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1. THE GROUP KNOWN AS THE ATOMIC CONSTANTS

HIS review is concerned with the determination
of the numerical values of an interesting subgroup

of the general constants and conversion factors of physics
and chemistry known as the atomic constants. No
clear-cut de6nition of this subgroup exists, and, indeed,
with the passage of time it has been found convenient
to include in it more and more members of the parent
group because of the improvements (partly theoretical
and partly in the form of increased experimental pre-
cision) in our knowledge of the interrelations between
the members. As of the present date we may, perhaps
somewhat arbitrarily, enumerate the following six inter-
related constants as the primary atomic constants: E,
Avogadro's number; e, the electronic charge; m, the
electronic rest-mass h, Planck's constant; c, the veloc-
ity of light; and )t,/)t„ the important conversion factor
which converts x-ray wavelengths from the arbitrary
Siegbahn x units (in which at 18' C the grating constant
of the cleavage planes of calcite is dis ——3029.45 x units)
to milliangstrom units. (We shall call this latter con-
version factor for brevity simply ),.) Certain important
constants such as E =2mme'h 'c ', the Rydberg fun-
damental wave number of spectroscopy; Ii =Pe, the
Faraday constant of electrochemistry; n=2se'/(hc),
Sommerfeld's fine-structure constant; as —— /hs( 4'mme'),

Bohr's fundamental radius, and many others are. closely
related to the six named above by well-established
formulas. In a few cases, certain rather accurately
known auxiliary constants" such as Eo, the gas con-
stant, must be combined with these, as, for example,
to compute the Stefan-Boltzman radiation constant
o=(2 1/)5'sR cs'h 'A" ' in the Stefan-Boltzman oT'
law.

Thus there is a large group of very important funda-
mental numerical values, which are so interlaced and
interconnected by known, well-established relationships
that a precise knowledge of only -about five of them,
together with five or six very accurately known auxiliary
constants; is all that is needed to establish the values of
the entire group with considerable certainty. The choice
of which particular set of five atomic constants we shall

call our primary ones is to some extent arbitrary or

' We omit the usual subscript zero since we shall need to use
this later with a different meaning.

dictated by mathematical convenience. Once they are
selected, these primary constants are the "unknowns"
whose values it shall be our object to determine by the
method of least-squares, so as to form a consistent set
which does the least violence to all our known sources
of information with as much accuracy as the present
state of our knowledge permits as regards both the
values themselves and their standard errors. From the
"best" (least-squares adjusted) values of these un-
knowns, combined with whatever auxiliary constants
may be needed, all the other atomic constants and
conversion factors will be computed. In the present
instance, we have selected n, c, e, X, and X as the five
primary unknowns.

The reader accustomed to the textbook accounts of
how such atomic constants as e, h, and m were measured
for the 6rst time in famous and historically important
experiments such as R. A. Millikan's oil-drop experi-
ment or his studies of the photoelectric e6ect, Planck's
interpretation of the experimental curves of blackbody
radiation, or J. J. Thomson's deflection experiments on
cathode rays, may be surprised to see how little remains
of these traditional methods in the present, high preci-
sion evaluation. These earlier methods, which were of
great value for the progress of knowledge at the time
and which still possess immense historical importance,
are now so greatly surpassed in accuracy by more
modern, though sometimes less direct, methods that,
although the earlier results are not inconsistent with the
later ones, they would carry no signi6cant weight if
included in a least-squares solution.

2. RECENT HIGH PRECISION EXPERIMENTAL DATA

Undoubtedly the greatest single contribution to the
progress of our knowledge of the atomic constants is to
be found in the monumental pioneer work of R. T.
Birge, ' who by his painstaking and persistent life-long
eGort has certainly done more than any other person to
separate truth from error and bring order out of chaos

' R. T. Birge, Revs. Modern Phys. 1, 1 (1929); Phys. Rev. 40,
207 (1932);Phys. Rev. 40, 228 (1932);Phys. Rev. 42, 736 (1932);
Nature 1M, 648 (1934); Nature 134, 7'71 (1934); Phys. Rev. 48,
918 (1935); Nature 137, 187 (1936); Phys. Rev. 54, 972 (1938);
Am. Phys; Teacher 7, 351 (1939); Phys. Rev. 55, 1119 (1939);
Phys. Rev. 57, 250 (1940);Phys. Rev. 58, 658 (1940); Phys. Rev.
60, "t66 (1941);Repts. Progr. Phys. VHI, 90 (1942); Am. J. Phys.
13, 63 (1945).
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in this 6eld. His 1929 and 1942 general reviews are all-
time models of meticulous care in studying a huge mass
of primary data, searching out errors, sifting and evalu-
ating to separate the chaff from the wheat, and they
are required reading for a proper understanding of this
subject.

Rapid evolution in the direction of much higher
accuracy of the data bearing on the atomic constants
has occurred since 1947; undoubtedly partly the result
of the stimulus given the subject by the many analyses
of Birge and others during the preceding two decades,
but chieAy made possible by the intense development
since World War II of microwave and atomic beam
techniques for the study of proton resonance in magnetic
fields, the 6ne structure of energy levels in hydrogen and
deuterium, the magnetic moments, spin gyromagnetic
ratios, nuclear magnetic resonance frequencies, and
cyclotron frequencies of fundamental particles such as
protons and electrons, etc. Great improvements have
also been made thanks to microwave cavity resonance
and high frequency Kerr cell techniques in the measure-
ment of the velocity of light. Un6nished work is also
under way at the National Bureau of Standards to
improve the accuracy of the electrochemical evaluations
of the Faraday: (1) by the electrolysis of silver in which
both the anodic silver lost and the cathodic silver deposited
are weighed and compared and re-solution of the silver
in the electrolyte is minimized by using for that medium
a solution of silver perchlorate in perchloric acid, and

(2) by anodically oxidizing sodium oxalate. Finally, a
great advance in the accuracy of our knowledge of the
atomic weights of light atoms has been gained through
the determination of these by the measurement of
nuclear reaction energies.

Of these modern experiments those used in the least-
squares adjustmerit of this review are (1) the precision
determination at the U. S. National Bureau of Stand-
ards of p, the gyromagnetic ratio of the proton by
Thomas, Driscoll, and Hippie; (2) the magnetic moment
of the proton expressed in nuclear magnetons (ratio
oi./oi„of the cyclotron frequency to the magnetic reso-
nance frequency of the proton in a given magnetic field)
as obtained. , (a) with the U. S. National Bureau of
Standards "Omegatron" of Sommer, Thomas, and

Hippie and also (b) at Stanford University with the

inverse cyclotron of Bloch and Jeffries; (3) the fine

structure separation hED of the 2'P; —2'E; levels in

deuterium using the atomic beam magnetic resonance
method performed by Dayhoff at Columbia; and (4)
the ratio of the electron magnetic moment to the proton
magnetic moment measured by Koenig, Kusch, and

Prodell, also at Columbia University. References and
numerical results for all the above work are given in

Secs. 6 and 7. No attempt will be made here to describe

experimental details of the techniques.
Since the discovery by Willis Lamb of the slight shift

in the hydrogen levels, as a result of a remarkable

program' of studies at Columbia University of the 6ne
and hyper6ne structure of the hydrogen spectrum, a
complete reexamination and recalculation of the experi-
mental data on which the determinations of E, R~,
and ED are based becomes necessary. A very thorough
and complete study of the masses of the light atoms
based on measurements of nuclear reaction energies has
been made by Li, Whaling, Fowler, and Lauritsen at
California Institute of Technology. For references and
results of these studies see Sec. 7.

The all important velocity of light has received much
attention in the period during and following World War
II, with greatly improved accuracy resulting. Several
excellent and concise reviews~' of the situation con-
cerning this constant at diGerent epochs have been
given of which that of Mulligan is to be recommended.
The recent important high precision measurements of
this constant are those of Hansen and Bol' at Stanford,
using microwave cavity resonance with a cavity of 6xed
length; Bergstrand' " in Norway, using Kerr cell-

modulated visible light (the "Geodimeter"); cavity
resonance work with a cavity of variable length by
Essen;" at National Physical Laboratory, Teddington,
England, using cavity resonance in a cavity of variable

length; Froome, "also at NPL, using a free-space micro-
wave interferometer; and Aslakson" using Shoran.

All the measurements just cited indicate quite un-

equivocally that the earlier weighted average value
arrived at by Birge, ' based chiefly on earlier measure-
ments by Michelson, Pease, and Pearson" with the
rotating mirror method in an evacuated tube and by
Anderson, "using Kerr cell modulation, namely, 299 776
km/sec, was low by about 15 or 16 km/sec. As a matter
of fact, if the Michelson, Pease, and Pearson and the
Anderson values had been excluded from Birge's
weighted average, the remainder of the data he con-
sidered, which included the remarkably accurate deter-
mination of the ratio of the electrical units by Rosa and

' Willis E. Lamb, Jr., and Robert C. Retherford, "Fine struc-
ture of the hydrogen atom, " Part I, Phys. Rev. 79, 549 {1950);
Part II, Phys. Rev. 81, 222 (1951);Part III, Phys. Rev. 85, 259
(1952); Part IV, Phys. Rev. 86, 1014 {1952);Part V and Part VI
(unpublished Columbia reports at the date of writing).' R. T. Birge, Reps. Progr. Phys. VIII, 92—101 {1941).' L. Essen, Nature 165, 582 (1950).

6 J. F. Mulligan, Am. J. Phys. 20, 165 (1952).
'E. S. Dayhoff, Survey of Microwave Interferometers and

Measurements of the Velocity of Light for the National Bureau of
Standards OfFice of Basic Instrumentation, September 2, 1952,
OBI Project 7507, 14.9 Project 1459.

'Kees Bol, thesis, Stanford University, 1950; Phys. Rev. 80,
298 (1950). Unfortunately W. W. Hansen's untimely death came
before this experiment was finished.

~ Erik Bergstrand, Nature 163, 338 (1949); 165, 405 (1950).
"Erik Bergstrand, Arkiv Fysik 2, 119 {1950);3, 479 (1951).
"L.Essen, Proc. Roy. Soc. (London) A204, 260 (1950); Nature

16?, 258 (1951).
"K.D. Froome, Proc. Roy. Soc. (London) A213, 123 (1952)."C. I. Aslakson, Nature 164, 711 (1949);Trans. Am. Geophys.

Union 30, 475 (1949).
"Michelson, Pease, and Pearson, Astrophys. J. 82, 26 {1935)."W. C. Anderson, J. Opt. Soc. Am. 31, 187 (1941).
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Dorsey, "would have yielded a weighted average not
inconsistent with the present newer values. " These
newer values are not all of equal reliability or accuracy,
however, and in particular the Hansen and Bol result
disagrees with the others by being some 3 kilometers
per sec too low, a disagreement which, though small

judged by earlier standards, is uncomfortably large
relative to the claimed probable errors.

E. S. Dayhoff, in a privately circulated report, . criti-
cizes the Hansen and Bol measurements because the
resonant frequencies of not enough different modes of
vibration were measured to obtain the requisite amount
of information (especially as regards the skin depth) for
an experiment otherwise so carefully and ingeniously
designed to give such high precision. In Essen's (1950)
results his cavity appeared to be about 2)&10 4 cm
larger in electrical diameter than it actually was mechan-
ically because of the effective skin depth, and this was
2.8 times the calculated skin depth. Dayhoff concludes
that this was probably because of polishing the silvered
surface whose conductivity close to the surface, it
appears, can be thus greatly decreased by the effect of
cold working associated with polishing. Such an effect
would increase Hansen and Bol's estimated skin depth
correction of 3 km)sec to g km/sec and would bring
their value of c into substantial agreement with the
others. Table I lists these recent results with their
estimated standard errors.

Pote added in proof Dr E..—L. G.inzton of Stanford
has recently pointed out to us that the above-mentioned
interpretation of Essen's results as transmitted to us
by Dr. Dayhoff is open to some question. Dr. Ginzton
is of the opinion that the effect of possible variations
in the diameter of Essen's cavity as a function of axial
position are not properly taken into account in the
Teddington measurements and that this might account
for part of the discrepancy between the NPL and the
Stanford results. This work on c is being continued at
Stanford by Ginzton.

3. THE METHOD OF LEAST SQUARES

The first man to apply the method of least squares
in a thoroughgoing way to obtain a consistent set of
"best" adjusted values for the atomic constants was a
former student of Birge, Frank G. Dunnington. "There
are two uses which can be made of a least-squares solu-
tion of this sort: (1) It may be used on a fairly con-
sistent overdetermined set of equations to determine
the adjusted best values of the constants. (2) It may

' E. B. Rosa and N. E. Dorsey, Bull. Bur. Standards 3, 433
(1907).' A posteriori reasons to account for systematic errors in the
Michelson, Pease, and Pearson and the Anderson determinations
are not hard to find. The base line of the first mentioned deter-
mination was on very unstable alluvial soil, while the different
transit times of the electrons in the detecting tube in Anderson's
work constituted a possible source of systematic error which he
recognized clearly himself. This latter objection is avoided in
Bergstrand's "Geodimeter. "

"F.G. Dunnington, Revs. Modern Phys, 11, 68 (1939).

TABLE 1:. Experimental values of the velocity of light in vacuum.

Author

Aslakson
Hansen and Bol
Kssen
Bergstrand
Froome

Date of
publi- Refer-
cation ence

1949
1950
1950
1951
1952

13
8

11
10
12

Method'

Shoran
FLCR
VLCR
Geodimeter
FSMWI

Velocity
km/sec

299 792 ~3.5
299 789.3&1.2
299 792.5&4.5
299 793.1a0.32
299 792.6&0.7

' FLCR =Fixed length cavity resonance. VLCR =Variable length cavity
resonance. FSMWI =Free space microwave interferometer.

be used on an inconsistent set of equations as a tool to
ascertain, if possible, which of the equations contains
the concealed systematic error. At the time of Dunning-
ton's work, because progress in refining the experiment
of Duane and Hunt on the short-wavelength limit of
the continuous x-ray spectrum was still not very ad-
vanced and for other reasons, there was a disturbing
lack of consistency among the equations for determining
the atomic constants. Dunnington's chief preoccupation
in his paper was with this question of locating the cause
of inconsistency. His attack consisted in performing a
series of least-squares adjustments in each of which one
item was omitted in an effort to see which item was the
cause of inconsistency. Other least-squares solutions, " "
on the other hand, made subsequent to Dunnington's
have been performed chiefIy to determine "best" com-
promise values of the constants from a reasonably
consistent set of data.

It is clear that in the quest for the "best" consistent
set of values of the constants the entire situation of their
complicated interrelatedness requires the application 'of

some unbiased analytic technique. That is to say, one
must (1) decide which if any of the quantities which
we have chosen to call the primary atomic constants
are known with sufFicient accuracy relative to the rest,
so that they can be practically eliminated from the
category of "unknowns" and treated as known numbers
(merely to save labor); (2) set up as many independent
equations as there are reliable determinations of func-
tions of the unknowns; and finally, (3) solve for the
"best" compromise values of the unknowns. Consid-
erably more such equations can be set up than the
number of unknowns. Because of both random and
systematic errors in the experimental determinations
represented by the different equations, these latter may,
in general, be expected to be more or less incompatible.
The method of least squares then supplies a well-known
mathematical technique for obtaining the "best com-
promise" values of the unknowns to satisfy all the
equations approximately.

' J. W. M. DuMond and E. R. Cohen, Revs. Modern Phys. 20,
82 (1948).

2 J. W. M. DuMond and E. R. Cohen, Report to National
Research Council, Committee on Constants and Conversion Fac-
tors of Physics, December, 1950.

2' J. A. Bearden and H. M. Watts, Phys. Rev. 81, 73 (1951);
81, 160 (1951)."J.W. M. DuMond and E. R. Cohen, Am. Sci. 40, 447 (1952).
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If we examine all the diRerent experiments described
in the previous section, we find that in the majority of
cases the individual measurements do not measure one
of the primary unknown quantities, but rather some
function of several of them. Furthermore, the function
whose numerical value is determined by such an experi-
ment can be expressed in most cases (except for quan-
tities which can be considered as accurately calculable
correction factors) as a simple product of powers, posi-
tive or negative, of the primary variables of the form

N'~e'I m"p .=A„(1—r„), p=1, 2, 3, , XE„(3.1)

wherein 3„is the numeric which results from the meas-
urement and S, e, m, etc., are the primary variables.
If we were to put true values of these variables (which
we do not know) into the left-hand side of Eq. (3.1)
we would, in general, not obtain the number A„, since
it is the result of measurement and therefore subject to
error. We must include the factor 1—r„ in order that
Eq. (3.1) shall be a valid equation. We do not know
the true values of the primary variables so that we
cannot compute r„ from this. The quantity r„ is the
actual relative error in the measured quantity A„, and
this is, of course, beyond our ken. We know only an
estimate of some of the parameters of its probability
distribution. The most probable value of the error is
zero, since the numeric quoted as the result of an experi-
ment is, to the best of knowledge, the number which is
most likely to be the correct value of the quantity being
measured. Furthermore, we have an estimate of the
root. -mean-square deviation of the relative error 0„,and
we shall restrict ourselves momentarily to a Gaussian"
distribution for the errors such that the probability of
the error r„ lying between the values r and r+dr is

P„(r&r„&r+dr) = exp (—r'/2o „')dr. (3.2)
(2~)&o „

When we omit the factors 1 r„ from Eqs. (3.1) t—he

system is, in general, overdetermined; we have Sz,
equations and only q variables (q&X&,), so that a
solution is impossible (except for the very improbable
situation in which all of the experimental data are
exactly compatible). When we introduce the quantities

r„, we increase the number of unknowns to q+Xs„
there being one residual for each observational equation,
and we are able to satisfy the equations in infinitely

many ways. It is now necessary to find some additional
conditions which will allow us to choose that one solu-

tion, from the infinitely many which are available to us,
which represents the "best" choice. This "best" choice
can be based on the Axiom of Maximum Likelihood:

~ The Gaussian distribution is not uniquely implied by these
two parameters, A„and 0.„, and the least-squares procedure can,
in fact, be justified veithout, recourse to any presumed probability
distribution of errors. The introduction of such a distribution is
convenient and makes possible a more direct development.

Xexp 'I + + +'''
I

' (33)
Eoi 0'p 0'p~ )

This probability will be a maximum when the sum in
the exponent is a minimum. This then is the "least-
squares" condition: The &Vs, equations (3.1) are solved
for the residuals r„written as functions of the unknown
variables E, e, m, and we seek that set of values for
the variables which minimizes the sum of the squares
of the quotient of each residual divided by its standard
deviation.

If the distribution of the errors is other than Gaussian,
it is difficult to formulate an analytic procedure based
on the condition of Maximum Likelihood but it has
been shown" that, independent of any assumptions
about the exact distribution of the errors of the 3„
save that the o„exist (i.e., are finite) in each case, this
least-squares condition is equivalent to the condition
that the resultant solution shall be that set which has
minimum root-mean-square deviations. I See following
article by E. R. Cohen; Revs. Modern Phys. 25, 709
(1953).]

For convenience in eRecting the least-squares adjust-
ment, the system of Eqs. (3.1) is "linearized. "We adopt
origin values Xo, eo, mo, etc. , which have been chosen
su%ciently close to our expected solution that any
set of values X, e, m, in which we are likely to be
interested will diRer from these individual origin values
by only small relative amounts; that is, Eo, eo, mo,
are so chosen that x~= (X—cVp)/1Vp, x,= (e—ep)/ep,
x = (e—ep)/mp, . are always small, and we then
express the experimental measurements in terms of these
dimensionless variables x&, x„x, . To each type of
experimental determination of a function of the type
(3.1) there corresponds a hyperplane

i„x~+j„x,+k„x + .=u„r„, —(3.4)

which is tangent to the curved surface (3.1). The con-
stant a„ is given by 8&= (3& A&p)/A&p in which A„p is
the value of the function f when the origin values

Eo, e(), mo, ~ are inserted. The orientation of this
plane in the hyperspace depends on the exponents
i„,j„,k„, of (3.1) Li.e., the coefficients i„,j„,k„,

"E. Whittaker and G. Robinson, Calculus of Observations
(Blackie R Sons, London, 1944), fourth edition, p. 224.

"Of all the possible choices for the set of residuals
(r„), the best choice is that whose probability of occur-
rence is maximum. "

The probability of obtaining simultaneously the set
of values, r j, r2, r3, ., r~~, is the product of the proba-
bilities of obtaining each value separately, provided
these errors are all independent. (The importance of
this proviso will soon become evident. ) Therefore,

P(ri, rp, rp, )

(2~)—&"opLa,o.po, o xg,]
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of (3.4)j, while the origin distance of the plane depends
on a„.The entire status of our knowledge regarding the

bcs't vRhlcs of 8' 8$ Rnd h to fit thc dRta ls contRlIMd
in the way these various planes intersect each other to
de6oe some compromise point, taking into consideration
the relative reliability of the positioning of each plane,
i.e., the magnitude of the standard error, 0„.The func-
tloll Q= Q (rp /0'p )) which ls to bc 11111111111zcd,ls there-
fore an expression of the second degree in the variables
x~, x„x,etc, , and the minimum conditi. on is obtained
by cquatlllg to zcl'0 each of 'thc pRI'tlal dcrlvatlvcs of Q
taken with respect to each variable in turn. It is easy
to show that this process is equivalent to the foBowing
simple recipe for forming the so-called "normal equa-
tions": Write down the system of eqs. (3.4) omitting
OM rcslduc rp lIl each cRsc. Assign to cRch equation R

weight

where the constant C may have any convenient numeri-
cal value. To obtain the normal equation associated
with a given variable (i.e., the one which expresses the
condition that the partial derivative of Q with respect
to that variable shall vanish), multiply each of the
linearized observational equations (with r„omitted. )
by the coe6icient of the variable in question in that
equation and by the weight assigned to that equation.
These individual expressions are then added together
to give a single "normal" equation. Repeat for each
variable, and in this way construct a set of q simul-
taneous equations for the q unknown quantities x~, x„
x, etc.

The solution is completed by inserting the values
obtained for the x's into the original set of observational
cqllR'tlolls (3.4) Rlld fllldlllg thc Rssocla'tcd residuals ' thc
values of the residuals computed using the solution of
the normal equations we shall denote as E„(anumber)
to be distinguished from r„which is a function of the
variables xz, x„.The minimum value of the quad-
ratic expression Q is usually denoted by the symbol x'

(3.6)

An important measure of the consistency of the entire
set of equations is given by y' divided by the difference
between the number of equations E~q and the number
of unknowns q. The expectation value of [x'/(Xs, —q) j&

is unity; this quantity is the generalization to multi-
dimensional space of R. T. Birge'S25 ratio of the meas-
ures of external and internal consistency. The difkr-
encc XEq g ls known as the "number of degrees of
freedom" of the system.

A word of caution about the actual method of formu-
lating the equations of least-squares from the data as
applied to the atomic constants is in place at this point.
The general form of the primitive equations of observa-
tion is given in Eq. (3.1) above. In each such equation

"R.T. Sirge, Phys. Rev. 40, 213—224 I'1932).

A„ is a number with an estimated relative standard
error o„, the result of reduction of some particular
experimental observations, which, if care to avoid it has
not been exercised, &nay be correlated obsenationally
with some of the other A„by reason of the fact that
one and the same error-contributing component (such
as, for example, c) may have been used in reducing the
data to Rll'lvc Rt both A p, s.

Now, it is an important point, which has never been
emphasized in even the most advanced texts on least
squRlcs, thRt tlM ObscrvRtlonRl cquati0118 must bc Obscr-
vationally independent, if the above classical procedure
of cGccting least-squares adjustment is to be followed.
This is because one cannot otherwise assign simple
independent weights to the diferent equations. If, on
the contrary, the equations are observationally corre-
lated, the standard errors of the a's ean only be measured
by an error matrix involving correlation coefFlcicnts
corresponding to all possible pairs of a's as well as
individual standard errors for each a, and the weights
must be replaced by a "weight matrix, " the inverse of
the error matrix, to express the situation fully. The
process of least-squares adjustment can then be formu-
].Rted26 in matrix algebra in a manner quite analogous
to the simpler ease of independent a's but with consid-
erable increase in labor.

The easy and obvious way out of this difFiculty is to
recast the entire system of equations in such a way as
to remove the observational correlations between the
a s. This amounts to 6nding R tl'Rnsfol IQRtlon w'hick
diagonalizes the error and weight matrices. It may be
impossible to do this, however, without transferring
some of the quantities with larger standard errors from
the category of the known a's to the category of the
unknown x's and also to write for each of these an extra
observational equation in which the new unknown x is
equated to its appropriate input datum a, the numerical
result of direct measurements. This, of course, compli-
cates the problem by increasing the number of unknowns
to be adjusted, but it in no way RGects the original
overdetermination (Xs,—q) of the set, since an addi-
tional observational equation is added for each new
unknown introduced.

4. CALCULATION OF SThNDARD ERRORS AND
CORRELATION COEFFICIENTS

The reliability of the output values of any least-
squares adjustment must, in general, be described not
only by stating the standard deviation for each numeri-
cal result but also by specifying certain quantities
known as corre1ati on eoegcI ends, r,,for each Pair of resllfs.
The numerical output values, of e, m, h, c, etc., are of
little use unless functions of these can be combined to
compute other derived values. Now the standard devia-

"This formulation was, we believe, given for the 6rst time by
J. %'. M. DuMond and E. R. Cohen, Report to the National
Research Council on the Atomic Constants, December, 1950.
See also E. R. Cohen, Phys. Rev. 81, 162 (195j.).
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tions of such derived values must be computed, as we
shall show in this section, by formulas which involve
not only the standard deviations of the values entering
into the function but also the correlation coeNcients r;;
connecting all possible pairs of those values.

The calculation of error estimates in such a situation
may be unfamiliar to many physicists. There is no
escape from this added complication in the computation
of precision measures, however, since it refIects the
complexity inherent in the sources of our knowledge of
the adjusted values. A comprehension of the content
of this section is, therefore, essential to the correct use
of the adjusted output values given here.

Each quantity subject to random or accidental error
(frequently known as a "random variable" ) may con-
veniently be thought of as a sample taken at random
from a group or "universe" of values which group them-
selves around a mean value according to some frequency
law. This frequency law we shall usually assume to be
the normal or Gaussian law. For each such random
variable x,, one is to think then of the implied universe
of values in the background which it is presumed would
be obtained by repeated measurements on it. This
universe may be described by giving some of its param-
eters. Thus, if the universe is known to be Gaussian,
for example, then prescription of its first and second
moments, i.e., its mean value x, and its variance cr,' are
sufficient. (The standard deviation o., is the root-mean-
square deviation from the mean of this universe of
values. )

Two such random quantities are observationally inde-

pendent, if the random selection of a sample value from
one universe in no wise a6ects or biases the free selection
of a sample from the other universe. If, however, two
variables are connected by a strict functional relation-
ship so that the value of either ore is Nmiqle/y determined

by the other, the variables are completely correlated and
the correlation coefFicient connecting them has the
absolute value unity. Random samples can no longer
be selected freely and independently from the two
universes because of the functional condition which ties
the selections rigidly together. Having selected a sample
value from one universe at random, the second selection
is now completely dictated in value. On the other hand,
if one of the two random variables is a function of the
other and also of still other comP/etelyindePendent random

variables, then the first two will be partially but not
completely correlated, and the correlation coefFicient

connecting them will have an absolute value somewhere
between zero and unity. The problem of correlated
errors has been pointed up in a previous article in this
journap' (q.v.), and it was shown there that, in general,
the distribution in probability of the possible solutions
of the set of eqs. (3.4) is represented by a hyperellipsoid
of probability in the constants space whose major axes

~' J.W. M. DuMond and E. R. Cohen, Revs. Modern Phys. 20,
91-94 (1948).

b11$1+b12$2+ b13X3+b14X4 = Cl)

b21$1+b22$2+ b23$3+ b24$4 C2y

b 31$1+b 32$2+ b 33$3+b34$4 —C3l

b41$1+b42$2+ b43$3+ b44$4 C4.

The quantities b,, are symmetric, (b,,=b, ,);
bll Qpp8p q b12 b21 Qp88pgp)

(4.2)

b22 Epact~ ~ (4 3)

and it should be apparent from the form of these four
quantities exactly how the other twelve b,; may be con-
structed. The constant terms of the normal equation c,
are calculated in a similar way'.

cl Qp~8papi c2 Qp8 Jalap) etc i (4 4)

It is well known that the solution of the set of eqs.
(4.2) can be written in the form

$1=dllC1+d12C2+d13C3+d14C4)

X2 = d21C1+d22C2+d23C3+ d24C41

$3=d31C1+d32C2+ d33C3+ d34C4)

$4 = d41C1+d42C2+ d43C3+ d44C4)

in which the sixteen numbers d;, bear an inverse rela-
tionship to the set of numbers b;, ; the element d,, is
equal to the minor of b;; in the determinant of the b's
divided by the determinant itself. All the information

are skew to the coordinate axes, Because of this the
probability distribution of a particular variable is de-
pendent upon the specification of the values of all the
other variables. The extent of this dependence is ex-
pressed by correlation coefficients. There exists then in
the hyperspace of our primary variables a hyperellipsoid
of error whose principal axes will lie, in general, oblique
to the axes of any of the primary variables in a way which
depends on the precision (and consequent weights) to
be attached to the various input data. The various
standard deviations r; of the diGerent linearized un-
knowns x; together with the correlation coefFicients r;;
connecting all possible pairs of unknowns can be sys-
tematized in the form of a square matrix whose deriva-
tion from the normal equations we shall now describe.

For definiteness, let us now consider a system with
four unknowns. We shall write the (linearized) observa-
tionally independent equations in the form

8pxl+ Jpx2+ kpgx3+lpx4 ap ryy

p=1, 2, 3 EE„(4.1)

and to each of the Ãg, equations we assign a weight
p„=C/o„' (see Eq. 3.5), in which 0„is the standard error
of the constant term a„. |A'e construct the normal equa-
tions in accord with the instructions of the previous
section and these can be written in the form
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BXs BXs BXs
4,= — — Ri+ 5+- — &4+

Baj Ba2 Baa
(4.6)

The errors E„are t.o be considered as random variables;
they may be positive or negative. Since the numeric a„
is presumably the best estimate available for this quan-
tity, we expect E„ to be zero. On the other hand, the
mean value of E„2 is estimated to be 0-„', so that 0-„ is an
estimate of root mean square error in a„.

If we calculate the mean value of ~
2 we 6nd

(ax, ) tf ax;) i
g 2~ $ 2 ~ 0 2 0 2

&aa, ) (ag, J

If ax;i t ax, ax, ~+ I I
oi'+" +2[ ——l«4~4)

I Ba3) Eaa, aa, J

t'ax; ax;)
+2i — i{8E )+ (4.7)

I au, aa, &

in which the ( ) about a quantity denotes the operation
of taking the average value of that quantity. Since the
a's have been assumed to be observationally independ-
ent, the errors in two diferent a's are in no way related
to each other, and the average value of the product of
two diferent errors vanishes, since for any value of one
error the other may be averaged out to zero. Thus, in
such a ease, the cross product terms in Eq. (4.7) dis-

appear, and we have the law of the propagat. ion of
independent errors

fax; ) ~

O'Xs = 6s = 0'p, ~

4 Ba„~
(4 8)

When the di6erentiations are actuaHy carried out we
And, after some straightforward but somewhat lengthy

required for the complete solution of the problem of
least squares is contained in the sixteen b s {or equiva-
lently in the sixteen d's) and the four c's. In addition
to the "best" values of the x's, we are equally interested
in determining the precision measures which must be
assigned to them. The x's are not accurately determined
quantities, since they are computed from numbers which
are the results of experiments and therefore are subject
to error. Using the de6nition of the c's from Eq. (4.4)
in Eq. (4.5) allows us to express our solution in terms
of the directly observed quantities a„. There is some
error associated with each quantity a„. This error,
which we shall call E„, is unknown (if it were known
we should remove the error by correcting the quantity
a„); we know an estimate of the mean square value of
this error, however, and we can, therefore, make an
estimate of the mean square error in a function of the
a„. The error e; in x;, which is produced by errors Ei
ln ay, E2 ln a2, +3 ln a3, etc. , eaIl be calculated f lorn the
partial derivative of x; taken with respect to a„'.

algebraic manipulation, that the mean square error in
x; is given simply by Cd;, . Thus, the diagonal elements
of the matrix (4t) are directly related to the standard
errors of the solution. It may also be shown that the
off-diagonal elements of matrix (d) are similarly related
to the mean value of the product of the errors in two
different variables .'

(e,c;)=Cd;;. (4.9)

For this reason we refer to the matrix (d;,) as the "error
matrix" of the solution. It is important to realize that
the mean value of the product of the errors of two
difII'erent x's does not vanish, because these quantities
are not independent in terms of the observational quan-
tities a„, each x; being expressed ult. imately in the least-
squares procedure by some linear combination of the a„.

The extent of this correlation can be best expressed
by defining the "correlation coeSeient" r;; connecting
the two variables x; and x, by the relationship

r' = ~'f/(d"4f)' (4.10)

f (f) Z ' '(' ') C+ ' Av. (4.12)

The quantity C is the constant relating the "weight"
of an observation to its variance; our a priori choice for
this constant (its value by "internal consistency") is

Cr= p„o„' (internal). (4.13)

It is possible also to make an a posteriori estimate of C
(its value by "external consistency") based on the
statistical agreement of the least-squares solution. We
expect the quantity y'/(cVs, —

q) to be equal to unity;
if this is not so, we make an u posteriori readjustment in
the scale of our standard deviation and define

Cg= Cry'/(Ãz, q) =Qp„R„'/(Xs, q)— —

(external). (4.14)

It can be shown that rg must lie between the limits
—1 and +1. If the two variables are uncorrelated, in
-the sense that an error in one is completely independent
of an error in the other, r;; =0; at the other extreme,
if the two variables are functionally related to the extent
that an error in one completely determines the error in
the other r;;=~I, the sign depending on whether a
positive error in one variable is associated with a
positive or a negative error in the other. Once we have
calculated the error matrix, it is no longer necessary to
express a function of the x's in terms of the independent
quantities a„ in order to calculate its standard error, as
long as we realize that the errors in the x's are corre-
lated. If we have any function f(xi, xi, xi, x4), the error
in the function arising from speci6ed errors ~~, e2, ~3, e4

in the x's is
6f= %464+ Aiei+ &lies+ CX444~ (4.11)

where n, = af/ax, , and the mean square error (variance)
of /is given by
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Equation (4.12) gives us the generalized law of the
propagation of errors; written out in terms of the
standard deviation and the correlation coefFicients of
the variables it becomes

4

a/= QngazP+2+r, ,n,o*,n, o*,,
i=1 igj

(4.15)

and this form must be used rather than an expression
of the form (4.8), if we are dealing with correlated
variables (i.e. , if the correlation coefficients r,;, do not
vanish).

As an example of the importance of the correlation
coefficient, let us consider now an extreme case. We
can write the function f(x) = x'+' as f(x) = x'x' and in
this latter form, if we consider the two factors to be
independent, we would calculate the relative standard
error of f to be (s'+t')& times the relative standard
error of x, whereas in the original form the relative error
in f is (s+t) times the relative error in x. However, we

have neglected the effect of the correlation coefIicient
which is this case is r =.+ 1 so that the correct expression
for the relative error in j, when written in the second
form, is (s'+P+2st)», and sot (s'+P)&, times the rela-
tive error in x, and we have thereby resolved the para-
dox. This method of computing errors (Eq. 4.15) will

be called the method of the ellipsoid of error, because
it is the analytical equivalent of constructing two par-
allel planes tangent to either side of the ellipsoid of
error and normal to a given axis in the hyperspace of
the unknowns (the axis for the linear function, f) to
find the domain of standard deviation ~o-~ cut off by
those planes on that axis.

The generalized formula of errors is the one used in

calculating the error measures of all the derived quan-
tities in obtaining our least-squares adjusted general
table of output values in this paper. Now, it is true that
a certain valid objection could be raised to the practice
of giving only the standard deviations of the derived
output values, for these values are definitely not obser-
vationally independent, in general. To give, however,
a complete matrix of standard deviations and correlation
coegcieets connecting all possible pairs of all the derived
values would obviously be too cumbersome. We must

emphasize, however, that when any of these output
values are used in formulas to compute other quantities,
it is strictly incorrect to compute the probable error of
the resultant quantities by the ordinary formula of
propagation of errors for observationally independent
quantities. The correct probable error may be either
greater or less than this because of the cross-product
terms. When two correlated quantities are to be com-

bined, the standard error of the resultant can be calcu-
lated only if the correlation coefficient is also known or
if the quantities are re-expressed in terms of variables
whose correlation coefFicients are known. A numerical

example of such a computation is given in Sec. 10.

5. REJECTION OF CERTAIN INPUT DATA FOR THE
PRESENT LEAST-SQUARES AD JUSTMENT

Two criteria have been followed in selecting data for
use in the present adjustment. (1) Reject data of such
low numerical accuracy that the corresponding weight
of the observational equation would imply negligible
influence on the entire solution. (2) Reject data which,
even though accurately measured, suffer from uncer-
tainties in theoretical interpretation.

The hyperfine structure shift of hydrogen in the 'S~
state, AvyI would furnish an important datum connect-
ing the quantities n, c, 8„, and p„/p„ the ratio of the
magnetic moments of proton and electron, were it not
for the uncertainty regarding a certain correction term,
The shift Av&I has been measured by the atomic beam
magnetic resonance method with a precision of 6 ppm
in 1947 at Columbia University by Nafe and Nelson
but more recently, and much more accurately, with a
probable error of only 0.2 ppm by the same method by
Prodell and Kusch" at the same laboratory. This re-
markable measurement is absolute in the sense that a
microwave frequency which can be directly compared
to a fundamental time standard is resonated with an
atomic energy level difference. The relationship which
is originally due to Fermi" is

Ave=
3

In this formula p„ is the magnetic moment of the proton
and p, that of the electron; p /pp is the ratio" of the
electron moment to the Bohr magneton. The factor
(1+Ppn') is Breit's relativistic correction term, and the
next parenthesis is the reduced mass correction term.
The last two factors 8 and 5', whose importance was
first pointed out by Bethe and Longmire, 33 correct for
the finite extension of the electron and proton dipoles;
the magnitude of the former effect has been calculated
by Karplus and Klein, '4 but there has only been an
order of magnitude estimate for the latter which could
be in error by a few parts in 10'. The present state of
meson theory holds little promise that a better estimate
will be soon forthcoming. Thus, although the accuracy
of the measurement is better than 1 part in 10', the
theoretical uncertainty is sufficiently large that we have
no recourse for the present but to reject this datum.

Under the direct. measurements of the Faraday by
electrochemical methods we have felt obliged to omit
the provisional values obtained from the measurements

'I J. E. Nafe and E. B. Nelson, Phys. Rev. 73, 71.8 (1948).
2' E. B. Nelson and J. E. Nafe, Phys. Rev. 75, 1194 (1949).
~ A. G. Prodell and P. Kusch, Phys, Rev. 79, 1009 (1950)."E, Fermi, Z. Physik 60, 320 (1930)."R.Karplus and N. M. Kroll, Phys. Rev. 77, 536 (1950).
"H. A. Bethe and C. Longmire, Phys. Rev. 'H, 306 (1949).
'4 R. Karplus and A. Klein, Phys. Rev. 85, 972 (1952).
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by Craig and Hoffman with sodium oxalate and with
silver. In a preliminary least-squares adjustment we

have found that the recently revised values of the
sodium oxalate measurements (revised chiefly because
of revisions in the chemists international atomic weights)
fall considerably out of line with the other observational
equations. This by itsen would constitute insufhcient
reason for omitting this datum but a letter from D. N.
Craig, dated August 29, 1952, clearly states that work
is still in progress to establish (1) the exactness of the
assumed chemical reaction, (2) the isotopic composition
of the sodium oxalate, and (3) the purity of the sodium
oxalate. Dr. Craig concludes, "Consequently, we are
not in a position to change the preliminary value which

appeared in the Physical Review. "We reject the silver
value of Craig and Hoffman, because it is presumed also
to be only preliminary.

The Faraday values for silver and for iodine which
have been kindly furnished by Dr. final based on
earlier work are definitive, and hence we have retained
them, although they disagree by more than 3 times the
internally estimated probable error of the difference
between them.

The items listed as Eqs. (6.9) to (6.11) are obtained
from measurements of the short wavelength limit of
the continuous x-ray spectrum. These measurements
have traditionally been called measurements of ts/e,
whereas what is measured is the dc voltage applied to
an x-ray tube and the wavelength in Siegbahn x units
of the emitted continuous x-ray spectrum quantum
limit. Factors like c and X,/X„which were once treated
as auxiliary 6xed constants, have in the present adjust-
ment acquired the status of unknown variables, and we

must, therefore, be careful to recognize exactly what
the observed quantity in this experiment really is.
Clearly this experiment me~sures, after appropriate
corrections, the conversion constant between the energy
in electron volts and the wavelength (in Siegbahn x
units) of electromagnetic quanta.

6. CHOICE OF THE UNKNOWNS AND THE PRIMITIVE
OBSERVATIONAL EQUATIONS

Wherever more than one important determination of
a given datum exists and is deemed worthy of inclusion
in our adjustment, we write a separate observational

equation for each of the determinations instead of following
the almost universal past practice of taking a weighted
average of all similar determinations and treating this
as a single datum for which only one observational
equation need be written. This method is the more
logical one, since it permits the determination of sep-
arate normalized residues for each separate datum and
gives a more correct measure of z'. Clearly with this
method N~, —q, the number of "degrees of freedom"
(or of overdetermination) in the least-squares solution
will be larger and should give a truer picture of the real
consistency situation. Also (and of more direct utility)

the separate normalized residues for each determination
can be independently computed and assessed.

In order to avoid hidden observational correlations,
care has been taken in formulating the primitive equa-
tions of observation (6.1) to (6.13) to see that the
numeric, the right-hand member of each equation, is
the result of a single determination and not the com-
bined result of two or more determinations. For ex-
ample, Dayhoff quotes in his recent report on the 6ne
structure of hydrogen and deuterium a value of the fine
structure constant 0.. What he actually measured, how-
ever, was the frequency separation hED between the
levels 2'I-'; and 2'P~. in deuterium and his value of n
was computed from AED by the use of a formula involv-
ing R, c, and correction factors depending on n and
on the ratio Mq/D of the mass of the deuteron to the
mass of the deuterium atom. Consequently, in Eq.
(6.13) we have equated his measured numeric ZEn to
the appropriate fun&. tion of all the quantities involved
along with n.

The precision measures given are standard errors 0.

(as distinguished from "probable error, " equal to
0.6745 o for a Gaussian distribution). The absolute
standard error is given immediately following each
numerical value and the relative standard error in parts
per million (ppm) is given in parentheses after this.
When experimenters report "limits of error, " we have
followed the rule of dividing these by two to obtain the
standard error.

The physical scale of atomic weights is used through-
out in quoting numerical values.

The primitive equations of observation are the follow-

ing, Eqs. (6.1) to (6.13):
The velocity af light as obtained by K. D. Froome"

at the British National Physical Laboratory with a
microwave interferometer:

c= (299792.6+0.7)X 10' cm sec ' (2.3 ppm). (6.1)

The same constant as obtained by Bergstrand"0
with visible light over long base lines using his
"geodimeter" (Kerr cell modulation)

c= (299793.1+0.32) X10' cm sec ' (1.1 ppm). (6.2)

The results of determinations of the Faraday by the
electrolysis of iodine and of silver, respectively, as
recently recomputed from old data" by G. %. final, 36

utilizing the latest international atomic weights (chemi-
, cal scale) and conversion factors for the absolute elec-
trical units.

(Iodine) A'e/c= 9652.15+0.13 emu (g mole) '

(phys. scale) (13 ppm). (6.3)
(Silver) Ate/c=9651. 29&0.19 emu (g mole) '

(phys. scale) (20 ppm). (6.4)

"G. W. Vinal and S. J. Bates, Bull. Bur. Standards 10, 425
{1914);G. W. Vinal and W. M. Bouvard, Bull. Bur. Standards
13, 147 (1916).

360. W. Vinal, November 22, 1949 and corrected for new
atomic mass of iodine (1951) (private communication by J. A.
nipple, December 14, 1951).
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The magnetic rrromersf of the Profou p' (uncorrected
for diamagnetism), expressed in nuclear magnetons
y = sh/4m. mac, as obtained by Bloch and Jeffries, "using
the method of the inverse cyclotron,

p'= 2.792365&0.00010 (36 ppm) (6.5)

and the same constant as obtained by Sommer, Thomas,
and Hippie, "using the "omegatron, "

y'=2. 792685&0.00003 (11 ppm). (6.6)

The gyromaguefic rafio for /he profors y, as obtained
at the U. S. National Bureau of Standards by Thomas,
Driscoll, and Hippie" before making the diamagnetic
correction,

y= y,'Xe/(M~c) = (2.67523+0.00006)
&10' sec ' gauss ' (23 ppm). (6.7)

The conmrsiou factor X=)t,/), from the Siegbahn
nominal scale of x-ray wavelengths (expressed in x
units) to milliangstroms as recommended for general
adoption by Sir Lawrence Bragg'0 after consultation
with Professor Manne Siegbahn, Professor B.E.7Varren

(of the Massachusetts Institute of Technology), and
Dr. H. Lipson (of. the College of Technology, Man-
chesterEn, gland), and with due consideration given to
the analysis of the various sources of primary data by
R. T. Birge (see last article of reference 2).

)t =)tg/)t, = 1.002020&0.000030 (30 ppm). (6.8)
Three recent precision determinations" "of the short

tote/eugfh lirrsif of the continuous x-ray spectrum (a)
by G. Felt at 24500 volts, {b) by Bearden, Johnson,
and Watts at 10 000 volts and at 6000 volts, and (c) by
Bearden and Schwarz at. 8000, 9800, and 19600 volts,
to obtain the conversion constant from wavelengths in
x units on the Siegbahn nominal scale to quantum
energy in electron volts, emu'.

{G.Felt)

hcs/()te) = (12370.02+0.63) emu cm

(51 ppm), (6.9)

erable number of measurements of the densities of
crystals, the geometry of their unit cells and their
grating constants expressed on the Siegbhan nominal
scale of x units:

Ã)ts= (6.06179+0.00023) X10" (g mole) '

(physical) (38 ppm). (6.12)

The fr,le sfrucf-ure separafiou its deuterium, 2'Pt—
2'E';, AED, measured in frequency units by DayhoG, "
using the atomic beam magnetic resonance method,

DEg) = (1/16)a'E„c 1+(5/8) crs

= (10971.59+0.10)10' sec ' (9 ppm). (6.13)

I. AUXILIARY CONSTANTS AND EQUATIONS

It will be noted that the quantities4' involved in
cxprcsslng thc above thirteen prImItIve observatIonal
equations are X, e, m, Ig, c, a, p,', X, E.„,and the masses
M„, D, and Mg on the physical scale of atomic masses,
Certain of these quantities are so accurately known
from measurements that they can be safely regarded as
6xed auxiliary constants, since their relative standard
errors are so small as to contribute negligibly when
combined in formulas along with the other quantities.
These are (a) the masses on the physical scale of atomic
masses M„, D, and Mg along with which we list also II,
since it will be needed in computing derived quantities,
(b) the Rydberg fundamental wave number E„, (c) the
ratio of the electron magnetic moment to the proton
magnetic moment very recently measured to 0.6 ppm
at Columbia by Koenig, Kusch, and Prodell.

The four atomic masses are obtained with great
accuracy by the method of measuring nuclear reaction
energies:"

(B.and S.)
hc'/()te) = (12370.77+1.03) emu cm

(83 ppm). (6.11)

(B.J. and W.)
hc'/(Xe) = (12371.03+0.48) emu cm

(40 ppm), (6.10) H/M„= 1.00054461 (Computed using

1Vrm = 0.00054875) (Physical Scale), (7.2)

D= 2.014735+0.000006 (Physical Scale)

(3 ppm), (7.3)
The value of Asogadro's cumber multip/ied by )ts as

obtained by R. T. Birge2 from his analysis of a consid-

"F. Bloch and C. D. Jerries, Phys. Rev. 80, 305 (1950); C. D.
Jeffries, Phys. Rev. 81, 1040 (1951).

'8 Sommer, Thomas, and Hippie, Phys. Rev. 82, 697 (1951).
'9 Thomas, Driscoll, and Hippie, J.Research Natl. Bur. Stand-

ards 44, 569 (1950); Phys. Rev. 78, 787 (1950).
40 Sir Lawrence Bragg, Acta Cryst. I, 46 (1948); J. Sci. Instr.

24, 27 (1947).
"G.Felt, thesis, California Institute of Technology (1951).
~ Bearden, Johnson, and %'atts, Phys. Rev. 81, 70 (1951).
43 J.A. Bearden and G. Schwarz, Phys. Rev. 79, 674 (1950).

D/Ms= 1.0002/244 (Computed using

1Vrrr =0.00054875) (Physical Scale). (7.4)

44Edward S. Dayho8, Preprinted Report No. VI on Fine
Structure of the Hydrogen Atom, Columbia University (1952).

4' All the quantities enumerated here appear explicitly in Eqs.
(6.1) to (6.13) except m. Because of the Rydherg relationship
(E being so accurately known that we treat it as an exact
auxiliary constant) the value of es is implied by the other quan-
tities through the equation m=4m@'E a 'c 2, and we therefore
list m along with the rest.

46Li, %haling, Fowler, and Lauritsen, Phys. Rev. 83, 512
(1951).
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The numerical value of E„has recently been recom-
puted4' taking into consideration the modihcations re-
quired by the Lamb shift:

R =109737.311&0.012 cm ' (0.11 ppm). (7.5)

The measurement at Columbia by Koenig, Prodell,
and Kusch" of the ratio of the electron magnetic
moment to the proton magnetic moment p' (without
diamagnetic correction) is so accurate as to warrant its
inclusion in the category of auxiliary fixed constants

[M„/(1Vm p') j(1+n/2m —2.973 n'/~')
= 658.2288+0.0004 (0.6 ppm). (7.6)

In addition to the above, there are available two
exact auxiliary equations connecting the quantities in-
volved which can be used to reduce the number of
variables of the least-squares adjustment. These are the
equation expressing a in terms of e, h, and c and the
equation for the Rydberg expressed in terms of e, o, , c,
and m. Solving these for h and m, respectively, we have

h =2~e'/(nc) (7.7)

m =4se'R„/. (n'c') (7.8)

Using the value 1/+=137.04, the correction factor
y, ,/po for the anomalous magnetic moment of the elec-
tron can be computed with amply sufficient accuracy
(less than 0.1 ppm) and it is, therefore, also treated as
an auxiliary constant

p./yo = (1+~/2~ —2.973 a'/vr') = 1.0011453. (7.9)

8. FORMATION OF THE LINEARIZED EQUATIONS OF
OBSERVATION IN FIVE VARIABLES

We now use Eqs. (7.3)—(7.9) to reduce the number of
variables in our solution. None of the original error
measures of Eqs. (6.1) to (6.13) are appreciably influ-

enced by the introduction of these very much more-

accurate auxiliary constants. Hence, the numerics of
the new transformed set can be considered to be essen-
tially just as uncorrelated with each other as were the
original ones. The new set (with the physical units
suppressed) is given below. With these we show on the
left the numbers of the earlier equations involved in
obtaining each equation. The equations in square brack-
ets are those which contribute negligibly to the error.

(6.1)
(6 2)
(6.3)
(64)
(6.5)
(6.6)
(6.7)
(6 8)
(6 9)
(6.10)
(6.11)
(6.12)
(6.13)

[7.5j [7.6~ [7.8~ [7.9~
[7.5) [7.6j [7.8] [7.9g
[7.5] [7.6] [7.8] [7.9]

[7.7]
[7G
[7 7j

[7.3j [7.4] [7.5]

c=2.997926&10"
c=2.997931)&10"

iVe/c= 9652 15.
1Ve/c = 9651.29

.Ve'/(n'c') =3.979879X10 "
Xe'/(n'c') =3.979423X 10 "

n'c/e = 2.425517X 10"
) = 1.002020

ec/() n) = 1968.750
ec/(Xn) = 1968.911
ec/(Xa) = 1968.869

ED=0.606179X10"
o.'c= 1.596412)&10'

(2.3 ppm)
(1.1 ppm)
(13 ppm)
(20 ppm)
(36 ppm)
(11 ppm)
(23 ppm)
(30 ppm)
(51 ppm)
(40 ppm)
(83 ppm)
(38 ppm)
(9 ppm)

(8 1)
(8.2)
(8.3)
(8 4)
(8 5)
(8.6)
(8.7)
(8.8)
(8.9)
(8.10)
(8.11)
(8 12)
(8.13)

Vfe adopt the following origin values:

o.p =0.007297000
cp= 2 99&900X10M
ep=4.802200&10 "

Ep =0.6025000)& 10"
Xp = 1.0020200

(n'c) 0——1.596268X 10'
(Xe/c) 0

——9651.174
(n'c/e) 0

——2.425548 X 10"
(1Ve'/n'c') 0 ——3.978966X10 "

(ec/Xn) 0 = 1968.959
()VX') 0——0.6061585X10":

and de6ne the linearized unknowns x~ x5 as follows

n= np(1+10-' xg)
c=c,(1+10-6 ~,)
e=eo(1+10 ' x3)

X=ED(1+10-' x4)
X=XO(1+10 ' xg),

so that the x s are the relative deviations of the primitive variables from the origin values expressed in ppm.

'7 E. R. Cohen, Phys. Rev. 88, 353 (1952).' Koenig, Pmdell, @Dd Kusch, Phys. Rev. 88, 191 (1952).
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Linearized Equations of Observation

8.7+ 2.3
10.3~ 1.1

101 ~13
12 ~20

229 &36
115 ~11
]3 +23
0 +30

—X5= —106 &51
—xs= —24 ~40
—xg= —46 ~S3

x4 +3xg —— 35 +38
90 &9

+x3 +x4
+x3 +x4

+2x3 +x4
+2xg +x4

X3

X2
—2X2
—2x2
+xg

—3xl
—3xl

3xl

xg +x2 +x3
—xg +x2 +xg

xJ, +x2 +xg

2xf +x2

We can now write our linearized equations of observation as follows:

Weight = 1/0'

0.198
0.830
0.0058
0.0025
0.0008
0.0083
0.0019
0.0011
0.0004
0.0006
0.00015
0.0007
0.0123

(8.14)
(8.15)
(8.16)
(8.17)
(8.18)
(8.19)
(8.20)
(8.21)
(8.22)
(8.23)
(8.24)
(8.25)
(8.26)

9. THE LEAST-SQUARES SOLUTION

The normal equations are now formed from the equations of observation (8.14) to (8.26), according to the
classical rule. They are:

Normal Equations

e A Const

0.14935xl
0.08375xl

—0.06145xl
—0.02730xl

0.00115xl

+0.08375x2
+1.08605xg
-0.04545x,
—0.02650x2
-0.00115x,

—0.06145x3
—0.04545x3
+0.04775x3
+0.02650x3
—0.00115x3

—0.02730x4
—0.02650x4
+0.02650x4
+0.01810x4
+0.00210x4

+0.00115x,= —1.2095
—0.00115x5= 8.3784
—0.00115xs= 2.8522
+0.00210xg= 1.7780
+0.00855xg —— 0.13720

(9 1)
(9.2)
(9.3)
(9.4)
(9.5)

The solution of this system of linear equations gives
the least-squares adjusted values of the unknowns. The
solution together with the corresponding values of the
primitive variables are given in Table II.

Substituting these values of the x's into the linearized
equations of observation (8.14) to (8.26), one obtains
the residues R; by which each of these thirteen equations
fails to balance. Dividing each of these residues by the
standard deviation assigned to the observed constant
in the equation, we obtain the column of "normalized
residues" labeled Case I in Table III, together with the
value of x'= (ZR;2/o P) and of r,/r;= Lz'/(X —

q) ]i, the
ratio of external to internal consistency.

The expectation value of x' for Case I is E—q=
13—5=8. The actual value 52.1 is seen to be much
larger. This corresponds to a ratio of error by external
consistency to error by internal consistency of r,/r;
= (52.1/8)&=2.55. This large value of y' we interpret
as probably meaning that the estimated uncertainties
(standard deviations) attached to the various input

TAsI.K II. Least-squares adjusted values.

TAsLK IIL Normalized residues of observational equations.

Rs/os
Case I

R;/ir;
Case II

Ri/cr~
Case III

Ri/o;
Case IV

(8.14}c, Froome 0.49
(8.15) c, Bergstrand —0.46
(8.16) F, Vinal (I} —1.11
(8.17) F, Vinal (Ag) 3.72
(8.18) p', B J —3.36
(8.19) p, ', STH —0.44
(8.20) y, TDH —0.47
(8.21) 'A, Bragg 1.42
(8.22) h/e, Felt 3.58
(8.23) Ig/e, BJW 2.37
(8.24) h//e, BS 1.45
(8.25) EV, Birge 1.26
(8.26) hED, Dayhoft —0.88

x'=52. 1

r,/r; =2.55&0.90

0.58—0.28
0.49—0.45

0.58—0.27—1,42
3.51—3.12
0.35—1.03
1.01

—3.06
0.52
1.29
0.53
3.34
2.09
1.31
1.47 —0.42 —0.18—0.68 —0.15 —0.06
31.9 26.9 10.15

2.31+0.95 2.32~1.04 1.84&1.06

measurements were throughout somewhat too small.
We have used the values given by the experimenters
themselves, reduced whenever necessary to the scale of
standard deviation. We tend to this view rather than
to the alternative possibility that systematic errors are

I.inearized unknowns

xg —— 36.1
x2= 9.80
x3= 142.1
x4= —45.9
@5= 42.9

Primitive variables

a =0.007297264
c=2.9979294X10'0 cm sec '
e=4.802882X10—"esu

%=0.6024723X10'4 (g mole) ~ (Phys. )
&=1.002063

present (though, of course, such a possibility cannot be

completely refuted) for the following reason. We have

plotted the normalized residues on probability integral

graph paper to see if they conform satisfactorily to a
normal probability integral distribution curve, which
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on such paper would appear as a straight line."If one
or two of the observational equations were subject to a
large systematic error, one wouM expect these to exhibit
residues inconsistent with the rest, i.e., departing mark-
edly from the curve for the normal distribution. Fig. 1

shows this plot, and the Auctuations from the normal do
not appear to be larger than one would expect for a
sample with eight degrees of freedom. We have also
performed three additional least-squares adjustments
designated as Case II, Case III, and Case IV. In Case II
Eqs. (8.16) and (8.17), the two Faraday determinations
by electrochemistry, were omitted. In Case III Eqs.
(8.22), (8.23), and (8.24), the three x-ray determina-
tions of the quantum limit of the continuous spectrum,
were omitted. In Case IV both complete sets of deter-
minations were omitted. Table III gives the normalized
residues for these four cases together with the resulting

99.98

99.98

998

99
98
96 ————

f- 90z
ttj

ce 80
4j

60

40

20-

'~hfe

~ I ~gati BS,J

CASE E.

I' tG. 2. The normalized residues I Ref/r'fI for a least squares
adjustment of all input data save the two electrochemical meas-
urements of the Faraday plotted in similar manner to those of
Fig. 1. The straight line shown corresponds to g~=31.9, the result
for this case in which there are eleven input equations and six
degrees of freedom. The ratio of the error by external to that by
internal consistency is RE/R; =2.31~0.95.

99.8

98
96

z"-ADONAI

1- 90z
Neo

oh/e Ff;LTffu. Ak l
l z

~h/e BJSW
$h/e 88 S ~

Nw' s s~o~r CASE i
hE~ DAYHOFF ~jc~oM =

4.0

FIG. l. The normalized residues
I R;/0; I

for a least squares
adjustment of the entire thirteen input observational data are
here shown as abscissas plotted without regard to algebraic sign
in order of increasing absolute magnitude on probability graph
paper whose ordinates are so distorted from a linear scale of
percent as to rectify probability integral graphs for Gaussian
distributions into straight lines of different slopes for different
values of y'. The straight line shown corresponds to y'= 52, 1, the
result for this case in which there are thirteen input equations and
eight degrees of freedom. The ratio of the error. by external to
that by internal consistency is RE/Ri= 2.55&0.90.

"We are indebted to Professor John Tukey of Princeton for
pointing out to us that for the case of a small number of degrees
of freedom it is very unlikely that the residuals should be exactly
.normally distributed. In the present instance let it be understood
therefore that we are merely comparing the actual distribution
of residuals with a normal distribution as a type-form but without
any. implication as to what precisely their expected distribution
should be.

values of x'. The normalized residues for each of the
four cases are shown in Figs. 1 to 4, and'all are approxi-
mately equally satisfactory. The values of x' and of
r,/r; also are not significantly more plausible or satis-
factory for Cases II, III, and IV than for Case I. For
these reasons, then, we think that the large value of
r,/r, in Case I probably does not reflect any single large
isolated case of systematic error am. ong the thirteen
input data. We are basing our adjusted output values

99.98

99.8

99

98

r VINYL, AQ i~

p'BL J
F' VIN

tf TD8H
IAB

fCFaOj CASE E.
)~MA~ z

BERGSTR AND
hEn DAYHOFF

0 'l.0

90

~80

I'"60

IRf /~&l ~
2.0 3.0 4.0

Fro. 3. The normalized residues IR;/0;I for a least squares
adjustment of all input data save the three x-ray measurements
of the short wavelength limit of the continuous spectrum plotted
in similar manner to those of Fig. 1. The straight line shown
corresponds to g~=26.9, the result for this case in which there are
ten input equations and five degrees of freedom. The ratio of the
error by external to that by internal consistency is RE/R; =2.3+1.0.

on Case I, because it rejects the results of more input
data than the other cases.

Adopting the error by external consistency as the
measure of error we obtain the error elements shown
in Table IV.

In computing the standard deviation of any function
of n, c, e, Ã, and X, the appropriate elements of the
error matrix must be used in Eq. (4.15) as explained in
Sec. 4. The tables of atomic constants and conversion
factors have been computed using the least squares
adjusted values of 0., c, e, Ã, and 'A given above together
with the auxiliary constants given in the tables, and
the standard deviation of derived values following each
(&) sign has been computed from Eq. (4.15), using
values from the error matrix of Table IV. The reader
must realize that if he uses any of these values (either
the unknowns n, c, e, S, ), or tabular values derived
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99.98

09.8

case, is

af ni ai +ns o 3 +2ninsa ra sris (10.2)

=o rs+4ass 4—o io srrs (10.3)

98

~ 90z
LLI

Q 80 , rz'~adjt. x t
c FROD

60
+A BRAPK
WC aFe&TSiawn CASE IK

From the error matrix given in Table IV, we find

0 q2= 128; o g2= 1981; 0 q0.3rq3= 365

o '= 128+7924—1460= 6592

af ——(6592)i=81.1 ppm.

11. DISCUSSION OF THE RESULTS
H

'~~- ~s~c.

FIG. 4. The normalized residues ~R;/a;I for a least squares ad-
justment of all input data save the three x-ray measurements of
the short wavelength limit of the continuous spectrum and the two
electrochemical measurements of the Faraday plotted in similar
manner to those of Fig. 1. The straight line shown corresponds to
x'=10.2, the result for this case in which there are eight input
equations and three degrees of freedom. The ratio of the error by
external to that by internal consistency is Rz/R;= 2.8+2.2.

from these) in further computations, he must compute
the standard deviation of his results by this more
generalized method. We give the following example as
an illustration.

10. ILLUSTRATIVE EXAMPLE OF COMPUTATION OF
THE STANDARD DEVIATION OF A FUNCTION

OF TABULAR VALUES OBTAINED IN THE
PRESENT LEAST-SQUARES ANALYSIS

Compute the standard deviation for the ionization
energy Is ——e'/(2as) of a hydrogen atom. The Bohr
radius is as ——tz'/(4z'me'). This is expressed as a func-
tion of two variables h and m which are not explicit
members of our set of unknowns o., c, e, X, and X. We
have, however, relations (7.7) and (7.8) which relate
h and m to those unknowns,

(7.7) h =2rre'/(nc)

(7.8) m=4rre'R /(n'c')

It is of interest to examine the results of the various
analyses for "best" values of the atomic constants made
over the last quarter century to obtain an impression
as to what progress toward precision and stabilization
of the values has been accomplished. Accordingly, we
have plotted in Fig. 5 the relative deviations from the
present values of h, o. ', e, m, and Ã and also the esti-
mated probable errors for determinations by various
authors in different years: R. T. Birge, 1929; R. T.
Birge, 1932;F. G. Dunnington, 1939;R. T. Birge, 1941;
R. T. Birge, 1944; DuMond and Cohen, 1947; DuMond
and Cohen, 1950; DuMond and Cohen, 1952. The
marked instability from 1929 to 1939 is chief to be
ascribed to the discrepancy arising from R. A. Milli-
kan's use of the incorrect value of the viscosity of air
(Harrington's determination) in reducing the data of
his oil-drop experiment to determine e. Numerous lesser
discrepancies connected with e/m and with It/e which
existed at that time have since been discovered and
eliminated also.

The improvement as regards both stability and pre-
cision has been so great after 1939 that we have felt it
worthwhile also to represent the last thirteen years in
Fig. 6 to a scale of deviation fivefold that in Fig. 5.

Examination of these charts, especially Fig. 6, shows
that the adjusted "best" values have changed in the
last two years by from five to nine times the estimated
probable errors of the December 1950 evaluation.

and upon substitution we find that ao ——n/(4zR ) so
that our desired quantity is Is= 27rR e'/n. The stand-
ard deviation in R„(0.11 ppm, see Eq. 7.5) is com-
pletely negligible as against contributions of e' and o..
In terms of the linearized variables the function y= e'/n
whose standard deviation we seek then is

C

e
E

128
3.30

365—355
128

ErrOr matrix, ttz~' =oso&rsvp
C e

—3.30
6.34—4.13

10.47—1.82

365
4.13

1981
—2454

820

(in ppm')
N

—355
10.47—2454

3568—1158

128
1.82

820—1158
1140

TABLE IV. Error elements (external consistency), Case I,

f= 2x3—xi) (10.1)

in which we see that the values of the coeS.cients are
ns=2 and ni= —1. (In general, whatever the form of
the primitive function p the a, s are determined from
it by the formula n, = (Bp/Bu;) (u;/ p), wherein u; is one
of the primitive unknowns, i.e., in the present solution
n, c, e, 1V, or X). It remains then simply to apply for-
mula (4.15) to obtain aq' which, written out for this

C

e
E

11.33

1.000—0.116
0.714—0.521
0.308

Correlation coefficients r'&
C e N

—0.116
1.000—0.036
0.070
0.021

0.714—0.036
1.000—0.923
0.546

—0.521
0.070

—0.923
1.000

—0.574

Standard errors oz (in ppm)
C e N

2.52 444 59.7 33.8

0.308—0.021
0.546—0.574
2.000
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Although the changes are small in the absolute sense
(the largest being 224 ppm, for I() they are, at first
sight, disturbingly large relative to the estimated prob-
able errors of December, 1950. However, we believe
the explanation for this is not hard to find, if we recall
that the December, 1950values, unlike the present ones,
were aSicted with a systematic uncertainty because of
the two uncertain Bethe-Longmire correction terms for
the finite spatial extension of the nuclear and electronic
dipoles, in the formula connecting AvH, the hydrogen
hyperfine structure shift, with the Sommerfeld con-
stant o.. We supplied each numerical output value in

the solution with a so-called F-coeKcient to facilitate
revising the numerical values when more accurate infor-
mation became available regarding the exact magnitude
of the Bethe-Longmire correction terms. We find that
if we assign the value V=86.2+9 ppm, that is to say
if we increase G' in the formula

e

O

A
AvH —— (p,/po)R cG—',

4m'

by 86.2 ppm" (see p. 180 ff of the December, 1950

l ( ( ( ( i ( «E (

FIG. 6. History of relative fluctuations in the best adjusted
values and probable errors of five atomic constants h, n ', e, m,
and N over a 13 year interval plotted to five times larger scale of
fluctuation than in Fig. 5. The fluctuations plotted are the per-
cent deviations from the present 1952 values. As in Fig. 5, prob-
able errors rather than standard deviations are plotted as the
indices of precision. The full lines are plotted through the Decem-
ber, 1950 values and their probable errors as they were stated in
the tables without applying any F-coeKcient correction for the
then uncertain Bethe-Longmire dipole correction terms. The
dotted lines are plotted through the revisions required in the
December, 1950 values, if these are modified by applying a
F-coeKcient correction to each output value with F=86.2 ppm,
as explained in the text.

Ig g g rN «&k &~s Is s&«

FIG. 5. History of relative fluctuations in the best adjusted
values and probable errors of five atomic constants 1z, a ', e, m,
and N over a 23-year interval. Fluctuations plotted as percent
deviations from the present 1952 values. Probable errors rather
than standard deviations are plotted to conform with the older
usage prevailing through most of the interval. The large Quctua-
tions in the first decade are chiefly due to the e6ects of Millikan's
use of Harrington's .erroneous value of the viscosity of air in
reducing his oil-drop data to calculate e.

"This increase of 86.2 ppm was computed by solving for a new
value of G' to compare with the 1950 value, G'=0.004751364.
The new value G' was obtained from Eq. (11.1), using our present
new adjusted best values of u and c and a value of p~/p, 0 con-
sistent with the results of Koenig, Kusch, and Prodell (reference
60) Eq. 7.6, corrected for diamagnetism using Ramsey's correction
(1.000027). The new value of G thus is not afRicted with any
uncertainty regarding the Bethe-Longmire nuclear correction term
as was the 1950 value. We regret to point out a misprint in the

report), then the application of the resulting corrections
to the five variables depicted in Fig. 6 simultaneously
brings all of them fairly satisfactorily into agreement
with the values obtained in the present adjustment.
This is shown with the dotted lines in I'ig. 6.

In addition to the shift in the values of the constants,
a change of 86.2 ppm in G' increases the probable errors
of the 1950 output data by a factor of 1.48, if one uses
external consistency (which has now become the larger
measure of error) in place of the internal consistency
used in the 1950 report. The evaluation of the variation
of x' and, hence, of the measure of the errors by external
consistency is contained in Table XXXVII of that
report.

The general conclusion seems to be a reassuring one,
namely, that the constants are settling down to stable
values and that successive determinations, even though
many quite new and different types of data may enter,
not only exhibit smaller and smaller precision measures

by external consistency but also yield values which
remain reasonably close to the limits set by preceding
precision measures.

The Bethe-Longmire correction factor for the spatial

cited formula for b,v~ near the bottom of p. 180 of the December,
1950 report (reference 33), in which a factor c/4m' was omitted.
It should read as does Eq. 11.1.
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extension of the electronic dipole has been compu ted
by R. Karplus and A. Klein, '4 who conclude that this
part of the correction alone requires a F value of 96.2
ppm to be applied to the results of the December, 19SO
report, The conclusion seems to be that the factor
correcting for the spatial extension of the nuclear dipole
must be of the order of the uncertainties in the above
calculations, or only a few ppm at most.
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ThBLE OF LEhST SQUVRES—hD JUSTED OUTPUT
VALUES (NOVEMBER, 1952)

I. Auxiliaxy Constants Used

These auxiliary constants are quantities which are
uncorrelated (observationally) with the variables of the
least-squares adjustment.

Rydberg wave number for infinite mass"

R„=109737.309~0.012 cm

Rydberg wave numbers for the light nuclei

RH ——109677.576~0.012 cm

RD ——109707.419~0.012 cm

RH.' = 109717.345~0.012 cm

RH,4 = 109722.267&0.012 cm

Atomic mass of neutron

n = 1 .008982+0.000003

Atomic mass of hydrogen

H = 1.008142+0.000003
"This differs from the value E„=109737.311~0.012 cm

given by E. R. Cohen (reference 47) and which was used in the
least squares adjustment. In reference 47 a tentative value
Xns =5.48785)( 10 4 for the atomic mass of the electron was
used with the proviso (page 359) that "an increase of 1 part per
million in the electron mass will produce an increase of 0.00005
cm ' in the Rydberg. " (The coeKcient 0.0005 cm ' in the text is
a typographical error. ) The present value has, therefore, been
revised using this coefficient to accord with our present output
value of Em and similar modifications have been made in the
Rydberg values of the light nuclei.

Atomic mass of deuterium

D =2.014735+0.000006

Gas constant per mole (physical scale)

Eo= (8.31662&0.00038) X10' erg mole ' deg ' C.

Standard volume of a perfect gas (physical scale)

Vo= 22420.7~0.6 cm' atmos mole

II. Least-Squares Adjusted Output Values

(The quantity following each & sign is the standard
error by external consistency)

Velocity of light

c= 299792.9+0.8 km sec

Avogadro's constant (physical scale)

X= (6.02472&0.00036)X10" (g mole) '

Loschmidt's constant (physical scale)

I-o=LV/Vo= (2.68713&0.00016)X10"cm '

Electronic charge

e= (4.80288&0.00021)X 10 "esu
e'= e/c= (1.60207&0.00007) X10 "emu

Electron rest mass

m= (9.1085&0.0006) X10 "
g

rN, = ~„/1V= (1.67243+0.00010)X10 '4
g

Neutron rest mass

m„= e/iV= (1.67474+0.00010)X10 '4
g

Planck's constant

h= (6.6252+0.0005) X10 "erg sec
k= h/(2s) = (1.05444+0.00009)X10 "erg sec

Conversion factor from Siegbahn x units to milliang-
stroms

Xg/X, = 1.002063+0.000034

Faraday constant (physical scale)

F= JV e= (2.89360&0.00007) X 10'4 esu (g mole) '

P =Pe/c= (9652.01&0.25) emu (g mole) '

Charge-to-mass ratio of the electron

e/m= (5 27299+0 .00016)X1.0" esu g
'

e'/m= e/(mc) = (1.75888+0.00005) X10"emu g
'

Ratio k/e

&/e= (1.37943+0.00005) X10 '" erg sec (esu) '
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Fine structure constant

u= c'/(hc) = {7.29726+0.00008) X10 '
1/n= 137.0377+0.0016

n/2~ = (1.161396+0.000013)X10 '
n'= (5.32501+0.00012)X10 '

1—(1—a') &= (0.266254+0.000006) X 10 '

Atomic mass of the electron (physical scale)

Em= (5.48760+0.00013)X 10 '

Ratio of mass of hydrogen to mass of proton'-'

E'te,
H/H+= 1— (1——,'n')

H

Compton wavelength of the neutron

X. =h/m„c= (13.1958+0.0004) X 10 "cm

)t„„=X,„/(2~) = (2.10017+0.00007)X10 "cm

r =c'/(mc') = (2 81784+0 00010)X 10 " cm
=~'/(4~x. )

rP= {7.9402+0.0005) X10 "cm'

8
mr/= (6.—65196+0.0005)X10 '"" cm'

3

Atomic mass of proton

=1.0005446I0+0.0000000I3 1 n (5 5.946 )
~~H= ~is~' 1+—+(—

(8
=0.365869~0.000008 cm-~

=10968.49+0.25 Mc sec '
Ratio of proton mass to electron mass

H+/Ar m = 1836.13+0.04

Reduced mass of electron in hydrogen atom

p=m&+/H= (9.1035+0.0006) X10 "g
Schrodinger constant for a 6xed nucleus

2m/h'= {1.63844&0.00016)X10"erg ' cm '

Schrodinger constant for the hydrogen atom

2p/h'= (1.63755+0.00016)X10"erg ' cm '

FlI'st Bohr radius

a0= h'/(mc') = (5.29171&0.00006}X10 ' cm

=n/(4mB )

Radius of electron orbit in normal H', referred to center
of mass

ao' ——ao(1 n') & = (5.2—9157+0.00006) X 10 ' cm

SepRI'Rtlon of proton RIll electI'on ln normRl H

uo" =ug'8 /RH= (5.29445+0.00006) X10 ' cm

Compton wavelength of the electron

X„=h/(mc) = (24.2625+0.0006) X10 "cm

Fine stlucture separation 1Q deuterium

BED= AZJIRD/Ryg =0.365969+0.000008 cm '

= 10971.48+0.25 Mc/sec '

Zeeman displacement per gauss

(c/mc) j(4m c) = (4.66879+0.00015)
X j.0 cID gRUSS

k= R0/A'= (1.38042+0.00010)X10 "ergs deg-'

k= (8.6164+0.0004) X10 ' ev deg '

1/k=11605.7&0.5 deg ev '

First 1RdlRtlon constant

c~——8~bc = (4.9919+0.0004) X 10 "erg cm

Second radiation constant

c2= hc/k= (1.43884%0.00008) cm deg

Atomic speci6C heat constant

c /c= (4 79946+0 00027) X 10 "sec deg

%ein displacement law constant"

)I„„.„T=c2/(4. 96511423)=0.28979+0.00005 cm deg.

0 = (m'/60) (k'/h'c') = (0.56686+0.00005)

X 10 ' erg cm ' deg ' sec '
Compton wavelength of the proton

=~'/(2~~} Stefan-Boltzmann constant

X,.=X../(2~) = (3.86150~0.00009)X10-~ cm
= u'/ (4s.R„)

X.„=h/m„c= (13.2139+0.0004) X10 "cm

X,„=)j„„/{2~)= (2.10307+0.00007) X 10 '4 cm

6~ The binding energy of the electron in the hydrogem atoxn
has been included in the quantity. The mass of the electron
when found in the hydrogen atom is not m, but more correctly
n~(1 —~a'+ ).

5'o/~o=4+» ((2~~o)'h '& ')
= —5.57324+0.00011

So———(46.3505&0.0017)X 10' erg mole ' deg '

63 The numerical constant 4.96511423 is the root of the tran-
scendental equation x=5(j.—e ).



708 JESSE W. M. DUM'ON D AND E. RICHARD COHEN

Bohr magneton

pp = he/ (4v me) = —,
' el'„= (0.92732&0.00006)

X10 "erg gauss '

Anomalous electron moment correction

1+——2.973—=p,/ps ——1.001145356&0.000000013
2~ ~2

Magnetic moment of the electron

p.= (0.92838+0.00006) X10 "erg gauss '

Nuclear magneton

is =he/(4 mvcv) =pplVm/H+= (0.505038+0.000036)
X10 "erg gauss '

Proton-moment

p= 2.79277~0.00006 nuclear magnetons
= (1.41045&0.00009)X10 "erg gauss '

Gyromagnetic ratio of the proton in hydrogen, un-
corrected for diamagnetism

de Broglie wavelengths, P~ of elementary particles'4

Electrons

XD,——(7.27373~0.00016) cms sec—'/v

= (1.55226& 0.00008) X 10 " cm (erg) '*/(E) l

= (1.226377&0.000032) X10 cm (ev) &/(E) i

Protons

4&v= (3.96145&0.00013)X10 ' cm' sec '/v

= (3 62261~0 00020) X 10 "cm (erg) i/(E) *'

= (2.86208~ 0.00012)X 10 P cm (ev) ~/(E) l

Neutrons

Xn~= (3.95599&0.00013)X10 ' cm' sec '/v

= (3.62005&0.00020) X 10 "cm (erg) &/ (E)l

= (2.86005&0.00012)X 10 cm (ev)&/(E) l

Energy of 2200 m/sec neutrony'= (2.67520&0.00008) X 104 radians sec ' gauss '

Gyromagnetic ratio of the proton (corrected)

y = (2.67527&0.00008) X 104 radians sec ' gauss '
&22oo =0 0252977~0.0000006 ev

Velocity of 1/40 ev neutron
Multiplier of (Curie constant)i to give magnetic mo-

ment per molecule vp p» = 2187.017&0.028 m/sec

(3k/1V) '*= (2.62178&0.00017)X 10 "(erg mole deg ') l
The Rydberg and related derived constants

Mass-Energy conversion factors

1 g = (5.60999&0.00025) X 10"Mev

1 electron mass= 0.510984&0.000016 Mev

1 atomic mass unit=931. 162~0.024 Mev
1 proton mass= 938.232~0.024 Mev

1 neutron mass= 939.526&0.024 Mev

Quantum energy conversion factors

1 ev= (1.60207&0.00007) X 10 "erg

E/v= (1.98620&0.00016)X10 "erg cm

EX,= (12397.8&0.5) X10 ' ev-cm

EX,= 12372.2&0.4 kilovolt x units

E/v= (6.6252&0.0005)X 10 "erg sec

E/v= (4.13544&0.00015)X10 "ev-sec

v/E= (5.0347&0.0004) X10"cm ' erg
—'

v/E= (8065.98+0.30) cm—' ev—'

v/E= (1.50938~0.00012)X10ss sec—' erg
—'

v/E= (2.41812~0.00009) X10'4 sec—' ev—
&

R„=109737.309~0.012 cm—'

E„c=(3.289847&0.000008) X10rs sec '

E„he= (2.17961&0.00018)X10 "erg
R„Pic'X10 '

= 13.6050~0.0005 ev

Hydrogen ionization potential

Io= 13.5978&0.0005 ev

hc'
1+—+ X10 '

e 4

'4 These formulas apply only to nonrelativistic velocities. If the
velocity of the particle is not negligible compared to the velocity
of light c or the energy not negligible compared to the rest mass
energy, we must use Xn=X,Leis+2) j &, where X, is the appro-
priate Compton wavelength and e is the kinetic energy measured
in units of the particle rest mass.


