
REVIEWS OF MODI RN PXI YSICS VOLUME 25, NUMBER 3 .f UL Y, 1953

An . .ntroc uction to Spinors*
W. I . BADE AND HERBERT JEHLE

Brrtce Laboratory of Physics, University of nebraska, Lincoln, 1/ebraska

I.
II.

III.
IV.
V.

VI.
VII.

IX.
X.

CONTENTS

Introduction.
Transformations of Tensors.
Transformations of Spinors.
The Fundamental Spinor.
Algebraic Properties of Spinors.
Special Spin Transformations.
The Connection Between World Tensors and
Spinors.
I orentz Transformations and Spin Transforma-
tions.
The Maxwell-Lorentz and Dirac Equations.
Spinor Analysis.

Schrodinger s representation in nonrelativistic quan-
tum mechanics is characterized by the equations

HP =ih8$/Bt, P.P= ih8$—/itx, . (I 1)

Our. choice for the metric of special relativity theory is

gpp ——1, gtt ——
gpr ——gpp ———1, gk2=0 (k&l). (I 2)

With the four-velocity ttk= dxk/ds we can form the free-
particle world momentum

2ncitk= (P/c, P„P„,—P—,)—
We choose the sign of the four potential in such a way
as to retain the conventional form of the held equations
(IX 2) and (IX 4):

" 'N order to give a satisfactory account of the I,orentz-
~ ~ covariance of Dirac s equation for the electron, it is
necessary to attribute certain transformation proper-
ties to the four-component wave function appearing
there. In 1929, van der Waerden (20)' devised an
algebra of spinors which plays a role in the trans-
formation theory of such wave functions analogous to
that played in special relativity theory by tensor
algebra. Four years later, in 1933, van der Waerden and
Infeld (14) presented a spitzor analysis which liberated
the formalism from the restrictions of special relativity
theory and permitted the employment of spinors against
the background of a general Riemannian metric. In
addition, many other contributions to the subject
appeared.

The purpose of the present article is to o8er an ex-
position of spinor calculus which will be more elemen-

tary and more accessible than those which constitute
the original literature.

I. INTRODUCTION

As a preliminary to description of the spinor formal-
ism, the following brief discussion is intended to show
how the concept of spinors arises. This discussion will

also serve to define the notations to be used in this
a,rticle. '

* The authors wish to express their indebtedness to the Uni-
versity of Nebraska Research Council, which generously supported
this work.

' Arabic numerals enclosed by parentheses and inserted into
the text refer to items in the List of References at the end of this
paper.

The fundamental mathematical discoveries underlying the
theory of spinors were made by Cartan (13) and Weyl (12),
Chap. III, Sec. 8c.

~ The spinor notation used is taken from the paper of Infeld
and van der Waerden (14). Gaussian units are used for electro-
magnetic quantities; the charge of a particle is denoted by q,

Spinor analysis necessitates the choice (I 2) for the signature of
the special relativistic metric, unless one would load some of the

$k= (—V, A, A„, A.). (I 3)

Pk = mc2ik —(lj/c)fk. (I 4)

With the relativistic generalization of (I 1),
Pkg=ih8kp (where elk—= 8/ctxk), one can construct a
single second-order wave equation:

gkt[ihBk+ (q/c)rt2k j[ih82+ (q/c)rkt]p= m'c'p, (I 5)

by virtue of gk'itkit2=1. Equation (I 5) is linearized,
following Dirac, to'

I"(d k+ ted k)4 =4',
with the conditions

PkPt+PtPk 2gkt1

For abbreviation, we have set

e = —q/(hc), tt =nic/h.

(I 6)

It is well known that (I 7) can be satisfied with matrices
having four rows and columns, but not with matrices
having fewer rows and columns.

formulas of Sec. VII with minus signs in a very ugly way. This
would be most disturbing in Eqs. (VII 6) and (VII 11). The
signature (I 2), however, implies the inconvenience that spatial
contravariant and covariant vector components differ in sign,
whereas in nonrelativistic quantum theory we work with a spatial
metric +++ which makes it possible to equate a covariant to a
contravariant vector: mdx/dt =P, = the/Sx We—make .the
transition to a relativistic metric (I 2) by identifying these P„P„,
P, with the contravariant components.' For a more precise way of arriving at (I 4), consult Corben
and Stehle (3), p. 349.

4 See Hill and Landshoff (43), and the numerous references given
there.

When a charged particle is in an electromagnetic 6eld,
its total energy is H= E+qV. The world momentum of
a particle in a field should have the property that its
time-like component is H/c. This consideration leads to
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However, the conditions

~k"~i+0.i ek gkl1 (I 8)

in the following way:

(asterisk denotes complex conjugate), which bear a
certain resemblance to (I 7), can be satisfied with the
two-row matrices

1 f' 0 iq 1(-1 0~
!fT 0

V2( —1 0) v2( 0 1)

1 ) i Oy 1
~

0 iq
!g2g3

V2E 0 zi K2( 1 0)

Since (I 7) can be satisfied with

0 ek)
vz 0)

because of (I 8), Dirac's equation (I 6) can be written
as a set of two two-component equations:

V2ok(Bk+zeyk)X= p$

&20"(Bk+zqbk) $=Zzy,

where the/ of (I 6) is written as'

(I 10)

' In the special case g=g*, the first member of (I 10) reduces
to the two-component equation v20~ {@+i~&)p =py* discussed by
H. Jehle, Phys. Rev. 75, 1609 (1949) and J, Serpe, 76, 1538 (1949).
For comparison of our notation with that of Infeld and van der
%'aerden, see footnote 15.

Now, the covariance of Eqs. (I 8) and (I 10) can
be viewed in either of two ways:

View (A). The quantities Bk+iefk certainly trans-
form as components of a covariant world vector. One
can assume that the g ~ transform simply as components
of a contravariant world vector. Then (I 8) and (I 10)
are covariant with respect to Lorentz transformations.
However, taking the g~ as world vector components
violates the spirit if not the letter of the relativity idea,
for the following reason: As components of a world
vector, the o-~ will have the especially simple values

(I 9) only in certain frames of reference. In conse-
quence, the four equations which appear when (I 10) is
mritten out in full will not be the same in all Lorentz
frames.

View (B). The alternative is to consider the ok as
axed matrices; then, to maintain the covariance of the
Eqs. (I 10), it will be necessary to attribute some new

transformation properties to the wave functions $, x.
%hen this procedure is carried out, with development
of an appropriate mathematical formalism, the wave
functions $ and x are renamed spirzors.

The matrices appearing in (I 10) can be written out

Note shouM be taken of the following conventions:

.1. Latin indexes run from 0 to 3.
2. Greek indexes take the values 1, 2 (or 1, 2).
3. The meaning of the "dotted indexes, "as in P, will

be discussed later in more detail; for the moment, it
suffices to establish that adding a dot above every
Greek index in a spin quantity means taking the com-
plex conjugate of the quantity. (Two dots on the same
index mean the same as none at all. )

Now (I 10) can be written

v 2&r k", (8k+ zkyk) x&= Ik p",

V2e k"; (8k+zkyk) p = cozy".

When we undertake to elaborate on the view (B) as to
the covariance of (I 10) or (I 11) (namely, that the ok

are constant matrices), the new transformation proper-
ties which must be attributed to $, x will involve trans-
formations in the "space" of the Greek indexes. These
transformations are called "spin transformations. " All
quantities in this space which transform according to a
linear homogeneous law of any sort are called "spin
tensors" or "spinors. "

In Sec. II to Sec. VI there is developed a formalism
for the transformation theory of spinors. Sections VII
and VIII deal with the connections between spin quan-
tities and world quantities. In Sec. IX, the Maxwell-
Lorentz equations and the Dirac equation for the
electron are written out in spinor notation. Finally, in
Sec. X we sketch Infeld and van der VVaerden's spinor
analysis and its application as a gauge-covariant
formalism.

II. TRANSFORMATIONS OF TENSORS

The pattern after which the formalism of spin trans-
formations is modeled is that of the transformations of
tensors. To make the development of the spinor formal-
ism more intelligible, we shall review this pattern
briefly in the present section.

A contravariant world vector A~ transforms accord-
ing to the rule

A"=a'I,A~, A'=a "I,A'~, (II 1)

where the quantities a "A, are solutions of the set of
equations a"&a "&=5"&.To obtain the rule for trans-
forming covariant world vectors, it is sufficient to re-
quire the invariance of the scalar product A'8

~ of such
a vector B~ with an arbitrary contravariant vector.
This requirement leads to the rule

Tensors of higher rank transform as outer products of
world vectors.
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Using the fundamental metric tensor gA, ~ one can
generally construct invariants of the form g&&A "A '= inv,
and can lower contravariant indexes, A~ ——A~gj, ~. The
tensor gI, & is symmetric, gk&= g&j„hence also A &= g&~'.

It is desirable further to have a tensor which raises
covariant indexes, i.e., A =A ~g'~=A g~~g'". Hence we
define g" by g~~g"= 6 ', so that g" is just the inverse of
g&I, . As a further consequence, gA&A~A'=g~'AI, A &.

III. TRANSFORMATIONS OF SPINORS

We establish for spinors the same form of trans-
formation law as (II 1):

/~X gX Pa f& —g—lb P~k (III 1)

(Greek indexes= 1, 2). Here P" is a spinor of first rank
and 4"„is the matrix of transformation coeScients. For
the present, we restrict the transformations h."„only
by requiring them to be nonsingular: ~A"„~WO. In
general, any quantity with Greek indexes is liable to
have complex components.

To obtain invariance of the form xgP with respect
to spin transformations, it is necessary to establish the
rule for transforming covariant spinors,

x =x'.~", x' =x~ '", (1112)

the same form as (II 2) for covariant world vectors.
We shall denote by f" the contravariant spinor whose

components are conjugate complex to those of P", and
which transforms according to the law

(III 3)

Here the transformation coefficients A"„are conjugate
complex to the A"„.Similarly, we shall denote by p& the
spinor whose components are conjugate complex to
those of g)„and which transforms according to the law

(III 4)

A contravariant spin vector may transform either like
P" [by (III 1)]or like P" [by (III 3)]; the transforma-
tion matrix may be either A"z or A"'), . Similarly, a co-
variant spin vector may transform either by (III 2) or
by (III 4). The transformation rules for spinors of
higher rank are defined by the requirement that such
spinors transform like outer products of spin vectors.
Quite generally, an undotted contravariant index trans-
forms like P", a dotted one like P". Thus, for example,
q"' „ transforms like P"'$ x„, i.e.,

The essential purpose of the "dotted index" notation
is to distinguish these two transformation laws in spin
space. Summation is to be permitted only over a dotted
subscript and a dotted superscript, or over an undotted
subscript and an undotted superscript. As a conse-
quence of this restriction, the invariance of such ex-

pressions as f"xt and a&"x„g„becomes apparent on

inspection, while non-invariant forms such as P„f"x„.
are prevented from appearing.

It has sometimes been customary to let P", f" repre-
sent arbitrary unrelated spinors transforming according
to (III 1) and (III 3), respectively. In this case P" and
P" are not necessarily conjugate complex to one another.
However, the convention that P'= Q')', P= (P)" (and
analogously for all other spinors) is a convenient one,
and we shall adhere to it.

In any second-rank spinor, as p"„and in any spin
transformation A"„, we make the further convention
that the first index numbers the rows and the second
index numbers the columns when such quantities are
written out as matrices.

This form is naturally invariant with any covariant
spin tensor p„„.However, we select y„„ to be an anti-
symmetric spinor

712)
E —pi2 O)

(IV 2)

The reason for this choice is the following one: In Sec.
VII and VIII we shall establish a connection between
spinors and spin transformations, on the one hand, and
tensors and world transformations, on the other. Now,
in world space, the case of special relativity is dis-
tinguished by unusual simplicity in that the metric
tensor gI, ~ is invariant under I.orentz transformations.
We should like the corresponding case in spin space to
be similarly distinguished. This implies choosing y„, to
be invariant under unimodular spin transformations

~

A&„
t

= 1, since the entire connection between spin space
and world space is based on the known isomorphism
between the binary unimodular group and the restricted
I.orentz group (see Sec. VIII). The antisymmetric
tensor (IV 2) indeed satisfies this requirement:

' This "metric" has the singular property that it assigns to all
vectors in spin space the "length" zero; see Sec. V. Such an
"Hermitizing matrix" was first introduced by Bargmann (30).
See also van der Waerden (20), Pauli (27), and Kofink (4/).

IV. THE FUNDAMENTAL SPINOR

In the preceding section, we have defined contra-
variant and covariant spinors in terms of their trans-
formation properties. As yet, however, we have no
means of finding the covariant components of a spinor
when only its contravariant components are known, or
conversely. In world space, the raising and lowering of
indexes is accomplished by means of the metric tensor
gI, ~ or g~'. In the present section, we shall introduce an
analogous "metric spinor" for raising and lowering
spin indexes.

We shall denote this fundamental spinor by p„„.
With it, we can construct the invariant bilinear form,

(IV 1)
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x'.4'"=x A'",

it follows that we can define a covariant x„by

(Iv 4)

(IV 5)

The second equation follows from the antisymmetry of
y„„.It should be remarked that to lower a superscript
without change of sign, the spin metric y„„has to be
written after the spinor whose index is to be lowered.
(It is assumed that summation indices are placed ad-
jacent, as in matrix multiplication. )

We establish the same rule for dotted indexes,

gV x p JIV7

and since the second factor is zero for p= v, we obtain

(Iv 3)

so that with unimodular transformations, y'„„=y„„.A
similar investigation shows that symmetric spinors are
not invariant under such transformations.

We can now make use of the invariance of the expres-
sion (IV 1) to introduce a rule for lowering spin super-
scripts: Since covariant spin vectors are defined by the
requirement that their scalar products with contra-
variant spin vectors be invariant,

is real and positive. The forms

0 iq ( 0 iq
V»=! !Vie", V" =! !V ~e" (IV1O)

&-I o)
' E-1 o)

are often useful.
~The spinors 5,& and 8&„appearing in (IV 6) could
be written b„&=6&„=y„&=—y&„, since it is evident
from (IV 6) that they are just the forms of the funda-
mental spinor which have one covariant and one con-
travariant index. ~ These spinors y„" and y") are in-
variant, since for example

bk+—1P

gK g—1) )K

V. ALGEBRAIC PROPERTIES OF SPINORS

When performing calculations with spinors, it is
essential to have at hand a number of relations which
state the important algebraic properties of spinors.
Some of these relations, which are frequently of use in
manipulating expressions containing spinors, are written
down in this section.

We first note some relations involving the funda-
mental spinor v e (and arbitrary spinors ri e~):

with
v"= (v")*. (v 1)

+VX—P PPVPKX= PV PP PK'AK

From this equation it follows that

(1 0)
Eo 1)

(1 0)
v"v. =-b"=-!

Eo

and so we define

( 0 1/vtsq
!Vsv

& —1/v„O

(IV 6)

It is now desired to define a y&" which will raise sub-
scripts. Because of (IV 5),

XKA XQ VsvVKXK

and a second-rank spinor y'" should have its indexes
lowered by just this same rule. Thus

v'v "+v"v'+v"v" = o (V 2)

v. ~.&,+v. ~,.&+v- ~e,.=o (.V 3)

They are easily verified by going through the possible
numerical values of the indexes. Similar relations hold
for p"&, p.p, p.p

Making use of these basic relations, we find the fol-
lowing formal properties of spinors:

A. Contraction proceeds just as with tensors, e.g. ,

pXIKf . K —ri)l. K

Summation can occur only over a dotted subscript and
a dotted superscript, or over an undotted subscript and
an undotted superscript.

B. Scalar multiplication of two spinors is "anticom-
mutative" in the following sense:

x.4 "=x.v "V.= —v'"x.4.= —XV.= —0'x' (V 4)

C. The absolute value of any spinor of odd rank is
zero. For example,

The formula for raising covariant spin indexes is now,
because of (IV 5) and (IV 6), from (V 4). But riz„ri""=ri""rip„(by a similar raising and

lowering of indexes) need not be zero.
D. The contraction of a symmetrical spinor is zero.

I.et g),„——g„q. The contraction is'

(Iv s)

In the case without change of sign, the y&~ is written
before the spinor whose index is being raised.

The spinors pz„, p"" are determined by a single com-
plex number, say y». The quantity

q, ~=v"sq&„= —v"q&, = —v "q„&= q„s=o. (V 5)—

Y +12+12

AIIalogously. iII world spaze gi, 81g j but g I,
8 It should perhaps be remarked that qy" is not the sum of the

(IV 9) diagonal elements oi either qg„or g""
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E. I.et q), „=-—q„g be an antisymmetric spinor. Its
contraction is, with reference to (IV 7),

'Viv Y giv» (912 'g11)/"f12 2'gl2/ r12 2'f21/+12.

Hence

,
OI'

Equation (V 6) holds for a f,eileI al spinor of second rank,
since the symmetrical part vanishes on both sides.

F. Equation (V 3) can be put into the special forms

4n 4+4&.l +Pnvf. =0,
(V 7)

n- v+nv. +n 7.=o

Similarly, (V 2) gives

respect to unimodular spin transformations, as is
evident from (IV 3) and (IV 7). Section VIII of the
pI'esent Rrtlcle will discuss this speclRl spinol Rlgebla
in some detail.

VII. THE CONNECTION BETWEEN WORLD
TENSORS AND SPINORS

An Hermiteane second-rank spinor

Ag„=A„), (VII 1)

is determined by four real numbers. One can therefore
make correspond to every real world vector Ak, in a
unique way, such an Hermitean spinor (VII 1), whose

components are linear functions of the components of
the vector

Ax@, 0 ) yAk

n-, '+n-S'+n'2~'= o

VI. SPECIAL SPIN TRANSFGRMATIONS

(V 8) Here the "mixed quantities" O~q„must be Hermitean,

0 )l.y & P)l. p

So far no restrictions have been placed on the spin
transformations A.~„, except that they be nonsingular.
Two kinds of specialization of A~„will be of interest:

(A) gX g) esq/2
7 (VI 1)

where 1» is an arbitrary real function of (xysf). It will
be shown in Sec. 10 that (VI 1) represents a gauge
transformation.

B. Ueimodllar spin transformations

(VI 2)

Such transformations will be shown in Sec. UXII to
represent Lorentz transformations (not including in-
versions). In problems where special relativity theory is
applicable one can restrict himself to unimodular spin
transformations (VI 2) and because of (IV 3) can choose
for the p„„the simple invariant values

t0 iy
v"= I I

=v""
& —1 03

(VI 3)

In this way one recovers, from the general theory which
we have partially described, the special spinor algebra
presented in van der %aerden's original 1929 paper.

In the case of this specialization, one can introduce
the spin metric y»„(VI 3) in a very simple way. Under
unimodular spin transformations, both

(VI 4)

are invariant. Hence one can de6ne covariant com-
ponents X, of a spinor X" by identifying the two expres-
sions (VI 4)

X& Xy X2=X'

This procedure immediately gives (VI 3) when one sets
X& X Vp&'

The possibility of establishing such a simple scheme
rests upon the fact that y„„and yi"" are invariant in

8111cc tile A1 Ric real Rnd Ai» 111 (VII 2) is assumed 'to

be Hermitean. If (VII 2) is to have significance inde-

pendently of particular coordinate systems, then O.kq„

must transform as a contravariant four-vector in re-
spect to general worM transformations Rnd, inde-

pendently, as a second-rank spinor in respect to spin
transformations.

Let us assume that the metrics IE, ~g and y„„ in world
space and in spin space, respectively, are given. The
invariant quadratic form g"A~AE in the world vector
components A 1 llas tllc slgllRtlll c + . Tile
Hermitean spinor A~„has an invariant of just this same
signature, namely,

A»A&, „=q"q»"A,,A;,„=(2/q) ~A&„~, (VII 4)

where we have used the form (IV 10) for y»". To show
that this expression has the desired signature, we can
set Aii=li+fI, A22 a fi, Ai2 ——c+——2d,—A2i=c —2d, from
which

A IIA22 —A i2A2j ——a2—b' —C2—d'.

The correspondence A ~
—+A),„ transforms the in-

variant expression (VII 4) into a quadratic form in the
AJ, . %e arbitrarily identify this quadratic form with
the fundamental metrical form g"AI„-A ~'.

g"ApA) ——y &p&"A A), ——p &y&"o' 0'), AI,A)

ldentlcRlly ln A g. Thlls

0 I'vi»c. l ~ —~rsvp~»v~1. ~I glvl (VII 5)

Equation (VII 5) gives 10 conditions which must be
satished by the 16 real parameters determining the
Hermitean quantities o"„,. On the basis of (VII 5) we

' The transpose of Aj,„is A„g, while the complex conjugate of
the last spinor is A„j,. The dot in a dotted index belongs to the
position of the index. Taking the transpose of a second-rank
spinor interchanges roxvs and columns, but does not alter the fact
that the 6rst index in each component is dotted, the second not.
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can solve (VII 2) for the A k. We choose for the spin metric y„„ the simple form

&l) pA ~ &l) p&k A err, kAXp )p k —g
A'= ~'"~A&„. (VII 6)

0 1q

0)
(VI 3)

Tpvpo' &kfJ.v&l,po'T (VII 7)

World tensors of higher rank can also be made to
correspond to certain minors by means of an obvious
extension of the rules (VII 2), (VII 6). For example, if
Tk~ is a world tensor of second rank, we dehne

1 (1
o Opo

v2 EO

Oq 1(0
&1prr

1) V2 E1

Then (VII 10) is satis6ed with

(VIII 1)
The inverse equation is

gkl ~kgv~lprrg .pvpo'' (VII 8)

1 (0 2q — 1 (1 Oy
g 2po' —

O
3p0

V2 (i 0) V2 EO —1)

If one substitutes (VII 6) back into (VII 2), he as can be verified by direct calculation. By lowering
obtains indexes, llslllg (VI 3), oile finds

Axp o xpgklg

Aport

which can be satisfied identically only if

gklokk„o'l&'=8k'8„'= yk'y„'. (VII 9)

By raising indexes one obtains the equivalent relation

1( 01&
gOP fTiP

1+2(—1 0) V2( 0 1)'

1( i Oy 1( 0 iq
o 2P

V2( 0 i) v2( 1 0)

(VIII 2)

g
gk) IJ,glpo ~Xp~ po. (VII 10)

A&„8"~=AkB'. (VII 11)

The expression pk; (okk "o'&'+o'k "o'"'") is antisym-
metric in the indexes p and v, and hence is equal to a
multiple of p&", say hk'p&". If one multiples by p„. and
considers the rule for lowering indexes, it follows that

ok' gaol
~ +.olx pok ~ hklg p

In order to determine h", we set p= o., sum over p and
conipare with (VII 5). The result is hk'=gkl. Thus

olgxok +okllkol gklgg (VII 12)

VIII. LORENTZ TRANSFORMATIONS AND
SPIN TRANSFORMATIONS

In this section, and in the next, we restrict ourselves
to the special metric (I 2) and to Lorentz transforma-
tions. As already mentioned in Sec. VI, these restric-
tions characterize the special spinor calculus presented
by van der Waerden in his original 1929 paper.

The theme of Sec. VII was the possibility of estab-
lishing, quite generally, correspondences between world
tensors of any rank and spinors with certain special
symmetry properties. The present section deals with the
further possibility, which arises in the case of the
specialization to Lorentz frames and transformations,
of establishing a coordination between world trans-
formations and unimodular spin transformations. "

' This possibility is founded essentially on the existence, in
world space and in spin space, of quadratic forms having the same
signature. See Sec. VII,

On the basis of (VII 5), it is clear that we can also equate
the invariant biHmear forms in world space and in spin
space:

1 (1
~0.

~2 EO

0) 1( 0
!g ~

1) v2 (—1 0)
(VIII 3)

1(0 —ii 1(—1
2

0) v2& 0

"Note that the matrices (VIII 1) and (VIII 3) are all Hermi-
tean, while some of those of the set (VIII 2) are not,

Here our exposition has, so to speak, returned to its
starting point. The set of matrices o"', (VIII 2) is
identical with the set o." (I 9), the study of whose trans-
formation properties initiated the entire development.
Moreover, the rela, tions (I 8) are completely equivalent
to (VII 12), from which they can be obtained by rais-
ing and lowering indexes. As a matter of fact we are now
prepared to carry to completion the program sketched
at the end of Sec. I.

This program consisted essentially in considering the
matrices o" and the wave functions $, x in (I 10) as
spinors, and in seeking to discover how the wave func-
tions must transform with a Lorentz transformation if
the Irk are to remain constant while the equations re-
main covariant. Since it was assumed in Sec. VII that
the mixed quantities o- p transform like world vector
components in respect to world transformations and
like spin tensor components in respect to spin trans-
formations, these quantities can remain constant when
a Lorentz transformation is made only if an appro-
priate spin transformation is made at the same time.
That is to say, the o-kp can be held constant only by
coordinating a suitably chosen spin transformation with
the Lorentz transformation. Moreover, we desire to
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gk ~lP, P—1 jc.~kp ga (VIII 4)

When a Lorentz transformation a~~ is given, these
equations can be solved in a straightforward way, if
they can be solved at all; together with (VI 2), they
sufIice to determine A. „up to algebraic sign. Thus there
are exactly two spin transformations corresponding to
every Lorentz transformation which is represented at
all in spin space, namely ~h. „where A. „ is a unimodu-
lar solution of (VIII 4).

On account of the invariance of y„„and y&" in respect
to unimodular transformations, the A. „determined by
(VIII4) and (UI 2) will, when coordinated with the
given Lorentz transformation, hold constant not only
r~p, but also r~p' and 0.~„

All the Lorentz transformations constitute a group.
From (I 2) and the defining equation

maintain the choice (VI 3) of y„„when such spin trans-
formations are made.

We therefore determine conditions that the o-~p. and
y„„have fixed values, for example (VIII 2) and (VI 3),
independent of particular frames in spin space and
world space. It is clear from (IV3) that y„„ is left
invariant only by unimodular spin transformations

(VI 2)

Equation (VI 2) determines two of the eight real param-
eters specifying A, . The remaining six parameters
permit us to coordinate 4 „ to a six-parameter Lorentz
transformation. Let u~~ be a Lorentz transformation.
Then a~~ and the spin transformation A „, applied in
concert, leave the 0-'p, invariant if

~ay ~~up +7 PP.~t p g—i.
0 rr l p, v op

i.e., if

transformations can be reached continuously from the
identity transformation, which has determinant +1.
But every Lorentz transformation has determinant +1
or —1, and the ones with determinant —1 are not
infinitesimal (they are inversions). Thus only the posi-
tive Lorentz transformations correspond to unimodular
spin transformations.

It is important for the purpose of discussing the re-
flection covariance of equations that we be able to
represent inversions, somehow, in spin space. We
should therefore like to coordinate with each negative
Lorentz transfor~ation some sort of spin transforma-
tion, such that when the two are performed together
the matrices 0. p, are left invariant. This can be ac-
complished as follows:

An arbitrary inversion may be regarded as being
composed of the reflection

0 0 0
c~.=01 0 0

0 0 —1 0
0 0 0 1

(VIII 5)

and a positive Lorentz transformation u~~. We coordi-
nate with the latter, as usual, a spin transformation
A', which is a unimodular solution of (VIII 4).

With the special reflection (VIII 5) we shall coordi-
nate a new kind of transformation which is defined in
the following way: To each spinor g"„; (for example) we
make correspond a new spinor g~&„;, whose components
are conjugate complex to the corresponding components
of pt'„;, and which obeys the same transformation law
as does qI'„. Thus g~&„has the same components as
p&„, but transforms quite diGerently. The new trans-
formation, which we shall coordinate with (VIII 5),
is then defined by

it is clear that the determinant of every Lorentz trans-
formation is either +1 or —1.The transformations with
determinant +1 constitute a subgroup of the full group,
the so-called restricted Lorentz group. The transforma-
tions with determinant —1 are called inversions.

If one undertakes to solve (VIII 4) for the spin
transformation corresponding to an inversion in world

space, 'in place of a solution he gets a self-contradictory
set of,equations. "The following argument shows that,
in general,

" there is no unimodular spin transformation
which will'hold the o-'s constant when a Lorentz trans-
formation of. determinant —1 is made in world space:
The identity transformation in spin space corresponds
to the identity Lorentz transformation. All the spin
transformations of determinant +1 can be produced
in a continuous way from the identity transformation,
i.e., can be arrived at by application of infinitesimal
transformations of determinant +1. An infinitesimal
transformation in spin space corresponds to an infini-

tesimal Lorentz transformation. Hence the Lorentz
transformations corresponding to unimodular spin

for all spinors q. It is clear from this definition that

(n'"-)'= n"-

When this C transformation and the reflection
(VIII 5) are performed together, the o. ', are left
invariant:

(c' o I',)o=c' oo~&,= o'&, . (VIII 6)

This result is easy to verify by reference to (VIII 2);
for k= 2,

C2

gamp

0 %2p C K2p

since the components of 0'p, are pure imaginary and the
C transformation does not aGect the A-transformation
properties. It is similarly clear that

(ci omar)o oipa (ct m. )o t.

An arbitrary inversion can be expressed in the form
a"ic', where ~u"i~ =1 and c' is (VIII 5). With this
inversion we coordinate the spin transformation which
consists in first performing the C transformation, then
performing the unimodular A-transformation corre-
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sponding to a"i by (VIII 4). With this coordination, the
0's are evidently kept invariant.

Using (VIII 6), we can now formulate the covariance
of equations with respect to the reQection (VIII 5),
and hence with respect to all negative Lorentz trans-
formations. For example, (VII 6) becomes

To every positive Lorentz transformation there corre-
spond two unimodular spin transformations, which are
negatives of one another and are solutions of (VI 2) and
(VIII 4). This correspondence maintains product rela-
tions: i.e., if

gk ~Pp pion ~Qtt

gjt cl gm &t ~~P~g. ~cly~g.
m m ptr ptr

A t=atprge
p try

then

and

~trp gk gp, ~l P+—1v

oui( (bm gs ) (Qkpp. )olg (A
—iv Q

—i~ )
by virtue of the reality of the components of A". Just
as with the positive Lorentz transformations, we are
able to express the transformed world vector com-
ponents in terms of the transformed spinor components
by means of the original 0-'s and an equation of the
same form as (VII 6). This means that (VII 6) is
covariant with respect to the reflection c' (VIII 5).
But evidently (VII 6) is also covariant with respect to
positive Lorentz transformations a~t. Hence it is co-
variant with respect to any inversion a~tet .

The covariance of the Dirac set (I 11) with respect to
inversions is proved in a similar way. %e substitute
into (I 11) the expression

Bk+Zepk=C k(8 /+set' l)

where c' is given by (VIII 5). The result is, by
(VIII 6),

v2o""',(a'i+i@',)go=t P",

V2oc'". (cl'i+&et'r) P'=t X".

In order to recover the original a' s, we perform the C
transformation on these equations:

~2~'" (~'i iee'i)x"—=t F",
%2o'" (8 i o.@'()g '=trx—'

Taking complex conjugates so as to return to a form
similar to that of (I 11), we obtain finally

~2o'";(~'i+i@'i)x"=t 5'",
&2o'"' (a'i+i'', )("=t g'"

Upon comparison with (I 11), this is seen to be the same
set of equations. The correspondence between the trans-
formed and the untransformed spinors x, $ is

x'~F', 8~x"
As these various spinors are only determined as solu-
tions of (I 11) and the transformed set of equations,
this interchange of names is not significant. Thus the
Dirac set (I 11) is covariant with respect to (VIII 5),
and hence with respect to all inversions. "

~ The two-component equation mentioned in footnote 5 is not,
reflection covariant: (VIII 5) carries it into

pc'I (a't+i@&')xp=j x
l.e.)

~~"'p(&'t —~W't)x"=~x'",
which is the charge-conjugate of the original equation.

For the theory of charge-conjugation, see Kramers (48) and
(7), Sec. 63 and 64. Charge conjugation in the Dirac theory is
best discussed on the basis of (IX 31).

so that
$m ak ~Qtr Pp

When to every element of a group there is made corre-
spond some linear transformation of an m-dimensional
vector space (over a specified field) onto itself, such that
to the product of two group elements there always cor-
responds the product of the transformations represent-
ing those elements, this correspondence is called a
representation of the group, of degree e. Spin space, as
already presented, is a two-dimensional vector space
over the field of complex numbers. It is now apparent
that the correspondence of unimodular spin transforma-
tions to positive Lorentz transformations gives a repre-
sentation (of degree 2) of the restricted Lorentz group.
This is a two-valued representation, since to each posi-
tive Lorentz transformation there correspond two spin
transformations.

As an example of the coordination of spin trans-
formations to Lorentz transformations, consider the
special Lorentz transformation,

x'=x cosh& —ct sinh$,

ct' ct cosh& —x sinhg,

from an original frame E to a new frame E' moving
along the x axis of E with velocity

V= c tanhP

relative to E.By solving Eqs. (VIII 4) in this case, one
finds the corresponding spin transformation to be
either of the pair

f cosh (p/2) sinh(p/2) p

& sinh(p/2) cosh(P/2) )

Another kind of special Lorentz transformation is a
rotation in space. In this case the Lorentz transforma-
tion coefFicients satisfy the conditions

aoo=1, aos ——a o ——0 (k, no&0).

Then the first equation of the set

o tRriv —
pter A/pl' o opt'

Lsee (VIII 4), (III 1), (III 3)] reads

(A'; A';~ (1 Oq pA', A', y t'1 0~
tl

EA'i A' s& EO 1) EA's Ass) (0
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because of the form of o'&" in (VIII 1). Equation
(VIII 7) ls just the 20'Beefy condition, often written
A~A. =1 or A.~A.= 1.

Thus spatial rotations can be represented by spin
transformations which are not only unimodular but also
unitary. The matrix elements of such spin transforrna-
tions are called the Cayley-Klein parameters represent-
ing the rotation.

It may be of some utility to have the spin transforma-
tions representing a general spatial rotation written
down in terms of the Euler angles. " The spin trans-
formations corresponding to a rotation q about the
s axis are

Bkj'=0, (IX 1)

thc Maxwell-I orcntz cquatlons for thc Rntlsymmctric
field tensor P~',

8(F"'= (47r/c)j " (IX 2)

8„,Ft,i+BgFb„+8gF g 0, —— (IX 3)

theory of electromagnetism written out in terms of
spinors. "In this section we shall assume that wc hive
to deal only with Lorcntz frames and transformations,
so that the special spinor calculus presented in Sec. VIII
will be applicable.

Because of the continuity equation

(e
—iy/2 0

0 e' &')

~ A:l ~kgb if&( cos (8/2) i sin (8/2) pe~ =~(
(—i sin(8/2) cos (8/2) ) The remaining three Eqs. (IX 2) do not suffice to de-

tclnllnc thc foul coInponcnts of Qyq this RITlblgUlty sig-
nifies that we can subject Q~ to a gauge transformation
without altering F~~. If we fix the gauge by means of the
Maxwell-I. orentz condition

and those representing a rotation P about the new
s axis have the same form as C»„, but with P substi-
tuted for p. The spin transformation A", representing
the entire rotation in space which is specified by the
Euler angles q, 8, P is obtained by multiplying the
matrices representing the separate rotations

(IX 5)
Eqs. (IX 2) become

gv —+p 8~@m„

give only 3+3=6 independent relations. Equation
(IX 3) ls satisfied identically 1f the electromagnetic
field tensor is written in terms of the four-potential

those corresponding to a rotation 8 about the new p„(13):
g RX18 RlC

( e '&~~'" cos(8/2) ie"& &—&" sin—(8/2) q

ie '«&—'~' sin(8/2) e'~"++"cos(8/2) )

It is immediately clear that (IX 1) and (IX 5) can be
written in terms of Hermitean spinors of second rank by
means of (VII 11).We define

(VIII 8)
jPv —0 k+vj~ (IX 7)

The following rule is a convenient mnemonic device:
The spin transformation corresponding to a iotation
through angle 9 about the kth Cartesian coordinate axis
(4=1, 2, 3) is

Ap
——1 cos(8/2) i(r" sin(—8/2),

where 0~ are the last three of the set of matrices 0~~

(VIII 1). One can verify this result by direct calcula, —

tion. Its significance is discussed by Corben and Stehle

(3) in relation to the representation of rota, tions by
quaternions.

IX. THE MAXWELL-LORENTZ AND DIRAC EQUATIONS

In Sec. I it was seen that the concept of spinors
arises in a study of the transforInation properties of the
wave functions in Dirac's equation for the electron.
Now that a complete spinor algebra is at hand, it is of
interest to see how the Dirac equation can be written
entirely in spinor notation. At the same time, it will

also be useful to have the fundamental equations of the

"To avoid ambiguity, let us state here that we have chosen the
Euler angles as given in Goldstein (6), p. 107. The same book
contains an instructive discussion of the Cayley-Klein parameters.

Qp P 0 k/lP@

in accordance with (VII 2). Then (IX 1) becomes

8 j"'=0 (IX 8)

because of (VII 11).Similarly, (IX 5) becomes

8 Q""=0.

Equation (IX 6) can also be written over into spinor
form without difhculty. Because of (VII 11),the d'Alem-

bcl tlRn bcconlcs

(IX 10)

and slncc thc 0' ~ Rlc collstants so long Rs wc deal only
with special relativity theory, it follows tha, t (IX 6) can
be written

(IX 11)

'4 The spinor form of the Maxwell equations was presented by
I.aporte and Uhlenbeck (15). In this same paper the Dirac equa-
tions were derived from a spinor variational principle, and some
new relations following from the Dirac equations were given.

In part of our derivation of the spinor form of Ma~ell's equa-
tjons, we follow unpublished lectures of Djrac,



The 6eld tensor Fk' can, of course, be expressed in
terms of a fourth-rank spinor by means of (VII 8):

Pkl &k P, v& Epos .
fI vP&' (IX 12)

However, Fk' is antisymmetric, and this fact permits us
to express it in terms of a spinor of only second rank,
which is not Hermitean but symmetric. The proof of
this theorem will be given for the 6eld tensor Fk', but
it will naturally remain valid if Ilk' is replaced by an
arbitrary antisymmetric contravariant world tensor of
second rank.

From F~'= —F'" and (IX 12),

~jo pv= ~pro' (IX 13)

Because the C.kl" are Hermitean, it also follows that

Pgvp. —I"v~.p. (IX 14)

The reduction to second rank is to be carried out by
using

Using (IX 13), we write

PP~P~= 2(FP~ii~ Pi~P~)

2 (FR@pc Fpapv)+ 2 (pep&p F&p&p) I

by adding and subtracting a term and using (IX 14).
Finally, applying (V 6) to this result,

by (V6). Thus

O'„F,„=—(4n/c) j„.„ (IX 18)

by comparison with (IX 11).
Now let us write the Dirac equation (I 6) entirely

ovcl into splno1 folIQ. By ralslng@and lowc1lng lndcxcs
in (I 11),which may conveniently be taken as a starting
point& wc obtain

~~";,(~,+'.~.)x =u~.
v2o""'(By+i Pyp) p.= —ux"..

When (IX 7) is taken into account, these equations
become

~2(~'.+~pl;,)x'= u5;,
&2(~"'+~~4"')5- = .ux"—

which is a spinor form of Dirac's equation. "
Thc current ls

(IX 20)

j"=ij~"""(x.x+46). (IX 21)

where (IX 17) has been used. The differential operators
on the right can be combined to form the d'Alembertian
(IX 10) as follows: Since

grr. g .y I g .grr. y a
a v

we have

28 PI9g~fy = (Bg~B P B~PB ~]Qp = (3gpB ~pyP= BgPB ~QPp

where
pi ~i~= 2 (piiY~~+F~~&Pi)~

~ov= ~o'av '- (IX 16)

This quantity transforms as a world vector. Its com-
ponents are real, since the combinations y„y„and
$P$, are Hermitean. Let

A proof that Ii,„ is symmetric goes
0P,„~= P, „P&P~=+P„P .&P~= P P ~~P=+P P

by using (IV 8), (IX 13), (IV 7), and {IV8) {in that
order). Note that

2p„,p~t=p F "+F,„F'P. (IX16a)

j,.=g( .X+xk,k,).
Then, by (VII 11),

~&2 = ~" Jj~=9(~P~X"X+~"$PS)
=«(~',x')x+x'(~,x)
+ (~""5;)k.+5;{~'"$.)&

(IX 22)

When @k and Bk are expressed in terms of the spinors
@„„and8„„introduced in (IX 7), Eq. (IX 4) becomes

Pkl —PkPv~lP~(g. y. g. y. )

By comparison with (IX 12),

~pvpo' ~ jvgpo' ~pop pv ~

Then, from (IX 16), with use of (IX 14),

F,.= B,.y. "' —8.'g, = 8,.y. '+8. P, '. (IX 17a)

This result can be simplihed still further by remarking
that

~vapo ~oaQv = Pap "/vo =0

because of (V6) and the Maxwell-Lorentz condition
(IX 9). Thus

p~r = 2~~a&j~v (IX 17)

Now we can. write the 6eld Eqs. {IX2) over into
spinor form. Consider the expression

prov= 2~ p~aaQv p

Taking Dirac's set (IX 20) into account, one sees that
this quantity is identically zero:

g~k gpv~. 0

The Schwarzschild-Darwin variational principle takes
the form derived by Laporte and Uhlenbeck, with a
Lagrangian density

I-=fix"~~PX" P~~P$" xP~—'"X~+&P'~—""6)
+~~u'{-x"~ +x"e)+2 ~"(x.x.+~.~.)
—(1/1 Ark) [(8~&y""+8"y~")(8j@,.+8,'P„;)
+(~".4""+~"~4"")(~.'4'.+~"4P-)j (IX 24)

When forming the Euler-Lagrange equations, it is
necessary to recognize that this Lagrangian can be
considered as a function

I.(y'" ZB y"'" " +8' ) (IX25)

15 Our choice of the o's coincides rvith that of Infeld and van der
Waerden. our yl' and $ are their P and —jg,
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of the indicated spinors of 6rst and second rank, as a
function

2($"" 8" Q" 'x" Bl"~xy' ) (IX 26)

of the much more numerous spinors of higher rank, or
as a function

L(4"",~ad""; x", ~~x"; ).

ture and former review articles for discussions of these
topics. "

We wish to close this section with a brief discussion of
the relation between the form (I 6) of the Dirac equa-
tion (in which the indexes 0, 1, 2, 3 appear in a sym-
metrical way) and the more commonly quoted form.
When

By a simple transformation using (VIII 3), (IX 7),
the Euler-Lagrange equations can be put into the spinor
form

il"'(—i8g+ eyj,)f—pP =0

is multiplied by —il', it becomes

(I 6)

BL BL BZ BZ
0= BIs

g (g„xk) gxx g (g .xx)

Because of the particular form of L,, these equations
become

az az
.+~p'~'i

~x' ~(~.tx')

Bg 8Z
.+~pX

~x" ~(~p2x')

8L BL
+Dpi, . (IX 27)

~x" ~(~~ -x')

8 (cjpq)

BZ 82
=. 8" -=—+B.', (IX 28)

8 (8"q) 8 (B."g)

we obtain

. +&,i
~x' ~(~~~-x')

In this last equation, the summation over o. is to be
taken before the differentiation is performed, con-
trary to the usual rule that a doubly occurring index
indicates summation of the entire expression.

By simple algebraic transformations, observing the
somewhat strange-looking identity

If each r or the whole operator {) is subjected to a
similarity transformation A 'FA. with

1
A.= 0

0

0 1 0
0

i 0
0 i 0

(IX 30)

this equation is brought into the form"

3

{(s80—ego)+pg Q op( —i8g+ePy)+pgp)%'=0. (IX 31)

In this nonrelativistic notation, the Dirac equation is
more convenient for the description of spin; and the
four components of 4' fall into a pair of big 4' functions
and a pair of small ones.

X. SPINOR ANALYSIS

In tensor analysis, one considers covariant deriva-
tives of tensors in aKnely connected manifolds. We
shall pursue a similar procedure in spinor analysis,
following in detail the excellent exposition of Infeld
and van der Waerden (14).

Covariant diGerentiation is introduced in world
space by means of an aKne connection F~„,:

A...=B,A,—Agr'„„A", ,=B,A "+A"r"g,. (X 1)

In a similar way, we now define covariant derivatives of
spinors

+ gux —0
8$), B(Z8' $ )

+8„" =0.
B(ZB„'y,.)

(IX 29)

r' A., 4;.=~—A"+r ~A", (x 2)

in which we consider the spinors f, P as functions of
the space-time point specified by the world coordinates
x'. Note- that the "product rule" holds for covariant
differentiation:

These equations are the Dirac equations (IX 20) and
the Maxwell-Lorentz equations (IX 18) with current
(IX 22).

The conservation laws for the current and the energy-
momentum tensor can be derived directly from the
Lagrangian. We refer the reader to the original litera-

The requirement that P, , and P ., transform as spin
vectors in respect to spin transformations leads to the

"See Pauli (62), Mufller and Rosenfeld (61), Rosenfeld (65),
and Belinfante (51).

"See Dirac (4) and Hill and Landsho6' (43). Here pI, p8, oI,
denote the four-row matrices used by Dirac. These oI, are, of
course, not the cr's of the present paper.
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following rule for transforming F „:
X .F'-„,=X-,F .,—a,X-..

In order to have a consistent formalism, we desire
that the complex conjugates of f , an.d f, , be, re-

spectively, it k, , and 1Ip , , T'hen the covariant derivatives
of the complex conjugate spinors Pk, f' are given by
placing a dot above every Greek index in (X 2), where
r', = (I",)*. Moreover, an arbitrary spin tensor is
diff'erentiated covariantly like an outer product of spin
vectors, for example

ti"p, = B,rf"p+r"p, rIP'p rp,—ti". . (X 5)

In Sec. VII there was established a correspondence
between arbitrary world vectors AI, and Hermitean
spinors Az„by means of the mixed quantities o.~z„.'

Ak ~k) pA ~

The quantities A~, , and Az„, transform as covariant
world tensors on the index s. It is natural to require
that the connection between these quantities should be
as between any other quantities A~, and A&„„~is.,

A k ~kX IsA ~

Covariant differentiation of any tensor or spinor equa-
tion obeys the "product rule, "as in (X 3). Thus (X 6)
has as a consequence

~khan

Pt

g &kkp+rk &tkp+. rk. &kpu+rp Okkp (X 7)

We assume that the F~„, are the Christoffel symbols

~

~

, i.e., that the notion of parallel transfer is intro-

duced" in connection with the metric g~~. The metric
establishes geodesics defined by parallel transfer of
dx"/ds. At the same time, gkl(dx'/ds)(dx'/ds) =1 is
invariant, so that g~~ also goes into itself when subjected
to parallel transfer along a geodesic. Hence

a,&—(r-.,+r- )7=0r,+r,= 8, in'. (X 12)

Equations (X 10) and (X 11) can be interpreted to sig-
nify that covariant differentiation preserves volumes in

spin space. (Compare with the Infeld-van der Waerden
paper cited above. )

The Eqs. (X 12) are 4 real equations for the I' „.The
symmetry conditions (X 9), when we insert r'„„r",„
from (X 7), are 24 more real conditions on the r~s, .
These 28 conditions are not sufFicient to determine the
8.4 real and imaginary parts of the 2.2.4 complex
quantities F"p,. Four real parameters remain arbitrary.
As a rnatter of fact, if Eqs. (X7) and (X 12) are satis-
fied, they remain satisfied when one leaves the F~„, un-
changed but replaces the F&„and F&;, by

r p„+i24„8pp and r p;, i24—,5';

There thus appears here an arbitrary real quantity
p, which is defined by

r,—r ',=4iet, . (X 13)

We investigate the transformation property of this
quantity. In respect to world transformations, p, be-
haves like a covariant world vector. With transforma-
tions in spin space, one can set ~Ap.

~

=he'" (0, positive
real) and obtain

y'. =lt, —8, ip/22. (X 14)

This follows from the transformation Eq. (X4):
r".,=r-.,—a, ln(A .(

and its complex conjugate. P, thus transforms with a
transformation of the form

ponent,

0= &t(vi2y12) —r'itvi2y12 r itviiv12
r lt+12r12 r 2s rig 12 (X 11)

With the abbreviation (IV 9), pi2y12 ——y, this becomes

ChristoGel's choice
gal' =0 (X 8) (X 15)

FIs Fk (X 9)

together with (X 8), determines the r"„uniquely in

terms of the metric. Formula (X 9) represents 4.6.real
equations.

We now proceed to study the spinor amenities F „,
considering the y„, and the o-~~& to be given as functions
of space and time. Because of

gkl ~kill ~ 0.kk
plpl pt~.

~ ~ (VII 5)

and (X 7), (X8) we take

0= t~; ..),.=v, ;.~"+..~.." (X 10)

This equation has only one distinct nonvanishing com-

"See Schrodinger (9), Chap. IX.

r .=2i pttt, +8, 1ny&,

r kk, = 2i2ttt, +8, ln—y&.
(X 16)

exactly as the four-potential is supposed to do accord-
ing to Weyl s principle of gauge invariance. We there-
fore identify @, with the electromagnetic potential
vector.

From (IV 10), namely p» ——ate", it follows that 8,8
transforms just as 2&@, does,

go = Bso CI

[Apply (IU3) with the general expression ~A "p,
j= apl 'e '& to ii = ——',i(in', 2

—Iny 12).]Therefore 221t,—8,8
is a vector which is invariant with respect to gauge
transformations.

From (X 12), (X 13) one can calculate that



W. L. BADE AND HERBERT JEHLE

Hence, also taking (X 5) and (IV 10) into account, the
differential equations for the fundamental spinors are

q"p, =, iq"p(2~y, —a,8),

Vip;p= &Vxp(2&4'p ~ae)
(X 17)

&kX p &kh p, &kP pjPX,
;y8; Sg) p~p

+okkpPp +orx peak (X 22)

Because of (X 7), the left-hand side vanishes. Hence we
arrive at a relation between E and I'. This relation can
be solved for E or for I', e.g.,

ppp= 2Eppppo "'0'~pp+icP p8 pp~ (X 23)

If the world space under consideration is Qat, the
theory can be reduced to a gauge-covanant modl6ca-
tion of the 1929 spinor calculus presented in Sec. VIII.
In this case, the conditions (VII 5), (X 7), (X9),
(X12),and {X13) can be satisfied by taking (I 2) and
(VIII 1) for gq& and o"", respectively, and taking

(0»
0)

(X 25)

These forms are all maintained when one carries out
in world space an arbitrary positive Lorentz transforma-
tion Rnd Rt thc same tlDlc Rppllcs ln spin spRcc thc uni-
modular spin transformation corresponding thereto
by (VIII 4). They are also maintained under gauge
transformations {X15).

With the special metrics (I 2) and (X 24) given, the
o~p' appearing in (VIII 1) are not the only ones which
satisfy (VII 5). One still has the freedom to apply an
arbitrary (positive or negative) I.orentz transformation
on the index k, or to apply an arbitrary unimodular spin
transformation on the indices j, 0.. That is, how-
ever, the only freedom which one has. For the con-
dition (VII 5) means, according to its derivation, that

The Riemann-ChristoGel tensor is

&"~,.= —~.1'"a,+~pI'"s, —I""~,1"I,+ P "k.i""a,. (X 1g)

Similarly, we can form, in spin space, the mixed tensor

P"~ .= —&.I'P)„+&,I'"~.—I"~,1"„+I"),,I""„,(X 19)

and the corresponding one with dotted Greek indices.
The con.traction of the former gives, by (X 16), the
electromagnetic 6eld intensity

Pppp, —P'p„, ——2i p(8,y——, B,p,)=—2ieF„,. (X 20)

By definition of the curvature tensors, we have

X p3 X &p X 0'&pp. —re p

with the correspondence 2, ~HI, the quadratic form
y~P'yl" Ag„Ap, is brought over into g~'AI, A), and such a
linear correspondence is completely determined up to
a linear transformation which leaves the latter quad-
ratic form invariant, i.e., up to a Lorentz transforma-
tion.

In Infcld and van der Waerden's spinor analysis,
gauge transformations are represented as spin trans-
formations of form (X 15). As a consequence, any
generally covariant equation between tensors, spinors,
and their covariant derivatives is ipso facto gauge-
covariant. Vje have adopted a specialization to the case
of Qat space-time which has the advantage of retaining
this property. It may be instructive to contrast this
specialization with other possible specializations and
modi6cations of Infeld and van der %aerden's spinor
RnRlysls.

One such modification would bc achieved by re-
placing (X 10) by the stronger assumption yp„, ,=0.
This procedure would have the advantage that it would
permit the raising and lowering of Greek indexes in
covariant derivatives by the natural-looking ru].e
$,;.=fp, ,yp„which is not valid in Infeld and van der
Waerden's formalism. This stronger assumption would,
however, eliminate from the theory the four arbitrary
real quantities p„which were interpreted as components
of the electromagnetic potential. In Eqs. (X 13),
(X 16), and (X 17), 2~&, would be replaced by 8.8.
Thus the possibility of using spinor analysis as a gauge-
covariant formalism would be lost. In the case of Rat
space-time, the selection of (I 2), (VI 3), (VIII 1), and
(X 25) for g~~, yp„, v"p', and I'"„, would reduce this
modification exactly to the j.929 spinor calculus of
Sec. VIII, since tlie cllolce 'r =1, 8=0 (VI 3) would
entail I'~,=0.

Reverting to Infeld and van der %aerden's form of
spinor analysis {that is, rejecting the assumption

7„...=0), we note that in specializing to the case of
Oat space-time we could have achieved a closer ap-
proach to the 1929 theory by selecting (VI 3) in place
of (X 24). Had we made this choice, the resulting
specialization would differ from the 1929 spinor cal-
culus only by having (X 26) in place of I'~, =0. This
is another enticing simplification which, if adopted,
would entail the loss of gauge covariance. The choice
(VI3) could not be maintained under gauge trans-
formations, since these are not unimodular I see (IV 3)7.

Let us now write the equations of the Dirac theory
over into the gauge-covariant formalism provided by
the specialization L(I 2), (VIII 1), (X 24), (X 25),
(X 26)7 which we actually chose to adopt. In our pre-
vious discussions of the Dirac theory (Sec. I and
Sec. IX), we have worked within the framework of the
1929 spinor calculus, which provides for Lorentz co-
variance but not gauge covariance. In making the
transition to a gauge-covariant theory, we subject
Eqs. (I 11) to manipulations admissible under the
I,orentz group and the unimodular spin group, in order
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to bring them into a form in which the diQerential
operators BI, and potentials &J, appear only in the gauge-
covariant combinations produced by covariant difkren-
tiation. Equations (IX 19) have such a form and were
obtallled by subjectlIlg (I 11) to just such mampula-
tions; they can at once be written

~~~';,x". =~~(~',px');~=I 5'
(X 27)

V2~pvv(. „~g(~kvpf, ) &—

using (X 2) (X 7) Rnd (X 26). Equations (X 27)
are the Dirac equations in the spin frame with y=1
and 8=0, and have gauge-covariant form; hence they
are the Dirac equations in any spin frame with y=1, 8
arbitrary,

The conservation theorem for the current j„, (IX 22)
takes the form j"., k= {0"pj„„), p=o."""j. „„,I, '0, .a.n——d can
easily be derived in gauge-covariant fashion using the
Dirac equations (X 27) and their complex conjugates.

The second-order equation can be derived in the
following way: From (X 27),

[0 (& ' px)p;ij;~= 0 &'pxp;u, = —~Ax.

Using (VII 12), one obtains
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Taking account of the fact that l and k are summation
indexes, and using (X 21),

g x;t&+& & vpF alpx = p x ~

This is the second-order equation for y'. lf we use
(X 2), (X 26), and (X 23), setting Eq„,p ——0 since we
are working in a Rat world space, we obtain

g "(~a+ "A) (~i+.~~)x"+.~F,a-'.-";px p = -"x",
which is the Schrodinger-Klein-t ordon equation in-
cluding the spin interaction term. A similar equation
holds for $;.

The Lagrangian density (IX 24) can be written in
the form

L= [~x(~"~. x) ~
—x"(~" ~x') ~

—b(~'""5 )'
+&,("'"&.),.3+~~~'( x'4+x'& )-

+ (1/16~5)(Fp"F +F'"F )

by use of (IX 17), (X 2), (X 7), and (X 26). The last
term is equal to (1/8~5)F~'F~g, by (IX 16a). The in-

variance of this Lagrangian density with respect to
general spin transformations implies the covariance of
the whole theory, in particular with respect to gauge
transformations.
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