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1. INTRODUCTION

MONG classical field theories, the theory of gravi-
tation, also called general relativity theory, oc-
cupies a somewhat peculiar place. Unlike most other
field theories, the field equations of relativity theory are
nonlinear. This implies that many facts, well known in
linear theories, have no analogs in general relativity
theory, and conversely. The equations of motion of the
gravitational field are contained in the field equations, a
fact which does not apply for the motion of an electron
in the electromagnetic field. Conversely, it is difficult
to define the notion of a “wave” in relativity theory,
for the linear principle of superposition is crucial for
the existence of waves, at least in the sense that the
notion of a “wave” is normally used.

Since the gravitational field manifests itself in the
motion of its sources, the problem of finding the equa-
tions of motion is of fundamental importance. This
problem has been puzzling theoretical physicists for a
long time, and more or less convincing solutions have
been given on several occasions. Today, the problem
can be considered as solved, but the attempts and partial
solutions are scattered over a variety of journals and
over a long period of time. Thus, it is the object of this
review article to summarize the methods that lead from
the gravitational field equations to the equations of
motion and to outliné the physical implications of those
methods. In addition, we shall discuss here some ampli-
fied aspects of the general methods which have grown
mainly out of the personal association of the author
with Dr. Infeld and the correspondence of the latter
with Dr. Einstein. Although this article does not aim
to consist entirely of original research, it will be found
that many parts are presented in a way not published
heretofore. In addition, the contents of Sec. § and of
parts of Sec. 6 are believed to be original.

The plan for this review is as follows. After a brief
introductory section on the notation and the principal
contents of general relativity theory, the reader will
find an exposition of the Einstein-Infeld-Hoffmann
method. The aim was to give enough material of the
calculations so that a reference to the unpublished notes
deposited at the Institute of Advanced Studies! is no
longer necessary. This is especially the case for the
discussion of the two-body problem in the following
section. Then the methods of integration of the differen-
tial equations of motion are studied and a new way is
presented by which this aim can be achieved. The
influence of the coordinate conditions and of general

! Einstein, Infeld, and Hoffmann, appendix to Ann. Math. 39,

66 (1938), unpublished notes deposited at the Institute for Ad-
vanced Studies, Princeton, New Jersey.

coordinate transformations upon the equations of mo-
tion are also investigated. Subsequently, the possibility
of gravitational radiation of moving bodies in their own
field and the possible reaction of such radiation upon
their motion is discussed. Finally, a review of the at-
tempts is given of generalizing the Einstein-Infeld-
Hoffmann method to other field theories than that of
gravitation.

It is hoped that this review will be found to be a
useful summary of the work done on the question of
gravitational motion during the last twenty years, and
a suitable basis for carrying research into the yet
unknown.

2. NOTATION

This paper will use extensively well-known facts of
tensor calculus and general relativity. Unfortunately, no
over-all accepted notation has been established so that
it is necessary to list the notations and abbreviations
which will be used.

We shall represent the four-dimensional time-space
continuum by the coordinates

2%, oty a% ad,

where x° denotes time, the others the three space-
coordinates. Since time often plays a different role in
physics than the other three coordinates, we shall use a
specific notation as follows. Wherever x* is written with
a Greek index, it is understood to represent either time
or one of the space coordinates. On the other hand, if
we write ™ with a Latin index, we mean by this that
x™ is one of the space coordinates only. This convention
is extended to all indices such that a Greek index as-
sumes the values 0-3, a Latin index 1-3.

We denote differentiation with respect to a world
coordinate by a stroke. Thus, for any entity 7" we have

T\u= 9T/ 02", 2.1)
We shall further denote the metric in the continuum
of the x*'s by the ten functions

gas(**) = gga(®¥). (2.2)

Then the length of the world-line x#= £*(f) is given by

2 dEe dgB b .
= [ |z gl = PO — —| &t (23)
1 af dt di
Furthermore, we shall use the summation conven-
tion. In an expression containing entities with indices
(any kind) or power exponents, it is understood that
one has to sum over the whole range of any such symbol
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that appears twice. In cases where we want to consider
one single term only, although a symbol of the above
kind appears twice, we shall use brackets in order to
indicate that the summation convention does not apply.

There is no unique way for assigning to a particular
world point a set of coordinates xf. We could equally
well take another set of numbers xf* (with the same
properties as described above) for describing our world.
The passing from one set of coordinates to another one
is called a coordinate transformation and may be ex-
pressed mathematically in the following way:

X" = fB(x). (2.4)
The starred and the unstarred “systems” of coordinates
represent the same four-dimensional universe and in
both the length of a line must be expressible according
to (2.3).

Tensors are entities satisfying the following trans-
formation law under a coordinate transformation (2.4):

dx* Jx°*

1, =

1P, (2.5)
0x+* Jxb

The quantities g. form a tensor, the metric tensor of
the world. We may define the contravariant metric
tensor g*f by the equation

1 for
0 for a?fv.

a=ry

8apgl?=0a"= (2.6)

With the help of the metric tensor we can rise or lower
indices of any tensor:

2agTP=Ts; g*PTg=Te. 2.7)

A set of functions y4(xf) defined in all points of the
world is called a “field.” 4 is an index running from 1
to N, N being the total number of algebraically inde-
pendent “components” of the field at one world point.
The components of the field (also called field variables)

are subject to a set of functional relationships
L3(y4)=0; B=1---N (2.8)

which are termed field equations. They can be expressed
as the Euler Lagrangian equations of a variational

principle
) f Ld*x=0
v

taken in the domain V, where the field equations are to
‘be satisfied.

The field variables of general relativity theory are
the components g.g of the metric tensor of the world.
Instead of gus one could equally well use any linear
combinations of them or also the components of the
metric tensor density

(2.9

8ap=(—£)¥gap. (2.10)
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One also could use the contravariant entities instead of
the covariant ones.

The field variables in relativity theory are subject
to the following nonlinear field equations (see references
2,3,4)

G**=0. (2.11)

The notation is chosen as follows:
(a) Christoffel symbols

A
{ }=%gxa(gba‘lx_{—gxalL"'guc!v)Eg)w[LK,_ 0':]. (212)
LK

(b) Covariant derivatives

3 t P
[ 2 o=t oot |
po
(2.13)
p
;...K...,=;...K...l,_..._{ }t_
no
(2.14)

(c) Curvature tensor

S i N s N N

Rupy=Ray; R=g*Ru; (2.16)
Gap=Rys87°g"—3Rg"P. (2.17)
The field equations (2.11) are equivalent to
Rag=0. (2.18)
The field variables satisfy the Bianchi identities
Rapy bk Ropn ot Ry =0, (2.19)

The latter are a geometrical property of the metric
tensor and thus are closely connected with the postulate
of the general covariance of our theory.

A trivial rigorous solution of the field equations
(2.18) is the flat Minkowski metric 74s. If we choose the
units of space and time so that the velocity of light is
equal to 1, the Minkowski metric may be represented by
the following matrix:

{—}-1 0 0 0]
0 -1 0 0
af — =
n Naf 0 0 _1 OJ (2.20)
0 0 0 -1

The Minkowski metric represents the empty space.

2P. G. Bergmann, Introduction to the Theory of Relativity
(Prentice-Hall Inc., New York, 1942).

3A. S. Eddington, The Mathematical Theory of Relativity
(Cambridge University Press, Cambridge, 1923).

*R. C. Tolman, Relativity, Thermodynamics and Cosmology
(Oxford University Press, London, 1934).
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3. THE DIFFERENTIAL EQUATIONS OF MOTION

It has been recognized some twenty years ago by
Einstein and Grommer® that in general relativity theory
the equations of motion follow from the field equations.
Earlier, it was assumed that a ‘“geodesic principle”
governs the relativistic motion of bodies. By this one
understood some generalization of the fact that a small
body in the gravitational field of a big one moves along a
geodesic line of the “external” field. This is a similar con-
cept as in Newtonian mechanics where the field equa-
tions are completed by the equations of motion, that
is by putting the acceleration of each particle equal to
the negative gradient of the field due to the other
particles present. Thus, the geodesic principle would
play in general theory the role of the equations of
motion.

When it became known that the relativistic equations
of motion are contained in the field equations, it had
to be questioned how the geodesic principle, whose
validity for sufficiently small particles in a large field
was all but established, could be fitted into the new
scheme. This problem has been investigated by Infeld
and Schild.® These authors were able to show that the
geodesic principle (for sufficiently small particles) can
be deduced from the field equations, and that it is not
necessary to postulate it separately.

In order to obtain the relativistic equations of motion
from the field equations, one has to recur to an approxi-
mation procedure. This is due to the fact that the mo-
tion of the sources cannot completely be determined
unless such effects as spontaneous emission of radiation
are specifically excluded. This exclusion is accomplished
by assuming that all the motions are ‘“‘slow’ in the
sense that differentiation with respect to «° reduces the
order of magnitude of the term concerned at every
stage of the approximation procedure.

An outline of this procedure was given for the first
time by Einstein, Infeld, and Hoffmann in 1938.1.7
Shortly thereafter there appeared an improved treat-
ment by Einstein and Infeld.® In these first attempts
there remained some ambiguities and logical difficulties
unsolved. Later, however, the theory was developed
further and a completely new treatment was given by
Einstein and Infeld in 1949.° The method of Einstein
and co-workers has been modified by Hu'® and Papa-
petrou'! so as to treat the masses present in the field as
extended sources instead of as poles. Whereas this
treatment saves some labor when it comes to the actual
calculations of the equation of motion, it seems that
the Einstein-Infeld-Hoffmann method is simpler from

5 A. Einstein and J. Grommer, Sitz. Berl. Akad. Wiss. 1927, 1
(1;4%) Infeld and A. E. Schild, Revs. Modern Phys. 21, 408

7 Einstein, Infeld, and Hoffman, Ann. Math. 39, 66 (1938).

8 A. Einstein and L. Infeld, Ann. Math. 41, 455 (1940).

9 A. Einstein and L. Infeld, Can. J. Math. 1, 209 (1949).

10 N. Hu, Proc. Roy. Irish Acad. 51A, 87 (1947).

L A. Papapetrou, Proc. Phys. Soc. (London) A64 57 (1951).
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a logical standpoint, especially if the later amendments
to that method are used.

In order to perform the approximation procedure,
the field variables are split into a part representing the
vacuum and another representing the deviation from it.
Accordingly, they are written as follows:

(3.1)
(3.2)

gap="Napt Hag,
gaﬂ= naﬁ_l_haﬁ,

where /45 is not assumed to be small. It turns out to be
convenient to replace the /#’s by the following linear
combinations :

Yap= hag—5Mapn hiys. (3.3)

The original field equations are as given in (2.11),
but one may take any linear combination hereof.
According to the choice (3.3) of field variables, it will
be convenient to choose the following field equations:

= 2(Ry6—3n46m**Rap) =0. (3.4)

Introducing everywhere the 4’s instead of the 4’s, one
can write Eq. (3.4) in the following way:

o0 +2A00 =0
bon +200n =07, 3.5)
where Pract2hnn=0
P00 = —Y00]ss
Dom = — Yom|ss+ Vos|0s (3.6)
Pmn= = Ymn|ssT Yms|nsTY nslms= OmnYrslrs
and
200 = ’Ysr|sr+2A’00
2M0m = Yms| 50— Yo0mo+ 2N o
.(3.7)

2Amn=—Yomjon— Yonlomt28mnY0s 05 Ymnio0
—5mn’)’00|00+2A'mn

In these formulas, all the linear terms are written
out explicitly, while A’,, stands for all the nonlinear
terms in the ’s.

With any function F,; one can form the integral

f Fsg’}'ltds
S

over an arbitrary closed surface S that does not pass
through any singularities of F. In Eq. (3.8)

3.8)

7= cos(x;, n) 3.9)

are the components of the normal unit vector to the
surface. The words “normal” and “unit” are used in the
conventional sense to designate the corresponding
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functions of the coordinates which are implied by these
terms in Euclidian geometry.

If one takes as F the left-hand sides of the field
equations (3.5), one ends up with (since the surface
integrals of ¢ vanish)

f ApginidS=0,
S

¢an]n=0; Aan!n=0-

which imples
(3.11)

The aim”is to develop every function f(xf) into a
power series in 1/c=X\:

F@) =N o fAN [N g f - - - =§0 Newf. (3.12)

The left-lower indices indicate the order of the term.
If the function f varies quickly in space, but slowly in
x% then one is‘justified in not treating all its derivatives
in the same fashion. The derivatives with respect to «°
will be of a higher order than space derivatives. One
can formalize this procedure by introducing an auxiliary
time

(3.13)

so that derivatives with respect to ¢ can be treated on
the same footing as the space derivatives

fro=08f/30=03f/dr A=\f,=\]f.

In other words, the “stroke” differentiation of a quan-
tity with respect to ° can be replaced by the “comma”
differentiation with respect to 7 if the power of A=1/¢
with which this quantity is associated is simultaneously
raised by one.

With this notation, the y’s may be developed into a
power series as follows:

Yoo= A% 9¥00 N av00+ N evoot- - - (a)
Yom= A% aYom+ N s¥om+ - - - (b) -(3-15)
Ymn= A Ymnt A 6Ymn " (C)

The start with different powers of A is an assumption
which can be justified heuristically. It will be seen that
Eq. (3.15) leads to a possible solution of the field equa-
tions. It is, however, possible to retain all the terms in
Eq. (3.15), instead of only alternating powers of A.
This would lead to solutions analogous to those in
electromagnetic theory representing radiation. It is for
this reason that one calls the omitted terms in Eq. (3.15)
“radiation” terms.

Going back to the field equations (3.5)—-(3.7), one can
introduce the #4’s into the latter in their power series
development. Spontaneous radiation is excluded by the
assumption that all the 4’s vary slowly in time and
quickly in space; in other words, by assuming that all
the v’s are of such a type that Eq. (3.14) applies. Thus,
according to Eq. (3.5)—(3.7), the field equations are

7=2xN,

(3.14)

(3.10)
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split into the following equations for each approxima-
tion step
2k—2000+ 2262400 =0 (a)

2k—1GPom+ 225—100m=0 . (b) +.(3.16)
2k¢mn+22kAmn =0 (C)

Letusnow assume that 500" * * 264700} 8Yom* * * 2k-3Y0m;
and 4Ymn* * * 26—4Ymn are all known. Then Eq. (3.16), if
solved will yleld 2k—27Y00, 2k—1Y0my 2kYmn and if such a
procedure converges, one can determine the field to
any approximation desired. The structure of the equa-
tions indicate that one really can set all the odd terms
in 70, Ym» and the even ones in v, equal to zero. This
amounts to taking ‘“zero” as solutions of Eq. (3.16) for
half-interger %’s.

There are, however, at every stage of the approxima-
tion procedure the conditions (3.10) and (3.11) to be
satisfied. It can be shown that the divergence condition
for ¢ (3.11) is automatically satisfied in each approxi-
mation step. On the other hand, the surface conditions
(3.10) are not generally satisfied; they are the condi-
tions which lead to the equations of motion.

To start the approximation procedure one has to
solve the following equations:

Yoo, ss=0, ()
s (3.17)
—3Yom, ss+ 3Y0s, ms ™= 27Y¢0, Om- (b)

The character of the entire solution will depend on the
choice of the harmonic function one takes as a solution
of (3.17a). The term »y¢o is the gravitational potential
as one would find it if one were to use Newtonian theory
instead of general relativity theory. Since one is in-
terested in a solution representing p particles in the
Newtonian approximation, one has to write

oo=20; =3 (=24my); (3.182)
A=1
A= {(xb—AXF) (wF—AXF)} 3= (47)"1. (3.18b)

Here, 47 is the “distance” in space of a point from the
Ath singularity. Now, introducing svgo into (3.17b) and
again obtaining three equations for the three functions
3Yom, One observes that the latter is only soluble if the
4m’s are constant in time. Only then the conditions
(3.10) are satisfied for that stage of the approximation
procedure.

Going on, one observes that at every step of the
approximation one has to solve equations of the type
of Egs. (3.16). Since one has the surface condition (3.10),
Eqgs. (3.16) are consistent only if one has

f 2 zk,_lA(),- Ny dSE gk_lAC(]:O, (319)

SA

f 2 oty 9y s = 2k‘4C,,, =0. (320)
SA
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Herein, S4 is representing a surface around the Ath
singularity. If S4 would not enclose a singularity, then
the surface integrals in (3.19/20) would be trivially
zero. The A’s in Egs. (3.19/20) are already known. Thus
it is likely to happen that the C’s in (3.19) and (3.20)
are not zero, so that Egs. (3.16) cannot be integrated.
However, by adding single poles to the préevious +’s
one can insure the integrability of Eq. (3.16b), and by
adding dipoles the integrability of Eq. (3.16¢c). It is
easily seen that adding poles to the original solution
2k—2Y00

ak—2Y00—>2k—2Yoe— 4 ar—ot 4 (3.21)
changes 9;14C) into
2lc——1AC0‘_)2k-.1ACo‘—‘ 42k_2Am. (322)

Similarly, if one replaces s;—2vo0 (containing the addi-
tional poles) by

2k-2Y00—>2k—2Y 00— 2k—24S 7 4, (3.23)

(i.e. adding dipoles), 2:4C,, is changed into
262 C 0954 C m— 219 S e (3.24)

Therefore, it can be made zero by choosing
2248 = 2k4C . (3.25)

By proceeding in this way, one accumulates single
poles and dipoles; the additional expressions in -yqo are

SN2 (A ghmm APt o oA, Ay ). (3.26)

However, since negative masses are not known, gravita-
tional dipoles have no physical meaning. Thus, one has,
at the end of the approximation procedure, to annihilate
all these additional dipoles by taking

Z)\2k—22k_~2AST= 0. (327)
Differentiating this twice yields
PNy pAS =3 Ny AC, =0. (3.28)

These are the 3p differential equations of motion of the
kth approximation.

One may impose at every step of the approximation
procedure four coordinate conditions in the form of four
nontensorial equations involving the field variables.
The fact that this is possible is due to the existence of
four (Bianchi) identities between the field variables.
The coordinate conditions if properly chosen, may be of
considerable help if one is going to actually carry out
the calculations of the approximation procedure.

One may notice that the field equations (3.16) would
permit that arbitrary multipoles be added to the voo's
at every step of the approximation. The integrability
conditions for the subsequent step, however, fix what
multiples have to be chosen and make, for given co-
ordinate conditions, the solution unique at every step
of the procedure.
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4. THE TWO-BODY PROBLEM

Let us now apply the procedure outlined in Sec. 3
to the task of finding the differential equations of mo-
tion of the two-body problem. For the actual calcula-
tions it will turn out to be convenient to assume the
following coordinate conditions

2k—1Y0s, s— 2k—2Y00,0=0, (a)
(4.1)
2%k Ymn, n= 0. (b)

The solution of the first approximation corresponding
to Eq. (3.18) becomes for the two-body problem

woe=2¢; ¢=—2{'mY—m%}, (a)

1
L =[xk — VF) (3k— VE) =
e R R S T P

1
Y= (@29 (= 2] =,
2y (0

Yk, Z* being the coordinates of the two bodies. This
solution determines the character of the entire solution
for the field equations.

For going on, one needs the explicit forms of all the
occurring A’s, g’s, etc. It follows from Egs. (3.1) and
(3.2) that

goo= 1N ohtgo+N* shigot- - -, (a)
Zom= N 3hom+N® shom+- - -, (b)
gmn=—OmnF N hmntN shmnt- -+, (c)
and similarly
goo=1-+HN2 2hO+4 N 1O+ - -, (a)
gOm= N3 GhOmA NS o (b) | .(4.4)
g = —Omnt N2 2B N A e (C)J
Therefore, from Eq. (4.2)

(4.3)

(4.5)
(4.6)

ohoo= o,
‘thn= ¢6mn-

The general property (2.6) of the metric tensor
allows one to express all the contravariant %’s by the
covariant ones.

Thus, one obtains

oh0=—o;  H=— st pe, 4.7)
™= shmo;  sh™= shmo, (4.8)
2hmn= - 6m,n€0; 4hmn= - 4hmn_ ﬂoﬁo&mn- (4:.9)

Moreover, one observes that generally 2°™ contains
whom only linearly, so that one may write

(4.10)

The next step is to write down the field equations
explicitly in terms of the A’s. They are already split
into terms denoted by A and ¢. The ¢’s are already
found explicitly, and the A’s may be represented in the

kh®™= 1l terms not containing fom.
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following way
Ago= %LOU-*_%LS& (a')
Aom=Lom, (b) p(4.11)

Amnszn_%aanss“}'%amnI’OU; (C)
with

2‘L00 = 2hos]03“hs3100
—2(h=#[00, BJ) a+2(h**[0c, B])10

ol ol lallh @

2L0n = -2(}10‘6[0%, B),a—{—Z(h"ﬂ[:ma, 6])“)

2 olol ol el @0

2Lmn= - hOn[Om_ h0m10n+hmn[00
—2(h=fLmm, B]) at2(h*[me, B)n

D AR

The next step is to insert the power series for all the
I’s into the above equations. Then one can split the
latter into corresponding equations for every power of A.

The result is, if one uses the coordinate conditions,

23A0n=0, (4.15)
24Apn= —38Yom, 00" 3Yon, om+28mn @, c0 (4 16)
—200,mn= O,m O.at30ma0 s 05

2ih00 =—320.5 0,5 (4.17)
25M0m =@, 5 8Y05,m™ @, sm 3Y0s— 3P, 0 @, ms (4.18a)
260 = —5Y0m, 02— 5Y0n, 0m Omn 4Y00, 00

F 4Ymn, 00— @ 4Y00, mn— @ 4¥ 55, mn

— @, mn Y00 @, mn 4YssT @, ms 4Vns

F @ ns 4Yms— Omn@,5r 4Ysr— 20,5 4Ymn, s

@5 Yms, 0T @, 6 4Yne,m— 5P, m 4Vs5,n

=30 Voo, m™— 5P, n £Y00,m™—5P,m £Y00,n

+30mn®, s Yo st 30mn s V00,5

T 38Y0s 3Y0n, ms ™ 3Y0s 3Y0m, ns ‘ (4.18b)

+2570s 865, mnt50mn 3Y0s, r 3Yor, s
_%amn 3Y0s, 7 3Y0s, 305, m 3Y0s, n
+3Yom s 3Yon, s ©,0n 8Y0m— @, 0m 3Y0n
+28mn 3705, 06— ©,0 8Yom, n
—@,03Y0n,m™ L,n3Y0m, 0 @, m3Yon,0
+2¢ 3Y0m, 00 F205Y0n, 0m— 28mn®®, 00
F2000, m— 0O m &, 1 t50mn 00,5 0,5

+%5mn¢, 0¥ 0.
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Starting now the calculations of the field variables,
one has to solve the following equations:

2700, ss=0, (2)
3Ymn, ss™— 0: (b) (4 19)
4Ymn, ss= 24Amn- (C)

It is convenient to introduce here a slightly new
notation by putting

o= f=—2imig; 420

Equation (4.19a) has been solved already to yield (4.2).
Using the coordinate condition (4.1) one obtains there-
fore

g=—2"m%.

Yon=4(m WYY r-2m 27, (4.21)

The surface integral (3.19) vanishes; thus the next
step is to determine

1
41Cm = f 24Am snst;
4 J1
1

42Cm =
4 J2

(4.22)
24Amsnsd5.

If one wishes to finish the approximation procedure
here, the differential equations of motion of the 4th
approximation are

4lcm= 0;

Therefore, all one has to do is to calculate those sur-
face integrals. The result of this calculation is

ACn(r) =4 1m(V " 4-3E ) =0,

2Cpn=0. (4.23)

) B (4.24)
£Cn(r)=4*m(Z"+3],m) =0,
where
Em=gm for =YV f,=fn. for x*=2Z°.

These are the equations of the Newtonian approxi-
mation of general relativity theory.

In order to go beyond the Newtonian approximation,
one has to calculate sy, It is to be found from the
equation

(4.25)

4Ymn, ss= 24Amn-

These equations are integrable only if one assumes
Newtonian motion in the lower approximation. Other-
wise one would have to add dipoles. Yet if one wishes to
proceed only to the sixth approximation, one may ignore
these additional dipoles since they do not influence the
surface integrals. Thus, the solution for 4ym, is in the
neighborhood of the first singularity,

Vmn={ L= V)Y (= V")V
— (@' = V)V ot (gL ("= 27 27
+ (= Zm) 2= b (5= 227D} 0
F /D' fon St (1/4)7°8. g,
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The last two expressions are determined by the co-
ordinate conditions and are found to be

U =2Y"Y "+ 8,03
f=10);
Moreover, 4y can be calculated rigorously. The result is

Yss=—2'm, 00—2m% 00+ (7/4) @+ af+Bg (4.28)
with

ﬁmnz ZZmZn+ 5mnfy
Zs)(Ys_

(4.27)

g=g(r); r=T— Z).

a=2YYs+13, B=27°7°+1f. (4.29)
Now, the next field equations are
700,10 =24hoo=—3 0,50, (a)
5Yom, ss = 2580m= @, 5 8Y0s,m ml @30
— @, sm 3Y0s 3«’, 0P, m»
6Ymn, 55= 26Amn. (©
The solution of (4.30a) is simply
Yoo=—35 2 —4dmYy—42m. (4.31)

One knows from the general theory that the arbitrary
harmonic functions have to be determined in such a
way as to make (4.30b) self-consistent, that is, the cor-
responding surface integral must vanish:

1
Z’f (25A"— om— 4Y00, 0m)1mdS=0.  (4.32)
™

The next step is to calculate the 5v¢,. Including only
relevant terms that can enter into the equations of
motion of the sixth approximation, one obtains near the
first singularity

Yon=—(T/8)7f nf. Y43 Y™

+3@ =) (Vo—2°) fT.m

—(@m—Y"™)(Y°—Z%) /% .

+3@ = V) fmZ[g+ g (e —17)]

+ @ =Y (fZ, ™+ f, m2*) + ctom . (4.33)

Again ao, is determined from the coordinate condition.
The result is
Ugm=— YV Y gV m—g7m, (4.34)

One has to insert all these values for the field variables
into the expressions for ¢A.. and to calculate the surface

integrals
1
GICm=——f26AmnnndS. (4.35)
4
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The result of this calculation is

dCn=—4"'m 2ml (YSY3+%ZSZS

L. mo my\ (1/7)

—4Y$ 7 —4——5—
r r/ aym™ - (4.36)
+[AYs(Zm—Ym)+3Y "L — 47 Zm]
' a(1/7) 1 o .
A
AT | 29V°aYnT™ J

Thus, the differential equations of motion of this stage
of the approximation procedure are

M JCn+N 6 Cr=0. (4.37)

It is possible to absorb the parameter A by changing the
units of mass and time. The final result of the 6th ap-
proximation is, then,

a(1/7)
oym

Ym—2m

o a(1/7)
=2m{(YsYs+%ZsZs—4yw 4——5—)
/

a(1/7)

+[4Y(Zm— Ym)+3Y'"ZS+348Zm:|

AAS

1 - 0
+-— } (4.38)
2 9Y Y9y ™

The equations of motion for the other body are obtained
from that one above by an obvious substitution. These
differential equations can be integrated as will be shown
in the next section of this paper.

5. INTEGRATION OF THE DIFFERENTIAL
EQUATIONS OF MOTION

If one is to integrate the differential equations of
motion as found in Sec. 4, one has to keep in mind that
the latter were found by an approximation procedure.
Thus an exact integration of the differential Eq. (4.38)
does not yield exact equations of motion. It is, therefore,
reasonable to assume a similar power series develop-
ment with respect to the parameter N for the ¥V, Z as
this was done for the 4’s. Then, in order to solve the
differential equations of the sixth approximation, one
needs to take into account in ¥, Z only terms up to the
power A6, for the higher order terms are not contalned
in the dlfferentlal equations anyway.

Robertson® has integrated the differential equations
of motion for the two-body problem (4.38). He ac-

12 H. P. Robertson, Ann. Math. 39, 101.(1938).
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counted for the fact that the solution can be accurate
only up to the 6th order by simply omitting in the left-
hand side of (4.38) all terms of any order higher than
Newtonian. The result is that up to the sixth order in A
the orbit of a double star in general relativity theory
differs in its secular behavior from the classical orbit
only in an advance of perihelion equal to that which an
infinitesimal planet, describing the same relative ocbit,
would undergo in the field of a star whose mass is the
sum of those of the two components of the double star.

The fact that the differential equations of motion are
solved by an expansion of the coordinates of the par-
ticles into a power series of the parameter A (ie., the
same parameter with respect to which Einstein, Infeld,
and Hoffmann’s approximation procedure is per-
formed) suggests that it might be possible to tie together
the two approximation procedures. The notion of
accuracy “up to” a certain order, intuitively conceived
above, can be formulated mathematically by a specific
notation. Let us take any field expression

oS- (5.1)

(e.g., S=¢, C) where the dots stand for indices. The
left subscript indicates that one considers the 2kth
approximation of S. S may depend on terms containing
Y, Z (both together denoted by X), i.e., the coordinates
of the two sources in the two-body problem. If one
introduces into such a field quantity motion up to some
approximation, 2,5 will not be of the 2kth order; for
one observes

a
S (o X +2X) = 2kS(ﬂX)+5}—(2kS)2X+. .

0

(5.2)

which shows that 5.5(sX=+.X) is really an expression
containing terms of the 2kth and higher orders.

However, if one wants to keep all the terms of the
2kth order in a certain equation involving S’s, then
these do not only originate from .S, since the lower
orders of S combine with the higher order of X to yield
terms of the order 2k. Therefore, it is impossible to
split an equation containing such S’s depending on
the X’s into A-terms be fore the development for the X’s
is inserted. Thus, if one.desires to have an accuracy up
to all terms of order 2k, one has to write the expression
for S as follows:

S (en X), (5.3

the square brakets having the meaning that one has to
take the sum of all the terms up to the denoted order.

It is possible to reformulate the approximation
procedure by use of this notation. The field equations
are up to the 2kth order

tzi—21P00 (2 -1 X) + 21201 Aoc (p2e-4X) =0, (a)
126-11Pom (126~ X) + 212611 Aom (26— X) =0,  (b) (5.4)
126 ma(i2e-0X) 2020 Amn (12— X) =0. (0
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For k=2 those equations are identical with those for
k=2 in Sec. 3, since there is no difference between the
equations “up to” and “of”” the second order. Thus, the
beginning of the procedure is identical with that in
Sec. 3.

Let us now assume that one has solved the Egs. (5.4)
up to the order 2k —1. The next equations to be solved
are then Egs. (5.4) as they stand. These equations are
solvable only if one assumes that the surface conditions
(3.19) and (3.20) are satisfied. Thus, the integrability
condition for (5.4b) leads to the adding of poles in the
previous <y, whereas the integrability condition for
Eq. (5.4c) determines the new corrective terms in the
series expansion for the motion; for, these integrability
conditions are

f 2ot An (- X)dS = (31 Co(f2e_ X) =0, (5.5)
S

Written out more explicitly this is
SCu( X+ F2aX)
F65C (0 X+ - - FareX)+ - - -+ 25C, (1 X) =0. (5.6)

Since the corrective functions 94X appear only in ,C,
Egs. (5.6) are of the second order. One has thus a pro-
cedure whereby the motion is determined step by step
to a higher accuracy.

The version of Einstein, Infeld, and Hoffmann’s
approximation procedure presented here has been
suggested by Dr. Infeld. It is from a technical stand-
point considerably simpler than that of Sec. 3 involving
the dipoles. However, it should be noted that theoreti-
cally this new version tells one less than that of Sec. 3.
The method of Sec. 3 uses physical notions such as
dipoles whose annihilation, again a physical procedure,
yields the equations of motion. The present method
exemplified by Eq. (5.6), however, adjusts the correc-
tive terms in the motion so as to make the equations
consistent. Thus, it is seen that one is completely tied
up with the representation of the motion in a particular
coordinate system, which is not so satisfactory.

6. COORDINATE CONDITIONS

We have mentioned on several previous occasions
that one can change the gravitational equations of
motion in form by changing the coordinate conditions.
It must be expected that the different solutions of the
field equations thus obtained can be transformed into
each other by simple coordinate transformations. This
question has been studied by Infeld and Scheidegger.?®
Earlier it had been shown by Einstein and Infeld® that
the most general solutions of the field equations that
can be obtained by rejecting the coordinate condi-

131, Infeld and A. E. Scheidegger, Can. J. Math. 3, 195 (1951).
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tions are
5—2Y00 = £—2Y00 (a)
(b) (6.1)

*
E—1Yom = k—1Yom T k=106, m

k'Ymn* = Ic'Ym'n+ Am, n+ kQn,m
- amr» 2 r+ amn kv—]aO, 0 (C)

and
KYmn' = kYmat im0t kbnm—Omn tbrr  (2)
KY00 = kYoot xbs, (b) (6.2)
k41Yom = k1Y om T k4100, m kD, 0, (©

where the functions ao, @» and b, b, are arbitrary.
We shall prove here that it is possible to obtain the
solutions v from the 7’s by a suitable coordinate
transformation.

A general coordinate transformation is given as
follows:

xb= B (x*) = TH(x"). (6.3)

Thus, the task is to calculate the transformed v’s which
can be done straightforwardly starting from the trans-
formation law of the metric tensor

g =T71,T°, gpo- (6.4)

When applying Egs. (6.4) one has to be careful that
one takes the same world point as argument in all the
functions which occur. Thus, in addition to the tensorial
transformation (6.4) one has to perform inside the g’s
a substitution of the variables x# by xf* according to
Eq. (6.3).

In conformity with the general methods of the ap-
proximation procedure one has to expand the metric
tensor g.s- into a power series with respect to the
parameter A\. However, now al/ the terms instead of
only alternating ones have to be kept.

Furthermore, it was assumed in the original solution
that the motion of the particles is “slow’” which made it
necessary to introduce the “‘comma-differentiation” for
guw. It is natural to require that the motion remains
“slow” in the starred coordinate system. Thus one has
to assume that the derivatives of T'*, too, are subject
to the ‘“‘comma-differentiation.” Therefore, the trans-
formation of the metric tensor represents itself as
follows:

gmn* = TT, st, ngu‘l‘ TO. nTs, n80s
+ Tr, mTO, ngro+ TO, mTO, ng()(],

1 ,
’):gmo* =T T 0grs+T° w1 080s

77 T ¢grotT° mT° 0goo, (6.5)

1
—g00" =1"0T% 0grs27° 0T o805+ T° 0T 0goo-
A2
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Equations (6.5) apply quite independently from
whether for T an expansion in \ is used or not.
Furthermore, one observes that in the usual solution
the lowest terms different from zero are of the order A%
apart from constant ones ¢gas= 7qs. It will be convenient
to confine oneself to coordinate systems where this same
property holds. This means that in every coordinate
system which is admitted for consideration, one has the
flat Miskowskian metric as a first approximation of the
gravitational field. This restriction of the coordinate
transformations is justified by a remark of Papapetrou'
who has proved that a change of the coordinate condi-
tions will never affect the Newtonian approximation of
general relativity. Thus, one is justified to assume that
the coordinate transformation 7'* differs from the
identity transformation only by terms proportional
to A%:
Tr= x#+)\kkfn;

E>2. (6.6)

As the indices 0 and % have to be treated differently,
one has to distinguish between two cases.
(a) Only the space coordinates are transformed by a

single transormation of the order A,
2r=Tr=a"+NuwT7(x%), (a)
6.7)
1= T0=420" (b)

If this is inserted into Egs. (6.5) and everything ex-
pressed in v’s, one obtains

k’Ymn*= k'Ymn+61m kTs. s kTm. n an, my (3.)
) (6.8)

E+1Yom =kt 1Yom— k1 % ¢ (c)

*
KY00 = kYoo~ k1 ® 4

One observes that only the %th and higher approxima-
tions are influenced.

(b) Only the time coordinates are changed by a single
transformation of the order A%,

x0= TO0= x4 \Fy TO(x5"), (a)

xm =", (b) (©9)
In a similar way the following occurs:
k1Ymn = k41YmatOmn k1%, (a)
KY0n = kYot 1%, ny (b) (6.10)

k1700 = k41¥co 1T, o (o)

By combining the cases (a) and (b) arbitrarily one
obtains the most general coordinate transformation
within the restrictions imposed here. Thus one may, for
instance, consider the following combination :

am= g Ny T, (a)
K= x"*—l— )\kﬂl(k,_l) 7o, (b)
14 A, Papapetrou, Proc. Phys. Soc. (London) A64, 302 (1951).

(6.11)
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This yields the following transformation of the ¥’s:
k1Yom = k—1Yom+ 10 m, (a)
¥Ymn = KYmat0mn 115 s—1T™ 5
=11 m+bmn 1T, (b)) (6.12)
¥Yoo = kYoo~ k1 st -1T"0, (c)

which produces the formulas of Einstein and Infeld
quoted in Egs. (6.1) if one sets
W™= — 1, (a)
(6.13)

—110=p_10ay.

Similarly, one can obtain the other set of Einstein
and Infeld’s formulas, quoted as Egs. (6.2), by choosing
a somewhat different combination of the coordinate
transformations, (6.7) and (6.9), namely

x“=xs*—l—)\’°(k)T“’, (a)
0= g0 NEH 1 7O, (b)
This yields the following transformation of the v’s

k'Ymn*= k'Ymn+ 5m'n kTs, s Ich, n an, ms (a)

(6.14)

+1Yom' = k4 1Yom— k1, 0 14110 my (b) (6.15)
¥Yoo = rkYoo— kL% s (c)
which is identical with (6.2) if one puts
wL°=—3bs, (a)
(6.16)
k+1T0= k+1bo- (b)

The results contained in Egs. (6.13) and (6.16) show
that coordinate transformations produce all the changes
in the 4’s which Einstein and Infeld® found possible by
rejecting the coordinate conditions in the kth step of
the approximation procedure. Thus, having the usual
solution, all the different solutions which result from
the arbitrariness in the approximation procedure can
be obtained simply by an appropriate coordinate trans-
formation, and conversely.

7. COORDINATE TRANSFORMATIONS

The next question to be investigated is the possible
influence of the coordinate transformations which were
under consideration in Sec. 6, upon the equations of
motion. This question has been studied previously up
to the Newtonian approximation by Papapetrou,** and
generally by Infeld and Scheidegger.’® However, a new
approach will be used here, which appears somewhat
simpler.

Assume that the field equation be solved up to the
order N***1, Thus, one knows the following quantities:

2Y00" * * 2k 00, (a)
(M) (7.1

* 2k Ymne (C)

3Yom"® * * 2k+1Y 0my

4Ymn"®

SCHEIDEGGER

Furthermore, the equations of motion of the corre-
sponding order are

MAC(Y, Z)+ - - +NEIC(Y, Z)=0, (a)

7.2
NMEC(Y, Z)+- - +N*2C(V, Z)=0. (b) 2)

One has to consider now two cases where in the first,
one leaves all the Egs. (7.1-2) unaltered, but in the
second, one performs a coordinate transformation. The
alm is to compare the equations of motion of higher
approximation in those two cases.

To simplify the calculations involved, it turns out to
be convenient to make some special assumptions.
Firstly, the transformation T be of the form

TB= xﬁ*—{—)\?’“(w Tﬂ (73)

as before. Secondly, noting that one needs the behavior
of the expressions for 2,7 only in the neighborhood of
the world lines of the particles, and thus, that they can
be developed near the world lines into a Taylor series,
one assumes that the occurring space derivatives near
those lines shall vanish up to a 4th order. One may call
such a coordinate transformation an infinitesimal one;
because of all the group property all others can be
obtained by repetitions of such infinitesimal trans-
formations. Thirdly, one assumes that only 57" is
different from zero, whereas 5;7° vanishes. These as-
sumptions restrict, of course, the transformations
considered to a large extent; it will be seen, however,
that the admitted ones are still general enough for all
purposes.

Thus, one has near the first world line. the following
coordinate transformation:

&= ™ N2 o) LT (16%), (7.4)

An example for a choice of 47" satisfying all the
above requirements would be near the world line ¥

s T = F(r)H [ = V) = V) (). (1.5)

Then, the only v which is influenced in form up to the
order 2k+1 is sxy1vor. It becomes near the first world
line, according to Egs. (6.8),

(7.6)

When calculating the higher approximations, one is
interested only in terms which contain 7; the other
ones are the terms which one would have got without
the coordinate transformation. Thus, keeping only
terms containing 7"s, one obtains the formal difference
betweeen the equations of motion in the old and in the
new coordinate systems. We may note that one can use
the standard coordinate conditions (4.1) through-
out; for, (7.6) satisfies these conditions and for the
later steps one is free to choose any coordinate condi-
tions one likes.

To proceed with the approximation, one has to
calculate the quantities denoted by sk+2Llmn and szpeLoo

*
21V 0k = 2%41Yom— 26° L ™ g.
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in Eqgs. (4.12)-(4.14). An inspection of the terms shows
that a contribution containing 7”s could only come from
the linear terms. Those, however, vanish because they
all contain space-derivatives of 97". From these state-
ments we conclude that the additional terms in oxAmn
are just zero, so that we find

7.7

2k+2Amn* = 2k+2Am'n (x*) .

The corresponding surface integrals, therefore, re-
main unchanged; a fact which shows that an alteration
of terms at the 2kth step within the prescriptions of the
approximation procedure never affects the differential
equations of motion of the 2k+2nd step. This is in
conformity with the cited statement of Papapetrou'
who observed that an infinitesimal coordinate trans-
formation will not change the Newtonian approxima-
tion. .

Thus, an infinitesimal coordinate transformation of
the order \* will affect only terms from g44C onward
in the equations of motion. The object is to calculate
the first term which is affected. In the old coordinate
system the equations of motion are

NACL(Y, Z)+ N\ Cu(Y, Z)
+ o Ny LC=0, (a)
ME2C (Y, Z2)+N2Cu(Y, Z)
+ e +)\2k+42H42Cm=0. (b)
Transforming the coordinate system at the 2kth
step by an infinitesimal transformation (7.4) will
change somehow Egs. (7.8). If one performs the subsii-
tution. (7.4) in Egs. (7.8) one obtains that same old
condition for the motion of the particles concerned, but
now expressed in the new coordinate system. The sub-

stitution (7.4) is equivalent to saying that one has to
replace in (7.8)

Y» by Y™4NkeyT™(Y"), (a)
AL by Z"*-l—)\%(zk)T"(Z*). (b)

(7.8)

(7.9

It will be seen that the substitution (7.4) does not
only yield the old equations of motion in the new co-
ordinate system, but the new equations of motion
altogether. For, one observes that generally the new
equations of motion will contain terms with A7 where
j>2k+4. However, one has made the assumption
that 927 is of the order \° in the total domadin where it
is defined so that one can be sure that all the terms
involving T in the transformed equations of motion are
actually of the order indicated by the power of N by
which they are multiplied. If one keeps in mind that
the method for solving the differential equations is by
making a similar development for the solution, namely

Y*: oy*+)\2 2Y*—+— M

and that in the latter in any case only terms up to the
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order A*+* are reliable, then one can discard all the
terms of higher order than 2k-+4th arising from the
coordinate substitution,—which proves the sufficiency
of the substitution. The argument may not seem quite
legitimate, but it would certainly be legitimate if the
old C’s are of such a type that in performing the sub-
stitution terms of higher order than 2k+44 just do not
occur. This is actually the case in one significant ap-
plication which will be given below as follows:
Consider the equations of motion of the 6th order;

Le., in the old coordinate system
MNACL(Y, 2)+N e Co(V, 2)=0, (a) 7.10)
N EC(Y, Z) AN ECu(V, Z)=0. (b)

All the occurring C’s have been calculated by Ein-
stein, Infeld, and Hoffmann® and are listed in the earlier
sections of this paper as Egs. (4.24) and (4.36). Perform
now the coordinate transformation (7.4) which alters
(7.10) by the corresponding substitution

M LC (VN T(V?), Z N2 ,T(Z7))
FAGCH (Y, 25 =0, (a)

M 2C (VN T(YY), Z* 402, T(ZY))
+N2CA (Y, 2 =0. (b)

(7.11)

For the calculations it is very convenient to have
assumed that

2T (V)= oT(Z")=oT 1 (V") =T, 1(Z")
— T (V) =T o(2)=0, (7.12)

as this effects that one has 7™ equal to zero on the first
world line. Thus, one finds near the first world line

oI = (w0 = V) (x*=V*) f7(7), (a)

(7.13)
oI 1 =2(xF— V) fn(7), (b)

and
oI o= —2(wk— VE) Ykt (00— Vo) (a2~ V*) f(r), (7.14)
which are all zero on the line ; but

o™ g0=2Y ¥V % f(r)+terms zero on the line. (7.15)

Thus, the last term can be put equal to any arbitrary
function of time.
Under these assumptions 4C™ changes into

41Cm+4: lme, OO(Y*) )\2, (a)
(1.16)
42Cm+4 2me, [)o(Z*) A2, (b)

into

41 Cm
£Cn

into
Hence, one obtains the following equations of motion of
the 6th order:

NAC(V*, Z)HN{d m 4T 0o(Y*)+6Cr} =0, (a) (7.17)
N EC(V*, Z) N4 2 m  T™ o(Z7) +2C} =0. (b)
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It is readily seen that it is possible to choose the
transformation 7" in such a way that the coefficient of
A\¢ in the equations of motion of the 6th order vanishes.
Considering the expression (7.13) for T near the first
world line, one observes that one can annihilate the 6th
order terms in Eq. (7.17a) simply by putting

(7)== C{1/ (@AY Y% 1m)}, (7.18)

which, at the same time, insures one that .7 is actually
of the order \° as required (except for Y#=0, a singular
case which can easily be avoided by a translation of the
origin). A similar procedure leads to the annihilation of
the 6th order term in (7.17b).

Thus, we obtain equations of motion of the 6th order
which do not contain any 6th order terms at all. This
argument can be generalized for transformations of
the 27th order

XM= x’"*-}—)\”(gj)T’”(x*). (719)

All the calculations are identical to those above;
one has simply to apply them everywhere to the corre-
sponding order of the equations. Thus, it is again
possible to construct a coordinate transformation such
that the equations of the order ¢ are transformed so as
to contain no terms of the order 2j<+¢. One can do that
a sufficient number of times and thus finally end up
with Newtonian equations of motion.

Thus we may shortly summarize the results of this
section as follows.

It is always possible to construct such a coordinate
transformation that the differential equations of mo-
tion have Newtonian form. In other words, the New-
tonian form is a standard form to which the differential
equations of motion can be reduced. As to the physical
significance of this formalism, one has to observe, first
of all, that it does not mean that the motion is just the
same as it would be nonrelativistically in such a specially
chosen coordinate system. Only the form of the differ-
ential equations is Newtonian ; one must keep in mind,
however, that the meiric is by no means Galilean. Thus,
the relativistic corrections of the motion are only trans-
ferred into the metric of the universe. Infeld'® has
demonstrated this recently explicitly for the case of
the two-body problem.

So far, this does not yield any new conceptions. One
may note, however, that the above statement about the
possible Newtonian form of the equations of motion can
be formulated in a slightly different way. For, one ob-
serves that it is the same as saying that, at every step
of the approximation procedure, one can reach the
vanishing of the surface integrals concerned by choosing
the coordinate system in an appropriate way. This
shows that one really has a new version of Einstein,
Infeld, and Hoffmann’s method for solving Einstein’s
field equations, which is equivalent to that introducing
and annihilating dipoles.

15 1. Infeld, Can. J. Math. 5, 17 (1953).
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8. THE PROBLEM OF GRAVITATIONAL RADIATION

In every field theory the problem of radiation is very
closely connected with the problem of motion of a
particle in that field. This is best seen in the electro-
magnetic case where the motion of a particle may be
slowed down on account of a radiation damping effect by
the field.

The gravitational field in space and time is in many
respects very analogous to the electromagnetic field.
From this analogy one might expect that moving bodies
radiate gravitational waves and undergo a damping of
their motion in a manner similar to moving charged
particles. However, one will have to be very careful in
defining what one means by “radiation of gravitational
waves.” In the usual way of speaking about “waves”
the linear superposition principle is crucial for their
existence. Since this superposition principle does not
hold in nonlinear relativity theory one will have to
study the analogy between electrodynamics and rela-
tivity in great detail so as to see whether the notion of
a “wave” makes sense in the latter. To do this, one
needs a formulation of electrodynamics which resembles
the approximation procedure leading to the relativistic
equations of motion of masses. This formulation was
given by Infeld! as follows.

One can write down the field equations of electro-
dynamics in the following form

Yelss™ Yojoo = 0, (a)
Ym|ss™ Ym|ss= PXm, (b) (81)
Ymiss=Yolo- (c)

Here 7, is the electric, v~ the magnetic potential, p the
charge density and X™ the velocity vector of the
charges. If the velocity of all the charged particles is
small compared with the velocity of light, one may
assume 7o as of the order A? and v, as of the order A®.
Under these circumstances, the field variables v vary
slowly in time but quickly in space. This compels one
to introduce the ‘“comma-differentiation” as before.
If one assumes that all the charges are concentrated in
particles and the latter described by singularities of the
field, then Eq. (8.1) takes the following form outside of
the singularities:

Yo, 6= A2 Y, 005 (a)
Ym, ss= A2 Ym, 00y (b) (8~2)
Ym, n=AYo0,0- (©

If one expands the 4’s in power series of A, taking
the lowest powers of expansion to be of the order indi-
cated by the assumptions about the ¥’s, the Egs. (8.2)
split into

kY0, ss= k—27Y0, 00, ()
(b) (8.3)
kE+1Y m, m= kY0, 0- (C>

16 T,. Infeld, Phys. Rev. 53, 836 (1938).

k+1Ym, ss= k—1Ym, 06y
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The fact that (8.3) connects only xyo with xeve and
o+1Ym With r_17v, permits one to set all the odd v, and
all the even yv. equal to zero.

Consider now the case of one point-singularity with
its motion represented by X*. (It is obvious how to
generalize the ensuing statements for many particles.)
The Egs. (8.3) in the lowest order lead to the solution
(choosing the particle at the origin and at rest for /=0)

2Yo0= 8/7', (a)
3Ym= —GX/I, (b) (84)
2= (x°— X*) (x°— X?¥). (©)

The nature of the whole solution is determined by this
initial choice of the harmonic functions for 2o and 37ym,
if one agrees not to introduce any arbitrary harmonic
functions in the further approximation steps. One
obtains then

e d2k—'2
WYo=——— (%), (a)
T k=) 1 e
8.5)
—e de—z .
2 1Ym= (r**=2X™).  (b)

(2k—2)1 dr?+

This corresponds to a standing wave, that is to § ad-
vanced +3% retarded potential, as discussed long ago
by Nordstrgm!? and Page.!®

If one wants to retain in the expressions for vy all the
powers of \, then one has to make an arbitrary choice
for svo, 4¥Ym- The odd and even powers of A do not mix
since the electrodynamic field Egs. (8.1) are linear and of
the second order. Take for syo and svm the following
simple harmonic functions satisfying (8.3) for k=3:

3Y0=0, (@)
(8.6)

ym=ed?X/dr2. (b)

This leads to
e d2k-—1
- 2%—2

2%4+1Y0 2h—1) ! d‘r?"‘l(y ), (a)

(8.7)
e d?k-——l .
2t 2Ym= (r*2X™). (b)

(2k—1)! g1

The general power series for the 4’s, if (8.5) and (8.7)
are inserted, represent a retarded potential. Therefore
one is justified to call the terms of Egs. (8.7) “radiation
terms.” They change the standing potential, if added,
into a solution with radiation. .

Now, one observes that the electromagnetic equations
(8.3) as discussed here are analogous to a corresponding
set in general relativity theory, namely (3.16) and (4.1).

The two sets of equations differ only by the additional

index “0” in the gravitational case. In both cases the
right-hand sides are known and determined by the

17 C, Nordstrgm, Proc. Acad. Amsterdam 22, 145 (1920).
18 T,, Page, Phys. Rev. 24, 296 (1924).
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previous approximation steps, for the A’s in the gravita-
tional case are known functions of the y’s.

This analogy with electrodynamics induces one to
seek in the gravitational case a solution which corre-
sponds to the retarded potential in electrodynamics.
Such a solution might properly be expected to represent
gravitational radiation. The analogy suggests to choose
for 3vo0 and s4vom the following expressions in the case
of two particles:

3v00="0, ()

. .. (8.8)
Yom=—4&m"Y —4mim (b)

One should note, however, that in electrodynamics
the “radiation terms” initiated by the choice (8.7) can
be calculated by themselves and simply inserted into
the power series for the 4’s. In relativity theory the
assumption of (8.8) will not only initiate “radiation
terms,” but will also alter all the v’s as calculated with-
out the radiation. :

The introduction of radiation in relativity theory by
analogy with electrodynamics as given above, may seem
somewhat artificial. However, it is also possible to
arrive at gravitational radiation terms by a more
physical argument. True enough, one cannot speak of
radiation or waves in relativity theory in the usual
way, due to its nonlinear field equations, but one can
set up a linear approximation of the theory as shown for
instance by Eddington® where the notion of waves is
sensible. Setting as usual

gap=Nag+ g (8.9)

and assuming %qp to be small, one can neglect all terms
involving the %’s more than linearly. Then one has cor-
rect to the first order, outside of the singularities of the
field (reference 3, p. 128 ff),

N (hgu—318u1""hp)1a=0,
D naﬂ(hﬂ#— %ﬂﬁ#npohpa) = 0:

(8.10)
(8.11)

where [] denotes the d’Alembertian operator. Intro-
ducing the +’s instead of the #’s yields

')’aO]O_'Yasls:O; (a)
(8.12)
(| Yag= 0 (b)
Setting a=0 yields
Y0016= Yosls; (a)
(8.13)
Ovs=0. (b>

These equations are precisely identical with (8.1), if
one omits in (8.13) the additional index 0 and sets p=0
which means that the particles are represented as
singularities of the field. Hence, it follows that one may
deduce from (8.13) exactly the same solutions as one
did from (8.1) (see for instance Infeld and Wallace).

81, Infeld and P. R. Wallace, Phys. Rev. 57, 797 (1940),
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One can take over all the formulas from (8.4) to (8.7).
Thus one obtains the result that the standing as well
as the retarded potential is an exact solution of the
linearized field equations. Gravitational radiation exists
in the linearized theory in the conventional sense.

It is customary to regard the linearized theory as a
first approximation to exact general relativity theory.
Therefore, if one wants to retain radiation terms in the
development for the field variables, then it is reasonable
to request that the first term starting the radiation
terms is equal to that which one had found starting
radiation terms in the linear approximation. Thus, one
is again led to the assumption that this term must be of
the form given in Egs. (8.8). Taking this term and
inserting it into Einstein, Infeld and Hoffmann’s ap-
proximation procedure should yield a physical effect
which represents ordinary radiation in the limiting case
of a weak field represented by linearized equations.

Generalizing the argument above, one is not forced to
start the “radiation terms” with the choice of syom
as this was done in (8.8). One can ask whether it would
be possible to start the omitted terms in the original
development for the 4’s at any stage of the approxima-
tion procedure, say in the 2kth.

The prescriptions of Einstein, Infeld, and Hoffmann
imply that one never must add arbitrarily to a field
variable any additional poles or higher harmonic func-
tions. On the other hand, the first equation starting the
radiation terms is (keeping the usual coordinate condi-
tions) one of the following:

2k+1700, ss=0 (a)
or
2k 0m, ss ™ 0 (b) (8 14)
or
2k+1Ymn, sx=0- (C)

If one wishes to take for one of these v’s a solution
#0 which is nowhere singular in space (including in-
finity), one observes that the only possibility is v equal
to a function of 7. Thus, one can start “radiation terms”
only with one of the following possibilities:

2x4+1Y00= foo(T) ()
or
2kY om = me(T) (b) (8‘15)
or
2k+17mn=fmn(7')- (C)

It is readily seen that the particular choice (8.8) sug-
gested by the electromagnetic analogy is indeed of the
form (8.15) since ¥, Z are functions of 7 only.
Concluding, we may summarize the contents of this
section by stating that gravitational radiation in con-
nection with gravitational motion can formally be
introduced by analogy with electrodynamics. Whether
this formal definition of radiation will represent any
physical effects (as which one would expect radiation
damping of the moving bodies) remains to be seen.

SCHEIDEGGER

9. RADIATION DAMPING OF GRAVITATIONAL
MOTION

All early attempts to obtain radiation damping
effects in general relativity theory started from the
electromagnetic analogy as expressed by Eq. (8.8). In
particular, starting with the assumption (8.8), Infeld!s
has calculated the equation of motion up to the order \”.

It is readily seen that with this assumption one ob-
tains

sAmn=0. 0.1
Therefore, the equations of motion are not changed
up to the fifth order by assuming a radiation term.

If one desires to go on in the approximation schedule,
the next equations that one is faced with are

6700, 58 = 07 (a') )
8Yom, ss= 0; (b) (92)
7Ymn, ss= Y00, 0+ (C)

As solutions of these equations, one can conveniently
take

2 a
5700=§d—;{1m 2r2+2m 272}, (9.3)
r
a .
Yom= —4—{1mY"‘+2mZ"‘}
T
2 & {m 1 2 ym2 2 7 9.4)
———{m Y 2m %2 Zm}, (9.4
3dr }

which is in analogy with the corresponding electro-
dynamic equations. Then, one can calculate 7A,, in a
similar way as this has been done before. The result is

27Amn= = §Yom, 0n— 6Y0n, om= Omn 5Yc0, 00

1
— @ 5Y00,mn T 5Y00P, mn " 25Y00.m @, n

_%B'YOO.n ¢.m+%5mn 5700,s P, sy (95)

which leads to
ACm= f TAmnttndS=— (4/3)m{imVm+2mZ"}.  (9.6)

But again, because of the Newtonian equations of
motion, the right-hand side is not of the 7th, but at
least of the 9th order; i.e., if one considers the equations
of motion up to the 7th or 8th order, one obtains no
contribution from inserting the radiation terms (8.8)
into the usual approximation schedule.

Taking this result, Hu'® went on in the approxima-
tion procedure and calculated the equations of motion
up to the 9th order. This involves a tremendous amount
of calculations which will not be reproduced here. The
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result is (‘m=>2m=m)

17 as 8§ at

0Cp= —— VoMV Y "} -V o—{m2V V). (9.7)
60 drb 3 dr

Carrying out the differentiation with respect to time,
and eliminating after each stage of differentiation the
second derivatives by the Newtonian equations of
motion, one obtains finally

84

glcﬂ=§m41'fn/r4 (9.8)

and a similar equation for the second particle. From
this position Hu calculated the “loss” of energy per
unit time as given by

X 84
—E= —?m4v2/r4= — (42/5)m5 /7" 9.9
with o
=YY s=m/2r (9.10)

for a circular orbit. The sign in Eq. (9.9) means that the
total energy defined in Newtonian mechanics as

E=mv*—2m?*/r 9.11)

is imcreased by the radiation “damping” force. This
result is rather strange from the point of view of
Newtonian mechanics, according to which the energy
can only be radiated out at the loss of the total energy.
Physically, this result, if correct, has the meaning that
the radiation damping force makes the particles move
spirally away from each other, which is rather un-
believable. ’

Such are the results obtained by direct calculations.
The most natural thing of taking the term 4yon,= (8.8)
for starting the radiation expansion, as suggested by
electrodynamic analogy, leads obviously to an un-
believable result when physically interpreted in the
conventional way, as shown above. ‘

Thus, one is strongly induced to look for another
approach to the problem of gravitational radiation
damping. In this instance, it has been observed by
Scheidegger® that a clue for the proper interpretation
of the ‘“radiation terms” might be provided by the
remarks of Sec. 6 on coordinate conditions. There it was
shown that one can create additional terms in the usual
solutions of Einstein, Infeld, and Hoffmann’s approxi-
mation procedure according to Egs. (6.1) and (6.2) by a
mere infinitesimal coordinate transformation. This
statement gives us the clue for the proper interpretation
of the radiation terms. It is easily seen that the terms
which were chosen to start the radiation expansion can
be obtained from the usual solution by putting in (6.7),

sTm =4 'mY -4 2mZm, (9.12)

© %A, E. Scheidegger, Proc. Second Can. Math. Congr. 218
(1949).
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Thus, the starting term (8.8) is just of such a form
that it can be created by an infinitesimal coordinate
transformation. Therefore, it can also be wiped out by
the concerning inverse transformation. But after this
inverse transformation, one has no radiation terms, the
metric tensor is that which one had before radiation
terms were inserted, the equations of motion are the
original ones (without the radiation), and thus the old
solutions of the relativistic field equations without the
radiation terms are regained.

It may be noted that the coordinate system contain-
ing the radiation terms with the particular assumption
(9.12) does not even require a departure from the usual
coordinate conditions, since 4Yom, 0= 3Y00,0=0.

One may ask now whether there are other possibili-
ties for inserting radiation terms. It was seen generally
that a term starting the radiation expansion is of the
form (8.15). Let us take first the following possibility:

2k'70m:fm(7')‘ (9-13)

This yields formally an even <o, which is different
from zero. However, we note again that (9.13) can be
created by a coordinate transformation of the usual
solution by putting in Eq. (6.7),

gk_le= - ffde.

Hence, it also may be destroyed by the corresponding
inverse coordinate transformation.

The second possibility to start a radiation expansion
is with gxy1vma. Thus, one assumes

(9.14)

2k+17mn=fmn(7-)) (9'15)

where again f,., is an arbitrary function of time. How-
ever, this term, too, can be obtained from the usual
solution by a coordinate transformation. It is of the
form (6.1) if one sets

2kam='%fmsxs, (a‘)

(9.16)
pealo=3 f Judr. (b)

It has been shown in Sec. 6 that all such terms can
be obtained or annihilated by an infinitesimal coordi-
nate transformation.

Finally, it remains to investigate what happens if a
radiation term is inserted for oo at a certain stage of the
approximation procedure

2k+1Y00= f(T) (9.1 7)

In order to annihilate it, one may construct the fol-
lowing coordinate transformation :

uTo=t [ fdr, @

(9.18)
a1 To=—1f(r)xs. (b)
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According to Eq. (6.12) one finds indeed that the old
ok+1Yoo 18 changed into (9.17), whereas all the other
field variables are unaffected up to the considered ap-
proximation. Therefore, the corresponding inverse co-
ordinate transformation again effects the annihilation
of (9.17).

These results provide now an easy explanation of the
radiation terms obtained by direct calculations.

First, one observes that all the additional terms of
the form (6.1) or (6.2) added to the usual solutions do
not affect the equations of motion in the next stage of
the approximation. All the radiation terms can be
brought into a linear combination of (6.1)and (6.2).
Hence, one obtains the result that adding a radiation
term at a certain stage of the approximation procedure
leaves unaltered the equations of motion in the next one.

Second, having explicitly shown that all the radia-
tion terms whatsoever can be destroyed by coordinate
transformations, one observes that the terms that had
been found by straightforward calculations must be
entirely due to the particular choice of the coordinate
system. Thus, there is no radiation damping of gravita-
tional motion.

Actually, part of the results of this section could have

been deduced directly from the structure of the gravita-

tional field equations as observed by Scheidegger,? for
it is well known (see Bergmann, reference 2, p. 188) that
in the linearized theory only the waves where v,#0
(so-called transverse-transverse waves) have a physical
meaning, as the others can be annihilated by coordinate
transformations. Now, it should be noted that the
linearized theory should be identical to the first ap-
proximation of the exact theory, thus implying that
radiation terms of the type o0 or von*0 can be
wiped out by a suitable coordinate transformation in
the lowest approximation of Einstein, Infeld, and Hoff-
mann’s method. Hence, it follows that such terms can-
not represent any physical effects. Thus, the only
gravitational waves for which the possibility of an-
nihilation by coordinate transformation is not obvious
beforehand are the transverse-transverse waves. They
have to be treated in the manner demonstrated earlier
in this section.

In conclusion, it should be remarked that some
theoretical physicists do not entirely agree with all the
conclusions given in this and the last sections. Whereas
it is undisputed that there is no physical reality to
gravitational radiation as defined in Section 8, it has
been questioned whether this is the only possible way
to define gravitational radiation. The difficulty is that
so far no satisfactory definition of ‘“real” (as against
apparent) radiation is to be found in literature. Until
such a definition can be given, one will have to contend
with giving (by analogies) reasonable definitions of
gravitational radiation and to test whether those defi-
nitions will lead to physically real effects. This is the

2L A. E. Scheidegger, Phys. Rev. 82, 883 (1951),
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approach used by Infeld and Scheidegger.® It is the
opinion of these authors that this is also the only way
to obtain the radiation of a two-body system if there is
any. The argument for this is largely one of principle,
namely, if the gravitational motion of a system of two
bodies in otherwise empty space is to be determined by
the initial conditions implying position and velocities of
the bodies only, then there is no room for additional
boundary conditions that would determine in which of
several choices of “stages” (“with” or “without” radia-
tion) the system would be at a later instant. It seems to
the writer logically impossible that a system whose be-
havior is thought to be completely determined by the
initial conditions (according to the causalistic rela-
tivity theory) should have the freedom of several
“behaviors.” Since a solution fitting the initial condi-
tions has been found, this is not only a solution, but the
only solution of the problem. Nothing, of course, is
being said of the possibility of gravitational radiation if
the system is subjected to additional forces and not only
to the gravitational ones originating from itself.

Nevertheless, the argument givenin the last paragraph
has been and still is being questioned by noted experts
in relativity® who maintain that a different approach
from that of Einstein, Infeld, and Hoffmann to the two-
body problem and a different definition of “radiation”
might lead to a different behavior of the system from
that presented in the previous sections of this paper.
To this date, however, nothing of such a different ap-
proach is to be found in the literature.

10. THE EINSTEIN-INFELD-HOFFMANN FORMALISM ;
IN GENERAL COVARIANT NONLINEAR
FIELD THEORIES

In the last section the deduction of the equations of
motion in general relativity theory was studied. It
would be interesting to know whether the procedure out-
lined there is restricted to relativity theory or whether
it might be possible to generalize it in such a way that
it provides one with a scheme allowing to find equations
of motion in any given nonlinear field theory.

Recently Bergmann® has made an attempt to set up
a general covariant scheme for many types of field
theories. Then, relativity theory would appear as a
special case in this formalism. The principal aim in
Bergmann’s?®® investigations was to bring all these
field theories into a Hamiltonian form so that their
quantization would be possible (see Bergmann and
Brunings*). In the classical part of his work, however,
he points out some features which are connected with
the equations of motion. One of his statements is that
it should be possible to deduce in a covariant nonlinear
theory the equations of motion of the sources from the
field equations. If this is true, then it must be possible

2 Private communications, notably from Dr. P. G. Bergmann,
Syracuse University, Syracuse, New York.

2 P, G. Bergmann, Phys. Rev. 75, 680 (1949).

# P. G. Bergmann and J. Brunings, Revs. Modern Phys. 21, 480 -
(1949).
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to find Lorentz’s equations of motion of an electron in
a generalized nonlinear theory of the electromagnetic
field, (see the attempts of Born,2 Born and Infeld,26
Infeld,?”8 Infeld and Wallace!) in the same way as the
equations of motion of stars are found in general
relativity theory. Up to now it has not yet been possible
to deduce the equations of motion of an electron from
an electrodynamic field theory.

We denote the field variables by y4, (A=1---N),
where N is the number of algebraically independent
components. It will be assumed that the field equations
can be deduced from a variational principle of the form

=5 f L(ya, yarg)de=0, (10.1)
Vv

satisfied in the four-dimensional domain V. L is an
algebraic function of y4 and y4 5 only. The field equa-
tions which result from the (infinitesimal) variation of
the field variables in the interior of V are

L
or ( o (10.2)

[a=" ) _o.
ya18/ 18

ayA
With respect to an infinitesimal coordinate trans-

formation,

XH=xh— ebH, (10.3)
the field variables are assumed to transform according
to a law having the form

Sya=ya"—ya=e(Fa Pt v—ya1.£")+0(ed). (10.4)

The F4,%# are numbers characteristic for the type
of field variables used. It should be noted that §y. are
the changes of the y4 as functions of their arguments
(and not as functions of the world point only); hence,
the second term in (10.4).

The field Egs. (10.2) must be covariant. If the Lagran-
gian, in the face of an infinitesimal coordinate trans-
formation, adds a divergence, then that condition is
sufficient (though possibly not necessary) to assure
covariant field equations. For, in this case, the infini-
tesimal change in the integral I can be expressed by
means of a surface integral, and it must be assumed
that the coordinate transformation is the identity on
the boundary of our volume of integration. Thus, one

has _
oL =eQ*,+0(¢),

where the Qf are functions of the £ and their deriva-
tives. Then, the transformation laws of the field equa-
tions can be computed straightforwardly to be

SLP=e{—F 4, BrgmpLA— (LBER) ) +0(&).

"2 M. Born, Proc. Roy. Soc. (London) Al143, 410 (1934).

2 M. Born and L. Infeld, Proc. Roy. Soc. (London) A144, 485
(1934).

27 L. Infeld, Proc. Cambridge Phil. Soc. 32, 127 (1936).

28 1. Infeld, Proc. Cambridge Phil. Soc. 33, 70 (1937).

(10.5)

(10.6)
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A further remarkable property of this scheme is that
the field variables must fulfill 4 identities, namely,

(F4uBypLA) v+y4,LA=0 (10.7)

(generalized Bianchi identities).

The expressions L4 contain the field variables and
their first and second derivatives. The second deriva-
tives occur only linearly, and their coefficients can be
represented in the form

LA=LABeryy 4 ... (10.8)

Thus, the third derivatives occur only linearly in the
identities (10.7) and those must cancel each other. It
follows that the coefficients L4B< must satisfy the
identities

{FABB'yLACm0+FABBaLA007+FAﬂBGLA07a}sz 0. (10.9)

To deduce the equations of motion from the above
scheme, one has to apply an approximation procedure.
The solutions of the field equations are to be obtained
as a power series in a certain parameter A

Ya=o¥a+N1yat+N gyat---=0. (10.10)

The time differentiation is thought to raise the order of
the differentiated term; thus, the “comma’ differentia-
tion is used in the same sense as before.

The zeroth approximation of the approximation
procedure shall be a “trivial” solution, a rigorous solu-
tion of the field equations in which all field variables are
constants. The first approximation will yield

OLABTSIyB. rs =T 0.

(10.11)

The solutions 1y will generally not be defined through-
out space. At each instant of time there will be certain
three-dimensional domains in which the field equations
have no bounded solutions. However, only such solu-
tions will be considered in which each one of these
singular regions can be surrounded by a closed surface
S on which the field equations are satisfied. Proceeding
to the next approximation, the equations have the form

OLABNZyB, rs = T ZLA(0y+)\ ly)‘ (1012)

The right-hand sides will be the L4 of the second
order formed from the first-order solutions. The left-
hand sides satisfy identically the four relationships

F 4o 4 0yc(eLAB7y 5, 1s),1=0 (10.13)

irrespective of the choice of the second-order field vari-
ables. On a surface S surrounding a singularity, on
which (10.12) are to be satisfied, one has then

0= fFa,‘C‘oyc oLABTyy g ,mdS

=— fFAuc‘oyc oJLAGy+N w)ndS, (10.14)
Js
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which represent for that singularity inside S the three
equations of motion and the law of conservation of
“mass.”

To investigate the possibility of the existence of
equations of motion in different nonlinear field theories,
one has to apply Eq. (10.14) systematically to certain
types of possible field variables. The results quoted here
have been deduced by Scheidegger.?

Starting with field theories using one scalar field
variable only, one sets

Y4= . (10.15)
Then, the transformation of the field variables is given
by just the last term in Eq. (10.14) so that the coeffi-
cients F4,5f all vanish

F4.58=0. (10.16)
The sutrface conditions, therefore, become trivial
identities, and one gets the result that no equations of
motion can be deduced in any scalar field theory what-
soever.
The next more complicated type of field variables are
vectors. Thus,

yA=Ag. (1017)
Using the infinitesimal transformation
xF* = P — e£h, (10.18)

» A. E. Scheidegger, Helv. Phys. Acta 23, 740 (1950).
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one obtains the following change of the field variables
(except for the term originating in the coordinate sub-
stitution):

A = (0pu— €81) Ap=8pud y— €E"\Sp0 0, (10.19)

Hencé,
Fufr=—8,,0u (10.20)
The calculation of the surface condition with these
coefficients (denoting the “trivial” solution, constant in
space and time, by @) yields

0=— }[ Fa'a,LndS=a, }[ L'ndS. (10.21)

This shows that the four conditions of Eq. (10.14)
reduce to only one in every vector theory whatsoever.
This one condition, however, cannot be sufficient for
determining the motion of the singularity to which it
refers; it is just the conservation law for the pole
strength of that singularity.

Thus, one concludes that the analogous procedure to
that of Einstein, Infeld, and Hoffmann cannot be set
up for a covariant vector theory. Electromagnetic
theory is a covariant vector theory; the field variables
are the components of the potential vector ¢.. Even in
a nonlinear generalization such as that of Born and
Infeld?—2 there are, therefore, no equations of motion.

Thus one may state that a covariant field theory has
to be at least a tensor field theory so that it is possible
to obtain equations of motion from the field equations.



