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~HERE are two methods, generally speaking, which
are used to analyze experimental di6raction data

in terms of structure. The one consists in the theoretical
calculation of the scattering pattern for various models
and comparison with the observed pattern. The other,
taking advantage of the trigonometric form of the
equations, consists in Fourier inversion, to obtain struc-
tural information directly. We may remark that the two
methods are equivalent in principle, but that actually
they do not entirely replace each other. For example, in
the study of gas-molecule structure by electron di6rac-
tion, where the two methods are called the correlation
method and the radial distribution method, certain
aspects of the experimentally determined intensity
function are usually better known than others: The
correlation method is much better suited to this situa-
tion than the less laborious radial distribution method,
which requires essentially indiscriminate use of the in-
tensity data. In practice, the radial distribution method
is often used to narrow the choice of possible models and
parameter values, while the visual method serves to
analyze the remaining possibilities.

In this paper many of the problems connected with
the use of the Fourier methods will be discussed. Some
of these problems have been handled satisfactorily in
one way or another before, but we intend to deal with
them from a unified point of view, at the core of which
are two simple facts of Fourier theory. They are that the
Fourier transform of a sum of products is again a sum,
the sum of the transforms of these products. The nature
of these transforms is discussed most simply with the
aid of the convolution or folding theorem, which states
that multiplication of two functions corresponds to the
folding of their transforms, as discussed in Sec. 3.

A main problem in the inversion of di6raction data
arises from the absence of experimental data for scat-
tering angles greater than a limiting angle; it and related
problems are treated by considering the eRect of
modifying the observed intensity function, by multipli-
cation with suitable factors before inversion. A number
of such factors —we call them modification functions
are discussed and a general treatment of a special class
of them is attempted. Next, the difficulties are con-
sidered which arise from the presence in the intensity
function of the atomic scattering factors and tempera-
ture factors, leading to a generalization to include such
effects in a comp/etc modification function. These matters
are all first illustrated by the special one-dimensional
case of the electron-di6raction pattern, and later applied

6

1. THE RADIAL DISTRIBUTION FUNCTION IN
ELECTRON DIFFRACTION

The structure sensitive part of the expression which
describes the scattering of fast electrons by gas mole-
cules not involving internal rotations is of the form'

sI'(s) =const P'

LZ*—f'(~) jLz —f (~)j
X exp( a,,s—') sinsr;;

(1-1)
S'rij

where the sum extends ov'er all pairs of atoms of a
molecule, atom i having atomic number Z; and x-ray
form factor f,(s) The effe. ct on the scattering of zero-
point and temperature variation of the interatomic
distance r;, is described by the so-called temperature
factor exp (—a,;s'), in which a,, is given by one-half the
mean-square variation (8r;P)A, of r;,. The variable s is
(4x/X) sin(q/2), where y is the angle between incident
and scattered beam and X the electron wavelength.

The factor (Z,—f, (s)) is often nearly proportional to
the average ((Z f(s))/Z)A, ta—ken over all atoms, so that
(1-1) may be approximated by

Z—f(s)
sI'(s) = const

Av

exp( —as') Z@;
—sinsr, ;exp (—ba, ,s'), (1-2)

ij rig'

where u is a convenient reference value of the u;, and
6u"—u"—u

The film exposure due to the electrons scattered
according to (1-1) or (1-2) is superposed on a smooth,
structure-insensitive background caused by the "atomic"
elastic scattering (described by the terms with i=j,
which in (1-1) were omitted from the complete expres-
sion), by inelastic scattering, and by processes occa-
sioned by imperfections of the experimental arrange-
ment. It will become evident, however, that the
expression

ZiZ jsI"(s) =P' —exp( —6a, ,s') sinsr, ,
ij rij

' I.. O. Brockxvay, Revs. Modern Phys. 8, 231 (1936).

to x-ray di6raction of liquids and amorphous solids.
Final sections deal with the application of modification
functions to the analysis of crystal structures.
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obtained by suppressing the monotonic factor in front of
the summation symbol in (1-2) or an expression of the
form of

Sine inversion' of (1-8) yields

(1-9)

LZ' —f'(s) 3hZ —f (s)j
X

'e7

where rD(r) is essentially rD, (r) except that it is
antisymmetrical because sinsr is odd, whereas rD, (r)
was defined as vanishing for negative r; rD(r) may also
be expressed as

Xexp (—8a,,s') sinsr, , (1-4)

obtained by dividing (1-1) by P;LZ,—f;(s)]', or some

similar factor, are more convenierit for the radial
distribution method. Furthermore, (1-3) and (1-4) are
the more natural functions to use if di6raction photo-
graphs are to be interpreted visually, because what is

apparent to the eye is approximately the ratio of the
fluctuating part of the intensity distribution to some
smooth background. ' In the correlation method, func-
tions of one of these forms calculated for molecular
models of interest are directly compared with the
observed intensity distribution.

For the discussion of the radial distribution method
the further simplified function

(2p * ZiZ
sI(s)=

(

—
~

P' sinsr, ;, (1-5)

which describes the structure sensitive part of the
scattering by a rigid molecule made up of point atoms,
is a convenient starting point. The factor (2/s. )& pro-
vides a suitable normalization. Such a molecule is

characterized by a distance spectrum which may
formally be expressed by the radial distribution function

(1-6)

and
8(r) =0 unless r=0

The function r D, (r) has infinitely high and infinitely

narrow peaks for values of r which represent interatomic
distances. With it Eq. (1-5) may be expressed by

~00

sI(s) = (2/ir)&~ rD. (r) sinsrdr.
0

2 P, A. M. Dirac, Quantum Mechanics (Oxford University Press,
London, 1947}, third edition, p. 58. An example of a 8-function

pertinent to Fourier theory is S(x) =f exp( 2xihx)dh—

where 8(r) is the Dirac delta function, defined by the
two conditions~

'j rQ

The problem now is to obtain from the actually observed
intensity curve, which is known for a finite range of s
only, a radial distribution function which is a faithful
representation of the distance spectrum of the molecules.

2. THE LIMITATION OF OBSERVED DATA

H the integration in (1-9) is not extended over the
whole range in which the integrand is diGerent from
zero, the resulting function shows certain spurious
maxima and minima which may make its interpretation
very laborious if not impossible. Bragg and West dis-
cussed such eGects in the case of the two-dimensional
Fourier series of crystal structure analysis and pointed
out a close analogy to di6raction eGects which occur in
an optical image in consequence of the finite aperture of
the optical system.

These spurious features may be greatly diminished or
entirely eliminated by multiplying the integrand of
(1-9) by a suitable factor. The function exp( —as') is
often used for this purpose, with u chosen so that the
resulting integrand has a negligible value beyond the
upper limit of s for which experimental data are avail-
able. This function has been called the artificial temper-
ature factor, a name suggested by its identity in form to
the temperature factors in the intensity formula (1-1).
Sommerfeld used this convergence factor in his doctorate
thesis, ' where he succeeded in obtaining with its aid the
first precise result concerning the validity of the Fourier
integral theorem. Bragg and%est, 4 who referred to it as
an "arbitrary temperature factor, "introduced its use in
crystal structure analysis, and Degard' introduced it in
electron diGraction investigations, at the suggestion of
Professor L. Pauling. A convergence factor of this type
was perhaps first introduced by Weierstrass~ who used
the factor r "'(r(1) in his discussion of Fourier series.

Quite a different mode of procedure was early used by

I The background of Fourier theory needed for our discussion
is expounded in various textbooks. See, for example, H. S. Carslaw,
Fourier Series and Integrals (Macmillan and Company, Ltd. ,
London, 1930) and W. Rogosinski, Fourier Series (Chelsea Pub-
lishing Company, New York, 1950}.Special points will be referred
to standard treatises.

4 W. L. Bragg and J.West, Phil. Mag. 10, 823 (j.930}.
~ H. S. Carslaw, reference 3, p. 321.' C. Ddgard, Ph.D. thesis, University of Liege, 193/.
' M. Bocher, Annals of Math. 7, 81 {1906},footnote, p. j.03.
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Havighurst, Compton, and James and Firth' and has
been applied recently by van Reijen' in an x-ray
analysis of the electron distribution in diamond. It
consists in using extrapolated values at large values of s,
where sI(s) (or the structure factor in the crystal case)
is not experimentally accessible. Although an exact
knowledge of sI (s) for even an arbitrarily small range of
s would define sI(s) for all values of s, such knowledge
(as would define sI(s) and all its derivatives at a given
point) can never be obtained experimentally, however
small the experimental error, and the extrapolation
must be carried out judiciously. Even so, it is difFicult

to judge the uniqueness of the results, and deceptively
false distributions can be produced. " For the case of
atomic scattering, Hauptman and Karle" have recently
discussed the use of the criterion that the distribution
function should be everywhere positive as an aid to-
wards a unique extrapolation of sI(s). Nevertheless, it
would seem that more than the criterion of non-

negativeness is required —perhaps also the more com-

plex condition of smoothness of the distribution function
and conditions about its asymptotic behavior, e.g., that
for finite molecules rD(r) must vanish when r exceeds a
certain value.

In electron di6raction the absence of data for s less
than some minimum value presents a similar problem
which also has often been handled by extrapolation,
usually either by use of the theoretical intensities for an
approximate model of the molecule or even by some

gross appeal to experience. "Since the desire is here to
locate interatomic distances with precision rather than
to study the distribution of the outer electrons, and
since the low frequency components contributed by the
inner part of the intensity pattern have very little e6ect
on the locations of the peaks of the radial distribution
function, this is a valid procedure of convenience, just
as the extrapolation beyond the upper limit of s in the
crystal case is above reproach if it is only the broad,
disuse aspects of the distribution function about which
information is desired. If the extrapolation to s= 0 is not
used, "the problem of convergence is similar to the ones
discussed earlier in this paragraph; heretofore, however,
it does not seem to have been handled by the explicit use
of a convergence factor.

(3-1)

which occurs if sI(s) is multiplied by a modi6cation
function M(s). In this discussion the folding theorem of
Fourier integrals' "'~ is very useful. If f(x), F(t) and
g(x), G(t) are two sets of Fourier transforms such that

f(x) = (2s) ) F(t) exp(itx)dh,

&(t) = (2ir) & f(x) exp( i')dx, —

g(x) = (2m) l G(t) exp(itx)dt,

(3-2)

G(&) = (2s)-l g(x) exp( itx)dx, —

then the Fourier transform of the product f(x).g(x) is
given by

R(t) = (2s) ~ f(x) g(x) exp( i')dx—

= (1/2n. )
~

f(x) G(u) exp(iux)du exp( —itx)dx

t= (1/2s)) G(u)) f(x) exp[ ix(t u)7dx—du—

= (2ir) & G(u)F(i —u)du. (3-3)

The function R(t) is known as the folding ("Faltung"),
resultant, or convolution of 6 and F. Inversely, the
Fourier transform of R(t) is

3. THE FOLDING THEOREM AND MODIFICATION
FUNCTIONS

%e shall now consider'4 the problem of the conver-
gence factor and, more generally, of the change in
rD(r) to

' R. J. Havighurst, Phys, Rev. 29, 1 (1927); A. H. Compton
and S. K. Allison, X-Rays in Theory and Experiment (D. Van
Nostrand Company, Inc. , New York, 1935), second edition;
R. %. James and E. M. Firth, Proc. Roy. Soc. (London) A117,
62 (1927).' L. L. van Reijen, Physica 9, 461 (1942);J.O. Bouman, X-Ray
Crystallography (North Holland Publishing Company, Amster-
dam, 1951), Chap. 3.

'0 D. %. J. Cruickshank, Acta Cryst. 2, 65 (1949), see (10.1),
(10.2), and appendix; H. Viervoll, Skrifter Norske Videnskaps
Akad. , Oslo, Mat. Naturv. Kl. No, 2, 1950.

"H. Hauptman and J. Karle, Phys. Rev. 77, 491 (1950).
"See, for example, Sha8er, Schomaker, and Pauling, J. Chem.

Phys. 14, 659 (1946).
"H. Viervoll, Acta Chem. Scand. 1, 120 (1947).

(2s)-& R(t) exp(itx)dt= f(x) g(x), (3-4)

'4 J. Waser, Ph.D. thesis, California Institute of Technology,
1944.

'~ E. L. Titchmarsh, Introduction to the Theory of Fourier Inte-
grals (Oxford University Press, London, 1937).

'6 S. Bochner, Vorlesungen aber Fouriersche Integrale (Akadem-
ische Verlagsgesellschaft, Leipzig, 1932).

so that the multiplication of two functions corresponds
to the folding of their transforms in Fourier transform
space and inversely. The indicated derivation is only a
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formal one, but the result can be shown to be valid for
the functions considered here. ""

An important example is provided by the Gaussian
distribution function:

f(x) =exp( —ax'),

F (t) = (2a)
"

exp( P/—4a),

g(x) =exp( —bx'),

G(t) = (2b) i exp (—t2/4b),

f(x)g(x) =exp( —(a+ b) x&],

R(t) = L2(a+b)] lexpL —t'/4(ayb)].

(3-5)

f(x) = (2/n. )'* ~ F(t) sintxdt= f( x), — —

F(t) = (2/~)'
'

f(x) sintxdx= F( t);——

c
g(x) = (2/s)& G(t) costxdt=g( x), —

0

G(t) = (2/7r)l g(x) costxdx=G( t);—
0

(3-6)

R(t) = (2/s)i f(x) g(x) sintxdx

= (2x) ' F(u)G(t —u)du= R( t)——

For our problem we identify the odd function sI(s)
with f(x), the even function M(s) with g(x), the
distribution function rD(r) with F(t), and the cosine
transform of M(s),

T(r) = (2/m) l M(s) cossrds= T(—r), (3-7)
J0

The transform of a Gaussian is again a Gaussian, and
the half-widths at half-height, 0.83(a)

*
and 0.83(4a)'*

(one finds exp( —0.83)'=0.5), are in a reciprocal rela-
tion. Since the resultant R(t) is the transform of the
product f(x)g(x), it must be Gaussian, as shown, with
half-width equal to the square root of the sum of the
squares of the half-widths of F (t) and G(t).

For the special case that f(x) is odd and g(x) even

I the latter so that f(x)g(x) is odd], the above formulas
become after absorbing factors ~i

allowable form, and is in particular not tied to the very
special rD(r) defined by (1-9) and (1-10),which merely
serves to provide a simple example. The integrand of
(3-8) may be written in several equivalent ways by
changing the variable of integration or taking advantage
of the symmetries of T(u) and uD(u). Correspondingly,
the folding process may be viewed in several ways. The
one indicated in (3-8) may be described by the following
three steps: (1) Superposition of uD(u) with a (re-
flected) T(u) whose origin has been shifted by r. (2)
Multiplication of corresponding values. (3) Integration
over u. This has to be repeated for all (positive) values
of r, and is in general a complicated procedure. For the
idealized rD(r) (1-10) the result is, however, simply

, zz
rD'(r) = (2') ' g' $T(r r;,) T(—r+r;;—)], (3-9)

ii rij

which entails the replacement of the infinitely sharp
peaks of rD(r) (1-10) by the features of the function
T(r). This suggests that the folding for a continuous
distribution may also be viewed in terms of a decompo-
sition of rD(r) into a suitably weighted array of b-

functions, which are then to be replaced by T's and
summed. It should be noted that the features of
T(r+r;;), though centered at r= r,;, may exten—d
across the origin to positive values of r, so that the
second term in (3-10) may in some cases be of practical
importance.

There are of course other combinations of odd and
even functions f(x) and g(x) besides the one discussed
here in detail. They lead to equations analogous to
(3-6), which are at times very useful.

4. EXAMPLES OF MODIFICATION FUNCTIONS

A useful modi6cation function must substantially
equal zero outside the s range for which sI(s) is known
(or assumed); moreover, the transform T(r) should be
such as to make analysis of the resulting rD'(r) in terms
of the desired distribution function rD(r) straight-
forward and economical. In general, the useful trans-
forms will have a main peak flanked by subsidiary
features; it will be desired to have the main peak sharp,
for resolving closely spaced peaks, and the subsidiary
features weak, to minimize the influence of a given peak
on all the others. Unfortunately, these requirements are
not entirely compatible, and compromise has to be
made in the interest of convenience,

Convenience, it must be realized, is all that is ever
achieved in practical Fourier analysis: An integral
equation

with G(t). The result is sI(s) = (2/s)' t rD(r) sinrsdr (4-1)

rD'(r) = (2x) 'jt uD(u) T(r u)du, —(3-8) is merely transformed into another integral equation

which of course pertains to any uD(u) of mathematically
(4-2)
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FIG. 1.Examples of modifjcati+n functions M{s) and their transforms T(r~

which stiH has to be solved in one way or anothy or ano er.
or the apphcations considered here the convenience

achieved is indeed often very great. Even more im-

portant is the circumstance that in practice no unique
soution is possible without the use of assumptions

based on external knowledge —and these assumptions
can usually be introduced by far the more easily and
naturally into the consideration of the transf drans ormc

rlIHc examples ale thc many succcssfu
interpretations which have been made of incomplete
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electron density functions in the course. of the analysis
of complex crystal structures.

Figure 1 presents a number of functions for which
both function and transform may be expressed in
simple form and which might have possible interest as
modificatien functions. The ordinate scales are such
that all the functions have the same maximum height;
likewise all the transforms. The abscissa scales are all
in terms of the same parameter s, which frequently but
not always is identified with the upper limit of s for
which experimental information is available. The half-
width is included in most cases also. It is a measure of
the sharpness of the peak.

The first function (a) corresponds simply to the effect
of breaking off of the integral in (1-9) at s,. The next five
examples (the first corresponds to Fejer's summation of
a Fourier series by taking first Cesaro means) cut off
more gradually at s,. They lead to less pronounced
secondary maxima, but also to a broader main peak.

Some of the remaining functions are defined with
reference to s, even though they do not cut off there.
But in practice all the functions have to be assigned the
value zero for s) s„as corresponds [repeated applica-
tion of (3-3)] to folding the illustrated complete trans-
forms with (sins, r)/s. r. The resulting effective trans-
forms

sins, (r—u)
T'(r) = (2') & T(u) du

s, (r—u)
(4-3)

are of somewhat changed shape, usually with added
secondary maxima, in a way that one can learn to judge,
at least roughly, directly from the M(s) values, indi-
cated in Fig. 1 by broken lines, which have to be
neglected. Function (g) is the artificial temperature
factor; the graph corresponds to a value of u for which
3I(s,) =0.10. Neglecting the values of M(s) for s)s.
leads to a transform which has practically the same
half-width at half-height ( 2.7/s, ) as the one shown
but shows weak secondary maxima;" actually, it re-
sembles transform b quite closely. The transforms h and
k will suffer similar changes, and i and j considerably
smaller and somewhat diferent ones. Examples i and j
(and b and c) involve the form [(sinas)/as)]", which has
cosine transforms that dier from zero in a finite region
~r

~

&ua only. "Functions having this property are of
special interest because they correspond exactly —not
merely approximately —to the finite upper limit of
integration; a general treatment of them is given below.

Functions k and l are of interest if it is desired to give
the inner part of sI(s) especially small weight, perhaps
either because the small angle data were unreliable or in
order to discriminate between terms of rD(r) which had
different real temperature factors (i.e., values of (5r,P)A„)
Modification functions such as these of course also tend
to emphasize large values of s, and so lead to transforms

"V. Schomaker, Ph, D. thesis, California Institute of Tech-
nology, 1938.

with relatively sharp main maxima and correspondingly
high resolving power. The transforms shown both have
large minima adjacent to the main peak which can be
confusing. The similar function m is appropriate if
sI(s) is known in a certain range of s only, of width 2s'
and centered about s,. The transform is more complex
than the preceding two, just as might be exf&ected from
the more severely restricted s range from which it is
obtained.

New modification functions and their transforms can
always be formed by linear combination of known
modification functions and transforms, because all the
relations are linear. Of special interest is the difference
of two functions M (s) which corresponds to replacing
both the lower and upper limits of integration in (1-9)
by finite values (si&s2), as may often be desirable and
in some laboratories is the usual practice. "The trans-
form of this modification function is the weighted
difference of the two transforms Ti(r) and T, (r), the
wider one Ti(r) being multiplied with a coefficient
proportional to s~ and subtracted from the other one
multiplied with a coefFicient proportional to s2. The
result is a transform of increased complexity, compared
to T,(r), although for si«s2 this additional complexity
is not very troublesome. Of course, multiplication of
known modification functions and convolution of their
transforms (and perhaps even convolution of modifica-
tion functions and multiplication of the transforms) can
also be used to obtain new results. And in practical
work, in any case, it is likely to prove convenient simply
to decide upon some modification function that seems
to be especially suited to the problem at hand and to
evaluate its transform numerically.

j„(x)= (m./2x) V„+)(x), (5-1)

where J„+~(x) is an ordinary Bessel function. These
functions can be simply expressed in terms of trigono-
metric functions as

d (sinx)

d(x')" I x )
(5-2)

the first few members of the set being

jo(x) = (sinx)/x, ji(x) = (sinx)/x' —(cosx)/x
and

j2(x) = (3/x' —1/x) sinx —(3 cosx)/x .

"J.Waser, Phys. Rev. SS, 745 (1952).
"For example, L. I. Schi6, Quantum mechanics (McGraw-Hill

Book Company, Inc. , New York, 1949).

5. GENERAL TREATMENT OF THE FINITE
UPPER LIMIT

It is desirable to analyze the question of modification
functions, we now designate them by Mr (s), which have
values different from zero in the range 0&

~

s
~

& s. only.
For this purpose we introduce" the so-called spherical
Bessel functions"
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j2&(x) cosxtdx=
(~/2)( —1)~P„(t), ft f

&1
(5-3)

o

The j2&(x) (of even order) have the desired property""
of possessing a cosine transform which is diferent from
zero in a finite range only, since

The examples shown in Figs. 1 and 2 show interesting
generalities about which the following remarks appear
pertinent. Perhaps the most notable are the indications,
con6rmed by all our experience, that suppression of
subsidiary features of T(r) gives rise to a broadening of
the main peak. The properties of T(r) at small values of
r are exhibited by the expansion in ascending powers
ofr:

P2&(t) cosxtdt= (—1)'j,p(x). (5-4) pSp pSp

Here P»(t) is the Legendre polynomial of (even) order
2k. Since the Legendre polynomials form a complete set
of orthogonal functions it is an easy matter to expand
any reasonably well behaved Mr(s) as

P &(~/2) &a&(—1)"P»(s/s, ), f
s

f
&s,

Mr(s) = (5-5)
0

where Mr(s) is regarded as even so that only even
polynomials occur in the expansion. The cosine trans-
form of Mr(s) is then

(s'/2) ~T (r) = M (s)ds —2r' s'M (s)ds
Jp Jp

+r'/4! s'M(s)ds+ (5-8)

having as coefficients the even moments of M(s). For
large values of r an expansion in inverse powers of r,
obtained by repeated partial integration is more ap-
propriate:

sins, r
(m./2) &T(r) =M (s,)

Tp(r) =PI aIj,„(rs,). (5-6)

The question as to what transforms Tr(r) exist is ac-
cordingly the question of what class of functions can be
represented. .as expansions of the type (5-6), which, if
they exist, can be found with the help of the orthogo-
nality and normalization relations

M'(s.)+
r2

coss,r—
M" (s,)

sins, r+ ~ . (5-9)
r3

j„(x)j„(x)dx=
dp

It is obvious, of course, that this class is limited (the
j„(x)do not form a complete set), but there seems to be
no 'simple criterion for characterizing functions of this
type 21

Figure 2 shows the first few Tr(r) and Mr(s) com-
ponents. The first,

j0(s.r) = sins, r

s,r

1, fsf &s.
and Mr(s) =

0, fs f)s.
are of course already familiar. "

20 G. H. Watson, Theory of Bessel tiunctions (Cambridge Uni-
versity Press, Cambridge, 1.944).

~' See the analysis of the similar case of the Neumann expansion
in Bessel functions in references 15 and 20.

22 The integral (see references 16 and 20)
" sins, '(r —u) .const, ' j»(s,u)dzc=j k(s.r), s, '~&s„s,'(r —u)

expresses in perhaps surprising form a property obvious from the
Fourier transform, possessed by any Mz(s), namely, that the
transform is unchanged if the integration is broken ofI' at a point
s,')s, . The analogous expression for the special case that 3Eg(s)
itself represents a cutoff (at s,) is

sins, r"sins, u sins, '(r —u) s,r '
const Z1f =&

s,u s,'(r —zc) sins. 'r
) Sp~sp .s, r

FIG. 2. The first three Legendre and circular Bessel functions
of even order.

pSp

T(0) = (2/s)& M(s)ds,
4O

(5-10)

The first of these expansions confirms the further
observation from Fig. 1 that sharp peaks —in the sense
of initial curvature —correspond to modification func-
tions which give greatest weight to large s values,
whereas the second expansion gives substance to th' e
impression that the dying out of subsidiary features
depends on the smoothness with which M(s) reaches
zero at s,.

These expansions show in a broad way the connection
between the sharpness of the main peak and the extent
of the subsidiary features, but the details are not clear.
The sharpest transform shown in Figs. 1 and 2 is
T,(r) =j 0(r), but (5-8) shows that still sharper peaks
can be obtained simply by increasing the second mo-
ment of M(s) while holding the area of M(s) constant:
The limiting case is the useless one of M(s) =8(s—s,).

A rather attr'active criterion, on the other hand,
might be that for a given peak height
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the square fluctuation of T(r) is given by

00 f00

T (r)dr= (1/2rr) M'(s)ds
o ~o

(5 11) (2rr) ' p' r,; '~ [8(u—r,,)—8(u+r„)]T,, (r—u)du
27

(Parseval's relation)"" should be minimized. This
leads by a simple variation treatment to just the step
function

1 Js(&s,
M(s) =

0 js/)s.
(5-12)

a result that is unchanged in higher dimensions. Since
this result does not seem to be especially well suited to
practice, it is evident that more subtle criteria play a
decisive role in determining the usefulness of a modifica-
tion function and its transform. These criteria will
depend very much on the information desired and indeed
a given problem may warrant making several inversions
with different modification functions in order to
facilitate different stages and aspects of the interpreta-
tion, such as separation of overlapping peaks, location
and verification of the presence of small peaks, de-
termination of peak areas, etc.

(2i ' (Z,—f;(s)) (Z, —f;(s))
sI (s)=

~

—
(

P' sinsr, ,
r;;s4

~here

(2l i 4, (s)lt, (s)
sinsr;;,

Em r2j

Z; f;(s)—
=it', (s)

S

(6-1)

(6-2)

is the atomic form factor for electrons. %hen the func-
tion s'I (s) is inverted" the contributions of each
sinsr, ,/sr, , term to the resulting radial distribution
function is centered at r,, and has a (symmetrical) shape
characteristic of atoms i and j:

so that

T;,(r) =
~

—
~ ~ Q, (ss)P, (s) cossrds,

&~) ~o
(6-3)

6. THE ATOMIC SCATTERING FACTOR

In the expression for sI(s) used so far the assumption
is contained that the variation of [Z, f, (s)]/Z—; for
different atoms may be neglected. In the following this
assumption is no longer made.

The molecular scattering intensity of a rigid molecule
is proportional to [see Eq. (1-1)]

= (2 )
—'* Q' r,, [T;,(r r, ,)—T;,—(r+r;;)]. (6-5)

, f
T,,(r)= (2rr) i t;(u)t;(r u)du—„ (6-6)

where we made use of the cosine transform t;(r) of
sQ'(s):

t, (r) = (2/rr) &~~ ~;(s) cossrdr.
0

(6-7)

The atomic form factor f;(s) is related to the density of
scattering matter p, (r) of atom i by the equation'

sinsr
BP,(s) = const p, (r) r'dr

0 sr
and inversely

(6-8)

rp, (r)=const ' BP,(s)(s sinsr)ds, (6-9)

which upon comparison with (6-7) yields

dt, (r)
rp; (r) = —const

dr
so that

t, (r) =const)t up, (u)du.
r

(6-10)

(6-11)

Similar relationships are valid for radial distribution
functions obtained from the scattering of x-rays and
neutrons as well. The ideal peak shapes for such distribu-
tion curves may be obtained by inversion of a product as
in (6-3) or by operations (6-6) and (6-11). For figures
showing the peak shape expected for light atoms like
oxygen reference should be made to a paper by Viervolp'
who chose the latter method for his calculations. If
instead of inverting s'I (s), other functions such as
(1-4) are inverted, other peak shapes T,, (r) result, but
each peak shape is again dependent on the partners i
and j and can be calculated by a formula analogous
to (6-3).

For a nonrigid molecule with no internal rotation each
term in sI„(s) would be multiplied by a different tem-
perature factor exp( —a,,ss) [see Eq. (1-1)],the trans-

The second term in the bracket makes rD(r) anti-
symmetrical, as it did in (1-10) and (3-9).

The (ideal) peak shape may also be expressed as the
result of a folding process

rD(r) =
(

—
I

' s'I (s) sinsrds
&) ~,

(6-4) srH. Viervoll, Skrifter Norske Videnskaps Akad. , Oslo, Mat.
Naturv, Kl. No. 2 {1950).
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form of which is the Gaussian (4a;p.) l exp( —r'/4a. ,;).
The contribution rD, ,(r) by a pair of atoms will then be
the resultant of this Gaussian and the transform
T'', (r) (6-3):

correspond to the folding operation

uD;; (u) T(r u—)du, (6-13)

rD;, (r)= (8u,p') l

X exp (—u'/4a, ;)T,, (r—u) du. (6-12)

Each peak in rD(r) may thus contain the transform of a
different temperature factor as well as of different form
factors.

The fundamental meaning of the temperature factor
is of course just this —that the real radial distribution
peak is not infinitely sharp but has a finite width due to
molecular vibrations. It is interesting that for mole-
cu1es of the class under discussion the function
(4a,p.) '*exp( —r'/4a, ,) is an appropriate approxima-
tion for r'D(r)/r;, [rather than for rD(r), as given by
(6-4)] and that accordingly the conventional tempera-
ture factor corresponds to an r'D(r) equal to the as-
sumed distribution multiplied by the factor r/r;, This.
remark" suggests simple corrections to the usual tem-
perature factor; the first, for the example of intensity
formula (1-1) alters the terms exp( —a;,w') sinr;, s to the
form

2u, ,p ( 2a;;) ( 2a,,p

, I exp —
]

E ...') «,,'& ( ...')
in which the correction to r;;, at least, will sometimes be
important. In the derivation of the temperature factor
by James, 2' based on the assumption of normal vibra-
tions, a series expansion is used, the range of validity of
which was not established. Karle and Karle, '" on the
other hand, modified the distribution characteristic for
normal vibrations [it is not strictly Gaussian in r'D(r)]
by multiplication with r/r;; and solved the remaining
problem in closed form. Corrections of the sort men-
tioned above are evidently required, however, for all but
the lowest order term, which is nothing more than the
usual temperature factor.

The radial distribution functions of molecules in-

volving large temperature librations" or internal rota-
tions" contain peaks characteristically distorted by
being folded with wide probability distributions, analo-
gous to (6-12).

The application of the analysis of modification func-
tions given in the previous section to the functions
rD(r) of this section is straightforward. For a given
applied modification function, with transform T(r), each
contribution to the resulting distribution function will

24 R. %'. James, Physik. Z. 33, 737 (1932}."J.Karle and l. M. Karle, J. Chem. Phys. 18, 957 (1950}."P. Debye, J. Chem. Phys, 9, 55 (1941};J. Karle, J. Chem.
Phys. 15, 202 (1947}."J.Karle and H. Hauptman, J. Chem. Phys. 18, 875 (1950}.

where rD, , (r), of course, describes the peak which would
have been obtained by inverting the unmodified scat-
tering function s'I (s) in the range 0&s& ~ .

All these results [like (6-5), (6-12), (6-13)] involve
symmetrical transforms T. This makes it clear why it is
preferable to construct rD'(r) rather than D'(r) or
r'D'(r) which might at first glance appear to be the more
natural functions to evaluate, because of their more
obvious physical interpretation, as evidenced in one
instance by the above discussion of the real temperature
factor [folding the scattering density p(r) with itself and
integrating over all orientations leads to 4irr'D(r)]. The
great advantage of rD'(r), as has also been stressed by
Viervoll, " is that of being composed additively of
symmetrica/ peaks whose position, as our discussion
shows, is not influenced by any of the multiplicative
factors affecting the molecular scattering intensity—
either term by term or. as a whole. Neither r'D'(r) nor
D'(r) has this important property.

Interpretation of a radial distribution curve should
obviously be made in terms of the various expected peak
shapes. This may be a simple problem, provided suitable
modification functions have been applied. In special
cases, however, as instanced by serious overlap of peaks,
it becomes necessary to take the expected peak shape
into explicit account. This is, of course, the main
problem and has to be handled by trial and error —by
subtracting peaks from rD'(r), by constructing a syn-
thetic distribution curve, or by other methods. Brief
expositions are given by Viervoll. "The use of several
distribution functions made with different modification
functions may be helpful. The expected peak shapes are
best calculated by allowing for aH the efI'ects on the
intensity side [M(s), P;(s), P;(s), temperature factor],
and then inverting the complete modification function
as in (6-3) rather than by using the several folding
processes (6-6), (6-12), and (6-13) in turn, at least if
numerical facilities for cosine as well as sine inversion
are available.

With regard to the widths of the various peaks the
rule may be used that the square of the half-width of a
peak is approximately equal to the sum of the squares of
the half-widths expected from the various items dis-
cussed above, a rule which is rigidly true only if all the
modifying effects are Gaussian (3-5). In particular, the
half-widths due to the step function M, (s) and the
usual artificial temperature factor M „(s) (Fig. 1) are
1.9/s, and 2.7/s„respectively, and approximate correc-
tions to obtain the natural peak widths can be made
accordingly. For more exact information detailed analy-
sis (or synthesis) of the peak shape is necessary.
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'T. LIQUIDS hND hMORPHOUS SOLIDS

The foregoing discussion illuminates the following
confusing notions to be found in the literature on
distribution functions for amorphous substances and
liquids '8

(1) When several kinds of atoms are involved,
"simple Fourier inversion [of the part of the scattering
intensity due to interatomic interactions) is no longer
possible. . . and. . . approximations have to be
used.

(2) The number of interatomic interactions at a given
distance is found by inversion of the suitably modi6ed
interatomic part of the intensity function and multipli-
cation by r, to obtain an atomic distribution function
whose peaks have areas proportional to the elmhers of
atom pairs involved in the interactions (as well as to the
products of effective atomic numbers).

The Fourier transform of the interatomic part of the
scattering function can of course always be calculated
and (in the ideal case of perfect data for an infinite
range) may be regarded as a radial distribution function
of scattering density —of electron density in the x-ray
case. However, if it is realized that the intensity func-
tion can be written as a sum of terms characteristic of
different kinds of poirs of atoms (rather than of diferent
kinds of atoms), it is clear that all these terms can be
inverted. And the sum of these terms is identical with the
above transform, in consequence of the linearity of the
inversion process.

A concrete formulation for the case of x-rays will

perhaps be helpful. As stated, the interatomic part sI (s)
of the scattering function is the sum

may be analyzed in terms of an "atomic" distribution
function rh„„(r) defined by

si„„(s)=f„(s)f„(s)(2/m)&J rA„„(r) sinsrdr, (7-5)
0

The relation between rA„„(r) and rd„(r) is again one of
folding:

d-(~) = (2 ) ~~ ~-( )1-.( —')d; (7 7)-
1„„(r)= (2/ir)~ I f„(s)f„(s)cossrds.

0

(7-8)

Relations analogous to (6-6)—(6-11) connect t„„,(r) with
the electron densities of atoms n and m.

While this clarifies the meaning of rD(r) in terms of
the atomic distribution functions rh „(r), it is also
evident that the problem of separating rD(r) into its
components will be dificult if not hopeless, since each
rA„(r) may itself be a complicated function with many
features. Frequently, especially for light atoms, the
functions f„(s) are approximately proportional to each
other:

(7-9)

with f„(s) the atom form factor for atoms of kind I, so
that rA„„(r) is given by

si„„(s)
rD„(r)= (2/n. )& I sinsrds. (7-6)

0 f„(s)f„(s)

of terms si„(s)

sI(s)= P si„„(s)
1g ~&18

si„(s)= (2/ir) &JI rd„(r) sinsrdr,
0

(7-1)

(7-2)

where E„ is a constant approximately equal to the
atomic number Z„and f, (s) is the average scattering
power per electron. The functions t„„(r) reduce in this
case to

rd„„,(r) = (2/ir) &~~ si„,„(s) sinsrds; (7-3)

rD(r) = (2/ir)& I sI(s) sinsrds= g rd„„(r). (7-4)
0

each of which concerns atoms of kinds m and ez only.
Here rd„(r) = rd „(r) is a radial distribution function of
electron density for atom pairs of kind (e, m): 4+r'd„(r)
is the result of folding the electron density due to atoms
of kind e with that due to atoms of kind ns and inte-
grating over all orientations. Inversion of (7-2) and
(7-1) yields (7-3) and (7-4):

i..(r) =E„E„(2/~)'-

X~ f 2(s) cossrds=K„E', „t,(r), (7-10)
0

so that all distribution functions rd„„,(r) assume similar
character. It then becomes possible either to analyze
rD(e) in terms of the general peak shape t, (r), or to
form by inversion of si (s)/f 2(s) a distribution function

1'2) & P" sI(s)
rh(r) =

)
—(, sinsrds

E7r) ~o f,'(s) = P K„K„rh„(r) (7-11)

Each of the electronic distribution functions rd„„(r)

28 For example, R. W. James, The Optical Principles of the
Digraction of I-Rays (Macmillan and Company, I td. , London,
2950), p. 504.

which is the weighted sum of the various atomic dis-
tribution functions. (The actual peak shapes may, of
course, be further modified as discussed previously. )

This result, although essentially similar to the usual
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one,"differs from it in being stated explicitly in terms of
the diferent kinds of atom pairs and in being closely
related to the precise formulas (7-4) to (7-8) so as to
suggest the correct interpretation of rD(r) in terms of
atomic distribution functions even when the approxima-
tion (7-9) is no longer valid. It is now evident that the
dif6culties in the conventional exposition are caused by
the introduction of functions p (r) which are charac-
teristic of atoms rather than of atom pairs.

For homoatomic liquids the situation as discussed so
far becomes trivial, in agreement with the usual dis-
cussion, since all terms in (7-1) and (7-11)reduce to one.
However, the analysis of rD(r) into characteristic
subdistributions (e.g. , temperature-factor Gaussians),
as will often be desirable, is in principle just as complex
for homoatomic as for heteroatomic liquids, since each
subdistribution will have its own characteristic shape
(e.g., width). For molecular liquids, indeed, this added
bit of complexity can be turned to advantage, since it
will usually permit a separation of the intramolecular
components of rD(r), which are generally the sharper
ones by a large margin from the intermolecular com-
ponents. The total e6ect is especially favorable if the
desired intramolecular terms are not only the sharper
ones but also have the greater weight, pair for pair, as
when strongly scattering complex, rigid molecules are
dispersed in a weakly scattering, molecularly simple
solvent"

Although the general discussion of modification func-
tions given previously applies to this section also, some
special remarks seem to be called for.

The modi6cation of sI(s) by multiplication with

f, '(s) in the construction of rd (r) (7-11)has besides the
desirable e6ect of sharpening peaks the undesirable one
of introducing subsidiary features of a nature which may
significantly encumber the analysis of the distribution
function. This is all the more troublesome, if the
distribution function is no longer interpretable in terms
of characteristic distances but rather has to be regarded
just as a distribution function or a sum of distribution
functions in their own rights. This point has been
stressed by Finbak. "

The conventional multiplication of rD'(r) (the direct
result of the inversion) by r is unfortunate because it is
in rD'(r) rather than r'D'(r) that the various multi-
plicative factors, like form factors and modification
factors, leave symmetrical peaks symmetrical and
unshifted. It seems appropriate, therefore, even in the
case of the atomic distribution function rh (r) (7-11)
not to multiply it with r, but rather to compare it
directly with the theoretical function r'6 &s(r) of interest
divided by r. (The usual additive parabolic term"
r'6 (Assconst) is of course to be replaced by a linear
term rho. This term arises from the fact that in practice

"Vaughan, Sturdivant, and Pauling, J. Am. Chem. Soc. 72,
54// (1950);0.Kratky and W. Worthmann, Monatsh. Chem. ?6,
263 (1947); E. Rumpf, Ann. Physik 9, 704 (1931).

so C. Finbak, Acta Chem. Scand. 3, 1279, 1293 (1949).

the integral in the inversion (7-4) is assumed to have a
negligible value as s approaches zero. However, if the
intensity due to a particle of constant scattering density
is calculated, it is found to be concentrated at very
small values of s, of the order D ' where D is the linear
dimension of the particle. This small angle scattering is
essentially the same for particles of nonuniform scat-
tering density. Its omission from an inversion like (7-4)
has the consequence that the resulting function repre-
sents the di8erence between the actual distribution
function and that corresponding to a uniform, average
scattering density. )

a;

the Fourier expansion of p(r) takes the form"

p(r)=vs-'Qh Fnexp( 2srsh r—),

(8-3)

(8-4)

where er is the volume of the unit cell and the sum
includes all reciprocal lattice points.

The coefFicients Pz in this expansion are the structure
factors

a unit Cell

p(r) exp(2srsh r)dnr. (8-5)

If the crystal is not of infinite extent or if p(r) is not
otherwise really periodic, the above formulation is no
longer strictly valid; in any case it is convenient to
consider the Fourier transform of p(r) we shall ca—ll it
F(q)—for the entire crystal. The two functions are

3' P. P. Ewald, Proc. Phys. Soc. (London) 52, 167 (1940).
~ M. von Laue, Eontgenstrahl~nterferenzen (2nd ed. , Akadem-

ische Verlagsgesellschaft, Leipzig, 1948); W. H. Zachariasen,
Theory of X-Ray DsJfractsoa etc Crystals (John Wiiey and Sons,
Inc. , New York, 1945); R. W. James, The Optica/ I'rinci p/es of the
Digraction of X-Rays (Macmillan and Company, Ltd. , London,
1950).

S. EXTENSION TO SEVERAL DIMENSIONS

In order to extend the previous results to Fourier
series such as are used in crystal structure analysis, it
seems essential to introduce alternative representations
by means of Fourier integrals. In order to illustrate this
procedure and to give incidentally yet another example
of the power of the folding theorem, the connection be-
tween the Fourier transform of the electron density and
the structure factors for a crystal will 6rst be established
along the lines of Ewald's classic paper. "

The electron density of an ideal crystal of infinite size
is a triply periodic function,

p (r) p (r+ rsla 1+sssa2+ sssa 3)
—2, —1, 0, 1, 2 . , i = 1, 2, 3, (8-1)

of the position vector with the vector periods ai, a2, and
a3, which define the unit cell of the translation lattice of
the crystal. In terms of the reciprocal lattice vectors,
h =hibi+ hsbs+ hsbs,

h;=, —2, —1, 0, 1, 2, (8-2)
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symmetrically related, " with F(q) a function of the
continuously variable vector q= q&b&+q212+q&b3 in
reciprocal space:

F(q)= t p(r) exp(2viq r)dvr
crystal

(8-6)

f
p(r) = F(q) exp( 2—viq r)dvq (8-7)

I~', (q) =
unit cell

p(r) exp(2v. iq r)dvr (8-8)

of the electron density of one specified unit cell is related
to F(q) by

F(q) =F.(q)L(q) =vr ' Ph Fhb(q —h), (8-9)

since the folding of the contents of the specified unit cell
with the lattice function to obtain p(r) corresponds to
multiplication of the transform F,(q) by the transform
L, (q). Accordingly, F(q), which refers to a strictly
periodic, infinite crystal, is an essentially discontinuous
function, proportional to the appropriate structure
factor at each reciprocal lattice point and zero elsewhere,
as is also evident from the representation of p(r) by the
Fourier series (8-4). The F» are a sampling, at reciprocal
lattice points, of the continuous transform F,(q) for a,

unit cell. It will be noted that although F,(q) in general
depends upon which unit cell is specified, the samples
Ph do not.

As Ewald3' has discussed, the folding theorem is very
useful in understanding the effect of crystal size on the
shape of rejections. If a shape function be introduced
which has the value unity inside the crystal and zero
outside, then the electron density of an actual crystal is
simply the product of the electron density of the infinite
crystal with this shape function. This corresponds to the
folding in Fourier space of the discrete transform (8-9)
with the transform of the shape function. The resulting
transform of the finite crystal consists therefore in a set

( I he normalization factor corresponding to (2/v ) ' of
earlier sections becomes unity here due to the inclusion
of the factor 2x in the exponent; the variable q is
related to s by s=2v. ~q~.) The integral in (8-7) extends
over the whole of reciprocal space.

To establish the connection of the pa, ir (8-4) and
(8-5) with the pair (8-6) and (8-7), we note that an
infinite periodic crystal may be represented by the
folding of the contents of one unit cell into the lattice
functiorI, , which is a sum of 8 functions, each situated at
a lattice point. The Fourier transform of this lattice
function is the so-called Lane fgnctiom for in@mite

crystals, "L(q), which again consists of a collection of
8 functions, each multiplied with 1/vr and situated at a
reciprocal lattice point.

The Fourier transform

of broadened features of finite extension in reciprocal
space, identical in shape, but scaled proportionally to
the structure factors. The crystal reflections are corre-
spondingly broadened, as is the range of small angle-
scattering which would be expected in the absence of
interdomain and interparticle interference. (For small-
angle scattering, of course, these latter effects usually
dominate. Their consideration, like the consideration of
crystal imperfections, rests fundamentally on the entire
density function and its transform, but the manipula-
tion of an ideal density function by multiplication
and/or folding will often be profitable, "' as it is in our
example of the finite crystal. )

The special shape function which covers exactly a
specified unit cell leads to an interesting result. For
definiteness, let this unit cell be situated with its center
at r. from the origin and have'edges parallel to the
crystal axes. The shape transform is then

~ sin~q;
vr exp(2viq r,) g mq;

(8-10)

and the corresponding expression for the transform of
the contents of one unit cell is

~ sinv(q, —h, )I', (q) =exp(27riq r,) P Fh Q . (8-11)
v-(q,—h, )

' For example, R. Hosemann, Z. Physik 128, 1, 465 (1950);R.
Hosemann and S. N. Bagchi, Acta Cryst. 5, 612 (1952)."E.T. Whittaker, Proc. Roy. Soc. (Edinburgh) BS, 181 (1915);
Inter polatory Function Theory (Cambridge University Press,
cambridge, 1935).

This is the inverse of the sampling picture exposed
above: From the samples Ph the transform of a unit cell
can be reconstructed by what is known a,s (three-
dimensional) trigonometric interpolation. "

Expression (8-11)may suggest a direct determination
at least of

~
F,(q) ~, the zeros of which (at any rate in the

centrosymmetrical case) might provide important clues
to changes in sign between adjacent structure factors.
Hut this is not possible, for the phases of the Ph are as
pertinent in (8-11)as are the amplitudes, and knowledge
of the phase is essential in the construction of

~
F, (q) ~

also. Even more important, F,(q) has meaning only in
regard to a unit cell of arbitrary shape and position: the
phase of F„,(q), in (8-11), would change if the origin
were shifted and even more drastic changes would occur
if a unit cell of different shape were to be singled out.
The only invariant property of all possible interpolations
(8-11) is that they have identical values for reciprocal
lattice vectors q= h. All this is to be expected since unit
cells, although useful in describing crystals, have no
physical reality. Even more generally, it is arbitrary to
generate the whole crystal by folding the complete
contents of one unit cell with the lattice function,
inasmuch as other functions extending over possibly
many unit cells may be folded with the lattice function
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p2(R2) =
~

p(r)a3dxh'

dA qF (qi, q2, qs) exp (—2IriQ R2)

= " F(Q) exp( —2~iQ R,)dzq, (8-12)

~ Boyes-Watson, Davidson, and Perutz, Proc. Roy. Soc.
(London) A191, 83 (j.947); for the latest re ort, see VV. L. Bragg
and M. F. Perutz, Proc. Roy. Soc. (London A213, 425 (j.952).

to obtain the same p(r). This is especially pertinent in
the case of the Patterson function: interpolation of
~FhI' accordilig to (8-11) yields the tralisform of oile
speci6ed unit cell of the Patterson function, but except
for q=h this transform is not equal to IF, (q) I' even
when corresponding unit cells have been chosen. Never-
theless, a case for which (8-11) has practical significance
is considered at the end of Sec. 10.

It is quite another matter when the unit cell of a
molecular crystRl ls chosen to contRln one ol a small
number of relatively rigid molecules. It may then be
possible by external influences continuously to change
the size and shape of the unit cell without changing the
configurations of the molecules. In this way various
samplings of F,(q), now characteristic of the molecules,
may be made from which information about the signs of.

the structure factors may be deduced in centrosym-
metrical cases. This idea was used by Perutz" and
coworkers in determining the signs of some x-ray re-
flections of methemoglobin, for which the unit cell size
Rnd shape depend on the extent of hydration of the
protein.

Projections of three-dimensional density are often
useful. Consider 6rst the projection p2 along a crystallo-
graphic axis, upon a plane. If the projection axis is
inclined it is convenient to project onto a perpendicular
plane rather than the plane of the other two crystallo-
graphic axes in order that the projections of spherically
symmetrical functions shall show circular symmetry. In
practice the distinction involves merely the choice of
scales and axes for plotting the projected function. %e
call the axis of projection a3, the projections of the other
two axes a~' and a2', and- the coordinates of r in this
"monoclinic" system of axes x&', x2', and x3'. Further, R2
is the projection of r, 2 the area of the projection of the
unit cell, Q the projection of q on the plane of bi and b&

(wliicll is pai'allcl to tlic projection plRIIC), and dA Q tlic
surface element of that plane; finally, 13 may be re-
placed by b3' so as to obtain a triple bi, 12, bh', reciprocal
to@I ~ 82) 83.

The projection of p(r) is given by

where use of the 8-function of footnote 3 has been made.
It should be noted that the projection p2(R2) is de-
termined by the values of F(Q) in the plane (bi, b2)
parallel to our plane of projection rather than by a
projection of F (q) oIito it. Tile cxpi'cssioII (8-12) is
furthermore not dependent on periodicity of p(r) and
divers from the more conventional one

p(r)a3dxs =2 Q Fhih20
h1, hg

Xexp( —2Iri{hixi'+hmxm')) (8-13)

by a factor Es, the number of layers of (the now
periodic) p(r) projected in (8-12). (The factor Sq, while
obvious in the relationship between the sides of (8-12)
and (8-13) pertaining to real space, enters on the
transform side of (8-12) through the fact that the Laue
function for a one-dimensional crystal of Ã3 unit ceHS

has the value X3 at qa ——0).
For the line projection of the electron density, the line

on which the projected values are recorded is preferably
chosen perpendicular to the directions of projectioll,
which are parallel to a crystallographic plane, for
definiteness called (100). We introduce the symbols Ri'

and Ri for the projections of ai and r and B for the
projection of q on bi. The line projection is given by

pi(RI) = F(B) exp( —2IriRI B)dB, (8-14)

the derivation being analogous to that 'of p2 and pi(RI)
being related to

pl pl
P (r) (ag && R3)dx2dxs

~O 40

= {ai') ' Q Fhioo exp( —2Irihixi') (8-15)

in a similar way. The expression (8-14) again does not
depend on any periodicity of p(r), and the line pro-
jection is determined by the values of F(q) along a
parallel line in reciprocal space.

These relationships are symmetrical in the sense that
the line or plane sections of a function and the line or
plane proj ecfI'oII of its transform are also mutual
transforms.

%C are of course here mainly interested in the conse-
quences of breaking OG the Fourier series after a finite
number of terms Rnd, Inolc generally, ln the cGccts of
any modification of the coefficients by multiplication
with a function of q. As has become evident in earlier
sections the complete modification function may be
regarded as the product of all factors in the expression
to be transformed which are functions just of the
variable of integration. Such factors are the imposed
convergence and sharpening factors as well as the
natural form and temperature factors. %C shall some-
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times single out one or the other of them or, again, treat
the complete product, but the nature of the modiication
function under discussion will always be obvious from
the context. A general treatment of these eGects appears
unfeasible for multidimensional Fourier series without
the use of the integral representation.

H

the two-dimensional transform

T2 (R2) = M (Q) exp (—2vi Q R2)dA Q

M(Q) exp(2v. iQR cosy)dpQdQ
o "p

p'(r) = M(q)t(q) exp( —2viq r)dvq

= (vr) ' Ph MhFh exp (—2v.ih r) (8-16)

QM(Q) J.(2 QR,)dQ. (9-2)
Jo

The line projection Ti(Ri), finally, is given by the one-
dimensional transform

=2 M(B) cos(2vRiB)dB. (9-3)
Jp

(8-17)T(r) = M(q) exp( 2viq—r)dvq,
which is of the form already encountered in previous
sections. Writing T8(r) for T(r) and abandoning the
formal distinction between r, E2 and E~ makes possible a
combination of the three formulas (9-1) to (9-3) into
one"

then the (three-dimensional) folding theorem implies

is the electron density function resulting from the series T,(Ri) —f M(B) exp( 2~zR B)dB
with modified coeKcients and if the transform of M (q)
1s

~00

(8-18) T;(r) =2vr,' «'&

dp
M(q)q'"~w» i(2~qr)dq, -(9-4)

in complete analogy to (3-3). The corresponding two-
and one-dimensional formulas are

where J«2i i is the Bessel function of order (i/2) —1.
Between T~ and T3 there exist the direct relations

p, '(R,)= T2(U)p, (R,—U)dAu (8-19)
T3(r) = — —Ti(r)

2xr dr

Ti(r)=2vr f T3(u)du,

(9-5)

pi'(Ri) = Ti(U) pi(Ri —U)d U, (8-20)

ti00 rI w 23'

T(r) = ~ M(q)
&o "o o

where T2 and T~ are the respective projections of T.

9. RADIAL FUNCTIONS

In this section modification functions M(q) will be
discussed which depend on the length only of q. Such
functions have been called radial furtctiorts" and their
transforms can be reduced to one dimension by intro-
ducing appropriate polar coordinates into (8-17):

so that functions T3 can be obtained from all functions
Ti(r) listed in Fig. 1 simply by differentiation and
division by —2'; T2 is connected directly with T3 and
T& by the equations

T;(r) =2 f uT;+, (u) (u' r') tdu— —

and
1 t" dT;(u)

T,+i(r) = —— ' (u' —r') —
&du;

du
i=i 2

(9-6)

The eGect of breaking oB a three-, two-, or one-
dimensional series by not using terms with

l ql &q, can
be judged by considering the respective transforms of

)(exp( —27riqr cosi1)dye sin8d8q'dq, (9-1)

T(r) =2/r M(q) sin(2v. qr)qdq.
Jp

The projection T2(R2) of T(r) onto a plane is given by

namely,

Mq=
o, lql &q.

'

~
qo

T;(r) =2vr' &'t'i q't'J(q» i(2vqr)dq
dp

= (q./r) *tm~*tm(2~q. r)

(9-7)

(9-8)
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where the relation"

x"J~i(x)etx= x "J„(x) (9-9)

has been used. Written out in terms of s,=2~q„ the
three transforms are

sp 1
Ti(r) =—jo (s,r) =—sins, r,

err

and

So
T, (r) = J,(s.r),

27rr

Sp2

(9-10)

T3(r) = T(r) = ji(s.r)
27r2r

[sins, r s.r cos—s,rj.
2Ã2r3

The first is familiar from the earlier discussion, and all
have been derived by van Reijen, "and from a different
point of view, by James, "who also discusses their shape.
The eGects of breaking off are evidently less serious the
higher the dimensionality, which is not surprising if it is
remembered that the section T;(r) is determined by the
projection of M(q) so that the ej/ectime break-off is more
gradual the higher the dimensionality.

An example of a convergence factor which is zero
outside the limiting sphere and whose transform can be
expressed analytically is example d of Fig. 1,

The anisotropic Gaussian modification function, an im-
portant nonradial function, can be handled just as

T4, (r)
t.89/s 2.5/So

-0.22 -0.9

2.2/So 2, 8/So

-0.6

Again s,=2xq. has been introduced for easier compari-
son with Fig. 1. In keeping with the foregoing remark
the present Ti(r) (9-13) is essentially identical with the
previous Ta(r) (9-10).The transforms (9-10) and (9-13)
are shown in Fig. 3.

The foregoing emphasis on the reduction which is
aGorded by the use of polar coordinates must not be
taken to mean that this is always the best procedure.
There are no doubt many counter examples. One is the
familiar transform Ta(r) = (2a) l exp( —mr'/2a) of the
modification function exp( —2maq'), for which the pro-
jections are easily found by direct integration, either
projection or transformation, in Cartesian coordinates
(not the coordinates relative to the lattice vectors
except for orthogonal crystals), whereas the use of polar
coordinates proves unfruitful. The projections are

T (r) = (2a) t ' ' exp( —mr'/2a); i = 1, 2.

f1—(A )'
M(q) =

1 0 Iql&q
'

2.95/So

0.1

2.5/So

-0.9 -0.4
the corresPonding transforms, obtained by Partial FIG. 3 One- two- and three-dimensional transforms correspon
integration and the aid of (9-9), are ing to modification functions (a) and (d) of Fig. 1.

2
Ti(r) =—ji(s,r) = [sins, r s,r coss—,rj,

Ksp f

and

So
T&(r) = T(r) = j2(s,r)

X2r2

~ (i/2) —1
$p

T,(r) = J(,t~)~i(2mq, r),
~y( i/2)+1

readily in this way. From our example, again, a whole
series of mutual transforms and their sections and
projections may be derived very simply by differentia-
tion with respect to a. Two, (g) and (k), are shown in
Fig. 1; another is the pair

M(q) = 4m'q4 exp( —2m.aq'),

T3(r) = (2a) "'[15—10)rr'/a+m'r'/a'j exp( —mr'/2a) p

(9 13) which has proved most useful in affording a Patterson
function with near maximal resolving power. (The
alterations corresponding to the necessary finite cutoQ'

are in this case almost entirely negligible. )

1
[(3—(s,r)') sins, r—3s,r coss,rj.

X2S,2r'

"H. B. Dwight, Tables of Integrals {Macmillan and Company,
Ltd. , New York, 1934), 835.1."R.W. James, Acta Cryst. 1, 132 (1948).

io. SEMES TRANSFORMS

It may be useful sometimes, especially in numerical
work, to calculate the series transform of a modification
function, rather than the integral transform. This
transform must again be folded with the original func-
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tion, but the folding integral, in keeping with the
periodic property of the series transform, now extends
over one unit cell only. The simple development follows.

Consider the series representation (8-4) of p(r):

p(r) =lit I p Fh exp( 2v—rih r);

(10-1)

Fh= ) p(r) exp(2mih r)dier.
unit cell

When the coef6cients are modi6ed by multiplication
with Mh, the series becomes

p"(r)=ter-'P MhFh exp( 2l—rih r)
h

=or' '

~ unit cell
p(t) g Mh expL2Irih (t—r)]diect,

which on writing E(r) for the series transforms of Mh,

E(r) = lit ' gh Mh exp (—2Irih r)

simplifies to

()= t (t)E( —t)d .
~ unit ee11

(10-3)

Pepinsky and his assoeiates37 have discussed a number
of one-dimensional modification functions and the
corresponding series transforms, which they call kernel
functions, E(r) being the kernel in the integral Eq.
(10-3).

Of course p" (r) is identical with the previous

p'(r) =)" p(t) T(r—t)dvt, (1o-4)

PI T(r+1)=E(r) = vt 'Qh Mh exp('—2mih
—r). (10-5)

This equation is essentially Poisson's summation
formula ""

The development so far tends to emphasize 3fh and
E(r) Rlld 'to Illake M(q) Rnd T(f) Rppeal' Rrbltrary Rnd
comparatively unimportant. Nevertheless, it is pro6t-
able to adopt the point of view that M(q) and T(r) are
the important fundamental functions, with M (q) chosen
as smooth as possible relative to the reciprocal lattice

"R. Pepinsky, Abstracts of %'ashington Meeting of the
American CrystaHographic Association, February, 1951.

where T(r) is the integral transform of any M(q)
interpolated from the values M(h), if only it LM(q) j
satis6es the general requirements for the Fourier
theorems. Correspondingly, any one of the T(r) on
folding with the lattice function results in the same
transform E(r), which contains the contributions to a
given unit cell of T(r) as displaced successively by all
the lattice vectors I:

spacing and T(r) accordingly restricted to relatively
small values of

~
r~, and that Mh and E(r) depend upon

them and the particular lattice under consideration. For
although direct use of E (r), the series transform, has the
apparent advantage of at once taking into account the
influence on a given peak of p(r) by all the peaks of a set
equivalent by the lattice translations, so that only the
peaks within a unit cell have to be considered explicitly,
the extra complexity of E(r), as compared to a suitable

T(r), is likely to prove troublesome in practical work as
well as general analysis. In CBect, the use of the integral
transform decomposes a comp1ex total process into two
simpler steps.

Some evident features of the situation are the follow-

ing. In the first place E(r) will lack radial symmetry. In
practical work with actual density functions, it wiH

therefore be much more dificult to handle, interaction
for interaction than radially symmetrical functions,
which are readily obtained as integral transforms; and
the advantage that follows from the smaller number of
interactions that have to be considered may be lost.
Even numerical evaluation of E(r) is comparatively
dHFicult, since a multidimensional sum has to be
evaluated for a very large number of values of x', whereas
for T(r) the radially symmetrical cases need to be
evaluated in only one direction and by use of polar
coordinates may always be reduced (see Sec. 9) to one-
dimensional integrals. (Depending on the case and the
computational facilities, however, it may be more con-
venient'. to deal with the original integral, with other
coordinates. ) A particular M(q) and T(r), once found
satisfactory for a particular investigation, are apt to be
suitable for other crystals of roughly similar elastic
properties studied with the same equipment, regardless
of the unit cell, whereas E(r) evidently has to be
calculated anew except in cases of precise isomorphism.
On the analytical side, T(r) can often be found in closed
form, whereas the analytical evaluation of E(r) would

appear to be limited to a few one-dimensional cases and
to products of thcsc one-dimensional sums. It ls im-

portant that even when T(r) is not evaluated exactly,
the general point of view affords an insight into the
overlap problem which may in fact be adequate; if E(r)
has not been evaluated and the integral point of view is

rejected, this insight is lacking. Finally, we remark that
a radially symmetrical modi6cation function ean always
be chosen which will restrict the signi6cant overlap to
closely neighboring peaks and that in this approxima-
tion (except for the smallest unit cells) the practical
distinction betwe'en the series and integral transforms
disappears. In this case it may be the more convenient
to evaluate the series, for one especially simple direction
of r.

These relations between series and integral transforms
afford an elegant and precise understanding of the
approximation of the general (one or multidimensional)
Fourier integral by a sum spaced at the points of an
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arbitrary (one or multidimensional) lattice. "This sum
will be the folding of the desired transform with the
Laue function of the lattice, or stated diRerently, the
sum multiplied by the "volume" of the unit cell of the
lattice is the result of superposing the desired transform
with its repetitions at all points of a lattice reciprocal to
the original one. The approximation will be good only
if the unit cell of the original lattice is small enough so
there is no important overlap between the repeated
transforms. %ith decreasing lattice spacing, accordingly,
the approximation (sum) for compact transforms will

converge very rapidly once the lattice spacing is small

enough; most remarkably, the sum for any transform
which is restricted to a finite range of r becomes exact in

that finite range, for a certain spacing of terms and for
smaller spacings is quite independent of the spacing.

The interplay of the series and integral points of view
also suggests the discussion of a number of minor
questions not always correctly stated, which concern
the convergence of the ordinary electron density series
and the amount of information it contains regarding the
shape p, (r) of the contribution of a particular atom i

Thus, it is sometimes said" that the resolving power
of the series will be low unless the number of terms is
large. That there should be an eRect which is charac-
teristic just of the number of terms seems obvious.
However, the fundamental peak shape given by the
integral transform is determined solely by the complete
modi6cation function, of which the cutoR incidentally
limits the number (but not the spacing) of terms, and if
the number of terms is varied by varying the spacing,
the resolving power is affected only in so far as the
overlap of lattice-equivalent peaks is involved.

Again, it is obvious that the series will be affected
much or little by a certain increase of the radius of
cutoR according to the magnitude of terms so admitted,
and concern is consequently sometimes expressed over
the question of whether, even when the typical Fh has
fallen to a low value, a number of especially strong
rejections may happen to be just outside the sphere of
reaction, so as to invalidate the conclusion that the
only eRects of increasing the cut-off radius slightly
would correspond to the resulting slight changes in peak
shape. The resolution of this situation depends upon the
observation that only if the Fourier series is well con-
verged, in the sense that T(r) does not have relatively
large oscillations extending to relatively large values of
r, will it be true that small changes in T(r), caused

perhaps by small changes in the cutoff, will have only
small effects on p'(r). For otherwise the background, on
the average small, resulting from the essentially random
superposition of large numbers of these oscillating
contributions wiH typically show large relative varia-

88 An example is provided by the calculation of structure factors
by Fourier summation described by D. Sayre, Acta Cryst. 4, 362
(1951), who also discusses the nature of the approximation
involved.

8' For example, reference 28, bottom of p. 370.

tions when these oscillations are but little changed.
Accordingly, a well-resolved Fourier series, perhaps by
virtue of an imposed convergence factor, will not exhibit
large changes when the complete modification function
is changed slightly; correspondingly, a density series, for
example, which is naturally well resolved will not change
sharply as the cutoff is changed. In other words the type
of sudden resurgence of strong Ii's presumed at the
beginning of this paragraph cannot actually occur.

Lastly, it has been remarked" that if a good experi-
mental determination of the atom form factor is to be
desired from crystal rejections, a crystal of large unit
cell, aRording by its many reflections many samples of
f(sin8/X), must be used. But the essential problem is

again peak overlap, a problem which would indeed be
ameliorated if the unit cell could be expanded without
adding more atoms, which of course it cannot in actual
crystals. The obvious solution lies rather in reducing the
temperature far enough to minimize the eRects of
thermal vibrations and in suitably decreasing the wave-
length. Further still, the present considerations lead to
an understanding of the problem of how to choose
among the in6nite number of possible interpolations
between the samples of f(sining/X) afforded by a given
crystal and wavelength. One must compute p(r), parti-
tion it into atoms —perhaps quite arbitrarily if there is
overlap —and transform one of them to obtain f(sin@/X).
If the atoms are well resolved in p(r), the reasonable
partitioning is accomplished —assuming for the present
one atom at r, per unit cell—by taking the contents of a
unit cell centered at r, whose boundaries do not slice
atoms. But this is equivalent to modifying p(r) by
multiplication with the unit cell shape function dis-
cussed in Sec. 8, and the result for f(sin8/X), given by
Eq. (8-11), is obtained by folding the transform of this
shape function with the reciprocal lattice, as weighted
with the observed Fh. With more than one atom in the
unit cell, or with a lattice so skewed that all possible
choices of the unit would slice atoms, the f, (sin8/X) may
still be obtained, in an approximation of validity corre-
sponding to the magnitude of any overlap, by the same
procedure, now to be carried out with appropriate shape
functions —not necessarily parallelepipeds —centered at
the respective atoms. Although it is really p'(r) and
complete atomic modification functions M, (h) which
have to be manipulated, it will be noted that approxima-
tions to the true M, (il) are nevertheless obtained by this
procedure and that the f,(sin8/X) inside the cutoff then
follow by dividing out the real temperature factors —if

they are known —and the imposed modi6cation func-
tion. Overlap will be aGected by the imposed modi6ca-
tion function in a way so complicated, however, as to
preclude the use of any formula like (8-11), so that if

overlap is important, it becomes necessary somehow to
analyze p'(r) in terms of the transform of the products
of the respective temperature factors by the imposed

"Reference 4, p. 825.
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modi6cation function, to suitably decompose the peaks
of the resulting p(r), if they still overlap, and to calcu-
late their transforms.

11. CONCLUDING REMARKS

It is obvious that the general discussions given in
earlier sections pertain to several dimensions as well. A
number of speci6c additional remarks follow.

Modi6cation functions may again be useful to im-
prove convergence of Fourier series, but it is evident
that the resulting peak shape will in general depend on
the number of dimensions (see Fig. 3; comparison is of
course possible only for radial functions), the Gaussian
being an exception and the eGects of cutoB being less
severe the greater the number of dimensions. [The last
point may also be seen from general arguments, as in the
remark following (9-10) or from a development analo-
gous to (5-9).] Nevertheless, the feasibility of intro-
ducing convergence factors does not seem to be generally
recognized. For example, the atom form factors de-
scribing the scattering of thermal neutrons are con-
stants, so that the only cause for a general decrease of
intensities at high scattering angles is the motion of the
atoms, and Lonsdale" has commented that "only trial
and error methods of structure analysis are possible. "
However, a suitable convergence factor will always lead
to sound Fourier maps, as has also been remarked by
Thewlis, 4' and the only serious question is the universal
one of how to make the compromise between desirable
simplicity of interpretation and the concomitant un-
desirable loss of essential resolving power. But for some
crysta]s the natural temperature eGect will already
provide adequate convergence with the current experi-
mental conditions, and there is always the possibility,
for harder crystals, of shortening the wavelength and so
increasing the power of resolution.

Booth has lalsed objections to the use of a coIl-
vergence factor on the grounds that they "introduce
errors greater than for the elimination of which [they
are] applied. "In support of this contention he shows a
table containing the maximum errors of peak positions
which may be caused by terminating a one-, two-, or
three-dimensional series, as well as a table of the
maximum errors caused by using different artificial
temperature factors in a three-dimensional sum. How-
ever, these tables would appear to pertain only to the
very speci6c example underlying them, that of two
neighbors at a distance of 1.4A (or larger) having radial,
Gaussian density distributions of a width characteristic
for organic crystals. Unfortunately, no lower distance
limit of 1.4A exists for Patterson functions or for
projections of the. electron density; diGerent results
would further be expected for heavier atoms, harder

4' K. Lonsdalc, Nature 164, 205 (1949).
4s J, Thewhs, Ann. Repts. Progress Chem. (Chem. Soc., London)

47, 420 (1950).
4'A. D. Booth, Proc. Roy. Soc. (London) AI88, 77 (1946) 190,

482 (1947); Nature 157, 517 (1946).

crystals, low temperature data, or neutron diGraction
data; 6nally a number of distant peaks may cause
signi6cant shifts in a terminated series, whereas the peak
broadening due to a convergence factor will aGect close
neighbors only. Again, the advantage of using a
convergence factor lies in the simplicity of its transform,
which facilitates detailed analysis of peak shapes shouM
any be required.

A recently proposed way44 of handling the breaking-
OG error is the now often used back-shift, method which
involves comparison of the Fourier map based on
observational data with a similar map obtained from
calculated structure factors, all terms which were lacking
in the 6rst sum being omitted in the second one also.
Alternately, "an Ii,—Ii, synthesis may be carried out
using as coef6cients the difference between calculated
and observed structure factors. Accurate knowledge of
the form and temperature factors is a very important
requirement, to which, it seems, too little attention is
ordinarily given. '@weighting with a suitable modi6cation
function will be helpful in this connection if the accuracy
of the assumed form and temperature factors can be
estimated as a function of h.

These methods are equivalent to the peak by peak
analysis discussed above. They have the advantage of
dealing with the crystal as a whole and thus, if the peaks
have not been made reasonably compact, may actually
entail less calculation. In a peak by peak analysis, on the
other hand, in which important interactions only need
to be dealt with in detail, the assumed peak shapes
(which is to say the form, temperature, and imposed
modiication factors) are necessarily checked, or else the
correct peak shapes can be taken directly from the map
under analysis, at least if it is not hopelessly compli-
cated. If the thermal motions are anisotropic with
principal mes oriented unsymmetrically to the principal
symmetry elements of the crystal, as often happens, it is
inconvenient to make appropriate precise structure
factor calculations and the present direct analysis should
be especially advantageous.

Van Reijen' seems inclined to favor inclusion of
extrapolated coef6cients in order to avoid termination
errors while still making full use of far-out reflections. If
not reaBy correct, however, such an extrapolation will
lead to error. Indeed, van Reijen's (110) projection of
diamond, which he gives as an example, shows question-
able high frequency details near the centers of the
carbon six-rings which presumably must be attributed
either to extrapolation errors or possibly to experi-
mental errors in high order terms.

Imposed modi6cation functions need not be limited to
convergence factors and a number of other functions
have been found useful so far. Sharpening of peaks by
multiplying structure factors with f, '(s) or similar

44A. D. Booth, Proc. Roy. Soc. (London) A1SS, 77 (1946);
Fourier Technique in X-Ray Organic Structure Analysis (Cam-
bridge UIllvcrslty Pl css CaIDbr1dgc 1948).

4~%. Cochran, Acta Cryst. 4, 408 (1951).
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functions is an example. Sharpening is especially im-
portant for Patterson functions, where resolution is the
crucial consideration, and the limited experience so far
seems to show that even in addition to sharpening with

f, ' exp(as') a further emphasis of the far-out data (to
be sure with suitable smoothing at the cutoff), a.s in the
examples derived from the Gaussian, mentioned in Sec.
9, is most helpful. Such functions are likely to vanish at
the origin, so that the integral of their transform is zero.
This requires that the desirable sharp, high peak at the
center of the transform at least be balanced by negative
values elsewhere, but this is less serious in the three-
dimensional case, to which one is forced for even
moderately large unit cells, than it is for lower di-
mensionality, inasmuch as the negative region is of
greater extent relative to the central peak. Even so,
although it apparently has not yet so turned out in
practice, "a transform with integral zero could well be
most confusing in failing to reveal unresolved concen-
trations of peaks such as would seem to be possible over
regions of atomic or possibly even molecular size. It
seems that here is a prime example where the concurrent
use of more than one suitably chosen modification
function should prove profitable.

As in the one-dimensional cases, the peak shapes for
p'(r) and P'(r) may be evaluated either by inverting the
complete modification function or by folding the trans-
forms of its several factors, the single inversion, usually,
being the easier to perform while the successive foldings
provide the cIearer picture of the situation. ViervolP'
discusses peak shapes for p(r) and P(r) and gives some
actual examples. For the shape of ideal Patterson peaks,

p;(t) pg(~ t+r ~ )dpi,

involving spherically symmetrical atoms, ViervolP' uses
the expression

2%'

tp.;(t) up; (u) dudt,
~0

which follows immediately (Viervoll gives a lengthy
derivation) from the substitution

~
t+r~ = (r'+t'+2rt cos8)**.

In a procedure for subtracting the peaks correspond-
ing to certain atoms in a Fourier map, Finbak and
Xorman4~ use what amounts to an arbitrary, unsym-
metrical modification function. The peak shape is ob-
tained by setting up a Fourier series corresponding to
one specific atom at its most probable position. This
series —our series transform K(r) except for a shifted

"Shoemaker, Donohue, Schomaker, and Corey, J. Am. Chem.
Soc. ?2, 2328 (1950); J. Donohue and K, N. Trueblood, Acta
Cryst. 5, 414 (1952).

4' C, Finbak and N, Norman, Acta Chem. Scand. 2, 813 (1948).

origin —is terminated in the same way as the original
series. In addition Finbak and Norman propose that
coefficients be omitted where no terms are available in
the original series due to unobservably low intensity of
the corresponding x-ray reRection. This corresponds to
the omission of terms in back-shift and F,—F, syntheses
mentioned above. Nevertheless, Finbak and Norman's
proposal may lead to grave complications, because the
corresponding Hah has scattered zeros and an excessively
complicated transform; and we believe it should be
adopted only in those cases of duress, important to be
sure, where relatively high background or low sensitivity
of the instruments of detection lead to a significantly
high value for the maximum unobservable Fh. Analysis
of Fourier maps in terms of such transforms, although
possible and more accurate, would in general be very
dificult, and the general advisability of the procedure
is not demonstrated by Finbak and Norman's example,
for which the number of missing large terms is very
small. It will be appreciated that if certain rejections
were unobservably weak, compared to the strongest
rejections, the contribution of the corresponding terms,
left out of the original Fourier map, is small and can be
neglected in good approximation. In this approximation
the original Fourier map still corresponds to a super-
position of simple peaks and may be so interpreted, the
negligible size of the unobservable terms being a conse-
quence of structure rather than of complexity of atom
shapes. Correspondingly, the subtraction of a complex
peak shape would only change into complex features the
basically simple peaks (possibly complicated by over-
lap) present in the original map and could not be
stopped after dealing with a few peaks, as otherwise
would usually be the case. Furthermore a new Fourier
would usually have to be evaluated should a change of
parameters be desirable, since a simple translation of the
transform can only be executed if it is a cover operation
of the grid for which the values have been calculated.
Again simple peak shapes prove much less cumbersome.

Two related examples can be found in a recent paper
by Magneli. He first considers a one-dimensional
structure whose period contains a sequence of eight
equidistant lines, the last line of one period and the first
line of the next one being at half that distance. The
Fourier coefhcients of this structure are either large or
comparatively small" due to the existence of a pseudo-
sublattice. Magneli shows diagrams of the following
sums evaluated using a convergence factor such that
only terms with n&40 are of any significance: (l) cor-
responding to the above structure, (a) the complete sum
and (b) an incomplete sum, including only the four
largest terms with m=0, 7, 8, 15, which function shows
false detail; (2) the series transform K(r) corresponding

'8 A. Magndli, Acta Cryst. 4, 447 (1951).
"The effect of such pseudo-sublattices on the distribution of

Fourier coefficients has been discussed by V. Vand, Acta Cryst. 4,
104 (1951),and by J. W. JeGery, Proc. Phys. Soc. (London) A64,
1003 (1951), in terms of concepts expounded in the foregoing.
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to a line at the origin, with (a) all terms and (b) only the ~
four terms corresponding to (1b), the last result being of
considerable complexity. Magneli points out how the
incomplete sum for the structure (1b) can be understood
as resulting from a superposition of the incomplete
series transforms (2b). However, while this is un-
doubtedly true, the omitted coeKcients are by no means
small and if the coefFicients with e=6, 9, 22, 23, 30,
whose magnitudes average about 20 percent of that of
the largest term, are included a graph results whose
main peaks stand out clearly and correspond in position
to the original structure. The subsidiary features of this
graph are clearly recognizable as such, the largest one
being about one-third of the size of the smallest main
peak and comparable in size to the subsidiary features
of a, sum which includes att terms with n&30. The
original structure can thus clearly be reconstructed from
this graph despite the fact that the magnitude of many
of the terms omitted is still above 5 percent of the size
of the largest term. These terms are not really negligible
and a detailed complete analysis of the graph would of
course require the corresponding incomplete IC(r).

An alternative to using this complex transform in
cases where the magnitude of the terms which cannot be

determined experimentally is relatively large, is to
substitute theoretical values for the missing coefFicients.
This will result in simple peaks provided the parameters
used in the calculation of the substituted terms are close
to their correct values. This procedure is a speciaI case
of one proposed by Cochran" which permits giving
different weights to diferent observed values. The use.
of theoretical values in this way of course increases the
provisional character of the electron density function,
which usually is considerable anyhow because of the
necessity of using theoretical values for the phase angle
values of the coeKcients.

Magneli's second example is two-dimensional and
concerns his (010) projection of P tungsten oxide. The
structure is analogous to the one-dimensional example
just discussed, being characteristic of the transform of
the tungsten form factor, modi6ed by the omission of a
large number of terms and thus comprising a complex
system of peaks. Again the original Fourier map may be
interpreted in terms of simple transforms, and it is
interesting that Magneli's solution of the structure
actually does rest on this point of view.

"W. Cochran, Nature 161, 765 {1948); Acta Cryst. 1, 138
(&948).


