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Both electromagnetic and acoustic waves exert forces of radiation upon an obstacle placed in the path of
the wave, the forces being proportional to the mean energy density of the wave motion. In electromagnetics
the action of these forces is relatively easily understood through the concept of Maxwell's electromagnetic
stress tensor.

'The physical processes leading to these forces in a sound wave have been found to be considerably more
complex; the difhculties belong to the fact that the acoustic wave equation is not linear and that a beam of
finite cross section is subject to effects caused by the surrounding medium.

Though many papers have been devoted to the subject and though various theoretical approaches have
been made, some difhculties still seem to stand in the way of a clear understanding of the physics of the
problem.

The purpose'of the present study is especially to throw light on the physical aspects. The approach
adopted, which uses the momentum theorem, is believed to serve this purpose especially well. The expression
for the radiation pressure is given in both Eulerian and Lagrangian coordinate systems.

Special consideration is given to liquids of constant compressibility, since in such media the processes
involved can be dealt with mathematically in a simple manner. The general case of a plane reflector with
arbitrary reQection coefficient is treated; the modus operanCh of the forces at the interface between liquid
and obstacle is explained for some special cases, including the radiation forces on the interface between two
nonmiscible liquids.

Finally, a general relation is established between the energy density and the pressure caused by radiation
falling normally upon a plane reflector, which, under certain assumptions, is valid in any Quid and at any
amplitude.

1. INTRODUCTION portional to the mean mechanical energy density E of
the periodic wave motion. He found that the factor of
proportionality was not in general unity, but dependent
on the special law relating the pressure p to the density
in the Quid under consideration.

The actual radiation pressure, however, as encoun-
tered in an acoustic beam under ordinary experimental
conditions, is di8erent from Rayleigh's "pressure of
vibrations. " Rayleigh's result, ' which is often quoted,
applies to a theoretical case rather than to what is
usually measured.

The equations describing the motion of acoustic
waves are nonlinear (with the one exception of the
Lagrangian wave equation in a Quid of constant com-

HE concept of radiation pressure originated in
electrodynamics. According to Maxwell's equa-

tions and his concept of the electrodynamic stress
tensor, a plane surface of perfect conductivity emitting
normally a plane electromagnetic wave undergoes a
reacting force per unit area equal to the total energy
density E of the emitted wave. Also, such a plane wave,
striking perpendicularly a plane and totally absorbing
surface, exerts a radiation pressure equal to E.

Lord Rayleigh was the first to formulate a theory of
radiation pressure resulting from compressional acoustic
waves in fluids. He established a relation which gives
the time-average value of the pressure produced upon a
piston by a plane wave of in6nite cross section in a
fIuid, and he showed that this mean pressure is pro-

* Work performed under U. S. Office of Naval Research Con-
tract Nonr-220(02).

6

Lord Rayleigh, Phil. Mag. 3, 338 (1902) and 10, 364 (1905).
For example, in a gas under adiabatic conditions, Rayleigh's
pressure amounts to (1+p,)E; at a perfect reQector and at small
amplitudes. y, ratio of the specific heats and E;=mean energy
density of the incident wave=one-half of the total mean energy
density in a standing wave.
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pressibility). For many purposes, it is sufhcient to
"linearize" these equations and to retain only first-
order terms of the velocities or particle displacements,
regarding them as small quantities. Radiation pressure,
however, is connected with energy densities, which are
quadratic terms containing the squares of velocities or
displacements. Any theory dealing with acoustic radia-
tion pressure, therefore, must retain at least all second-
order terms, to be valid even at small amplitudes.

The fact that radiation pressure is a second-order
quantity and that the vibrational amplitudes are usually
very small in comparison with the acoustic wave-
length ), explains its relatively small numerical value in
comparison with the values of the periodically alter-
nating first-order pressures encountered in acoustical
waves. Whereas the first-order pressure amounts to
maximal values up to kilograms per cm', acoustic
radiation pressure only reaches values of the order of
grams or dynes of force per cm'. Nevertheless, radiation
pressure is an important quantity in the experimental
determination of acoustic intensity.

Since Rayleigh s investigations, a considerable num-
ber of papers have been devoted to the subject, many of
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Fn. 1. Acoustic
beam of finite cross
section A incident
upon a plane ob-
stacle 0, and passing
through undisturbed
regions in which the
hydrostatic pressure
ls Pp.

~ L. Brillouin, Ann. phys. (X) 4, 528 (1925).
3 The case of oblique incidence can easily be solved, if the forces

resulting from radiation pressure at normal incidence are known.
See, for example, F. E. Borgnis, J. Acoust. Soc. Am. 24, 468
(1952).

which, however, do not deal adequately with certain
peculiar diKculties inherent in the problem.

L. Brillouin' seems to have been the first to give a
comprehensive approach to the subject, especially in
pointing out the tensorial character of what is usually
called radiation "pressure. "Indeed, this quantity is not
a "pressure" in the sense ordinarily understood in
hydrodynamics. Brillouin published his first paper on
the subject as early as 1925; various authors, however,
in later papers on the same subject, seem not to have
paid proper attention to Brillouin's approach.

In what follows, a study is presented of the forces
exerted upon a plane obstacle by plane compressional
waves in a Quid, meeting the obstacle at normal in-
cidence. '

Special attention is devoted to throwing light upon
the actual physical processes involved. For this reason,
a diGerent approach from that used by Brillouin has
been chosen; the study also goes further in the con-
sideration of certain details than has been done hitherto.

2. STATEMENT OF THE PROBLEM

In dealing with plane waves, some idealizing assump-
tions must be made. Plane waves cannot strictly be
realized experimentally. Still, if the width of the
acoustic beam is large in comparison with the wave-
length, the concept of plane waves gives a good approxi-
mation, especially in the case of the high frequencies
used in ultrasonics. Under most experimental condi-
tions, the acoustic beam in any fluid is surrounded by
regions of the same Quid. Reasoning as in geometrical
optics, we assume that only the region inside the beam
is subject to the acoustical wave motion, whereas the
region surrounding the beam is assumed to be undis-
turbed; that is, we disregard diGraction e6'ects at the
edge of the beam and assume uniformity of wave motion
over the cross section of the beam. The beam is sup-
posed to fall normally upon a plane obstacle, entirely
immersed and at rest in the fiuid (Fig. 1).This obstacle
causes reflection at its front surface; it may absorb
partially or totally the penetrating wave energy. The
transmitted part leaves the rear of the obstacle as a
purely progressive wave.

The interaction of the obstacle with the plane wave
motion can be described completely by an amplitude
reHection coefFicient y, an amplitude transmission coeS.-
cient 8, and the phase angles 0 and 0' of the reflected and
transmitted waves with respect to the phase of the
incident wave; a plane wave motion in the acoustic
beam is thus uniquely determined.

Considerable complications in the measurement of
radiation pressure are caused by the fact that the
acoustic field sets up a steady streaming in the medium.
Two effects have been made responsible for this mass
Qow: first, the so-called "pumping effect, " which may
occur at the source of radiation and by which Quid is
sucked into the beam and set in motion in the direction
of the wave propagation. Second, owing to viscous
forces, the wave motion generates what is called the
"hydrodynamic Qow;" a steady vortical motion is set
up in the Quid, causing a steady streaming along the
beam in the direction of the incident wave and return-
ing outside the beam. The phenomenon of hydro-
dynamic Qow is inseparably associated with acoustic
radiation in a Quid. Like the latter, it is an eGect of
second order; it cannot be treated without taking into
account at least second-order terms in the hydro-
dynamic equations. 4

In order to measure the forces due to radiation only,
these forces must be separated from those caused by
the steady mass Qow of the Quid. Usually, some sort
of screening is resorted to, consisting of thin films,
transparent to radiation but preventing the Qow from
exerting forces upon the obstacle. Such screens are
located close and parallel to the surface of the obstacle,

4 C. Eckart, Phys. Rev. 73, 68 (1948); J. J. Markham, Phys.
Rev. 86, 497 (1952); P. J. Westervelt, J. Acoust. Soc. Am. 25, 60
(1953).
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and it is commonly assumed that in this way the forces
caused by acoustic radiation can be measured with
suKcient accuracy.

A separation of the forces in question may also be
achieved by a low-frequency intensity modulation of the
beam and measuring the radiation pressure by a device
which responds to the modulation but not to the steady
forces of the mass Qow nor to the unmodulated wave. '

Since we are only concerned with forces caused by
radiation, viscous forces are not taken into account in
this paper.

but at any time entirely within the fiuid. Owing to the
law of action and reaction, it is permissible to extend
the integrations involved over the surface S instead of
over the actual surface of 0.

The momentum of 0 can change in two ways: (a) by
a "local" change ie time of pu within volume elements
of 0; the rate of change of this momentum is given by
(d/dt) fp pud V; (b) by a "convectional" change of pu in
the course of the displacement il space of mass elements
of 0.$

The volume integral of the convectional change in

3. GENERAL FORMULA FOR THE ACOUSTIC
RADIATION PRESSURE

In order to obtain the force exerted upon 0 in Fig. f. ,
we apply Newton's theorem of equivalence of the time
rate of change in momentum to the forces acting upon 0.
To keep 0 in time average at rest, we have to apply a
force Ii, equal and opposite to that caused 'by the
quantity which we call radiation pressure. Denoting by
I' this radiation pressure, that is, the force per stttit

area of the beam of total area 3, P amounts to I'A,
since we are assuming uniformity over the cross sec-
tion A.

The other force acting on 0 is due to the "dynamic"
pressure pd and is given by gp~da over the entire
surface of 0. In absence of acoustic waves, the pressure

p, is the undisturbed hydrosi. atic pressure po, when
variation with depth is ignored, po is constant over the
whole surface and gp~da= posada=0.

If an acoustic wave motion is present, the hydrostatic
pressure ps becomes "modulated" over the affected
parts of 0 by the "excess pressure" p of the acoustic
waves; the resultant pressure may be called the
"dynamic pressure" po= ps+ p. Forces are counted
positive in the positive x direction (Fig. I), which is
the direction of propagation of the incident wave; the
force upon 0 due to the action of p~ is gp~da=gpda
= (Pt —Ps)A.

Next we establish the expression for the time rate of
change of momentum of 0. As we have to assume con-
tinuity of particle displacement at the interface between
the ffuid and the surface of 0, mechanical motion is
transferred to 0. Let p be the density and u the velocity
vector of mass elements in 0; the "momentum-density"
then is given by pu. The quantities p, p, and u are
considered as functions of x, y, s, and t, the coordinates
belonging to a system fixed in space. 0 may be regarded
as having a large inertia, so that its center of gravity
may be assumed to be practically at rest, although
parts of 0 undergo small and rapid mechanical move-

ments.
In order to compute the change of momentum and to

express it by values of the density and the velocity of
theggid, we visualize an imaginary surface S stationary
in space and in close neighborhood of the surface of 0,

' A. Barone and M. Nuovo, Ricerca sci. 21, 516 (1951).

FIG. 2. Imaginary
surface S enclosing
0 and stationary in
space. tt is the inner &&(

normal, u the (posi-
tive) particle ve-
locity.
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FIG. 3. Directions
of the forces acting
upon 0.
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ptui A

p2A
p~u~ A

side the beam give no contribution, as the Quid there
is assumed to be at rest.

It may be noted that pu' is always a positive quantity,
independent of the sign of N. Owing to the equivalence
between force and rate of change of momentum, the

t The total change of a quantity q is Dq/Dt=sq/st+(u V)q;
the 6rst term is called the local change, the latter term the con-
vectional change of q.

6 See, for example, L. M. Milne-Thomson, Theoretical Hydro-
dynamics (The Macmillan Company, New York, 1950), p. 72,
or Handblch der I'hysik (Julius Springer, Berlin, 1925), Vol. VII,
p. 22.

momentum of 0 can be transformed into the surface
integral over the entire surface of S in Fig. 2 of the
"Qux of momentum" crossing S per unit time; the
integral amounts to gs (pu) (u n)dtt, s Indeed, during a
time element dt the "Qux of momentum" crossing a
surface element da of 5 is given by (pu)(u n)dadt,
pu being the density of momentum and (u n) the
normal velocity across S. The surface integral results
from a gain or loss in momentum of mass elements in
the course of their displacements within 0.

In our one-dimensional problem, the total Qux of
momentum enterimf, S per unit time is given by
(p&ttt —pstts )A; the minus sign of p&tts' expresses the
fact that this quantity is the Qux leaving S, when I is
positive in the positive x direction. The parts of S out-
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terms (piui') and —(psuss), representing the flux of
momentum entering and leaving S per unit time, may
be treated as if they represented forces acting upon 5
and directed always in the sense of the ieeer normal
of S (Fig. 2), whatever the direction of motion of the
particles crossing 5 may be. Nothing, however, indicates
that such forces realLy act on the front and rear surfaces
of S; only their slm has a physical meaning, as it
integrates the convectional changes of momentum per
unit time of all mass elements within S.

Summing up all the forces acting upon 0 (Fig. 3) and
assuming that they are balanced by the external force F
necessary to keep the center of gravity of 0 in equi-
librium, f. we arrive at the equation

Poda+ (Pl+plui P2 psu2 )+ F (d/d~)
8

P~= pi+(piur') —ps —(psus'), (2)

where the angular parenthesis denotes the average
value.

This is the general expression for the totaL mean
radiation pressure P~ exerted upon 0 in the present case.

Equation (2) suggests regarding P, as consisting of
two separate parts P1 and P2, belonging to the wave
motions in front and at the rear of 0. P1 can be thought
of as being caused by the wave motion in front of 0,
P2 by an "emitted" wave leaving 0 at its rear. It may
be recalled that Ii was defined as the force necessary. to
keep 0 in equilibrium; the direction of Ii is opposite to
that of radiation pressure. We can, therefore, define a
mean radiation pressure P per unit area of a plane com-

pressional wave by

P = 7i+(pu').

As so defined, P is always directed in the sense of
the inner normal of the surface interacting with the
acoustic wave, whether the surface is thought of as
receiving or as emitting radiation.

As a generalization of the expression (3), the mean

radiation pressure upon an obstacle of arbitrary shape

f Viscous forces at the interface bet&veen 0 and the fiuid are
excluded. Any viscous forces inside 0 cancel out.

X pud V= 0, (1)
Jy

where the last integral is taken over the volume bounded

by S.
Since we are interested only in the time average of

the radiation pressure, we average Eq. (1) over a full

period. Assuming a periodic character of the wave
motion and periodicity in time of Jz pudV, the time
average of (d//dh) Jv pudV vanishes; also +8 peda=0,
disregarding variation of ps with depth. From Eq. (1)
we obtain, after replacing F by I'&A,

in an acoustic field can obviously be written

(P)=pn+(pn(u n)), (4)

where u now stands for the vector of the velocity
u(x, y, s), and n, as before, is the vector of the inner
normal on the surface element da. ' In the general case,
the acoustic radiation may also exert shearing forces
upon the obstacle, resulting in a torque upon 0.

The procedure of attributing to each surface element
of S a radiation force of amount P, as defined by
Eqs. (3) or (4), has its analogy in electrodynamics,
where Poynting s radiation vector S= EX8 is assigned
to each surface element of an irradiated surface. What
is, in fact, derived in both cases is the total force or the
total electromagnetic radiation belonging to a closed
surface; from the surface integral, however, no rigorous
conclusion can be drawn with regard to the distribution
over the elements of the surface of derived quantities
such as (P) or S. Still the concept of a radiation pres-
sure P as defined in Eqs. (3) and (4) is very useful and
leads, if properly applied, to correct results.

Incidentally, an expression analogous to Eq. (4) is
well known in hydrodynamics in connection with what
has been called "Euler's momentum theorem. ")

4. BRILLOUIN'S STRESS TENSOR IN FLUIDS

From the foregoing considerations, Brillouin s con-
cept of a tensor describing the dynamical stresses acting
upon a Quid under acoustic motion can easily be ob-
tained. The general result of Eq. (4) may equally well
be applied to a volume V belonging to the Quid We.
consider a unit volume in the Quid and describe the
force exerted upon it in the x direction by the component
T„of a general stress tensor; the tensor components
T „T», T„are here positive in the sense of the inner
normal, that is, in the sense of the positive pressure.
Equation (4), then, gives in the one-dimensional case

Pdc = (T„)i —(T„)s ——— (8T„/Bx)dx
8 1

((p+pu')) «,
8

whence by use of a well-known integral transformation

8T~g f 8
dx = — —((p+pu')) dxdyds

~y 8x

8—((p+pu')) dx
~, ax

since ((p+pu')) is a function of x only and dyds= 1.The
Quid, therefore, can be thought of as subjected in the

'See P. J. Westervelt, J. Acoust. Soc. Am. 23, 312 (1951),
Eq. (8).

$ See L. M. Milne-Thomson, reference 6, p. 74.
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x direction to a dynamical stress component

&**=po+ ((P+p ')) =f +(p ') (3)

Since the particle velocities in the y and z directions
are zero, the pressure pd ——pe+ p is the only force acting
in those directions. Thus,

~gP ~ZZ Pd'

These forces acting in the Quid can be described by
use of the dynamical stress tensor introduced by
Brillouin

Pg+(pu') 0 0
0 pg 0.
0 0 pg

In the absence of acoustic wave motion (pu') =0 and

pd =pp ', the liquid is under the hydrostatic pressure pe
only, which is the same in every direction. If the
acoustic wave is present, the Quid undergoes a non-
isotropic state of stress: the stress component T„differs
from F» and T„by (pu'), that is by the mean flux of
momentum density through a stationary area normal
to the x direction. Moreover, as is shown later, the
pressure pe is changed in time average to the mean
dynamic pressure p& ——pe+p, where p is found to be
proportional to the energy density of the wave motion.

If the Quid is bounded by a plane material surface
normal to x, the mean normal stress 7„=p~+(pu') is

transferred to unit area of this surface; thus, we are
led back to the expression for P, as defined in Eq. (3).
At oblique incidence the radiation tensor transforms
like the tensor in Eq. (7). In order to attain the final
value of I', the expressions for the tensor components
must be completed; since pd will turn out to be diferent
from the pressure pe in the undisturbed medium, the
interaction between the two regions inside and outside
the beam must be considered.

5. A GENERAL RELATION FOR THE MEAN EXCESS
PRESSURE, AND FOR THE "RAYLEIGH-PRESSURE"

The mean excess pressure p depends upon the
properties of the Quid under consideration, that is, upon
the relation p(p) between pressure and density. p finally
follows from the solution for the wave motion. Since p
is related to an area fixed in space, the solution of the
so-called ENlerian equation of motion is indicated. In
this equation the quantities p, p, and u are regarded as
functions of x, y, z, and t, the coordinates belonging to
a system at rest. A velocity u(x, y, s, t), for example,
means the velocity that would be observed at the
point (x, y, s) at the time t; since the fluid is in motion,
diferent particles of the Quid are found at' the same
point (x, y, s) at a different time t' In other wo.rds,

L. Srillouin, reference 2. Also, "I.es Tensenrs en Jtt/Iecaeique et
en Elusticite" (Dover Publications, New York, 1946), pp. 290, 302.
It is proved by Brillouin that the forces can actually be repre-
sented by a tensor, that is, that they transform like a tensor.

x(t) =a+ )(a, b, c, t); dx/dt= u, = 8&/Bt

y(t) = b+rt(a, b, c, t); dy/dt= uy itrt/itt- —
s(t) =. c+f (a, b, c, t); dz/dt= u, = 8$/itt

(9)

If $, rt, l' are known functions of (a, b, c, t), the inversion
of the system (9) allows one to express a, b, c as func-
tions of (x, y, s, t). By insertion of a, b, c, so found, into
q* of Eq. (8), one obtains the corresponding quantity q
in Eulerian coordinates. The inversion of the system (9)
cannot ordinarily be accomplished by functions of
closed form; one has rather to resort to power develop-
ments.

f/

Our further considerations will be limited to snzaQ

amplitudes of the acoustic wave motion; that is, terms
of third and higher order of amplitudes will be neg-
lected. In compressible liquids, the amplitudes that are
so far experimentally obtainable in plane waves are
always small; in gases, owing to the nonlinearity of the
wave equation, the mathematical difFiculties in dealing
with finite amplitudes are beyond the scope of the
present paper.

Returning to the one-dimensional case under con-
sideration, we will now establish a relation between p
and p*, , that is, between the mean pressure P at a
fixed position, as needed in Eq. (3) for I', and the mean
pressure p* related to an oscillating particle. Such a
relation is very useful, because in acoustics solutions

~~
See F. E. Borgnia, Technical Report No. 1A, March 10, 1953,

under U. S, OfFice of Naval Research Contract Nonr-220(02).

p, p, and u are riot associated with particles, but with a
fixed point in space.

Often, however, a solution for the wave motion can
more easily be established by using the Lagraegiam
equation of motion. Here the quantities p, p, and u are
related to special particles and the solution describes
the change in time of p, p, and u, which would be noted

by an observer at the instantaneous positions of the
particles. In order to mark the difference between
Kulerian and Lagrangian quantities, we shall denote
the latter by p*, p*, and u*. The particles themselves
are characterized by their original positions at rest, the
coordinates of which may be u, b, c; their instantaneous
positions are denoted by the displacements
(which are functions of a, b, c, t) from their original
positions. The ac)la/ position of a particle with respect
to a fixed system is therefore given by x= a+ $; y= b+rt,
s=c+l. For example, a solution for u(a, b, c, t) in

Lagrangian coordinates indicates the velocity found at
the actual position a+), b+rt, c+l of the particle, the
rest position of which was a, b, c.

The relation between a Lagrangian quantity q* and
the corresponding Eulerian quantity g is expressed by

ct*(a, b, c, t) = q(a+ $(t), b+rt(t), c+l (t), t)
= 0(x(t), y(t), s(t), t) (g)

since the positions and velocities of particles are
given by
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O'P(a, t)
po

Bt'

Bp*(, t)

where po is the NeChstlrbed density. This equation is
rigorous, with nothing neglected. '

From Eqs. (10) and (11), we find, using customary
abbreviations denoting partial derivatives,

Now we can write $P«=(Q&)&—($&)'; taking the time
average and assuming $ and its derivative as periodic
in time, we find (($$ii))= —((P,)')= (u*'),—since u*= $i.
Thus, we obtain

P(o) = P*(o)—Po(ii*') (o). (12)

Denoting 6rst- and second-order terms by the sub-
scripts 1 and 2, we have, excluding a continuous par-
ticle velocity uo,

N=iii+iio, p= pi+pi, P=Po+Pi+Po . (13)

To the second order twice the kinetic energy is
2E&in p+ posi Ekin+= p+u+ = pog, +2 as seen from
Eq. (13), because I' differs from u*' in terms higher
than the second. Also, in this approximation E~;„*
=E„&*,and the total energy density E*=Ei,;„*+8„&*
=2';~*=(pii*')=(pox*'). Consequently, we have at
small amplitudes

E= E*= (pu') =(pu~) =po(ii') =po(u~), (14)

and hence, from Eq. (12)

P(o) =P*(o)—E*(~)= P*(~)—E(~) (15)

This general relation between the mean pressure p at
a fixed coordinate u, and the mean pressure p*
which would be observed by moving with the particle
around a, is independent of the special function p(p)."
Equation (15) enables us to find the mean Eulerian ex-
cess pressure p, when p* and I* in Lagrangian coordi-
nates are known.

' See, for example, H. Lamb, Theory of Sound (Edwin Arnold,
London, 1910), p. 176; also Hydrodynamics (University Press,
Cambridge, 1936), p. 479.

"See G. Hertz and H. Mende, Z. Physik 114, 354 (1939);also
F. Borgnis, Z. Physik 134, 363 (1953), where it is shown that
Eq. (15) holds also for finite amplitudes. In the present paper, it
is sufficient to know its validity at small amplitudes.

for p* are often easier to find than solutions for p.
According to Eq. (8), p(u+$(a, i)) =p*(a, t): by sub-
stituting a for a+ $, we have p(a, t) =p*{a $—(a $—, &) ).
Regarding $, p, and p* as small first-order quantities
and neglecting terms of order higher than second, we
may write

p( ) =p*( 5) =—p*( ) $(~—p*/~ ) (1o)

The Lagrangian equation of motion in one dimension
is known to be

Inserting Eq. (15) in Eq. (3), with consideration of
Eq. (14), we obtain

P=P+(»') = p*. (16)

"F.Bopp, Ann. Phyoik N, 495 (1940).

Thus, the radiation pressure can equally well be ex-
pressed by the mean pressure averaged in time over a
unit area moving with the particles at the interface
between Quid and obstacle.

Some authors dealing with the present subject
identify radiation pressure with the mean Eulerian
excess pressure p only. Most problems in acoustics are
usually treated only to the 6rst order of approximation;
within this approximation the second-order term (pg )
is neglected and p becomes identical with (p*). Radia-
tion pressure, however, is a second-order quantity.
If Eulerian quantities are used, the term (pii') (as well
as at least second-order terms in p) are essential; only
in the case of a perfectly rigid reflector (ii= 0) does the
identi6cation of the radiation pressure with p lead to
accurate results. "If Lagrangian quantities are used, at
least second-order terms in (p*) have to be taken into
account.

From the physical point of view, it appears natural
to reason that the radiation force exerted upon a
material surface which (unless it belongs to a perfectly
stiff reflector) is in periodic motion, should be obtained
by averaging in time the excess pressure on the moving
surface, as indicated by Eq. (16). Indeed, as Eq. (16)
shows, this is perfectly correct in dealing with a beam
of infinite width, or of 6nite width but not in communi-
cation with undisturbed regions of static pressure po,
in these cases both the Lagrangian quantity p* and
the Eulerian quantity ((p+pl')) constitute a correct
expression for the radiation force. Nevertheless, the
case of infinite width is, of course, purely theoretical;
the case of finite width could be conceived as repre-
sented by a bea, m filling completely a closed cylindrical
tube with perfectly rigid walls. Experimentally, how-

ever, it seems hardly feasible to measure radiation
pressure by such a device.

G. Hertz and H. Mende" introduced the notation
"Rayieigji presslre" for the Lagrangian quantity p*,
that is, the excess pressure averaged in time over a
moving surface. Therefore, according to the statements

above, the Rayleigh pressure can be identi6ed with the
radiation pressure in an infinitely exteiided beam, not in

communication with undisturbed regions.
Practically, however, the acoustic beam is of finite

width and interacts under almost all conditions with

undisturbed regions. This interaction plays a funda-

mental part in producing the actual radiation forces,
because it changes the dynamic pressure in the beam in

a way which will be treated below. It is this change in

pressure that leads to the actual expression for the
radiation pressure. The expressions for P in Eq. (16),
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therefore, have to be modified, because they fail to
take into account this phenomenon of interaction.

For acoustic waves one uses normally the adiabatic
value of P, though the processes are certainly not
strictly adiabatic. Still, the exact value of P will not be
very much affected, even if the process is not strictly
adiabatic; this conclusion follows from the fact that
the difference between the adiabatic and isothermal
compressibility amounts to only a few percent for
liquids forming drops and under normal conditions of
temperature and pressure. Over /urge ranges of pressure
the compressibility is not constant. Still, within the
range of excess pressures encountered in acoustic waves,
which in plane waves rarely exceed about 30 atmos,
the compressibility for both positive and negative
pressures can be regarded as practically constant. "

In the one-dimensional case, the relative change of a
unit volume element is hV/V= 8(/Ba, where $ denotes
the particle displacement in the Lagrangian sense.
Hence, we have from Eq. (17) with hpq= p*,

P*= —(1/J3) (8k/8o) (18)

In a plane wave, the volume element is stretched and
compressed only in the x direction; this causes, how-
ever, a dynamic pressure which is a scalar and, there-
fore, the same in every direction. The relation (18) is
exact by definition for media with constant compressi-
bility; no higher terms in $ are involved.

The exact one-dimensional Lagrangian equation (11)
gives, with Eq. (18),

8'g(a, t) 1 8'g(a, t)
Po

Bt2 P Ba~

The mell-known solution for plane acoustic waves
generated by a simple harmonic piston motion of
angular frequency co and located, for example, at any

~ See, for example, the tables in N. E. Dorsey, Properties of
OrChnary 8"ater-SNbsttJnce (Reinhold Publishing Corporation,
New York, 1940).

6. MEAN EXCESS PRESSURE AND ENERGY DENSITY
IN LIQUIDS OF CONSTANT COMPRESSIBILITY

The case of liquids offers the least complicated
analytical access to the quantities involved and, there-
fore, a6ords the most perspicuous physical insight into
the problem. This advantage is due to the fact that in
liquids we can assume constant compressibility. This
concept introduces a simple analytical relation between
the hydrodynamic pressure pd and the relative change
in volume AV/V of a volume element having the
original volume V, on which a pressure Apq is exerted.
The compressibility is by definition

hU 1
(17)

V dpi'

whence

E*(a)=E;(1+2' cos(2ka+8)+y'}, (23)

where the mean energy density of the incident zeuve is
denoted by

E. Lo~2P 2

Since p*(a) =0 according to Eq. (22) in liquids of
constant compressibility, Eq. (15) becomes, by use of
Eq. (23),

p(x) = —E;L1+2y cos(2kx+8)+y'], (25)

where x is now written for the Eulerian coordinate;
it is a matter of notation only whether we call this
variable x or a.

With the same change in notation we have, according
to Eq. (23), (pu')=E=E;{1+2&cos(2kx+8)+&'} and
with Eq. (25) we obtain P= p+(pu') =0. This relation,
which holds for an infinitely extended beam or a beam
not communicating with undisturbed regions, shows
that the mean decrease of pressure due to the acoustic
field is just compensated by the Aux of momentum
density at any x; the tensor component T, in Eq. (7)
becomes po in this case. Thus, no radiation pressure
would be found in liquids of constant compressibility,
when the beam does not interact with outside regions.
This is obviously in contradiction to experimental re-
sults, because, as already pointed out, the radiation
pressure actually encountered is essentially due to the
interaction of the beam with the surrounding medium;
this e6ect will be treated in the following section.

a= +27ru/k, is

&(a, t) = $0(sin(a)t —ku)+y sin(a)t+ka+8) }, (20)

where &u/k=c=(1/Ppp)& (c=phase velocity). This solu-
tion is rigorous, including finite amplitudes, subject only
to the limitation that the solution (20) remains unique.
This limitation excludes amplitudes so large that one
particle can overtake the one in front of it. The ampli-
tude g, is thus limited to values smaller than X/4s.

From Eq. (20) we obtain immediately the velocity
u*(a, t) =8&/Bt as

u*(a, t) =&ufo(cos(&vt —ka)+y cos(cot+ku+8) }. (21)

The excess pressure, according to Eq. (18), is

P*(a, t) = (k)0/P) {cos(~t ka) ——y cos(cot+ka+8)}. (22)

The constants y and 0 are the amplitude reQection
coefFicient and the phase angle of the reQected wave
with respect to the incident wave.

The mean energy density follows from Eqs. (14)
and (21):
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INTERACTION BET%'EEN- ACOUSTIC BEAM AND
SURROUNDING UNDISTURBED MEDIUM, AND

THE RESULTANT RADIATION PRESSURE

Equation (25) indicates that the mean dynamic
excess pressure produced by the periodic wave motion
VRI'lcs pcrlOdlcally Rlong x) cxccpt when tlM lncldcIlt
wave falls upon a perfect absorber (y=0). Along its
circumference the beam is bordered by the parts of the
Quid unRGected by the wave motion. The boundary
conditions require continuity of stress, that is of T»
and 7'„; both amount to pq ——po+ p as seen from the
stress tensor (7).The instantaneous stresses T» and T.,
have been replaced by their time averages T» and. F„,
since it is suScient to postulate that the balance of
stresses has to be maintained in time average. Since
the pressure outside is assumed to be Po, the continuity
of stress requires that po ——T» F„=p——& po+p, ——or:
p=0.

Thus, if no reflected wave is present, p(x)= E;—
according to Eq. (25), the total dynamic pressure
being pq=po E ins—ide the beam and po outside In
order to establish the same amount of pressure at the
boundary of the beam, the beam will be compressed
and its mean 'density raised by the outside pressure po
until the dynamic pressure inside the beam equals po.

If a reQected wave is present, the case is more com-
plicated, owing to the second-order periodic change of p
along x, a,s expressed by Eq. (25). It is not possible to
ful611 exactly the boundary conditions at the interface
between beam and undisturbed medium, since the
pressure is independent of x in the medium, while
periodic in x within the beam; this dilemma results from
our idealized assumption of a sharp boundary between
the two regions. Actually, the periodic variation of p
inside the beam will change gradually into the constant

pressure po in the undisturbed medium. However, it is
reasonable to assume that this change is essentially
performed within a region of transition which is small
in comparison with the width of the beam, if the latter
is large compared with the acoustic wavelength. Theo-
retically, this region of transition might extend to
infinity. Within this "edge region" of the beam a more
complicated (vortical) motion of particles will occur;
a closer theoretical investigation of this CGect is beyond
our scope.

A reasonable w'Ry to SRtlsfy thc bollndRly coQdltlon
at the edge of the beam is the assumption that by
reaction of the surrounding medium the average valueie
space of the dynamic pressure pz ——po+p is brought
to po, inside the beam pq then varies periodically along
the x axis around the value po. g

If the average value of p in time and space is denoted
by ((p)), the boundary condition at the edge of the
beam thus leads us to the condition ((p)) =0 inside the
beam. However, if there is no interaction with the
surrounding undisturbed medium, it is found from
Eq. (25) that ((p)) = 1/XJolp(x)dr= —E;(1+y'), where

X denotes the acoustic wavelength. The beam, therefore,
will undergo a mean compression, which raises the
pressure by the opposite amount ((po'))=+8;(1+y')
in order to bring the total space and time awragc of p in
the beam to po. The mean "effective dynamic pressure"
in the beam can then be expressed as

(pg), II=Po+ p+P()' Po 2yE; c—o—s(2k—x+8), (26)

from which expression we indeed obtain ((Pq)),II=PO.
The resultant mean stress tensor in the Quid according
'to Eq. (7) q llpoll 111'tloduclIlg (p,)off and (ps ) E(x)
from Eq. (23), becomes

pp+E;(1+y') 0 0
0 p, 2yE; cos(2k@+—8) 0
0 0 po 2yE cos(2k'+—0)

The stress tensor averaged in time aed space becomes

po+E, (1+7') 0 0
0 po 0
0 0 po

thus satisfying the boundary conditions for ((T»)) and
((2'„)),both of which now equal p, .

Finally, we calculate the value of the radiation
pressure, taking into account the additional pressure

po =E;(1+'r ) I'csllltlllg fl'0111 tllc lIltcl'actloll bctwccll
beam and undisturbed medium.

From Eqs. (3) and (23) we have

P= p+(pu') =p+E,(1+2' cos(2kx+8)+y'). (28)

Replacing p by the "CGective excess pressure, "

p,II =p+ po'= p+E, (l+y') = 2yE, cos(2kx+8), (2—9)

we find for the radiation pressure from Eq. (28):
P= E,(1+y').

This result agrees, as it should, with the tensor com-
ponent T„in Kq. (27).

For a perfect absorber (y=0), P=E;; for a perfect
reflector (y'=1), P=2E;. The radiation pressure is
independent of the phase angle between incident and
reQected wave.

One might construe P in Eq. (30) as consisting of
two parts, P;=E; and P„=y'8;, P; caused by the
incident wave only and P„by the reQected wave, whose
DlcRQ .energy deQslty ls "f Es. Ill Rdoptlng this vlcwq
one might say that the incident wave of energy density

$ F. Bopp (reference 11) uses the same assumption, basing it
on the premise that a nonvanishing average value in space of p
would be neutralized by a lateral Qow of Quid into or out from
the beam.
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E; is completely absorbed by the obstacle, leading to a
radiation pressure P;=E,, while at the same time, the
obstacle re-emits a reflected wave of energy density
y'E;, the obstacle undergoing a. reuctionat radiation
pressure P„=p'E;. This concept yields the right numeri-
cal value for the radiation pressure; it does not, how-

ever, aGord an insight into the physical background of
the forces really acting at the surface of the obstacle.
That mechanism will become apparent from the fol-
lowing section.

8. JOINT ACTION OF THE DYNAMIC PRESSURE AND
THE FLUX OF MOMENTUM IN PRODUCING

RADIATION PRESSURE IN LIQUIDS

Considering the interface between liquid and obstacle
at x=0, we 6nd the following Eulerian components
acting at the interface by applying Eqs. (23) and (25)
to the plane x (or u) =0:

p= E,(1+y—'+2p cos8), (31)

po' ——E,(1+y'), (32)

(pu')=E;(1+y'+2y cos8), (33)

the sum of which amounts to the radiation pressure
P=E;(1+y') actually measured. The joint modus

operartdi of these forces may be demonstrated by a
discussion of certain examples.

(a) Perfect Absorber (y=0)
An incident wave is absorbed completely by an

obstacle, the surface particles of which follow exactly
the movement of the Quid particles in the pure pro-
gressive wave at the interface. No reflected wave is set
up in this case and y=0.**

The mean excess pressure p(x) caused by the periodic
particle movement is —E; and is constant. throughout
the beam LEq. (25)];by interaction with the surround-

ing medium p is exactly. compensated throughout the
beam by po' ——E; (Eq. (32)), so that the total mean

pressure equals Po in the beam. The radiation pressure
P is solely a consequence of the Rux of momentum pu'

and therefore equals P=(pu')=E, .

(b) Perfect Reflector (y= 1)

If the obstacle does not absorb any energy, the entire

energy of the incident wave is returned as a reflected
wave of the same amplitude. By interference, the two
waves cause a standing wave (in a nonviscous liquid),

**One practicable approach to a perfect absorber is the acoustic
"hohlraum, " that is, a cavity with acoustically insulating walls,
61led with an absorbing medium, and provided with a small
window through which the acoustic beam is admitted. Such a
device has been applied for measuring acoustic intensities in
water in the form of a cylindrical tube; for frequencies in the
megacycle range, the absorption of energy is practically complete
in a tube that is not excessively long. The plane of the window,
therefore, serves as a totally absorbing surface. Another prac-

. ticable solution is the use of a 90' wedge (F. Borgnis, J. Acoust.
Soc. Am. 24, 468 (1952).

with periodic variation in excess pressure p(x), as well
as in (pu')(x) along the axis of the beam.

Perfect reflection can be achieved by both a perfectly
stiff and a perfectly soft reflector. The particles at the
surface of the perfectly stiG reflector are considered as
absolutely immovable; the boundary condition at the
interface between Quid and reflector is, therefore, ex-
pressed as u(0, t) =u*(0, t) =0 at any t, u being the
velocity component normal to the boundary. From
Eq. (21) we find that the boundary condition u*(0, t) =0
requires y= 1 and 0=x in the one-dimensional case. On
the other hand, a perfectly soft reflecting surface is
characterized by P*(0, t) =0 at any t; a reflection of this
kind occurs at the plane free surface of a liquid, where
the condition must be satis6ed that the pressure shall
be continuous as we pass from liquid to air. Since the
pressure in air can be assumed to be constant and equal
to Po (disregarding the negligible wave motion trans-
mitted into the air), the Lagrangian excess pressure P*
must vanish at the free surface of the liquid. The
boundary condition p*(0, t) =0 is satisfied by y= 1 and
8=0, as seen from Eq. (22).

First we consider the perfectly stig reflector: The
mean flux of momentum (pu') vanishes at the interface
because here N=O; the radiation pressure is now due
entirely to the dynamic pressure in the liquid. Accord-
ing to Eq. (31), p=0, since y= 1 and 8=s. However,

by interaction between beam and surrounding medium,
all values of p distributed along the x axis are raised

by an amount po'=2E; I Eq. (32)$, which leads to the
actual radiation pressure P= 2E;.

At the perfectly soft reflector we 6nd from Eq. (31),
with &=1 and 8=0, that p= 4E;; from E—q. (32),
po' ——2E, ; and from Eq. (33), (pu') =4E;. Three eGects
act jointly in this case: First, the mean pressure p
amounts to —4E; per unit area of the free surface;
second, by interaction between beam and surrounding
medium p is raised by an amount po =2E;, that is,
to —2E;; third, the mean Rux of momentum equals
4E;, because, owing to the reRection, the resultant
velocity amplitude u(0, t) is twice as large as that
belonging to the incident wave alone LEq. (21)].Thus,
in the sum the radiation pressure amounts to P=4E;
—2E;=2E;, just as was found for the perfectly stiG
reflector.

Figure 4 illustrates the distribution of pressure and
Rux of momentum for the two cases of perfect re-
flection.

(c) General Case (0&y&1; —~(e&u)
In general, where the incident energy is partially

absorbed and partially reflected, the force upon the
obstacle is due to both effects: the eGective excess
pressure p,«= p+ po', and the quantity (pu2). Each of
the quantities p and (pu') depends on y and 8, as indi-

cated by Eqs. (31) and (33), but their sum does not;
it cancels out in liquids of constant compressibility,
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result of Eq. (2), is then given by

=Pt+Ps= E't(1+v') E—n (34)

.- y4E;

PaE,

g~o

x=0

FIG. 4. Distribution of the mean excess pressure p resulting
from the acoustic wave motion alone; the mean effective dynamic
pressure (pq), ff= p+po' resulting from both the wave motion and
the interaction of the beam with the surrounding medium; and
the mean flux of momentum (pgsl, in the neighborhood of the
boundary of a perfectly stiG reflector (above), and a perfectly
soft reflector (below), in a liquid of constant compressibility.

reducing the Rayleigh pressure to zero. The radiation
pressure encountered in a beam of 6nite width is a
mere consequence of the mean compression of the
beam by the outside medium, that is, of the term
Ps'=E, (1+v')

The Rayleigh pressure p+(pu') does not vanish,
however, if the compressibility is not constant, as in

gases. For example, in a purely progressive wave in a
gas under adiabatic conditions and in the neighborhood

of the source p*=p+ (pu') = (1+y,)E;/4 at small ampli-

tudes (y, =ratio of the specific heats).
As an example of a general case, we treat in the

following section the radiation pressure produced at the

interface between two nonmiscible liquids.

9. RADIATION PRESSURE UPON A PLANE INTERFACE
BETWEEN TVfO NONMISCIBLE LIQUIDS

Let an acoustic beam of plane waves fall normally

upon the plane interface between two nonmiscible

liquids 1 and 2. The static pressure p&& outside the beam

may be regarded as constant arid the same in. both
liquids. The "obstacle" is reduced in this case to the
interface between the two liquids. In liquid I we

assume a progressive wave of energy density S,t, this
incident wave causes, in general, a rejected wave in

liquid 1 and a transmitted wave in liquid 2. The waves
in 1 produce a radiation pressure Pt ——E,t(1+y'), while

the transmitted wave causes a reactional radiation

pressure P2= —E~~, where E~2 is the mean energy
density of the progressive wave transmitted into
liquid 2. The total radiation pressure, according to the

Since the interface does not absorb energy, the balance
of the power transmitted requires csE&s ——c&(1—g)E,t.
Hence, we obtain from Eq. (34):

P~ 8;t(1—ct/cs+p'(1+ et/cs) ). (35)

At normal incidence the coeKcient of re8ection is known
to be y= (1—m)/(1+m), where m= pscs/pter, p and e
being the undisturbed densities and velocities of sound
in the respective media. "

Equation (35) shows that for special values of es/ct
and ps/pt, the pressure P at the interface becomes zero.
Inserting the above value of p in Eq. (35), we obtain
the following condition for vanishing radiation pressure:

C2/Cl (pl/ps) (2 (ps/pl) 1} (36)

10. GENERAL REMARKS ON THE RADIATION
PRESSURE IN GASES

The relation between pressure and density in gases
leads to a nonlinear Lagrangian wave equation, the
rigorous solution of which can be obtained only by
series development. As is well known, the wave form in

gases becomes distorted in the course of the propaga-
tion. This fact is expressed by a variation in space of
the amplitudes of higher terms in the series develop-
ments; more and more wave energy is transferred from
the fundamental mode, which holds in the immediate
neighborhood of the source, to higher harmonics in the
course of the wave propagation. "

It is dificult to obtain a strict solution of the wave

"H. Lamb, Theory of Sound (Edwin Arnold, London, 1910),
p. 169.

~4 G. Hertz and H. Mende (reference 10l have demonstrated
this effect. If p»~2p2, P in Eq. (35) is always positive, that is,
in the direction of the incident wave.

"Reference 13, p. 174.

According to this, I' becomes zero only if the two
liquids are arranged so that pt(2ps, . moreover, es/c&

has to obey Eq. (36). If cs/e& is smaller than indicated
by Eq. (36), P is found from Eq. (35) to become
negative In this . case, the direction of P is opposite to
the direction of propagation of the incident wave. This
effect is caused by the fact that es/ct is now small enough
to make the energy density E,s exceed E;,(1+&') in

Eq. (35).'4
These two quantities represent the additional pres-

sures po' on the two sides of the interface because of the
compression of the beam by the surrounding medium.
The mean Lagrangian pressure p* on both sides of the
interface is zero when the liquids have constant com-
pressibility, and therefore does not contribute to the
radiation pressure. The actual physical forces to which
the interface is subjected result from the diRerence in
compression of the acoustic beam on both sides of the
partition.



equation even for small amplitudes, if a reQected wave
ls pl'cscnt, . A x'lgox'ous tx'catIQcnt would lcqulI'c con-
sideration of absorption, because the amplitude of each
higher harmonic is determined by its particular rate of
Rbsox'ptloD.

A pI'occdUI'c foI' coIQputlng thc rRdlRtlon pI'cssuIC fol
the general case of reQection, such as was apphed in the
previous sections for compressible liquids, is hardly
feasible for gases, owing to the mathematical diS.culties
involved. Still, the insight into the physical processes
that has been gained from the treatment of liquids can
be used to establish a very general expression for the
radiation pressure in all Quids. It will be shown that
the formula P=E (1+y'& holds in any fluid that is
also in gases, at small amplitudes, at least under the
idealized assumptions introduced in the present treat-
ment.

ij.. A GENERAL EXPRESSION FOR THE RADIATION
PRESSURE IN FLUIDS

Sy niultiplying the one-dimensional Kulerian equa-
tion of continuity pi+ (pu)~=0 by u and adding the
equation so obtained to the Eulerian equation of motion
p(ul+uu*)+P*=0, a well-known form of the equation
of motion in one dimension is obtained:

(pu) 1+ (pu')z+ p*=0. (37)

In Eqs. (37) to (39), p may be regarded as representing
either the excess pressure or the total dynamic pres-
sure p8. Considering a purely harmonic motion of the
a,coustic source and assuming that Eq. (37) has solutions
periodic in time, we find by averaging Eq. (37) in
time and integrating with respect to x,

where C is a constant independent of x and I,, but not,
in general, of the wave amplitude, Next, avexaging
Eq. (38) also in space, we obtain

(&pu'))+((p)) =C. (39)

Regarding fol' the lllolllcllt P as 'tllc total dynamic
pressure, we apply the same conclusions concerning p
thRt %'cI'c used in Scc. 7, Damcly, that owing to the
interaction between beam and surrounding medium,
the total mean Eulerian pressure averaged in 6me and

space along the beam may reasonably be assumed equal
to the undisturbed outside pressure pe, or in other
words, 'tllat ((p&}=pe. Illscltlng tllls colldltloII lll Eq.
(39) and substituting C so obtained from Eq. (39) in

Eq. (38), we find

&."&+(p-p.&=«.-}} (40)

Now (7I—Pe) is what we Previously called the mean

excess pressure p, and ((pu')) = 2&(»)I,;„——((»}t~,1

'~ See P. J. Westervelt, J. Acoust. Soc. Am. 22, 3j.9 ($950),
Sec. VI, and F. E. Borgnis, Technical Report No. 1A, March j.0,
$953, under U. S.Once of Naval Research Contract Nonr-2204'02).

+(&(»)I,;.—(&»)~~). Therefore, from Eq. (40) and
according to the de6nition of radiation pressure in
Eq. (3), we have)[

P=2(&»&.'-=&(»&-*+(«»}'--&(»& .) (41)

Equation (41), which includes the interaction between
beaIQ and surroundmg medium

y glvcs thc I'Rdlatlon
prcssure fox' R bcRIQ of unite %ldth ln RDy Quid Rnd on
any plane rejecting surface. tIttith the assumption
(&p))=pe, which led to Eq. (40), Eq. (41) is valid for
finite amplitudes, since no restriction was introduced in
this. respect in the derivation. %hether this assumption
is valid or not at plit8 amplitudes is an open question.

At small RIQplltudesp whcx'c %'c limit oui'sclvcs to
terms up to the second order, it is Sufhcient to know the
erst-order solution in u, as already mentioned in Sec. 5.
This is correct, at least, within a distance not too far
from the origin of the wave motion; or, if absorption is
assumed to be exactly zero, within a not too large time
interval after the wave motion started. Owing to the
transfer of wave energy from the fundamental to higher
harmonics, as mentioned in Sec. 10, the amplitudes of
these hRx'Inonlcs lncI'cRsc %'1th dlstRDcc floxn thc ox'lgln
(Earnshaw's solution), and also with time in absence of
absorption. At larger distances, therefore, the germs of
higher order may no longer be negligible. On the other
hand, absorption is always present, limiting the ampli-
tudes of the harmonics. It is only in a medium with
constant compressibility that the fundamental wave is
propagated without producing higher harmonics, pre-
serving its original shape everywhere.

To the erst ordcl thc solution for Q of thc La,grangian
wave equation is given in any Quid by Eq. (21).More-
over, ((»)~,t= &&»)I,;„at small amplitudes, and there-
fore 2((»)I,;„=((»)t.t.I=E;(1+y'), as seen from Eq.
(23). Consequently, we And from Eq. (41) that the
expression

P=2A-=k(1+v') = 2pu '4'(1+v') (42)

is valid both in liquids and gases, when terms of third
and higher order in h$e= 2lrge/lt are excluded. Eq. (42)
agrees with Eq. (30), which was found to hold for
liquids of constant compressibility.

Since E;(1+y') is the mean total energy density
cncoUnteI'cd Rt thc sux'fRcc of thc plRDc rcQector~ Fq.
(42) states that at small ampti tudcs the tadiatiort pr'essure

of u fINit8 beam of plan8 comprcssiortut toaecs 8quats the

meal total NMrgy density at th8 fcftccting suffac8. Tllls
result is independent of the special law connecting
pressure and density in the Quid under consideration.
At larger amplitudes, according to Eq. (41), the total
energy density must be replaced by 2((»&I,;, that is
twice thc RvcI'Rgc ln tlnM Rnd space of thc kinetic
energy density.

tf An analogous derivation was applied to the special case of a
perfectly stiff reflector by F. Bopp (reference 11).
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It may be recalled that the expressions for the radia-
tion pressure given in Eqs. (41) and (42) represent only
the force that may be attributed to one side of the re-
Qector. A force of the same k.ind, equal to the energy
density behind the reflector, but opposite in sign, has
to be attributed to the opposite side. ff. Only the sin of
these two forces has a physical significance; it represents
both the change in momentum per unit time to which
the wave motion is subjected in passing through a
partition, and the effects of interaction between beam
and surrounding medium on both sides of the partition.

The /otal radiation pressure I'& exerted upon a parti-
tion by a 6nite beam is, therefore, under the assumption
leading to Eq. (41), given by

p = (((~ '))) - (((~ ')))
= 2(((E))~'.) ~

—2(((~)).'-) ~ (43)

where, as before, the indices 1 and 2 denote the two
sides of the partition (Fig. 2). At small amplitudes,
2((E))q; can be replaced on both sides by the total
energy density ((E)); the total radiation pressure then
equals the difference in energy densities on both sides
of the partition. A similar result, namely, that the
radiation pressure is equal to the difference between
two energy densities, is also well known in electro-
dynam&cs.
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