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A review of the present state of knowledge of the variation with temperature of the thermal expansion of
anisotropic metals. The theoretical significance of the experimental data is discussed.

INTRODUCTIOK

'HE thermal expansion of a noncubic crystal can
be specified completely in terms of the linear

expansion coeKcicnts, a n„o.„measured along three
mutually perpendicular axes. These axes, in the case of
the rhombic and tetragonal systems, correspond with
the crystallographic axes. In the hexagonal and rhom-
bohedral systems the axis of highest rotational sym-
metry coincides with one of the expansion axes; the
direction of the second. expansion axis is chosen arbi-
trarily. In the monoclinic system one of the expansion
axes coincides with the b axis of the crystal and the
direction of one of the other two expansion axes de-

pends upon the particular crystal under consideration,
while in the triclinic system there is, in general, no rela-
tion between the crystal and expansion axes.

Thc thermal cxpanslon cocKclcnt 0!)Ns~q ln thc direc-
tion having direction cosines l, m, e with the coordinate
axes, is given by

A(gag= AgP+AyPP+ Q'gS
q

I

which, for the three uniaxial systems that comprise the
majority of anisotropic metals, reduces to

ng ——n„co as+ n~ sin'8,

where 8 is the angle between the given direction and
the principal axis, a,nd 0.» and 0.~ arc the expansion
cocScients in the directions parallel and. perpendicular
to the principal axis.

A complete speci6cation of the expansion of such a
crystal requires a knowledge of the two, or three, ex-
pansion cocKclcnts Rs fuDctloIis of tcmpcx'Rtulc ovcl
the whole range from the absolute zero to the melting
point. In the past, relatively little attention has been
paid to the study of the expansion of anisotropic metals,
and for only 10 out of the 34 metals that have aniso-
tropic structures have values for the expansion coeffi-
cients been obtained at more than one temperature.
Some of these values must, in addition, be regarded as
uncertain. Even less information is available for aniso-
tx'oplc alloys.

In view of the practical and fundamental importance
of the subject the lack of interest in the expansion of
RDlsotI'oplc substRnccs ls remarkable. Fox' cxRIQplc,

much information with regard to the directional de-

pendence of the binding forces and lattice vibrations in

anisotropic metals can be obtained from a study of the

6

expansion of such bodies. In order to stimulate interest,
therefore, experimental data for the expansion of aniso-
tropic metals are summarized in this paper, and a brief
account of the theoretical rein, tions that have been de-
x'lvcd fol thc obscrvcd bchavlor ls given.

L HUME-ROTHERY'S CLASSIFICATION

In dealing with the experimental results it is con-
venient to adopt Hume-Rothery's classification (1)*in
which the elements in the periodic table are separated
(by continuous lines)' into four classes (see Fig. 1).
Class I, at the extreme left of the table, comprises those
metals that crystallize in the three typically metallic
structures, the face- a,nd body-centered cubic systems
and the hexagonal close-packed system with an axial
ratio of 1.63. In these structures each atom has 8 or 12
equidistant neighbors so that, to a 6rst approximation,
the force field acting on the atom may be considered as
sphericaHy symmetrical. Consequently, these metals
show relatively slight anisotropy in their elastic and
thermal properties.

Elements in Class III include metals and semimetals
with a valency of four or more. These tend to form struc-
tures in which the atoms are bound by covalent forces
into clusters of (8—Ã) atoms, where X is the valency.
The binding forces between clusters are weaker than
those within the clusters, and consequently, consider-
able anisotropy results. Thus, the atoms in selenium
and teBurium with 6 electrons in their outer shells
form into spiral chains, each atom having two nearest
neighbors. The expansion in the direction of the chains
is markedly di6erent from that in the direction per-
pendicular to the chains.

Class II includes metals with structures intermediate
between those of Class I and III. Thus zinc and cad-
mium possess structures which, though hexagonal close-
packed, have axial ratios of 1.86 and 1.89, respectively,
lnstcad of 1.63.

Class IV consists of nonmetals and is therefore Dot of
interest here.

II. CLASS I METALS

For thermal expansion, as also for ma, ny other
properties iiiagiiesiulii (Fig. 2) ls virtually isoti'oplc
more so, in fact, than iron. At room teInpcrature, where
the coeScients dier to the greatest extent, n~ is 95 per-

~ Numbers in parentheses refer to BibEography at end of paper.
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Fro. 1. Hume-Rothery's classification of the elements.

cent of n». Both a~ and u» increase monotonically with
temperature, the increase being particularly marked
between 0 and 300'K and above 600'K. This kind of
variation is found also for several other metals. The chief
feature of interest in magnesium, however, is the excel-
lent agreement between the values obtained by Hume-
Rothery and Raynor (5) who measured the expansion
of the magnesium lattice by an x-ray diGraction method,
and those obtained by Goens and Schmid (3) who used
a Henning comparator to measure the expansion of bulk
single crystals of various orientations. This agreement
between values obtained by these two essentially
diferent methods, though of general occurrence, is not
necessarily to be expected. It depends, on the one hand,
upon the degree of perfection of the bulk crystals and
the extent to which they deform plastically when

loaded, and, on the other hand, upon the amount of
strain which is present, because of the anisotropy, in the
polycrystalline specimens used in the x-ray measure-
ments. The other results for magnesium appear to be
somewhat less accurate, but even so, there is no sys-
tematic disagreement between the crystal measure-
ments of Bridgman (2) and the lattice measurements of
the other investigators.

Beryllium (Fig. 3) is also relatively isotropic, though
less so than magnesium. There is some discrepancy be-
tween the results of Gordon (7) and those of Owen and
Richards (9), though both used x-ray methods. This
discrepancy is particularly marked at the lower tem-

peratures, where Gordon finds a steep fall, below about
420'K, in the values of the coefficients. Because of the

high Debye temperature (1000'K) of beryllium such a

fall may be expected so that it is likely that Gordon's

results are the more reliable. The bulk crystal values

for the expansion coeKcients of beryllium obtained by
Bridgman (2) and by Treco (10) do not deviate system-

atically from the lattice expansion values obtained by
the other investigators.

In Table I expansion data for osmium, ruthenium,
n-cobalt, zirconium, rhenium, and a uranium are given.
Osmium and ruthenium, as expected from their strong
binding forces and consequently high melting points
and low compressibilities, have small expansion coeK-
cients. These depend only slightly on temperature and
do not dier greatly. Zirconium, rhenium, and a ura-
nium are exceptions to the Burne-Rothery classification.
They are all strongly anisotropic in their thermal ex-
pansion. Uranium has a complex orthorhombic struc-
ture below 650'C, and one of its expansion coeScients
is negative.

III. CLASS II METALS

The expansion coeKcients of all the five anisotropic
metals in Class II have been measured. In Fig. 4 0.~ for
zinc is shown. Except for the inaccurate results of
Austin (13), there is good agreement, particularly be-
tween the lattice expansion measurements of Owen and
Vates (16) and the hulk crystal data of Gruneisen and
Goens (15).The general dependence of n~ on tempera-
ture is similar to that for magnesium, except that n~
becomes negative at about 70'K.
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For 0.», however, there is not such good agreement
(Fig. 5). In the overlapping region the results of Owen
and Yates (16) are lower than those of Gruneisen and
Goens (15) and are probably less accurate. The remark-
able feature is the rapid rise of O.„to a large maximum
value at 120'K followed by a progressive fall to the
melting point.

Cadmium (Fig. 6), as expected from its similar crystal
structure and axial ratio, behaves similarly to zinc;
Al l has a high maximum value, and n~ a negative value
at low temperatures. An additional feature of interest
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FIG. 4. aL for zinc. Q Austin (13).+ Bridgman (14).~ Grunei-
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IV. CLASS III METALS

In Class III only tin and bismuth have been in-
vestigated thoroughly. Using an interferometric method
and bulk crystals, Childs and Weintroub (23) found
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FIG. 3. o.'» and a& for beryllium. Q Bridgman (2). ~ Gordon
(7). o Kossolapow and Trapesnikow (8). ~ Owen and Richards
(9). Q Treco (10).

is that at 523'K cadmium becomes isotropic in ex-
pansion,

Mercury (Fig. 7), unlike zinc and cadmium, is only
feebly anisotropic in expansion. This is remarkable since
its linear compressibilities are in the ratio 1:5 and,

TABLE I. Expansion coef5cients of some metals in Class I.
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FIG. 5. O. ll for zinc. O Austin (13).+ Bridgman (14).~ Grunei-
sen and Goens (15). ~ Owen and Yates (16). Q Shinoda (17).r Staker (18).

Metal

Os {c.p.)
Ru (c.p.)

n-Co (c.p.)
Zr (c.p.)
Re {c.p.)

Structure

hexagonal
hexagonal
hexagonal
hexagonal
hexagonal

106ull
per 'C Temp. Refer-

'C ence

5.9- 8.35 4.0—5.85 50—550 9
8.8-11.7 5.9-7.65 50—550 9

16.1 12.6 60 6
2.5 ~ 14.3 80 6

12.5 4.7 20 11

that for tin n„was approximately twice o.~ and that
both coeKcients increased almost linearly with tempera-
ture from room temperature to the melting point (see
Fig. 8). The single values obtained by the other in-

x lo
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10'n, 10 at, 10'a.
orthorhombic 23 —3.5 17

more especially, since the direction of greatest expansion
corresponds to the direction of smallest compressibility
or strongest binding.

For thallium and indium, which have hexagonal
close-packed and tetragonal structures, respectively,
only single mean values of the expansion coeKcients
are available. These are for thallium at 60'C,
o.i)=&2X10 ', o.~=9X10 ', and for indium at 50'C,

11.7X 10 a =45.0X 10 ' in deg 'C Both metals
are thus highly anisotropic.
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vestigators differ considerably from those of Childs and
Weintroub; two lattice expansion values lie above the
curves, and one bulk crystal result lies below. This
separation between the lattice and crystal results may
not be significant, however, in view of the disagreement
between the individual values in the two groups.

Bismuth, antimony, and arsenic have a rhombo-
hedral structure in which the atoms are arranged in
double layers perpendicular to the principal expansion
axis. Because of the many anomalies in its physical
properties bismuth has been the subject of detailed
investigation. The remarkable constancy of the coeffi-
cients A» and O,g which for 0.» extends over a range of
3|10'K, should be noted (see Fig. 9). Another feature
of interest is the discontinuous changes at 258 and 345'K
which have been observed by two investigators. These
discontinuities cannot be interpreted as due to a phase
change since no similar discontinuities have been ob-
served in the variation of the lattice constants with
temperature. Finally, the fall in 0.» and AJ which begins
near the melting point and which has been found by
Buchta and Goetz (29) to be due to the presence of
small amounts of impurity should be noted.

The relatively looser structure of antimony perpen-
dicular to the layers makes antimony more anisotropic
'tllall blslnuth. Tile coefflclell'ts (Flg. 10), slnlllal 'to

those for bismuth, do not appear to vary appreciably
with temperature, but this is not established definitely
since the measurements are fewer and less accurate.

Arsenic (Table II), being relatively less strongly
bound perpendicular to the layers even than antimony,
is still more anisotropic. No information about the tem-
perature dependence of the coeRicients is available.

Hexagonal selenium and tellurium are the most
anisotropic substances so far investigated. a» for se-
lenium is very negative even at room temperatures,
while a~ has a large positive value. This is in conse-
quence of the strong covalent, binding paraM to the
chains, coupled with weak molecular type forces which
hold the chains together. Similarly, graphite, with an
hexagonal layer structure, has a relatively large n» in
the direction of weak molecular binding and a negative
o.~ in the direction of the strong covalent forces.
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V. THEORY AND MSCUSSION

A physical explanation of the thermal expansion of
substances may be given by considering Fig. II in
which the potential energy E of a pair of atoms is
plotted as a function of their distance d apart. The im-
portant feature of this curve is the lack of symmetry
about the minimum at the equilibrium distance do.
Thus the displacement from the equilibrium position
required to produce a given change in potential energy
is greater for an increase than for a decrease in d. Hence,
if the atoms vibrate longitudinally, corresponding to the
lattice vibrations of a solid, a net outward pressure will
be set up which wiB produce an expansion, hd, in the
mean interatomic distance. This will increase as the
amplitude of vibration increases with rise in tempera-
ture. If the vibrational energy is quantized, then for
teQlperatures much greater than the cliaractel istic
temperature, a linear relationship between Ad and E
results in a constant expansion codhcient a, while at
temperatures less than the characteristic temperature
where E is no longer proportional to the temperature,
a falls progressively. This simple argument can be
extended to two and three dimensions and, if certain
assumptions are made concerning the shape of the
potential curve, leads to the well-known GrCineisen's
law relating the thermal expansion and the specific
heat of isotropic substances.

For anisotropic substances the general situation is
very similar, but for these the dependence of the poten-
tial energy curve, and consequently of the linear com-
pressibilities on direction, has two important conse-
quences. The first is that. at low temperatures lattice
vibrations will be excited preferentially in the direction
of greatest compressibility on account of the lower vi-
brational frequencies. Thus, initially, the expansion
parallel to this direction will be greater than in the
perpendicular direction. The second is that an expansion
in one direction is accompanied by an elastic contrac
tion in the perpendicular directions, the magnitude of
which is determined by the magnitude of the expansio~
and, for the principal directions, by the elastic coeK-
cients sy2, si3, s23. This contraction may be suRciently
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great to overcome the intrinsically small expansion in
these directions at low temperatures and produce a
net contraction. This occurs for zinc, cadmium, graphite,
selenium, tellurium, and uranium, and probably also
for thallium, indium, and arsenic.

This qualitative treatment has been applied by
Gruneisen and Goens (15) to anisotropic (hexagonal)
crystals and by making several simplifying assump-
tions they have derived theoretical relationships for
O.„and o.~. They have used these to interpret their
experimental results for zinc and cadmium at low tem-
peratures. Commencing with the thermodynamica1.
relations, if X and Z, are the "thermal pressures, "

where
s p (0 z)dD

v*=—.~ „~*'DIVi=» ( T)4sr

R s
t

(0') dQ

Vi=» 4 T)4sr

are the so-called "thermal pressure coefficients, "D is
the Debye function, p, '= (8 logO', '/8 logl, ), etc. , and
j=1, 2, 3 refers to the acoustical modes of vibration.
Finally as in the Debye theory of specific heats the dis-
tinction between the 0'"s and the y"s is removed and
mean values (indicated by ()) substituted so that

1 (Bl,) 1 t.r (BC,) dT
0!g=A'~= Ay=

l &BT) ~ V "s (BX) T
((o. )&.=—($ +$ )&v*&DI

— I+$ &7 &DI
V (T) (T)

1 ( Bl,~ 1 t' (BC,q dT
~II =0's=

l EBT) V o (BZ) T
((o"*)i ((o.*)&

2$1s&v.&DI = I+$ss6.)DI
V &T) ET)

where V is the volume and C„ the specific heat at con-
stant pressure; C„ is replaced by C„ the specific heat at
constant volume, and the Horn (35) expression for C„ is
substituted. This expression takes account of the varia-
tion of the limiting frequencies, i.e., the characteristic
temperatures 0+&, with the nature and direction of the
lattice vibrations. Gruneisen and Goens (15) obtained

The values of (y) and (0) have to be chosen empirically
to give agreement between the theoretical and experi-
mental values of 0..

In Fig. l2 the agreement which can be obtained with
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TABLE II. Expansion coefficients of some metals in Class III.
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experiment is illustrated for the case of zinc. -The
values used by Griineisen and Goens were (p,)=2.04,
(y.)=1.68 which are of the same order as those for
isotropic substances, and (O~,)=320'K, (O~,)= 200'K,
compared with 0=250'K from specific heat measure-
ments. The agreement, however, is not a true measure
of the correctness of the formulas, because the various
approximations and simplifications are obscured by the
choice of the values for the (y)'s and (0')'s, For example,
the elastic coefficients are assumed to be independent of
temperature. It must be remembered also that the
assumptions involved in the Debye theory regarding
the frequency spectrum of the lattice vibrations, intro-
duced errors at low temperatures, and the assumption of
the equality of C„and C, introduces error at high tem-
peratures. (For a modification of the Griineisen-Goens
theory applicable at high temperatures see Riley (36).)
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CONCLUSION
«2
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It should be clear from the above summary both of
the experimental data and of the theoretical formulas
for the expansion of anisotropic metals that it is de-
sirable that much additional information be obtained,
by accurate measurement, of the linear expansion
coefFicients over wide ranges of temperature and, by
calculation from the elastic coefficients, of the spatial
variation of the y's and 0's.
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