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numerical values of these elements. Ultimately, there-
fore, the value ascribed to xi depends on S~,—q inde-
pendent parameters which specify the mathemati cal form
of the average (there is one condition to restrict the
choice of the NE, q+1—weights; this is the condition
that their sum is unity) and Nz, quantities which are
either the observational numerics or quantities directly
deduced from them (such as relative deviations from a
set of origin values) which determine the numerical
salle of the average.

The numerical value of x& is thus expressed as a linear
combination of EE, numerical quantities, each of which
has associated with it a mean square error. If the
numerical quantities are observationally independent,
we can assert that the mean square error of x& is the
sum of certain coefFicients, depending on the iVg,—q
free parameters, times the mean square errors of the
Xg, observational numerics. The Axiom or Condition
of Minimum Error states that the "best" choice for xi
is that one whose error is a minimum with respect to
the possible variation of the free parameters. We shall
show below that this condition is equivalent to the
condition of least squares, although the results cannot,
in general, be identified as corresponding to that set
which has maximum likelihood, except in the case when
the distribution function for the errors is specified to be
Gaussian. This is, however, an advantage for one can
easily construct distributions (for example, rectangular
distributions) for which the condition of maximum
likelihood has no unique solution. Furthermore, the
development of the condition of minimum error is quite
general in regard to the forms of the error distribution
functions; all that is specified is the mean square error,
so that the range of applicability of the theory of least
squares is extended from Gaussian distributions to the
much larger class of distributions with finite second
moments.

HERE have been many who have objected to the
use of the method of least squares on the grounds

that it assumes the Gaussian curve for the probability
distribution of the error in any particular measurement.
This is the formulation which is indicated in Sec. 3 of
the preceding article. ' The objection is indeed valid
that the assumption of the Gaussian distribution is
often unwarranted in many experimental configura-
tions. However, the problem of determining a "best"
set of values which can be computed from an over-
determined system of equations is essentially the prob-
lem of determining an analytic basis on which one can
define the adjective "best." The condition of least
squares serves as one such analytic criterion. This says
nothing in itself of what could be called the physical
interpretation of the criterion. It is recognized, in gen-
eral, that the method of least squares corresponds to the
"Axiom of Maximum Likelihood, " if the distribution
functions of all the errors are Gaussian. Gauss himself

was able to justify the method on a much wider base,
and in 1821 he published a theory which replaces this
axiom with an "Axiom of Minimum Error" or "Axiom
of Maximum Weight. '" The definition of "best" is not
to be made on the basis of that solution which is most
likely to be correct, but on that solution which is most
accurate and to which can, therefore, be attached the
greatest statistical weight. (The statistical weight of a
statistical variable is defined in the present sense as the
reciprocal of the variance, i.e., the reciprocal of the mean
square error, of the quantity. )

Consider then an overdetermined set of lVE, equations
expressing relationships between q variables. We can
find an infinite number of solutions for the q variables
depending on how we choose to combine the equations.
We can think of this process as one in which some set
of q

—1 of the equations are used to express q
—1 of the

variables in terms of one particular variable, say x&.

These values are then to be substituted into the remain-

ing )VS,—q+1 equations to give a set of Ve, —q+1
values for the variable x&. Any of these numerical values
is a possible choice for the variable x& and, in general,
we would want to take some weighted average of these
numerical values. The numerical value of such an aver-
age depends both on the weights attached to the
elements which go to make up the average and on the

AN EXAMPLE

' J. %. M. DuMond and E. R. Cohen, Revs. Modern Phys. 2S,
691 (1953).' E. Whittaker and G. Robinson, Calcllus of Observations
(Blackie 8z Sons, I.ondon, 1944), fourth ed. , p. 224.
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As an elementary example of the method and in order
to clarify the concepts involved, let us consider a prob-
lem which is perhaps the simplest possible example.
We have two measurements of the quantity x; these
two measurements are a~ and a2, in general, uiga2. We
also assume that each measurement represents a single
selection from a universe of vg, lues. We let the proba-
bility distribution of the first measurement be Pi($)
such that the probability is Pi($)dg, that the result of a
measurement of the quantity x by the specified pro-

09



710 E. R I CHA P» D COH EN

cedure shall lie between the values $ and $+d$. Simi- usual definition,

larly, the second measurement of x is to be charac-
terized by the probability distribution P2(g). We need 22 [Ling+(1 ~)~ xj2p (g)p (~)gg~
not make any detailed specification of the form of the
distribution functions P~ and. P2, it is not even necessary
that the two functions have similar form. We impose
upon them only the restriction that the distributions
have finite second moments.

If we have two measurements of x then we can take
some average value to use as the "best" choice. There J
are, however, several diferent choices for this average
and we can write

xp (12) = aai+ (1—n) a2,

where 0. is any real number, although intuitively we

would prefer that 0& n&1 because this is the condition
that xp lies between the values a~ and a2. Defined in
this way, the mean of the universe of values of xp is

+2&(1—&)Jr(k x)~ (h)dk I (21 x)& (0)d'0

xp = ~ L12p+ (1—12)rl]P, (t)P, (0)«d'0

=~J V'1(E)&k
J

I'2(n)&n

Now' each probability distribution is assumed to be
normalized so that

and furthermore, if there are no systematic errors in
either measurement, the expectation value of each
measurement is x

3$P1 (g)dg= x;
J

rrIJ'2(21)drl= x.

The two integrals in the last form of Eq. (6) are the
variances (the mean square errors), respectively, of the
first and of the second measurements. These quantities
are defined to be Oi2 and 0-2'. The expression for the
error in the average in terms of the errors of the numbers
entering into the average is, therefore,

p2 1220 2+ (1 12)20 2

We find that, although the expectation value of the
average is independent of e, the error in the average is
a function of a. for +=0 we have &2=0.22 and for n=1
we have &2=0.&2,. we may reasonably ask whether a
proper choice of o. might not result in a value of e2

which is smaller than either of these, and indeed, what
choice of o, yields the minimum value of t.27 By com-
pleting the square we can write Eq. (7) as

p'= a'(01'+02') 2no 2'+022—

(01 +02 ) 2&02 (&1 +0'2 )+0'2 +01 02

O:12+022

02&2 +L12(&2+&22) 02 ]
0'1 +0'2

Therefore, Eq. (2) reduces to

xp nx+ (1 n)——x= x, —

so that the expectation value of the average is indeed
the quantity we are trying to measure independent of
the value of the parameter a which determines the
particular average. But we now ask the question, "How
accurate is this average; what is its standard devia-
tionP" If we let ~2 be the mean square deviation of the
universe from which xp is extracted, we have, by the

Since a appears now only in a term which can never
be negative, we see immediately that the minimum
value of c2 occurs when the square bracket vanishes.
This is achieved when a=022/(012+022); the minimum
value of e2 corresponding to this choice is

P =0'1 02 01 &2

and the corresponding value of xp which we indicate
by xp is

f 01
xp= 6p

EO ' 0 2)
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The weights" to be attached to measured quantities
in order to compute the "best" average are therefore
proportional to the reciprocal of the mean square error
of each measurement. If we dehne the statistical weights

w 1= 1/01' wq ——1/~2',

we have two important formulas

xq= (wlal+w2a2)/(wl+w2),

wq= 1/qq =wl+wq.

The first of these essentially justifies the nomenclature
of "statistical weight" for the reciprocal variance, since
it is this quantity which determines the importance of
the measurement in the computation of the average.
The second formula shows that when this "best" aver-
age is obtained the weight of the result (computed as
the reciprocal of the variance of the average) is just the
sum of the weights of the components and, furthermore,
that this is the maximum weight ascribable to any
average. Any other linear combination of the two obser-
vations would have a weight which is less than the sum

of the individual weights and is, therefore, an ine%cient
average which "wastes weight. " The weight of the
average m as a function of the weights assigned to the
individual measurements and the choice of the average
value is indicated in I'ig. 1. The measurement x~ has
variance 01'=1/wl, and the measurement xq has vari-
ance 02'=1/w2. Each value of n corresponds to a par-
ticular value of xo, and the statistical weight of this
average value is a function not only of the parameter a
but also of the statistical weights of xj and x2. The
statistical weight of the average is a maximum (equal
to the sum of the weights of the individual compo-
nents), when the weighting employed in computing the
average is determined by the statistical weights of the
components.

THE GENERALIZED THEORY*

We can now establish a generalized theory of least
squares in which the individual equations are not obser-
vationally independent. ' Let there be q variables which
are connected by S equations. The numerical constants
in these equations are interrelated and are determined

by a set of n observationally independent quantities s .
We shall assume that the equations can all be linearized

~ Note added in proof: Professor J. W. Tukey of Princeton
University has kindly pointed out to the author that this gener-
alized system of least squares is not new. R. L. Plackett, Bio-
metrika 36, 458 {1949) has traced the origins to Laplace and
Markoff as well as to Gauss. A. C. Aitken, Proc. Roy. Soc. Edin-
burgh 55, 42 {1938),has also presented a generalization equivalent
to the present development.

3 J. %. M. DuMond and E. R. Cohen, Report to the National
Research Council on the Atomic Constants, December, 1950.
See also E. R. Cohen, Phys. Rev. 81, 162 {1951).
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FM. 1. The weight assignable to the average of two observed
quantities as a function of the statistical weights of those quanti-
ties and the weighting parameter a of the average. The weight
of the average is a maximum if a is determined by the statistical
weights.

1 to q; Greek letters from the middle of the alphabet
(tl, v, 0, ) shall be used for indexes relating to the
observational equations and have the range 1 to S;
Greek letters from the start of the alphabet (n, p, .)
shall be used for indexes relating to the observationally
independent variables and have the range 1 to n. It is
thus possible to identify a quantity with two indexes
as a square or a nonsquare matrix by noting whether
the indices are of the same type or not.

Since the c„are functions of s the statistically inde-
pendent variations c in s will produce statistically
corretcted variations g„ in c„:

&a= dsa)

'gts = (kfs =A pox Err )

where A „=etc„/cjs are the derivatives of the computed

so that the system is

allXl+a12X2+a13X3+ ' ' '+alqXq cl

a21X1+a22X2+a23X3+ ' ' '+a2qXq c2
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

a&lxl+a%2x2+alq3x3+ ' ' '+alqqxq=clq& (11)

where the constants c„are numerical quantities which
are explicit functions of the quantities s .

In the discussion to follow it will be useful to intro-
duce two conventions: One is the Einstein summation
convention; in any product a repeated index is to be
summed over all values permissible to it unless specifi-
cally indicated to the contrary. The other is the use of
diferent characters to indicate the range of the index.
Roman letters (i, J, k, ) shall be used for indices
relating to the unknowns and, therefore, have the range
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observational quantities with respect to the funda-
mental independently measured quantities s .

We wish to 6nd the most accurate values of x; which
can be computed from Eq. (11). To find each x, we
need a set of multipliers X„(') by which to multiply the
2V observational equations so that we obtain

x;=X„(')c„=)„(')a„;x;. (13)

Equation (13) is to be understood as follows: Each of
the iV individual equations of observation (identified
by a particular value of the index &&i) is to be multiplied
by a number X„, there being a set of Ã numbers for
each variable xi. These numbers are to be so chosen
that when the equations are then summed the coefh-
cient of each x other than the specific xi is zero, while
the coefFicient of xi is unity. This, therefore, implies
that there are q conditions on each of the q sets of )V

multipliers,

)„(i)a„,=by, (14)

We must now choose the X„") in such a way as to
minimize the value of the variance of xi; hence we must
minimize the expression

v,„=X„'&X„i'A„A„pEp (not summed on i) (17)

consistent with the restrictions imposed on X„(i) by
Eq. (14). We therefore introduce q' Lagrangian multi-
pliers L,(", so that we may then take independent
variations of P „(') in the expression

X„&*'&X„&"A„.A „pE.p —2I, "&(X„'*'a„,—bo)
(not summed on i). (18)

Differentiating this expression and making use of the
symmetry of E p, we obtain

I,")a„,=X,("S,„, (19)

where b;; is the usual Kronecker symbol.
One might call X„") the left inverse matrix to a„i by

virtue of Eq. (14). However, a„, is not a square matrix
and does not have an inverse in the strict sense. The
matrix X„i" contains Xq elements, while Eq. (14) im-

poses only q' conditions. The fact that X„")is, therefore,
not uniquely defined by Eq. (14) is the basis of the
entire subsequent discussion. %e still have a free choice
of f=lV qof the—X„&'& for each of the q values of
1=i) 2) 3

The error in the computed value of xi is a result of
the errors e in the quantities s; let ~;; be the mean
square value of the product dx,dx;. Then

v,,= (dx,dx, )= ((l&.„"&A„.e ) (X„"&A„pep))
=X„&*&X„"&A„.A,p(e ep).

The e are, however, independently observed quantities
and are completely unrelated, one to the other, so that.

~-p=—(- p)= -'~-p (16)

where

S„„=S„„=+A„,A„e,'.

Sv„ is the error matrix of the observational equations.
The- diagonal elements of Sv„are simply the variances
of the numerical constants c„. If these numbers are
uncorrelated, by which we imply that any given s
occurs in only one of the c„'s, the product A„A„(not
summed on a) will be different from zero only for p= v

and Sv„will be a diagonal matrix. This is the only case
usually considered in most discussions of the theory of
least squares; the recognition that Sv„need not be
diagonal constitutes what is here referred to as the
"generalized theory of least squares. " The weight
matrix of the observational equations, m„„ is defined as
the inverse of the error matrix so that

x„,S„,=b„,=S„,m„. (2o)

If we therefore multiply Eq. (19) by the weight matrix
~„„weobtain the result

Lj appal p)' /4 v SvpÃp)r .(2) x (i)S
—y (i)g

L,("a„,m„,=X„(i). (21)

This defines ) „(i) in terms of the Lagrangian multi-
pliers. Insertion of Eq. (21) into Eq. (14) gives us

~j aI2j+pvav k 2pi k)
l, (i) (22)

so that L,") must be the inverse of the symmetric
matrix P,,=a„,w„„a„; (I';; is symmetric since 7r„„ is sym-
metric; the symmetry of this latter matrix follows
directly from the symmetry of S„„).We have therefore
established also the symmetry of I.,"& (I., i"=I, '&).

We now return to Eq. (13) and write [using Eq. (21)j
xi=XIr, c~=L~ avgll vip.(2) r .(2) (23)

In particular, in the case where the variables c„are
themselves observationally independent (which is equiv-
alent to S„„being diagonal), we find that v,„ is a diag-
onal matrix and its diagonal elements, which we may
write simply as P„, are just the usual statistical weights
to be ascribed to each observational equation,

This is the solution for the "best" choice for the x, ;
Eq. (23) is, however, just the solution of the system of
equations

I $2x2 aVJ7f VIpCIp, )

and these are exactly the same equations as one obtains
from the condition of least squares. The basic quadratic
form associated with Eq. (24) and from which Eq. (24)
can be deduced as the condition that the quadratic
form have its minimum value (i.e., the "least-squares"
condition) is

Q =P (Pa„,x,—c„)v „„(Pa„,x,—c,).
PV



BASIS FOR CRITERION OF LEAST SQUARES

Under these conditions the quadratic form, Eq. (25),
reduces to the more familiar expression

Q= p (pa»'x' c»)'p»

and Eq. (24) reduces to the usual normal equations

Since Eqs. (23) and (24) are actually the same equa-
tions as one would obtain from the condition of least
squares, we have shown not only that the axiom of
maximum statistical weight is equivalent to the axiom
of maximum likelihood for a Gaussian distribution but,
furthermore, that the usual normal equations of least
squares correspond to the condition of maximum statis-

tical weight, even in those cases where the condition of
maximum likelihood is impossible of simple analytic
formulation or is ambiguous. One of these ambiguous
cases occurs even when the error distributions are
Gaussian if the c„are observationally correlated in such
a way that the matrix S„„cannot be diagonalized, which
is in general the case if e&E. In the earlier discussion'
of the generalized theory the present writer was not
fully appreciative of this ambiguity which was left
unresolved. Although the quadratic form Eq. (25) was
presented as the proper generalization of the simpler
expression (25.1), the proof was semi-intuitive and was
based on plausibility arguments rather than a Arm logical
foundation. The present formulation achieves this and
has the further advantage of admitting to consideration
by the condition of least squares a much wider class of
error distribution functions than merely the Gaussian.


