; —MM')
XC(LL'v; mi —m, m' —mi)

XD(v, m' —m, M' M; (il). —(10)

The summation here is over m~, L, L', v, M and 3f'.
We can perform the m& sum using Racah's techniques

P (—1)
—~+~+"'C(jtLj; mim —mt)

XC(jiL'j; mtm' —m)rC( LL' ;vmt —m, m' —m, )
= (2j+1)( )" ~+~C(jj v; m—) m')—

XW(~~LL'; v~t). (11)

' Equation (7) is in the form given by Wigner (77). At first
glance it appears that this result implies the convention

(o ~
H

~
b) ~fPs*a,dr

Although this is a perfectly legitimate convention, we prefer to
use the more commonly used notation in which the indices u and b

are interchanged-in the left- (or right-) hand side of the above.
It would then appear that the proper manner in which the Wigner-
Eckart theorem should be written is

(jimilT(Lv, ~)lim)
=B(jj)(j~)~T(L7r)~(j)C(jLj~, mm& m)b(s, s—nr, ), (7a)

where 8 (jj 1) is a constant depending only on the indicated argu-
ments and its specification merely fixes the normalization of the
reduced matrix element (ji~(T(Lv) ~~ j). For example, Racah
P(63), his Eq. (28)jwrites the Wigner-Eckart theorem in this form
with 8 (jji) = (2ji+1) &. Actually Eqs. (7) and (7a) give identical
results with the understanding that different definitions of the
reduced matrix elements are involved in each case. To see this in a
simple way we consider that the tensor operator T(LM, m) in
Eq. (7) is actually the adjoint of T(LM, m) in Eq. (7a) where the
phase choice is T+(LM, m)=( —)~ ~T(L—M, m), . say, (see Sec.
II-C below). That is, we replace emission by absorption which
doesn't have any effect on the results. Then, if we equate the
corresponding sides of Eqs. (7) and (7a), we find that the reduced
matrix elements differ by a phase (—)~, aside from j and ji de-
pendent factors which are nonessential and which can moreover
be removed by suitable normalization. Thus, our result given in
Eq. (38) below can be transcribed to Racah's form by insertion
of a phase factor (—) '+ "+ '+~" which is equivalent to a re-
definition of the reduced matrix elements. Here and throughout
we suppress the third magnetic quantum number in the Clebsch-
Gordan (vector addition) coe%cients since it is always the sum of
the first two.

D(L, —p, —M)D(L', y'M')
=Q C (LL'v; pp') C—(LL'v; —MM')

XD(v, p' —p, M' —M). (9)
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Following Racah we also define the set of parameters

c„,(LL') —=Sz Q n*(LM, zr) n (L'r+M, zr)

X(—) -~C(LL", —M, .+M). (»)

Then Eq. (10) reduces to

L&'&(mm') =P(—)&' ~+ (2j+1)(gzllT(Lzr)lip)*
&& (jzllT(L'zr) II j)~-(LL'X'(jjv' m —m')

&&W(jjLL', vji)D(v, m' —m, r; $.), (13)

and the sum is over L, L', v and ~.
The various terms in Eq. (13) have a clear-cut mean-

ing. The factors (jz~~T(Lzr) ~~ j) are physical parameters
(that is, reduced matrix elements) characteristic of the
nuclear transition involved and, in particular, of the
state emitting or absorbing radiation, and are thus
independent of orientation and of the directions of
motion. These are physical parameters in the sense that
they are dependent on a physical model. The factors
c„,(LL') are characteristic of the particles emitted, and
upon the multipolarity and parity of the transitions
considered. through the parameters n(LM, zr), but are,
in addition, dependent on the information specified as
defined by the physical experiment under discussion.
This is clear by virtue of the averaging process indicated
in Eq. (12).The remaining factors are to be interpreted
as intrinsically geometrical in nature in contrast to the
foregoing factors which are determined by the physics
of the process.

Some general properties of the c„,can be obtained
rather readily. If only the direction of motion of the
particle is observed, then c„oalone differs from zero.
This can be seen simply from the fact that the angle y
refers to a rotation about the direction of motion, and
the physical experiment by assumption is independent
of p. Thus v-=0. Similarly if the experiment measures
circular polarization, the experimental results are again
independent of p and 7.=0. Thus, for this case only
Q„p/0. These conclusions can be verified in detail for
each specific case from the definitions given above.

B. Statistical Interpretation of Fano (30)

A number of fruitful interpretations of the formalism
of angular correlation are possible and have been given
in the literature. At this point we consider an interesting
interpretation of the meaning of Eq. (13) in terms of the
density matrix as given by Fano. The density or sta-
tistical matrix was introduced into quantum mechanics
to provide for the discussion of states about which less
than maximal information is available. This is exactly
the situation we have used earlier where we assumed the
initial nuclear state was randomly oriented (an impure

state) and only limited information provided on the
state of the radiation (only its direction of motion
specified, as is the usual case). The treatment of the
problem was first to describe it as if we had. maxima, I

information, that is, the procedure is to introduce pure
states and then average our final result to accord with
our limited knowledge. The use of the Racah functions
appeared as an algebraic convenience to handle the
sums. As pointed out by Blatt (16) and especially by
Fano (30), a direct procedure should be possible that
never introduces the extraneous details of this method.
In carrying out this program by means of the density
matrix the geometrical significances of the Racah func-
tions will become more apparent.

Consider a pure state P defined by an expansion in

terms of an complete orthonormal set of wave func-
tions I ", i.e, ,

One constructs the matrix

~m~ =~~ *~~.

Then all properties of the state P, tha, t is to say, the
mean value of any arbitrary operator F can be found
from the trace rule

for the radiation

QB (LM) Pz, z, —— (14)

and for the resultant state

4...=E C(jm)4, ",

where

C(jm) = P A( )8m(zLM)(j ~LmM~ jimi).
m1L M

(F)= P a„*aF„=tr(FP).
mme

The state zP is therefore completely described by the
density matrix I'. The density matrix, however, can
also describe impure states, which can be looked upon
as the weighted sum of the density matrices I'„of
pure states; thus P=g„p„P„wherep„are the weight
factors.

The matrix E(mm') introduced above is seen to be
the density matrix of the intermediate state j. The
information on the intermediate state j, as represented

by the matrix E(mm'), has its origin in the coupling
of the density matrices for the initial state, about which

we know only its spin j&, and the radiation, about which

we also have limited information. Equations (4) and

(5) can be considered as the expansion of the radia-
tion into pure states, T (Llz, zr), with coefficients

+MD(L, zzM)n(LM, zr; Az), while the initial state is

expanded on the set f» ' Equation (6. ) is then the

expression of the density matrix for the state j in terms
of the density matrices of the initial and radiation
states.

In more detail one has for the initial state

P;„=PA(mz)gzz"',
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Forming the density matrices for the resultant state,
in which the transition ends, one obtains

P,„.(res) =QPmimi'(in)Pzrirr: ir (rad)

X(jmlL~I jimi)(jm'IL'~'l jimi)* (»)

The summation is over the indices I., I.', M, M', ~ni and
m, . Equation (15) is the desired relation for the density
matrices, but it is in a very unwieldy form. Fano
introduced at this stage the concept of "statistical
tensors" R(kq), defined by the relation

where P(jj 'mm') is the density matrix for states not
sharp in j.

This step is motivated by the observation that the
density matrix is dependent upon the choice of the
quantization axes, and under rotation of coordinates
transforms as the Kronecker product of the two repre-
sentations j' and j. This product, (j')*Xj is, of course,
completely reducible into a sum of terms with rank k,

(l j'—jl &k& j'+j), and, in the usual fashion, the
coefficient of each representation is the vector addition
coefficient, which allows us to separate each term by
means of Eq. (16).

For a completely random state but with sharp j we
know that the density matrix P (jj 'mm') = 8(jj')5 (mm')
and using Eq. (16) we find that only the scalar R (00, jj)
can be defined; i.e., a random state looks spherically
symmetric, as is to be expected. In general a state of
spin j can define tensors of rank less than or equal to
2j, as Eq. (16) shows. Using the unitary property of the
vector addition coefficients, we can invert Eq. (16)
to give the density matrix in terms of the tensor param-
eters. Introducing the tensor parameters in Eq. (15)
gives the result

P „,(res)=P (—1)& C(jjk; m, —m')

with

XR(kq)b(q, m —m') (17a)

R(kq) =& (jillLII j)*(jillL'll j)R(kiqi)
XR(k,q,)C(k,kik; q„—qi)8(qi, q,+q)
X (Q (2n+1) (2j+1)[(2ki+1)(2k„+1)]*'

X ( 1)'+'"+"+ W(i i~A—L; jki)
XW(j crj L'; jik)W(kiok, L'; Lk)). (17b)

The first summation is over I., I.', k~, q&, k„,q„.The
bracketed term in Eq. (17b) is essentially a recoupling
coefficient that allows one to relate the tensor param-
eters of the initial and radiation states to the tensor
parameters of the resultant state. The tensor param-
eters of the initial state represent the coupling ji+ji
= k~, while the radiation tensor parameters represent

R(kq, jj')= Q ( )& "C(j—j'k;m, m')—
'ffr fbi

XP(jj'mm')8(m', m —q), (16)

the coupling L+L'= k„.' The tensor parameters of the
resultant state, however, are expressed in the system

j+j=k with j=L+ji——L'+ji. The bracketed coefficient
in Eq. (17b) is just the change of coupling coefficient
to go from the coupling of resultant tensor parameters,

(ji+L)+(ji+L') =k,
to the coupling

(j,+j,=k,)+(L+L'=k,)=k. (1&)

For the present problem where the initial state is
random, only the scalar tensor parameter. is defined,
i.e., k~= gal=0. Then

«kq) = E (jillLII j)*(jillL'll j)R(k —q; LL'; rad)
IiIi'

X(2j+1)(—1)'+'"' "W(jjLL'; kji). (19)

Using Eq. (19) in Eq. (17a) we find

P- («s)=-Z 2 ( )'"+' "+'(—2i+1)
kq LIi'

XC(jjk; m, m')&(q, m—'—m)

XR(kq'II. ' rad)(j lliLllj)*
X (q, lllL'llq) W(~qLL'; kj,). (20)

Comparing Eqs. (20) and (13) gives the desired inter-
pretation of Fano. Namely, (a) the (—1)' C(jjv;
m, —m') is the coefficient that relates the tensor param-
eters to the density matrix, (b) W(jj LL; vji) is the
coefficient that changes the coupling schemes, (c) the

(jillLll j) are physical coefficients that weight the
various multipoles (d) finally, ( )z+~'+'p, c„,(I—L')
XD(v, qr; 61), which appear in Eq. (13), [see also
Eqs. (42a) and (71) below] are the tensor param-
eters of the radiation [R(kq) in Eq. (20)] which
express directly the information available on the radia-
tion by virtue of the physical measurements performed.
For example, if the radiation were unobserved only a
scalar parameter can be defined, and Eq. (20) shows
that the intermediate nuclear state is also random.

C. The Tensor Parameters of the Radiation

This formulation shows that the key point of the
correlation problem is the determination of the tensor
parameters of the radiations. I,et us limit ourselves for
the moment to a single emergent nonrelativistic'
particle. Then the tensor parameters of this radiation
are obtained from the measurements:

(1) the type of particle (this includes its spin mag-
nitude),

(2) the detection of its direction of motion,
(3) a spin polarization measurement (carried out,

we shall assume, with respect to a set of coordinates
defined by the direction of motion).

' The order in which the vectors. L and L' are added is important
for the phases, (19).' By this we mean that the spin is treated in Pauli approxima-
tion.
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The measurement of a direction of motion is, of
course, the basic correlation measurement. Interpreted
quantum-mechanically it means that the particle is in
a plane wave state, exp (iK, r,) (leaving aside the irrele-
vant center of mass motion). The subscript 0 here is a
particle label. The spin measurements determine the
spin wave function to be x,", assuming for the moment
that the observation corresponds to pure m states,
rather than to a more general linear combination of m
states. This information must now be used to deduce
the density matrix for the radiation in terms of eigen-
states of the total angular momentum.

We employ the Rayleigh plane wave expansion

e'x*=2m& gj &(Kr) (2/+1)&(~'y&').

The j&(Kr) are, of course, the spherical Bessel functions.
We shall use the set of functions (i'yio) as our angle
functions since they have the time-reversal property we
desire, namely,

(~1y m) ( ) i my —m

where Eo is here the complex conjugation operation.
Similarly we choose a representation such that

Kix,"=(—)' "x, ".
For example, the time reversal operator EI, for a spin -',

particle is Ef,=i'„EO.In the coordinate system de-
termined by the direction of motion we have therefore

ri&zx M p j (Kr)[4~(2/+1) j (/ly ~0)x M

=P [4 (2/+1) j'j, (Kr)

This result is the general form of a theorem enunciated
for special cases by Lloyd (55), by Longmire and
Messiah (59), and by Fuchs (3/). These authors have
stated the theorem, for electromagnetic radiation and

P particles, in the form of the reality of the product of
interfering matrix elements. This, of course, follows
trivially from Eq. (22). The foregoing is not intended as
a rigorous demonstration of the phase theorem. How-
ever, a rigorous proof of this theorem, which moreover
demonstrates the fact that it is generally valid and does
not depend on the use of perturbation theory, is given
below in Sec. II-D (see Eq. (30) and following text).

For an arbitrary direction of motion, we use the
property of the C J, &~ that this set of wave functions
transforms with a 2J+1 dimensional representation
of the rotation group. Hence

(&"x'xa ) =2~' 2 D(J, Mm; f) Z (2/+1)&j&(Kr)

XC(lsJ; Om)Cs, P,
where the prime refers to the rotated coordinate system,

The parity of the states C's, i~ is x, (—)' where m, is
the intrinsic parity of the particle c7. Hence we note that
only states with l's differing by an even integer can mix.
The density matrix for the radiation is

E(JM/; J'M'l') =4~[(2/+1) (21'+1)j'
XC(l'sJ'; Om)C(lsJ; Om)

XD*(J', M'm)D(J, Mm). (23)

If, instead of x, being measured, the measurement
fixes the spin function to be the linear combination

x,=P a x, then the density matrix is

where
Cs, p—=p C(lsJ; p, M p)(i'yi&)—x,~ & (21a)

XC(/s J.OM)g) M (21) E(J'M'/') JMl) =4'ir[(2/+ 1)(2l'+ 1)j P gmi*gm

XC(/'sJ'; Om')C(lsJ; Om)D*(J', M'm')D(J, Mm).

and
K @s iM —( )J—ikf@ —M

Introducing the concept of tensor parameters leads

(21b) to the results

The wave functions CJ, ~ combine with the initial
state wave functions, Ps~ ', to form the compound
state fr Since the Ha. miltonian that effects this com-
bination is invariant under rotations and commutes
with the time reversal operator E~, we find that the
reduced matrix elements, the "physical parameters, "
appearing in Eq. (20) for example, are purely real. To
see this we note that

(i ~m~; J/MIIIljm) = (il J/lllIIlil)C(i ~Ji; m~M)

R(k,q; spin)= P (—)' u *a,
mm'

XC(ssk. ; m, —m')6(q. , m —m'), (24a)
and

R(kq, JJ'l/'; rad)= P ( )s ~'+'+' " "+'—

X[(2k+1)(2k.+1)(2J+1)(2J'+1)
X (2l+ 1)(2/'+ 1)]~R (k q' )C (l k X; Oq )
XC(/kX; Oq.)D(k, qq. )W (/'J'k. s; sX)

XW(/sk J'; JX). (24b)

and If no measurement is made on the spin polarization
then k =q, =0. The result for the tensor parameters
of the radiation is then

or
(22)

(~.J/IIIIIIJ)*cu»; M)
= (Kji,m, ; K,J/M

l
H

l Kj m)

1)" "'+ ~ '+"(j~J/IIIIljl)C(j Jj'' —m~ —M) R(kq, JJ'll')= (—)s '+~

X [(2J+1)(2J'+1) (2l+1) (2/+1)]'*
XC(//'k; 00)W(lJ/'J'; sk')D(k, q0; f). (25)
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This example shows the general feature of all cor-
relation problems: that the tensor parameters of the
radiation are basically no more and no less than the in-
formation eontainedin the transformation from tinear mo
mentnm to angular momentum representations, suitably
coupled with the information obtained from a spin polar-
ization measurement, if such is present. The situation for
relativistic particles, and photons, needs to be treated
more carefully, but the essentials are completely analo-
gous to the nonrelativistic case above. Ke give the
results in detail in Sec. III,

D. Relation to Nuclear Reactions

It is instructive to consider now the relstion of the
angular correlation problem to the very closely related
problem of the angular distribution of nuclear reactions,
and scattering (78). In so doing one can eliminate any
reference to perturbation theory, or to the speci6c
interaction's' responsible for the transitions, and con-
centrate solely on the properties of angular momenta
which account for the correlation phenomena (23).
As this implies, the angular correlation formalism is very
general and is based on fundamental quantum-mechani-
cal concepts.

Consider a (compound) state of an excited nucleus
with angular momentum J and parity m that can decay
into pairs of particles of spins j'& and j2, respectively.
The specific pair will be denoted by o. (channel label);
the vector sum of ji and j2 will be denoted by s (channel
spin).

In the region where the particle pair. 0, are well

separated, that is, the "external region" where the only
interparticle interaction is, at most, the Coulomb inter-
action, the two particles will be in relative motion with
angular momentum /, and we can write the eigenstates
with sharp energy in the form

f(JMx) =iP(JM; mls; in)

+ g S(Js;nts; n'. t's')P(JM; o.Vs', out), (26)
u'l's'

where

t~q
P(JM; ats) =—W(ir, w, i)—' expai~ IC,r,

2) m,

XC(jij2s; mi, v m)Ci( /—sJv, M —v)

XX 'x "'I"l "(+, 9). (26a)

(The xi; ' are the wave functions of the particles i,
while v, is their relative velocity. For an in-going spheri-
cal wave we use the minus signs in Eq. (26a); for an out-
going wave, the plus signs are used. ) S(J~;nts; n'l's') is
the scattering matrix, which must be unitary and
symmetric in order to satisfy the two requirements of
(1) conservation of the total number of systems and (2)
reciprocity. The wave functions given above are con-
tinuable into the internal region, and are therefore
suitable eigenfunctions to use as a basis for describing

the compound state. The compound state is assumed
to be a pure state, decaying into pairs of particles which
are detected by the apparatus envisaged. According to
the preceding discussion, the detection of a direction
of motion of a particle corresponds to information
which determines the density matrix of the compound
state. Such information, when combined with the in-
formation that leads to this state, yields an angular
correlation.

The states given by Eq. (26) are, however, not pure
states, since the in- and out-going parts correspond to
diferent mixtures of the various channels. What we
desire is an eigenstate of the scattering matrix, that is, a
state (we label it by n) composed of all channels, pairs
of particles and orbital angular momenta, with the
weights X(n, mls), such that the in- and out-going parts
belong to the same mixture. Since this is an eigenstate of
the scattering matrix, we have by definition

S(Jn; nts; n't's')X(n, n't's')=e'"'"X(n, its) (2/)
a'l'a'

with real b„.The desired state is therefore

P(JMvr, n) = Q X(n, nts)

Xg (JM; nts; in)+e"'"P(JM; nts; out)). (28)

Strictly speaking, since the compound state is decay-
ing, the energy is unsharp and one should take a sum-
mation of the states above over an energy range. We
shall not put this in evidence since it does not a6ect the
arguments that follow.

The experiment envisaged measures now the type of
particles (n) and their spin magnitudes (ji a'nd j&) as
well as their (back-to-back) direction of motion.
Hence we must expand the wave function above into
eigenstates of the linear momentum, exactly the situa-
tion considered in Sec. II-C above. When this is done,
one finds for the density matrix of the compound state

E(JJMM') =-'Q( —)' ~ii' '(2J+1)
XL(2t+1) (2t'+1)]~C(tt'v; 00)
XC(JJv; M, —M')X(n, O.ls)

XX*(n, nl's)W(JJll', vs)

XD(v, M —M', 0; f), (29)

and the summation is to be carried out over s, 1, l' and s.
This result has just the form given in Eq. (20); since

(a) L(2l+1) (2l'+1)]'C(lPv; 00)D(v, M' —M, 0; f) are
the tensor parameters of the radiation, inasmuch as no
spin polarization is considered, (b) C(JJv; M, —M )
X(—)' ~ are the coefficients that connect the tensor
parameters with the density matrix, and (c) the
W(JJll'; vs) are the change of coupling or Racah
coeKcients. The X(n, nls), X*(n, nl's) are the "physical
parameters" that give the weights with which various
subsystems mix in the mth eigenstate.

It remains only to observe that the X(n, uts) are
(or can be chosen to be) real. Since the X(n, nls) corre-
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spond in a perturbation calculation to the reduced
matrix elements, one sees in particular that the relative
phase of any mixture of reduced matrix elements is
always 0 or vr.

Tile pioof foi tile i'eai1ty of tile X(N, Q/s) is lmlYledlate.
Since 5+=5 ' (unitary property) and 5=5 (symmetric
property), we see that 5 can be always written in the
form 5= U 'e' U where U is real and orthogonal and 6
is real and diagonal.

Since
5X (n) = e'-""X(n)

= U 'e'~UX(n)

tions of all spins (J), parities (~) and eigenstates (n) of
the compound system.

The density matrix for a compound state where
J, vr, e are not sharp has the form

E(JJ'MM')= ',Q(-)'—"'i' '

X [(2J+ 1) (2J'+ 1)(2//1) (2/'+1) ]&

)&C(//'v 00)C(JJ'v M —M')

)&W(/J/'J' sv)D(v M' —M 0 f)

XX(N, n/s)X(N', n'/'s)

we have then
e'~UX(n) = e' ""U-X(n), exp[2/(/'„—8„)]out

X (31)
and we can choose UX(ii) to have the form of a column
vector with unity in the eth place, zero elsewhere.
Designating this column vector by m, that is,

we have
transw„= ( . 00010 . ),

X(n)= U 'ie„. (30)

Then X(ri, n/s) is real since U is real. This is the proof of
the reality of the matrix elements, and a for/i, ori, of the
theorem on relative phases of interfering matrix ele-
ments, referred to in subsection C above.

Previous proofs of the reality of the reduced matrix
elements have involved the commutability of the inter-
actions with time reversal operators. The above proof
also uses time reversal but in a concealed fashion since
the properties of the 5 matrix were deduced from de-
manding reciprocity. The form of the proof above shows
that this result on the relative phase of the reduced
matrix elements is more general than the strict appli-
cability of the equations would indicate. For photon
emission or absorption, the use of wave functions as in
the above equations is dubious at best. However (78),
the form of the results should nonetheless hold, and,
indeed, the result on the relative phase of the matrix
elements has been verified for photon emission directly,
(55). Since the generalization to relativistic wave func-
tions can be readily carried out (42a), the result can be
scen to bc VRlld ln this case also.

In the double cascade correlation experiment, the
initial compound state is randomly oriented and the
observation of the first radiation determines the density
matrix of the residual compound state. This introduces
only formal changes as compared to the case considered
above where the observation of the radiation determined
the density matrix of the radhafieg state. As a result,
however, one sees that the cascade correlation involves
the properties (i.e., the "physical parameters" X(N, cx/s))

of two compound states, unlike the nuclear reaction
problem where the same compound state occurs in both
trRnsltlons. An Rddltlonal distinct ion, Rs mcntloned
earlier, is the fact that the nuclear reaction cannot in
general be considered as occurring via a pure state;
rather one must add, with equal weights, the contribu-

ln

and the sum is over s, l, l', v, the "out" and "in" refer
to the compound state decaying or being formed, re-
spectively. For a nuclear reaction, we have the same
compound state formed by an incident radiation (1)
and decaying into an outgoing radiation (2). The angu-
lar distribution has the form (see Eqs. (35) and (38)
below),

W(fi f2)=QE(JJ'MM' 1)E*(JJ'MM'2), (32)

with the summation over 3f, M', J, J', m, x', I and ss'.
In Eq. (32) fi and f~ are the unit propagation vectors
of the radiations (1) and (2). The sum over J, J', ir, s.',
I, e' is necessary since the reaction proceeds via all
compound states. The sum over M' and M is readily
performed giving the result

W(fi, f2)=4 E &s&s.(fi f2),

where

/3z QX(i——i, n/is) X(ii', n/i's)X(N, u'/2s')

y X(n', n'/2's') (—)' "exp[2/(h .—8„)]
X[/i '-'+'

f (2J+1)(2J'+ 1) (2/, +1)(2/, '+ 1)}-:

XC(/, /, 'L; 00)W(/iJ/i'J'l sL)]
X [V" '~ {(2J+1)(2J'+1) (2/2+1) (2/, '+1)}&

X (C /2/L2; 00)W(/2J/2'J', s'L)]. (33)

The latter sum is over J, J', l1, l1', l2, l2', s, s', e, e'.
The quantities in square brackets are just the Z(/i J/i'J';
sv) coefficients arising in the angular distribution of
nuclear reactions and defined in reference (15).

The sum over e, n' can be carried out since we note
that this is just the "spectral form" of the scattering
matrix. That is,

P X(N, n/is)X(n, n'/gs')e —'"'.

=5+(J~; n/is; cx'/2s') (34a)

Q X(n', n/i's)X(e', n'/~'s') e"'"'

= 5 (J's '; n/i' s; n'/2's'). (34b)
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Finally if we wish to find the scattering angular dis-

tribution as well as the reaction distribution, we must
cancel the cross section given above for no reaction,
i.e., 5= i. In other words, we replace 5 by 5—1 in the
above formula for the reaction cross section, and it
becomes valid for scattering as well. Putting these

steps together wc 6nd for the differential cross section

W(fi, f2)-&e =- 2 /3LJ'r. (&i &2),
4 (2j+1)(2jo+1) &

using Eqs. (2) and (13) we have

W= Q E&"(mm')E&'&'(mm')
mm, r

= (2j+1)'Zc~x.i(LiLi') c 2 2*(L2L~')

x(—1}"'"""(jIIL~llj)(j~llL~'llj)

X(j2IIL II j)(j2IIL2'll j)C(jjv; m, —m')

XC(jjv2, m, m')W— (jj I &L&', v& j&)

XW(jjL2L2', v2j2)D(vj, m' m, r—~, 6t,)
XD*(v2, m' —m, r2, 64).

where j and jo are the
target nucleus and X is
incident channel n,'

The summation 1n Kq. (35) Is over wg%2LyLy L2L2
spins of incident particle and p&~27~v-&mm'. g,i and g.2 are the rotations correspon
the reduced wavelength in the ing to radiations 1 and 2 as explained below Fq. (5).

We can perform the sum over m hoMing p—=m, —m'

fixed. This involves
Br =P(S(Jn) 1)+(S(Jn) —1)(—)' '

XZ(lgJlg'J'; sL)Z(l2Jl2'J', s'L). (34) P C(jj vg, mp, m)C(j—j v2, mp —m. ) =5(vgvg). (36)

The sum in the expression for BL, is over J, J', x, x', l~,

1&', l2, l2', s, s'. This is exactly the result for nuclear
scattering and reactions given in reference (15}.

We emphasize again that this simple reduction of the
distribution to its dependence on the scattering matrix
was possible only because (a) we summed over all

possible compound states, and (b) the two radiations
involved the same compound state. The angular correla-
tion problem is distinguished from the above by just
these features, and we therefore must give our results
in the less compact spectral form.

E. The Double Correlation

Wc consider herc the correlation of two succcsslvc
radiations for the case of an unperturbed intermediate
state. In (1) below the general form of the correlation
function is obtained. In (2) the direction-direction
correlation is considered. The polarization-direction
correlation is of practical interest only in the case of an
observation of the linear polarization of 7 rays and for
this reason we defer the discussion of this correlation to
Sec. III.

l. The Genera/ Double Correlational Fumc6o~

Here, and in the following, wc make explicit use of our
choice of. phases for which the reduced matrix elements
are real They are not .Hermitian (i.e., symmetric).
Instead

(2j+1)'*(jillLlf j)= (—) "+~'(2j~+1)'*(jllLIIA).

Having set up the densit:y matrices E(mm'), the
problem now is to relate this to the correlation func-
tion of a simple two radiation correlation. Lct us sup-
pose that the intermediate nucleus is unperturbed,
i.e., that S(m,m, '; m„m„')=b(m, m„)8(m,'m„') Then.

That is, v~=v~=~. Finally we can perform the sum
over p,

Q D(v, prq, Sq)D*(v, pr2, Gt2)

=P D(v, /Jrg, Ig}D(v, re; 64—')

=D(v, r2rg, 64 '(Rg} (37)

and g,2
' is the inverse rotation to R&. The rotation

8,2—'N. ~ is that rotation which carries the coordinate
system of the first radiation into the coordinate system
of the second radiation. We designate the Euler angles
of the (R~ '(R~ rotation by nPy The r.esult is

W(aPy) Q(—1) '+ 'c..~(L~Li')c'.2*(L~L2')

X (j~llL~ll j) (j~llL~'ll j) (j2IIL2ll j) (j2IIL2'll j)
XW(jjLgLg', vj g)W(jj L2L2', vj 2)

XD(v, r,r, ; ~p7}. (38)

The sum ls over Ly) L] ) L2) Lg ~ TI) 7 2, and P. This ls thc
form of the general double correlation as given by Racah
(65) and equivalently by Lloyd (57).

It is of interest to note that the sum performed in
Eq. (3/) furnishes a direct proof of the conjecture of
Falkoff and Uhlenbeck (26) since it shows in particular
thst only the angles of the reference axes attached to fj
measured with respect to f2 are significant in the corre-
lation. 9 In other words, one may arbitrarily pick either
of the radiations to define the coordinate axes without
loss of generality —the principle of spectroscopic sta-
bility in another terminology. This fact has been ex-
tensively discussed in the literature from many points of
view, see especially (44) and (26, 53, 51, 71, /5). It
should be noted further that the density matrix may
or may not be diagonal for this choice of axes, the di-
agonality being irrelevant (75).

9 In fact, if only propagation vectors are measured, the only non-
ignorable angle is p which is the angle between fI and f2, the unit
vectors in the propagation directions. See paragraph (2) below.



740 L. C. BIEDENHARN AND M. E. ROSE

For the important cases where the intermediate state
is not unperturbed (hfs, for example), the correlation
calculation is more diKcult but the methods are the
same. We shall discuss these cases in Sec. IV.

and thus

40r
D(v, )i0; nPO) =

l f
V.""

(P, rs),
&2v+1)

D(v, 00; nPO) =P„(cosP)=P„(fifo),

(39a)

(39b)

where P„is the Legendre polynomial, Eq. (38) becomes

W(p) =2( ) '+ 'cPOCL1L1')cPO(L2L2')

X CjilfLifl j)VillLi IIj)CjsflLslf j)
X (jsllLs'll j)W(DLiLi'; vj i)

XW(j jLsLs', vj,)P„(cosP). (40)

The sum is over v, L~, L~', I.2, and L2'. As discussed in
subsection G below, v is an even integer in the range 0
to the smallest even integer of the set 2 (Li),„,, 2 (L,)
or 2j.Here (Li) is the largest value assumed by L,
and/or L,i' and similarly for (Ls)

Equation (40) refers to the correlation in which the
emitted radiation is a superposition of different angular
momentum states. This case may occur not infrequently
in the emission of n particles (Sec. III-B). Also, in the
case of unfavorable parity change in p-ray emission, a
superposition of magnetic dipole and electric quadrupole
has been observed to occur in several instances. Perhaps
the more interesting case is the one in which only one
of the transitions is not pure and consists in the super-
position of only two angular momenta L& and L&',

say. Then the correlation function becomes

where
W(P) =Wr(P)+Wrr(P)+W»r(P),

Wr CP) = (—)"+"CzsllLslfA'(jillLifl j)'
XQ c 0(L1L1)c 0(L2L2) W(jjLiLi; vj 1)

Z. Direction-Directi orI Correlation

Of greatest interest is the angular correlation in
which one observes only the propagation vectors f& and
f2 of the two radiations and, as discussed in subsection
II-A, for this case ri rs ——0——in Eq. (38) and n and p
are ignorable. Then, using

8'I is the correlation function which applies when the
6rst transition is pure with radiation angular momen-
tum L&. Similarly, 8 11 applies when the first radiation
angular momentum is L&' only. 8'~&~ is an interference
term which (see subsection II-F) does not contribute to
the total intensity. In this term the minimum v=2.
The maximum value of v is the smallest even integer of
the sets 2(LiI.,j), 2(L,'Lsj), (Li+L, ', 2Ls, 2j) in
Wr, Wrr, and Wrrr, respectively, (see subsection II-F).
As written the correlation function 5" is not normalized
so as to be necessarily positive definite. However, the
insertion of a factor (—) i' "will insure this.

It will be observed that for both transitions pure the
reduced matrix elements are merely scale factors so
that in this case the correlation function can be written

b„(LL';x) =c„(LL',x)/c„(LL';y). (42)

From the discussion following Eq. (20) we have in this
case (r=0) for the tensor parameters of radiation of
type x

g(vq LL' x) = ( )0+r'+iD(v, q0; $)—c„p(LL';x). (42a)

Therefore an alternative definition of the particle
parameters is

b„(LL';x) =R(vq, LL'; x)/E(vq, LL'; y), (42b)

and it is to be noted that the ratio is independent of q.
(d) The correlation function as written in Eq. (41 a, b, c)
may be expressed in the form

W=Q W, , (43)

W(P) = (—) '+ P c,o(LiLi)c,p(LsLo)
V

XW(jjLiLi; vji)W(jjL2L2 jv2)P (COSP). (41d)

The result for the double correlation given in Eq. (4())
shows that a useful representation of the correlation
functions for diGerent radiations is obtained as follows:
(a) we adopt a standard cascade, vis, the y —y cascade.
For a transition in which a 7 ray is emitted the c,o(LL )
will be denoted by c.(LL'; y). (b) For any other type
of particle (x) emitted, the c„p(LL')will be denoted by
c„(LL';x). (c) We define the particle parameters
b, (LL'; x) by"

XW(jj LsLs, vjs)P. (cosP), (41a)

W»(P) = (—)"'+"(jsllLsll j)'(jillLi'll ji)'
XQ c.o(Li'Li')c, o(LsLs)W(jjLi'Li'; vj i)

XW(jjL&Ls, vjs)P„(cosP), (41b)

W-r(p) = (—)"(jsllLsll j) CjilfLill j) CjillLi'll j)
XQL(—) 'c, (L,L0,')+(—) "c,o(Li'L,)j

jr

Xc.o(L2L2)W(jjLiLi'; vj i)
XW(jj LsLs, vjs)P, (cosP). (41c)

where i=I, II, III, 'and each of these may be written
in the form

W;=P A, &oP„(cosP). (43a)

In Sec. III-A results are given whereby the coefficients
2„&"for the standard p —p correlation may be im-
mediately obtained. We denote these coeKcients by

' In subsequent applications involving pure radiations it is
sometimes convenient to adopt a normalization in which b0(I,L, ; g)=1.This, of course, can always be accomplished by redefining b„
as c„(IL;s)co(LL; 7)/c„(LL;y)co(LL; x).
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A. i'&(yp). Then, if a radiation (x) replaces the pure y,
the correlation function is

W(P) =P P b„(L2L2,x)A„"'(7y)P„(cosP). (43b)

%hen the mixed 7-radiation is replaced by the radiation
x, the coe%cients A„'' and A„& ) are merely multiplied
by b.(LiLi, x) and b„(Li'Li',x), respectively. For the
interference term we 6rst note that

(—)"(LL'; v) = (—)'c (L'L; v) (44)

as is shown io Sec. III-A. Therefore the factor by which
A„'I'I' is to be multiplied is

—',Lb„(LL';x)+b„(L'L;x)].
(e) For the correlation of radiations x and y the corre-
lation function is obtained by performing the steps
given in (d) for each particle. Thus, for the x—y corre-
lation with both radiations pure the correlation func-
tion is"

W*-u(P) =Z & (LiLi) x)& (L2L2 ~ y)

X&.'"(yy) p. (cosp). (45)

Of course, the choice of the 7—y correlation as the
standard one is arbitrary. Ke could have chosen the
a—u correlation which, from the point of view of
analytical simplicity and availability of numerical
results, would have been almost equally suitable.
However, the fact that the parity restriction precludes
the mixing of even and odd I. militates against this
choice. For p-rays the parity for given I.depends on the
character of the radiation (electric or magnetic) and
mixtures of all L, I.' pairs (consistent with angular
momentum conservation) are permissible in principle.
Of course, in the case of p rays L~&1 and the omission
of the 1.=0 value is a slight disadvantage when one
wishes to consider the emission of radiations with a
mixture of L=O and. a nonvanishing I. (in the emission
of n or P particles, for example). However, in this in-
frequently occurring case direct use of Eq. (40) can
be made.

F. Symmetry Proyerties of the Double Correlation

The double-correlation problem shows a number of
symmetries, which are the consequence of (a) the
"Hermitian" character of the matrix elements, (b) the
invariance of the interactions LEq. (4)] under reversal
of coordinates and/or time reversal and (c) the special

"For the E conversion-conversion correlation the validity of
Eq. (45) is based on the fact that the lifetime of the E shell hole,
formed after the -Grst conversion, is much shorter than the life-
time of the intermediate nuclear state, (62). Therefore, when the
second conversion transition occurs the atomic state is initially
the same as for the Grst conversion transition. Ef this were not the
case, there would be appreciable interference contributions be-
tween the two alternative ways of reaching the final state corre-
sponding to the two possible orders of emission of the two E
electrons (50).

symmetries characteristic of particular observations,
(for example, observing only a direction of propagation).
Consider first the Hermitian symmetry. From Eq. (1),
particularized to simple double correlation, (S(m,m, ';
m m ') a unit matrix), we find that the Hermitian prop-
erty requires the correlation function for ji(Li) j(L~)j2
to be identical with that corresponding to j2(L2)j(Li)ji.
That is, initial and 6nal states as well as erst and second
radiations may be reversed without any change in the
correlation. This "degeneracy" is present even when the
intermediate state is perturbed. (Secs. IV and V-B).
In the tabulation of the coefficients for the double cor-
relation, given in Sec. III, use is made of this symmetry.

This symmetry property was apparent from Eq. (2).
This property, it can be seen, holds even for non-
Hermitian B operators. For example, in the case of
no spin-coupling considered here, the correlation
function is given by the trace of the product of the
two density matrices; i.e., W= tr (E'E') = tr (E E') and
the density matrices E' and E' are dined in precisely
corresponding ways. The symmetry is not entirely ob-
vious in Eq. (38) but can be readily checked by using

c„,*(LL')= (—)'+z' 'c„, ,(L'L),

which is directly derivable from the definition given in
Eq. (12), and the unitary character of the rotation
group matrices D". It must be emphasized, however,
that this symmetry was built into the theory, so to
speak by our definition of the reduced matrix elements.
Thus, Lloyd L(56) and especially (52)] writes the re-
duced matrix elements so that they always appear in
the form (j~~~L~~ j,) where jr and j,, respectively, refer
to final and initial states in each transition of the cas-
cade. This divers from our convention only for the
second transition of the cascade. Using the fact that
Hermitian conjugation of the reduced matrix elements
introduces a factor (—)&'~ "+z, one finds that for the
second transition

(jllL2II j2) (jllL2'll j2) = (—)' "'(j~llL2II j)(j2IIL2'll j).
Consequently, with Lloyd's de6nition of the reduced
matrix elements one must introduce a sign change in the
interference term mll~ when the second transition is a
mixture with ~L~—L2't an odd integer —the practical
case (and the first pure), but no sign change if the first
transition is a similar mixture (the second pure). This
point is emphasized because the sign of the reduced
matrix element product (j;~~L,~~ j) (j;~~L, ~~ j) (with
~L —L;~ =1) can be measured and any attempt to
compare a calculation of this phase on the basis of some
nuclear model with the measured. result must take into
account the definition of the matrix elements used in the
analysis of the experimental data.

The invariance of the interaction to time inversion
allows us to conclude that the relative phase of the
reduced matrix elements appearing in Eq. (38) is 0
or x. This point has already been discussed in subsec-
tions II-C and -D above.



In order to derive the properties of W (fi f2) under
coordinate reversal (P~z —P), we shall assume (a)
that the parity is a good quantum number and (b) that
our measurements do not distinguish between right
and left-handed coordinate systems. The only possible
cases where the latter would not apply involve measure-
ments of circular polarization of y rays and/or polariza-
tion of spin —,

' particles and these cases are not particu-
larly amenable to experiment. In the case where only a
direction of motion is observed, the tensor parameters
of the radiation involve D(v, q0; f) which under reQec-
tion is multiplied by (—)".Since this must be identical
with the tensor parameters before reQection we deduce
that v is ever. The correlation is therefore symmetric
around P= —,'ir. If the second condition is violated (im-
agine for example measuring the circular polarization of
gamma-rays), then the argument is invalid, and in fact
odd values of v enter. In contrast to some arguments
hitherto advanced, the good quantum number property
of the parity is insufhcient to guarantee that only even v

enter the double correlation. For linear polarized
gammas, the measurements are unchanged by coordi-
nate reAection and thus v is indeed even in this case.

The complexity of the double correlation, that is the
number of Legendre polynomials with v) 0 that enter
Eq. (40), has been the subject of much discussion in the
literature, (24, 79, 80) . In the formulation above the
allowed values for v are determined by the properties
of the Racah coeScients, so that this question is solved
in detail. The Racah coefficient W (abed; ef) vanishes
unless we satisfy the triangle conditions (abe), (cde),
(acf), and (bdf) Atriang. le condition such as (abe)
implies that a, b, and e can form a triangle (including
the case of vanishing area). As' a result, we see from
Eq. (40) that v is restricted by

(I) 0&v&2j,

(2) 0 ~& v ~& 2 (L,)~.„)
(3) 0 &~~ &&2 (L~)-.

In the light of the density matrix formulation these
rules are fairly obvious. For a radiation of multipolarity
2 Li, we can define tensor' parameters of rank at most 2L.
Since these tensor parameters determine the tensor

parameters of the intermediate state, it is clear that the
rank of the tensor parameters of the intermediate state
is less than or equal to the minimum of (2L, 2j).
Finally, the tensor parameters of the intermediate
state determine the tensor parameters of the second
radiation, which must therefore be the minimum of
2 (L,, L,, j). If j is a half-integer then j in the above is

replaced by j—.—,
'

~ Of course, for j= —,
' one always has

v =0 only and therefore an iso tropic correlation func-
tion.

Of course, an experimental determination of the
maximum v is difficul t if the coefficient of the Legendre
polynomial with maximum v is small. However, the
coeKcient of P. is almost always sufficiently large to

give an observable anisotropy. Thus, if isotropy is ob-
served one can conclude (a) in the case of p emission
(or conversion electrons) j=0 for even-mass nuclei and
j=—', for odd-mass nuclei; (b) for particles which can
have L=0 (n particles, P decay, nucleons) either one
of the I 's has a zero value or j=0 or ~ depending on the
mass number of the nucleus in the intermediate state.

G. Relation to the Falkoff-Uhlenbeck Method (26)

It is useful at this point to show the relation of the
present methodology to the procedures of Falkoff-
Uhlenbeck. Falkoff and Uhlenbeck consider the angular
correlation problem in two steps, wherein each transi-
tion is represented in terms of the emission of a particle
current multiplied by suitable weight factors (the rela-
tive probability of transitions between various sub-
levels of the nuclear states involved, see Eq. (47)
below). In the case of gamma emission, this current is
the familiar Poynting Aux from an array of mul tipoles
all with the same magnetic quantum number. Since the
Falkoff-Uhlenbeck procedure considers the radiation
with a well-de6ned magnetic quantum number, emerg-
ing from a completely defined initial state, it is clear
that the intermediate state similarly has a fixed mag-
netic quantum number. Consequently, their procedure
is more restrictive than the procedure given in the
foregoing, in that it does not make provision for coherent
processes in general. Lacking the flexibility to handle
coherent processes, the Falkoff-Uhl enbeck procedure
forces one to link the two successive emissions via an
incoherent intermediate state, which is simply, enough
accomplished by letting one or the other of the two
radiations dehne the quantization axis for the problem,
subject only to the restriction (necessary in the FalkoG-
Uhlenbeck method) that the choice must diagonalize
the density matrix (see discussion at the end of II-E).
It is for this reason that the "choice of axes" held such a
central position in their work.

To show the relation of the two procedures in more
detail let us consider the double correlation problem
for the unperturbed intermediate state. The correlation
is then

W(fi fp)=8 P I(jimilH, (f,)l jm)l'
mIm2'fQ

&& l(jml&2(f2) I j2m2&l' («)

Here we have made the sums incoherent by taking
f& (for example) to define the quantization axis. Falkoff
and Uhlenbeck now introduce the function

&
I (~ .I ~(f) I ~ ) I

'
= [C(jiLj i miy m —mi)]'Fy. ~ "'(P) (47)

for a pure multipole transition. Hence

W(fi f,) Q [C(jLij; mi, m mi)]'—
ml'rrt2m

QFLi '(0)[C(jLgjg., m, m2 m)]2Fr2~' '"(P), (4—8)
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again for pure multipoles and unpolarized radiations.
The result for polarized radia, tion can be obtained from
Eq. (50) below. In this form the a.ngular correlation
problem has a very simple physical interpretation.
Equation (48) states that the populations of the sub-
levels m of the intermediate state are determined by the
current associated with the first, radiation, Fr.i '(0),
multiplied by the Zeeman intensity coefficients [C(j iI ij;
rni, nt —nti) j'. The subsequent radiation is the product
then of the flux of the second radiation, Fz~(P), the
Zeeman intensity coefficients and the population of the
intermediate sublevels obtained from the first transi-
tion. Of course, as pointed out earlier, it is equally valid
to choose f& as the axis of quantization.

The connection with the density matrix formulation
is ea,sily seen to be

E,„„&"Q [C(j iL,j, rni, nz —mr)]'FI, i'"-"'(P). (49)

It is more convenient to consider Eq. (47) (generalized
for mixed multipoles), however, to define the mixed
flux F» ~ (49). Introducing Eqs. (4), (5), (7), (9),
yields

F» (P, ~) =Z(j IILII j) (jillL'll j)

XC(LL'v; M, —M)(—)~~

XP P u*(Lti, m) n (L'p', m) (—)"
PP

XC(LL'v; —p, ti')D(v, 0ti' —p; fi)

=Z ', (LL') (jillL'll j) (jillLII j)

4~ q'*

XI I (—)' "I"(P~)
(2v+1i

X (—1)'~C(LL'v; iV, —M). (50)

The F» 'of reference (-49) is normalizecl differently
and is, in fact, the above without the reduced matrix
elements.

This form for the generalized Ill. l, I shows a number
of interesting features. (a) In order that the use of the
Falkoff-Uhlenbeck procedure be correct, it is necessary
that the choice of axes diagonalize the density matrix.
This will not be the case unless r =0 (An exam.ple when
r/0 is an experiment detecting linearly polarized
p-rays. ) We must thus choose the other radiation to
define the axis, if it has r=0, or if not, apply the more
general techniques discussed earlier. (b) The integrated
intensity from the Fz,z ~r(Pn) consists of only the
term with v=r=0 Since C(LL'0;.M, cV) vanishes—
unless L=L' we see that only the F&& (P), i.e., the
"self terms, "contribute to the integrated intensity. The
interference terms affect the angular distribution but not
the total intensity. This was shown first by Casimir

(18). As shown earlier, this result follows from the

general correlation function given in Eq. (38). (c) One
of the central problems for angular correlations is the
determination of the particle parameters of the radia-
tion, depending on the e„,(LL'). From Eq. (50) it is
clear that the problem of determining F» ~(Po.) is
completely equivalent to that of determining the
e„,(LL'). In practice, the formulation of a radiation
problem in terms of the emitted Aux is generally simpler
conceptually than the equivalent formulation in terms
of the tensor parameters for the radiation. Conse-
quently, the relation given in Eq. (50) is very often
useful.

It remains only to observe tha, t introducing Eq. (50)
into Eq. (49), and using Eq. (11) twice, reduces the
correlation function W(fi, f&) to the form of Eq. (38).
As noted before the radiation that is chosen to define
the axes must have r=0 so tha, t the Falkoff-Uhlenbeck
procedure is not completely general even for the double
correlation. However, the use of the F» (Pn) to
define the particle parameters is nonetheless completely
general.

A. Gamma Radiation

(f) GeneralProperties,

We shall describe the photon field by nieans of the
vector potential, which we shall treat as the "wave
function" for the light quantum, (42). The tensor
parameters of the quantum, according to our genera, l

recipe, are then found from the transcription of the
measured plane wave states, taking proper account of
polarization, into the spherical eigenfunction states
natural to the description of the nuclear process. The
intrinsic (unit) spin of the photon will be described by
the v ave function g~~, the sharp momentum of the
p-ray by e'"'. The transverse nature of light waves.
allows I' to be ~1 only, measured in a coordinate sys-
tem attached to the direction of motion. Thus I' is a
polarization index (P= —1 corresponding to right cir-
cular polarization). Because of this restriction, a polari-
zation measurement determines the spin state to be a
linear combination of these two basic states, with com-
plex coefficients, that is,

x.=ax'+&x ', Ial'+I&l'=I (51)

A convenient description of an arbitrary polarization is

III. SPECIAL CASES OF ANGULAR CORRELATION

In this section we take up the correlation in the case
of specific radiations. We consider in turn the tensor
parameters for (a) gamma radiation (b) alpha particles,
(c) conversion electrons, and (d) P particles. It follows
from Sec. II-E that from these results one can immedi-
ately obtain the correla. tion function for the double
cascade in which any pair of these radiations (e.g. ,
y —y, P—y, etc.) are emitted. The numerical results are
presented in the form of tables given below.
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obtained by introducing the rotation matrices for spin -„
x.=Z D(2, k~; 0|~)xP" (52)

Using the vector addition model we write

Of course, p, =&~. The Euler angles b, a constitute a
full description of a completely polarized quantum, and
are, of course, closely related to the Stokes parameters,
as shown in detail later. Setting the 6rst Euler angle in

Eq. (52) equal to zero merely fixes a nonessential con-
stant phase. Consider now the wave function (vector
potential) for a circularly polarized plane wave quan-
tum travelling along the s direction"

xi e'~'=P (2l+1)l(4s)i j&(Er)i'F '(r)x&

cases. Let us represent the result of the polarization
measurement by the vector P; that is to say, a vector
with the Euler angles u, b as azimuth and polar angles,
respectively, in a coordinate frame attached to the
direction of motion. Note that this polarization vector
is rot along the direction of the electric 6eld vector, E.
Then our measured state is represented by

(x. ' *)'= Z ( + )' (l l;0)
XD(L, M2y; N)[A'(LM) 2uA "(—LM) j (56)

We write the phase (—2p), that occurs for magnetic
multipoles only, in the form [vr( —)z]&+& when ~ is the
parity of the radiation. Here s.= (—) +' for magnetic
multipoles and n = (—)z for electric multipoles. Then
we can treat all the multipoles symmetrically

where

s'F 'x = Q C(/, 1L; QP)Cg, )
I=/+I, /

(53) (x.e' ')'=~K(2L+1)'D(k, 2~; 0)
XD(L, M2P (R)[m(—)z3l+vA (L, M), (57)

C z(v=2 Q C(l1L; P r, r) F(p 'x—i'.

x &ve' *= (2m )&
P [(L+1)ljl, , (Kr)4 "z, I
L

+Lj'z+i(«)@"c,z+~

P(2L+1)j'z—(Kr)@ z, zj. R (vq, LL'n. )= [(2L+1)(2L'+ 1)j~
tric Xg( )(k+v)z+(3+v')z'( )&—~&a—v'

XC(LL'v; M, —M')8(q, M —M')

XD*(2, -,'y', Q)D(2, 2p; g)
that XD*(L', M'2p; 6t)D(L, M2p; R). (58)

In Eq. (54) the first two terms correspond to an elec
multipole vector potential and the last term t
magnetic multipole potential.

If we rotate the coordinate system, so that the w

propagates in an arbitrary direction f, we note
the spin direction rotates (rigidly) with the propagation
direction so that we rotate the CL, ~ as a single entity. The sum is over 3f, M', p, p'. Now

(y, ve'x')'=m. g (2L+1)&D(L, MP; (R)

(5») where A (L, M) =A'(L, M) and A" (L, M) form = (—)
and (—) +', respectively. The sum is over L, M, p,
and x."

The tensor parameters of the radiation, with parity
a good quantum number, are obtained as described in
Sec. II-8 and one finds'4

L, .V
X (A (LM)+ ( P)A" (LM)). (55)—

=8( &')+-'Irl( —)& D(1, oo;y)s(»')
+2 'IPI (—)~"D(1,02~; V)~(i, —u'). (59)

The A'(LM) and A" (LM) are the usual (standing
wave) vector potentials, (42), normalized to (s'hE) '
quanta-sec, redefined only to the extent of a phase.
For magnetic multipoles (m) this phase is iz, for
electric multipoles (e) it is i +', since we require that
E&A' (LM)= (—1)~~A'~(L —M) in order to make
the reduced matrix elements explicitly real.

At present, it is experimentally feasible to measure
only unpolarized and linearly polarized gamma-rays
(17).Nonetheless we shall not specialize our treatment
at the outset to these important cases alone but rather
shall handle a general partially polarized gamma-
quantum and specialize at the end to the relevant

R(vq, LL'm) =Rr+Rzr+Rrli.

The first term is

(60)

RI=—(—)~z'+'[(2L+1) (2L'+1)j'
XC(LL'v; 1—1)D(v, qo; f) (60a)

To account for partial polarization, we have assigned
a magnitude to the polarization vector, 0& IPI ~&1,
such that

I PI =0 corresponds to unpolarized y rays
and

I Pl =1 corresponds to completely polarized y rays.
Using Eq. (9) we find that the tensor parameter

consist of three terms

'2 To clarify the notation we observe that

(1) /0)

WJ 4t)
and denoting the vector potential by A, Eq. (52a}—2 &(A +iA„)for P=i and 2 &(A —iA„)for P= —i.

gives

"I'he distinction between the numeric m (occurring in Eq. (57)
and elsewhere) and the parity symbol should be fairly obvious.
Wherever 7i- occurs in the tensor parameters R(vg), it refers to
parity.

"Since the tensor parameters refer here to p rays, we have sup-
pressed the radiation index y and to emphasize the parity de-
pendence the 7r symbol is put in evidence in the R(vq).
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for ~ an even integer. This is the polarization inde-
pendent tcI'IQ.

Err =—(—) '+z'+'
l
P

l [(2L+1)(2L'+1)$&

XC(LL'v; 1—1)D(1,00; Q)D(v, qO; f) (60b)

for v an odd integer. This is the "circular" polarization
contribution.

~-.=-(-) -2-'IP IL(2L+1)(2L'+1)3:
XC(LL'v, 11)[D(1,01;@)D(v, q2; $.)

—(—)"D(1,0—1;@)D(v, q
—2; 6t)]. (60c)

This is the linear polarization contribution. There is
no restriction on v at this stage of the calculation, but,
since the reduced matrix elements are explicitly real,
the 2|.'(vq) are restricted to be "real" in the sense that
EOR(vq) = (—) 'R(v —q) (see II-C). This condition im-

plies that v is an even integer in Egypt.

The tensor parameters for the most general partially
polarized y quanta have thus been obtained. Having
introduced a magnitude for P to describe the degree of
polarization, it is now clear that this description in terms
of P corresponds to the Stokes parameter description of
a quantum of unit intensity with polarization vector P
in the Poincare sphere (29).

For the cases of interest we have 6rst unpolarized
y-rays; l

P
l
=0. Then

R(vq, LL'rr) = (—)&+z'+'[(2L+1) (2L'+1)]&
XC(LL'v; 1—1)D(v, q0; f), (61)

where v is an even integer, and

c 0(LL') = (—)'C+(LL' 1v—1)
X[(2L+1)(2L'+1)]&. (62)

If linear polarization is measured, the Euler angles
of P are tt, b=m/2, so that D(1, 00; @)=0 and
D(1, 0+1; '@)=T2 *e+".Then one Ands

E(vq, LL'm)

=L(2L+1)(2L'+ 1)3'[(—)~'+'
XC(LL,'v; 1—1)D(v, q0; f)
+-,' (—) '+'n-C(LL'v; 11)(e"'D(v, q2; N.)

+e "D(v, q
—2; R))]. (63)

Thc 6I'st tcrIQ is sinlply Eg which is polRrizRtion inde-

pendent. The second term is the contribution of the
linear polarization, (Ertt). It should be noted that the
tensor parameters for linear polarization, in contrast
to the unpolarized case, depend explicitly upon the
parity of the radiation. It is this feature which motivates
onc to perform thc DloI'c dlKcult polarization Incasulc-
ments, and shows, incidentally, that a polarization-
polarization correlation (in which one measures the
polarization of both quanta) has essentially nothing new

to OBer over the simpler direction-polarization correla-
tions (60). The origin of this dep'endence on parity is
not far to seek, since it is simply an expression of the

duality theorem for multipole radiation. Changing the
parity of the radiation but keeping L, L' fixed takes
e-+m multipoles, which by duality, takes R—&8,
H~ —K, thus changing u by 180; this reverses the sign
of the linear polarization term, RgIq. The usual linear
polarization angle (de6ned by the E vector) is here -', a.
Since D(L, q+2; npy) = e" e+"& d(L, q&2; p) (where
d(L, py'; P) is the Jacobi polynomial), one sees that the
polarization angle 0 can be absorbed into y, i.e.,
y—+y+-,'a. This introduces the usual polarization angle
into the formalism above, see Eq. (73) below.

(Z) Correlation Furtcti ort for Unpolarized Radiation,

Only the erst term in Eq. (63) for the y-tensor param-
eter enters and using Eqs. (40) and (42a) the y —y
correlation function is

W(p) =Z(AIIL~ll j) (j~llL~'ll j)(j2IIL IIj)(j IIL2'll j)
XC (LgLg'v; 1—1)C(L2Lp'v; 1—1)
XWUP~L~' vi i)W(i P2L2', vj2)

X [(2Lg+1)(2Lg'+1) (2L2+1)(2Lg'+1)]i
XP„(cosP). (64)

Thc suIQ ls over LyLy, L2L2 Rnd p.

For the cascade emission of a mixed 2~1 plus 2~&' pole
and a pure 2~' pole the correlation is, explicitly,

W(P) = (jillLill j)+t+ (jillLx'll j)'~tr
+2(jillLill j)(jillLi'll j)~rrr, (65)

whcrc

~r = (2L~+ 1)(2L2+ 1)

X Q C(LgLgv; 1—1)C(L2L2v; 1—1)

XW(jj LgLg,' vj g)W(jj L2Lg, vj2)P. (cosP) (65a)

is the correlation function for a pure 2~1—pure 2~' pole
cascade, 78yg ls thc sRn1c Rs &g but with LI lcplRclng
LI and

u = [(2L +1)(2L '+1)]l(2L,+1)

X Q C(LgLg'v; 1—1)C(LpL2v; 1—1)

XW(jjLgL~', vj))W(jj LgL2, vj2)P„(cosP) (65b)

is the interference term. See also Eqs. (70, 70a, 70b,
70c). The correlation function for two mixed radiations
can be readily obtained from Eq. (64). In practice the
y-ray mixture will be a 2~ and 2+' pole mixture.
Then if Lg ——L, the 6rst term of Eq. (64) refers to the
2~ pole radiation and the second to the 2~+' pole.
From (Appendix A11)

C(LLO; 1 1)W(jjLL; Ojg)—
=(—)" ' '(2L+1) '(2j+1) '* (66)

it follows that the 2~'+' pole to 2~' pole intensity ratio is
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TABLE I(a). F2(l j&j) for integer spina. TABLE I(f). Fs(3j1j) for integer spins.

1
2
3

5

0.7071
0
0
0
0

—0.3536
0.4183

0
0
0

0.0707—0.4183
0.3464

0
0

0
0.1195—0.4330
0.3134

0

0
0

0.1443
—0.4387

0.2944

3 1.3056
4 0
5 0

—0.9792
0.4214

0

2

0.5440—0.7585
0.2420

—0.2176 0.0593
0.6895 —0.3831—0.6049 0.6979

TABLE lb. F2(2j1j) for integer Spins.

TABI.E I(g). F2(4j1j) for integer spins.

3

1 0 —0.3535
2 —0.5976 —0.2988
3 0 —0.4949
4 0 0
5 0 0

0.3535
0.1281—0.1237—0.4477

0

—0.1010
0.3415
0.2268—0.0448—0.4206

0
—0.1707

0.3093
0.2645

0

1 0
2 0
3 0
4 -0.9687
5 0

0
0—0.8763—0.8234—0.9099

0—0.7257—0.5258
—0.5554—0.6825

—0.4293—0.0726—0.0956—0.2101—0.3787

0.6010
0.4288
0.2995
0.1447—0.0437

TABLE I(c). F4(2jlj) for integer spins.

TABI.E I(h). F4(4j1j) for integer spins.

—1.069
0
0
0

0.7127 —0.3054 0.0764 —0.0085—0.4467 0.6700 —0.4467 0.1489
0 —0.3044 0.6087 —0.4981
0 0 —0.2428 0.5665

2 0
3 0
4 0.6034
5 0

0
0.4112
0.3017
0.4814

0.1718—0.1371—0.0901
0.0802

—0.3436 0.2811—0.2866 0.0374—0.2860 —0.1408—0.2239 —0.2592

TABLE I(d). F2(3jlj) for integer spins.

TABLE l(i). F6(4j1j) for integer spins.

0
0—0.8660
0
0

0—0.7171—0.6495—0.7835
0

—0.4243
—0.1793—0.2742
—0.4701—0.7360

0.5303 —0.1768
0.3287 0.4482
0.1443 0.4330—0.0855 0.2678—0.3680 0.0170

3 0
4 0.0674
5 0

TABLE I(j). Ps(4j1j) for integer spins.

0.0218 —0.0392 0.0356 —0.0198—0.0034 —0.0346 0.0104 0.0243
0.0387 —0.0290 —0.0190 0.0242

TABLE I(e). F4(3j 1j) for integer spins.
4 —1.4809
5 0

1.1847 —0,7539 0.3770 —0.1450—0.3893 0.7785 —0.8384 0.5989

0
0.2132

0
0

0.0891
0.0355
0.1453

0

—0.1336—0.1066—0.0484
0.1159

0.0891 —0.0297—0.0355 0.1044—0.1012 0.0132—0.0773 —0.0852

related to the ratio of reduced matrix elements by

IL +i (jillLi+1II j)'
(jilfLill j)'

(67)

Very often II.i+ t/ILt((1 and only linear terms in 5 need
be retained, (56). Of course, while the correlation func-
tion for pure multipoles is parity independent, the case
of mixed multipoles gives a parity determination only
if it is assumed that a Ml. , El.+~ mixture is much more
likely than an FL, iVL+, mixture (76a).

It should also be emphasized that the presence of
interference in the corre1ation may change the correla-

tion markedly and the correlation measurement is a
sensitive method for the determination of mixture ratios.

Equations (64) and (65) define the standard y —y
correlation. In particular Eq. (65a) is the standard
y —y correlation for pure multipoles. We write the latter
in the form

w(P) =Q A,P, (cosP) (68)

and renormalize so that A0 ——1 corresponding to unit
value for the average of the correlation function zv.

Then

~vhere

2„=F„(I.,j,j)F„(L,j,j), (69a)

F (Lj j )= (—)" ' '(2j+1)'(2L+1)
XC(LLv; 1—1)W(jjLL; vji) (69b)

so that also Fo——1,
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TABLE I(k). F2(1j1j) for half-integer spins.

3/2
5/2
7/2
9/2

11/2
13/2

1/2

0.5000
0
0
0
0
0

3/2

—0.4000
0.3742

0
0
0
0

5/2

0.1000—0.4276
0.3273

0
0
0

7/2

0
0.1336—0.4364
0.3028

0
0

9/2

0
0

0.1528—0.4404
0.2876

0

11/2

0
0
0

0.1651—0.4425
0.2774

13/2

0
0
0
0

0.1738—0.4437

TABLE I(l). F2(2j1j) for half-integer spins.

3/2
5/2
7/2
9/2

11/2
13/2

1/2

—0.5000—0.5345
0
0
0
0

3/2

0—0.1909—0.4676
0
0
0

5/2

0.3571
0.1909—0.0779—0.4325

0
0

7/2

—0.1429
0.3245
0.2494—0.0197—0.4109

0

9/2

0—0.1909
0.2962
0.2752
0.0158—0.3962

ii/2

0
0—0.2182

0.2752
0.2890
0.0396

13/2

0
0
0—0.2359

0.2596
0.2972

TABLE I(m). F4(2j1j) for half-integer spins.

5/2
7/2
9/2

ii/2
13/2

1/2

—0.6172
0
0
0
0

3/2

0.7054—0.3581
0
0
0

5/2

—0.3968
0.6367—0.2684

0
0

7/2

0.1176—0.4775
0.5857—0.2237

0

9/2

—0.0147
0.1736—0.5124
0.5505—0.1970

«/2

0—0.0253
0.2102—0.5309
0.5254

13/2

0
0

—0.0338
0.2359—0.5418

TABLE I(n). F2(3j1j) for half-integer spins.

3/2
5/2
7/2
9/2

11/2
13/2

1/2

0—0.8018—0.8183
0
0
0

3/2

—0.6000—0.4410—0.5455—0.7569
0
0

0.1500
0.0267—0.1637—0.4129—0.7191

0

7/2

0.5000
0.4009
0.2182—0.0275

-0.3319—0.6934

9/2

—0.2500
0.4009
0.4474
0.3028
0.0522—0.2774

11/2

0—0.3341
0.3273
0.4541
0.3476
0.1040

13/2

0
0—0.3819

0.2753
0.4504
0.3744

TABLE I(o). F4(3j 1j) for half-integer spins.

5/2
7/2
9/2

11/2
13/2

1/2

0.1543
0.1709

0
0
0

3/2

—0.0772—0.0190
0.1281

0
0

5/2

—0.0772—0.1076—0.0660
0.1067

0

7/2

0.1029—0.0069—0.0932—0.0849
0.0940

—0.0444
0.1019
0.0278—0.0778—0.0940

11/2

0.0070—0.0627
0.0935
0.0469—0.0653

13/2

0
0.0121—0.0735
0.0850
0.0585

It is clear that for the numerical tabulation of the
pure y —y correlation it is most economical to tabulate
only the P„and this gives a complete numerical descrip-
tion of the correlation. In Tables I(a) through I(j) we

give numerical values for the I'„for I.= 1, 2, 3, 4 and all
the necessary v values and for j&=0, 1, 2, 3, 4 and
j~&5 (integer values). In Tables I(k) through I(t)
we give Ii„for the same range of I. and v and for all
half-integer values of ji in the range —, to 13/2 inclusive
and for all pertinent j~& 13/2.

In using the tables one selects an F value (for each i )
corresponding to each transition and then the correla-
tion function is completely defined by Eqs. (68)
and (69a).

For the correlation in which one p-ray is not pure we
can use the normalization given above if the intensity
ratio 5 is introduced. in Eq. (65). The correlation func-
tion is simply

lV= wr+Pwrr+28irirrr, (70)

where 6' is the ratio of intensities of the 2~" pole to that
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TABLE I(p). Iis(3j Ij ) for half-integer spins.

7/2
9/2

11/2
13/2

1/2

0.6528
0
0
0

3/2

—0.8704
0.3077

0
0

s/2

0.6528—0.6714
0.1998

0

7/2

—0.3165
0.6994—0.5533
0.1498

9/2

0.0989—0.4304
0.6916—0.4793

11/2

—0.0183
0.1614—0.4918
0.6741

13/Z

0.0015—0.0344
0.2075—0.5287

TABI.E I(q). J 2(4j1j) for half-integer spins.

3/2
0/2
7/2
9/2

11/2
13/2

1/2

0
0—0.9274—0.9358
0
0

3/2

0—0.8113—0.6889—0.7444—0.8890
0

s/2

—0.6071—0.3245—0.3397—0.4558—0.6326—0.8573

7/2

0.2429
0.1711
0.0482—0.1155—0.3175—0.5572

9/2

0.5409
0.4898
0.3734
0.2127
0.0122—0.2266

ii/2

—0.3091
0.3924
0.5059
0.4466
0.3001
0.0934

13/2

0—0.4130
0.2867
0.4861
0.4770
0.3521

TABLE I(r). F4(4j 1j) for half-integer spins.

5/2
7/2
9/2

ii/2
13/2

1/2

0
0.5128
0.5322

0
0

3/2

0.2976
0.0733
0.1693
0.4434

0

5/2

—0.2976—0.2597—0.1762
0.0171
0.3906

7/2

—0.1082—0.2131—0.2786—0.2509—0.0651

9/2

0,2976
0.1235—0.0800—0.2363—0.2744

11/2

—0.1602
0.2474
0.2065
0.0087—0.1916

13/2

0.0291—0.2188
0.1893
0.2372
0.0668

TAnLE I(s). Fs(4j&j ) for half-integer spina.

7/2
9/2

ii/2
13/2

1/2

0.0435
0.0492

0
0

3/2

—0.0348—0.0213
0.0320

0

5/2

—0.0071
—0.0269—0.0326

0.0240

7/2

0.0317
0.0195—0,0123—0.0348

9/2

—0.0259
0.0172
0.0264—0.0024

11/2

0.0110—0.0292
0.0061
0.0275

13/2

—0.0025
0.0167—0.0284—0.0014

TABLE I(t). Fg{4j1j) for half-integer spins.

9/2
ii/2
13/2

1/2

—0.6623
0
0

3/2

0.9633—0.2624
0

s/2

—0.8429
0.6460—0.1497

7/2

0.5187—0.8075
0.4791

9/2

—0.2316
0.6460—0.7336

11/2

0.0741—0.3533
0.6904

13/2

—0.0162
0.1330—0.4315

of the 2~' pole and

wr ——Q A „(LtLs)P„(cosP),

wrr ——P A „(Lt'Ls)P„(cosP),

where the A„aregiven in Eq. (69a) and

In Tables II(a) through II(1) numerical values of the
coefficients G„(LL'jtj) are presented for v=2, 4, 6,
L=1, 2, 3 with L'= L+1 and the range of jt and j is

(70b) the same as Table I. In the table headings the first
argument in G„is the value of J. Special cases of the
mixed correlation were considered by Ling and Fal-
koff (49).

wrrr= (—)' 'r tL(2j+1)(2Lt+1) (2Lt'+1) j'*

XP G„(L,Lr'jt j)F„(L&jsj)P, (cosP), (70c) (3) Correlation Function for Linear Polarisation
Direction Correlation (45)

where F„is given in Eq. (69b) and

G„(LtLt'j,j)=C(LtL, 'v) 1—1)W(jj L,L,', vjt)
symmetric in I.» and I»'.

The correlation function which applies here was given
70d

in Eq. (38). In order to make direct use of the results of
this section we evaluate the c„from the tensor param-
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TABLE II(a). G2(1jij) for integer spins. TABLE II(d). G2{3j1j) for integer spins.

1 2 3 4

1
2
3
4
5

0.1581—0.1080
0
0
0

0.0707
0.0707—0.0926

0
0

0
0.0756
0.0423—0.0809

0

0
0

0.0704
0.0289

—0.0725

0
0

0.0145—0.0114
0

0
0.0246—0.0203
0.0168—0.0125

0.0326—0.0213
0.0193—0.0180
0.0161

0.0223
0.0027—0.0105
0.0141—0.0155

TABLE II{b).G2(2jij) for integer spins. TABLE II(e). G4(3jij) for integer spins.

1
2
3
4
5

0—0.0404
0.0296

0
0

—0.0617
0.0432—0.0378
0.0298

0

—0.0369—0.0132
0.0279—0.0322
0.0284

0—0.0382
0

0.0195—0.0279

2
3

5

0—0.0386
0.0317

0

—0.0331
0.0180

—0.0242
0.0295

—0.0382
0.0194—0.0033—0.0138

—0.0199—0.0190
0.0221—0.0106

TABLE II(c). G4(2j1j) for integer spins.
TABLE II(f). G6(3jij) for integer spins.

2
3
4
5

0.0753—0.0667
0
0

0.0604
0—0.0507
0

0.0246
0.0472—0.0171—0.0409

0.0047
0.0332
0.0346—0.0224

3 0.0429 0.0429
4 —0.0429 —0.0153
5 0 —0.0288

0.0259
0.0206—0.0236

0.0101
0.0286
0.0071

eters. By making use of (see Eq. (20) et seq. )

R(vq, LL'rr) = (—) i+i'+r Q D(v, qr; ry!)c„(LL'7r), (71)

C(LiLiv; 11)
Wi(P, y)=+A„P„+(—) &

C(LiLiv; 1—1)

(v —2)! '

(v+2)!
cos2pP 2(cosP), (73)

where A„is defined in Eq. (69a and b) and o.i refers to
radiation 1. In Eq. (73) p is the angle between the
polarization vector and the normal to the fi—f~ plane

and we have used the fact that we are concerned only
with linear polarization (therefore S. appears instead
ol f). Comparing Eqs. (71) and (63) we see that

c„,(LL'7r) = (—)~+'ei'"[(2L+1)(2L'+1)li

C(LL'v; 1—1)X,(72)
—,'(—)" C(LL'v; 11)

where the uppper line in the bracket refers to v-=0,
and the lower refers to ~= &2. Also 0'= 1 for magnetic
and 0 for electric radiation and the prime in 0-' denotes
the 2~' multipole.

For pure multipoles in which the polarization of the
first (2~' pole) quantum is observed and correlated with
the direction of a 2~2 pole quantum, we obtain the
correlation function

and P„'is the associated I,egendre polynomial; in the
second term of Eq. (73) v)~2. The explicit dependence
on the character of the radiation will be noted. Equiva-
lent results have been obtained by Zinnes (81) and
Lloyd (58).

The ratio of vector addition coefficients can be ex-
pressed in the form

2v(v+1)L(L+1) (v —2) ' '

C(LL,v; 1—1) v(v+1) —2I-(L+1) .. (v+2)!

C(LLv; 11)
(74)

with v even, so that with Table I numerical results for
the correlation function for linear polarization can be
readily obtained. Special cases have been considered by
Falkoff (25).

If the linear polarization of the second quantum is
measured, the correlation function is obtained by inter-
changing L1 and L2 which affects only the ratio of vector
addition coeflicients given in Eq. (74) and the phase

(—)' if the radiations are of diferent character. Desig-
nating this correlation function by 8'&, what will be
observed is the average correlation function

912II 1+'g21II 2

where p» is the over-all efficiency for detection of
photon 1 in the polarization sensitive detector and
photon 2 in the polarization insensitive detector, while

g21 is the over-all e%ciency for the photons interchanged.

The importance of the relative over-all detector efficiencies q12
and q21 can be seen as follows. If the e%ciencies are the same (so
that W WI+W2) the polarization sensitive term in W will be
absent if

v(v+1) —2L2(L2+1) L2(L2+1)
v(v+ 1)—2LI (Li+1) LI (LI+1)
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TABLE II(g). G&(1j&j) for half-integer spins.

3/2
5/2
7/2
9/2

ii/2
13/2

1/2

—0.1118

3/2

0.1000—0.1000

5/2

0.0764
0.0535—0.0863

0
0
0

7/2

0
0.0732
0.0345—0.0764

0
0

9/2

0
0

0.0677
0.0246—0.0691

0

»/2

0
0
0

0.0628
0.0187—0.0635

13/2

0
0
0
0

0.0586
0.0148

TABLE II(h). Gg(2 jgj) for half-integer spins.

3/2
5/2
7/2
9/2

ii/2
13/2

1/2

0
0.0261

0
0
0
0

3/2

0.0535—0.0405
0.0302

—0.0286
0.0344—0.0349
0.0292

0
0

7/2

—0.0391—0.0049
0.0231—0.0299
0.0275

0

9/2

0—0.0366
0.0031
0,0168—0.0262
0.0259

11/2

0
0—0.0332

0.0066
0.0129—0.0234

13/2

0
0
0—0.0305

0.0082
0.0102

TABLE II(i). G4{2j&j) for half-integer spins.

5/2
7/2
9/2

ii/2
13/2

1/2

—0.0753

3/2

0.0225—0.0578

5/2

0.0551—0.0111—0.0452
0
0

7/2

0.0308
0.0402—0.0205—0.0375

0

9/2

0.0070
0.0339
0.0300—0.0235—0.0322

11/2.

0
0.0096
0.0334
0.0233—0.0243

13/2

0
0

0.0109
0.0320
0.0187

TABLE II(j). G&(3j&j) for half-integer spins.

3/2
5/2
7/2
9/2

ii/2
13/2

1/2

0
0—0.0094

3/2

0—0.0195
0.0165—0.0122

0
0

5/2

—0.0298
0.0225—0.0193
0.0166—0.0126

0

7/2

0.0119—0.0149
0.0164—0.0167
0.0156—0.0124

0.0234—0.0020—0.0074
0.0123—0.0145
0.0145

11/2

0
0.0215

—0.0063—0.0035
0.0095—0;0127

13/2

0
0

0.0193—0.0079—0.0013
0.0076

TABLE II{k).G4(3j&j) for half-integer spins.

5/2
7/2
9/2

ii/2
13/2

1/2

0
0.0295

0
0
0

3/2

0.0405
—0.0317

0.0310
0
0

5/2

0.0078
0.0045—0.0183
0.0280

0

7/2

—0.0282
0.0222—0.0078—0.0104
0.0251

9/2

—0.0238
—0.0122

0.0208—0.0122—0.0057

11/2

—0.0068
—0.0241
—0.0037

0.0178—0.0137

13/2

0—0.0092—0.0223
0.0009
0.0150

TABLE II(l). G6(3j&j) for half-integer spins.

7/2
9/2

ii/2
13/2

1/2

—0.0526

3/2

0—0.0347

5/2

0.0312—0.0213
—0.0244

0

7/2

0.0292
0.0128—0.0242—0.0187

9/2

0.0142
0.0268
0.0030—0.0236

11/2

0.0039
0.0178
0.0227—0.0023

13/2

0.0005
0.0060
0.0188
0.0190
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P3a)

where 62 is the intensity ratio I(L,+1)/I(L,) and

wr =+ A. (LgL2) 5'.(L2L2, pg). (73b)

This is the polarization-direction correlation for the
pure 2 '-pure 2 2 pole. Here we define

rf'. (LL' p~ ) =I'.(cosp)+ ( )'"'—
(v—2)! ' C(LL'v; 11)

X — cos2s P„2(cosP). (73c)
(v+2)!. C(LL'v; 1—1)

The notation is the same as in Eq. (73) and the parity
index 0 (L') is determined by the character of the 2~'

pole. Thus, in Eq. (73b) the phase (—)'&~2& is —1 for
MI,2 radiation, I for Er.2 radiation. In a similar way zVII

is the correlation function for a pure 2~»+' pole-2~~ pole
and is obtained by replacing L~ by L~+ 1 in Eq. (73b)

wrr=Q A.(Li+», L2)rl'. (L2L2', Py) P3d)

"Aside from the trivial cases (j=0 or —,') there is one other case
which leads to comp/etc isotropy; ms. , a cascade in which j» ——-„j=$ with pure quadrupole emission (9).

for all possible u,' the (+, -) sign refers to the case of radiations of
(diferent, same) character. This actually occurs for

(a) radiations of opposite character and L» ——L2,
(b) radiations of the same character, and L», L2=1, 2 or 2, 1

and for no other cases."In both cases there is an over-al/ parity
change in the cascade. Therefore, if there is no polarization effect,
with equal efBciencies, there must have been an over-all parity
change {6j.),, but the converse does not follow. That is, it is not
true (as has bien stated (61)) that the cascades in which a polar-
ization eGect is observed (y»2=F2») correspond to no over-all
parity charge. It should be recognized that when the detector
eKciencies are unequal there will also be cases in which the polari-
zation can cancel, or nearly cancel, accidentally. No conclusions
should be drawn in such a case and the relative detector e%ciencies
should be varied.

As mentioned above, when one of the radiations is a
mixture, the correlation function depends on the parity
change in the transition in which the mixed radiation
is emitted. To determine the parity change in the transi-
tion ln which thc pUIc IRdlRtlon 18 cIQlttcd onc mRy
make a polarization-direction correlation, observing the
polarization of the pure radiation. Of course, unless one
can devise detectors for which the efficiency is zero for
the mixed radiation going to the polarization sensitive
detector, it is also necessary to consider the case in
which the polarization of the mixed radiation is ob-
served. %c therefore consider these two cases. %C con-
sider a JIr.~, Er,~+i (or alternatively, Er,~, iVr, ~+~)
mixture. The pure radiation is again a 2~& pole.

(u) I'olarisation dirccfioe-correlation with polarisu-
riou of pure radiation uMusured. —From Eqs. (38) and
P2) we 6nd for the correlation function

In Eq. P3e) v~&2.

(b) I'olarisation dir-cctiom corrclaiiou with Polarisa
fiorr of mured radiation measured. An—entirely similar
procedure gives for the correlation function

02=wr +~ wrr +2~wrlr ~ (73f)

Here, 5 is as in Eq. P3a) and

(73g)wr'= p A„(LgL2)6'„(LgLg,prp)
V

err' ——Q A„(Lg+1,L2)P„(Lg+»,Lg+1; Ps), (73h)

which are the polarization-direction correlations for
pure multipoles and

w»r'= (—)' " 'L(2&+») (2L~+1) (2L~+3)j'
Xp &,(LiLi+1jr)~, (L2j2j)

XO.(L,L,+1;P~) (73i)

which is the interference term. Again in Eq. P3i)
v& 2. In Eq. (73i) one needs (52)

C(LL'v; 11) (v—2)! &

(L' L) (L'+L+1)—, (73j)
C(LL'~ 1—1) (v+2) ~

where L+L'+v is an od.d integer. Equivalent results
have been obtained by Zinnes (81).

In the actual observation the quantity measured is,
of course, the weighted average of 8 i and 5 2 with
weight factors given by the over-all detector CKciencies
for the pure radiation and the mixed radiation going
to the polarization sensitive detector, respectively. The
I'csUlts given Rbovc hRvc R common normRllzRtlon Rnd
can be a,veraged directly.

B. SyinleSS PartiCleS

The only spinless particle in which we are interested
is the alpha particle and the speci6c results given here
apply to this ease. However, for other nuclear particles
(neutrons, protons, deuterons) for which only directions
of motions are observed, the results given here could
apply equally well in the manner indicated below.

Thc dctcl minat ion of thc tcnsol pRI RInctcI'8 fol
alpha particles is a very simple problem, as one might
expect, since the only possible measurement is the de-
termination of a direction of motion, uncomplicated by
Rny spin polRllzRtlon questions. Lct Us first omit con-
sideration of the charge of the emitted particles. Then
the physical measurement determines that the particle
is in the plane wave state, t,'K', and in accord with the
discussion of Sec. II-C, the tensor parameters of the
radiation are determined from the transformation to

Rnd 'NIII 18 tlm lntcrferencc tcl'In

&»r=(—) " 'L(2j+»)(2L~+1)(2Li+3)l'
&&2 G (L~L~+»i ~i)I" (Lmi 2i)rs' (L2L2' p~) (73e)
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The tensor parameters, R(iq), of this radiation are

R(vq, //'m) =47r(2/+1)-:(2/'+1)i P (—)' "
XD~(/' q

—m 0 f)D(/ m0 f)
XC(//'v; mq —es). (76}

By use of Eq. (9), we find that

R(vq, //'z. ) =4m [(2/+1) (2/'+1)]*(—)' '
XC(//'i; 00)D(i, q0; f) (77).

In order that parity be a good quantum number for
the radiation (as indicated. by the variable ~i= (—)'
= (—)' in the notation for R(i q)), wemust require that
1 and l' diGer by an even integer. Since the vector addi-
tion coefficient, C(//'v; 00), vanishes for /+/'+ vWeven
lIltegeI' w'e see that v ls even.

In terms of the c„,of Eq. (12) we find

c =b(r0) (—)'[(2/+1) (2/'+1)]lC(//'i 00) (78)

If we now consider charged particles the changes that
occur are of two kinds. Firstly the discrimination against
the emission of high angular momentum particles will

become less marked, because of the Coulomb barrier,
so that the interference of difII'erent angular momenta
will be more pronounced. This eAect" is, of course,
contained in the physical parameters (the relative size
of the reduced matrix elements) and does not influence
the tensor parameters above. The second effect is to
introduce phase shifts, e'~«~&, multiplying the Sth

spherical wave of our basis. '~

The result for charged, spinless particles (alpha
particles) is found to be

.,( )=4 b( 0)(—)' '"' "'L(2/+1)(2/'+1)j'
XC(//'i 00). (78a,)

For a single angular momentum, '6 the phase shift
difference drops out. However, for those cases in which
more than one angular momentum is important the
phase shifts will remain and may change the correlation
functions appreciably. YVe consider explicitly only the
former case. Since we have chosen the gamma-ray
correlation to be the standard directional correlation,
the most useful parameters are the b„,dined in Eq.
(42). Using the results of the preceding section we find

"This question is discussed at length by H. A. Bethe, Revs.
Modern Phys. 9, 69 (j.937), see Sec. 72.

'7 We may consider the Coulomb potential to be screened, so as
to eliminate the logarithmic terms. In the final result the limit
for zero screening can be taken. Also from Eq. (78a) beloved it is
seen that the logarithmic term would drop out in any case since
only phase differences enter.

angular momentum eigenfunctions. Using the well-
known Rayleigh formula we have

cix r —4~ Q ~ //P' m(r) P' m~(f)

=Q [(2/+1)47r7lji(Er)D(/, m0; f)PFi"(r) (75)

for pure multipoles (unique orbital angular momen-
tum /) that (normalized to bo= 1)

b (// n)= —C(//i 00)/C(//i 1—1)

2/(/+1)
(79)

2/(/+1) —i (i+1)

The n —y correlation, for example, is then

2/(/+1)
8'„~(P)=Q A. &.(co-sP) (8o)

2/(/+1) —i (i+1)

with A„from Eq. (69a, b) with / replacing I.i or 1.2
according as to whether the n particle is emitted in the
ji~j Or j~j2 tI'aIlsltlOIl.

The results can be extended to the emission or ab-
sorption of a nuclear particle with a pure angular mo-
mentum in the following way. If / is the particle angular
momentum, i its intrinsic spin and I the target nucleus
then the channel spin s is any of the values consistent
with

8=1 I.

Assume for the moment that only a single value of s
need be considered. The correlation is then the same as
for n particles if ji, the initial state angular momentum
is replaced by s. For the more realistic case wherein
more than one channel spin is relevant, the correlation
is an incoherent sum over s of such contributions with
weight factors corresponding to the relative probability
for the occurrence of the channel spin s in the assumed

pure compound state. An example of this procedure is

given in reference (11).

C. Conversion Electrons

For heavy elements in which conversion electrons are
more prevalent than y rays, it may be advantageous to
measure the correlation with such electrons. The prob-
lem of correlations involving conversion electrons, in
either or both transitions, has been considered by a
number of authors. A preliminary discussion was given

by Fierz (31) and nonrelativistic approximations ap-
plicable to electric conversion of s electrons were con-
sidered by Berestetzky (10) and Gardner (38, 39).
An approximate but incomplete consideration of mag-
netic conversion was also given by Gardner (40), see
also Ling (50). The relativistic treatment of the con-
version of an s electron was given by Rose, Biedenharn,
and Arfken (68) and numerical results were given for
the E shell when the conversion transition is pure. For
mixed conversion transitions the results appeared in a
later publication by the same authors (70). At present
all numerical results in a relativistic calculation are
limited to R' conversion correlation (69, 68).

The internal conversion process is viewed as the
ejection of an extranuclea~ electron, originally in a
stationary state (say the E shell), via the electromag-
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magnetic field which is excited by a nuclear transition.
The tensor parameters of the radiation are nonetheless
the tensor parameters of the nuclear gamma radiation
for we have but substituted, in place of a direct observa-
tion of the gamma radiation, an indirect observation
of its effect on the surrounding electrons. The tensor
parameters of the gamma radiation are thus determined

by the coupling of (a) the tensor parameters of the
ejected electron-fixed by our observation of a plane
wave state with a definite direction of motion but un-
observed spin orientation, and (b) the tensor parameters
of the initial state of the electron, which are quite simple
since this state is random.

The first problem is to determine the tensor param-
eters of the final state of the ejected electrons. For the
moment, let us neglect the effect of the Coulomb field
on the motion of the electrons.

The observations imply that the ejected electrons are
detected in plane wave states, e'~'B„where we have
taken the direction of motion to define the z axis and
the D, are Dirac plane wave spinors (with r=+ taken
to be spin "up, " i.e., along the s axis and r= —,
spin "down"). In relativistic units and with E=p

—p/8+1
0

0

0
p/g+ 1

0

Since the spin is not observed, we must average over 7-.

These plane wave states can be expanded into a sum of
Dirac spherical eigenfunctions, p„",(references 68, 67
and Eq. (83) below) and the result is

5(«)—= sign of «=&1
l(.) =

I
«I+-', [5(.)—17 (82a)

(83)

~(KzD
I Z (4 I

I)"-""'
i p(Zy1))

X[—5(«)7' ly, '. (82)

«=+(j+~) for j=l&~ and l determines the parity
(67). The sum is over all positive and negative integers,
except zero. The notation is

and o is the usual Pauli spin operator, L the orbital
angular momentum operator.

If now our measuring axes are taken to be arbitrarily
oriented with respect to the direction of motion of the
plane wave (but the spin still quantized along this
direction of motion), we must consider the above equa-
tion in a rotated system of coordinates. Since the @,"
transform like wave functions with total angular
momentum j= I«I ——',, we find

(~(«zD )z— —P I«Ilz
—""'

[P(~+1)7' "
x I

-5(.)7 —:D(j,.)y„.
The prime again denotes rotated.

The tensor parameters for the electron in the con-
tinuum are now readily seen to be (discarding a factor
2~/[P (&+1)7')

R(v(l, «')= P (—)~ z(') "' ""'C('—jj'v )i
——p' (l)

X[5(«)5(«')7' 'I «'I '*D*(j', ))'r)D(j, yr)
(" (—) "+i I ««

I
'D(v (70' f)

XP[—5(«)5(«')7' ~C(jj'v; r, —r). (85)

f is the unit propagation vector for the electron and
j'= «'I —~. Using now the identity (2l+1)'*C(l2j; Or)

I
K '[—5(«)7'+l, one readily works out the sum over r

f

lorn

P[—5(«)5(«')7'+~C(j j'v; r, —r)

= [(2l+1)(2l'+ 1)7'*(—)'"' "

XC(ll'v; 00)W(ljl'j'; -,'v). (86)

Hence the tensor parameters of the ejected electron can
be written in the simpler form

R(v(7, ««') = i'("') '("'( )"+ '—r

X[(2l+1)(2l'/1)
I
«'I]kS(«)5(«')

XC(ll'v; 00)W(ljl'j', -', v)D(v, (70; f). (87)

So far we have calculated the tensor parameters for
the field-free case. If there is a central field, decreasing
more rapidly at infinity than a Coulomb field, then the
only eRects are to modify the radial part of the base
wave function P„&and to multiply these functions by a
phase shift e'~". The tensor parameters are then

x."=Q C(l(«)2j; p —r, r)x I'i(„)—'. (83a)
2(.'(vq, ««') = [(2l+1)(2l'+1)

I
«K

I
]l

X ( )z+q+ j'—zf((z') —l(z) exp[i(g g,)7
XS(«)5(«')C(ll'v; 00)W(ljl'j'; 2i v)

XD(v, q0; f)

x, ' in Eq. (83a) is a Pauli spinor and )i is the eigenv
of the s component of the total angular momentu
The total energy E= (p'+1) l.

For convenience we give the following properties of
the central field spinors which are used below

((r &+1))(.'= —«x "

&rX "=

For the Coulomb field the well-known logarithmic
term in the phase shift enters, but this clearly drops out
in the above expression since only differences of the

(83c) phase shifts enter and the logarithmic terms are inde-
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pendent of ~ and the phase shift difference is therefore
independent of r. Hence the above expression applies
to the Coulomb case as well. The phase shift 6„is equal
to ()„(Z)—5„(0)in the notation of reference (67) and
the arguments here refer to the atomic number; thus
h„vanishes in the case of no field. The phase shift

8.(0) =-', ir[-', (1+S((())—~((~ j. The absolute sign of the
phase shifts (the relative signs are unique) in Eq. (88)
above is determined from the requirement that the
Green's function for the emission of the electrons corre-
sponds to outgoing waves at infinity. Strictly speaking,
this method. of deriving the tensor parameters from the
field-free tensor parameters is ambiguous in regard to
the absolute sign of the phase shifts. A more thorough
derivation which treats this point in detail is given
in (68).

Since the tensor parameters of the initial state
(((= —1) are R(vq; in) =8„0(),o it is now a simple matter
to determine the radiation parameters, using the pro-
cedure discussed in connection with Eq. (17b). The
result is

above equation then takes the simpler form

R(vq, LLe)
= (2L+1) (—)i+'C(LLv; 00)D(v q0 f)

X&L'I Q(LLe) I'W'(LLL —r'L —-', ; v-', )

+ (L+1)'iQ(—L—1Le) i2W2(LLL+ ,'L+-', ; v-', )-
2L(L+—1)Re[(e'~iQ(LLe))*e'~ i-
XQ(—I-—1, Le)jW'(LLL —',L+ ', ; v--', )).-(91)

The occurrence of C(I.I v; 00) shows tha. t v is an even

integer. If we use the relation

v (v+ 1)—2L (L+1)
C(LIv; 1—1)=C(LLv; 00)-—

2L(L+1)

for v even and the explicit formulas for the Racah
coefficients (see Appendix, A8, A9, A10) then R (vq, LLe)
takes the form

2L(L+1)(2L+1)
R(vq, LLe) =

v (v+ 1)—2L (L+1)

R(q, LL' )=2 I-'I'W(ljL";Lj')Q(L )
««'

XQ*( L(('o')R(vq, (((('). (89)

The Q(((Lo) are the reduced matrix elements for the
electronic transition from ~;= —1 to ~ by an outgoing
2~ pole electromagnetic field and parity (—) +'. These
are defined explicitly in references (68) and (69).
The same sign and normalization conventions are used
here. The o parameter (Sec. III-A) is used in the Q's

in lieu of the parity symbol z. Since for pure multipo'les

we have two possible (( values for the final state (((=I-,
L 1 for electric —mul—tipoles and ((= L, L+1 for-

magnetic multipoles), there will always be coherent
mixing of the final states, and thus the Coulomb phase
shifts, as well as the relative size of the electronic matrix
elements, will become important. In general, exact
calculation of these matrix elements using Dirac wave
functions for the Coulomb field is consequently essen-

tial [see further, (68)j.
The radiation tensor parameters for a pure 2~ multi-

pole (a=o') are then

R( q, LL )=2 L(2l+1)(2l'+1)j'I-'IQ( L )
gg

XQ8( &L ) ( )L+qil(a') —l(x)

Xexp[i(h„—6„)]C(ll'v; 00)

XS((()S(((')D(v, q0; f)W(lj lj''; —',v)

XW(LjLj ', —',v) (90)

and l—= l (((), l'—= l (((').
Using the fact that for 2~-poles the allowed ~ values

are L, —I,—1 one finds in both cases, 1((()=L, The

X ( )~+'C(LL—v; 1—1)D(v, q0; f)

(2L—v) (2L+ v+ 1)
X ~Q(LL;)(~

4(2L+1)'

(2L+1—v) (2L+2+ v)

+~Q(—L—1,I, e)l'—
4 (2L+ 1)'

v(i+1)
Re[(e' 'Q(LLe)) *e' -'-'

2 (2L+ 1)'

XQ(-L-1, I, )] (»)
or

R(vq, LLe) =((—)~~'(2L+1)

XC(LLv; 1—1)D(v, qo' &))

L(L+1)
X [2L(L+1)—v(v+1)3 '

2(2L+1)'

2(2L+1)+2 (L+1)(2L+1)
J

—.(.+1)
~

——Re(&.)+1 I (»)
EL~ L )

where we have used the definition

e*"Q(LLe)
T,=—L

e" ' 'Q( L 1, L,e)--——
n. 1+S((()

(94)
2 2
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L+1 e"&+iQ(L+1 L m)
T ——

I e" iQ( L, L—, m)
(96b)

Therefore,
v(v+1)

b„(LLm)= 1+
2L (L+1)—v (v+ 1)

L(L+1) I
1-T„Is

x . (Ã)
2L+1 I,+1+L,IT.I'

IQ(—L—»L e)l'
b.'(IIe) = —(IT, I

yL(L+1))
2L(2L+1)

v(v+1) L
X 1+

2L(L+1)—v(v+1) 2L+1

ILy1+T, I'—
X

L(L+1)+IT.I'

v(v+1) L
=c,(L) 1+

2L(L+1)—v(v+1) 2L+1

IL+1+T,I'-
X c, (L)b„(LL—e). (95)

L(L+1)+ I T,I'

From Eqs. (95a) and (97) it is clear that for both
electric and magnetic transitions the normalized coeK-
cients b„(LL;e/m) for v) 2 are readily obtained from
the corresponding coefficients bs(LL; e/m). by the re-
currence formula

v(v+1) [L(L+1)—3]
b, (LL; e/m) =1+

3[2L(L+ 1)—v(v+1)]

X [bs (LL; e/m) —1]. (98)

The term in curly brackets in Eq. (93) will be recog- and
nized as just the tensor parameters for pure 2~ pole
p rays. We can therefore write, after a little algebraic
manipulation, that the particle parameter b„'for con-
version electrons [see Eq. (42b)] has the form

In this last equation the conversion coefficient, c,(L)
(aside from a factor-reference (69)), has been inserted,
so that the b„(LLe)may be normalized to bs= 1. Thus

v(v+1) L
b. (LLe) = 1+

2L(L+1) v(v+—1) 2L+1

IL+1+I,I

X —. 95a
L(L+1)+ I T, I'

The tensor parameters for pure magnetic multipoles
may also be put in this explicit form by similar manipu-
lation, involving explicit formulas for the Racah coe%-
cients given in the Appendix (A6, A8, A9, A10). The
result is

As a result, one need tabulate only the coeKcients b2.
Tables III(a)—III(1) give bs(LL; e) and bs(LL; m) for
the E shell for 12 values of Z in the range 10—96, 5 or 6
va, lues of the transition energy (—=kmc') and L=1
through 5.

The experimental problem of observing correlations
with conversion electrons is somewhat complicated by
the multiple scattering that is necessarily present with
thick sources. If thick sources are necessary, the requisite
corrections can be made as described by Frankel, (32).

For purposes of extrapolation the following limiting
cases may be of interest. For small k values, in the case
of bs(LLe), extrapolation toward threshold can be made
with the aid of the nonrelativistic limit

L(L+1)
bs (LLe) = (nZ«1; k«1).

L(L+1)—3

R(vq, LLm) ={(—) +'+s(2L+1)

XC(LIv; 1—1)D(v, q0; t'))

IQ(—LLm) IsL
X (L+1+L T„,')

2 (L+1)(2I.+1)

For the magnetic transitions, the "nonrelativistic"
limit for bs(LLm) is Z, k dependent.

v(v+1)
X 1+

2L(L+1)—v(v+1)

L(L+1) I1.—T I'
X

2L+1 L+1+LIT„I'
=E(vq, I.L; y)c (L)b„(LLm). (96)

The notation is c (L)=—the 2z multipole conversion
coefficient (69), that is,

c„(L)= L, L,m—
2(L+1)(2L+1)

X (L+1+L
I
T

I
') (96a) b:(LLe'j=1+-

LL(L+1)—3jg(L+1)k'+4L]

The high-energy limit can be obtained by using the Casimir
approximation /asymptotic forms of the radial Dirac functions
are used (67)j. One finds immediately that

l
Q(i, L, rs) +iV e ' "(ir 1) -(b~, r—+e~,L+1)—

1
Q{~) L) e)—+Pe ' "(~+j.) (ba, L,+8», —I.—i}

where X is an irrelevant normalization constant. Thus
'1,—&—(L+1) and T —+1. As a result one finds that both b, (LLe)
and b, {LLm) approach the value unity (68). This implies that. at
high energies the conversion electrons for pure multipoles give the
same correlation function as the corresponding cascade with a
photon replacing the conversion electron.

For Z=O arbitrary k one finds b„(LLm)= 1 (for all v) and
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TABLE III(e). b2 CoeKciente for Z=10.' TABLE III(d). b2 CoeKcients for Z=40.

k =G.3

E1 —1.8624
E2 1.9611
E3 1.3209
E4 1.1699
E5 1.10N
M1 0.9288
M2 1.0291
M3 1.0115
M4 1.0070
M5 1.0050

0.5
—1.6544

1.9015
1.3020
1.1600
1.1007
0.9551
1.0186
1.0073
1.0045
1.0032

1.0

-1.0000
1.7023
1.2376
1.1264
1.0796
0.97N
1.0100
1.0040
1.0024
1.0017

—0.1757
1.4281
1.1458
1.0777
1.0489
0.9875
1.0058
1.0024
1.0015
1.0010

3.0

0.4157
1.2176
1.0737
1.0389
1.0243
0.9930
1.0035
1.0015
1.0009
1.0007

5.0

0.7506
1.0942
1.0316
1.0163
1.0100
0.9963
1.0020
1.0010
1.0006
1.0004

E1 —1.8361
E2 1.9246
E3 1.3008
E4 1.1549
E5 1.0944

0.4009
3f2

' 1.2298
3I3 1.0850
M4 1.0486
3fg 1.0325

0.5

—1.6160
1.8333
1.2662
1.1346
1.0804
0.5359
1.1787
1.0668
1.0387
1.0262

l.o
—1.0000

1.5863
1.1764
1.0849
1.0485
0.6898
1.1205
1.0454
1.0266
1.0182

1.8
—0.2759

1.3298
1.0885
1.0392
1.0209
0.7908
1.0831
1.0317
1.0186
1.0128

3.G

0.2743
1.1703
1.0400
1.0156
1.0075
0.8583
1.0586
1.0228
1.0136
1.0093

S.o

0.6375
1.0824
1.0174
1.0058
1.0024
0.9095
1.0398
1.0160
1.0096
1.0067

a ZL„MI,designate electric, magnetic 2+-pole transitions, respectively.

TABLE III(b). b2 CoeScients for Z=20.
TABLE II(c). b2 CoefBCientS for Z=54.

A; =0.3

E1 —1.8539
E2 1.9527
E3 13167
E4 1.1670
E5 1.1047
3II1 0.7685
3f2 1.0931
3E3 1.0361
Jtff4 1.0214
«Vg 1.0149

0.5

—1.6419
1.8850
1.2940
1.1546
1.0966
0.8430
1.0637
1.0248
1.0149
1.0104

1.0

—1.0000
1.6717
1.2219
1.1159
1.0718
0.9119
1.03N
1.0145
1.0087
1.0061

1,8

—0.2077
1.4004
1.1290
1.0661
1.0403
0.9488
1.0226
1.0091
1.0055
1.0038

3.0

0.3730
1.2044
1.0632
1.0311
1.0184
0.9N6
1.0144
1.0061
1.0036
1.0026

S.o

0.7188
1.0913
1.0270
1.0126
1.0071
0.9830
1.0087
1.0038
1.0024
1.0017

A=03 05

E1 —1.8231 —1.5966
E2 1.8868 1.7698
E3 1.2764 1.2293
E4 1.1347 1.1068
E5 1.0765 1.0579
M1 0.1917 0.3244
M2 1.3024 1.2518
3I3 1.1094 1.0919
3f4 1.0613 1.0521
3fg 1.0403 1.0346

—1.0000
1.4983
1,1303
1.0546
1.0269
0.4961
1.1863
1.0686
1.0393
1.0264

1.8

—0.3273
1.2660
1.0564
1.0200
1.0085
0.6231
1.1390
1.0514
1.0297
1.0200

3.0

0.1936
1.1402
1,0241
1.0067
1.0022
0.7174
1.1054
1.0393
1.0228
1.0154

5,0

0.5624
1.0737
1.0113
1.0027
1.0007
0.7974
1.0778
1.0295
1.0172
1.0118

TABLE III(c). br CoeKciente for Z=30.
TABLE III(f). b2 CoeKcients for Z= 64.

k =0.3

E1 -1.8452
E2 1.9411
E3 1.3105
E4 1.1625
E5 1.1009
MI 0.5810
cV2 1.1646
M3 1.0623
3f4 1.0362
iV5 1.0246

0.5

-1.6292
1.8631
1.2827
1.1466
1.0903
0.6951
1.1206
1.0460
1.0271
1.0186

1.O

-1.0000
1.6338
1.20i8
1.1022
1.0615
0.8130
1.0755
1.0292
1.0172
1.0119

j..8
—0.2411.

1.3679
1.1099
1.0531
1.0308
0.8830
1.0491
1.0193
1.0114
1.0079

3.0

0.3260
1.1877
1.0518
1.0232
1.0126
0.9261
1.0328
1.0132
1.0079
1.0055

5.0

0.6815
1.0874
1.0225
1.0090
1.0045
0.9560
1.0210
1.0091
1.0054
1.0038

E1 —1.8129
E2 1.8400
E3 1.2444
E4 1.1082

1.0540
M1 0.0800
352 1.3410
3f3 1.1220
3f4 1.0677
3fg 1.0441

—1.5819
1.6984
1.1876
1.0768
1.0354
0.1954
1.2952
1.1064
1.0596
1.0392

—1.0000
1.4152
1.0905
1.0311
1.0122
0.3566
1.2312
1.0840
1.0474
1.0316

1.8

—0.3661
1.2131
1.0344
1.0088
1.0025
0.4842
1.1817
1.0660
1.0375
1.0251

3.G

0.1293
1.1162
1.0149
1.0027
1.0006
0.5837
1.1446
1.0527
1.0299
1.0201

0.4972
1.0668
1.0085
1.0019
1.0010
0.6736
1.1131
1.0415
1.0236
1.0159

L(L+2)
=k(L+1)

(2L+1)(2L+3)
For a mixed conversion transition the tensor param-

eters are found from Eq. (89). We specialize now to a
magnetic 2 and electric 2 +' mixture. If we choose the
unprimed variables to refer to the magnetic multipole,
Ic ls lestllcted to —L, L+1 (alld o = 1) wlllle K ls I'e-

stricted to L+1, L 2(and o'=—0) —R(lq) then. con-
sists of four terms which, by using Eq. {A7) of the
Appendix, can be reduced to

E(lq)[L, L+1, 7r= (—)L]
= ( )L+&D(v q0 f)C(LL+1—v 1—1)P {99)

X{Q(—L, L, m)e'A L Q(L+1 L m)e-'A—L+')

X{Q(L+1,L+1, e)e" +1

+Q(—L—2, L,+1,e)e" L )*. (99a)--
Comparing these results vrith the tensor parameters

for mixed multipole p rays, [Eq. (60a)), and noting
again that the y-ray reduced matrix elements are real,
we find

LL(L+2)3'
&.'[L L+1 ~= (—)'3=k(L+1)—

(2L+1)(2L+3)

XRe{[Q(—L, L, m)e'A L-
—Q(L+1, L, m)e'AL+'j

X[Q(L+1,L+1, e)e'AL+'

+Q(—L—2 L+1 e)e'A-L-']*) (100)

L(L+2)
n=-', {L+1) {Q(—L, L, m)

(2L+1)(2L+3)
XQ*(L+1,I.+1, e)e'&' L "+1+Q(—I., I., m)--
XQ*(—L—2, L+1, e)e"tA LA'-
—Q(L+1, L, m)Q*(L+1, L+1, e)

—Q(L+1, L, m)Q*(—L—2, L+1, e)

Xe'(Ac+i A L-2))—-
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TABLE III(g), b. Coefficients for Z= 72. TABLE III(j). b2 Coefficients for Z=88.

k =0.3

Ei —1.8041
E2 1.7801
Eg 1.2039
E4 1.0772
E5 1.0311
Mi 0.0152
M2 1.3647
M3 1.1296
M4 1.0716
Af„1.0464

0.5

—1.5693
1.6155
1.1423
1.0480
1.0171
0.1104
1.3242
1.1160
1.0645
1.0422

1.0

—1.0000
1.3348
1.0572
1.0147
1.0038
0.2520
1.2645
1.0950
1.0533
1.0352

1.g

—0.3986
1.1678
1.0194
1.0031
1.0004
0.3687
1.2158
1.0773
1.0436
1.0289

3.0

0.0735
1.0968
1.0096
1.0017
1.0009
0.4615
1.1781
1.0637
1.0358
1.0238

5.0

0.4368
1.0615
1.0074
1.0027
1.0021
0.5460
1.1455
1.0517
1.0292
1.0195

El

jV,
E4
E~
Mi

M3
3/I4

M5

—1.5404
1.3461
1.0367
1.0033
1.0001—0.0012
1.3678
1.1302
1.0718
1.0465

1.0

—1.0000
1.1503
1.0081
1.0007
1.0018
0.0820
1.3214
1.1137
1.0630
1.0411

i.g
—0.4687

1.0841
1.0059
1.0036
1.0044
0.1548
1.2803
1.0985
1.0547
1.0358

3.0

—0,0514
1.0661
1.0097
1.0068
1.0064
0.2086
1.2468
1.0858
1.0475
1.0312

5.0

0.2899
1.0573
1.0129
1.0088
1.0075
0.2457
1.2176
1.0745
1.0410
1.0269

TABLE III(h). b2 Coefficients for Z= 78. TABLE III(k). b2 Coefficients for Z=92.

k =0.3

Ei —1.7968
E2 1.7133
E3 1.1621
E4 1.0499
E5 1.0149—0.0189

1.3789
1.1343

~4 1.0739
1.0478

0.5

—1.5592
1.5325
1.1023
1.0269
1.0065
0.0589
1.3427
1.1220
1.0676
1.0440

1.0

—1.0000
1.2672
1.0344
1.0059
1.0007
0.1808
1.2874
1.1025
1.0573
1.0376

—0.4240
1.1339
1.0111
1.0013
1.0007
0.2838
1.2408
1.0855
1.0479
1.0316

3.0

0.0288
1.0832
1.0075
1.0024
1.0022
0.3652
1.2039
1.0719
1.0403
1.0266

5.0

0.3861
1.0584
1.0082
1.0042
1.0036
0.4365
1.1717
1.0601
1.0336
1.0222

jV,
E4
jV5

Mi
M2
M3
M4
3'5

—1.5321
1.2581
1.0172
1.0004
1.0015—0.0160
1.3758
1.1330
1.0731
1.0473

—1.0000
1.1081
1.0044
1.0022
1.0043
0.0511
1.3335
1.1179
1.0651
1.0424

—0.4875
1.0696
1.0081
1.0064
1.0069
0.1105
1.2951
1.1036
1.0572
1.0374

k =0.5 1.0 1.8 3.0

—0.0856
1.0631
1.0128
1.0097
1.0086
0.1522
1.2636
1.0912
1.0503
1.0329

5.0

0.2470
1.0596
1.0166
1.0114
1.0095
0.1743
1.2362
1.0805
1.0440
1.0287

TABLE III(i). b2 Coefficients for Z=83.
TABLE III(1). b2 Coefficients for Z=96.

k =0.5 1.0 1.8 3.0 5.0

Ei
E2
E3
E4
Eg
Mi
M2
M3
M4
M5

k =0.5

—1.5499
1.4467
1.0680
1.0125
1.0014
0.0247
1.3562
1.1265
1.0698
1.0453

1.0

—1.0000
1.2083
1.0188
1.0016
1.0003
0.1279
1.3051
1.1083
1.0603
1.0394

1.8

—0.4460
1.1073
1.0071
1.0016
1.0020
0.2166
1.2609
1.0922
1.0514
1.0338

3.0

—0.0103
1.0734
1.0078
1.0041
1.0040
0.2853
1.2255
1.0789
1.0439
1.0289

5.0

0.3399
1.0569
1.0100
1.0062
1.0053
0.3407
1.1944
1.0673
1.0373
1.0245

Ei
jV2

E3
E4
jV5

Mi
312
Mg
3II4
3ll5

—1.5231
1.1701
1.0050
1.0013
1.0046—0.0253
1.3828
1.1354
1.0744
1.0480

—1.0000
1.0734
1.0042
1.0057
1.0075
0.0258
1.3446
1.1214
1.0670
1.0435

—0.5069
1.0603
1.0115
1.0103
1.0098
0.0719
1.3093
1.1081
1.0596
1.0389

—0.1213
1.0634
1.0173
1.0132
1.0112
0.1019
1.2801
1.0965
1.0531
1.0346

0.2013
1.0643
1.0207
1.0146
1.0117
0.1106
1.2548
1.0862
1.0471
1.0306

Here one uses the result that interchanging I. and L+1
in 0 changes this factor into its negative complex con-

jugate.
This result can be greatly simplified by the introduc-

tion of the T, and T given earlier for the pure multipole
case, as well as the explicit introduction of the conver-
sion coefficients c,(L+1) and c„(I,):

where we have defined

Q(L+1, L, m) —~i Hm

( Q(L+1, L, m) (

Q(L+1, L+1, e) —~i,8e

IQ(L+& L+&, e)l

(101a)

(101b)

f„'[L,L+i, ~= (-)']
L, (L+2)= [c.(L+l)c-(L)]:

(2L+ 1)(2L+3)

L+ 1i * ) L+ i i«e"'-'"'( &+ LT) ( r)
X

L+1 i t' (L+2)(L+1)
~ &+, II &+

(101)

This is just the result given in reference (70). The
b„'here defined is that coeKcient by which one multi-
plies the cross term in a mixed 2, 2 +' multipole p-ray
correlation to convert this term into the corresponding
term of a mixed conversion electron correlation. It
should be noted that this coefFicient is independent of v.

Just as for the pure multipole cases, we normalize by
dividing out the conversion coe%cient terms, in this
case removing [c,(L+1)c (L)]l. Let

b[L, L+1, m. = (—)~]=b, '(L, L+1,s.)[c,(L+1)c„(L)]l.
Then the correlation function for a cascade involving
a mixed conversion electron (Eq+i, Mi, mixture) and a



758 L. C. 8 I EDEN HARN AND M. E. ROSE

TABLE IV(a). Mixed conversion particle parameter b for k=0.3. TABLE IV(d). Mixed conversion particle parameter b for k= 1.8.

10
20
30
40
54
64
72
78

—0.1928—0.1989—0.1979—0.1894—0.1483—0.08891
-0.006616

0.08917

—0.1899—0.2083—0 2287—0.2536—0.2916—0.3130—0.3200—0.2972

—0.1898—0.2166—0.2491—0.2905—0.3692—0.4353—0.4825—0.4953

—0.1909—0.2243—0.2669—0.3225—0.4311—0.5235—0.5857—0.6059

lABLE IV(b). Mixed conversion particle parameter b for k=0.5.

10
20
30
40

64
72
78
83
88
92
96

—0.7533—0.7608—0.7609—0.7504—0.7104—0.6574—0.5958—0.5363—0.4768—0.4078—0.3453—0.2763

—0.7473—0.7709—0.7906—0.8063—0.8159—0.8100—0.7979—0.7819—0.7634—0.7411—0.7170—0.6955

—0.7451—0.7785—0.8075—0.8314—0.8506—0.8505—0.8400—0.8248—0.8075—0.7868—0.7640—0.7455

—0.7449—0.7850—0.8200—0.8472—0.8675—0.8651—0.8501—0.8317—0.8129—0.7901—0.7703—0.7489

10
20
30
40
54
64
72
78
83
88
92
96

0.3094—0.3203—0.3244—0.3198—0.2924—0.2490—0.1908—0.1266—0.05448
0.03913
0.1322
0.2419

—0.3032—0.3288—0.3567—0.3877—0.4383—0.4759—0.5003—0.5126—0.5077—0.4913—0.4610—0.4144

—0.3016—0.3365—0.3772—0.4251—0.5106—0.5785—0.6242—0.6486—0.6527—0.6447
—0.6231—0.5895

—0.3020—0.3447—0.3958—0.4576—0.5658—0.6460—0.6947—0.7094—0.7118—0.6951—0.6728—0.6410

L=1

TAsx.E IV(c). Mixed conversion particle parameter b for k=1.0.

z

10
20
30
40
54
64
72
78
83
88
92
96

—0.8826—0.8829—0.8770—0.8614—0.8149—0.7564—0.6895—0.6255—0.5623—0.4897—0.4248—0.3540

—0.8805—0.8909—0.8981—0.8991—0.8878—0.8674—0.8443—0.8230—0.8009—0.7758—0.7535—0.7296

—0.8805—0.8977—0.9101—0.9148—0.9093—0.8926—0.8717—0.8525—0.8325—0.8101—0.7903—0.7696

—0.8813—0.9033—0.9181—0.9236—0.9170—0.8990—0.8761—0.8544—0.8339—0.8108—0.7912—0.7705

TABLE IV(e). Mixed conversion particle parameter b for k=3.0.

10
20
30
40
54
64
72
78
83
88
92
96

—0.5417
—0.5557—0.5623—0.5593—0.5324—0.4902—0.4370—0.3822—0.3246—0.2547—0.1892—0.1148

—0.5324—0.5643—0.5948—0.6267—0.6665—0.6867
—0.6976—0.6966—0.6882—0.6717—0.6490—0.6272

—0.5291—0.5715—0.6150—0.6610—0.7209—0.7552—0.7697—0.7694—0.7620—0.7461—0.7241—0.7056

pure y multipole is

W(p)=I c (L)W (p)+I,c,(L+1)W,(p)

—0.5287—0.5792—0.6324—0.6869—0.7563—0.7903
—0.7986—0.7907—0.7792—0;7596—0.7404—0.7181

10
20
30
40
54
64
72
78
83
88
92
96

—0.9507—0.9481
—0.9410—0.9263—0.8835—0.8271—0.7591—0.6915—0.6229—0.5430—0.4712—0.3931

—0.9501—0.9531—0.9511—0.9463—0.9266—0.9014—0.8759—0.8508—0.8266—0.8004—0.7763—0.7527

—0.9509—0.9572—0.9579—0.9549—0.9382—0.9162—0.8940—0.8721—0.8514—0.8292—0.8085—0.7888

—0.9521—0.9604—0.9632—0.9590—0.9410—0.9184—0.8941—0.8722—0.8523—0.8296—0.8110—0.7909

TABLE IV(f). Mixed conversion particle parameter b for k=5.0.

~2(I.I-)'L~-(L)"(L+1)j'bW-(P) (10»

Here the conversion coe%cients can be taken from refer-
ence (69) since only a common factor has been dropped.
In Eq. (102) I and I, are proportional to the intensities
of the magnetic and electric radiations in the mixed
transition (Eq. 67) and the sign in the third (inter-
ference) term depends on the nuclear structure and
must be regarded as an adjustable parameter. This sign
is the same as in the mixed y-pure y-correlation. In
Eq. (102) W is the correlation function for a pure
magnetic 2~ pole (Mq) conversion electron replacing the
mixed radiation

W„(P)=P b„(LLm)A„P„(cosP), (102a)

where A„is obtained from Eq. (69a) by setting L~ L. ——

Similarly 8', is the correlation function for a pure elec-
tric 2~' pole (E~,) conversion electron replacing the
mixed radiation

W. (P) =P b„(L+1,L+1, e)A „E„(cosP),(102b)

and here A. is obtained from Eq. (69a) by replacing
L~ by I,+1. The interference term W, „

is given in

Eq. (70c) if one sets L~=L, L,'=L+1.
Of course, as mentioned above, the interference term

(which is absent in the total conversion coefficient)
constitutes a sensitive indicator of mixtures. Numerical
results for this mixed conversion correlation coeKcient
b[L, L+1, m = (—)~] are given in Table IV(a)—IV(f).

Corresponding to the discussion of limiting cases for the pure
conversion transitions one may examine the coeflicient b for
the mixed conversion transition for these limits. It is of in-
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terest to inquire whether in the high-energy limit the conversion
electrons in a mixed transition behave like photons as was the
case for the pure transitions. To examine this question in a general
way we consider the high-energy limit of E(vq). Hy use of Eq. (89)
and the notation e= (—), one sees that

R(uq, LL'm)~iNt'( —)c+&L'L(L+1)L'(L'+1)] &D(v, q0; t)

X Z p(2t+1)(2t'+1)]&~KK
~ (K+6)(K+6)

KK

X (BK,6L+5li, e'(L+ i )) (BK&,4 r Lr +5A r, —c & (L +i})
Xc{,t'v, 00)8"(1jlj '; —,'v) 8"(IjLj''; &t ). (Na)

There are three cases to consider: (a) electric 2~-electric 2~'

poles, (4) magnetic 2~-magnetic 2~' poles (for both of these L—L'
is an even integer), and (c) electric 2~-magnetic 2»" poles (here
L-L' is an odd integer). We note that for all cases we have

i ~ i (~+~) =5(~)L(L+1).
Consider the 8—8 case hrst. Then /= J., t'= L' and we have

R(vq, LL', rt&)
~
N ~'( )c+&—

XLL(I+1)(2L+1)I.'(L'+1)(2L'+1)]&C(II.'~; 00)

XD(v, q0; f) Z S(K)S(K')8'(IjLj'', .'-, p)
KK'

= i ~N
~

2(—)I+~+'P(2L+1)(2L'+1)]&C(LL'v; 1—1)D(g, q0; t),
where we have used the results

L(L+&)+L'(L'+ j)—{+&)
Z S(.)S("~+2(LjL&;—„)= '

.(.+&)—L(L+~)—I (L+&)
2t L(L+y) L {L+y) j~

for v an even integer.
From Eq. (61) we find therefore

R(vq, LL', ZE)-+-,'~N ~'R() q, LI.'; y)

using L—L'= even integer.
Exactly the same results holds for the magnetic-magnetic case

if we first employ the identity given in (A6) of the Appendix.
The E—3f case presents no additional difhculties if we use the

identity given in (A7) of the Appendix. Using this one gets

R(vq, LL' E—M)—&-,
'

~N ~'( —)~+&+'

XP(2L+1)(2L'+1)]'C(IL'v; 1—1)D(v, q0; t)
= ——,'~N~'R(vq, LL'; y).

{The use of the identity (A7) shows, moreover, that the b„(LL';
E—3f) are always independent of v. We found this to be true
earlier for the special case of El,+1—MJ„mixtures. )

Collecting our results, we can now assert that the high-energy
conversion electron correlation is exactly the same as the correla, -

tion with a photon replacing the conversion electron, except that
all cross-terms involving electric and magnetic multipoles have the
oPPosite sign.

The Z=O limit for the E.;+i—Ml, mixture is found to be

4 L+r -~

k' L+2
The nonre ativistic limit is Z, k dependent.

D. Beta Radiation

1. Description of the Problem

The problem of determining the particle parameters
b„,for P radiation is analogous to the determination of
the b„ for internal conversion electron emission, as
treated in III-C above. In the latter case, one considers
a bound electron, a E shell electron to be explicit,
making a transition to an outgoing wave state. In the
P-decay case the initial state is considered to be a

Dirac particle without charge or rest mass, a neutrino,
which undergoes a transition from a plane wave state
into an outgoing wave electron state. ' The fact that the
initial state is characterized by zero charge and rest
mass does not change the formalism of III-C in any
essential way. The physical measurement in both the
p-decay and internal conversion cases is the same,
namely, one observes the direction of motion f of the
emitted electron.

The direction of motion of the neutrino and its spin
polarization are, of course, unobserved. Consequently,
the initial state is random, exactly as was the case for
the conversion problem. In contrast, however, we can
no longer confine our attention to an initial state with
K= 1.

The simplicity which arises in the conversion of an
s electron (~= —1) is twofold. First, the fact that ~ is
6xed removes a summation and second, this particular
value of x (for which j= -', ) allows considerable algebraic
simplification. Equivalent remarks would apply for

Pl electrons (~=1).
From the point of view of precedure, however, there

is a one-to-one correspondence between the treatment
of the two problems, although the greater complexity
of detail for the P-decay problem tends to obscure this
parallelism. The origin of this complexity is to be found
in the difference in the interactions. Whereas in the
conversion problem one has a field interaction (electro-
magnetic) with known coupling, in the P-decay problem
one deals with a point interaction (between leptons and
nucleons) with essentially unknown coupling. This
coupling must be some combination of the five rela-
tivistic invariants that can be formed with the four
Dirac spinors, corresponding to the four spin —, particles
involved, i.e., contraction of the covariants scalar (5),
vector (V), tensor (T), axial vector (A) and pseudo-
scalar (P), (47). We shall consider only pure invariants
in the following, although the treatment of mixtures
would add no difhculty in principle.

As a model for the P-radiation problem, let us con-
sider the essential steps involved in the conversion
problem. By making a multipole expansion of the
electromagnetic field, and with the justifiable neglect of
the finite size of the nucleus, one separates the interac-
tion into a sum of terms, each of which is factorable into
a product of nuclear and electronic matrix elements
(76). The separate terms in the expansion are charac-
terized by their transformation properties, indicated by
I.and vr. The analogous step for the P-radiation problem

"We follow the customary formulation of the theory in which
the emission of taro particles is equivalent to the emission of a
particle and the absorption of an antiparticle. Thus, for negative
electron emission the initial state is actually an antineutrino
(charge-conjugate neutrino) state. To discuss positron emission
one applies the charge conjugation operator to the entire system
and, as is well known, this is equivalent to reversing the sign of the
external held, that is, Z is changed to —Z in the result for the
negative electron case.

For the present problem there is no distinction between Dirac
and Majorana neutrinos.
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is eGected by an expansion of the point interaction
(a 8 function) into spherical harmonics, Eq. (104),
with appropriate modifications for each of the 6ve in-
variants, SUTAP, as required (see Eq. (103b) a,nd the
discussion following). However, I. and m do not consti-
tute a sufhcient description of these "multipoles" and
an additional index o. is used to distinguish between
them. Having separated the nuclear and electronic
matrix elements by this procedure, the tensor param-
eters, and hence the particle parameters b„(P),follow
exactly as in III-C.

The procedure whereby the P-decay process is de-
scribed as an analog of the conversion process clearly
necessitates the use of the angular momentum repre-
sentation, in contrast to methods previously used
(27, 37, 47). This is, understandably, the natural repre-
sentation for angular correlation problems. Analogous
to the ordering of the contributions of the various
possible multipoles in the electromagnetic (or conver-
sion) problems by the retardation expansion, is the
corresponding ordering which here leads to the usual
classification in terms of orders of forbiddenness of the
P-transitions. The results obtained below appear most
most directly in terms of a notation diferent than that
already familiar in P-decay theory a',nd therefore tables
of transcriptions to the customary notation are given.

The P—x correlation has been treated by Falkoff and
Uhlenbeck (27) who considered free electrons. The for-
malism for the case of electrons in a Coulomb field was
given by Fuchs (37) and that paper also gives explicit
results for the Z dependence valid for light nuclei. For
heavy emitters results of sufficient precision require
numerical evaluation" of certain combinations of elec-
tronic radial functions, see Table VII and Table 10 of
reference 37.

Z. Explicit Calculation

The Hamiltonian density H for the P-decay interac-
tion, corresponding to the emission of negative elec-
trons, is taken to be a scalar formed by the contraction
of covariants made up of the lepton and nucleon wave
functions, evaluated at the same point in space. The
most general form for II is

„(f+lo, l~~): g,+io, ip,). (103)
S

In Eq. (103) the sign: means contraction. The + symbol
is the Pauli adjoint, /+=if*y4. The interactions 0, are

S U T A P
(103

P p PtM+v P pPv Yr P pPvPrPa ~

Of course, in Eq. (103) above the 0, operators appearing
are in the separate nucleon and lepton spaces, respec-
tively.

The C, can be taken to be real constants. Since we
shall treat only pure interactions, we can take C,=gb„

"This work has been undertaken at this laboratory. ln addition,
it is necessary to change the sign of the phase 8 which appears in
the formal results of reference (37}.

where g is the coupling constant. The y„are Dirac
operators; the Greek indices in Eq. (103a) run from 1
to 4. A product such as y„y„y,implies that all combina-
tions of p, v, v are to be used, subject to y& v&7-.

It is our aim now to classify the operators in the nu-
cleon space by their rotational properties (1.) and parity
(7r). One can accomplish this most easily by the follow-
ing two steps: (a) Formally separate the nucleon and
lepton spaces by introducing the delta function,
8(r~—rc) (integrating over the lepton space), and (b)
by classifying the interaction 0, by their 3-space rota-
tional properties. This latter step is easily accomplished
by introducing the Dirac direct product notation for the
y's, i.e., y4 ——p3, y~ ——p2a. q. Under 3-space rotations the p
transform as scalars, the 0 as a vector. Under refI.ections
(7ro„=p3P, where P, mean space inversion), pq, e are
unchanged, while p~ and p2 change sign. The interac-
tions 0, become in this representation

5 V T 2 I'
Scalar 1 p3 ip2 pq

Vector p2e ipse ipao'

ZEF

(103b)

In order to avoid possible confusion we repeat that the
"scalar" and "vector" here refer to the transformation
properties of the constituents of the 0, operators under
3-space rotations and not under Lorentz transforma-
tions. The phase i is fixed by direct substitution of the
p and e operators in (103a). A real phase (+1) has been
ignored since it disappears under contraction. "Next one
introduces the expansion for the delta function

1
8 (rN rI) —8(fN FL) Q YL (rN) YL (rL) ~ (104)

r2 L, M

YL (rN)

x 'dQi p+
J

Yc~(rc) P„i
. (104a)

rr, =r~

Here the integration is over the common lepton angular
variables. This operator is a function of r~, it will be
observed, but it is customary to evaluate it at r& ——E,
the nuclear radius. In the sequel we shall refer to the
first part (the coefFicient of the term in square brackets)
as the nuclear operator and the term in square brackets
will be referred to as the lepton matrix element.

For the "vector" part of the interactions, one uses
instead of the delta function the unit dyadic delta

~ An alternative way to fix the phase i is to check the require-
ment of commutability with the time reversal operator E &

= io.„E0.

For the "scalar" part of the interactions, i.e., those
with the operators 1, pq, this provides the desired multi-
pole expansion since we may write for the nucleon
operators
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function: TABLE V. Correspondence of operators. '

1
Itj(rid —rr, ) =—8(r~—rz)

r2 J MI

Interaction Operator

ML

X+ +z, L, (riy)+ r, I.(rr, ) (1.05)

The orthonormal vector functions +MJ I. have the
operational definitions

4M~ r, z, LL(2L+1)]—*, (r'7+Lr) Y

e~&=1., & LL(L+1——)j 'I.Y,~

z=i, i+i = L(L+1)(2L+1)j-'

(105a)

(105b)

X (rV' (L+—1)r) Yl. . (105c)

Il ~.~M+
I pi

An equivalent definition of these vector eigenfunctions
was given in Eq. (53a) except that, for convenience, the
phase i' appearing in that definition has been omitted
here. (The magnetic quantum number M which re-

places I' in that definition is not restricted to the values
+1.) Here L is again the rotation operator, —ir&& V'.

Using this formalism the operators corresponding to
(104a) for the "vector" parts become

ps P'ML

Ps& @~'L,L

p20 '@ L, I,—1

0'@ML, L

Pl&' ~ L, L+I

PI&'~ L L 1

L, L—1

0, @M

p 0.+ML L

ip FM

ps0 ' ~ L, L+1

Ps& ~™L,L-1

pl p'ML

R~„„/r21"
r
Rpv/r'
eXr

A„„/r
p0'X r
TP, ./r2

Pn r
Pn

P0
B~„„/r
S~;,I /r2

P0" r

0'X r
T,./r2
75
0'. r

B„.jr
S;,v, /r2

PV5
jey5r
R~'y5„„/r2

&( dQI P,+

elements

cV(g„;Ln.n)
The terminology, nuclear operator and lepton matrix
element, already introduced applies here also.

For low values of J, I.~& 3 the operators 0 +MJ, I. are
the familiar tensor operators which appear explicitly in
Konopinski-Uhlenbeck (47). The correspondences are
given in Table V. The great advantage of using the
functions 0 + J, I, is that by means of the operational
definitions, Eqs. (105a, b, c), one can readily evaluate
the lepton matrix elements, J'dQ(P, +I (1 or pg)0" +If„).

For clarity, the various interaction operators are
tabulated below in Table UI. These operators are
characterized by their rotational properties (L) and
their parity (~). Since this is insufhcient to distinguish
them completely, a third index o. is introduced as shown

explicitly.
The lepton wave functions are plane waves at in-

finity (using once more the technique of a screened
Coulomb field so that the concept of a plane wave is
meaningful) and we again go to the spherical eigen-
function representation. The coefficients of the expan-
sion, in the now familiar way, lead to the tensor param-
eters of the electron and neutrino LEq. (88)j, the latter
being trivial since the neutrino state is random. We
denote the electron quantum numbers by a, p, , the neu-

trino by ~„,p,„.We must now evaluate the lepton matrix

"dn(y„(g)+
I
o.

I y.„"(,)) (106)

The operators 0 are explicitly given in Table VI.
Making use of the operational form of the +MJ L,

one readily evaluates the (lepton) matrix elements,
M(gg„;L~n). It is convenient to split off the magnetic
quantum number dependence, i.e., to define reduced

TABLE VI. Lepton operators. '

I)L+1

OperatorOperator

P'ML

z0' 4ML, L
p pML

zps0 4
zp10 ' ~ I., I.+1
zpl0 '~ L, I—1

p20 '@ L, Ii+1
p20'@ L, L—1

S
Tp
V
Ao
Tl
T—1

Vl
V 1

p p'ML

zpl0 @ L L
ip I M

P2&@' I„L
L, I+1

z0'4 L, L-l
zps0 ' e L, L+1
ipse 4ML, I. 1

I'
TQ

A
Vp

Tl
T -1
Al
A 1

a The indexes in the first and third columns, on the T, P', and A symbols
refer to the three % functions introduced in Eqs. (105a, b, c). The prime dis-
tinguishes the two operators of different parity for given L.

' Whereas the operator given here is associated with the use of the Pauli
adjoint (in forming matrix elements) the K —U equivalent is associated with

~.~M (105d) the ordinary Hermitian conjugate nuclear wave function.
J, I Pv

~ —rL=rX
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TABLE VII. Reduced matrix elements.

(a) or= (—1)~
5
V
lg

~o
T]
~—1

Vg

0(azrv', I zmz)

(f g"—
g f")(«ILI —")

(f»g»y+g»f»y) (« I
L

I «v)

i(«+«v) (f»g»»+g»f»p) (« I
L

I
.«v)Np

z(«+—»v) (f»g» g»f» ) («I L
I

«v)Np

z[f»f»p(L+ 1 ««p)+g»g»p(L+ 1+«+«v)] (» I
L

I «v)»V!

z[f f—»p( I ««y}+g»g»y( L+«+«y)](«I LI —«v)N 1

[ff»v(L+1 ««y) g»g» (L+1+«+«y) j(«l LI «v)N!
[f.f.„(L «—«.—) g—.g., (—I+«—+«.)j(«l L

I
—«.) v !

(b) ~= (—)~'
p
,4

/
0

Vp

~1
~—1

A —g'

z(f.f.p+g.g.„)(« I. «.)
i(f.f»y g»g»p)(«L «v)

i(«. «) (f.f.„—g.g.„)(« I
—L

I
«.)No—(«, «)(f.f.„—+g.g.„)(«ILI«,)No

z[f»g» («— »v L 1)+g»f»„(««v+L+1)j(«I L
I «v)!7,

i[f g»p(»+«v L) f»pg»(««v L)](«LI «v)N !
i[f g.,( «+«.+L—+1)+g.f., (» «.+L+1—)j(«l LI «.)iV,

z[f g»y(««v+L) f»yg»(««v L)j(«ILI «v)N

'&„=Lt—&(v& &)+(2—z')L j'CI-(L+&)(21+t)3~

matrix elements Q(««„;Lee!) (the a. nalog of the Q(«L~)
of III-C).

M(««„'Lzl'Q) =Q(««„;—Lan)C(Lj,j;3EIz,) ~ (107)

Table VII gives the explicit forms for these reduced
matrix elements. In Table VII the f„andg„are radial
wave functions for the electron which are given ex-
plicitly in reference (67). The notation differs from that
used in (67) only in the use of «as an index. Note also
that the normalization is to one particle in a sphere of
unit radius. Moreover, in Table VII, f and g are evalu-
ated at R. The radial functions with K„asindex refer to
the neutrino. The identification of the radial functions
can be made by the definition

which may be compared with Eq. (83), noting that for
the neutrino E=p, (E 1and E+1~E). —

In Table VII the reduced angular matrix elements are
given by

(2j„+1) (2l+ 1)(2l„+1)l

(«ILI«.)=(—)'" '

XC (ll,L, 00)W (jlj„/„;,L), (108)—
where again l:—l(«), l„=l(«„)and similarly f—orj and jy„y

It is useful to note that (—«IL,
I

—«„)=(«IL, I«„).The
occurrence of the matrix element with —K„replacing K„
in the case or= (—)~ should be noted. The two cases,

or= (—) ~ and or = (—) +', can be considered together by
introducing the notation 8= zr( —) +'. Then the reduced
matrix elements in Eq. (108) have the common form
(.II.I~«,).

The formal work of determining the tensor param-
eters of the nuclear transition is complete, upon using
Eq. (89), which couples the electron and neutrino
tensor parameters, noting that now an additional sum-
mation, over K„,is required

R(vq, Lzl.A
y

'L!.Az') = Q Q(««p! Lzl.zx)

tv

XQ («« ' I- zre! ) I
«"

I
% (jj „vL,', Lj ')

XR(vq, ««'; el), (109)

where the tensor parameter for the P-particle R(vq,
««; el) is given explicitly in Eq. (87). The summation is
over all K„,which thus sums all states of the neutrino
with equal weight but incoherently. The electron states,
on the other hand, are seen to interfere coherently, as
is to be expected.

The reflection symmetry (that is, symmetry about
90' in the angle between the two radiations) follows
from Eq. (109). From Eq. (108) one sees that

l(«)+l(f!«,)+L= even integer

with 5=or( —) +' and

l («')+1 (h'«, )+L' = even integer

with 5'= or (—)~'+'. From the results of III-C, the tensor
parameter for the electron vanishes unless

l («)+ l («')+ v = even integer.
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Moreover, L—L' and 5—6' have the same character
(are both even or both odd). Therefore it follows that
v is always an even integer which guarantees the refiec-
tion symmetry (since v is always the degree of the
Legendre polynomial in the correlation function).
This result is a direct consequence of the fact that the
P-transition is characterized by a de6nite parity change
m (so that no interference between m. and —m is possible)
and that only a propagation direction 'f is observed.

At this point we may verify from Eq. (109) that isot-

ropy is obtained in the following two cases: (a) the
limit of zero electron momentum (since this implies
that Q vanishes unless ~= &1;but then j (~) =', a—nd the
Racah coefficient W (jj„vL',Lj ') with j=j = -,'vanishes
unless v=0, which means isotropy). (b) If the energy
spectrum has the, allowed shape (this implies that the
energy correction factor (47) is independent of the
electron momentum, which in turn implies that ~=- &1.
Hence v=0 as in. (a).

One can reduce the large number of nuclear operators
that are seen. to occur in the P-decay problem to manage-
able proportions, by making the customary "order of

TABLE VIII. Order of forbiddenness classification. '

( y)I
Order of

forbiddenness

( i)I+1
Order of

forbiddenness

5
To
V
Ao
~l
T

V 1

L
L

L+2
L
L+2

p
Tp
A
~o
~l
T -I
Al
A 1

L+1
L+1
L+1
L+1
L+1
L—1
L+1
L—1

a The operator in each case is as in Table VI.

"That is, p and q are the electron and neutrino molnenta, re-
spectively.

forbiddenness" expansion. The physical basis of this
is twofold: 6rstly, the lepton matrix elements,
Q(ax, ; Lan), are functions of the small parameters (pR)
and (qR), i.e., the ratio of the nuclear radius to the
electron and neutrino de Broglie wavelengths, respec-
tively. '0 At least in the small Z limit, one can classify
the Q in terms of the lowest order of (pR) and (qR)
occurring. Secondly, some of@the nuclear operators
involve the off-diagonal operators (in the Dirac space),
pi and p2, hence since small and large components of the
nuclear wave function are thereby coupled, the nuclear
matrix elements are of the order i/c (where v is the
nucleon velocity). This is a small quantity of the same
order as (pR) or (qR). We shall evaluate the "order of
forbiddenness" in the Z=O limit and assume that this
same ordering hoMs for Z/0. Table VIII lists the
results.

It will be observed from Table VIII that the well-

known correlation between order of forbiddenness and

TABLE IX. Interfering operators for the Lth
forbidden transitions (x = (—}L).'

Inter-
action Operators

P'ML

&p3+'+ L 1 L—lj p3™Ljp2@'+ L L 1 j p2+'~ L—2 L—1
u(x)

I,I ) &Pl+'@ L-2, I-l j &Pl'~ I, L 1 j

bp3P'~ L, L,'Zp2Y L I,'Zpg(T. C™)L 1L, Sp3+ + L+1 I,

PIPML

a The operators marked with a cross (x) are generally omitted as small
corrections to operators with the same parity and L but two orders of for-
biddenness lower, provided the L value is large enough for this latter opera-
tor to exist.

parity is obtained. That is, successive orders of for-
biddenness are characterized by opposite parity change
and the allowed transitions correspond to parity change
"no" (m=1).

Specification of the order of forbiddenness and the
nature of the interaction (SVTAP) does not uniquely
select a nuclear operator, as is also well known. In
general, interference between various operator matrix
elements occur, and this is illustrated in Table Ix. In
this table interferences occur for a given pure inter-
action wherever there is more than one entry (V, T, A).
These interferences are of two types. (a) Interference
between operators of diferent rotational properties
(indicated by the 6rst subscript on 4 ~&1). This type
of interference is the analog of the EI„ML, multipole
mixtures in the case of electromagnetic radiation. (b)
Interference between different operators of the same
rotational properties. Interferences of type (b) occur in
the total intensity of P-emission whereas those of type
(a) are present only in angular distributions (3'I).

For the T and A interactions, for given L, there is a
single operator ie +~L+~, L, which does not interfere
with any others. This is the unique matrix element case
in the Gamow-Teller interactions.

Having determined. the R(vq, L7rn; L'm ') nby Eq.
(109), it is now a straightforward matter to define the
particle parameters b, for P-radiation. The first step is to
weight R(vq, L~n; L'~n') by the reduced nuclear matrix
elements

R(vq, LL'; P) = Q M~ (Ln n)M~*(L'xn')

XR(vq, Lmn; L'mn'). (110)

The nuclear reduced matrix elements, M~(Lmn), are
defined as usual to be

(@~v)0 +(«) ~@~,v')

M~(L~n)C(J'LJ; —p'M)b(p, M+v, '). (111)

Here the primed + functions refer to initial state and the
unprimed +'s to the final state. The relative phases of
these reduced matrix elements are real, i.e., Mii (Lmn)
XM~*(L'mn') is a real number, see Sec. II. The b,
parameters are then obtained from Eq. (42b).
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TABLE X. Partial particle parameters for P radiation. '

Matrix element product

First forbidden

Matrix element product

First forbidden —eoetinged

S: t Pr
(X=1)

1 2'
& =- -(v'+p') ——

43 9E
25(P'

+—
I

——
q I+a)

p'(2V

6 (3z z) g~ —g ln

2

V: r
(I 1)

2

Pr
Same as Z

l B;Pl'

2

I': Pysr Same as
2

Pr

j C
J (I,=1)

Second forbidden
q4+p4 1 gp2

+—1 p ——- (0+k)
120 36 908

Same as
' e

Peter
, (I &)

11 2 gp
&0=- -(V'+P')+-—

46 9E

p p 7 1 g
b2 ———+-q2 (7q2+10p2)

30 2 6 15 E

1 1 ft' p2)
Po'g r Po.'b0 =— —

q1—+$
(I.. 1) 2 3( P'(3

&=—
I
——+-—

I

a The cross terms which occur in Table X are to be taken only once since a factor 2 has been inserted in the corresponding b„.

The determination of the b„(P)is complicated by the
coherent mixing of different operators, for diferent n,
having the same I. and x, and the same order of forbid-
denness. Table IX shows that this occurs for the V, T, A
interactions (for example, Ts and T 1 mix as do V
and V ().

In order to give explicit results for the parameters
b„it would. be necessary to evaluate the nuclear matrix
elements M~(L7rn) in the cases where interference
occurs. Then the b„are obtained at once from Eqs.
(42b), (109) and (110). In the absence of information
concerning the nuclear matrix elements one is forced to
resort to the usual artifice of treating these as adjustable
parameters. In the cases ~here there is no interference
between matrix elements with different L, values, the
matrix elements which occur in the angular correlation
are the same as those which occur in the total intensity.

Thus, the pertinent matrix element could be empirically
determined from an analysis of the P spectrum. In
any case it is important to de6ne partial parameters
b„(LL',Pnn') as follows:

R(vg, Lmn, L'7m')
b.(LL'; pnn') =

R(1q, LL'; y)

When there are no interferences (for example 5, I'
interactions and the favorable parity change transitions
for Gamow-Teller interactions) these parameters, de-
6ned by Eq. (112), coIlstltute tile factol's by wlllcll tile

y —x correlation is modified. When interference is
present, the required parameters are weighted sums of
the partial parameters of Eq. (112) with weight factors
given by the product of matrix elements appearing in
Eq. (110).
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TAsLE X.—Continned.

Matrix element product

Same as
(L 1)

Second forbidden —continued

p 2

V: eXr

bv

p 2

crXr

Matrix element product

Second forbidden —continued

$/7 p') 7
+-I -q+—I+—e

41,3 E) 16

+
I
& R'~~'~*I (z-pl

q~ —
q in Z IR'isl'

Same as Z (8;;('

1 1( p') 1 f qi
b, = -I q—+—I+ qP'I 1+-—

IE)

(
+&I q'+-p'

I

2 )
P' P' 7 (

bs= ——+-qI 1+—I+-6
30E 6L, E) 4

P4
b=4

40 E

Same as Z ~B,;['

1 1 5
bo=—-(V2+P2)+-V2P2

360 2 3

vP
+—(P'+v')

E

& [Z T~j +~j
~
(1-2)

p' fq 3f 11
b =—

I

—+—+-
I

360 EE 2E 2)

P" 3 (
b.=—q+—+-qp

I
1+—

I

120 E 3 ( E)

+3bl q~+-P2
I

2 )

P' (7 P'
b, =—

I
-q+—+-b

I120(3 E 2 )
P4

b4=——
120 8

1 2
ho=—-(P'+v')+-e'P'

864 5 3

P' (
I

p'+-q'
I

3780 ( 3

11P4
5 1 P4 5 g2P2

+ g+ gp+ +
120 6 2 E 3 E

b4=
15i20

5P( 1
+—

I
q'+-p'

I

240( 4

P' 1(P' 7 qP'l
bu -I —+-q——'+——

I
60 6(2 6 E)

~: & IT*~I'(s-»

&
~
&;;s

~

'v.=»

7" Z [R;Pi'('&s s)

q
—+—

q in Z ~TP~s

Same as Z ~S;;sS('
ijk

Same as Z [R;P]'

Pending numerical work in progress we give the
analytical results of Fuchs (37), valid for light elements,
for the b„(LL',Pnn') in Table X below. In this table the
notation in common use has been employed. E is the
total energy of the electron (E= (p'+1)' and q=Ep E,
where Ep is the end point energy). The Coulomb field

effect is contained in the terms with $=nZ/2''. , where n-
is the 6ne structure constant. When no entry is given
the corresponding parameter (b„)is zero. In the table
the pseudoscalar interaction, Pypr, has been grouped
with the first forbidden case although in actuality the
pseudoscalar interaction can only enter in mixtures
and from this point of view it might more appropriately
be classed with second forbidden (in harmony with

the discussion above). A similar remark applies to

Z' l~""I'.

The matrix elements

t' t'
n, ~pnr, pn, pnr, nr,

~
pcs

by themselves give isotropy as expected. Since $»1,
especially for heavy elements, the matrix elements

r, I pr, ~nX r, ~pa)(r, I pysr, ~n)(r

by themselves give a very weak correlation (bp»bs).
The matrix elements

by themselves give a correlation which is virtually Z
independent and large. The remaining matrix elements
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are characterized by a correlation intermediate in
magnitude.

In Table X above interference terms of type (b) are
explicitly given. For interference terms of type (a) we
dlstlngulsh 'two CRscs namely, {I) tllosc Illvolvlllg
interference with a rotationally symmetric operator
(L=O) like Pe. r, or y' and (2) those involving inter-
ferences between operators for both of which 1.@0.
This procedure is necessary because in the standard
correlation (y —y) there is no counterpart for the first
case.

Interferences involving one operator with L=o are
glvcll by Fuchs (37) fol' tllc followlIlg CRscs: B;ys wltll
fPo" r, B;; and fo r, B;, and fy~. In these cases
we give the results in the form of the P—y correlation
function. Noting that for the 8;; operator I.=2, we Gnd

W=B' g A„b„(B;;)P„(cosP)+5MO'Co

+2BMODF2(Ljj)P2(cosp),

wllcrc Pg ls glvcll 111 Eq. (69b), (Ilotc tllat pl= g) Slid
and B'=P;;~B;;~', Mo is the matrix element of L=O
operator and b.(B;;) is obtained from Table X. The
constants C0 and 8 for each case are as follows:

T: Mg —— ~Pe r

I 2 gp' 2$ pp'
co=-(v'+p') —— +—

I
—~ I+8

9 9E 3iE )

D=(54) 'p'I 1—+—
~.

E E)

For the axial vector interaction with Mo ——fe r the
constants are obtained by changing q to —

q in the
above, The remalnDlg operator gives

Mo=) ys

Co= I

D=6 &(p'/E).

For the other interfering terms we can express the
results most simply by giving the values of the partial
particle parameters b„asbefore. The cases considered
were interferences between B;; (or B,,s) with L=1
operators for which we may write the matrix element
as M~. Then we give only the particle parameter b2' for
the cross term (since only I =2 enters in those cases).
The correlation function for P-(pure) 2~ pole y ray is
then

W=-,'B'Q A, (2, L)b, (B;,)P„

+13M' Q A, (1, L)b, (MI)P,—2MIB)g'AI'P2,

p'
P~yr, f,'=

4(30)~ E2 3E E)

Ml= i' Pe,

~: B=P(B,;(2

p2
b /

4(30)& E

p' (&
Irx r, b~'=

i
—+—(.

4(30)&&2 3E E)

As was pointed out by Fuchs (37) the existence of
these interference terms can give rise to a situation in
which the energy spectrum has very nearly an allowed
shape and a strongly anisotropic correlation. An ex-
ample would be one in which fPn dominates. Alter-
natively, it is possible to have an almost isotropic
correlation together with a strongly energy dependent
correction factor for the P spectrum.

In all cases the normalization is such that integration
of the angular correlation function gives the energy
spectrum for the P transition, that is, bo is, to within
an energy independent constant, equal to the usual
energy-correction factor. Therefore, the integrated
angular correlation is obtained by integrating the prod-
uct of the angular correlation function and the allowed

energy spectrum over the appropriate energy range.

IV. MAGNETIC FIELD EFFECTS IN
ANGULAR CORRELATION

In this section we wish to consider thlee questions:
(a) the effect on the angular correlation of the mag-
netic interaction due to the electron shell, (b) the role
of an applied ma.gnetic Geld in the a,ngular correlation
when no hyperfine interaction is present, and (c) the
spin decoupling eGect of an external magnetic Geld.
In connection with (a) the fundamental assumption is
made that the nucleus is coupled to a system which
remains in a stationary state throughout the nuclear
cascade. Our concern here is to indicate at least qualita-
tively, that the hyperGne interaction does affect the
correlation function in an important way. The primary
point of interest in connection with (b) is the possibility
of measuring the gyromagnetic ratio and the magnetic
moment (sign and magnitude) in the short-lived inter-
mediate state. As would be expected, the elimination
of hyperGne interaction in this case must be~accom-
plished by the use of suitable prepared sources since
the Paschen-Back effect discussed in {c) imposes

where
22'—- (2j+I)&62 (12jlj)F2(Lj2j)

is obtained from the mixed-pure y —y correlation. The
coe%cients b2' are

r B2=+ (B &(2
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geometrical requirements which make the measurement
considered in (b) impossible.

(114d)ZOi= $$—Ger) 'M2= $$—CPS) W3= $$—Opt)rr.

A. The Correlation Function with Spin-Coupling

The starting point for all the eGects here considered
is the formalism developed by Goertzel (42). One con-
siders the nucleus as part of a larger system (atom or
ion) from which the radiations are emitted. The energy
levels in the cascade are designated by the labels A, B,
and C for initial, intermediate and final levels, respec-
tively. Due to the spin-coupling these energy levels
will now be nondegenerate; the substates of A, B,
and C are clesignated by n, P, and p, respectively.

While it is not essential to specify the nature of the
radiation emitted, it is convenient, for concreteness, to
discuss the emission of y rays. Then in the first transi-
tion the radiation emitted is described by the index p,
the second by 0.—these indices giving the propagation
vector and polarization of the emitted photons. With
only slight changes we follow Goertzel's notation (but
with units such that k=1, and with a diferent sign
convention on the time dependence); then the equations
of "motion" for the probability amplitudes are

ia =e a ++ (nIHpIP)bpp, (113a)
PI

tbp = Ep bp.+2 (n I H. It3)*a-+2 (I) I
H I7)c», (»»)

ic».=e„.c„.+2 y IH. I
p)*bp„

where a, b, and c refer to initial, intermediate, and final
state, respectively. Also

1(nIH. IP) I'
(1168)

(116b)

These quantities are real and independent of $ and of
the sublevel labels n, P, respectively (76). The total
transition probabilities from levels A and B are in
fact 2y~ and 2y~, respectively.

Averaging over the, phases P with

Neglecting all but the 6rst terms on the right-hand side
of Eqs. (114) gives A to zero order, B to first order, and
C to second order in the radiation coupling. This result,
which gives the correlation function of Eq. (114) with
S(m m, ';m„m„')=8(mm„)8(m,'m„'), contains no ra-
diation damping and hence no spin-coupling eGects.
Using these results in Eq. (114) to obtain A to first
order, thence B to third order and finally C to fourth
order, one obtains the desired 6nal result for C», .
Carrying out the inverse Laplace transform we find

Llm Cptitr
$-+oo

e '&~(n
I
H IP) *(8IH~

I y) *e'&"I'+~~'»'
(115)

(&p+&e &a, y &PA) (&~ &p, y &pa)

where ~„,~= e —e~, etc. , and"

~pp= ep+~p~ E»g= 6y+Cgp+Glg) (113d)
(e~(4a—4a'))A„—b „,

where co, and M. are the quantum energies radiated,
while e, ep and e~ are eigenvalues of the zero-order
Hamiltoniari where the latter contains everything but
the radiation operators H„II,.

With the initial condition

a =e'~ (t=0),
where @ is a random phase, the above equations can be
solved to give c(t= ao). This is conveniently done, for
example, by the Laplace transform method (76). Thus,
introducing

A (s)= I e "a (t)dt
"0

and similar definitions for B„(s)and C», (s) in terms
of bp, and c», respectively, Eqs. (113) become

w,A, =ie'&~++ (nl H„IP)Bp„ (114a)

~,B„=E(nlH, IP)*A.+Z (t3IH. I&)C»., (»4b)

~3C».=Z (&IH. lv)*Bp' (»4c)

and summing
I c»,(~) I' from (115) over all polariza-

tion states of the emitted radiations gives finally the
correlation function for propagation directions defined
by the unit vectors f„f,:
8'(fp, f.)

=8,. d~, d~. P (Ihm c„,l ).,
0 0

(nlH, IP)*(PIH.I~)*( IH, I~')(P'IH. I~)

1+$epp'T
(11/)

Here, S„denotes the polarization average for the two
radiations. Irrelevant constant factors have been dis-
carded in obtaining Eq. (117).We have introduced the
mean life of the intermediate state

r= 1/2ye.

As expected on physical grounds only the interme-
diate state lifetime enters. The scale of the coupling

"Goertzel's Eqs. (4a) and (4b) and also his Eq. (5) contain
misprints.
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effects is clearly defined by the comparison of the
"multiplet" splittings ops and 1/'r in corresponding
units. Comparing with the no spin-coupling case of
Sec. II we see that the efkct of this coupling is to intro-
duce the energy denominator (1+i&ps r) ' It. will be
noted that even if the coupling is extremely large,
esp —+~ (PAP'), the result expressed by Eq. (117)
would imply that the correlation is not completely
eliminated. In this case the terms P=P' would yield a
"minimum" correlation which would, in general, be
less anisotropic than the no spin-coupling case, but
would not be isotropic. This is not surprising in view of
the assumptions made. The spin-coupling is expected
to attenuate the correlation due to the transitions tak-
ing place between substates of different nuclear spin
orientation in the intermediate nuclear state. However,
these transitions (or, speaking classically, precession)
of the nuclear spin vector does not represent a complete
loss of information. In some actual experimental cases
it is observed that the anisotropy actually disappears

I.O

0 . I I I I I I I

1.0 t5 2.0 2.5 5.0 3.5 4.0 4.5 5.0
J; Thl +l

FM. 1. The solid curves give the minimum attenuation factor
(Q2)mi& versus the intermediate state spin j, see Eq. (124a). The
numbers aKxed to the curves give the value of J,. (Q2)min gives
a lower limit for the attenuation of the correlation for dipole
transitions or for j(2.The dashed curve gives the full attenuation
factor Q2 as a function of ~Av for J,= —,

' and j=1 (~=—intermediate
state lifetime, hv =hfs doublet splitting). For J.= ~, Q, =—L1—(Q„)~ j(~»)'I 1+(~»)'3 ' for»y j
(within the accuracy of the measurements), and it
may be concluded that the above assumptions are
invalid.

B. Magnetic Interaction

Here we consider an isolated atom (or ion) and repre-
sent the coupling by the usual hyperfine interaction
aj J, where J, is the angular momentum of the electron
shell, assumed constant. The labels P, P' correspond to
the zero-field quantum numbers Ii, mp, where in the
customary notation F=j+J, and mp is the eigenvalue
of Ii,.

%e introduce the density matrix as in Sec. II

and write Eq. (117) in the form

g 0) (pp') g(2) (p'p)

1+$Epp'r
(120)

XC(LLv; 1—1)C(FF'v; mpmp')—
X W (jj FF', vJ,)W(jjLL; vj i)

XD(v, —hmp0; f), (122)
where

Amp=mp —mp .l

Inserting Eq. (122) into Eq. (120), summing over
mp (keeping d,mp fixed) and using

P C(FF'v; mp, —mp')C(FF'v; mp, —mp. )=b(vv),

8"(
' 'FF' vt )W= P P (2F+1)(2F'+1)

1+'lepp~T

XC(L)Liv; 1—1)C(L~L~v; 1—1)

XW (jjL)Li,' vj i) W (jjL2L2, vj2)

XD*(v, —Dmp0; f))D(v, —Dmp0; fg). (122a)

Carrying out the sum over Amp as before and comparing
with Eqs. (65a) and (68), we recognize that the correla-
tion function can be written in the form

The reality of the result in Eq. (120) follows from the
Hermitian property of Z&') (as does that of Eq. (117)
from the Hermitian property of the matrix element
occurring therein). Since the matrix elements of H, and
H, are diagonal in all non-nuclear quantum numbers,
the density Inatrix is very easily written in terms of the
decoupled (strong f)eld) representation. In this case we
llltloducc thc pro)ection quantum numbers Rs Rlld p
for the nucleus and electrons, respectively. Then, for
example,

E'")(mm')= (—)" "(2j+1)Q C(jj v; m, m'—)

XW (jjLL; vji)D(v, m' —m, 0; f)) (121)

for a pure 2z pole. In Eq. (121) v is even and, as usual,
the transition is represented by j~—+j. %C shall write
f& and f2 for f, and f„respectively. The density matrix
in the weak 6eld representation is obtained by the usual
unitary transformation defined by the vector addition
coeKcients C(j J,F; mp) (and mp ——m+p). A straight-
fol wRl d calculRtloIl gives

E(Fmp, F'mp')

= (—)""' "L(2F+1)(2F'+1)3'(2j+1)Z

~ (PP)=~, Z (-III, IP)*(-I~,IP'), W=p A„Q„P„(cosp), (123)

which diGers from the ordinary y —y correlation by
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the additional attenuation factors Q, . These are

W'(jj FF', vJ.)
Q„= Q (2F+1)(2F'+1) . (124)

2J,+1 vv' 1+ (evv r)'

In Eq. (124) a normalization factor (2J.+1) ' has
been inserted so that Qs=1 and Q„(r=0)=1. The re-
sult given in Eq. (124) was originally given by Alder
(4)." It is clear that this result also applies t.o correla-
tions with mixed radiations.

In order to obtain an idea as to the order of magni-
tude of the hyperfine coupling effect one may insert

ev p" $F (F——+-1) F'(F'+—1)j.
2

Then, for particular values of j or J, and of v one can
evaluate the sums in Eq. (124). For numerical results,
however, it is easier to use the Racah Tables (13) and
perform the sums arithmetically. A few cases are shown
in Fig. 1 [see also (4)j. Here the "minimum" correla-
tion factors (Q„);„areshown:

1
(Q„);„= Q (2F+1)sWs(jjFF; vJ,). (124a)

2J,+1 v

From Fig. 1 we may draw the qualitative conclusion
that, even if the assumption of a stationary state for
the electronic shell is valid, the magnetic interaction
produces a small alteration of the correlation only for
J,= ~ and j&5 with the additional restriction that at
least one of the radiations be a dipole. Hence we can
conclude that, in general, the effect is not a minor one.

C. External Magnetic Fields

Here we shall assume that J,=O. That this situation
can be realized in practice is made highly plausible by
the results of Aeppli et al. (1, 2). We are interested in

the possibility of using an external field to measure the
nuclear gyromagnetic ratio and for this purpose two
methods have been suggested":

"The same result can also be obtained in an essentially equiva-
lent manner by transforming the radiation matrix elements with
the unitary (vector addition coeKcients) transformation to ob-
tain Lace (42) and Eq. (2)]
S{m ma'; m mn ) =~{ma ma', m~ —m„')S(mam~ma )
S(mm'm") = (2J,+1) 'Z(1+6++ T) 8(p+m, p.'+m')
&C{jJ.F;mp)C{jJ.F;m'p')C(j J.F', m"p)C(j J,F;m'+m" —m, p, ')

and the sum is over F, F', p, p,'. Application of the algebraic rela-
tions of the Racah coefficients /Appendix Eq. (A5) j yields the
result given in Eq. (124). It is also possible to generalize the fore-
going to other radiations x, y. It is easily seen that the only change
is the insertion of the parameters b„(x)in the density matrices
Eq. (121) and Eq. (122) and b„(x)b„(y)in Eq. (122a); Thus, Q„is
independent of the nature of the radiation.

"A third method, which would utilize an rf Geld so that at
resonance one would observe a maximum attenuation in anisot-
ropy, is actually impractical. The intermediate state lifetime and
the available rf power are such that only a very small and prob-
ably unobservable eA'ect would take place.

(1) The delayed correlation (54).
(2) The average correlation in a field. Of these two

methods (2) has been successfully applied experimen-
tally (2).

(I) The Delayed Correlatiors

One measures the coincidence rate per dt (steradians '
sec ') in the case that a time delay between t and t+dt
is introduced between the successive radiations. The
spin precession in the presence of a magnetic field
clearly alters the angular correlation only if a nonzero
time delay exists. Conversely, without a field the time
delay only affects the total intensity but not the angular
correlation of the radiations.

The perturbation theory formalism leading to the
correlation function in this case is very similar to that
discussed in subsection A of this Section but with the
following alterations. Ke observe the first radiation at
time tj, say. Then t& is taken as the time origin for the
emission of the second radiation. If we designate the
interval between tj and the time at which the second
radiation is observed by t we have as initial conditions

PP Pf vu

to use with the equations of motion

and bp, &'~ is obtained by a solution of the equations for
and Bp, in which only the matrix elements of IIp

are involved. The desired probability is then

i c„.(t) (sdceo.
dt~

The result for the probability that radiations 1 and 2
be emitted in the direction Dj p& and 82p2, respectively,
with a time delay t to t+dt is, per dt,

~d(~1% 1 +2@2 ~)

In the external field H

cps =Id~g(H/h) (m m') =o~s(m —m'), —

where coo is the I.armor frequency, p~ the nuclear mag-
neton, g the nuclear gyromagnetic ratio in the inter-
mediate state, and m is the projection of the nuclear
spin on the quantiza, tion axis (=—direction of magnetic
field). Here n, P, P', y all have the significance of nuclear
magnetic quantum numbers for the appropriate states.
In particular, P, P' =m, m'.
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Since a rotation around the quantization axis through way in which to carry out the measurement is the ar-
an angle n multiplies the product of the elements of the rangement in which the magnetic field is perpendicular
two density matrices in (125) by e' ( ' it follows that to the plane of the rs,diations. In this case

1
li d(27'1'Pl ~2'P2 t) o II 0(27'1021, t7'2, ttp2+tAtpt) (126)

which is Lloyd's result (54). The delayed coincidence
correlation may be regarded as the result of imparting
to the inst:antaneous (or zero field) correla, tion Wp a
precession around the external field with the I armor
frequency. In this form the result seems an almost self-
evident application of Larmor's theorem.

Expressing the 8'0 correlation function in the usual
form we find"

4m

JYd =—e
v 2tv+ 1 M=v

X Iv M(f ) Iv M*(f )o
—tM~ot (127)

As one may expect, the delayed correlation contrasts
with the average correlation (see paragraph (2) below)
in that it provides a possible means of measuring g
without measuring the mean life r. However, this is
only a formal difference and does not correspond to any
essential diGerence in experimental techniques involved.
Ke note in passing that interchanging the propagation
directions f1 and f2 is equivalent to changing the sign of .

coo or to changing the direction of the field. Hence, the
sign of the g factor is determinable only if the over-all
detector eKciencies changes when f1 and f2 are inter-
changed. In addition, if the radiations and the field are
coplanar, then reversing the directions of f1 and f2 is

.equivalent to changing the direction of H. Since re-
versing the directions of f1 and/or f2 does not change
8'~, it follows that a determination of the sign of g
requires non-coplanarity of f1, 'f2 and H. A particular
case of coplanarity is coincidence between II and either
f1 or f2. In this case the effect of the magnetic field dis-

appears. This result is of interest in connection with the
question discussed in IV-D below.

(2) Average Correlatiort

If an external field is applied and the correlation
measured without regard to delay time (that is, all
coincidences are accepted), the correlation function is

tvvo A Iv M(f ) Iv Mv(f )
Wddt= 4zr P P . (128)

~ 0 ~ 2m+1 M 1+zcKppr

Aside from the irrelevant factor 4zr, Eq. (128) is equiva-
lent to the result given by Alder (5)."A convenient

'4The time-dependent factor e '~' is, or course, of no conse-
quence for the present application. lt is, however, needed for the
following, see paragraph (2) below.

"This result can also be obtained from Eq. (117) using Eq.
(125a).

W= P — —Lcos2rttt+2rttdpr sin2rttttj, (129)
~=0 1+ (2rttppr)2

where @=q1—p2 is the angle between t& and f2 and the
coefficients B„aregiven by

~ A 22 (2k+2rz)! (2k 2r—z)!
2t.= (2-~.o) 2 (129a)

24" [(k+rz)!(k—n)!]

Here 2k=sand 2n =2k =v . These are, of course,
just the coefIicients of the zero-field correlation when
expanded in cos2ng. The same remarks relative to the
sign of g made under (1) apply here. Thus, for equal
over-all efIiciencies

lV'= P cos2~,
=0 1+ (2ntppr)2

(129b)

while with unequal eSciencies the sign of g is deter-
mined, Thus, if the eKciency for the arrangement $1 in
the direction —,'7r, q1 and f2 in the 'direction —',x, p2 is g12
while zt21 corresponds to f1(2'zr, 022) and f2( 2zr, 011), the
observed correlation would be

W=Q
" 1+ (2zztppr)2

$12 f21
X cos2~+ 2rzptpr sin2~ . (129c)

rt12+'$21

Since the zero-held correlation should serve to de-
termine the intermediate spin j, the magnetic moment.
in this excited state can also be measured. Such a
measurement, first suggested by Brady and Deutsch
(17) and by Sunyar et al. (74), has been carried out by
the Swiss group for the case of the Cd"' cascade (2).
It is clear that this method requires a measurement of
the intermediate state lifetime but where this is not
feasible it is not to be expected that any other method
mill be workable.

D. Paschen-Bach: Effect

In Sec. I reference was made to the fact that it would
be highly desirable to be able to eliminate the magnetic
(and quadrupole) interaction by using a strong Geld.
In this paragraph we wish to discuss the requirements
which such a procedure would have to fulfill. In doing
so we assume that we deal with an isolated atom (ion)
recognizing that in an actual experiment a diGerent
situation may apply in some cases. It will be sufficient
to consider that the spin part of the zero-order Hamil-
tonian contains the following three terms (a) magnetic
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+(mp) =Q (mal mp)4;Mz, &

Then,

(~ l&iIP) =2 (riiil&ilm)~(pi ) (m~lriip) (130a)

(PIH2ly) = P (m'IH2Img)8(ii'p2) (m'ii'lmp), (130b)

(~IIIiIP')= 2 (mil&ilm")~(p»")

X (m"p" Im'p'), (130c)

))sl I I I/I / l

X( "' "'I '-'), (»0d)

where the subscripts i and 2 on the magnetic quantum
numbers refer to the initial and 6nal states, respectively.
If we consider the 6rst term perturbed, the transforma-
tion coeKcients in the remaining three matrix elements
must reduce to the elements of the identity transforma-
tion. Thus

From these results it follows that

interactions between external field and electron mo-
ment, (b) magnetic interaction between external field
and nuclear moment, and (c) hyperfine coupling be-
tween electrons and nucleus. If the spins can be de-
coupled under these circumstances then, as will be
clear from the following, it will follow a fortiori that
any weaker couplings like the quadrupole-electric held
gradient terms will cause no trouble.

The discussion is conveniently divided into two parts:
First, we show that if there is a strong Paschen-Back
effect on the electrons (electron Zeeman energy)&hyper-
fine splitting) then there is no first-order effect on the
matrix elements in Eq. (117).Starting from the strong
field representation in which m and p, are good quantum
numbers, the matrix elements are transformed by an
in6nitesimal unitary matrix

S=1+o, o «1,
where 0- is antihermitian and has zero diagonal matrix
elements. Also o is diagonal in mr ——m+p, . Clearly o.

is of order a/p. P where the hyperfine energy is
aj J, and ii, is the magnetic moment of the electron
shell.

Now the argument consists in showing that only
diagonal matrix elements of 0- enter in modifying Eq.
(117). Since we are concerned with first-order effects
we consider one matrix element at a time. Labeling
the perturbed states by m and p and designating the
perturbed and unperturbed wave functions by 4 and
4, respectively, the unitary transformation in question
may be written in the form

Hence, since m+p=m+p,

(131a)

m m]&1 01 m= m2~ 1)

depending on which of the two radiations is parallel
to the field. Since the two polarization states of the
quantum do not interfere and are added incoherently
only one of these possible values will occur. Conse-
quently, we now have m=m'. Since the energy matrix
is diagonal in m+p, it follows that p= p' and op= co for
all pairs of states. Consequently, the energy denomina-

tor reduces to unity and all 6rst-order effects vanish.
The magnitude of the second-order eGects shows that
the criterion for a strong 6eld is that the electron Zee-
man energy be large compared to the hyper6ne splitting.
That is, if the over-all hyperfine multiplet is Av in cm—',
one must require that

(II/2 X 10'd, v)'»1, (132)

where IX is in gauss (42). In many cases fields of order
5X10' to 104 gauss would presumably be adequate.
Of course, if such a procedure were successful one would

not have the opportunity to measure the intermediate
state magnetic moment. The application of the Paschen-

and only diagonal elements of (mplmp) enter. In an
entirely equivalent fashion one can show that

(131b)

by considering the second matrix element (130b) to be
transformed and the remaining ones unchanged, and
similarly with Eqs. (130c) and (130d). It follows then
that to first order there is no change in the matrix
elements.

%e now consider the energy denominator in Kq,
(117). If the matrix elements of the spin-dependent
zero-order Hamiltonian are evaluated in the m, p
representation we need consider only diagonal matrix
elements; off-diagonal matrix elements will all be of
second order in a/p, ,P compared to the leading terms.
Then the difference of two diagonal elements ep —~p

will contain three terms corresponding to the three
interaction energies listed above; electron and nuclear
Zeeman energies and hyperfine energy. Among other
terms there will be those for which p, =p, ', and the usually
large electron Zeeman energy difference will vanish in
this case. The spins will then be decoupled only if the
nuclear Zeeman energy splitting is large compared to
the hyperfine splitting. Clearly, this demands imprac-
cally large fields.

However, if one of the radiations is parallel to the 6eld
this requirement on the 6eld is considerably relaxed.
Then starting from state A (or C) with a fixed nuclear
projection quantum number m& or m2 and considering
the fact that the radiation carries oG &1unit of angular
momentum with respect to the 6eld direction, the value
of m in the intermediate state is fixed:



772 L. C. 8 I EDENHARN AND M. E. ROSE

Back eGect would, of course, necessarily be confined
to the p —p correlation. The only attempt to carry out
such an experiment was made by Frauenfelder et aL (36)
for the Ni" y —y cascade. No eGect of the magnetic
field was observed, and it appears that condition (132)
is not fulfilled in this case. Note added in proof A—
decoupling experiment with a metallic In"' source has
also given a negative result. This problem has now been
beautifully clarified by the experiments of Albers-
Schonberg, Hanni, Heer, Novey, and Scherrer [Phys.
Rev. 90, 322 (1953)j and the work of A. Abragam and
R. V. Pound (unpublished). The quadrupole coupling,
which is in general quite significant, and in particular
important in the In metal, will attenuate the correlation
unless one of the radiations lies along the symmetry
axis of the single crystal, source. The importance of
quadrupole coupling has since been discussed by A.
Abragam and R. V. Pound [Eq. (1a) and Phys. Rev.
90, 993 (1953)j and by Alder, Albers-Schonberg, Heer
and Novey (to be published in Helv. Phys. Acta. ).

Finally, we may inquire into the stringency of the
parallelism requirement. How accurately must this be
fulfilled? To investigate this point, we consider the
relevant part of the correlation function; vis. ,

y M(f )p M*(f )8=—p
1+M (Zi+Z2)

(133)

We therefore consider the difference

MZgI'„~(fi)Y„~"(f,)~8= 8—So= —Q
ir~ (1+ZiM)[1+ (Zi+Z2)M]

Then for J,=-'„p,=~—,'
—=—Q &vs&

Mp

I', ~(f,) I'„~'(f,)2M''

(1+ZiM) [(1+MZi)' —3P&']

The case of interest is (f'())1, ~Zi~ 1 and then

(134a)

hMf 2
P M(f )P' M*(f )

1+ZiM
(134b)

Since ADS= 0, it follows that 6~$ O~ where 0+ is the
angle between the field and the (nearly parallel) radia-
tion. Thus, at worst, DS 0. It is seen that this con-
clusion is equally vaLid for arbitrary J,. It is also valid
from Eq. (134a) without the assumptions leading to

where Zi itiirg~(H/h)r, ——Z2=2iapr =2tig are the i&ut-
products for the nuclear Zeeman and the hyperfine
energies. If we neglect the hyperfine energy, S would
become

M(f ) P' M~(f )

1+Z,M

Eq. (134b). Consequently, the parallelism requirement
is not very stringent.

V. TRIPLE CORRELATION

The principal results of this paper are contained in
the description of double-cascade process (Secs. II
and III) where, when unpolarized radiations are ob-
served, we deal with a two-vector problem. In the fore-
going the only exception was the process of correlation
in an external magnetic field wherein a third direction
is introduced.

There is another important exception and this con-
cerns the case in which three radiations are involved.
These need not all be emitted radiations (thus, an ab-
sorption can equally well replace the first emitted radia-
tion), and one need not. observe all three radiations.
For example, in the case of non s proton, or neutron,
capture the compound nucleus formed after capture of
the nuclear particle may decay by a cascade of two (or
more) y-rays, say. Then the correlation of the second
p-ray with the incident beam constitutes a special case
of a three-vector problem or a triple correlation even
though the correlation does not depend on the direction
of the unobserved intervening radiation. Alternatively,
there are several cases reported in the literature, [for
example, (66)] in which there are three y radiations
observed in cascade. The correlation between all three
(11) or between the first and third (8) will often be of
relevance. The latter observation which, in some cases,
may present no greater difhculty than the more usual
type of measurement involved in double correlation,
is useful in that it provides confirmation of assignments
of angular momenta and parity obtained from observ-
ing the correlation between successive radiations taken
in pairs. In a few cases the correlation of first and third
radiations may resolve ambiguities resulting from the
analysis of double correlation measurements (8).

The correlation between three propagation directions
represents a complicated problem both from the ex-
perimental and theoretical point of view, and it is
probable that only the special cases discussed below will
be of major interest. In the following we present the
formalism for the general case of three p rays in cascade
and then proceed to the special cases. The case in
which one of the p ray emissions is replaced by the
absorption of a nucleon of nonvanishing orbital angular
momentum has also been treated (11). Here the main
complication arises from channel-spin degeneracy, and
this complication would be aggravated if one considered
a correlation such as d —p —y [proceeding by compound
nucleus formation rather than stripping (14a)].

We consider the triple y-cascade in which three pure
multipoles are emitted. Note added ie proof. The ex-—
tension to triple correlations with mixed multipoles is
straightforward. (See R. K. Osborn and M. E. Rose,
Oak Ridge National Laboratory Report No. 1560 and
M. E. Rose, Oak Ridge National Laboratory Report
No. 1555.) The nuclear angular momenta will be



denoted by j0, j», j~, and j3 in order of ascending
energy (or the emission problem), and we consider
emission of 2~0, 2~1, and 2~2 poles in "temporal" order.
The cascade is thus designated by jo{L0)jl(L1)j2(L2)jp.
In view of remarks made above consideration of the
Rdded con1pllcRtlon with n1lxed I'RdlRtlons does not
seem worth while at present. The envisaged process can
then be interpreted in terms of the formalism already
established in Sec. II by treating the intermediate
transition jl(L1)j2 as constituting a link between the
first and third transitions. It thus provides a certain
coupling coeKcient of the form S(m,m '; m„m„')The.
two end links jo(L0)jl and j2(L2) jp are characterized
by density matrices of the form

P C(joLj; mpm —mp)C(jpI j;mpm' —mp)

XD(L, m mo—, P)D*(L, m' —mo, P)
(—)

' "' vC(joLj;mo, m mo—)
mDPvD

XC(joLj; mo, m' mo)C(LL—vo, m —mo, mo.—m')

XC(LLvo, P, —P)D(vo, m —m', 0)
=2(2j+1) Q ( )'+" vC(L—Lvo; 1—1)

&D

XC(jjvo, m'm)W(LL—jj; vojo)
XD(vo, m m', 0) (135)—

by use of the Clebsch-Gordan series Eq. (9) and the
usual Racah relations (see Appendix). In Eq. (135) vo

is even and the notation is, in part, descriptive of the
first transition. For the 6rst transition j= j», I=I.o
while for the third j= j3, I.=L2 and jo is replaced by j2.
Of course, the arguments of the D matrices are fo and f~,

respectively. In all cases I'= ~1.
For the intermediate step, the second transition, one

obtains the coupling coefficient

S(mimi j mpm2)

2 C(jlLlj2 mlm2 ml)C(jlLlj2 ml m2 ml )

XD{L11m2 ml) P j fl)D (Li) m2 ml j P j fl)
=2(—)"""""Z C(L1L»1;1—1)

&1

XC (L1L1vl j m2 —ml, ml —m2 )
XC(giLlg2 j ml, m2 —m, )C(glLlg2; ml m, —ml )

XD(vl, m2 —m2' —ml+ml', 0; f,) (136)

Rnd p» ls even.
Discarding scale factors we obtain for the correlation

function

W(fo, fl, f2)
=Q (—)"'+""C(L0Lovo, 1—1)C(L1Llvl,. 1—1)

XC(L2L2v2 1 1)W(LOLpjljl vpjp)

XW{L2L2j2j2 v2jp)C(jljlvp ml ml)
XC(gpgpvpj —m2 m2)C(L1Llvl, m2 —ml, ml —m2)
XC(J1L1$2j mlm2 ml)C($1L1$2j ml m2 ml )
XD(vo, ml —ml', 0; fp)

XD(vi) m2 m2 ml+ml yi
0 j fl)

XD*(v2, m2 —m2', 0; f2), (137)

and the suni is over vo, vl, v2, (all even) and ml, ml',

S$2) 282 ~

%e de6ne

p» = tS» 5$g

and perform the sums over m» and m2 keeping p, » and p2

fixed. This summation is performed by repeating appli-
cation of the Racah relations (Appendix Eq. {A5))
and after a somewhat lengthy but straightforward cal-
culation we obtain for the triple correlation function the
result

I'(jlLi j2; vo»v2)
= = (2v2+1) &C(L1Livl, 1—1) p (2K+1)

XW(vovlgpgpj v2X)W(viXLlgij y2L1)

X W(jljih j2, vpL1), (138a)

A&0"1&2(fpflf2) 2 C(vlvpv2 j P2 Pl& Pl)
@1+2

X V„"(f,)I'„0-v *(f,) F'.2v (f,). (138b)

The limits on the X suln in Eq. (138a) are given by the
triangular inequalities defined by the Racah coeKcient
(see Appendix). Equation (138) is the general form for
the triple correlation of three pure multipole y rays.
Aside from the fact that one can choose the polar axis

along any one of the unit vectors fo, fl, or f2 (which
eliminates one of the summations in Eq. (138b) the
result is clearly rather cumbersome and involves labori-
ous calculations before numerical r'esults can be ob-
tained. For this purpose the tabulation of reference (13)
is helpful. In the following we consider certain special
cases which may be of interest.

A. Coxre1ation rvith Intermediate Radiation
Unobserved (8)

If the correlation between only the 6rst and third
radiation is observed, the appropriate correlation func-

tion is obtained from Eq. (138) by integration over

fl. Then, from Eq. (138b), we find vi=0, @2=@1and,
using the addition theorem for spherical harmonics,

0 1 2(fpflf2) reduces to

2v+1
A= P„(fo f2)h(vov2)8(v10)

(42') &

(v= vo). (139)

Using this result in (138a) one obtains

I'= (—)' 'I:(2v+1)(2j2+1)(2L1+1)l '

XW(jljljpjp', vL1), (140)

W(foflf2) =ZP o(Lojojl)P 2(L2jp j2)
X F (glLlg2 j vovlv2)A. p. lv2(fp, fl, f2)) (138)

where the sum is over vo, v», v~ and the notation of
Eq. (69b) has been introduced. Also
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TAsLE XI(a). Values of the coeKcient as LEq. (142)] for the case in which either the tirst and/or third radiations are dipole.
The triad 636,&h& are de6ned in Eq. (142a). The double entry at the top of column 3, for example, means that a2 is the same for the
decay schemes j&+1 (1) j&+I (1) j&(1) j& and j& (I) j& (1)jr+1 (I) jr+I, as explained in the text. In general the number in paren-
theses following b,3626, l is 8, the difference in spins of the lowest state —see Eq. (142b).
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2 —0.0150

5/2 —0.0286
3 —0.0393

7/2 —0.0476
4 —0.0542

9/2 —0.0594
5 —0.0636

11/2 —0.0671
6 —0.0700

13/2
7 —0.1000

—0.0250
0.0100
0.0250
0.0329
0.0375
0.04GS
0.0425
0.0439
0.0450
0.0458
0.0464
0.0469
0.0473

0.0500

—0.2500
0.0500
0.0875
0.0920
0.0900
0.0867
0.0835
0.0806
0.0780
0.0758
0.0739
0.0722
0.0707

0.0500

4 ~ ~

0—0.0025
0.0020
0.0071
0.0117
0.0156
0.0189
0.0216
0.0240
0.0260
0.0277
0.0292
0.0500

0.1750
0.1400
0.1200
0.1071
0.0982
0.0917
0.0867
0.0827
0.0795
0.0769
0.0747

0.0500

1/2

3/2
2

5/2

7/2

9/2

ii/2
6

13/2

—0.2500—0.2000—0.1'?14
—0.1530—0.1403—0.1310—0.1239—0.1181—0.1136—0.1099—0.1067

—0.0714

0
0—0.0250—0.0400—0.0490—0.0547—0.0584—0.0611

—0.0630—0.0644—0.0656—0.0664—0.0671

—0.0714

~ ~ ~

0
0.0036—0.0029—0.0101—0.0167—0.0223—0.0270—0.0309—0.0343—0.0371—0.0396—0.0417—0.0714

~ ~ ~

0
0—0.0071—0.0143—0.0204—0.0256—0.0297—0.0333—0.0364—0.0391—0.0411—0.0714

and the correlation functions assume the simple form

ii'Q) =&Z J".V-oisjt) J".(Irises)
V

X5'(jr jrjsjr,' vLt)&„(cosp), (141)

where P is the angle between fs and fs. In Eq. (141) X
is a normalizing factor fixed so that (W)A, = 1.

iV = (—)'~—f~-~'2[(2j,+I) (2js+ I)j-l. (141a)
From the Racah inequalities we find that upper limit
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OIl v ls
V~~=2 mm(L0, L2, g4) g2), (141b)

TAm, K XI (b). Values of the coeKcients u2 and a4 for both 6rst
and third radiations quadrupole. The notation is the same as in
Table XIt'a}.

the multipolarity of the unobserved radiation does not
acct v

We write the correlation function (141) in the form

W(P) =P a,P„(cosP); a0 ——1. (142)

Tables XI(a) and (b) contain numerical results for the
coefIicients u„in the case of cascades for which I.o, I.I,
L2~&2 (dipole, quadrupole only), and the only cases
omitted are those in which a dipole crossover would be
competing with a quadrupole transition. In such cases,
it is assumed, the triple cascade would be improbable.
In Tables XI we have adopted the notation

B. Parallel Radiations

An alternative procedure, whereby corroborative
evidence may be obtained for the angular momentum
assignment in the triple cascade, is to observe the radia-
tions with one pair of them parallel, or antiparallel,

and 1.;= j. when 6;=0, ~I while L„=2 when 6;=&2.
In Tables XI the coe%cients e2 and a4 have been given
for various possible j2 (usually ground state angular
momentum) and a particular set of 6's, represented in
the order 638 26~. The tables have been made more com-
pact by noting that different sets of 6's correspond to
the same a2 (or a4) if the spin of the lowest state is j2'
(instead of j2).The triad of numbers A2A2A& at the head
of column are used when the lowest state has a spin
given by the first column. For the additional entries
62'62'5&'(5) appearing immediately below b,2626& the
results for 422(a4) apply with the lowest state spin
given by

(142b)

Table XI(a) refers to transitions in which either L0 or
I 2——T so that v =2. The entries are the a2 coefficients.
In Table XI(b) both L0 and L2 2and a2 and a4 a——re
given. The extension of these numerical results is easily
obtained by using Table I and the Racah coefFicient
tabulation of reference (13).

It is interesting to note that in at least two cases an
observation of the first and third radiations removes an
ambiguity which would be present if only successive
radiations were observed. For example, consider the pair
of decay schemes jo, j&, j2, j3=0, I, 1, 2 and 0, 2, 1, 1,
respectively. For each of these a2= —0.250 for the cor-
relation of the first two p-rays and —0.025 for the cor-
relation of the last two. However, for the correlation of
the first and third p rays @2=—0.0250 and 0.1250 for
the two levels schemes, respectively. A similar resolu-
tion of ambiguity applies in the comparison of the
levels with j0, j&, j2, j2=2, 3/2, 3/2, 5/2 and —',, 5/2,
3/2, 3/2.

1/2

3/2

20
—2 0 —2(—4)

a2

0.0510
0.0671
0.0765
0.0826
0.0867
0.1020

—0.0060—0.0013
0.0015
0.0033
0.0045
0.0091

for both parallel and antiparallel radiation (since all v

are even). Here P„is the angle between f„and f„orf,
and v„is vo if f~ and f2 are parallel, v„=v~ if fo and f2 are
parallel, v„=v2 if fo and f~ are parallel. No further sim-
plification is possible. Apart from scale factors the
angular correlation function is now

14(p.)= Z &o(Lotto~)
V0VIV2

XF,2(L2j2j2)I'(j&L&j2 ', V0vzv2)

XL(2V0+1) (2V2+1) (2v2+1)]v
XC(vyv0V2', "00)Pv (cosP ). (144)

The conzP/exify of the correlation function depends on
which pair of radiations are made parallel (or anti-
parallel) since v, may be different for v0, v&, v2. If
the Grst two radiations are parallel (v, = v2)

(v2) =2 min[min(L0, j 2)+Li, j2, L2].

If the 6rst and third radiations are parallel (v, = v4)

(v&), =2 minLmin(L0, j&)+min(L2, j2), L&]

as is shown in reference (8). Also, if the second and third
radiations are parallel (v = v0)

(V0) 2 mint„LO jl min(L2j2)+L1].

If one of the intermediate spins j&, j2 is 0 or ~, then
isotropy results whenever the 0 or —,

' spin "joins" the
radiations f, and fv (or f,). Thus if j2——0 or -,'one ob-
tains isotropy when the first and second radiations are
parallel and if j&=0 or & the correlation is isotropic for
the second and third radiations parallel. However, un-
less both j& and j&=0 or —'„the correlation with first and
third radiations parallel will not, in general, be isotropic.

It is clear that the triple correlation process in which

Let the two parallel (or antiparallel) radiations be
designated by the indices p, q and the other radiation
by the index r. Then taking the polar axis along f„or
f, we find that p, i= p,2=0 in all cases and hence

(2v0+1) (2V2+1) (2v2+1)

(42r)'

XC(V2vov2; 00)P.,(cosP„) (143)
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any one of the p rays is replaced by another particle is
obtained from the above by the usual procedure of
insertion of the particle parameters: b, (()x) if the first

p ray is replaced by another particle, and similarly for
the other transitions. If one of the particles is a proton
or neutron, the procedure described in Sec. III(B)
should be followed. Some special cases for the p —y —y
correlation have been worked out in reference (8).

APPENDIX: VECTOR ADDITION AND RACAH
COEFFICIENT RELATIONS

Throughout the text repeated use is made of a num-
ber of symmetry relations and other properties of the
vector addition coefF)cients C(jij2j3, mim2) and the
Racah coefFicients W(abed; ef). These are given below.

1. Vector Addition Coefficient

and others obtained by combining the operations
indicated.

The Racah recoupling is accomplished by means of

C(jlj2$ mlm2)C(jj 3j 4, mi+ j)32, m3)

=p (2s+1)l(2j+1)~C(j2j3s; m2m3)

XC(j isj 4, mi, m2+m3)W(jij2j4j3, js) (AS)

and variants of (AS) obtained by using (A1) and/or
(A4). In Section III(c) we make use of the relations

[(2l+1)(2l'+1)]'C(ll'v; 00)W(l jl'j'; —',v)

= [(2L+1)(2I '+ 1)]'C(LI.'v; 00)
XW(Ij I-'j'; 2v), (A6)

where l=l()() = ~)(~+2[5()()—1], (5()()=sign of )() and
l = l(K ) With

Interchange of the angular momentum quantum and
numbers is made by use of the symmetry properties

and L+1

)4' = L' and—I '+1
C (jlj2j3 mlm2)

= (—) "+j "C(j2jij„m2mi)
= (—)"+j'—»C(ji j2j3, mi —m2)—
= (—))4 ~'[(2j3+1)/(2g2+1)]l

XC(jij3j2, mi, —m3)
= (—) i2+~2[(2g3+I)/(2gi+1)]2

XC(j3j2ji, —m3m2)
= (—))4 j3+~2[(2j3+1)/(2ji+1)]'

XC(j2j3ji; m2 —m3). (A1)

The explicit form for C(ll'v;00) (with l+l'+v=2g
=even integer) is

In (A6) v is an even integer and j=
~

)(
t

——,', j'=
~

)('
~

—
2

C(LL'v; 1—1)

(L~+ 1 ) ks(~') ( I ) 2s(~)
= —2

& L' ) L,L+Ij
X[(2L+1)(2L'+1) (2l+1) (2l'+1)]'*

XS(i()S()(')C(ll'v; 00)W(l jl'j'; —', v)

XW(Lj L'j'; —', v), (A7)

where the notation is as above except that now

6 (ll'v) g!
C(ll'v; 00) = (—)'+"(2v+1)' , (A2)

(g l) (g l)'(g )'
~=I, and —I—i

and L'+1
where Also

(2L—v) (2L+v+1)
W'(LLL ——', L—-', ; v —,') =—

4L'(2L+ 1)'

(l+l v) l (l l '+ v) I (l"+—v l) !— —
D(ll'v) =

(l+ l'+ v+1) !

The vector addition coefficient which occurs in the
y-ray correlations is

1 v(v+1) —l(l+1)—l'(l'+1)
C(ll'v; 1—1)=-

D(l+ 1)l'(l'+ 1)]'

XC(ll'v; 00). (A3)
In all cases

C(ji0j3, m)0) =&j&j3.

2. Racah Coefficients

The Racah coefficients vanish unless the triads abc,
cde, bdf, and acf form a triangle. The symmetry proper-
ties are

W(abed; ef) = W(bade; ef) = W(cdab; ef)
=W(acbd' fe) = ( )'+I ' ~W(ebcf'ad)—
= ( )'+j ~'W((iefd;—bc), (A4)

(2L+1—v) (2L+2+ v)
W2 (LLL,+ 'L+ 'v-')=-- , (A())

4 (I.+1)'(2L+ 1)'

i (v+1)
W'(LLL+ ', L ', ; v-,')=-——

4L(L+1)(2L+1)'
(A10)

If any parameter in 8' vanishes the value of the Racah
coeScient is

W(abed, Of) = (—)~'-j[(2b+1) (2c+1)] 6.3b.g. (A11)
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