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A theoretical interpretation of the energy level sequences of
the light nuclei of the p shell is developed, in the spirit of an
exploratory survey. Phenomenological assumptions concerning
the nuclear forces are used and the secular problem of inter-
mediate coupling (between the Russell-Saunders and (jj) ex-
tremes) is in most cases treated by means of rough interpolations,
so no exact energy agreement can be expected, but the order of
states of various quantum numbers in the p-shell configuration
can be approximately established. This order and the general
density of levels agree with the observations, so far as they have
been made, in enough cases to give some evidence for the validity
of the general method of approach, though further refinements
are needed.

The presentation is made with a number of introductory sec-
tions, intended to orient an uninitiated reader in various relevant
aspects of the theory of nuclear structure, preceding the discussion
of the interpretation of the levels of the individual nuclei.
Section 1, an introduction, discusses the meaning of nuclear
models. Section 2 deals with the phenomenological approximations
to the specific nuclear forces and suggests various possible sources
of the spin-orbit coupling. Sections 3 and 4 are primarily peda-
gogical, in that they explain and formulate well-established wave-
mechanical fundamentals of two-body (as an example of many-
body) systems. Section 3 treats the relation between symmetry
and energy for two electrons or two neutrons, and Sec. 4
presents in some detail the relation of the total isobaric spin
quantum number 7' to the more directly physical dynamical
variables of a system of nucleons. Section 5 surveys the experi-
mental data for the various polyads, or groups of isobars, arranged

in such a way as to make apparent the matching in energy of the
states of the same 7 but different neutron excess, after a correction
has been applied for Coulomb energy differences. Section 6 is
again pedagogical, reviewing the theory of intermediate coupling
in atoms, and introducing the application to nuclei. Section 7
discusses explicitly and in some detail the interpretation of the
energy level sequences observed in the various polyads, from
A=5 to A=17, as well as some of the methods that have been
used for making the crucial experimental assignments of angular
momentum and parity of the various states. The degree of partial
success of the interpretation leaves the impression that the
(j7)-coupling scheme of heavy nuclei gives way to intermediate
coupling in the light nuclei, and that some of the higher order
deviations from this scheme may usefully be described as a
partial transition to the nucleon clustering of the alpha-model in
a few nuclei whose atomic number A4 is especially favorable for
this clustering. Section 8 presents some details of the Coulomb
energy calculations. Section 9 explains the remarkable appearance
of double levels (which look like atomic doublets but are explained
differently) in some of the nuclei near 4 =30, beyond the formal
scope of this paper, and shows that the explanation does not
apply to the similar occurrence of apparently fortuitous double
levels in some of the nuclei of the p shell. Section 10 discusses the
possible role of the alpha-model in influencing the states of some
of the light nuclei. Section 11 discusses beta-decay, particularly
in the case of C!4 where there is an order-of-magnitude effect in
need of explanation. One of the appendices treats the molecular
problem of quadrupole coupling particularly in relation to the
measurement of the quadrupole moment of Li? in polar molecules.

1. INTRODUCTION—NUCLEAR MODELS

HE increasing wealth of new material on the
identification of angular momenta and parities of
the excited states of light nuclei brings ever nearer the
prospect of a more complete understanding of nuclear
structure in this region. The gratifying success of the
(47)-coupling shell model (M49, H49, K50)* in explain-

ing many features of heavier nuclei encourages the hope-

of finding some understanding also of the light nuclei in
terms of simple models, but one encounters numerous
difficulties in trying to apply the (j7) model alone to
all the states of the light nuclei, especially to those of
the p-shell nuclei He* to O and immediately beyond.
One had no @ priori right to expect any model to
apply well to a nucleus consisting of many nucleons
attracted by short-range interactions, even after the
success of the Hartree model in the quite different case
of an atom with many electrons. The motion of most
of the electrons is largely dictated by the overwhelm-
ingly strong field of a body fixed at the center. Lacking
this, and with attractive rather than repulsive inter-
actions, it is not clear, for example, that the nucleons

* References are given at the end of this article.

would not have at least an appreciable tendency to
cluster into small groups, such as alphas (W37). Even
if this were only a weak trend it could greatly com-
plicate their behavior. If it were a very strong trend,
it might again simplify matters and make the alpha-
model valid (W37, I41). It has long been empirically
apparent from regularities among such phenomena as
nuclear moments that nuclei behave more simply than
we had any a priori right to expect (S37, 141).

The somewhat surprisingly successful (j7) coupling
shell model is of course a special case of the central
(or Hartree) model of the nucleus. Its success indicates
that the interaction of a single nucleon with all the
others may be fairly well represented by an average
central field, at least in heavy nuclei. But the success of
this particular (j7) version of the central model indi-
cates also that the spin-orbit coupling energy (136, B37)
is surprisingly large in nuclei. The spin-orbit coupling
energy attempts to orient the spin s of a nucleon rela-
tive to the orbital angular momentum I of the same
nucleon to form a total angular momentum quantum
number j of the individual nucleon, to give the (j7)-
coupling scheme, while the “exchange integral” of the
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specific nuclear interactions competes with it in trying
to bring about the (LS)-coupling scheme (H37, Wi37,
F37), or “Russell-Saunders Coupling” as it is known in
the analogous atomic problem, in which the total spin
angular momentum .S, summed over all the particles,
is a constant of the motion and also the total orbital
angular momentum L. Thus the observed approxima-
tion of heavy nuclei to (j7) coupling means in general
terms that the spin-orbit coupling energy is large com-
pared to the “exchange integral” in those nuclei.

The failure, in the p shell, of the (j5)-coupling version
of the central model may be due either to a failure of
the “(jj)-coupling” aspect or of the “central model”
aspect, or both, and we shall see some evidence of both.
The central model includes as special cases not only
the (j7)-coupling version and the (LS)-coupling version,
each of which is an extreme case having specially simple
features, but also the whole range between them known
as intermediate coupling, as was once well known in
the theory of complex atomic spectra. It applies to a
wide range of possible ratios of the two parameters,
giving a variation of the possible energy level scheme
analogous to the Paschen-Back transitions which are
still widely known because of their applicability to
atomic-beam and microwave spectroscopy. Intermedi-
ate coupling seems to be responsible for many features
of the energy level schemes encountered in the latter
half of the p shell, from B! to O%, while the failure of
the complexities of intermediate coupling to account for
some of the features of the still lighter nuclei in the first
half of the p shell seems to be associated with the
tendency for alpha-clustering to become important in
these rather loosely-bound nuclei (or to some other
manifestation of higher order perturbation theory as

_ will be discussed further below).

An extreme case of the tendency for the formation
of clusters of nucleons such as alphas within nuclear
matter is of course represented by the alpha-model, and
good reasons have been given for expecting the applica-
bility of this model to light nuclei (W37, H38), especially
to those within which the energy that may be ascribed
to the mutual binding energy between alpha-clusters is

" small compared to the internal binding of these clusters.
One can conceive of a transition between the central
model and the alpha-model analogous to the inter-
mediate-coupling transition within the central model,
though it is more difficult to formulate explicitly. Thus
one might think of setting up a sort of two-dimensional
variation principle in which the wave functions of the
various states are formed as a compromise between the
three extremes, the (j7)-coupling model, the (LS)-
coupling model, and the alpha-model. Fortunately, some
approximation to the behavior of most nuclei seems to
be possible without making use of all this complexity.

2. NUCLEON INTERACTIONS

Nuclear spectroscopy aims on the one hand to help
to develop, on the other hand to get along without,
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a detailed knowledge of the nature of nuclear ‘“forces.”
This seeming contradiction arises from the great diffi-
culty of uncovering the profound laws of nature, and
the hope of doing so in a stepwise fashion. It is too much
to hope in the near future to calculate the energy levels
of B! say, on the basis of a completely satisfactory
meson theory of nuclear structure. Instead, one hopes
to divide the problem up into a phenomenological one
in which the interactions between nucleons are assumed
to have one of several possible simple forms, it being
determined by trial which form seems to have the
greatest empirical validity, and a second step in which
the phenomenological interaction thus selected is to be
understood on the basis of a theory of the structure of
the nucleons themselves, akin to the present meson
theories which as yet are not entirely free from diver-
gences. This review of the energy spectra of the light
nuclei is concerned entirely with the first or phenomeno-
logical step, though we shall discuss briefly the relation
of our assumed spin-orbit coupling energy to the second
or “‘meson theory” step.

Phenomenological Specific Nuclear Interactions,

Most practical attempts to formulate the sequence of
nuclear states have been based on the assumption of
central interactions between two nucleons written as a
function of their distance apart, V(r;;), multiplied by
an exchange operator O;;, which is variously written
as a linear combination of operators such as P;; or
simply P, the space-exchange or Majorana operator
which exchanges the space coordinates of the two
nucleons in a wave function following it, the unit or
“Wigner” operator 1 which does nothing, the space-spin
exchange or Heisenberg operator PQ, and the spin-
exchange or Bartlett operator Q. This usage and the
saturation requirements of the coefficients with which
the operators are combined is adequately reviewed in
Rosenfeld’s book (R48), where it is suggested (p. 234)
that the most nearly satisfactory version of O;; is
perhaps

Oij= 1,"1_,'(0.1—'-0.230;'0;;)
=(0.93P—0.13—0.26PQ+0.46Q).
A simplified version that is almost equivalent to this in
many rough calculations, because it keeps the large

terms and contains the same proportion of terms in-
volving spin exchange to those which do not, is

0,;=0.8P40.2Q. 2)

As a similar part of the phenomenological step one
usually assumes also a simple form of spin-orbit coupling
operator, which we may write as a perturbation term
to the Hamiltonian thus:

H’=Z,-a1-l,--si=}: al-s. (3)

In most cases the parameter ¢ will be the same for all
nucleons under explicit consideration, they being all in
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the same shell. This quantity a is the parameter which,
by being large, can make the magnitude of the single-
nucleon angular momentum vector j=14s a constant
of the motion and thus account for the approximate
physical existence of the (j7)-coupling scheme in heavy
nuclei. This approach is not sufficiently refined to
account for the quadrupole moment of the deuteron.

Still within the framework of the first or phenomeno-
logical step, there is another approach involving the
assumption of a tensor interaction, in which V(r;;) is
multiplied by an operator

Dij=3(0: 1)(0; 1)~ 0y 05 (4)
a term comparable in magnitude with the central inter-
action. In the treatment of the deuteron by Rarita and
Schwinger (R41), which gives the quadrupole moment
so nicely, neither term is given an exchange character
and the lack of the saturation property has no dire
consequences for this light nucleus or its immediate
neighbors. The excitation energy, about 2.2 Mev, of
the 1S state of the deuteron is accounted for by the
fact that (4) mixes some 3D into the 3S to make the
ground state, but of course not into the 1S. This separa-
tion, which is one of the two primary functions of
the tensor interaction in this theory, is accomplished
with the cruder interaction assumption, Eq. (2), as a
result of the term in Q. If the tensor interaction were
calculated for many cases in heavy nuclei in which Q
provides energy splittings between certain states, the
tensor interaction would presumably give somewhat
similar splittings. In this sense we may think of the
term in Q as an oversimplified sketch which preserves
the main feature, a sort of caricature, of one aspect of
the tensor force (which in turn is a caricature of the dim
machinations of the mesons reserved for the second
step). It is currently suspected that there may be a
very short-range repulsive core to the nucleon inter-
actions (J50), which could perhaps rescue the tensor-
type interaction from its nonsaturating difficulties. If
so, the saturation mechanism of the term of Eq. (2)
in P could be looked on as a caricature, and it is to
be hoped a useful caricature, of this aspect of the tensor
interaction.

Spin-Orbit Interaction

There is still another aspect in which the phenomeno-
logical procedures implied by Egs. (2) and (3) may be
considered to have a significant parallelism to those
implied by the use of the tensor interaction, Eq. (4),
and this concerns the spin-orbit interaction. The tensor
interaction (4) does contain the possibility of coupling
spins e; to orbits which involve 7;; but in simple cases
it does so only through the second-order and higher-
order effects which involve excitation to other configura-
tions. Feingold and Wigner (F350) have carried out
extremely interesting calculations of this effect for He?,
and for LY, and for the effect which is not exactly spin-
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orbit coupling but closely analogous to the excitation
of the deuteron plus effects arising from excitation of
the core in Lif. For the spin-orbit coupling with one
and with three nucleons outside of an alpha-core, they
obtain preliminary results which are somewhat small
but of the right order of magnitude to account for the
observed data. Very many extremely highly excited
states of the alpha-core contribute to these results. The
authors of this work have a feeling that in heavy nuclei
analogous calculations will have the simplifying feature,
as a result of statistical cancellations, that each nucleon
outside a closed shell will because of its interaction with
the nucleons of the closed shell have a spin-orbit
coupling similar to that in He® and be very little affected
by the coupling of other extra-shellular nucleons to
the closed shell. These second-order contributions are
thought to arise independently for the several nucleons
in a manner somewhat analogous to the way in which
the van der Waals forces, also of second order, are
shown by London to add linearly for various pairs of
molecules. Thus Feingold and Wigner feel that for
heavy nuclei, Eq. (3) need not be an independent
ad hoc hypothesis, but may be a higher-order con-
sequence of Eq. (4).

It is desirable in exploratory work to use the simple
assumptions implied by Egs. (2) and (3) because of
their easy tractability. We see that this may tentatively
be justified by thinking of the term in Q in Eq. (2) asa
caricature mainly of the first-order effects of the tensor
interaction (4) (which has a greater claim to credibility
because it accounts also for the quadruple moment of
the deuteron), and by thinking of Eq. (3) as a manifesta-
tion of the second and higher order effects of the tensor
interaction. The suspicion of the possible equivalence
of Eq. (3) and the second-order aspects of Eq. (4) in
heavy nuclei is analytically at such an extremely pre-
liminary stage that it is not really clear that it exists,
and least of all is it clear whether or how far it can be
extended down from the heavier nuclei toward or into
the p shell. For this reason we would be on extremely
hazardous grounds in using Eq. (3) in the p shell if
we felt dependent on this possible explanation for the
adequacy of Eq. (3).

The most compelling reason for using Eq. (3) in the
p shell is, of course, the empirical one: it is simple and
has been successfully applied in heavy nuclei and also
seems to correspond to the nuclear angular momentum
values J for the ground states of the light nuclei. One
wants to know how far down into the light nuclei it
may be of use in accounting for all the available data.
But there is also another possible source of spin-orbit
coupling which may help to justify the exploratory use
of Eq. (3), a direct manifestation of meson coupling to
nucleon spin-orbit coupling without going through the
intermediary of phenomenological nuclear forces. Both
the Thomas-precession as a source of nuclear spin-orbit
coupling (136, B37), and the Feingold-Wigner higher
order tensor-interaction effect (F50), have in common
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the assumption that the coupling of the nucleons to the
meson field contributes certain specific and intrinsic
properties to the nucleons (their phenomenological
interaction energies, their intrinsic magnetic moments)
which may subsequently be introduced into the Hamil-
tonian for the quantum-mechanical calculation of spin-
orbit coupling energies. In the case of the Thomas-
precession, it is the acceleration of the nucleon as it
circulates in its nebulous “orbit,” a classical acceleration
(d*r/diY)=—VV/M ascribed to the specific nucleon
interactions such as Eq. (2) and so only indirectly to
meson theory, that provides the spin-orbit coupling:

H'(r)=ths-or="Hhs-(dr/dt) X (d*r/di*)/2c?
= h2/2M?%*)(r~1dV /dr)l-s. (5)
Thus we have a coupling of the form, Eq. (3), with
(H'(r))n=H' and with the parameter
a= (h*/2M>c*)(r~1dV /dr)u (6)
proportional to 1/M? M being of course the nucleon
mass. One factor M arises from (d?r/d#?), that is, from
an assumption concerning the interaction, and one
from the expression for orbital angular momentum
M|rX(dr/dt)| =1h. Here V is an effective (approxi-
mately central) potential energy V (r,) of one nucleon (z)
in the field of all the others, an effective average of V(r;;)
summed over 7, with exchange effects, Eq. (2), included
in the averaging. The energy of the Thomas precession,
Eq. (5), is now known to be inadequate in magnitude
to account for more than a small fraction of the “ob-
served”” nuclear spin-orbit coupling: in atoms it is half
as big as the magnetic spin-orbit coupling, but in light
nuclei almost an order of magnitude larger than the
magnetic coupling, the magnetic single-nucleon doublet
splitting being of the order of 30 kev (I51), the Thomas-
precession doublet splitting of the order of 100 kev,
whereas the splittings needed to account for the em-
pirical trends appear to be 1 Mev or considerably more,
as we shall see in detail. .

While Eq. (5) is thus inadequate in magnitude, its
form still has considerable interest because this arises
from requirements of relativistic and rotational in-
variance (F26, T26, D36, F36, B37) which are common
to a larger class of assumptions than the particular
phenomenological ones used in deriving Eq. (5), and
in particular apply to the results of some meson theories.
Thus a meson theory may give in the energy of the
system a term of the form, Eq. (5), but with a different
meaning for the symbols M and V. Unfortunately,
meson theories are not yet far enough advanced in their
application to all the appropriate phenomena that one
can yet expect to find any agreement on the probable
form of the final result. However, the hope-that they
will contribute mainly two-body interactions, and then
only contribute to the spin-orbit coupling indirectly
through the two-step arrangement we have discussed,
seems to be an optimistic hope. The success of shell
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models as far as it goes does suggest that many-body
interactions may, for a given three nucleons, say, be
smaller than two-body forces for a given pair, to such
an extent that the two-body forces predominate in
determining the energy effects of orienting the vectors
associated with the comparatively few nucleons in an
unfilled shell. But when one counts among a large
number of nucleons, there are enormously more many-
body interactions than pair interactions. Thus it may
be that the many-body interactions make a more im-
portant contribution to the total energy of the nucleus
than to the energy separation of states within a con-
figuration, which are determined by interactions within
the unfilled shell.

These many-body interactions may perhaps be more
properly described in terms of the coupling of the
various nucleons to a common pool of mesons. In either
description, they may be expected to be very important
in determining the binding energy of one nucleon in an
unfilled shell to the rest of the nucleus, the energy that
determines the existence of the “shell.” In the course
of this complicated process, there would seem to be
ample opportunity for the coupling between the single
nucleon and the common meson field to give rise to a
term of the properly invariant form, Eq. (5), directly,
and not just through a two-step process involving
specific nucleon properties such as M. The fact that M
came in once through the nucleon angular momentum
justifies its remaining as one factor in Eq. (5). The
second factor M entered through the two-step treat-
ment of the energy, and in a direct treatment is probably
to be replaced by the w-meson mass, p=278m=~M/7.
Such a replacement of one factor M by p has been
suggested in early remarks of Teller and elsewhere (149),
then in connection with the particular assumption that
the mesons concerned are pseudovector mesons (now
out of favor on the basis of other phenomena) by Gaus
(G49), and in a number of lectures by Heisenberg, who
favored more specifically replacing M by u/2. With this
replacement of M by u, the question arises what should
be done with V, and it has been argued in connection
with the brief treatment by Gaus that V, although
primarily the potential of the mesons in the field of the
nucleon, or vice versa, as essentially the same thing as
the potential of the nucleon in the nuclear potential
well. While this point remains rather vague because it
depends so sensitively on assumptions concerning the
unformulated saturation properties of the meson field,
it suggests that the main effect of a thorough meson
theory may be to replace one factor M in Eq. (5) by
or u/2, thus bringing the spin-orbit coupling parameter
@ in Eq. (3) up from the order of magnitude 100 kev to
the order of 1 Mev or more. Such an effect could very
well be additive both to the Thomas-precession coupling
and to the second-order effect of tensor interactions, for
which the Feingold-Wigner estimates have so far been
somewhat smaller than needed, and might overwhelm
{them both. This possibility justifies proceeding in an



394 D. R.
exploratory way on the basis of the attractively simple
assumption, Eq. (3), with the parameter ¢ quite large
if need be.

To estimate a plausible dependence of the parameter
a on atomic weight A one may assume that oV /dr
exists only on the surface of the nucleus, so that it
may be replaced by AV/Ar in a surface layer Ar thick,
or in a fraction 2wr?Ar/(4wr3/3)=(3/2)Ar/r of the
nuclear volume. If this fraction be taken as the proba-
bility that the nucleon is in this layer, we have
(r19V/0r)m=23(AV /2r2) A—213 where the nuclear radius
is taken to be 7,43, For purposes of orientation con-
cerning the magnitude of the spin-orbit coupling con-
stant ¢ in Eq. (3), we may replace one factor M by u/2,
put 7o=¢%/2mc?, and evaluate (6) thus:

a= 12/ M uc?) (6m2c*AV /e¥) A3
= (6X 137%/1840X 278)AV AP =0.22AV A5, (7)

For a nucleon entering a nucleus, AV is larger than the
nucleon binding energy by a factor of about two or
more because the kinetic energy is involved in the com-
parison. If we rather arbitrarily take AV =20 Mev, we
have a=1.2 Mev for Li%, 0.125 Mev for Pb?s. The
single-nucleon doublet splitting is (/+4%)a, which is
1.8 Mev for a 2p splitting in Li?, 0.75 Mev for a %
splitting in Pb?®8, The latter is about a factor 3 smaller
than needed to account for the energy jumps at the
magic numbers in terms of the (jj)-coupling shell
model.

There is another simple manner of taking the average
(136), which involves first the classical procedure of
equating centripetal force to the mass times centripetal
acceleration in a circular motion, and this yields an
additional factor I(l+1)7—2, leaving the doublet splitting
approximately proportional to /24~*® rather than to
1A—1) as would correspond roughly to the refinement
that the probability distributions of orbits of higher !
crowd toward the outer edge of the nucleus. This is
mentioned only to emphasize the roughness of the above
estimate, with its assumed uniform probability distri-
bution among many other simplifications.

3. ENERGY CONTRIBUTIONS OF THE SPECIFIC
NUCLEAR REACTIONS

Presuming, then, that some basis may eventually be
found in meson theory for the validity of this procedure,
we shall try to analyze the spacings of the energy states
of light nuclei on the basis of the specific nuclear inter-
actions with their exchange nature given by Eq. (2)
and on the basis of an ad hoc spin-orbit coupling given
by.Eq. (3). The contribution of the spin-orbit coupling
to the energies of nuclear states is in simple cases quite
direct because the nucleons are involved singly: when
the spin of a nucleon is “parallel” to its orbital angular
momentum, the energy is thereby low (this being the
sign empirically assumed, opposite to that for electrons
in an atom). The specific nuclear interactions, Eq. (2),
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involve pairs of nucleons and for this reason we must
invoke the distinction between direct integrals and
exchange integrals, just as in the case of evaluating the
effects of the Coulomb interaction between the electrons
in an atom. Both types of integrals are altered by the
exchange operators contained in them, but an important
part of the separation between states is provided as in
atoms by the fact that the sign with which the exchange
integral enters depends on the symmetry of the wave
function on interchange of the space coordinates of the
particles. This effect puts triplets below singlets in an
atom, an effect which may alternatively be described
in the following well-known graphic way. The wave
function of a two-electrén system in a triplet state,
being symmetric in spin, changes sign on interchange of
the space coordinates of the two electrons, so is zero
when they coincide and small if the two positions de-
scribed by the space coordinates are near one another.
Thus the probability of the electrons being close to-
gether is relatively small in the triplet state, which
makes the average of the positive (repulsive) Coulomb
interaction €?/r1; relatively small, and the triplet lower
than the singlet. In nuclei the origin of multiplet
splittings is closely related to this: it would be the same
with ordinary (Wigner) interactions except for a re-
versal in sign because we are dealing with attractive
interactions (negative energy) between the nucleons,
making singlets lie below triplets. This agrees with the
observed tendency for the nuclear angular momenta J
to be zero for the ground states of even-even nuclei, or
for an even number of like nucleons in a shell. Because
of the saturation property, nuclear forces are usually
treated as exchange interactions, perhaps primarily
space-exchange (Majorana) interactions as in Eq. (2).
With a space-exchange interaction, the above explana-
tion of a singlet-triplet separation is complicated by the
fact that the quantity we are averaging is no longer
just a function V but an operator VP which works on
one pair of single-nucleon wave functions. The proba-
bility density is made up of the product of a wave
function multiplied by itself, once before and once after
the operator P. If the wave function is symmetric in
interchange of the two particles, in the singlet, the
operator P does not change anything and the attractive
potential still gives a low energy (of large absolute
magnitude). In the triplet, the wave function is anti-
symmetric and P has the effect of changing the sign
of the average energy making the triplét energy small
and positive rather than small and negative. Thus
singlets continue to lie below triplets, but the separation
is larger with a space-exchange interaction VP than
with an ordinary interaction V. The same effect may
be described more analytically in terms of the direct
integral

L= f VS VW) s(r)dndn,  (82)
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and the exchange integral
K= f Vo)V (i) $(rd¥(rdudve.  (8b)

Here ¢ may in the simplest example be taken as a 1s
wave function and ¢ a 2s. With ordinary interactions
the singlet and triplet energies are given by L=+XK,
respectively, with L larger in magnitude than K, as is
discussed further in Sec. 4. With anex change inter-
action the roles of L and K are interchanged, as may be
seen from their definitions (8), making the energies
K+ L. The singlet-triplet separation is thus larger with
the exchange operator than without it.

With several nucleons in the p shell, similar effects
occur but, of course, with much more freedom of orienta-
tion of vectors, orbital as well as spin. In this case, only
the p wave functions of the same shell are involved.
We denote them by #m;, corresponding to the three
projections m;=1,0, —1. In the definition, Eq. (8a),
of L, both ¢ and ¢ are replaced by uc, with m;=0.
In K, one is #, and the other u; so as to give some
meaning to the exchange operation. In terms of L and K
thus defined, the energy separations of the various
multiplets in the Russell-Saunders or (LS)-coupling
scheme are given by Feenberg and Phillips (F37a) and
the separations within the lowest (jj) configurations in
the (jj)-coupling scheme by Kurath (K52). The physi-
cal basis for the separations in these cases is very much
the same as in the simple case discussed above, though
the computations are, of course, more involved.

In the approximation in which the range of V(ry,) is
large compared to the nuclear radius, so that V may
be considered constant throughout the region where the
wave functions exist, K is zero because it reduces to
this constant times the square of the integral expressing
the orthogonality of ¥ and ¢. In the opposite extreme in
which the range of V(r12) is short compared to the size
of the nucleus, known as the §-function approximation,
one obtains K=L/3. How much smaller K may be
than L, within this range, depends on the details of
the radial dependence of the wave functions and of the
interaction. An evaluation based on oscillator wave
functions and Gaussian radial dependence of V, with a
reasonable estimate of their range parameters, yields a
result (HS51) near

L=06K, (8¢)
and we shall take this as the basis for numerical
evaluations of the ratios of level spacings in the em-
pirical comparisons made below.

Since the depth of the potential V(r12) is known to be
of the order of magnitude 20 Mev from general stability
and scattering considerations, and L is reduced below
this only by the failure of the two distributions to
come within the range of V of one another, thus by
perhaps a factor % or 3, it may be estimated that L is
of the order of 6 to 10 Mev, and thus K of 1 Mev.
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4. ISOBARIC SPIN

In the tabulations of multiplet spacings of Feenberg
and Wigner and elsewhere (F37, F37a, K52) one finds
the states listed according to the usual quantum
numbers L and S of the (LS)-coupling scheme and also
according to the isobaric spin quantum number T
(or isotopic spin as it has been less aptly called since it
was named long ago by Wigner, who agrees to this
renaming of his child). This dynamical variable T,
which was introduced by Wigner (Wi37) as a
quantity which should be a constant of the motion or
“good quantum number” with a charge-independent
Hamiltonian, is attaining an increasing importance in
experimental as well as theoretical physics with the
discovery that it appears to help control reaction rates
and provide valid selection rules in certain meson re-
actions as well as nuclear reactions. The usefulness of
isobaric spin may be explained elegantly by saying that
the Hamiltonian is invariant under rotations in isobaric-
spin space (just as it is in ordinary space when there is
no external field) if the nucleon isobaric spin vectors «;
appear only in the form of scalar products as in the
first line of Eq. (1), and this invariance makes the total
isobaric spin T a good quantum number (just as is .S
when o; appears no more than through o;- ;). A state-
ment in this language is, however, apt to be too formal
for those readers who want a more explicit and graphic
description of how isobaric spin affects the energy of a
nuclear state. A brief and completely nonmathematical
statement of the usage of isobaric spin in these light

nuclei is found in the introductory part of reference
(Aj52).

Discussion of Ordinary Spin Preparatory to an
Explanation of Isobaric Spin in a Simple Case

In preparation for a more complete explanation of the
useful concept of isobaric spin in explicit analogy with
the usual intrinsic spin of a system, we shall first
formulate the dependence of the interaction energy on
spin quantum number in an appropriate manner, more
explicitly than was done in the more general remarks of
Section 3. For the sake of clarifying the physical basis
of the analogy, there are three aspects of the problem
which we shall emphasize: (a) the formalism of single-
particle “spin factors” of the wave function and the
choice of the quantum numbers =1, (b) the Pauli
principle in the case of “parallel spins,” and (c) the
Pauli principle in the more general case in which it
selects four of the eight solutions of the two-body wave
equation.

(a) A very essential feature of the discovery of elec-
tron “spin” by Goudsmit and Uhlenbeck was the
recognition that there are in nature twice as many
states as there are solutions of a one-electron equation
of motion in three dimensions (wave equation in present
terminology), and one ascribes to the electron another
“degree of freedom” or coordinate or dynamical variable
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(variously called s,=30. or w or o) which can take on
only two values rather than the continuous range of the
three components of 7. Just as the wave function y(r)
is in spherically symmetrical cases factorable into
Rni(r)Yimi(8, ) with factors specified by the three
quantum numbers #, I, #,, there is now a new factor of
the wave function associated with the quantum num-
ber m,, which can take on only two values, one for each
of the Pauli spin wave functions a and 8. In place of
one wave function ¥(r;) we have two, ¥(7;)a(s.;) and
Y(r)B(sz:). The fact that there are two functions is
important, and is the part which is most obviously
convenient to carry over to the later discussion of the
two charge states of a nucleon. Rosenfeld (R48)
emphasizes the two-valuedness by calling the new co-
ordinate a “dichotomic variable.” Perhaps the simplest
manifestation of electron spin is the observation that
the energy given to an electron by a magnetic field A
has two values, +=upH, where up is the Bohr magneton
which in orbital motion is associated with the orbital
angular momentum / of an electron in an atom, and
now with the new coordinate is by analogy associated
with “spin”’ angular momentum s. Because of this
symmetry of the = sign and because the proper values
of a projection of an angular momentum jump by unit
steps (in the unit %), we come to say the two values
of m, and of s, are ==%. The “spin” factor of the wave
function associated with m,=3} we call a(s,) and the one
with m,=—3% we call B(s.). Their dependence on
the two-valued coordinate s, is as follows: a(3)=1,
a(—1)=0, B(%)=0, B(—%)=1, so that the wave func-
tion Yya=y¥(r)a(s,) has a value with “spin up” (s.=3),
none with “spin down,” etc., as is familiar in one
notation or another in most books on quantum me-
chanics [for example, reference (C35), pages 55-56, and
reference (P35)].

(b) Consider now the problem of two particles in a
potential well, one with a 1s wave function ¢ and the
other with a 2s wave function ¢. Before introducing the
interaction V(r12) between them, one has solutions of
the wave equation composed of simple products of the
one-particle wave functions, such as

() a(s1) (1) B8(s.2) =¥ (1) (2) (1)) =y ¢paB. (%)

Here we define the convention that, in the product of a
pair of similar functions such as ¥ and ¢, the first shall
refer to particle 1 and the second to particle 2. The
association of particle 1, rather than particle 2, with
the function e in that product is artificial and has no
physical meaning. A wave function that avoids stating
more than one knows about this is formed by taking a
sum of such products which is symmetric or anti-
symmetric in the exchange of the indices 1 and 2. The
simplest wave-mechanical form of the Pauli principle
is that, for two identical particles, such as two neutrons
with a (i.e., “spin up”), the wave function must be
antisymmetric (not symmetric) in interchange of 1
and 1o, so that it vanishes when = ¢, and there is thus
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no wave function in which two identical particles have
the same set of quantum numbers. With “both spins
up,” the function similar to Eq. (9a) is ¢y¢aq, but in a
system in which electrons 1 and 2 interact it is not a
satisfactory approximate solution of the wave equation,
corresponding to the fact that it erroneously associates
electron 1 with the state ¥ and 2 with ¢ whereas they
may exchange. The function ¢yaca, with the electrons
exchanged, is another possibility with the same energy
before V(r12) is introduced, but only the sum and the
difference of the two are (approximate) solutions of the
wave equation with V(ry2), as we shall see in a more
general case below. Of these two solutions, the difference

(Vo—¥)aa

vanishes in the special case y=¢, and this is the one
selected by the Pauli principle in keeping with the
simple statement that “no two identical particles shall
have the same set of quantum numbers.” This two-
electron wave function changes sign when we change the
order of the factors ¥ and ¢, which is equivalent to
exchanging r; with r,, so may be said to be antisym-
metric in the exchange of the coordinates of the two
electrons.

(c) With “one spin up and one down” there are four
primitive products, corresponding to either the associa-
tion of a or B, and either electron 1 or 2, with the
function ¢ (the other with ¢). With “both spins up” we
had two and with “both spins down” there are two
more, or eight in all. Eight independent linear combina-
tions may be made of them, and the combinations that
are solutions of the wave equation with V(r1) may be
expected to separate into space and spin factors, since
V does not contain the spin coordinates. The salient
experimental fact demanding the Pauli principle, the
example in this simple case of the general workings of
the vector model, is that there are only four physical
states corresponding to these eight solutions, three (the
%S separable by a magnetic field) with one value of the
energy and one with another (the.1S). Correspondingly,
four of the eight [including the one selected in (b)
above] are selected by the more general form of the
Pauli principle, which states that the functions shall be
antisymmetric in exchange of the particle-labeling in-
dices, 1 and 2, or antisymmetric in “all the coordinates,
including spin coordinates s.;.”” This leaves us with the
following familiar functions:

Spectro- Inter-
scopic  action
Mg S notation energy
V= (Y¢p—¢¥)aa 1
Vo= Yop—¢¥)(af+pa) 01 3§ L—-K (9b)
V= (Yo—¢¥)BB -1
Vy=(Y¢+¢¥)(af—Ba) 0 0 'S L+K.

.We see that they change sign when we interchange the
space functions ¢ with ¢ and the spin functions, such
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as a with B, which is equivalent to interchanging 1
with 2. These combinations (as well as the four sym-
metric ones that have been rejected) avoid stating more
than we want to claim to know about the interacting
particles; they do not specify which electron is in which
state and they do not specify (in the second and fourth
lines) whether « is associated with ¥ and 8 with ¢, or
vice versa. That these functions are the proper solutions
of the wave equation with interaction and leave the
energy matrix diagonal, we shall see in the following
paragraph.

The labels M s=ms+ms2 are convenient, and the
further label S, which may be associated with the
length of a “total spin” vector having projections M g,
denotes whether the “spin factor” is symmetric (S=1)
or antisymmetric (S=0), in which cases the more im-
portant space factors are antisymmetric or symmetric,
respectively. Now we introduce an interaction energy
V(r12), which is negative for two neutrons or positive,
€*/r1s, for two electrons, and calculate the interaction
energy

1
; f Vot V) V (Yoot o) dndvy=LLK,  (10)

where the ‘“direct integral” L and the ‘‘exchange
integral” K are

L= f VoV dodoy
= f pe(D)ps(2)V (r1z)dvidvs, py=1y?,
K= f VoV dududy

- f (D) po@V (e, po(1)=9(1)é(1),

as in Eq. (8). The exchange integral, being a self-energy
of an “overlap density” po, which may have positive
and negative regions, is smaller than the direct integral.
For a reasonable function | V| having a maximum when
the particles are close together, K has the sign of V,
which is negative between nucleons, so the singlet
state, 1S, with S=0, lies below the triplet states, 35,
with S=1. The singlet-triplet separation is 2K. (With a
space-exchange or “Majorana” interaction VP in place
of V, the role of L and K would be interchanged, as has
been already mentioned, and the singlet-triplet separa-
tion would be larger, 2L.)

If HoV,=EyV,, as is true for any of the functions
¥,(1, 2) given by (9b), then with the interaction V in-
cluded in the Hamiltonian, H=H(r1, 72)+ V(r12), we
still have Hy,= (Eot+ €)Y if Vo= eba [with € given
by Eq. (10)], without any added term in s, that is,
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if Va=JS WV ¥ dridre=0 for a£b. Thus the vanishing
of the nondiagonal matrix elements Vg is essential for
the ¥’s to be proper solutions of the wave equation
(in the approximation in which we neglect other states
remote in energy). That the V4 vanish can be.seen
from the orthogonality of the spin factors alone in
Eq. (9b), since V does not operate on the spins s;.
Between different values of M g, this is a simple result
of conservation of S.,. Between the two states with
M s=0, the vanishing of Vs, expresses the conservation
of S. In this case the spin orthogonality may be for-
mulated

§ §§[a(szl)B(sﬁ)—*'B(szl)a(sﬂ)]

sz1=} s20=

X [a(szl)ﬁ(szz) - 3(Szl)a(sz2):]= 1—1=0.

Here we use the familiar generalization that with the
spin factors in the wave function the integral over dr;
means an integral over the space coordinates, dv;, and a
sum over the two values of the spin coordinate s,;. The
same vanishing of V4 may be demonstrated also by the
space factor, since the first member of Eq. (10) vanishes
if modified to have one 4 and one — sign. These are
some of the elements of familiar atomic spectroscopy
which apply also to a pair of neutrons.

Explanation of Isobaric Spin for Simplified
Nucleons

Let us now imagine that we might have spinless
nucleons, both protons and neutrons (or nucleons with
“spin up” will do as well, with less violence to nature,
and let us, in this case, simply omit the common spin
factor aa). Protons and neutrons differ so little in all
properties but charge that we make the very important
assumption (H32) that we can treat them as two states
of a single type of particle, the nucleon, as is done in
the theory of beta-decay. We can put either a proton
into ¥ in the potential well, or a neutron, two single-
nucleon states which we can distinguish from one
another by application of an electric potential, which
adds an energy e or 0 multiplied by the potential.

(a) This factor e or 0 does not have the symmetry of
the factor £ up in the magnetic energy of an electron,
but it does have the same two-valuedness. The two-
valuedness leaves the naming of the two values arbi-
trary, and it is this symmetry in the case of the electron
spin that makes it convenient to take the two values
= 3. This choice led incidentally to a formulation of the
“V(r12) problem” in which the magnetic energy with
its special symmetry played no direct role, and the
formulation had a convenient elegance involving simpler
quantum numbers than might have been encountered if
we had not been guided by the magnetic symmetry in
our choice, namely that the quantum numbers S=1
and 0 are associated with the “triplet” and “singlet”
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energies of the two-electron system (the numbers of
degenerate states being easy to remember in terms of a
“vector model” concept). Because this formulation is
both elegant and familiar, it is convenient in the dis-
cussion of nucleon charge to exploit the arbitrariness by
proceeding arbitrarily in close analogy to the discussion
of spin. With any other choice of numbers such as 1
and 0 to denote the two arbitrary values of the charge,
it would be more difficult to remember what we had
done, and would lead to the same physical results.
Thus the closeness of the analogy of isobaric spin, as
we shall formulate it, to intrinsic spin is somewhat
artificial ; it is a result of an easy, but arbitrary, choice.
Isobaric spin has a very insistent physical meaning,
nevertheless, in terms of states differing in energy and
characterized by some sort of proper values 7 of a new
dynamical variable that is conserved under appropriate
circumstances. It is the codification of the quantum
numbers that is arbitrary.

Thus with two charge states of a nucleon distinguish-
able in an electric potential the situation is almost
exactly similar to the previous one wherein we had
states Yo and ¥B distinguishable in a magnetic field
(H32). With a neutron in the space-state ¥ we shall
call the wave function y», or with a proton, ¥, and
similarly for the next lowest state ¢» or ¢w. Here
v=v(t,) is a function of the two-valued charge coordi-
nate which we (arbitrarily) give the values 4%, » being
associated with the quantum number m,= 3, etc., as for
spin above.

(b) For two neutrons without spin, the situation is
the same as for two electrons or two neutrons with
“spin up,” as discussed in (b) above. The solution
allowed by the simple form of the Pauli principle is
(Yo—)vv.

(c) If we have a proton and a neutron and try to
find simple product solutions before introduction of
V(r12), and if we treat the proton and neutron as quite
different particles, not states of the nucleon, or if we
claim to know that nucleon 1 is a proton, etc., there are
only two states, a proton in ¢ and a neutron in ¢, or
vice versa. Not only from old ideas about beta-decay
and about the saturation of nuclear forces, but also
even more convincingly from newer observations of
exchange scattering at high energies, there are insistent
suggestions of the nucleon concept, and of the exchange
of identity of protons and neutrons when they interact.
The possible existence of nucleon number 1 as either a
proton or neutron, and of number 2 then as neutron or
proton, makes the number of states of the neutron-
proton system twice as great, or four. Of these we can
make four independent linear combinations, two sym-
metric and two antisymmetric in the exchange of 1
and 2, and each a solution of the wave equation in-
cluding an interaction V(ry) that does not depend on
the charge of the nucleons (in the same way that we
made linear combinations of the spin functions that we
showed to be solutions when V did not depend on spin).
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Because the simple statement of the Pauli principle
applies to two neutrons in (b) just above, and because
the simple generalization of the Pauli principle from
(b) to (c), in the case of electrons, leads to the observed
number of states, we here assume that the similar
generalization from (b) to (c) may be made in the case
of nucleons. The Pauli principle then states that the
wave function shall be antisymmetric in interchange
again of the particle-labeling indices 1 and 2, that is,
of “all coordinates, including the charge coordinate or
isobaric spin coordinate.” All of this is independent of
the choice of indices discussed in (a) above. Here the
charge coordinate need only represent the two-valued-
ness, with = and » vanishing or not depending on which
of its two arbitrary values it takes, but from now on
we shall let them be the convenient values #,= 1.

On the basis of this new assumption concerning the
scope of the Pauli principle, we discard the two sym-
metric states of the neutron-proton system. The physi-
cal necessity for the corresponding step for two elec-
trons with spin in atoms could be verified by counting
the number of states in multiplets. Unfortunately, the
groupings of states in light nuclei are more complex and
their identifications less complete, as we shall see, so
this type of verification that states like the two dis-
carded symmetric states (c) are really missing can come
only with the success of a rather extensive interpretation
of the various energy levels, but some fairly clear
examples of it can be found in the cases discussed
below. Another type of verification for the assumption
that isobaric spin is a coordinate entering in the state-
ment of the Pauli principle is found in the experimental
evidence for conservation of isobaric spin 7" in reactions.

On this basis we select the four antisymmetric states
of the system of two spinless s nucleons:

Interaction
My T energy
(Yo—dy)vv 1
(Yop—o¥) (pr+v) 0 1 L—K (11)
(Yo— oY) -1
Yo+ oY) (vr— ) 0 0 L+K.

Again for convenience we use the labels M7 and T,
analogous to M s and S, and may use a vector concept
in remembering how many states M7 are associated
with each value of the isobaric spin T, as we shall call it,
of the system. M7 may then be called isobaric spin
projection. M 7=1 means two »’s, or the dineutron in
this simplified potential-well model, M =0, the deu-
teron, and M r=—1 means He?, so My denotes which
isobar we have. The state T=1 has substates in the
three isobars, all with the same energy L—K if we have
just one V(r12), or more generally if we have a “charge-
independent Hamiltonian,” independent of the dis-
tinction = and ». With these peculiar spinless nucleons
in this model, the ground state of the “deuteron” would
have both nucleons in the lowest state ¢, and then in
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our first excited configuration with ¥ and ¢ populated,
there would in this isobar be two excited states, one
with T=0 and one with 7T=1. The physically sig-
nificant fact would be that this 7=1 (M r=0) state
would coincide in energy with the ground state of the
dineutron (T'=1, Mp=1) and of He? (T=1, Mp=—1),
in this model. The reason for this fact is that the three
T=1 states each have a minus sign in the space part
of the wave function (Y¢— ¢y). In the isobar M =0,
the state with 7'=1 has a wave function of such sym-
metry that the Pauli principle would permit the two
nucleons to be the same (both neutrons, e.g.). This is,
in the simplest terms, how the T'=1 state differs from
the T=0 state in this isobar, and this symmetry
difference affects the energy.

So far, in this simple example, the only difference
between spin and isobaric spin is that states differing in
spin projection may be distinguished by a magnetic
field and those differing in isobaric spin projection by
an electric field. When we go to a case in which the
single-particle wave functions depend on angle and
introduce orbital angular momentum operators, the
projection quantum numbers of these may also be
distinguished by a magnetic field in a way with which
the behavior of spin operators may be put in close
analogy, and in a way to preserve the classical property
of conservation of angular momentum if the spin
operators are associated with an intrinsic angular mo-
mentum of the particle. Thus the spin operators become
associated with the Euclidian space of the laboratory,
whereas the isobaric spin operators do not. One some-
times makes this distinction by referring to an isobaric
spin projection operator as Ty rather than T.. For a
single nucleon one would have # or 7, analogous to s,
or o;, and m, analogous to ;.

Spin and Isobaric Spin Combined in a Simple
Example

Now to get back to real, healthy nucleons, let us see
how spin and isobaric spin are handled at the same
time in this same simple example, at the same time
introducing a more nearly realistic nuclear interaction,
Eq. (2). It is convenient to list the states of the two-
nucleon system by use of that form of the Pauli prin-
ciple which states that no two nucleons may have the
same set of quantum numbers, as is done in Table 1.
(States with negative M g or M r are omitted since they
introduce nothing new.) The first line has the wave

function
Yo—oy)aa, vv 9"

which combines the propertiest S=1, T=1, of the first

1 The demonstration that S=1 in this case, or that (s;+s3)?
=5(541)=2, is known from almost any textbook in quantum
mechanics. It is simply that (si;+ 82)%=s;2+ s22-+28; - s3= 8,2+ 832
+2mame=3+3+3=2. In the case Ms=0 of Eq. (10) the
evaluation of s;-s; involves nondiagonal matrix elements, but the
result is the same if the spin function is symmetric, or S=0 if
antisymmetric. Exactly the same analysis applies to 7" in terms
of the m,’s.
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TastE I States allowed for two nonequivalent s nucleons.

o
‘ ; calegleted
me me M me Ms Mg S T and (8¢c)
+ + + + 1 1 1 1 —3K
+ + - + 0 1 1 1 —3K
- + + + 0 1 0 1 4.2K
+ + + - 1 0 1 1 —3K
+ - + + 1 0 1 0 7K
+ + - - 0 0 1 1 —3K
- + + - 0 0 0 1 4.2K
+ - — + 0 0 1 0 7K
- - + + 0 0 0 0 —5K

lines of Egs. (9b) and (11), an antisymmetric space func-
tion of two neutrons with “spin up.” The second and
third lines are combined in the familiar way into the
two antisymmetric combinations (one antisymmetric
in space and the other in spin)

(Vo= ¢¥) (afTF Bo)vv ")

which correspond to the second and fourth lines of
Eq. (9b) for two neutrons, with T'=M r=1, M =0, and
S=0 or 1, respectively. The fifth and sixth lines simi-
larly have

Wotoy)aa(vrF ) 1)

corresponding to the second and fourth lines of Eq. (11)
for a neutron and a proton with ‘“spin up,” with
S=M s=1, My=0 (deuteron), and T=0 or 1, respec-
tively. From Eq. (10) we see that for an ordinary inter-
action ¥V we have various states with S=1, T'=1, all
with energy L— K, whereds with (S, 7)=(1, 0) or (0, 1)
the energy is L+ K, the difference again arising from
the symmetry of the space factor.

The degeneracy arising from the fact that (S, T)
=(1, 0) or (0, 1) have the same energy with this simple
interaction V is slightly confusing, so we list in Table I
the energies derived from the assumed specific nuclear
interaction, Eq. (2), specialized according to Eq. (8c).
Through the spin-exchange operator, . this differentiates
between spin and isobaric spin, and thus lifts the de-
generacy. These energies are calculated from the usual
prescription S"U*H¥dy, taking care of the normaliza-
tion, and with ¥ given by Eq. (11’) the interaction
energy is

08 f (ot ) *V () do/2

102 f (Wo:£96)2Vdr/2

=0.8(L+K)+02(L+K); (12)

the + sign applying to T'=0 and the — to T'=1. In
such a calculation one sees that the space-exchange
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operator P operates to exchange ¢ and ¢ in the second
space factor only, and the summation (implied in the
integral) over the other functions, being unaffected by
any operators, comes in-just as in the normalization
and gives a factor unity. In the second term the spin-
exchange operator Q in this case has no effect because
of the symmetry of aa. Thus, we see that the two
states differing in T have quite different energies. Let us
see that one and only one of these energies corresponds
to that of a state of another isobar, because of a simi-
larity in space and spin symmetry.

The states of the other isobar, the dineutron, say, are
obtained similarly by use of Eq. (9"):

0.8 f Yot o) V(oYY o)du/2

02 f (Wt o)V do(aBT Ba) (BT )/

=0.8(£L+K)F0.2(LE£K), (13)
the upper sign applying to S=0, the lower to S=1,
both with T'=M r=1. With the lower choice of signs
the energies expressed by Egs. (12) and (13) agree, but
with the upper they do not, which means that the
energy of the state S=1, T=1 calculated with the
charge-independent interaction, Eq. (2) is the same for
the isobaric spin projection M r=1 or 0. That is, there
is a state in the deuteron which should have the same
energy as a state in the dineutron because the two
states have the same dependence on space and spin
coordinates.f ’

Thus we may answer the question, “What is the
physical property of a state with 7'=1 to distinguish it
from a state with 7=0 in the same nucleus?” by saying
that it has a type of symmetry that would still be
allowed by the Pauli principle even if one of the protons
of the nucleus were a neutron. We have seen an example
in which the calculation of the energy depends just on
this type of symmetry. More generally, if the Hamil-
tonian is charge independent, that is, if it does not
depend on the proportion of neutrons and protons
among the nucleons ‘involved, then the states of the
same value of T in different isobars (that is, different
values of M r) have the same energy for much the same

1 To make a similar comparison for the S=0, 7'=1 and 0 states
it is necessary to complete the discussion of Table I by considering
the four Ms=0, Mr=0 states, in the last four lines. Note that
lines six and seven match lines two and three in the m,’s and match
line four in the m¢’s, and similarly for the last two lines (matching
line 5 in m.). Thus the last four lines are antisymmetrized by
taking the space-spin factor of Eq. (9””) multiplied by the isobaric
spin factor of Eq. (11’), with three independent = signs. Successive
choice of one of the + signs as — gives the first three states (S, 7))
listed, and the last, (0, 0) is given by the remaining antisymmetric
possibility with all three. negative. The energies for the four
choices of signs, with interaction, Eq. (2) specialized as in (8c),
are listed in the last column of Table I, three of them agreeing,
of course, with those obtained earlier because they agree with
choices of signs made earlier in the space and spin factors.
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reason that makes the states of an atom with the same .S
but different M s have the same energy when there is no
external magnetic field and the Hamiltonian is thus
orientation-independent. (In these cases, the operators
S, and T, of which M gand M 7 are quantum numbers,
commute with the Hamiltonian.)

The main point of this explanation is that it shows in
detail how the quantum number 7'=1 or 0 determines
the symmetry that the Pauli principle will allow for the
space and spin factors and through them has an in-
fluence on the energy of the system. That is why it is
possible to write the physical operator in the first line
of Eq. (1) in terms of the scalar product of the single-
nucleon isobaric spin vectors =;=2t;, which have their
physical effect only indirectly through the effects of
symmetry on the evaluation of the space function (as
indeed do also the spin vectors o;=2s; in this formula-
tion or in the atomic singlet-triplet problem). A more
elegant evaluation of an exchange interaction is possible
in this form, since -z or 6o is 1 for T or S equal to 1,
—3 for T or S equal to 0, but this form is no more
useful because the convenient tabulations of refer-
ences (F37) and (K52) are presented in terms of the
exchange operators.

With many particles, the symmetry is not as clear-
cut as in the two-particle case. A function is in general
neither completely symmetric in the exchange of the
space coordinates of all pairs of particles, nor completely
antisymmetric, but perhaps symmetric in interchange
of some pairs, antisymmetric in others. The energy is
still dependent on the degree of symmetry and the
isobaric spin formalism provides more help to dis-
tinguish between the various symmetries than in the
two-particle case where it is easier to explain.

Conservation of Spin and Isobaric Spin in Reactions

One aspect of the conservation of isobaric spin is then
seen in the existence of states of a symmetry denoted
by T=1 in isobars Mr=1,0, and perhaps —1 as
demonstrated by the fact that their energy differences
may be estimated by treating the charge dependence of
the Hamiltonian as a first-order perturbation, as is
discussed further, from an empirical point of view, in
the following section. Another way in which a quantity
such as an angular momentum may appear as conserved
is by remaining with its initial value, or within a group
of initial values through a scattering process, or through
a reaction involving the intermediate formation of a
compound nucleus. For example, when only one orbital
angular momentum is involved in the incident beam and
one in the emergent beam, conservation of parity is
assumed, and of course conservation of total angular
momentum. When spin-orbit coupling is so small as to
be small compared to the natural width of a compound
state, it would be expected that spin angular momentum
S would be conserved, and this process could be ana-
lyzed by expressing the various contributions s; in
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terms of the spin operators, and analyzing the rate of
change S in terms of these operators and the spin
factors of the wave function. This S would be found to
be small and .S to be conserved to the extent that the
dependence of the Hamiltonian on the s; is small. Our
choice of the isobaric spin operators and factors in the
wave function in close analogy with those for ordinary
spin provides us with a convenient dictionary with
which to translate this expectation to isobaric spin, and
leads us to expect T to be conserved in certain reactions.
We shall see examples where the corresponding isobaric
spin selection rule (A52a) forbids a transition that is
indeed observed to be very weak. The conservation of
the formal vector T is thus explained by comparing the
formal operations with those associated with the physi-
cally familiar vector S of which we have physical
reason to expect conservation, but here, just as with
the energies, the physical meaning of the combination
of formal vectors to make up 7 is to be understood in
terms of the combination of space-spin symmetries of
the parts of the system which is implied by the formal
vectors and is difficult to calculate more directly.

Charge Independence As a Special Case
of Charge Symmetry

We have seen that the conservation of isobaric spin
follows from the assumption that the Hamiltonian is
charge-independent, that is, that the specific nuclear in-
teraction (neglecting the Coulomb interaction) between
two nucleons is independent of their nature as neutrons
or protons, the same for the three cases n—n, n— p, and
p— p. Some of the consequences of charge independence
also follow from the less restrictive assumption of
charge symmetry, that is that the n—» and p—p
interactions are identical, but not necessarily the same
as the n—p interaction, so that the Hamiltonian may
be said to be symmetric in the interchange of all protons
with all neutrons. Charge independence is a special
case of charge symmetry. The great similarity of the
energy separation in Li” and Be’, each of which has
four nucleons of one charge and three of the other,
follows from the more general assumption of charge
symmetry. There are other less obvious cases, particu-
larly among the nuclei with 4 =6, 10, and 14, where
some of the consequences of charge independence may
not be considered to verify this special assumption
because they are also consequences of the more general
hypothesis of charge symmetry (Kr52). Because evi-
dence for charge independence as quite a good approxi-
mation is found, as we shall see, particularly in the
comparison of energies of states of the same 7' but
different |Mr|, we shall not attempt to pursue the
distinction further in the present survey. The Coulomb
interaction between protons, which is considered to be
the principal deviation from charge independence, con-
stitutes just as large a deviation from charge symmetry,
so the distinction does not appear to be very fruitful.
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5. SURVEY OF THE EXPERIMENTAL DATA FOR THE
POLYADS OF THE p SHELL, WITH COULOMB
ENERGY ELIMINATED

Polyads

To bring into evidence the way in which the isobaric
spin appears to be a fairly good quantum number, and
to prepare for an interpretation in terms of isobaric
spin, it is useful to present the data, not as associated
with individual nuclei, but with the nuclei grouped into
isobaric polyads after applying the “Coulomb correc-
tion,” as has been done in Fig. 1. Isobaric spin T is,
as we have seen, a dynamical variable not of a single
nucleus, but of an isobaric set of nuclei, all with the
same mass number 4, and such a set of isobars we call
a polyad, denoted by the symbol Py4. Thus, Py®
means ---Hef+Lif+Bef+ - --. (The name ‘“‘triad” or
“isobaric triad” has been used for such a set of three
isobaric nuclei in a recent review article by Lauritsen
(L52), but in principle there are not only the states
with T'=1 spread over the three isobars, but also still
higher groups of states with =2 and so on up to
T=A/2 spread over all 441 isobars, so the name
“polyad” seems more appropriate.) A polyad may alter-
natively be defined as a mechanical system of A4
nucleons, of which isobaric spin is a dynamical variable.

An extremely valuable compilation and digest of the
far-flung experimental data on energy levels of light
nuclei has been made by Lauritsen and his collaborators
(H50, Aj52), and the level diagrams which they have
tabulated form the starting point for any analysis such
as this. Figure 1 is intended to give a survey of these
data in a form to facilitate comparison and convey
general impressions at a glance, and for this reason the
proton-rich isobars are omitted except where their data
contribute significantly to the identification of excited
states. In Py! for example, only Be!® and B! are
shown, and the relative heights of their ground states
are determined by making a “Coulomb correction,”
including a correction for the neutron-hydrogen mass
difference.

Elimination of the Coulomb Energy and the
Charge Independence of the Remaining
Interaction

The correction is made in a simple manner on the
basis of the assumption that the change in Coulomb
energy on changing from four to five protons is the
same in the difference B1°—Be!? as in the difference of
the other isobaric pair of the same elements, B*—Be®.
(This assumption neglects the small effects of symmetry
differences, and approximates a more careful theoretical
correction about as well as the two steep theoretical
curves in Fig. 18 are approximated by straight lines.) If
we write the total nuclide ground-state mass energy, Mc?,
as E(Z, A)=E.Z, A)+E.Z, A)+(ZM g+NMn)c? the
energy of binding (kinetic included) provided by the
specific nuclear interactions being E,, and the Coulomb
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energy E, then the ground-state energy difference
Bel'—B1 is

Ar=E(4, 10)— E(5, 10)= E,(4, 10)— E,(5, 10)
+E.(4, 10)— E(5, 10)+ (M n— M z)c?
= Ao, 10+ Ac, 10+ An, H- (14)

A similar equation holds with the 10 replaced by 9,
with the differences A similarly defined. We assume
that the specific nuclear interactions are symmetric
(that is, the same between two protons as between two
neutrons), which may be stated as A, =0, since taking
this difference implies interchanging neutron number
N=35 or 4 with proton number Z=4 or 5, and we
further assume as just mentioned that A, 10=A4.9. We

F16. 1. Energy levels

then have the Bel%— B! difference in binding energies
provided by the specific nuclear Hamiltonian:

Ay 10=A10— A= E,(4, 10)— E,(5, 10). (15)

If now we further assume that the specific nuclear inter-
actions are charge-independent (that is, the same be-
tween a neutron and proton as between two neutrons
or two protons) so as to expect isobaric spin T to be a
good quantum number, we have this as an estimate of
the excitation energy of the first state with 7=1 above
the ground state of the polyad, with the Coulomb energy
differences of the charge projections Mr=1,0 elimi-
nated. Thus from the observed differences in the mass-
energy of the ground states of the two isobars the
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of the p-shell polyads.

excitation energy of the state T'=1, M r=1 is estimated
to be 1.625 Mev in a hypothetical idealized polyad
having no Coulomb term in its Hamiltonian. There is
an observed level in B1%at 1.74 Mev, and this is assumed
to be the T=1, M r=0 state. A measure of the exactness
of the assumption of a charge-independent Hamiltonian
is provided by the near equality of these two numbers,
together with the plausibility of this identification, as
dependent on the fact that the nearest other level is at
2.1 Mev and also in this case on the very spectacular
failure of inelastic deuteron scattering (the deuteron
has T'=0) to excite the 1.74-Mev level (B53, A52a).

The data for the positron-emitting isobar C! are in this case
not so reliable (the positron energy end point being given to

4100 kev) but indicate that the Mr=—1 component of the
T=1 state lies at about 1.9 Mev, as indicated by the lines with &
in place of A in Table II. The regular progression from 1.625 to
1.74 to 1.9 Mev with added Coulomb energy may be a secondary
effect of the Coulomb repulsion which, by expanding the nucleus,
may slightly reduce the average of the specific nuclear inter-
actions. A still more favorable indication of the charge indepen-
dence of the interactions may then be obtained by comparing the
average of 1.625 and 1.9 (or better 1.9, Mev, that is about
1.78 Mev, with 1.74 Mev, the average for Mr==1 with Mr=0.

A similar treatment of other polyads of the p shell
is given in Table IL. The data there used are taken from
reference (L51) where possible, and otherwise from
(L52) and (De52) and may in some cases involve an
experimental uncertainty of the order of magnitude of
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Taste II. Differences in energies of binding, in Mev. Coulomb correction (including neutron-H, mass difference),
and matching of states of isobaric spin 7'=1 in the even polyads.

A 4 6 8 10 12 14 16

z 2 3 4 5 ) 6 7 8
As=E(Z—-1,A)—E(Z, A) 3.55 15.985 0.556 13.370 0.155 (10)
—Apa=—EZ—1, A-1)+EZ, 4—1) 0.0185 (1.32) 0.863 1.069 1.98 2.221 2705
Aa—Ap 4.9) 16.848 1,625 15.35 2.38 (12.7)
d4=E(Z+1,A)—E(Z, A) 4.9) (18.0) 3.9 17.6 5.1 15.5
Sa=E(Z+1,A+1)—E(Z, A+1) (1.32) 0.863 1.069 1.98 2.221 2.705 2.749
d4—d4ap " (4.0) 17) 1.9 154 2.4 12.8
Next higher level — 2.15 15.59 3.7 12.95
Matched level in Z4 3.58 1.74 15.14 2.32 12.51
Next lower level 2.17 0.72 (11.9) 0.0 12.44

100 kev. They are mainly beta-decay differences. It is
seen that the only very good evidence of this sort for
the charge independence of the Hamiltonian is found
in Py'® and Py'. In Py® the fit is not very good (partly
because of special uncertainties concerning the virtual
states of Py’ with which it is compared) and in the
others the first state with 7'=1 is quite high, in a region
where the density of states with M =0 is so great that
an approximate match is not very significant. It should
be remarked that a fit within about 100 kev indicates a

very high degree of charge independence (to the order
of 1 percent) since the interaction between the pair of
nucleons which changes, e.g., from neutron-neutron to
neutron-proton contributes something like —10 Mev to
the potential energy of the system. The details of the
Coulomb energy as it varies through the p shell are
discussed further in Sec. 8.

Figure 1 is constructed for the purpose of convenience
of interpretation, not for the purpose of displaying the
comparisons which test the exactness of the conserva-

(o]

Eg /(Mev)

T

=100

-150

20

Fi1G. 2. Energies of binding of the states of the polyads.
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Fic. 3. Energies of binding relative to the binding per nucleon in an alpha.

tion of isobaric spin. In constructing Fig. 1 exact
equality has been assumed of the Mry=1 with the
M =0 charge projection of the lowest 7'=1 state after
identification on the basis of the approximate equality
found in Table II. (The identifications were actually
made first in reference (L.52) on the basis of a slightly
different estimate of the Coulomb energies.) This makes
Fig. 1 convenient for use in discussions of the interpreta-
tion of the energy spacings and sequence of levels, and
facilitates the attempt to identify the higher T'=1,
M =0 states on the basis of the assumption that the
Coulomb difference is the same for all 7'=1 states. In a
similar way in the odd polyads, the ground states of the
two isobars, with Mr=3% and —1%, are placed on the
same level in those cases in which the proton-rich
isobar is shown. Thus we may say that an attempt has
been made to display the data in Fig. 1 in such a way
as to make it apply as well as possible to hypothetical
polyads having no Coulomb terms in their Hamil-
tonians, although the spacings of levels within each
isobar are obtained experimentally from a real nucleus
in which it is assumed that the Coulomb terms con-
tribute approximately equally to all states.

Trends in the Data

In Fig. 1 we see for each nucleus a number of hori-
zontal lines representing observed energy levels, the
excitation energy in the polyad being indicated, in
Mev, by a number near the left side for many of the
levels. In some cases a symbol appears near the right
side indicating an experimental angular momentum
and/or parity assignment. In cases in which this
assignment is considered uncertain, it appears in paren-

theses ‘(). Uncertain energy levels are indicated with
broken lines. Levels observed to be broad are cross-
hatched. Most of the spectral regions which have not
been experimentally explored for the existence of levels
are indicated by a vertical strip of cross-hatching at the
right side. Outside the “boxes” containing the energy
spectra are short lines labeled p, #, or «, indicating the
level above which the nucleus is unstable relative to
emission of these particles.

The ground-state angular momenta %, %, 3, &, for
Li7, Be?, B!, and B!! are what one expects from the
compounding of j=% vectors, as expected in the (j7)-
coupling shell model in this first part of the p shell, and
the values 1, 1, 3 for C%, N and N likewise may arise
from the compounding of the j=% vectors in the last
part of the p shell. These are also the angular momenta
expected on the basis of (LS) coupling (F37, R37) with
the exception of B for which the low 2P should be
inverted because it is past the middle of the p shell.

Among the even polyads, there is a striking alterna-
tion in the excitation of the first state with 7=1:in the
A=4n polyads Py% Py'% and Py'® these excitation
energies have large values in the range 12.5 to 16.7 Mev,
while in the 4 =4#+2 polyads Py$, Py, and Py they
are much smaller, in the range 1.7 to 3.6 Mev. This
appears to be an aspect of the “four structure” which
seems to be associated with the symmetries available in
(LS) coupling as clarified long ago by Wigner, Feenberg,
and Phillips (W37, F37, F37a) and most apparent in
the familiar “four structure” of the stability curve
shown in Fig. 2. In exciting the ground state of Be® to
the ground state of Li%, for example, one has to break
up a “four-group” of two neutrons and two protons
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TasBLE III. Number of states in the atomic
configuration ?, (LS) coupling.

mi ms mi ms M1 Mg My, Mg=1 0
1 + 1 - 2 0 2 1
1 + 0 4+ 1 1 1 1 2
: : : : : : 0 1 3

TaBLE IV. Number of states of two p electrons, (jj) coupling.

. (77) con-
J1 Je2 mij1 mie M J figuration E J
3/2 3/2 3/2. 1/2 2 2 bt a 2,0
32 —1/2- 1 2 ity —a/2 21
32 =3/2 0 2 . —2a 0
12 —=1/2 0 0
2 2

3/2 172 1/2

whose spins cancel and whose interactions saturate in a
particularly stable way, and make instead a group of
three neutrons and one proton which cannot attain the
same high symmetry relative to interchange of nucleons.
(In the alpha-model, one has to excite an alpha, but
much the same sort of effect prevails strongly in the
central model in (LS) coupling, only weakly in (j7)
coupling.) The odd polyads have relatively high excita-
tion energies of the first T=4 states, presumably for
this same reason in some cases and for reasons of shell
structure in others.

Figure 2 is plotted in such a way as to display not
only the “four structure” in the curve showing the
stability of the ground states, but also to show in the
same perspective the relative heights and thus the
energies of binding of the excited states of the various
polyads. Thus the energy spectra in Fig. 2 are small-
scale versions of the energy spectra displayed in Fig. 1,
standing on the stability curve for the ground states.
One sees that the same four-structure is not in evidence
for the energies of binding of the low states of higher
isobaric spin. The stability curve of Fig. 2 is inverted
relative to that shown by Feenberg and Phillips
(F37a, Fig. 1), because they plotted binding energy,
which is a positive quantity, the absolute magnitude of
the negative “energy of binding” plotted in Fig. 2.

The straight line in Fig. 2 is drawn through the origin
and the ground state of He!. It thus represents the
number of nucleons multiplied by the energy per
nucleon in an alpha. In Fig. 3 the differences between
the energy levels and this line are shown on a magnified
scale, so as to exaggerate the four-structure and display
the energy spectra on a larger scale. To see on this
figure that Be® is stable, for example, one draws through
the ground state of Be® a line parallel to the line Ez=0.

The most abundantly known energy levels are, of
course, those of the more stable isobars of the various
polyads, those with M 7=0 or 4%. Among these, there
is a striking variation in the density of the low states.
In Py7 one finds a low “doublet” and then a gap about
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ten times as wide as the “doublet” before the second
excited state at about 4.6 Mev. The excited states of
Be? start off with a broad state at 3 Mev and bear no
resemblance to any other spectrum. Be® has two or
perhaps three states below 2.5 Mev, then no others
until at least 5 Mev, above which only a couple of
broad maxima have been observed with poor resolution,
which might be broad states or groups of states. B*° con-
trasts with the other light nuclei in having a more
dense spectrum of low states, starting with a group of
four below 2.2 Mev, of which one has 7’=1. Such a high
density of low states in this odd-odd nucleus is somehow
associated with the lack of exceptional symmetry in
any one of them, to pull it down from the rest, or in (j7)
coupling with the freedom to orient two j=% vectors
(nucleon ‘“holes”) in several ways. The contrast is most
striking between B? and the nearby even-even nucleus
C'2, which has only a few widely spaced excited states
up to 15 Mev, the first at 43 Mev. In this 4 =4# case
the wide spacing does appear to arise from an excep-
tional symmetry of a few low states, which pulls them
down below the rest and is associated with the dip in
the stability curve of Fig. 2 at 4A=12. The spectrum
looks much morellike (LS),coupling than (57) coupling.
In (jj) coupling, one would expect the first excited
states to occur in a group of four, two of them with
T'=1, corresponding to the excitation of one p; nucleon
to a p; state. (There are four states because there are
two relative orientations of these two vectors; and either
a proton or a neutron may be excited, which freedom of
choice we may count in another way by saying that T
may be 0 or 1.) The low states of Py, which are fairly
dense after about 3 Mev, appear on the other hand to
agree very nicely with the expectations of the (j7)
model (K51). N has its first excited state at 2.3 Mev,
and this has T=1 as expected for the J=0 orientation
of two p; nucleons in the (j7) model, the other orienta-
tion J=1 being the ground state. Beginning at about
4 Mev there are numerous other states. The next nuclei
N and O!® are very remarkable for having no excited
states at all below 5.3 Mev and 6 Mev, respectively,
and for then starting off in each case with a remarkably
closely spaced pair of states. The large gap before the
first excited state is doubtless associated with the end
of the $ shell, but in the case of N also seems to indi-
cate that spin-orbit coupling is large. Beyond the closing
of the shell at 4 =16, there are again many low states
in OY7,
6. INTERMEDIATE COUPLING

From this survey we see that there is no consistent
conformity of the energy spectra to the expectation of
either (LS) or (jj) coupling. In (LS) coupling the
various multiplets are characterized by values of the
quantum numbers L and S, and the spacing between
them is measured by the exchange integral K, as we
have seen. In a graphic but still legitimate sense, K may
be said to be a measure of the stiffness with which the
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vectors s; are coupled together to make a definite vector
sum S, and similarly the 1; to make L. The separation
of the states of various values of J=L+S within the
multiplet is provided by a spin-orbit coupling perturba-
tion which may be expressed in the form

H'=Zal-s=AL-S (16)

just as in Egs. (3) and (5) so far as the individual
nucleons are concerned, but now with a collective or
. average spin-orbit parameter 4 characteristic of the
multiplet. For a given multiplet, 4 is a multiple of q,
with a positive constant near the beginning of a shell,
a negative constant (for ‘“holes”) near the end of a
shell, as is well known in atomic spectra. The approxi-
mation, Eq. (16) is a result of first-order perturbation
theory, valid as long as the splittings within the
multiplet, caused by @, are small compared to the
separation of multiplets, caused by K. Thus we expect
(LS) coupling to prevail if e<K, and similarly (57)
coupling if ¢>>K, since ¢ then measures the stiffness
with which each s; is coupled to I; to make j;. In the
central model, in which individual-nucleon wave func-
tions are assumed to have an approximate meaning as a
starting point, there is a broad region between the (LS)
and (j7) extremes known as intermediate coupling, in
which it may, in general, be said that ¢ is of the same
order of magnitude as K.

Derivation of the Intermediate-Coupling
Transition for a Simple Case

Since the concept of intermediate coupling is taken
over directly from the theory of complex atomic spectra
(C35), it may be well to introduce our discussion of it
by giving a simple example in an atomic case. It is,
of course, just one of a number of effects in which a set
of secular equations contains a parameter expressing a
competition between two types of perturbing energy,
such as the Paschen-Back effect in which external and
internal fields compete in trying to orient the angular
momentum vectors.

Let us consider the intermediate-coupling transition
of an atom having two electrons in the same p shell,
outside of closed shells, the configuration 2 In (LS)
coupling one counts the states allowed by the Pauli
exclusion principle by constructing a little table starting
as in Table ITI, which when completed gives the
numbers of states for each M 1, M s shown at the right
side of Table III, enough to account for the multi-
plets 1D, 8P, 1S. In atoms, triplets lie below singlets as
we have seen, and the separations are given (S29)
by 1S=5K, 1D=2K, 3P=0. By calculating Zamm; in
line 2 one sees that the spin-orbit energy, Eq. (3),
of the 3P, is ¢/2 [or A=a/2 in Eq. (16)] from which
one has by the Landé interval rule or by the usual
vector-coupling formulas (or by further lines of Table
II1) that for 3P; it is —a/2 and for 3P, it is —a. At the
risk of being redundant, one may count the states also
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in (j7) coupling, as in Table IV. The spin-orbit energies
E listed for the configurations are calculated from
Eq. (3), being a/2 for p; and —a for p;. In both ex-
tremes one finds two states with J=2, two with J=0,
and one with J=1, so the energies in intermediate
coupling are solutions of two quadratic secular equa-
tions, and one straight line E=—a/2 for J=1. For
J=2 the quadratic equation which has as asymptotic
values the (LS) and (jj) coupling energies we have
listed is

E*—(2K+a/2)E+aK—a?/2=0, an
and for J=0 we likewise have
E2— (5K—a)E—5aK—2a*=0. (18)

In Fig. 4 we have plotted E/K as a function of ¢/K to
show the solutions of these equations (after dividing
through by K?). The asymptotes showing the linear
variation near (LS) coupling are shown at the left side,
where a<<K, and (jj) coupling is approached atthe
right side, where a<<K. There are four energy dif-
ferences between the five levels, and only two param-
eters, so the system is overdetermined and a veri-
fication of the adequacy of the theory by comparison
with experiment is possible. Three of the levels may be
used to determine ¢ and K, after which the expected
position of the two remaining levels may be calculated.
Such comparisons in atomic spectra work out fairly
well, but there are often discrepancies of the order of
10 percent or more to be ascribed to second and higher-
order perturbations involving states of excited con-
figurations (known as “configuration interaction”).

p|/2 Ps,z
-5
-10
o 2 4 6 V2
a/k

Fi1G. 4. The intermediate-coupling transition for
the atomic configuration 2
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Variation of the Parameters in Nuclei

It has recently been suggested that at least one im-
portant reason why the p-shell nuclei show no simple
regularity of level spacing is the prevalence of inter-
mediate coupling among such light nuclei (I52, H51).
The fact that () coupling seems to apply to the heavy
nuclei does not necessarily imply that it should to the
light nuclei, as the parameters ¢ and K (or its more
complicated equivalent) may vary, perhaps in a fairly
regular manner, through the periodic table as suggested
for @ in Eq. (7). For K a similar variation may be
estimated in the large-nucleus approximation by noting
that K consists of summing the probability that an ele-
ment of one “overlapping-density” function y(ry) ¢(r1)
fall within the range of V' of an element of another such
function, which would make

K~R-3~A7, (19)

A here being atomic number again. Here we have
again assumed that nuclear density is approximately
constant from one nucleus to another, and this is shown
to be valid even within the p shell, not only in the com-
parison of light with heavy nuclei, by the variation of
Coulomb energies within the p shell, as discussed in
Section 8. In the short-range approximation, Eq. (19),
K thus varies more rapidly with atomic number than
does the spin-orbit coupling parameter ¢ in (7), which
means that K might grow relative to ¢ as one goes down
from heavy nuclei, where K<a as indicated by the
success of (77) coupling, to the lighter nuclei, and this
would justify the existence of intermediate coupling in
the latter. In the small-nucleus approximation (dis-
cussed so extensively by Wigner in his original paper
on supermultiplets, Wi37) the wave-function volume ele-

ments are all within range of one another and K is

independent of nuclear size (in fact, it is asymptotically
zero), so that, in the actual case with range comparable
with nuclear radius, K may vary among the light
nuclei more slowly than indicated by Eq. (19). Accord-
ing to Eq. (7), one might expect the change AV in the
average potential energy of a nucleon on coming within
range of the other nucleons to affect its spin-orbit
coupling, as well as the factor A—% AV does not vary
as drastically as does the binding energy, so its variation
may not have much effect, but of course the theoretical
basis for Eq. (7) is sufficiently tenuous that no definite
statement may be made about this. Since a variation
of K a little less rapid than 4~ may be quite similar to
that given to @ by the factor A%, we shall for simplicity
explore and discuss the validity of the assumption that
the ratio ¢/K does not vary very much across the
 shell.

7. INTERPRETATION OF THE STATES OF THE
INDIVIDUAL POLYADS IN TERMS OF THE
CENTRAL MODEL IN INTERMEDIATE
COUPLING

In reference (I52) it was shown that the general
spacing and sequence of the low levels of Py!2, which
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resembles (LS) coupling to the extent we have discussed
above, and Py, which shows a closer resemblance to
(j7) coupling, may both be understood in a rough sort
of way as examples of intermediate coupling with
approximately the same value of /K, namely a/K =35.
The resemblance of one to one extreme and the other
to the other extreme may be accounted for by refining
the criterion for the validity of either extreme coupling.
While (LS) coupling is valid when K>>a, a less stringent
criterion is this: the spacings of the first few states show
some resemblance to (LS) coupling when the multiplet
separations calculated in terms of K in (LS) coupling
are large compared to a, for then 4 of Eq. (16) (or a in
second order) does not have a chance to make states
from the different multiplets come close to one another
and thus disturb the general grouping. There could be
some semblance to the general grouping into multiplets
even if the spacing and order within a multiplet were
disturbed, but in Py!? even this does not occur among
the low states because the first three multiplets are
singlets. The large spacing of these singlets is, as we
have suggested, the result of the exceptional symmetry
attainable in singlets in 4=4n nucleus, and this is
what makes it look like (LS) coupling. In the polyad P%,
the order of states, with only slightly larger ¢/K, is the
order given by (57) coupling because in (LS) coupling K
does not supply such large multiplet separations to
compete so effectively with a.

Levels Arising from Excitation to a Higher Shell

One aspect of the energy spectra which was made
clear by the examples just cited is the large extent of
overlapping of the (j7) configurations (such as p;7p;
with p3%p:2) on the one hand and of the (LS) multiplets
on the other. Another aspect of the complexity is the
overlapping of configurations, such as p* with %, for
evidence of such inter-shell excitation was found in Py
as low as about 4 Mev. This compares in order of magni-
tude with the evidence from the last two polyads of the
p-shell, Py and Py'® the high first excitation energy
of which indicates, as we have seen above, that the
inter-shell excitation there enters at about 5 or 6 Mev.
It is apparent that the ground configuration spreads
out over many Mev, and the configuration arising from
inter-shell excitation is expected to do likewise, so we
can expect no simple regularity in the excitation energy
of the lowest state of the excited configuration, such as
one might naively expect by postulating that the ex-
citation energy of the lowest state obtained by exciting
a p nucleon to the d shell is simply a definite amount of
energy required to excite a p nucleon to the d shell,
a single-nucleon or shell property that might carry over
from one polyad to another in an oversimplified single-
nucleon model.

A general survey of the data is enough to dissuade
one from seeking any very simple regularities among
the energy spectra of the light nuclei. What has been
said of Py!? and Py suggests that at least the com-
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plexity of intermediate coupling will have to be taken
into account. Most polyads contain in their ground
configurations so many p nucleons that it is not prac-
ticable to solve secular equations and draw exact curves
giving the manner in which the energies of the various
states should vary with the ratio /K in intermediate
coupling, in the basis of any definite interaction assump-
tion. Our knowledge of the interactions is so meager
that this is just as well. As was done (152) for Py!2, it is
perhaps sufficient to use a rather rough characterization
of the specific nuclear interaction, Eq. (2), and spin-
orbit coupling, Eq. (3), and then to treat the inter-
mediate-coupling variation in a suitably rough manner
by drawing smooth curves between the asymptotes
which represent what is known in the relatively simple
(LS) and (j7) extremes. We cannot of course hope to
reproduce experimental data thus in any fine detail,
but merely to understand general features, such as
roughly the spacing of levels in different energy regions
and perhaps their order, where identifications to dis-
tinguish the states from one another have been made.
Future identifications will provide verifications or dis-
crepancies, on the basis of which refinements in the
interaction assumptions or general procedure may be-
come justified.

We proceed now to discuss the individual polyads in
that exploratory spirit. We discuss them in order of
increasing mass as is customary for a review article,
in spite of the fact that the first cases thus encountered
are the most flagrant exceptions to the success of the
intermediate coupling procedure, and will require a
separate discussion later on.

He’4-Li5

In this case both of the known low states, are not
only virtual, being unstable with respect to single-
nucleon emission, but are presumably very well de-
scribed as single-particle states with all the excitation
energy contained in a.single nucleon, because of the
exceptionally great stability of the alpha-particle which
constitutes the s-shell core. We may say that one
nucleon always has enough energy to escape, and under
these circumstances we have no good approximation to
a stationary state of the system, so that differences
between different descriptions of what we mean by a
“state” become especially severe. There seems to be
general agreement that the low state is a 2p; and that
the state several Mev above it may be interpreted, so
far as it seems to exist, as a 2?p;, thus providing the
fundamental instance of nuclear spin-orbit coupling,
with the sign as anticipated (136, B37) from the com-
parison with Li’, a in Eq. (3) being negative. But the
reaction and scattering methods of observation do not
seem to agree very well at present on the doublet
splitting : the broad peaks observed (Le51a, Ti51) in the
reactions 7'(T, n)He® and Li®(y, #n)Li*(p)He? seem to in-
dicate a doublet splitting of 2.5 or 2.6 Mev. Analysis
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(Hu52) of the n+He! scattering data shows the Pj
phase shift passing steeply up through 90° at 1.04 Mev
(c.m.) and continuing to rise at higher energies, while
the P; phase shift rises gently through 90° at 2.8 Mev,
the 2P splitting being thus only 1.76 Mev by this
criterion. (See also A51, AS52.) It may be that this P;
shift in He® comes down again through 90° at a some-
what higher energy and that the broad reaction peak
represents an average over this region of phase shift
near 90°, or the discrepancy between the apparent 1.76
and 2.6 Mev doublet splittings may be an indication of
the indefiniteness of the concept of a short-lived state
in He® which would be even worse in Li%. In Li% a P;
phase shift is observed (Kre52, C49) of only about 35°
at about 4.65 Mev contrasting with 115° at 3.4 Mev,
which is about the equivalent energy, in He®. It is
enigmatic that the resonance peaks can be so similar
(Le51, Ti51) in He® and Li® and the P, phase shifts
apparently so different.

The methods of estimating a spin-orbit coupling
parameter in terms of an assumption about AV, as in
Egs. (5) and (7), are not the same as in stable nuclei,
and a special treatment is needed. There is, thus, no
expectation of any semblance of continuity of a as it
varies from He® to Li% even on the basis of this simple
assumption.

With only one nucleon beyond the tightly closed
s shell, intermediate coupling is, of course, meaningless.
There seems to be no evidence of p-to-d shell excitation,
even the states of the ground configuration being so
broad as to be difficult to recognize. The single known
state near 17 Mev probably arises from s-to-p excitation
of the alpha-core, and should be one of several. Here the
excitation energy is divided between nucleons, so the
nucleus does not seem ready to come apart quite so
quickly and the state is not so broad.

He®-Li®

Here the ground configuration, p? is simiple enough
and its states few enough that the secular equations
can be written out explicitly and solved, with nothing
more complicated than a cubic. The secular problem is
only a slight extension of the atomic p? problem pre-
sented above in Egs. (17) and (18). With two p nucleons
rather than two p electrons we have the added coordi-
nate of isobaric spin, which is handled very much as
for the configuration 1s2s in Table I and Egs. (9) above.
Instead of the two-dimensional table at the right side
of Table III, with M 1 and M s as its two dimensions,
one has a three-dimensional assemblage of blocks, with
M as the new dimension, consisting of the figure at
the right side of Table III as one layer, for Mr=1,
since the problem for two neutrons is the same as for
two electrons, and another layer for M7y=0. With
M =0 one obtains all integral vector sums that are
possible with the vectors /1, ls, s1 and ss, not only the
1S, 3P, and 'D which were obtained for My=1, and
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Fi16. 5. Intermediate-coupling transition for the nuclear configuration $? and p~2 applying to the polyads Py® and Py,

thus have T'=1, but also 35, P, and 3D which exist
only for Mr=0, and thus have 7=0. Among these
latter multiplets we find three states with J=1, and
thus have a- cubic secular equation for their energies,
besides two more linear equations. With the specializa-
tion of the specific nuclear interaction expressed by
Egs. (2) and (8c), the equations are to be found written
explicitly in reference (I152), and the solutions of interest
in Py® are portrayed in the right half of Fig. 5. The left
half of Fig. 5 is intended for the discussion found below
of Py", and is entered on the same graph because of
the simple relationship between the states of two
nucleons and the states of two ‘“holes” in the p shell:
the inversion of the spin-orbit coupling for holes means
that the states in the configuration p~2 arise from the
same secular equations as those of p? but with the
opposite sign of the parameter a, so the energies for
the two cases join continuously at a=0.

We see that all the states with 7’=1 on the right
half of Fig. 5 correspond closely with those that are
obtained by inverting Fig. 4, top for bottom. Figure 4
applies to two electrons, for which K is positive because
of the repulsive interaction and a is positive because of
the predominance of the magnetic term over the
Thomas term (136), and for a nuclear system with
T=1, such as two neutrons or two protons, it applies
with the ordinate inverted because of the change of
sign of K for attractive forces, but with the abscissa
unchanged because ¢ too is here negative so ¢/K is the
same as for electrons. The slope of the lines has been
altered in Fig. 5, relative to Fig. 4, for the sake of
symmetry and compactness of the figure, by plotting
(E+a/2)/K in place of E/K. The multiplet separations
are taken from the paper of Feenberg and Phillips
(F37a); the ratio between them for the T'=1 multi-
plets is of course different from the ratio in the electron
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case because of the different shape of the interaction
function V(r1), but after inversion the order of the
multiplets is the same.

With the 7'=0 levels also on the figure, one sees that
the ground (j7) configuration contains the four states
that may be made by compounding two j=% vectors,
and that in the extreme (jj) coupling represented by
the asymptotes they come in the order (J, T)=(3, 0),
0,1), (1,0), and (2, 1), a result derived also by a very
different method, along with similar results for the other
p-shell polyads, by Kurath (KS52). Even with the
approximation to (j7) coupling represented by the right
side of the figure, where there is still a-distinct division
of the levels into groups according to their () con-
figurations, there has been a cross-over within the
ground (j7) configuration making the lowest T'=1 state
the third excited state. This is indeed true experi-
mentally (in contrast to the situation in Py), but still
another cross-over is required, for the ground state is
known to have J=1, whereas according to this theory
J=31is lowest near (j7) coupling and well into the region
of intermediate coupling, down to ¢/K=4. To match
the observed spectrum with this scheme one has, there-
fore, to go down to rather low values of /K, much
lower than for the heavier polyads discussed below.
Determining the parameters ¢ and K requires using the
two intervals between three levels, and the three lowest
levels are used to determine the values ¢/K=1.3,
K=-1.23 Mev, a=—1.6 Mev. The comparison be-
tween theory and experiment implied by these values is
shown in Fig. 6(a). Unfortunately, the spectrum of Li®
has not been explored much beyond the third level at
3.58 Mev, so there is only one further datum with
which comparison may be made, the second T=1 level
which experimentally is at about 5.3 Mev, theoretically
at —4.9 K=06 Mev. The search for a couple of other
low states in Li® arising from the 3D will provide a
crucial test of this straightforward but perhaps over-
simplified interpretation.

Because smaller values of K and larger values of a
seem to prevail in the somewhat heavier polyads, an
attempt is made in Fig. 5 to see what can be done in
the way of interpretation of the Py® spectrum in the
neighborhood of a/K=35, but here, of course, some
other mechanism must be called upon in a rather ad hoc
manner to explain the depression of the J=1 state
below the J=3 state. This J=1 state is the only state
that has a plausible stable counterpart in the alpha-
model (alpha plus deuteron), so one might be tempted
to ascribe the formation of this as the ground state to a
variation theory in which some alpha-model wave func-
tion is mixed with a central-model wave function. The
possible influence of the alpha-model in several polyads
is discussed separately below. It may not be necessary
to go to such arbitrary complexity because this rather
special behavior of Py® (and perhaps a similar one in
Py”) may arise from their special place in the tensor-
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interaction theory of spin-orbit coupling of Feingold and
Wigner (F52).

Li"+4-Be’

In this polyad, Py’, the ground configuration is #?,
and the low states in (LS) coupling are provided by the
multiplets 2P, ?F, 4P, etc., as shown on the left side of
Fig. 7(a), the separations again being taken from refer-
ence (F37), specialized for the interaction, Eq. (2),
with (6). The multiplet splittings arising from spin-
orbit coupling may, in this case, be calculated by the
relatively simple method of trace invariance, without
calculation of specific wave functions for the multiplet
states, with the one exception that only the sum of the
energies for the two doublets 2P with T'=3% are thereby
given. The doublet splitting energy for one of these
doublets, the one which includes the ground state, has
been worked out in detail by Breit and Stehn (B38), so
no further (LS) wave functions need be constructed.
The calculation by trace invariance is outlined in
Appendix 1. The result is that 4 =a/3 for each multiplet
having T=%, and A=0 for the two doublets having
T=3/2. This result is used to give the slopes of the
(LS) asymptotes on the left side of Fig. 7(a).

In (j4) coupling the ground “(j4) configuration” is
2%, and the separation between the states of this (77)
configuration have been calculated by Kurath (K52).
The next (57) configuration is p;2p;, and because it lies
above the region of present experimental interest, no
great care has been used in plotting its (57) asymptotes.
[They are most of them drawn in broken lines because
the energies expressible in K have not been used in
plotting them, though these too have very recently
been calculated (K52a).] The single-nucleon. spin-orbit
energies a/2 for p; and —a for p; in this case give the
total spin-orbit energy 3a/2 for the ground (j7) con-
figuration p;2 and zero for the next, p;3*p;. Correspond-
ingly, one set of (j7) asymptotes for E/K slopes sharply
downward to the right (¢ being negative, as is K) in

K==1.23 Mev
a/k=13 a=-1.6 Mev a/k=5 K= =0.74 Mev
N T 2 Q= =37 Mev
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F16. 6. Alternative interpretations of the energy levels of Py®.
(The energy 5.58 Mev is reduced to 5.3 Mev in the newer data as
shown in Fig. 1.)
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¥16. 7(a). Intermediate-coupling transition for the configura-
tion p? applying to Py, with the interaction assumption (2). The
insert shows that, even if one goes near (LS) coupling, it is not
possible to obtain agreement between the 2P and 2F splittings.

Fig. 7(a), and the higher set is horizontal. Of the
excited (j7) configuration, only a few of the lower states
are shown in the figure.

An early discussion of intermediate coupling in nuclei
(HS51) was concerned with this configuration 3. It was
shown there that neither with a non-exchange (Wigner)
nor with a space-exchange (Majorana) interaction alone
can one obtain a low isolated pair of states similar to
those observed except in the near neighborhood of (LS)
coupling. With this true for two such very different
simple interactions, it was felt that it would remain
true for other more complicated interactions of a
plausible nature. [Because only two states had then
been observed, and there was contradictory evidence as
to the identification of the first excited state, which has
since been shown (PhS1, C52, Bu52) to have J=3%,
special emphasis which is now obsolete was put on the
possibility of explaining the scarcity of low states by
exploiting a degeneracy between three of the ps® states
with a non-exchange interaction (T52).] Now that three
much higher excited states are known (Aj52, Tho32),
it is of interest to explore this point in a little more
detail. The interpolated intermediate-coupling pattern
shown in Fig. 7(a) is that for the simple interaction,
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Eq. (2), which forms a basis for our discussion of other
polyads. For the sake of indicating the sort of change
that may be expected from a change in the interaction
assumption, a similar intermediate-coupling scheme is
shown in Fig. 7(b) for the somewhat different and
perhaps more elegant interaction, Eq. (1), which also
obeys the saturation requirements. It is seen that the
main difference is that with Eq. (1) in place of Eq. (2)
the first 7=% state is brought below the J=1% state in
the ground (jj) configuration. The general pattern for
the first four states in the intermediate-coupling region
is altered very little. For this reason it seems satis-
factory to proceed with the following rather preliminary
discussion of other polyads on the basis of the inter-
action, Eq. (2), alone, for the sake of simplicity,
realizing that it may ultimately be possible to improve
the fit with experiment by introducing another inter-
action, and perhaps even to provide a selection of the
most nearly adequate interaction law in this manner.
‘The attempt at an (LS) coupling interpretation is
shown in the insert in Fig. 7(a). For the first three states
one finds a match between theory and experiment with
a/K=0.7 but finds the 2F much too narrow to account
for the separation between the two sharp states at 4.6
and 7.5 Mev. The ratio of this separation to the low
doublet splitting is 2.9 Mev/0.48 Mev=6.0. The 2F
splitting in the (LS) limit is only 7/3 times as great as
the 2P splitting, since A=a/3 for each in the doublet
splitting formula AE=(L+3)A, and the curvatures
away from the (LS) limit increase this discrepancy.
Since the wave functions are relatively simple so near
(LS) coupling, this discrepancy is based mainly on the
assumption of the form of spin-orbit coupling, Eq. (3).
It would be interesting to know whether the Feingold-
Wigner treatment (F50) of the tensor interaction, even

“though a bit vague on the magnitude of the 2P splitting

itself, could give the ratio of the 2F to 2P splitting with
sufficient accuracy for a significant comparison with
these data. .

Quite aside from the discrepancy based on Eq. (3),
so small a value of a/K (which incidentally implies
a=—0.85 Mev, K=—1.2 Mev) when compared with
the much larger values found in the heavier polyads of
the p-shell, seems incompatible with any simple assump-
tion leading to Eq. (3). One might naively think that it
is also incompatible when compared with the larger
value of the doublet splitting in Py’ which seems to
be 2.6 Mev or more, since this might lead one to expect
in Py” a 2P splitting of 2.6 Mev/3=0.9 Mev or more,
rather than about 0.48 Mev. The naiveté here lies in
forgetting that the states of Py® are virtual so that
their separation must be treated in a rather special way,
as is being investigated by H. Hummel.

While the possible role of the alpha-model is to be
discussed separately at greater length below, it may be
pointed out here that the discrepancy does not neces-
sarily throw one into a dependence upon the particular
type of complexity of the second-order effects of the
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tensor interaction. The type of alpha-model complexity
discussed for Py® in connection with Fig. 6(b) may be
operative here also. In this case one might identify the
4.6 and 7.5 Mev levels with 7/2 and 5/2 levels in inter-
mediate coupling, perhaps in the neighborhood of
a/K =4 or 5, which would leave the 3/2 and 1/2 levels
far apart and not much below these in the central
model, but we might assume that they are physically
much modified and depressed by a transition most of
the way to the alpha-model, that is, by a strong ad-
mixture of alpha-model wave functions. The small
separation of the two levels arising from the 2P would
then be a ‘characteristic of the alpha-model, in which
they are called in molecular terminology 22, states
(“doublet sigma ungerade”). The smallness of their
splitting in first order presumably has something to do
with the slow rotation of the “molecular framework”
because the orbital angular momentum is divided be-
tween seven nucleons (139, R48). In second order it
is described in molecular discussions as “rho-type
doubling” which is concerned with an interplay be-
tween conventional spin-orbit coupling as in Eq. (3)
and the coriolis effects of the rotation in second-order
perturbation theory. It has some reason to be small,
although the separation of the rotational and other
parts of the problem is not nearly as well justified in
nuclei as in molecules where the electron mass is really
very small compared to the mass factor in the moment
of inertia.

The other attractive aspect of the possible participa-
tion of the alpha-model in Py7 is the existence of a broad
state at 6.4 Mev, identified as either 3+ or 3+, for the
alpha-model has just one further low state besides the
23, doublet, before going to higher rotational states
which are apt to be too short-lived to be recognized,
and that is one known as a 2Z, in which the missing
nucleon from two alphas is represented by a “hole”
wave function which is even in the interchange of
direction along the figure axis, rather than odd as in
the 22, and this lone excited state would indeed be a
broad 1+ state. A state from the central model with this
angular momentum and symmetry is found only among
higher configurations such as p%d, so would probably be
intermixed only very weakly with this alpha-model
state.

The difference between the doublet splitting 0.48 Mev
in Li7 and 0.43 Mev in Be’ has been discussed about
equally successfully in the central model with (LS)
coupling (I51), in which case the classical magnetic
term appears to play a somewhat larger role than the
difference in size of the two nuclei, and in the alpha-
model (F51). This discussion of the alpha-model is so
general that it avoids any detailed specification of the
source of the coupling and the difference in size of the
nuclei arising from the Coulomb repulsion provides
the entire spin-orbit coupling difference.

Li’ is a nucleus that has attracted an extraordinary
amount of interest, partly because it is, with its mirror
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Be’, the lightest and thus, in one sense perhaps, the
simplest stable nucleus in which the ground state in
(LS) coupling is complicated enough to involve the
problem of coupling an orbital moment L to a spin S.
Its properties have therefore been scrutinized relatively
carefully, and there have been among others some rather
unfruitful excursions into speculation. One of these
(I50a) arose from the fact that the B'(n, a)Li’ re-
action with thermal neutrons goes to the 480 kev state
about 17 times as strongly as to the ground state.
Since B! has a large J-value, J=3, this anomalous
ratio could be explained by the false assumption that
the 480 kev state also has a large J, but it appears
instead to arise from a not very unlikely, fortuitous
cancellation in a matrix element, since this state has
more recently been shown to “have J=3. Another
excursion arose from an ‘“‘experimental determination”
of the quadrupole moment Q of Li’ which recently
turns out to have been false even as to sign. All the
simple models give a negative theoretical Q for Li’,
essentially because an orbit flattened in a plane normal
to its angular momentum implies negative Q, and this
sign persists in the various coupling schemes of nucleons
here encountered. Attempts to find a theory (Av50, P50)
that would be compatible with a positive Q serve now
only to illustrate the “stability” and hence the reliability
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F16. 8. Intermediate-coupling transition for the configuration p*
applying to Py8. In the notation for the multiplets of (LS)
coupling, the asterisk (*) is used to denote T'=1.

of some theoretical results based on models, for one had
to go to great lengths of artifice to obtain a positive Q.
The weak link in the first “experimental determina-
tion” of Q of Li” was the molecular-theory calculation
of the molecular quadrupole coupling constant g, for
only ¢Q is measured. There have been two independent
recent demonstrations that the first calculation of ¢
gave the wrong sign. First, the measurement in Kusch’s
laboratory of ¢Q for Li’ and other alkali nuclei in a
number of polar as well as homopolar molecules (Lo52
and Table X below) showed that ¢Q had the same sign
for Li” in all molecules for which it was measured, and
the opposite sign for Na® in each of a series of similar
molecules, suggesting very strongly that Q has the
opposite sign for Li” and Na®, and further an atomic
measurement in Bitter’s laboratory (communication
from P. Kusch) of Q for Na® shows it to be positive,
from which we may infer that Q for Li” is negative.
(The sign of the atomic coupling constant may be calcu-
lated much more easily and reliably because it has
contributions from electrons only, and mainly one
electron, with no competition from a positive charge.)
It is also possible to understand the molecular origin
of the sign of ¢ more easily in polar molecules than in
homopolar molecules, because of a predominant term
at a given nucleus arising from the charge on the other
ion, and this shows that the experimental results are all
compatible with each other and with a negative Q for
Li", as is explained in Appendix II. Second, there has
very recently become available (Har52) the result of a
new calculation of ¢ for the homopolar molecule Li,
involving better wave functions, and this time the sign
is altered from the earlier calculation, ¢ being negative
as a result of a more accurate representation of the
lumping of the electron charge in the region between the

INGLIS

nuclei because of the antisymmetry, as is discussed
further in Appendix II. Thus Qi is now found to be
negative, in agreement with the oblate charge distribu-
tion expected from the models.

Be®Li?

A similar treatment of Py?® is displayed in Fig. 8. The
interaction, Eq. (2), is assumed, and the multiplet
splittings are taken arbitrarily to be given by 4=a/5.
This represents interpolation between 4=a/3 for Py’
and 4 =0 for Py, at the middle of the p-shell where a
“hole” is the same as a nucleon and the spin-orbit
coupling constant 4 must according to the results of
‘“hole theory” be the negative of itself, that is, zero.
Note added in proof —Recent calculation (C53) shows
that the values of 4/a should be 3/8, 3/8, and 1/12 for
the 3P* 3P, and ®D in Fig. 8, respectively, rather than
1/5. The order of the first four levels is the same in (LS)
coupling as in (j7) coupling, and remains the same in
intermediate coupling. There is thus a great deal of
latitude in the choice of the parameter ¢/K to obtaiu
a rough comparison with the experimental spectrum,
and the value a/K =35 has been chosen for this purpose,
largely because about this value will be found to apply
elsewhere, in the region Py! to Py®. In Py8, a small
value a/K =2 could not be used because the density of
states just beyond the first state with 7'=1 would be
much greater than observed. Since Py?® is thus not very
near (LS) coupling, it is not very plausible to attribute
the isolation of the low doublet in Li? to (LS) coupling
in that adjacent nucleus.

At a/K =35 the energy scale has been chosen to fit the
first T=1 state, (J,T)=(2,1), as indicated by the
position of the ground state of Li?, and we see in the
overlaid insert in Fig. 8 that the broad states at 3 and
7.5 Mev lie considerably below the (2,0) and (4, 0)
theoretical levels. The 3-Mev state has been tentatively
identified experimentally (T50, T51; see, however, W41)
as (2, 0), and the fact that it is broad makes this assign-
ment very likely because this is also the first excited
state of the alpha-model, analogous to a molecular
rotation state with Bose statistics of the constituent
alphas. Such a state of the alpha-model is above the
Coulomb-plus-centrifugal barrier (see Section 10), so it
would be expected to be extremely short-lived and
probably too broad to be recognized as a level at all.
It is reasonable to assume that the 3-Mev level is a
mixture of central-model wave functions, as given by
the (2, 0) curve of Fig. 8, and alpha-model wave func-
tions, the latter component accounting for the level
width. The next rotational state of the alpha-model is
a (4,0) state, and it is reasonable to assume that the
state corresponding to the (4,0) curve in Fig. 8 is
depressed and broadened by a similar admixture, giving
rise to the 7.5-Mev state.

The prediction (of (LS), (77), or intermediate coup-
ling) is that the ground state of Li®is (2, 1), which is in
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keeping with the fact that the beta-transition goes to
the 3-Mev state of Be?, but not to the ground state
(or 7.5-Mev state). A further prediction of (jj) or
intermediate coupling is that the first excited state of
Li# is (3, 1), which corresponds to the identification 3+
of a state at about 19 Mev in Py®. There is a possibility
that this is the second excited state of Li®. The possible
intervening state is shown by a broken line, and, if it
exists, is high enough that it might have odd parity,
arising from an excited configuration not shown on this
graph. The experimental (3,1) state lies above the
theoretical, and this discrepancy would be more pro-
nounced for larger values of a/K, nearer (j7) coupling.
This is not to be considered a serious discrepancy, how-
ever, because this is the sort of separation which, in (j7)
coupling for instance, is very sensitive to the choice of
exchange operators, as we have seen in the comparisori
of Figs. 7(a) and 7(b). Thus it cannot be excluded that
a/K is considerably larger than 5 in Py?.

The existence of a state at 4.9 Mev (and perhaps one
at 4.05 Mev) is rather surprising in this interpretation,
because it does not correspond to any central-model
state of the configuration p* and if it were purely a
state of the alpha-model, in addition to those already
mentioned, such as the vibration state discussed in
Section 10 below (see Table V), it would be expected to
be extremely broad (and probably for this reason un-
observable). It lies at about the excitation energy at
which the first state arising from the (j7) model excita-
tion py—ds/2 appears in the nuclei C® to 0%, but in Be®
the corresponding excitation ps—ds;2 would be expected
to involve an excitation energy higher by something
like the single-nucleon p-doublet splitting —3a/2. By
tentatively taking ¢/K=35 we imply that K=—1.38
Mev, a=—6.9 Mev, —3a/2=10.4 Mev, so on an over-
simplified single-nucleon picture we might expect the
first ‘level from the excited configuration psdss to
appear about 10 Mev higher than it seems to. However,
there are also involved very great energies of inter-
action of the nucleons, of the sort indicated by the fact
that the spread within the (j7) configuration ps?, after
passing into intermediate coupling, is about 20 Mev, or
even more if we include the (0, 2) state of higher isobaric
spin, so that such predictions neglecting the variations
in these interactions from one configuration to another
cannot perhaps be expected to be accurate to much
better than 10 Mev. It thus seems not entirely unreason-
able to attribute the level at 4.9 Mev, and others such
as those at 9.8 and 11.1 Mev, to the odd-parity con-
figuration psds/s. The 4.9-Mev state does indeed appear§
(ThS51) to be odd, (1), and an experimental determina-
tion of the parities of the others will also be of interest.

§ The (n,v) angular correlation following a (d,n) reaction
(in the plane normal to the deuteron beam) is about of the form
(1—% cos?9), with rather poor statistics.
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A similar situation is found in B!°, where the first odd
state occurs at about 5 Mev.

The states of two alphas have J even, even parity,
and T=0, and such states in Py® may be expected in
general to be broad because of the rapidity of a possible
break-up into alphas, others sharp even-above the high
thresholds for neutron and proton emission because the
excitation energy is in this interpretation divided be-
tween many particles, and no admixture of alpha-model
states is possible. The fact that there are, as far as
known, just two broad excited states in the region
below 15 Mev to correspond to the two theoretical
excited states of the ground configuration, (2,0) and
(4, 0), is thus very satisfactory. The most recent com-
pilation (Aj52) shows a third at 10 Mev, but it is not
apparent that it is reliably established as a broad level.

The ground state of Li® is estimated to lie at 16.7 Mev
in Py?®, and very recent evidence (T53, see also Ra52) of
the preferential formation of the broad 16.9-Mev state
of Be? resulting from conservation of T in the high-
energy photodisintegration of C!? indicates that this
lone nearby 7,=0 state is indeed the lowest one with
T=1. This match in energy is an example of the im-
portance of isobaric spin T as a fairly good quantum
number as discussed in Section 4, above. The selection
of the high state in competition with the lower states
shows that it (or, at least, the more general charge
symmetry) provides a significant selection rule, but the
breadth of the state (presumably 2*) caused by break-
up into two alphas (competing only with gammas)
indicates that the conservation is not perfect.

Note added in proof—Very recent observations of the
reaction B1%(y, d)Be!*(2a) and Bll(y, /)Be?*(2a) in
photographic emulsions in Zuerich (S53) have shown
that the Be? level previously observed only as a broad
level at about 3 Mev may be resolved into three levels
at 2.2 Mev, 2.9 Mev, and 3.4 Mev, and that these and
the 4.0-Mev, 4.9-Mev, 6.9-(our 7.5) Mev, 9-(our 10)
Mev, and 14.7-Mev levels have even J and even parity.
(The statistics leave the resolution of the 3.4-Mev level
quite doubtful.) The 2.2-Mev level has also been ob-
served with doubtful statistics in the Li’(d, #) reaction
(Tru52). A recent magnetic analysis (G53) of the reac-
tion Be?(d, £)Be® shows the 2.9-Mev level as broad
[definitely broader than the central peak in (S53)],
with a sharp peak attributed to an impurity that might
hide the 3.4-Mev level, but the complete lack of a peak
corresponding to the 2.2-Mev level may suggest that
this state, if it exists, has too high J to be observed at
the low energies involved, Eg4=1 Mev, E;=2.2 Mev.
Some apparent confirmation of the suggestion that the
alpha-model plays an important role in the Li and Be
nuclei is found in the rather surprising fit (S53) of
all but two of these levels to the alpha-model vibration-
rotation scheme

E; v=(0.36J(J+1)+2.8K) Mev,
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Fic. 9. Intermediate-coupling transition for the configuration p°

applying to Py®. The isobaric spin is 7=} except where indicated
as I'=3.

as in “Alpha-Model I":

Experimental energy Alpha-Model T Alpha-Model II

Mev Mev J K Mev J K
14.7 147 6 0
11.1 (odd?)
9.7 (10) 9.8 4 1
6.9 (7.5) 7.0 4 0 7.0 4 0
49 49 2 1 4.8 2 4
4.0 4.1 2 3
34 34 2 2
29 2.8 0 1 2.7 2 1
2.1 2.1 2 0 2.1 2 0
0 0 0 0 0 0 0

This scheme leaves the interpretation of the first excited
state and the 7.5-Mev level about as above but with
more complete participation of the alpha-model, and
adds 14.7 Mev to the sequence. There are two un-
explained states in the scheme ‘“Alpha-Model I”’ and
three in the central model with these new data. In the
central model their even parity means that they would
have to belong to doubly-excited configurations, analo-
gous to the first excited state of O but involving greater
spin-orbit energy. In the alpha-model, the presence of
the lowest 7'=1 state at 17 Mev requires some explain-
ing, for which the existence of the suspected excited
state of the alpha at about 22 Mev would be helpful.
The evidence for the latter is, however, conflicting
and its existence is on the whole very doubtful (Ar50,
Al51, Be51). In Section 10, there is a discussion of
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“The Low Barrier in the Alpha-Model of Be$,” in which
it is estimated that the barrier for J=0 is less than
about 0.9 Mev, on the assumption that the interaction
between alphas provided by the specific nuclear forces is
a simple well, attractive at large distances with a repul-
sive core. “Alpha-Model I” requires that these forces
themselves provide a barrier at least about 2 Mev high,
a nuclear repulsion between alphas beyond the attrac-
tive region. The large number and fairly regular spacing
of the states from 2.1 to 4.9 Mev suggests the interpreta-
tion “Alpha-Model I1,” with a very small curvature at
the bottom of the potential well and no need for a high
barrier, but the lack of states (J, K)=(0,1), (0, 2),
(4, 1), etc., is unexplained. There is still another possi-
bility, involving K = 2 and requiring a very high barrier,
which accounts roughly for all but the doubtful 3.4-Mev
level. Experimental assignments for the new states are
needed to clarify the puzzle.

Li’+Be?®

On the (j7)-coupling side of Py® we have first the
configuration $;°, which is the same as p5~° or three p;
holes, and the order and separation of the states of this
configuration are the same as in the low (47) configura-
tion p3® of Py7, as given by Kurath (K52). On the (LS)
side there is no such similarity, since we are not yet
quite halfway across the entire p shell, and the low ?p
is here followed by a 2D before the ?F. Because this is
just one nucleon short of the middle of the shell (where
multiplet splittings vanish), the multiplet splittings are
expected to be very small, and we arbitrarily assume
A=a/10 for all multiplets, and thus plot the (LS)
asymptotes as very narrow doublets and quartets. The
intermediate coupling transition is again drawn entirely
by interpolation, Fig. 9, with smooth curves that
approach the asymptotes in a reasonable fashion.

The observations on Be? are more incomplete than
on most of the other light nuclei (it is much used as a
target because of its availability in thin foils but in-
frequently attained as a final nucleus!). It is usually
considered to have three low states, below 2.5 Mev, and
no further states have been found (V51) in careful
exploration up to 5 Mev with B'!(d, a)Be’. Beyond
this, inelastic scattering of protons observed by Nal
pulse-height analysis (Br51) shows broad maxima in a
curve that does not dip down near zero between them,
and indicates prominent excited states in Be® at 6.8°
and 11.6 Mev, or groups of states clustering about these
energies.

Of the states below 5 Mev, only two have been ob-
served directly in the B!!(d, ) and Be®(p, p') data.
The third, though absent in these investigations, is
inferred from an analysis (Gu49) of the photo-excitation
of Be? on the basis of a very crude model. The same
analysis also infers that the 2.42-Mev level is a super-
position of two states, an unresolved 2D, though it
appears experimentally to be very sharp. The model
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used for Be’ is a core of two alphas with a single neutron
circulating in their field, and is subsequently treated
for mathematical convenience as though the two alphas
were coincident. Now that we seem to be forced in other
light nuclei to the complexity of an intermediate-
coupling interpretation, this model seems so crude that
we may consider the photodisintegration not to have
been adequately investigated, and we may, thus, be
reasonably skeptical of the inference of a state at 1.56
Mev and of an associated preliminary assignment of a J
to the state at 2.43 Mev.

" Onesees in Fig. 9 that there seems to be no possibility
of obtaining in the intermediate-coupling scheme for the
configuration ° just three low states, followed by a
wide gap. For this reason, we must assume either that
the inferred, unobserved state at 1.56 Mev does not
exist or, as seems improbable but might be possible
with such a large spread within each configuration, that
one of the first two excited states belongs to an excited
configuration such as p*d. With this in mind, we have
drawn the 1.56-Mev state with broken lines and ignore
it in the comparison with experiment.

Because the slightly heavier nuclei suggest a ratio
a/K=5, we may attempt to match the 2.43-Mev state
and the lowest states with 7’=0and 7'=1 in this region.
We thus find ¢/K=4.5 (a value which is rough, infer
alia, because it depends on the interpolation curves).
In one of the inserts of Fig. 9 we see that this very
satisfactorily implies first a wide gap extending from
2.43 Mev up beyond 5 Mev, and then several states
which might cluster about the observed broad maxima
(or some of them be lost in the background) in the
higher region which has been explored only with poor
resolution. If it should subsequently be found that there
are only single states corresponding to these broad
maxima, one might have to go to (jj) coupling to find
so few widely spaced levels, as indicated in the second
insert of Fig. 9, drawn for ¢/K=12, but this seems
unlikely.

Be10+B10

Here we come to a polyad in which there are a con-
siderable number of identifications of J’s and parities,
especially among the rather numerous low states
(Aj52a, R52). The separations of the states, with the
interaction given by Egs. (2) and (6), are in (LS)
coupling again taken from (F37), and in the ground (j7)
configuration, 3 they are the same as plotted in
Fig. 5 for Py® and for the high states of Py in (47)
coupling. The separations of the (jj) asymptotes of
many of the fairly low states in the excited configuration
P5°py have very recently been calculated and kindly
made available by Kurath (K52a), and make it possible
to interpolate a fairly complete set of intermediate
coupling curves between known asymptotes. This is
done in Fig. 10, which is plotted with (j7) coupling on
the left side (as for N*in Fig. 5), and with the ordinate
[E—(3/2)a]/K, in such a way that the (j7) asymptotes
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of the numerous states in the first excited (44) con-
figuration are horizontal.

The first excited configuration ps°p; may be con-
sidered to be compounded by coupling the p; nucleon
to the various levels of the p4° partial configuration.
This is, of course, artificial from a strict point of view,
for the coupling between all nucleons is apt to be about
equally strong, but the energy of the partial configura-
tion does constitute a large contribution to the energy
of the complete state, and there is a strong correlation
between the lowest states of the excited configuration
and those of the partial configuration. The calculated
energies of the partial configurations (not including
spin-orbit energy) are the same as already used in Py’
and Py? above and are indicated by the horizontal lines
in the upper left part of Fig. 10. Each of the states with
J=1, 2, or 3 is associated with two partial configura-
tions, as is indicated by broken lines in the figure, and
the quantum numbers of the partial configuration, of
course, do not remain constants of the motion after
coupling on the p; nucleon. They do help in counting
the number of states expected, and one sees that not
all the states of the excited configuration have been
plotted (the indication from the “Majorana’ term alone
being that the states omitted are too high to be of much
interest).

This polyad is at the very middle of the p shell; its
ground configuration may as well be called % as p~%.
From the theory of holes, one knows that the spin-orbit

5
Pap
%% Obs.  a/k=48
Vo, Yo 4
2
313
-15p%, Y% 9.26 —
3 —
8.0 T
T2, %2 3
3 =
o, 2 PRRY] BN === I L2 AP
) 2
-20[3%, -
~25) .
3
N3+
1
i3
-30 N e*
SP.
£ 3
3 6
1 IF‘
w
af 2
e
,sl
)
3,
. D
-40tPs,
10 0 € 46 4 z °

F1c. 10. Intermediate-coupling transition for the configuration
% applying to Py, The asterisk again denotes 7'=1. The ordinate
is (E—$%a)/K.



418 D. R.
6 Exp. a/ke4.2
P3, Y,
20 2 2].9.2¢
JblTp T2 %2
2,1 vov | o
1,0 se 5,
3 ]
6 p. 3,
.25 0! Pyp P 6.8\ 4.2
T 676 [ 1 72
30 3 3 sos |2l 132
= Y2, ¥ 4.48 551 52
- ] Y,
2.14 —(3-’1-—2-4.3

(E—2a)/K

7 s
P3

53
o

10 —
Gn 5 ask wsy °

. Fre. 11. Intermediate-coupling transition for the configura-
tion p% applying to Py The asterisk here denotes 7=$%, T being
for the states not so marked.

coupling in any multiplet must be the negative of
itself, and, therefore, the spin-orbit coupling parameter
A may here be put equal to zero, as has been pointed
out above. Thus the triplets are drawn, like the singlets,
each with a single (LS) asymptote. Going from this
side over into intermediate coupling, as shown in
Fig. 10, the splittings within the multiplets are caused
by what in (LS) coupling may be considered second-
order effects, by the differences in curvature of the
interpolation lines as they start to deflect toward the
(47) asymptotes.

The value a/K=4.6 is chosen for the comparison
with experiment, because it makes the first 7=1 state
the third state of the polyad and places the second state
at about the right level below it, as shown in the insert
of Fig. 10. The energy scale is determined by the
interval between the lowest =0 and T=1 states. This
then places the second 7'=1 state at the observed
energy and makes it the sixth even state of the polyad
as seems to be observed, a result strongly influenced
by (LS) coupling, while leaving the ground state the
one with J=3, which is a (j7)-coupling result, empha-
sizing the importance of the intermediate-coupling in-
terpretation to this polyad. There is agreement with
the isolated experimental observations that the second
T'=1 state (Co52, Th52) probably has J=2+ and that
the fourth 7'=1 state has J=3, though its estimated
energy is too high. The first five states are observed to
have even parity so should belong to this configuration,
and of these the fourth and fifth together have the
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theoretical J’s 1 and 2 as observed but in the wrong
order, the experimental J=1 state being much lower
than the theoretical level and the only sharp dis-
crepancy encountered in this interpretaion. It does not
seem possible to remove this discrepancy by reasonable
use of the arbitrariness in drawing the interpolated
energy curves. It is still a valuable accomplishment of
the greater complexity of the intermediate-coupling
interpretation that it may be made to fit the general
features of level density and more special features of
most of the assignments, including especially the ex-
istence of just one T'=1 state among the first five, but
the discrepancy shows its limitations and detracts from
its persuasiveness. Whether it indicates inadequacy of
the interaction assumption (2) or capricious interven-
tion of configuration interaction, the discrepancy shows
that we can claim no more than an incomplete under-
standing of general features in terms of a rather com-
plicated scheme.

It is consistent with our treatment of the lighter
polyads if we introduce here the further complexity of
partial participation of "alpha-model states to try to
account for the discrepancy, for the state that appears
to have been depressed by this or some other sort of
configuration interaction does indeed have the J and
parity of the ground state of the alpha-model, 1%,
corresponding to a nonrotating structure of two alphas
and a deuteron or of three alphas and a deuteron hole.
The use of this explanation is complicated by the fact
that only the second 1%t state appears to be strongly
depressed by such an admixture of an alpha-model state.
It is possible that further investigation would show that
the second 1t state consists mostly of 35 and thus
resonates most strongly with the deuteron state (the
pure deuteron having only about 4 percent of 3D, though
in the alpha-model of B! this proportion might be
altered). It is pointed out in the discussion of Py
below that the ground state energy of N over most of
the range of ¢/K plotted in Fig. 5 is near the extension
of the (LS)-coupling asymptote of the 3D; state, and
correspondingly that the wave function of this state
consists mostly of 3D, as shown in Fig. 20. One may
note that the second 17 state at ¢/K=4.6 in Fig. 10 is
fairly near the extension of the (LS)-coupling asymptote
of the 3S, and there might correspondingly be the re-
quired preponderance of 3§ in the wave function,
though it would require a more difficult calculation
than in Py! to show it.

There is a rather high density of B! states at energies
near 5 Mev and higher. This high density presumably
corresponds to the contribution of excited configura-
tions at these energies, and most of the lowest of the
states so contributed would be expected to have odd
parity, from the configurations p°d and p°. The first
three of this group of states, those at 4.79, 5.11, and
5.17 Mev, have indeed been tentatively identified as
odd. If these identifications are all correct, we have the
difficulty that the 7.=1 state observed at 5.11 Mev
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would be expected to correspond to one of these, which
would mean that the 7'=1 state in this region would be
odd and would not correspond to the theoretical even
(2, 1) state at 4.25K. It would be surprising to have the
first T'=1 state of the odd configuration lie so low in
the configuration. It is possible that the 5.11-Mev state
in the Be!® column and the next higher state of B0
which is at 5.58 Mev (or possibly the uncertain state
at 5.37 Mev) together form the components of the
T=1 state, but the difference between 5.58 and 5.11
Mev would constitute a slightly larger deviation of
apparent conservation of isobaric spin than is usual.
It seems more likely either that one of the states at
5.11 or 5.17 Mev has even parity and I'=1 or that
there is another such state unobserved because of
being practically coincident with one of them, or that
the uncertain state indicated by the broken line at
5.37 Mev is the one in question. The possibility that
the closely spaced pair at 5.11 and 5.17 Mev should
arise from the coupling of an s nucleon to the p shell is
discussed in Sec. 9.

In a shell with many nucleons in intermediate coup-
ling, no single pair of states gives any indication of the
magnitude of the spin-orbit parameter a, as may be
obtained from a doublet splitting in a single-nucleon
case such as O'. By finding a rough fit in intermediate
coupling with ¢/K=4.6, K=—1.2 Mev, we thus have
a less direct estimate that a=—5% Mev. The corre-
sponding single-nucleon ?p splitting in this part of the
periodic table, or at least in this polyad, would be
about 8 Mev.

Bu + Cll

In this case and in Py!? and Py® the ground (j7)
configuration contains only one state so the published
calculations (K52) on the energies of the states of the
ground (j7) configuration in (j7) coupling give no in-
formation concerning the separations of the (j7) asym-
ptotes and left quite a lot of latitude in the drawing of

the intermediate-coupling curves from known (LS) -

asymptotes to (j7) asymptotes of which only the slope
was known. For the sake of filling in the information
in the (j7) extreme, Dr. Kurath has very recently calcu-
lated the energies of the states in the first excited (57)
configuration for these polyads (K52a). This enables us
to interpolate the intermediate-coupling curves between
definite asymptotes, -determined here again for the
interaction assumptions, Egs. (2) and (6), as in Fig. 11.
This is an example of the sort of improvement in the
theoretical basis of the intermediate-coupling inter-
pretation that was anticipated in the introduction, and
it enables us to present in Fig. 11 a second stage
in the development of the interpretation. [It differs
from the earlier, more imaginative, stage mainly in
having the J=7/2 level considerably depressed, and
in a similar evolution of Fig. 10 for Py the state
with the high value J=4, and T=0, also lies lower
than was at first imagined, this depression of the
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high J’s apparently being a characteristic of (j7)
coupling.] At the same time a further step in the experi-
mental clarification of the situation has become avail-
able in the J and parity determinations of Jones and
Wilkinson (J52) for B!, which are shown in Fig. 1 and
in the insert of Fig. 11. Their assignment of even parity
to the 4.46-Mev state means that there is, at most,
one state of the odd ground configuration 7 in the
neighborhood of 5 Mev and forces us to go to-a rather
small value of ¢/K (and large value of K) in comparing
theory with experiment. The comparison shown in the
insert of Fig. 11 is for a¢/K=4.2 (K=—1.65 Mev,
a=—06.9 Mev). The energy scale is determined to
match the 2.14-Mev state in addition to the ground
state. The experimental assignments at 4.46, 6.81, 8.93,
9.19, and 9.28 Mev are reported (J52) to have been
made “with fair certainty,” but those at 2.14 and
5.03 Mev involve further “reasonable assumptions,” so
we have indicated them in parentheses. In particular,
the assignment J=3% at 5.03 Mev rather than, say,
J=5/2 apparently leans very heavily on the failure to
observe a gamma-transition from 9.19 to the 5.03 level
with Nal pulse-height analysis. If the 5.03-Mev level
should on further investigation be found to have
J=35/2, there would be close agreement in the insert
of Fig. 11. It seems more likely, however, that the state
at 5.03 Mev is 3* belonging to an excited configuration
along with the 4.46-Mev state, and that the third and
higher p7 states are to be found at 6.76 Mev and above,
in which case one might go to somewhat smaller ¢/K to
obtain a closer fit.
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The “parentage” of the psfp; states in terms of the
partial quantum numbers J,, T, of the p5® “core” is
shown in the upper left corner of ‘Fig. 11. The spacings
between the “core’ states are the same as in Py,
Cases of dual parentage are indicated by dotted lines
(in these cases Kurath’s results were obtained by solving
secular equations, the low J, T=1%, 1 state having been
“repelled” downward by the higher one, e.g.). In refer-
ence (J52) a frankly exploratory attempt was made to
interpret the excited even levels in terms of a single-
particle model, as though the (J,, T,)=(0,1) state
were the only state of the ‘“core,” but because B!® has
so many low states, the lowest with J=3, such a
simplified explanation is not tenable. The more complex
situation in the configuration ps°ds/s, for example, is
suggested by the broken lines in Fig. 11, where an
intermediate-coupling deviation from one of several
(77) asymptotes is schematically indicated at a position
to account for the 4.46-Mev state.

The appearance (V51a) of two pairs of closely-spaced
levels in B!, one with a separation of 50 kev at 6.8 Mev
and one with a separation of 90 kev at 9.2 Mev, does
not very pressingly call for causal explanation, both
because they are in fairly dense parts of the spectrum
and because the lower one is not reproduced as a narrow
double-level in the energy-level spectrum of the mirror
nucleus C!. (An explanation in terms of the configura-
tion g%, such as is discussed in Sec. 10 below, does
not apply to the upper pair if the determination is
correct that these two closely spaced levels have
opposite parity, and if applied to the lower one would
require special consideration of the complexities of this
configuration.)

B12 _I_.CIZ

In this case the high degree of symmetry available
in (LS) coupling (because of the 4z structure, with the
periodicity 2X?2 arising from multiplicities of spin and
isobaric spin orientation) separates the three low states
in (LS) coupling from one another and from the rest
of the spectrum by such large energy intervals that the
introduction of a spin-orbit coupling similar to that
found in the adjacent nuclei has only a minor effect on
their relative spacing. Thus we have a semblance of
(LS) coupling even though the ratio a/K is appropriate
for intermediate coupling in the other nuclei (152), as
remarked above.

The recent calculation (K52a) of the separations in
the first excited configuration p;7p; [for the interaction
assumptions (2) and (6)] make it possible to draw the
intermediate-coupling curves with more assurance than
was possible in our earlier discussion of this polyad
(I52), by interpolation between calculated asymptotes
on both sides (except for the uncertainty in 4 on the LS
side), as in Fig. 12. The most significant changes are
that the state (J, T)=(2,1) is now depressed below
(1,1), and that it is necessary to go to a lower value
of (¢/K) to fit the first two T'=0 states and the first
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T=1 state. This is done in Fig. 12 at (¢/K)=3.7,
although this value is of course dependent on the in-
definite drawing of the curves as well as on the inter-
action assumption.

An unsatisfactory feature of this set of curves as thus
fitted is that this would make the ground state of B!?
have J=2, whereas J=1 seems to be required by the
existence of an allowed beta-transition to the ground
state (and apparently also to the J=2 first excited
state) of C!2. There is also very recent evidence, in-
cluding some from photo-excitation and the AT ==+1
selection rule for dipole radiation (Ra52, T53), that the
15.09-Mev level of C'2 has (J, T) = (1+, 1). (This energy
level was called 15.14 Mev on an earlier energy scale
which survives in Fig. 1.) With the ground state of B2
assumed to have J=1% and matched with this level,
there is also a good match between the first excited
state of B12 at 16.05 Mev and a 2* state of C!2 at 16.10
Mev. Thus the first two 7'=1 states have /=1 and 2
both experimentally and theoretically, but they are
close together theoretically in Fig. 12, and experi-
mentally they are about 1 Mev apart in the reverse
order. It would be possible to obtain the reverse order
(and thus J=1 for the ground state of B!?) but not
the observed separation by reasonable modifications in
the drawing of the curves between the asymptotes
shown in Fig. 12. This is high enough in the energy
spectrum of the polyad that reasonable changes in the
interaction assumption, Eq. (2) may make enough
difference to invert the order of the (2,1) and (1, 1)
states also in the (j7) limit [compare Figs. 7 and 7(a) ],
and this would perhaps be an appropriate place for an
investigation of such changes to start.

The experimental data now include several states at
about 10 Mev and immediately above, and it is not yet
clear which are the (4, 0) and (1, 0) states of the ground
configuration $%. The negative-parity states of the ex-
cited configurations p’d and p’s apparently start in this
region of quite high energy (unless the doubtful state

" at 7.3 Mev exists), in contrast with the finding of the

first even state of B! as low as 4.46 Mev. Here again
the exceptional symmetry attainable in the ground
configuration of C'2 seems to have pulled the low states
down. '

On the (LS) side, it has been assumed that the
multiplets are regular (with the lowest J lowest) corre-
sponding to having a more than half-filled shell, al-
though it is not necessarily the case for multiplets of
such complex parentage as these. The great density of
multiplets above the first triplet indicate that there
should be many states just above the first T'=1 state,
but no attempt has been made to draw in the curves
beyond the first triplet [except one for which the (j7)
asymptote is known]. Further experimental identifica-
tions of these high states will be required before their
order can begin to make sense. It is apparent at least
that the five available ;j identifications of high states of
B2 are present among the 7'=1 multiplets.
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The striking lack of resemblance to any simple result
of (j7) coupling is epitomized by the fact that the first
three states arise from three different (5;) configura-
tions, the J=0 state of course from p;% the J=2 state
from p3'p;, and the J=4 state from ps%p;% They
accordingly approach asymptotes of three different
slopes.

The experimental assignment 2+ for the 4.44-Mev
state (Ha51, Th52, H52, Le52) is based on recent
observations of the angular correlation in the reaction
BY(p;v1, v2)C12. Any other assignment would have
seemed anomalous, for this agrees with all the models.

CB4 N

This is another case in which the ground (jj) con-
figuration contains only one state and the recent un-
published energies (K52a) for the five states of the first
excited (j7) configuration have been used to provide
definite (77) asymptotes for the drawing of the curves
in Fig. 13. These go over into states in as high as the
sixth multiplet in (LS) coupling. All the states for which
curves are not drawn in, these multiplets would curve
up to states of higher (47) configurations, and so would
contribute only very high states to the energy spectrum.

Experimentally, this polyad has been explored only
for fairly low states in the two low mirror nuclei. The
fact that it is not very stable relative to single-nucleon
emission seems to induce an unusually large displace-
ment (Th50, Th52a) between the mirror levels which
lie between the proton threshold for N'® and the neutron
threshold for C* (see Fig. 1), so the comparison is made
with the actual energies of C® for which these levels are
stable in this respect. There are some fine new possi-
bilities for making unique or almost unique assignments
of angular momentum from angular distribution of
(@, p) or (d,n) stripping reactions near the forward
direction (B51, Bh52, R51) and from elastic scattering
resonances when the target nucleus, in this case C!2
has J=0, as is explained further a few paragraphs
below, and quite a lot of information is available con-
cerning the identification of the states.

By comparing the unique assignments of the reso-
nant-scattering method in N with the not quite unique
assignments of the stripping-reaction method in C*3, one
may on the basis of the expected correspondence of
" mirror levels reasonably select the assignments in C®
as follows: 3~ at 3.69 Mev (3.50 Mev in N) and 5/2+
at 3.89 Mev (3.55 in N®), in addition to the unique
assignment 3+ at 3.09 Mev (2.36 in N%¥), as has already
been assumed above. The close juxtaposition of the §~
and 5/2% levels in N is here seen to be accidental.

Only one of the first three excited states of C*, the
one at 3.69 Mev, has the parity characteristic of the
ground configuration. The energy scale in the insert of
Fig. 13 is determined by matching the interval between
this and the ground state, after arbitrarily selecting
a/K=35 on the basis of experience with other, more
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F16. 13. Intermediate-coupling transition for the configuration p7

applying to Py®. The asterisk denotes 7'=3.

revealing, polyads. The theoretical values J=% and 3
for the first two states of this configuration then agree
with the experimental assignments, the two states
arising from the %P of (LS) coupling, inverted in the
nuclear sense because of being in the last half of the
p shell, but much distorted by the transition to inter-
mediate coupling and too far apart to look like a
doublet.

From the (j7)-coupling point of view, the mistake is
sometimes made of thinking that, since the ground
state consists of a single nucleon outside of a closed (57)
shell, the interval from the ground J=1% state to the
first J=3 state is a measure of the single-nucleon
doublet splitting, $a. This excitation is actually from
the (j7) configuration ps*p; to p37p;? and thinking in a
very simple (and still unjustifiably simple) way, one
must at least consider that he is breaking up a pair of p;
nucleons and forming a pair of p; nucleons (in keeping
with the Mayer é-function treatment (MS50) which is
valid only for large nuclei), and that the two pairing
energies are different so that the observed interval is no
measure of the single-nucleon py—p; excitation energy.
More properly, one notes that either a neutron or a
proton may be excited, and in either case one can make
a state with (J, T)=(3, %), as may be described also
by coupling the p; hole to the (J,, T,)=(1,0) or (0, 1)
states of the partial configuration ;% Thus even in
extreme (j7) coupling the mixing of these two states as
solutions of the same secular equation tends to push
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the lower one down toward the ground state and com-
plicates the interpretation of the /=13 to § excitation,

so that it is not a simple measure of single-nucleon-

spin-orbit coupling.

The additional complexity encountered in intermedi-
ate coupling is more pronounced for these odd-parity
states of the configuration $° than for the even-parity
states $%d and $%. The ground state is derived from the
(j7)-coupling state ps®p; and other (j7)-coupling states
formed by simple excitation of the least bound nucleon
are pi®ds;s and psSsy, each with a full py subshell so that
the states have the characteristics of single-nucleon
states in (j7) coupling. The single-nucleon state of the
“extra nucleon” is distinguishable from the other
nucleon states, only by its spin-orbit energy if it is py
but also by its radial wave function if it is ds/» or s;.
In (LS) coupling one may think of forming C® by
adding a nucleon to a C'* core. When a p nucleon is
added, there is no energetic or other distinction of the
added-nucleon state from the others, and we have the
formation of a %P characterized by a communal L=1
and S=1%, the added nucleon amalgamated with the
rest and the spin-orbit parameter 4 being calculable by
the appropriate vector-model composition of all the I;
with each other, etc. In intermediate coupling, most of
this thorough mixing of the roles of the  nucleons per-
sists, and these states of the system do not begin to
resemble single-nucleon states until one gets to (j7)
coupling, where the integrals L and K are too small
compared to ¢ to mix the (j4) configurations.

When instead a d nucleon (or an s nucleon) is added
to the “C!% core,” there remains a distinction between
the added-nucleon state and the others in terms of the
number of nodes of the radial wave function, for ex-
ample, and in the problem of coupling the added
nucleon to the “core,” there appear integrals which we
might call Lg and Kg4, analogous to L and K except
that they contain p and d wave functions where L and K
contain only p functions, and which are expected to be
considerably smaller than L and K because of the more
complete cancellation of the positive and negative
contributions to the integrals arising from the rapidly
oscillating products of the different wave functions. It is
this fact that in intermediate coupling tends to pre-
serve the single-nucleon nature of the wave functions
of the system. In (j4) coupling we have the single-
nucleon semblance, as before, because in this case Ly
and K4 are much too small to mix in the excited-core
(j7) configurations, but as we pass to intermediate
coupling, the J,=0 to J,=2 excitation of the core
remains large, as we see in Fig. 12, of a magnitude
determined both by K and by the spin-orbit param-
eter a (which make contributions of comparable magni-
tude in intermediate coupling) and the contributions of
the K; (and Lg) are presumably small in comparison,
so the low 5/2* state is composed almost entirely of
the core state J,=0 plus the ds;, with fairly little
admixture of the core state J,=2 plus the dys, for
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example. Thus in this approximation the state of the
system is expected to resemble a single-nucleon state,
and the complexities of intermediate coupling are
1idden within the core where they have no outside

. influence because J,=0. In (LS) coupling the core

again makes no contribution to the external properties
of the low D and S states, because the core is in a 1§
state, and the parameter @ is too small to mix in any-
thing else.

In the course of making assignments to the states of
N by examination of scattering resonances, the §—
state, doubtless the mirror of the C* state at 3.69 Mev,
is found to have a “reduced width” only about a tenth
as great as that of the §* and 5/2% states which are
presumably the mirror states of the 3.09- and 3.89-Mev
states, respectively (J51). This small reduced width in
single-nucleon scattering indicates that this §~ state
cannot be so well approximated as the others by a
single-nucleon wave function, and this seems to be in
accord with our intermediate-coupling interpretation.
The same thing is indicated by the observation (R51)
that the C!%(d, p)C® stripping reaction, in which a
single neutron is added to the ‘‘core,” gives the 3~ state
with only a few percent of the yield of the 5/2% state.

The order of the states associated with the ds/s and 53
orbits in Py’ and in F19, with 1* below 5/2%, is opposite
to that in Py!” in which the ground state 5/2% is more
than ¥ Mev below the 3*, and this seems like an
anomaly if one tries to push the single-nucleon inter-
pretation too far. The states of the system are probably
most nearly like single-particle states in Py, in which
the O “core” is in its ground state a filled p shell,
not just a filled p; shell of (j4) coupling. As is discussed
further below, the excited states of O not only begin
at the high level 6 Mev, but the first of them is a O
state which would not change some properties if it
were admixed and probably involves two-nucleon ex-
citation which would greatly inhibit its being admixed,
and the second excited state of the core has opposite
parity which would probably inhibit its being admixed.
Thus we may judge that the single-electron state ds»
lies below the sj, at least in the potential well en-
countered in Py'". It is possible that the potential well
of the others would differ enough from this to change
the order of the single-nucleon states, but it does not
seem necessary to conclude that this is so, for the
deviations from resemblance to single-particle states
encountered in intermediate coupling, even if not very
pronounced, could cause such an inversion of order.
In Py®, the resemblance of the 5/2+ and §* states to
single-nucleon states in intermediate coupling depends
on the integrals L, and K4 being small. While no calcu-
lations have yet been made on the subject, it seems
plausible that they could be of such a magnitude as to
make enough admixture of excited states of the core to
invert the order, and yet leave enough appearance of
single-particle states to contrast strongly in the scatter-
ing and stripping results with the §— state in which
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there is no distinction between core and added particle
in the very thoroughly amalgamated situation of inter-
mediate coupling.

If the single-nucleon state ds. lies a little below sy
(by an amount considerably less than the spin-orbit
contribution to dss) at the actual strength of spin-orbit
coupling parameter @, as we may judge it does from OV
(neglecting any difference between shapes of potential
wells), then it lies much lower than s; in extreme (j7)
coupling attained by making ¢ large and higher
than s3 in (LS) coupling with ¢ small. Since also in C's
in both extremes the even nuclear states resemble
single-nucleon states, the nuclear 5/2F state would thus
likewise lie above the 3t state of C® in (LS) coupling
and below it in (57) coupling. There is thus a cross-over
of the intermediate-coupling curves somewhere between
the two extremes, and it appears from the observed
order of the levels in C*® that the cross-over occurs at a
value of ¢/K higher than the actual one, as suggested
by the broken lines in the lower part of Fig. 13 (where
only the slopes of the (j7) asymptotes have been calcu-
lated). These sketched intermediate-coupling transi-
tions for the 5/2*+ and * states are purely schematic.
They are not properly functions of ¢/K but of ¢ with K
fixed, since otherwise the relation between K and the
single-nucleon s, p, d energy differences would come
into play.

The §~ state of N has been interpreted elsewhere in
papers which place too much emphasis on the closed-
shell nature of the “p;® core” (K51, J51), as arising from
an anomalous depression of the next higher single-
nucleon p; state, the 2p; which in the oscillator model
belongs to the same degenerate group as the first 2.
The intermediate-coupling interpretation seems far
preferable to pushing the single-nucleon model so far
as to tolerate such a glaring exception to the usual
order, especially in view of the small natural width of
the §— level.

In this polyad there are only two known states in
the ground configuration, so there are no verifiable re-
lations between energy intervals to confirm the inter-
mediate coupling scheme and one can make few
predictions beyond the value J=3% for the first 7=3%
state, but the assignment data available do fit nicely
into the intermediate-coupling scheme.

Two Methods of Assigning J’s and Parities in
CB, N3, and Other Nuclei

There are two new methods, one of which is con-
ceptually new and the other of which has been only
recently applied, to obtain angular momentum and
parity assignments especially effectively in nuclei formed
by adding one nucleon to a nucleus having J=0. The
first is the analysis of the forward portion of the angular
distribution of a (d, ) or (d,n) reaction, first made by

Butler (B51). Attempts made earlier to obtain informa-

tion concerning nuclear states from the angular distri-
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bution of (d, p) reactions failed to achieve unique
assignments because the solidly backed -targets used
(H48) did not permit observation near the forward
direction, and the analysis of the data (Di50) was too
greatly complicated by the necessity of simultaneously
making assignments to the rather numerous states of
the compound nucleus contributing to the reaction.

It was found in this connection by Rotblat and his co-
workers (R51) that at fairly high bombarding energies
the (d, p) and (d, n) reactions have a strong forward or
near forward peak in their angular distribution which
may plausibly be attributed to a stripping process
similar to that discussed earlier by Oppenheimer and
Phillips in the case of heavy nuclei where barrier
penetrability is more important. The process is pictured
as the entry of one of the nucleons of the deuteron into
the target nucleus while  the other nucleon of the
deuteron flies on its way, influenced in its direction and
energy of flight both by the center-of-mass motion and
the internal motion of the deuteron which it formerly
shared. The way in which the internal motion is shared
is determined by the fact that the final nucleus has
very strong preferences for the energy and angular
momentum of the nucleon with which it may be formed,
and these preferences reflect the properties of the states
which one wishes to ascertain. The beauty of this
process is that it does not involve formation of a com-
pound nucleus and the attendant complexity of trying
to determine its properties at the same time.

The peak observed for a given reaction near the
forward direction is so sharp that its analysis in spherical
harmonics involves partial waves of several units of
angular momentum, so high as to represent passage of
the incident deuteron with quite a large collision param-
eter (or extrapolated distance of closest approach). This
is possible only because of the large size of the deuteron
and permits entry of only one of the nucleons into the
target nucleus. Close enough collision for formation of
a compound nucleus involves only about two or less
units of angular momentum and consequently displays
rather broad angular maxima spread out over all angles
with rather low intensity.

The powerful analysis of Butler treats the various
angular partial waves of the incoming beam, and de-
termines the fate of each by joining incoming and out-
going wave functions in an annular region just outside
the nucleus, before superposing the effects of the various
outgoing waves. The results are fairly insensitive to the
choice of the radius at which the joining is carried out,
corresponding to the expectation that there is a region
where the nucleon about to enter the nucleus is outside
the influence of the deuteron potential; in the wings of
the deuteron wave function, and not yet strongly
attracted by the nuclear potential. The result of the
analysis is to relate the shape and position of the near
forward or forward peak to the angular momentum I,
with which the incoming nucleon is captured by the
target nucleus. If the target nucleus is in a 0% state, as
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Fic. 14. (jj) configuration assignments to the states of Py,
The “partial configurations” from which they arise are indicated
in the left-hand columns, J, and 7', being “partial quantum
numbers” (of the two p; nucleons) which do not remain good
quantum numbers in the complete system.

in the case of C'2(d, p)C%, then the parity of the final
nucleus, in the state being observed by selection of
proton energy, is odd or even as [, is odd or even, and
the angular momentum of the final state is /,#3%. Thus
in this most favorable case, J is not assigned uniquely
but merely limited to a choice of two values, as one
sees them listed in Fig. 1 and elsewhere.

A similar analysis based on the Born approximation,
and thus differing radically from Butler’s in the nature
of its simplifying assumptions, has recently become
available (Bh52, DS52). It agrees completely with
Butler’s in providing assignments based on the position
of the near forward peak, and seems to agree better
with experimental results concerning the amplitude of
the secondary maximum further from the forward
direction. '

There is a very similar phenomenon of pick-up of a
nucleon from a nucleus by an incident particle in such
reactions as Be®(d, /)Be?, characterized by a similar
near forward peak, to which a similar analysis applies
(B51, B52). ‘

The second method which has only recently been
extensively used to make assignments to the states of
such nuclei as N® is the detailed observation and
analysis of the shape of elastic scattering resonances,
as is possible now with the very nearly monoenergetic
proton beams of a modern, well-controlled statitron.
Most of the low states of light nuclei are far enough
apart that the scattering may be analyzed in terms of
the single-level scattering formula. The phase shift of
the effective angular partial wave depends, in its
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Coulomb part on the orbital angular momentum I of
the partial wave, in its resonant part on the “width” of
the resonance, and the amplitude associated with this
phase shift depends also on j. These properties of the
scattered proton determine the parity and angular
momentum of the state of the compound nucleus
causing the resonance, in the simple case in which the
target nucleus is 0", Probably because in a real “close-
shell-plus-one-nucleon” nucleus such as O this also
determines the value of the total orbital angular mo-
mentum vector L for the nucleus, these resonances have
customarily been designated with symbols for nuclear
multiplet levels, such as Py, with a capital “P” which
in atomic spectra implies that L=1, but these symbols
are meant strictly merely to indicate parity and angular
momentum. Thus we use, for example, §— in place of
the 2Py of the experimental papers.

C14+ NM

For this polyad we return to the left side of Fig. 5,
since the configuration $~2%, or two nucleon “holes” in
the p shell, has some similarity to the configuration p?
discussed for Py®. The order of the two low states of
Py is that given by (j7) coupling, and the ratio of
this interval to the interval up to the second state with
T=1 is given by the transition curves at ¢/K= —35.6.
Here o is the spin-orbit coupling parameter for a
“hole,” everywhere else in this paper it is for a single
nucleon, since only here have we plotted the results
for nucleons and holes on the same graph and used the
“hole” nomenclature in labeling the () configurations.

The prediction concerning energy levels is that there
should be two even levels from this configuration in N
somewhere in the region near 5 or 6 Mev, having J=1
and 2 in that order. Since odd parity has tentatively
been assigned to most of the newly observed levels in
that region and above (Be52), it appears that these two
even levels may be the ones at 3.96 and 5.1 Mev, each
about 1 Mev lower than given by the theoretical treat-
ment. It would not be at all surprising if there should
be another even level in the neighborhood of 6 Mev
corresponding to the 6.05-Mev state in O'¢ as discussed
below, arising from the doubly-excited configuration
$%d?%, and this might be the one at 5.7 Mev. Otherwise
the levels in this region and immediately above are
expected to arise from the singly-excited configurations
$°d and p%. The fact that they start at 4.8 Mev, so far
as is well established, is consistent with the energies at
which they begin to appear in the neighboring nuclei,
with which no close agreement can be expected because
of the complexities of intermediate coupling. There is no
obvious reason that there should not be an odd 7'=1
level as low as or lower than the one we have assumed
to be even at 8.42 Mev, and indeed recent observations
(privately communicated by T. Lauritsen) suggest that
there may be a T'=1 level, which may be 0~ or 0* and
is not shown in Fig. 1, at about 7 Mev.
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One of the most puzzling facts known in light nuclei
is the archeologically useful but apparently anomalous
long life of C!4. Until recently the hope was entertained
by those most interested in the theory of beta-decay
that the puzzle could be relegated to those interested in
nuclear structure by assuming (G51) that the C* and
N ground states have opposite parity, or else (F49)
that the C! state is a pure 1S and the N ground state
a pure *D. Both assumptions have been disproved by
recent observations. The former possibility has vanished
with the experimental proof, by means of the stripping-
reaction technique, that the 7'=0 and 1 states have the
same parity (Br52), and the latter possibility would
require an isolated case of extreme (LS) coupling, with
the order of the two low multiplets reversed from that
in Fig. 5, and would lead one to expect two very low
excited ®D states of N** that have escaped careful obser-
vation (Va52). The lifetime is about 10° times longer
than expected. Either one must expect to find here
some new principle of nuclear structure or of beta-
theory to explain this, or one must accept it as chance
cancellation in a matrix element to an accuracy of
perhaps one part in 10% A calculation of the nuclear
matrix element in intermediate coupling is discussed in
detail in Sec. 11. It is there shown that a factor of
about 10~# in the matrix element, or 10 in the lifetime,
appears naturally from the magnitude of the inter-
mediate-coupling coefficients in the N** wave function,
but that the fortuitous cancellation required to give
the remaining factor 10752 in the matrix element does
not occur in the ground configuration and must in this
interpretation arise from a moderate amount of con-
figuration mixing.

Cl5+Nla’;

Here the ground (77) configuration p;~! has only one
state (J, T)= (3, 3) and the only excited (j7) configura-
tion within the general configuration p~!, namely, p; 7,
has only one state, these two states being identical with
the (LS) description of the two states 2Py and 2P; of a
nucleus with a single p-nucleon “hole.” Thus for this
polyad the intermediate-coupling transition of the
ground configuration consists merely of two straight
lines. Experimental assignments of parity and not quite
unique assignments of J have been made (B51) but
they should be considered to some extent tentative
because the observation of the near forward peaks did
not cover the angles 0-15°. The (unresolved) pair of
states at 5.3 Mev is exceptional in showing an approxi-
mately isotropic distribution with no forward peak,
presumably indicating large angular momentum making
possible a very large cross section for compound-nucleus
formation.

A set of assignments of excited (jj) configurations

consistent with these tentative experimental assign- -

ments, is shown in Fig. 14, and a very schematic repre-
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sentation of the intermediate-coupling transition of
these states is shown in Fig. 15. The curvature of the
lines suggests the direction of energy repulsion as the
pairs of states with the same (J, T) are intermixed.
The excited configurations are divided up into partial
configurations mainly for the sake of convenience in
counting the states by vector addition. For example,
p52(0)s; in Fig. 14 indicates the J =0 state of the partial
configuration p;~2?, compounded with an s; nucleon.
Since for p5~2, J=0 is associated with T=1 (as in the
first excited state of Py!), the addition of an s; nucleon
with its {=1% gives states of the system with =% and
T=1, each of course with /=%, as indicated in the
upper left part of Fig. 15. The right column of Fig. 15
lists these assignments of angular momentum and
parity, which have been arranged to agree with the
experimental possibilities indicated in parentheses above
the levels in Fig. 1. The only excited state observed to
have negative parity, at 6.33 Mev, is, of course, assigned
to the py~'. This state does not mix in higher order with
the states of opposite parity listed in the figure, but
only with higher states obtained by double excitation.
This 6.33-Mev excitation is thus the most direct meas-
ure we have of the doublet splitting of a $ nucleon in a
stable nucleus. Of the =% states, it is not clear from
the available configuration assignments whether J=5/2
or J=1 should lie lower. The C® beta-transition to the
ground state is probably to be considered first forbidden
(log ft=35.3) (Fe51) and there is evidence (Hu50) for a
transition to the 5.3-Mev or 6.33-Mev level, which to
compete with the ground-state transition must be
allowed. This would favor J=5/2 for the lowest T=%
state, as drawn in Fig. 14.
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The Closely Spaced Pairs in N' and Other Nuclei

The grouping of the first two excited states into a
very closely-spaced pair, with a separation of only 30
kev after a gap of 5.3 Mev and followed by a gap of
1 Mev, is very striking. It is particularly striking in
combination with a similar close pairing of the first
two excited states in the neighboring nucleus, O,
Similar close pairing, though not of first excited states,
has been noted in B!® and in B!!, where it was con-
sidered to be fortuitous and not very unlikely because
of the density of nearby levels, and in N, where the
accidental nature of the pairing is attested by the wider
spacing of the levels in the mirror nucleus C*. In the
interpretation of Fig. 15 the close pairing in N is
fortuitous. The chance that the first two levels should
be only 30 kev apart in a spectrum starting off with
averaging spacings of 3 Mev is about 1/15. The chance
in O, where the spacing is 80 kev, is about §. The
chance that this should happen in two specified suc-
cessive nuclei of which we have high resolution data is
about 107%. The chance that it should happen in any
two successive light nuclei out of about eight for which
we have high resolution data is about 1072 But it is
strange that it happens in the two with the highest first
excitation energy—the probability of this happening
fortuitously is about 1073, The unpleasantness of this is
not mitigated by evidence to be cited below, concerning
observed parities, that the close pairing in O is indeed
fortuitous. Under these circumstances, one grasps at
straws.

The most obvious assumption (I50) would be that
the close pairs are caused by the coupling of an excited
s-nucleon to the angular momentum vector of an almost
filled p-shell, and that this coupling is very weak for
some reason associated with the inadequacy of the
phenomenological Hamiltonian (2). But in this case the
two paired levels would have the same parity, so it
does not apply to O. In N, this would mean modify-
ing Fig. 15 to make the two states with /=% and § of
the partial configuration p;~2(1)s; lie lowest and, in
spite of their curvature which indicates their impurity,
very close together. These J’s do not agree with the
tentative experimental assignment, J > 5/2. An artificial
way to satisfy this assignment and explain the pairing
is to assume weak intershell coupling in the configura-
tion ds/2%(5)p; arising from two-nucleon excitation, in
spite of the fact the partial configuration ds»(5) does
not contribute to the low excited states of either O
or OY, as indicated in Figs. 16 and 17. The experimental
situation is too uncertain to justify pursuing such
conjecture.

While nature seems to be trying to teach us some-
thing by the frequency of closely spaced pairs, we have
not yet learned it and tentatively ascribe the pairs in
N and O to chance. The relation between these close
pairs for which we have no causal explanation within
the framework of the present analysis, and the close
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pairs observed in the odd-odd nuclei Na2, Al%, and P32,
for which an explanation is available involving an
expected weak coupling of an s-nucleon spin to another 5
is discussed further in Sec. 9.
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Fi16. 16. (j7) configuration assignments to the states of Py!6,

Both here and in Py®, the exceptionally high first
excitation energy attests the influence of shell structure
at the closing of the p shell. Another remarkable
feature of the spectrum is the clustering of the first four
excited states into two closely spaced pairs, the first
pair separated by 80 kev (only a little more than 1 per-
cent of the excitation energy) and the second pair by
200 kev (the same as between two states at the same
excitation in N'!) after a gap of about 800 kev.

As a result of recent careful studies of angular corre-
lations we are fortunate in having experimental assign-
ments of these first four excited states. The first has
long been known to be 0+ because of the fact that it
does not emit gammas (0%—0+ forbidden, the ground
state of course being 01), and thus has time to emit
electron-positron pairs. The second excited state has
been shown by independent work in two laboratories
(A50, B50) to be 3—. Recent work at Cambridge (S52),
mainly on alpha-gamma correlations, has identified the
third and fourth excited levels as 2+ and 1~ respec-
tively [although an earlier report (Fr51) on this work
had given the preliminary result 2+ and 2~ for these
states]. It is possible that experimental clarification of
further details will show that there is here very strong
evidence for the validity of the alpha-model in this
particular nucleus, which is particularly suited to this
because it can be built as a compact cluster of four
alphas (D40). This possibility is discussed further in
Sec. 10. Pending further evidence, we wish, however,
to view this nucleus here as a consistent part of a
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sequence of nuclei to which the central model seems
to apply.

Despairing of the hope of finding in the central model
any simple cause for the close juxtaposition of states of
opposite parity, as mentioned above, we regard the
pairing as accidental and make the configuration assign-
ments indicated in Fig. 16. The great complexity of the
situation is typified by the fact that the first four
excited states are ascribed to three different (j7) con-
figurations, either with a p; nucleon excited to a dss
state or to an s; state or with two p: nucleons excited
to dy» states. The perhaps rather surprising suggestion
that the first excited state should result from two-
nucleon excitation was first made by M. G. Mayer,
who based it on the result of the short-range or é-func-
tion approximation (M50) which states that two equiva-
lent nucleons with large 7 have a large “pairing energy”
when their j’s add up to J=0. While the é-function is
not a good approximation (KS50) in so small a nucleus
as O this result reflects the fact that this state has a
high symmetry (upon nucleon exchange), and a high
symmetry is doubtless one of the reasons why the /=0
and J=2 states of the two-nucleon excitation con-
figuration have such low energy as to appear among the
first four excited states. Another reason is that there is
for each of these J’s more than one state with the same
(J, T), as indicated in Fig. 16, and the intermixing of
these states pushes the lowest one down. It is a charac-
teristic of our intermediate-coupling interpretation of
the spectra of other light nuclei that a configuration is
spread out over a wide energy region, and this doubly-
excited configuration is so complicated, including very
many states, that it is spread out over a very wide
region and some of its states are low, one of them even
lower than any of the states of the simpler singly ex-
cited configurations.

Note added in proof.—One would hope for some sim-
plicity in the excited configuration p;%d?, arising from
the expectation that the p-d exchange integrals are
smaller than the p—p or d-dj integrals. In this ap-
proximation one would expectjto be able to estimate
which states have the lowest energy from the energies
of the two-nucleon partial configurations p;® and dj
separately, as is indeed implied in the above remarks
of pairing energy in the §-function approximation.
Recent calculations of the energies of these partial
configurations separately, by Flowers and Edmonds
(F152), show that for reasonable ranges instead of the
d0-function approximation, the next-to-lowest line of the
two-nucleon excited configuration in Fig. 16 should lie
lowest, that is, the first states of this configuration
should be a group of three with J=4, 5, 6, T=0. We
are left with no central-model explanation of the O+
first excited state of O, which enhances the attractive-
ness of the alpha-model as an alternative. The possi-
bility needs further investigation that the p—d exchange
integrals might be responsible. The calculated result
just quoted is dependent on the phenomenological
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representation (2) of the nuclear interactions. It is
closely related to the explanation of the low state J=3
of 5% in BY, and it is not apparent how to alter the
interaction assumption to keep that experimentally
satisfactory result and still obtain J=0 (rather than
J=35) lowest in di®. The intervention of the (J,T)
= (5, 0) state as the lowest state is due to the inter-
play of an excited proton and neutron along with a
pair of either. If we were concerned with excitation only
of a pair of neutrons or a pair of protons, it would have
been (0,1), as was assumed above. There are other
phenomena which would be clearer if neutron and
proton excitation should be understood to act more
nearly separately than we here expect them to. These
phenomena are mentioned at the end of the discussion
of the (47) double levels of Na?4 about four pages below
[see also (SGS53)]. Some of these difficulties suggest
that consideration of the deformability of the potential
well which shapes the single-nucleon orbits (Ga53,
W353) may provide a fruitful extension of this discussion
of light nuclei.

The beta-decay to each of the (unresolved) pairs of
excited levels is allowed, while that to the ground state
is forbidden. (The log ft values appear on the transition
lines in Fig. 16.) This suggests 2~ for the ground state
of N and such a state is available from one of the
singly excited configurations, as indicated in the figure.
It is satisfactory that the configuration p;~'ds/s should
appear below p;~ls; among the 7'=1 states (as well as
the T=0 states), both because one expects it to cover
a wider energy spread and because the single-nucleon
state ds» appears according to the evidence of O to
lie below s;. It is further satisfactory that the (J, T)
= (2, 1) state should lie below the (3, 1) state of py~'dy/,
because it agrees with a general rule (K52b) that, when
a neutron hole, for instance, is coupled to a proton, the
lowest state formed has J=ji+7.—1, that is, a total
angular momentum quantum number one less than the
maximum possible. Most examples are found with
neutrons and protons in the same shell (for which the
result follows for both the long-range and short-range
extreme theoretical calculations, and presumably be-
tween), but the case of 1K* is very similar to the
present case, configuration ds57'f72, with two differ-
ent shells involved. That the lowest state should be
J=ji+j:—1=4, in agreement with observation, in this
case with reasonable assumptions has been shown by
Kurath (K52b), and similarly J=2 for N, There are
only two states of this configuration in N so the
(477)-coupling statement of which should be the lower
should probably have significance also in intermediate
coupling.

As we have suggested in connection with Be® above,
the existence of states of the same symmetry in the
alpha-model may influence the spacings and properties
of the states encountered in the intermediate-coupling
scheme, and O is a favorable place for this to happen
because the first four excited states just discussed have
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their counterparts among the_low excited states of the
alpha-model (Sec. 10).
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Fic. 17. (j7) configuration assignments to the states of Py'".

In most of the low states of this polyad we have
essentially a single nucleon outside of a closed p shell,
and the existence of several states for this relatively
loosely bound nucleon contributes several levels of
moderate excitation energy, as shown in Fig. 17, in
strong contrast to the closed-shell appearance of the O
spectrum. The second excited state at about 3 Mev,
however, does not fit into this single-nucleon scheme,
and must be ascribed to an extra excitation from one
shell to another, p; to dss, similar to that responsible
for the first excited state of O, the resultant low energy
again resulting from “pairing” in the partial configura-
tion ds/2? (as was also suggested by Mrs. Mayer). In this
case the excitation energy is lower because excitation of
only one nucleon is necessary, to pair with a ds» nucleon
that is already there in the ground state. It is not so
remarkable here as in O that this state lies low be-
cause here it arises from single-nucleon excitation, as do
the other low excited states. It is more complicated than
the others because the possibilities of vector addition
give two 4~ states in this configuration and they are
mixed to give the 3.09-Mev state as indicated in
Fig. 17.

Note added in proof —This interpretation, too, is cast
in doubt by the calculated result (F152) that (J,, Ty)
=(5,0) lies lowest. Sufficient repulsion of the two
(J, T)= (%, %) states again requires large p—d exchange
integrals.
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Partly by comparison with a state in F'7 identified
by a proton scattering resonance, the O'7 state at
3.85 Mev is identified as the 7/2~ state corresponding to
the single-nucleon state frs, which it is very satisfactory
to find here because it is expected to be the next single-
nucleon state after the ds» ground state and the s; just
above it. Above this, the identifications are made by
observation of the scattering resonances of neutrons
on O, In the case of the 5.08-Mev state, there is some
question whether it should be interpreted as an excep-
tionally strong 3+ resonance [with % about % of the
theoretical limit, according to Table I(17) of reference
(Aj52)] or a 3~ resonance about as strong as the next
few states above it (about 0.03 of the limit). The former
possibility, 5+, is favored, partly because there is
another level identified as $~ only 50 kev below it and
it does not seem likely that two such levels from the
first excited configuration would occur so close to-
gether, but mainly because an exceptionally strong level
3+ is expected somewhere, namely, the single-nucleon-
like dj state which is needed to join the ground state,
essentially a dys, to complete a 2D. The single-nucleon-
like level is expected to correspond to a much stronger
resonance than the levels involving excitation of the
“core,” and this is the only level with the appropriate
characteristics in the region up to above 8 Mev that
has been properly explored.

Several levels next above this one have moderately
weak resonances, apparently because they arise from
excited configurations, and possible configuration assign-
ments for them are suggested in Fig. 17. Above the %f7/
single-nucleon state one expects to find the 2p levels
(with radial quantum number 2 corresponding to one
radial node), first the 2p; and above it the 2y, and if one
were to ignore the weakness of the resonances one
might think to find the corresponding O!7 states at
5.39 and 8.38 Mev, which would make a ?p splitting of
about 3 Mev related to the 5 Mev 2d splitting roughly
in the ratio of their (2/4-1). Because the single-nucleon-
like levels corresponding to the ?p are expected to be
exceptionally strong, it seems preferable to recognize
that these single-nucleon levels may be spread quite
far apart in this nucleus, and to identify the strong
level at 7.72 Mev with the ?p;, as is done in the figure.

The beta-decay of N7 is observed under conditions
of high energy bombardment and consequent strong
contamination of other beta-decays, through the un-
usual circumstance that it gives rise to simultaneous
neutron emission (“‘delayed” because it follows the
beta) from excited states of O'7, the betas and neutrons
being observed in coincidence (A49). The neutron
energy measurements (H49) seem to indicate an intense
transition to an O level at about 5.26 Mev (E.~1.05
Mev) and a weaker transition to a level at about
5.89 Mev (E,.=~1.65 Mev), which we take to be the
levels at 5.25 and 5.87 Mev for which no identifications
have been given because they have not been resolved
in the neutron scattering experiments. It is not clear
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to what extent they may have contributed to the
neutron scattering and whether they may have falsified
the identifications of the adjacent states from which
they were not resolved, but it is possible that these
states may have high J’s and their contributions to the
scattering may have been suppressed thereby. There
are many other states of both parities and low J’s in
this region through which the (8+#) process does not
seem to go (though the neutron energy resolution is not
good enough to make this certain). Therefore, it seems
likely that these two states differ from the others in
having high J’s, and that the ground state of N7 also
has high J. Either the (J,T)=(7/2,%) or (9/2,%)
state of the configuration ds.?p;~', assigned as the
ground state of N, could accomplish this selection,
and one could distinguish between these possibilities if
it could be observed whether or not the beta-transition
also goes to the 5/2% ground state of O'. The latter
has been indicated among the tentative configuration
assignments suggested in Fig. 17, along with similar
suggested assignments from the same configuration for
the presumed delayed-neutron states at 5.25 and 5.87
Mev. The favored beta-transition indicated by the
value log f1=3.8 is valid only if there is no transition
to lower states, and is consistent with this assignment
of initial and final states of the beta-decay to the same
configuration.

8. COULOMB ENERGY IN THE CENTRAL MODEL

The central model, of which the (77) model is a special
case, is a model in which states of the system are formed
of individual-nucleon wave functions which are solu-
tions of a wave equation with a spherically symmetrical
potential. The state of the system does not necessarily
possess central symmetry. (With a statistical distri-
bution of the direction of J, the over-all state has
central symmetry, but not the magnetic substate.) This
lack of central symmetry, which implies a correlation
between the angular coordinates of two nucleons, is in
part responsible for the multiplet separations in (LS)
coupling and the separations within a (j7) multiplet in
(77) coupling. The Pauli asymmetry, which also implies
a correlation of a different sort between the positions
of the nucleons, is also and usually even more heavily
responsible for these separations.

The lack of central symmetry may be described in
terms of a flattening of the orbits of two nucleons almost
into one plane when their orbital angular momenta I are
nearly parallel or antiparallel (such as when L=1;-+1, is
as large or small as possible), as compared to a closer
approximation to spherical symmetry in states with
intermediate values of L [or of J in (j7) coupling]. For
example, the 1S lies below the D in the middle of Fig. 5,
although they both have the Pauli antisymmetry in the
spin factor, and this energy difference may be associ-
ated with the picture that the antiparallelism in the 1§
is exact, the vector sum [L(L+1)]? is exactly zero,
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whereas the corresponding parallelism in the 'D is not
exact, the two vectors of “length” [/(i+1)]* adding up
vectorially to less than their arithmetic sum.

The Coulomb energy differences between the mirror
nuclei are also affected by these considerations of
nuclear “shape” and other correlations between the
positions of the nucleons, and for this reason it is only
an approximation to consider simply the electrostatic
energy of a spherically symmetric charge cloud. The
effect of the correlation considerations is, however, quite
small. The Coulomb energy differences of the neigh-
boring mirror pairs of isobars have been calculated both
in (LS) coupling (F37) and in (j7) coupling (K52), and
they are plotted in Fig. 18. (There the scale is quite
arbitrary, the differences taken from Kurath’s Table ITI
(KX52) being plotted with 17K.,=1 Mev, K, being the
Coulomb exchange integral.) The experimental curve
for the Coulomb difference C has a meaning for the
p-shell only for A =7 and up, since 4 =35 is an anomalous
case in which the ground states of both isobars are
virtual. This portion of the experimental curve shows a
rather pronounced four-structure, an alternation in
slope with the points for 4 =4n-1 lying relatively low.
The calculated (LS)-coupling curve is plotted in the
same figure and shows a much weaker four-structure of
the same sort. The (j7)-coupling curve is even more
nearly a straight line. The fact that the theoretical
curves are much too steep to follow the trend of the
experimental curve indicates that K, should not be
taken constant across the p shell, as is done in Fig. 18.
Instead it should decrease with increasing 4, and a very
good fit to the general trend (but with inadequate four-
structure) may be obtained by assuming K,~A-1
This is exactly the variation one expects on the usual
simple assumption of constant nuclear density, and
range of interactions small compared to nuclear size,
but it is perhaps somewhat surprising that it should
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apply so well in the p shell. It indicates that the p shell
is to be thought of as a collection of angular wave
functions, but that the radial wave functions going
with them are determined separately for each nucleus
(or even each state), and that for the ground states
they are determined in such a way as to keep nuclear
density nearly constant, so far as the general trend is
concerned.

Thus the four-structure is not explained by the corre-
lations, but may be attributed to small deviations from
the constancy of nuclear density, as dependent on the
four-structure of the binding energy. The four structure
of the Coulomb energy, Fig. 18, consists in the fact
that C is abnormally low for the three polyads 4=09, 13,
and 17. Of these, 4=17 is beyond the  shell, and may
be low because a @ orbit is larger than a p orbit. That
and much more questionably the ground state of 4 =13
are cases where it is perhaps a better approximation
than elsewhere to think of a “core” plus one nucleon,
and this corresponds to the simple spherically sym-
metric model used by Bethe in discussing this effect
(Be38, E41). The Coulomb difference C is a property
of the last nucleon in its interaction with the ‘“core,”
and its unusually small binding energy in Py® leads one
to expect it to have an abnormally diffuse probability
distribution and thus an abnormally small value of C.
In 4=9 the experimental “binding energy of the last
nucleon” is particularly low, being positive for the
neutron in Be® but negative (—0.2 Mev) for the proton
in BY. Here it is probably not a good approximation to
think of this low binding energy as belonging to any
one nucleon, but even when shared among several it
may have quite an effect on the nuclear size (con-
tributing to a cooperative phenomenon). The virtual
nature of B® makes this polyad an atypical case some-
thing like Py® though the influence of the virtual
nature is probably much reduced by the sharing of
energy between nucleons in B? (and indeed it seems in
Fig. 18 that the sign of the influence is the opposite
of that in Py?).

9. THE NEUTRON-PROTON (jj)-COUPLING DOUBLE
LEVELS

(77) Double Levels in Atoms

In atomic spectra the only examples of real (j7)
coupling are found in the configurations p°s and d°
involving the coupling of an s-electron spin to the 7 of
an almost closed shell. Examples of (LS) coupling and
quite frequently of intermediate coupling are found
among the cases of coupling of two equivalent electrons.
For example, the configuration p? shows a nice inter-
mediate-coupling transition in Fig.. 411 of reference
(C35), going from Gel 4p* with a moderately low
principle quantum number and displaying a clear
separation into the triplet and two singlets of (LS)
coupling, and SnI 5p? in which the multiplets may still
be recognized, over to PbI 6p* with a high principle
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quantum number, which is well out into intermediate
coupling and even begins to show a grouping into the
double-levels characteristic of (j7) coupling. But ex-
treme (j7) coupling occurs only when one of the j’s is
an s-electron spin, and when the s electron has a high
radial quantum number so that its charge distribution
overlaps little with the almost closed shell. In the
spectrum of un-ionized neon, for example, the four
levels of the configuration 2p°3s are arranged in a
singlet and triplet, with some deviation from the
“interval rule” of (LS) coupling, and the 2p%s and
successively higher excitations progress across the region
of intermediate coupling to () coupling, until finally
2p511s has two narrow (j7) double levels whose splitting
is less than one percent of their separation.

(jj) Double Levels in Na, Al, and P

The reason that a high principle quantum number is
required in atoms is that the exchange integral, arising
from the Pauli antisymmetry of the two electrons, tends
to separate the two levels J= j=4-3. For a neutron and a
proton in a similar situation this is not so if the
interaction between them does not involve the spin.
Beautiful examples of (j7) double levels are for this
reason found in the odd-odd nuclei in the region of
filling of the second s orbit, in Na?, Al%, and P3
(as was recently pointed out by Maria G. Mayer at a
conference in Pittsburgh). In the two latter nuclei
(E51, E52, V52a), the ground states belong to double
levels, the ground configuration of 13A1% being dss~'s;
while in 15P? we have s5,3d;, since the ds/2 orbit is filled
at 14 nucleons and the s orbit at 16. The point is that
the nuclear interactions as we treat them phenomeno-
logically are only about one-fifth spin-exchange forces,
and the rest does not involve the spin. This factor 0.2
from (2), say, is enough when combined with the fact
that the two nucleons do not have the same radial
wave function, to explain the small splitting of the
double levels. Let us show that the large term not in-
volving the spin gives no splitting. This is most easily
done (as was suggested by Mrs. Mayer) by considering
the problem of constructing the wave functions for the
two values of J in the magnetic sublevel M =0, since
the two simple product functions with which we start
then have the same diagonal matrix element and the
splitting is made only by the nondiagonal element
between them. For the configuration s*d;, for example,
let us define dy3=a, ds_3=0 (where the subscripts
mean j,m;) and write the two M=0 product wave
functions for three neutrons and one proton of P32:

(atatptp),
(FratBra).
The superscripts indicate isobaric spin projection, + for
a neutron and — for a proton, « and. 8 imply s-wave

functions including these spin functions for spin up and
down, the four factors are functions of the coordinates

(20)
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of the four nucleons, respectively, and the pointed
brackets mean ‘“antisymmetrized sum.” The matrix
element between them is

Hy=(a*B| V]btar)— (@B~ V]abt).  (21)

The first term is zero because of spin orthogonality for
the last nucleon if V does not operate on ¢, and the
second term is zero because of isobaric spin orthogo-
nality (or another way of saying it is that “we don’t
have to antisymmetrize between a neutron and a
proton’”). Thus the levels /=1 and J=2 are degenerate
so far as the main term 0.8P of (2) is concerned, and are
split only by the small term in the spin-exchange
operator Q which spoils the spin orthogonality. (Pre-
sumably it hereby represents what a tensor force would
do, but this should be calculated.)

The same argument applies with the d; excess neutron
replaced in excited states by f7s, fs/2, 3 and py, each
giving an excited double level in P32, In Al® an excited
double level may arise similarly from ds/»—d; excitation
of the odd proton, leaving the spin of the s neutron the
only neutron vector free to be oriented. In ;;Na* the
ground configuration does not contain an s nucleon
[and the observations(Sp52) show the ground state to
be single]], and in the excited states of this nucleus the
formation of the double levels is not quite so simple
because there is the possibility of exciting either a
proton or a neutron. Here the neutron excess comes into
play in a somewhat different way from the way it does
in P32 to avoid interaction between' the states formed
by these different types of excitation and leave intact
any pairing into double levels that might be caused in
some way similar to the same simple mechanism ex-
plained above. If we excite a dy» neutron to the s orbit,
we have a partially filled d shell (ds/2)prot’(ds/2) neut?
which possesses a low state of partial isobaric spin
Tp=1%, whereas proton excitation leaves the d shell
(ds/2) prot*(ds/2) nent®, with its lowest Tp=2 and hence
considerably higher energy that cannot be brought
down by the weak coupling with an s nucleon. Hence
the two excitations may be expected to act fairly inde-
pendently, and each might give rise to a double level.
In such a case we have, however, the coupling of an
s-nucleon to a complex partial wave function of a
d shell formed by the orientation of the vectors of both
protons and neutrons, and it is not at all clear from
simple considerations that an exchange integral of the
Majorana term should be absent from the splitting
J=Jpt3. If the excited nucleon is a neutron, to take
the example just discussed, the d shell has an odd
number of protons and an even number of neutrons.
The fact that double levels appear in Na? suggests
that the s neutron is coupled only to the protons, as
though the even number of neutrons were somehow
suppressed from sharing in the complexity of the wave
function of the d shell. This would be analogous in a
simpler case to having the two p; neutrons of the con-
figuration p4® in the ground state of Li’ form a partial
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resultant Jp=0 and ascribe all of the angular mo-
mentum to the p; proton, which is not in keeping with
the way the energy of the ground state on the (j7)
side of Fig. 6 was calculated. (It would give a Schmidt-
line magnetic moment, whereas the magnetic moment
calculated with proper neutron participation is close to
that observed.)

Thus it is not clear why the even numbers of like
nucleons should pair up to make their total angular
momentum zero in such cases of only partly filled
shells, but the double levels of Na?* suggests that
they do. There are other indications that this happens
in the intermediate and heavy nuclei, a set of probably
related but enigmatic “queer facts.” There are several
cases in which the addition of two neutrons to go from
one odd-even isotope to another changes the magnetic
moment of a nucleus by only a small fraction of a
percent. There are also several cases where the addition
of two protons to an even-even nucleus changes the
first excitation energy of a nucleus almost none at all.

A (j7) double level in a heavy nucleus. The grcund state
of the nucleus TI*®;y; is a member of a double-level
with a splitting of only 40 kev. This nucleus, though
very heavy, is simple enough to discuss because of
differing from a double closed shell by only one nucleon
and one hole, and Pryce (Pr52) attributes the double-
level to the configuration (s3).~'(ges2),. Its reason for
being only 40 kev wide, as compared with about 300
kev for the quadruple-level attributed to (ds).~(go/2).
is the same as for the double-levels in the much lighter
nuclei here discussed.

(jj) Triple Levels in Si?® and Al*®

In 14Si® there is a triple level consisting of states at
4.840, 4.897, and 4.934 Mev, separated from the nearest
neighbor by £ Mev (V52a). This may be ascribed to the
excited configuration dss~'s?, which is obtained from
the ground configuration ds/»!%s by excitation of one ds/s
nucleon into an s orbit. It is consistent with other
examples that this excitation should “cost” about
5 Mev. The partial configuration s? can have a spin
Sp=1 which couples to the ds;~! “hole” to give three
states with J=%, 5/2, and 7/2 (a prediction of which
verification would be of interest). Since the partial
configuration dgs! has only one state, it is consistent
with this interpretation that there should be only one
such triple level in Si**. In 13A1% two triple levels (or
more—the density of states is too high to be sure) have
been observed at about this elevation, corresponding
apparently to the excited configuration dys 252, which
also requires single-nucleon dsy—s excitation, and
which could give rise to as many as four triple levels.
Above the three fairly low double levels in ;;Na? there
is a region of high level density near 4 Mev which may
be considered to contain as many as three triple levels,
the narrowest with a total splitting of only 35 kev.
In this case two-nucleon excitation to the configuration
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ds/2s? is required to obtain a partial spin S,=1 which
might give a triple level.

The reason for the small splitting of these triple
levels is not as clear as in the case of the double levels,
because the excited configurations required may be
attained by either proton or neutron excitation, and
the S,=1 state of the partial configuration s? has 7=0.
Thus it necessarily involves both protons and neutrons,
to be coupled to either protons or neutrons or both in
the d shell. Lacking a more elegant suggestion, it is
perhaps to be inferred that the different arrangement
of nodes of the s and d orbits makes the coupling
between them (an integral like K) quite small, sup-
pressing the contribution of the leading term of Eq. (2)
to the splitting.

The Possibility of (jj) Double Levels in Li% B!°,
and N

The situation for the excited configuration ps’s; in B2
has a slight similarity to that in Na*, but differs from
it drastically in the fact that this is a “self-mirrored”
nucleus with no neutron excess. There is, thus, no

where

B=(aB|V|ab)=(2/3)(zs| V|s2)
=2(aB|V|Ba)=24 (25)

since, because of the vanishing of integrals of odd
powers and the equivalence of the three Cartesian co-
ordinates,

[(+iy)*s| V]s(x+iy)]/2
=[(xs| V|sx)+(ys| V]sy)1/2=(as| V|sz). (26)

The diagonal elements have been omitted because they
differ only in orientation or in the proton-neutron
difference and are all equal. The factorization of the
determinant into the product of two quadratics, as in
the second member of Eq. (24), is accomplished by
adding rows and subtracting columns, the third with
the second and the fourth with the first. Thus we have
the four distinct roots e==+A4, +=34, a ladder with three
equal steps. (One might speculate as to whether the
equal spacing between the first, second, and third 7=0
excited states of B may indicate that they come from
$—s excitation, were it not that they are observed to
have even parity, and that the four odd theoretical
levels have alternately 7=0 and 1.) Thus the four
levels do not fall into double levels. The same analysis
applies to the configuration p;s of Py except for an
interchange of the factors (2/3) with (1/3), and a sign
of the coefficients which does not affect the result.
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energetic tendency to separate the states formed by
neutron excitation from those formed by proton excita-
tion. Even if we should invoke a not understood ten-
dency for even numbers of nucleons to pair their 5’s to
a zero resultant, as is suggested by the Na? double
levels, we should, because of the interference between
neutron and proton excitation, still not expect double
levels in B any more than in LiS.

The lack of double levels caused by s excitation in
Li*4-He® is a matter of easy calculation. We now use
the notation @ and & for the m ;=43 projections of p;:

a= (2/3)%za+ (1/3)![ (x+1iy)/24]6,
b=(2/3)}B+(1/3)} (x—iy)/2¢]a,

where xiy and z indicate the angular part of the
p orbital. Then the four M =0 states are

atB-, bta-, BraT, otb~ (23)

the superscripts again indicating the sign of the isobaric
spin projection m,. The secular determinant made from
the matrix between these statés, for an interaction not
involving spin, is

(22)

-E 0 4 B 0 0 4 (B—E)

0 —E B A|_| 0 0  (B—E) 4 |_, 24
A4 B —E 0 4 (B+E —E o |

B 4 0 —-E |[B+E) 4 0 —E

In B! the two levels at 5.11 and 5.17 Mev appear to
form a double level, the splitting between them being
only 60 kev and the separation from the nearest other
level being 220 kev. The ratio between these is not in
itself very convincing. In such a densely populated part
of the energy spectrum it is not very unlikely that
levels will fall close together by chance. These two
levels are both observed, and with comparable in-
tensity, in the forward yield of low energy neutrons
from the Be’(d, #) reaction as the deuteron energy is
raised past their respective thresholds (Bo51). Since
these are so strong that the first of them constitutes
practically the threshold for the reaction, somewhat
below 1 Mev, they are thought to involve capture of an
s-proton, I,=0, which would give them odd parity and
require that their wave functions contain at least a
major portion from the configuration p%. Thus it is
very tempting to suppose that they correspond to the
two orientations of an s-proton spin relative to another j
or Jp. The fact that the states are prepared in such a
way that the odd nucleon is a proton is not reason
enough to expect that it remains so, without inter-
ference from the state formed by neutron excitation.
As long as the interaction with the excited neutron
state is represented by an exchange integral capable of
making a splitting of the order of # Mev or more, as
would seem to be the most likely result of a complicated
calculation on the basis of what we have said, the
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prepared “excited proton state” could not remain un-
disturbed long enough to define an energy as sharply
as 60 kev. Their juxtaposition may be accidental, or it
may be related to the smaller than expected coupling
suggested by the triple levels.

The Enigmatic Closely Spaced Pair in N5

The double levels here discussed have been in odd-
odd nuclei. Their occurrence and explanation does not
seem to throw any light on the occurrence of closely
spaced pairs in the odd-even nucleus N® (even if we
ignore the uncertain identification J 2> 5/2 for the lower
pair). Here one may excite a neutron to the s state and
leave the rest of the nucleus in the Jp=1, Tp=0 state
corresponding to the ground state of N, and this is
not matched by proton excitation, but then Jp is made
of a neutron as well as a proton and one would expect
exchange splittings from the Pauli antisymmetry be-
tween the neutrons. Alternatively, one may form the
Jp=0, Tp=1 state by either proton or neutron excita-
tion to the s state, but then there is only one resultant
angular momentum J=3%, and the two isobaric spin
states =% and £ resulting from the interference of the
two excitations cannot form a T=% double level such
as observed at 5.3 Mev in N% (far below the ground
state of C® at 10.9 Mev).

10. THE ALPHA-MODEL AS AN ALTERNATE
POSSIBILITY AND AS AN OCCASIONAL
ADMIXTURE

The intermediate-coupling interpretation presented
above is a complex answer to a complicated experi-
mental situation, in which there is no simple grouping
of energy levels into consistent patterns of suggestive
multiplets, but rather a variety of types of spacings as
one compares the various polyads. This does not satisfy
a physicist’s natural desire for simplicity and elegance.
It is probably true but disappointing. In accepting it
with hesitance, one wishes to examine any alternative
which might present the possibility of a simpler inter-
pretation of the same data. Partly for this reason we
discuss here the alpha-model, for which some rather
persuasive arguments have been given in the past,
before so many excited energy levels of the light nuclei
were known, and before the success of the (j7)-coupling
version of the central model became apparent in heavy
nuclei. We discuss it also because it may actually con-
tribute to the physical properties of some of the states
of a few favorable nuclei and modify the properties
that they would have in a pure central model, in the
sense that the wave functions of the two models may in
nature be, as we have already mentioned, intermixed.
As an introduction to discussing the alpha-model as an
admixture, we discuss it as an alternative, and show that
it does not provide a simple and adequate source of the
observed energy-level patterns.
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TaBLE V. Vibrational constants and excitation energies in
the alpha-model, on the assumption of a standard harmonic
“bond.”

Bed C2 o1
¢ 2 3)t 2(2/3)}
b 1 3 6
n 2 3 4
(c3/nb)? 2% 1/3 1/9
wi~(be2/n) 2% 3t 2
war~ 3/2)% 1
Wz~ 2%
(w14 2w+ 3ws) /24 1 2.96 5.83
o+ 4.38 5.24 6.05 Mev
3~ 7.66 6.13
2+ 6.13 6.13 6.09
2~ 6.09
1~ 5.24 6.45

The Alpha-Model of O'¢

The simplest and most hopeful application of the
alpha-model is to nuclei which could consist solely of .
alphas, the even-even 4=4» nuclei, with no extra
nucleons or ‘“holes.” Among the light nuclei these are
the ‘“dumbbell” or “diatomic molecule” Be8, the equi-
lateral triangle C'?, and the regular tetrahedron O
and we consider them in reverse order.

Dennison (D40) has shown-that the first two excited
states of O in the alpha-model should be the O* state
of uniform dilational vibration (which he identified
with the well-known 6.05 Mev pair-emitting state) and
the 3~ state corresponding to the rotation of an equi-
lateral triangle, which is the base of the tetrahedron,
about its threefold axis. This agrees with the experi-
mental identification of the first two excited states. The
difference in parity of the first two excited states is a
natural consequence of the alpha-model, arising from
the difference between dilational vibration and rotation
of a body with threefold symmetry. In the central model
we were forced instead to the interpretation, which
might at first seem somewhat artificial but is probably
correct, that the first excited state arises from two-
nucleon excitation. Dennison estimated that the 3~
state of the alpha-model should come at about 4 or
5 Mev, dependent of course on an estimated moment of
inertia to which the energy is inversely proportional.
The mean distance of the alphas from the center was
taken to be the same as that of the extra nucleon in
O' and F', as indicated by their Coulomb energy
difference. It seems very reasonable to assume instead
that this loosely bound extra nucleon has a consider-
ably larger mean radial displacement than do the
alphas, which revises the estimate of the rotational
energy upward, in a direction to agree with the energy
6.13 Mev of the observed 3~ state.

The next two states in O also fall close together,
though the 200-kev separation is great enough that
theirs might more easily be a chance juxtaposition. It is
a curious fact that the alpha-model predicts that the
third and fourth excited states should indeed fall close
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together. They arise from a mode of vibration in which
the pairs of corners, like two dumbbells, both stretch
and move so their centers of mass approach one another,
or vice versa. There are two such modes corresponding
to the possibility of reflecting one corner through the
opposite face of the tetrahedron, and the levels are
split by only the energy corresponding to the frequency
of this inversion, which should be small. They have
angular momentum and parity 2+ and 2-. The recent
experimental result of French et al. (Fr52) is that they
are actually 2+ at 6.91 Mev and 1~ at 7.11 Mev. This
experimental assignment, if final as it seems to be,
precludes the possibility that the 200 kev splitting of
the levels near 7 Mev is to be explained as the energy

of the 2*—2~ inversion frequency. It is to be noted, -

however, that this energy is expected by Dennison to
be very much smaller than the other separations among
the first five excited states, and might easily be too
small to have been resolved. There is a third mode of
vibration, in which one of the “dumbbells” shortens
while the other lengthens, whose first excitation energy
is expected to fall rather close to the 2+ and 2-, and
indeed, is expected according to Dennison’s analysis to
fall quite near 7.1 Mev if the 2* and 2~ both fall very
close to 6.9 Mev, as we shall show in more detail. It is,
therefore, important for the question of the validity of
the alpha-model to determine experimentally whether
it might not be possible that the 2+ and 2~ are very
nearly degenerate at 6.91 Mev. Although the angular
correlation experiments indicate that this level is 2+,
it must be considered whether it may not merely be
predominantly 2+ in a set of reactions, in which there
may be some selection.

Dennison (D40) analyzed the frequencies of vibration
in terms of the elastic constants a, for stretching, and &
and ¢ for types of bending. In making a comparison with
the preliminary data available a dozen years ago, he
pointed out that b and ¢ must be much smaller than a
and set ¢c=0. In fitting the modern data, we determine
the moment-of-inertia parameter 4 by putting 64%/ 4
=6.13 Mev and the first vibration frequency from
wih=6.05 Mev. From the estimate e=e€;/25, we put
€0="0, which means assuming the 2+ and 2~ degenerate,
and have wofi=6.91 Mev— 342/ A =3.85 Mev. If we here
too put ¢=0, we find from Dennison’s relations M w;?
=4a+160 and Mw,?=a—2b that b is indeed small,
b=—a/13.8, and from Mw;>=2a that wsh=4.24 Mev.

After using the estimate e;~0.04wsk we evaluate the

energy of the 1~ state as 2.1254%/A+40.96ws#=7.07
Mev. Thus the assumption ¢=0 leads one to expect
the separation between the 1~ and 2+ (degenerate
with 27) to be 160 kev, which compares very favorably
with the observed 200 kev. (The value of ¢ required to
give an exact fit is about —b/3, the other numbers being
not much changed.) From the estimate )= 0.003w3% one
expects the nearly degenerate pair to be separated by
about 13 kev, which should be capable of being re-
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solved by a high resolution magnetic analyzer (and we
intend to have a try at it).

Beyond 7.11 Mev, there appears to be a gap without
levels for at least 1.5 Mev, with the next dependably
observed level at 10.5 Mev. The next level listed by
Dennison is a 4t at (10/6) 6.13 Mev~10.2 Mev. Thus
again, if one can find a fifth level hiding in the observed
group of four near 6 or 7 Mev, the grouping of these
followed by a gap seems strongly indicative of some
validity of the alpha-model, since no counterpart is
found in merely taking note of the wide spread within
excited configurations in the central model. Further
experimental investigation of the possibility of states
at 8.6 and 9.5 Mev will help clear up this point.

Comparison of C!? and Be? with O'¢

One of the strongest empirical arguments for the
applicability of the alpha-model to the even-even 4n
nuclei is the one given by Hafstad and Teller when they
showed that the mutual binding energy of the alphas
per “inter-alpha bond” is quite nearly constant for a
series of these nuclei. Their Fig. 2 shows that the linear
relation holds for n=3, 4, 6, 7, and 8 while Ne? (n=35)
lies about ten percent low and Be® is the more serious
exception, with about 2 Mev less binding energy than
required. Among the light nuclei of special interest to
this review, the significant part of this is that the energy
of binding “relative to alphas” shown in Fig. 3 above
lies twice as low for O (at —14.424-0.06 Mev) as it is
for C'? (at —7.2840.05 Mev), corresponding to the
fact that a tetrahedron has twice as many edges as
does a triangle, or that there are six bonds in the alpha-
model of O, three in C2.

This and the considerable degree of success of the
alpha-model in accounting for assignments among the
first few excited states of O'® make it tempting to apply
the alpha-model at least to C!2 on the assumption that
the bonds between alphas have an individual reality
such that they are simply additive and that their
strength is not affected by whether or not the alphas
are subject to the forces of other bonds at the same
time. For simplicity we, of course, also represent the
bonds in terms of the parabolic potential of a harmonic
oscillator. In treating only the simple dilational mode
of vibration, we may consider a system of % alphas
equidistant, at a distance 7, from the center of massin a
geometry such that there are b bonds between alphas at
a distance e=c¢r from each other. Then the potential
energy of the system in dilational vibration is

- V=(b/2)K(8a)%=(bc®/2)k(sr)?, 27)
and the kinetic energy
T=(n/2) Mi*—(nh*/2M)0?%/ dr?, (28)

so that the normal frequency is (bc?/n)}(K/M)3, the
vibrational energy (n-+3) times that, and the mean
square amplitude of the zero-point vibration

(0a%) w= (c*/nb)}(h/2) (M E). (29)
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These quantities are listed in Table V. There are other
modes of vibration (W37, D40), the two we have dis-
cussed above for O'® and a similar one for C!%, and in
the simple approximation, Eq. (27), which amounts to
-putting Dennisons constants b=c¢=0, w, and w; are
related to the dilational frequency w; as shown in
Table V. ,

The fact that the mutual binding energy of the alphas
is closely proportional to the number of bonds in C!?
and O'® becomes an impressive argument for the use of
the alpha-model with the same potential for each bond
only after one notes that the vibrational zero-point
energy in these structures is also closely proportional to
the number of bonds, as was pointed out by Hafstad
and Teller (H38) and is shown in the eighth line of
Table V. In that line is given a number proportional
to the sum of the vibrational frequencies multiplied by
the number of modes of each frequency, and these
numbers are almost equal to & in line 2. This indicates
that Be?® should also have this same binding energy per
bond if the bonds were so simple. Actually, the bond
potential is expected to be anharmonic, and the simplest
deviation from our assumptions which could account
for the low binding energy of Be® might be that the
anharmonicity is more important in determining the
ground state energy of Be® than in the other nuclei
because the mean-square amplitude of the zero-point
bond vibrations in the dilational mode is considerably
greater in Be®, as indicated in the fourth line of Table V.
In C'2and O'¢ the zero-point energy is divided between
several bonds.

The rotations that go with these vibrations were dis-
cussed for 06, and for C'2 there is the similar symmetry
requirement that the vibration w, is accompanied by
one unit of angular momentum about an axis normal
to the figure axis (W37). If the alpha-model of C'? is
considered to be a plane figure, the moment of inertia
about this axis is half of that about the figure axis, which
is the same as that in O if g is the same as we here
assume. Thus the rotation energy (H38) is proportional
to [J(J+1)—K?/27]. The consequent excitation energies
are also listed in Table V| in units Mev, with the elastic
constant of the bond determined by matching the 6.05-
Mev state and the moment of inertia by matching the
6.13-Mev state of O'®. Some of the refinement of our
earlier discussion of the states of O is here lost by
having put Dennison’s constant =0, but this suffices
to give a rough indication of where the levels in the
other nuclei would be expected to lie if the bonds were
similar in all ‘of these nuclei. We run into the same
difficulty that is encountered in trying to apply the
central model in (j7) coupling to C'2: there are simply
too many theoretical states accompanying the first
excited state. There is one experimental level at 4.44
Mev and the possibility of another (that does not show
up in all reactions (MS51)) at 7.3 Mev, at most two in
this general region. This is a qualitative discrepancy of
a sort that is not apt to be removed by a more refined
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assumption concerning the nature of the bonds. It there-
fore does not seem possible to apply the alpha-model in
any simple way to C!2.

The alpha-model might, however, be used to get us out of a
possible difficulty with the intermediate-coupling interpretation
of C2. The possible level at 7.3 Mev has recently been shown to
be probably a pair-emitting 0% level if it exists (Ha52, G52) .The
evidence is confusing and is based on very meagre observations
because in the (e, #) reaction in which it is questionably observed
polonium alphas on Be® seem to excite the level very weakly if
at all. If the 07 level exists, it does not seem to arise in any simple
way from the central model (double excitation from the p; shell
in C2 being much more expensive than that from the pj shell
giving rise to the 6.05-Mev state in O). It might possibly be
that the other states are mostly central model (in intermediate
coupling) with rather little tendency to cluster into alphas, but
that the 7.3-Mev state is mostly the dilational-vibration 0 state
of the alpha-model. The excitation energy 5.24 Mev listed for
this state in Table V is what would be expected above a pure-
alpha-model ground state and might instead be 7.3 Mev above
the actual (more complicated) ground state. This happens to be
just below the energy required for break-up into alphas. The other
excited alpha-model states listed in Table V might be absent
because of falling above this energy.

In Be? it is not clear, as it is in C'?, that there are too
many fairly low excited states to be ascribed to the
alpha-model if one simply assumes a harmonic bond.
The number of states in the region 4 to 5 Mev is not
experimentally certain—different experiments each give
one state at a different energy, so there may be one,
two, or perhaps three states in this region (where one
solid and one broken line are shown in Fig. 1). If there
were only one, this would be qualitatively compatible
with the number of states in the alpha-model, the two
states in Table V being at about 4.9 and 3 Mev, re-
spectively, and the 4% state being at 7.5 Mev. One
trouble with this supposition is that the harmonic
assumption is expected to fail on the outside in the form
of too low a potential barrier.

The Low Barrier in the Alpha-Model of Be?

In making a simple estimate of the barrier height we
consider the ‘“rotational potential,” or the term which
enters the radial wave equation of the 2+ state in the
way a potential does in a one-dimensional equation,

Viet=L(L+1)h?*/4Ma*= (15.3/x*)mc?, (30)
the Coulomb potential }
V.=4e*/a= (4/x)mc?, (31)

and the vibrational potential (harmonic term of the
bond)
Vein=(k/2)(Aa)?= 6.8(Ax)>mc2. (32)

Here we have put the distance between the alphas
=a=ux(e*/mc?), L=2, and, by assuming the stiffness of
the bonds the same as indicated by the 6.05-Mev state
of O, (/M) = (11.8mc*/h)?, M being the nucleon mass.
If we equate the kinetic energy of rotation at a fixed
separation to the excitation energy of the 2.9-Mev state,
we have V(o) =5.7mc?, or xy=1.64, some sort of



436 D. R.

average separation which we may take as an approxi-
mate equilibrium distance. From this the effective
potential is assumed to rise according to Eq. (32) until
it joins on to Viet+ Ve, which gives the potential out-
side the cut-off point. As the width of the potential
hole Vi, we take the value where it is equal to the
zero-point energy, which is at Ax=0.66, and take the
cutoff roughly at xp=1.6440.66=2.3. This gives V.(x5)
=0.89 Mev, V,t=1.48 Mev, or a total barrier height
of 2.37 Mev.

A slightly more refined estimate is made by taking into account
the centrifugal stretching of the bond, which is one aspect of
vibration-rotation interaction. Inside the top of the barrier, the
bond energy is given Vo+Vyib, which includes V. and applies
to both nonrotating and rotating states. By equating the energy
of the ground state, 0.17mc?, to V, plus the zero-point energy,
(11.8/2%)me?, we have Vo= —4mc?. In the 2% state the effective
potential is Vo+ Vyib+ Viot, and it has a minimum at a separation
%9 greater than has the minimum without rotation by an amount
Ax2=2.25/%,3. Thus at the equilibrium separation in the rotating
state the contribution of the bond energy to the total energy is
greater than in the ground state by Vin(Axe) =34.4/x55 The two
states also differ by the rotational energy (Viot)av of the 2% state,
and by the difference of the zero-point energies of the radial
motion, both of which depend on wave functions in a detailed
way. To avoid the use of wave functions, we assume that
(Vrot) av= Viot(x2), since it is not clear whether this gives too large
or too small an estimate, and that the radial zero-point contribu-
tions of Vi plus kinetic energy are about the same in the two
states. We then equate the energy difference to the excitation
energy 5.7mc?:

15.3 /2 34.4/x26=5.7, 33)

which determines x,=1.81. This includes only the simplest terms
whose sign is clear without recourse to wave functions, and is
obviously only a rough estimate. From this we have Ax;=0.38
and thus the minimum of the potential energy curve representing
the bond at %,=1.81—0.38=1.43. If now we equate the ex-
pression for the effective potential inside, Vo+ Vvib+ Viot, to that
outside, Vit Ve, we find that they are equal at Axp=0.92, or
xp=2.35, the position of the top of the barrier. The barrier
height is 2.29 Mev, composed of V.(xp)=0.87 Mev and V,ot(x5)
=1.42 Mev.

. J L Y,

F16. 19. Schematic potential and nucleon wave
functions of an alpha-model of Be8,
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s, Though this estimate is rough, it makes it unlikely
that the effective barrier in the 2% state is as high as
3 Mev. There are two phenomena that might make it
possible to have a broad virtual state approximated by
an alpha-model but slightly above the barrier: (1) the
partial reflection of a particle just above a barrier
(C29); (2) a possible division of the energy associated
with vibration into effective energy of vibration in the
one-dimensional problem and some other form such as
“internal” energy of the “fluid” that makes up and
binds the clusters. The partial reflection (1) is very
weak at energies more than a very few percent above
the barrier. It thus appears quite unlikely that a
reasonable. alpha-model would, without quite drastic
and complicated modification, contain a 2+ state near
3 Mev, and even less likely that it would have an
excited vibration state 0* at this energy or above.

In the most recent previous treatment of these
problems in this journal, Haefner (Ha51) has discussed
the alpha-model both for Be® and C!%, as well as some
other light nuclei. He does not make the questionable
assumption of a standard harmonic bond, for which the
principal support is the constancy of binding energy
per bond, and thus does not try to compare different
nuclei. In C!? he considers only rotational states and
thus, by neglecting vibration, fails to find too many
fairly low excited states. He also does not try to relate
the spacing of states to the excitation of the first state
of higher isobaric spin. When so few demands are made
on the alpha-model, it looks more hopeful, even in C'2,
In Be?, he gives a new treatment of the radial motion,
based on a bond potential which has no similarity to an
harmonic approximation, but instead includes a short-
range repulsion and a sudden cutoff to a Coulomb
potential, which emphasizes the artificiality of the har-
monic form in a problem with so much uncertainty of
position. The reader is also referred to his discussion of
the experimental situation. More recent experimental
results (T51) on the photodisintegration of C? show
evidence for a long-range and a short-range peak in the
alphas from the secondary break-up of Be** from the
3-Mev state, corresponding to forward and backward
motion relative to the recoil direction, and this implies
an angular correlation such that the 3-Mev state cannot
be Ot (as it seems to be on the basis of alpha-alpha-
scattering), thus providing further evidence that it must
be 2*. This is, however, not evidence for the alpha-
model, since this assignment is expected in the (LS)
model and in the (j4) model, so also in intermediate
coupling as in the interpretation of Fig. 8. As was
remarked above, a partial admixture of the alpha-
model may account for the width of the state.

The Nucleon Coordinates in the Alpha-Model
of Be?®

In those simple applications of the alpha-model to
the vibration and rotation energies of the 4 nuclei,
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we treat the alpha-model in terms of the coordinates of
the alphas only. The coordinates of the individual
nucleons are there ignored except.in so far as they cause
the alphas to obey Bose statistics. When we now turn
to the discussion of the possible intermixture of alpha-
model wave functions and central-model wave func-
tions, it is necessary to look in more detail into the
alpha-model, and to formulate it in terms of the same
nucleon coordinates which appear also in the central
" model. Be? provides an appropriate example.

In the alpha-model we make assumptions similar to
those made in the quantum treatment of molecular
mechanics, in spite of the lack in the nucleus of a
physical analog of the nuclei in a molecule. It is assumed
that the angular correlations of the positions of the
nucleons assemble them in clusters to a sufficient extent
that there is a preferred ‘“body-fixed”’ coordinate system
whose motion may be treated as “adiabatic” in the
sense that it is much slower than the motions of the
nucleons within this coordinate system. The “self-
consistent” field of the other nucleons is assumed to
provide an effective (“Hartree””) potential defined in
this coordinate system, and such a potential V' for Be®
with two minima is indicated in Fig. 19. The distance
between the two minima is assumed to vary so slowly
as to be “adiabatic,” corresponding to the vibration of
the simple alpha-model discussed above, as is familiar
in discussions of molecules.

The alpha-model wave functions in Be® are similar to
“molecular orbitals.” They may be assumed to have
local maxima or minima near the potential minima,
and may be either symmetric or antisymmetric in the
change of direction of the figure axis, or z axis. The
symmetric one, X, may be assumed to have lower
energy because its smaller slope near the center of mass
contributes less kinetic energy than does the greater
slope in this part of the antisymmetric function Z..
These two functions, each with two spin and two
isobaric spin projections, may accommodate eight
nucleons, and are thus filled in Be?.

Instead of starting a calculation with ‘“molecular
orbitals,” one may start with “atomic orbitals” such as

Y1~ exp[ —(8/2)(x*+y*) ] exp[ — (a/2) (s+a)*],
Ya~expl—(8/2)(x*+y%) ] exp[— (o/2) (z—a)*].

Gaussian functions each having a maximum at the
center of an alpha on the z axis at a distance ¢ from
the center of mass. Then the “molecular orbitals” may
be made as the sum and difference of these in the
familiar Heitler-London fashion:

Zy~Yitvo,
Zu~Yri—ya.
An Elliptical Model of Be?®

In discussing the possibility that the central-model
wave functions may be mixed with alpha-model wave

(34)

(35)
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TaBLE VI. Schematic wave functions for Be8, indicated by
occupation numbers of single-nucleon states.
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functions to form a good approximation to the actual
wave function of a system, it is desirable at least to
point out some of the difficulties of formulating the
calculation of such an admixture. In doing so we shall
first describe a very interesting calculation which has
been carried out by Wergeland (We41) and has some
slight similarity to the sort of calculation that would be
necessary.

Wergeland discusses the problem of the interaction
of two alphas by means of an application of the varia-
tion principle in which the alpha-model wave function
is modified by an admixture of another wave function
which we may call an elliptical-model wave function.
Thus he takes

V=Vy+2\T,, (36)

where ¥, is an antisymmetric sum of products of eight
“molecular orbitals,” Eq. (35), that is, an alpha-model
wave function which may be written as a “Slater
determinant,” and ¥y is a similar wave function for the
elliptical model, an antisymmetric sum of products of
the anisotropic Gaussian functions

Ys~exp[ — (8/2)(x?+y?) ] exp[ — (a/2)5%], 37
Y=z,

These functions have an ellipsoidal anisotropy, having
two extension parameters o and 8 where one would
suffice in a central model. Aside from this they are
identical in form with the wave functions for the s shell
and the particular #;=0 one of the three wave functions
for the p shell. The actual identity does not go so far,
however, because they are written in terms of the
coordinates of the body-fixed coordinate system of the
alpha-model. The elliptical model thus is a special type
of “Hartree model,” but bears very little resemblance
to the central model as discussed in the rest of this
paper, since in the latter all three of the p-shell wave
functions are populated, and in such a way as to provide
special correlations between spin and orbital orienta-
tions. The elliptical model is sufficiently similar to the
alpha-model [compare Eqs. (34) with (37)] to make
the calculation of the mixing straightforward, and yet
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contains enough of the concentration about the center
of mass characteristic of the central model to exploit
the feeling that an improvement of the energy may be
obtained by mixing because an actual Be® nucleus may
be intermediate between an alpha-model and something
more concentrated at the center. It may be noted that
¥s and ¢4 have the same symmetries as 2, and 2,
respectively, of the alpha-model. The main difference
is that ¢3 has a maximum at the center of mass where
3, has been assumed to have a minimum (Fig. 19).

The variation calculation is carried out (We4l) by
varying simultaneously A, o, and 8, with a fixed space-
exchange (Majorana) interaction capable of providing
enough binding for two separated alphas, and with
various fixed values of the inter-alpha spacing 2a. The
resultant minimum energy as a function 2a then gives
an interaction potential of the two alphas, which indeed
has a nice dip inside of the Coulomb barrier, but a dip
with a minimum a little above zero energy (the energy
of two separated alphas), and thus not deep enough to
give, after addition of the zero-point energy, a barely
unstable ‘ground state of Be®. This still constitutes a
very interesting treatment of the alpha-interaction
problem. Its failure to provide a strong enough inter-
action with a simple one-term nucleon interaction is
hardly surprising in the light of the failure of more
elaborate second-order calculations (with more general
nucleon interactions adjusted to the scattering and
saturation demands) to provide enough binding in the
central model of nuclei like Li®, e.g., (I37). The value of
A found by Wergeland is A=1.3, suggesting that the
nucleus prefers to remain somewhat closer to the alpha-
model than to the elliptical model. The admixture is
substantial, but the elliptical model resembles the alpha-
model so much more than the central model that this
result in itself may not be considered to show that the
alpha-model approach is invalid.

The Ground-State Wave Function of Be® in the
(j7) Version of the Central Model

In order to emphasize how small a part of the problem
of the mixture of the central model and the alpha-model
was carried out by Wergeland, we wish to compare his
elliptical-model wave function with the central-model
wave function of the ground state of Be® in the relatively
simple case of pure (j7) coupling (not intermediate
coupling). On the left side of Table VI, the complete
occupancy of the single-nucleon functions ¢35 and ¢4 in
the elliptical model wave function ¥y, for instance, is
indicated by the occupation numbers “1” for both
proton and neutron, for both 3 and ¥4 orbitals, and
for both 4+ and — spin orientations. The alpha-model
is similar with 2, and 2,. Partial wave functions for
the (j7) model are similarly indicated in Table VI. In
terms of them, with a prime (') indicating interchange
of proton and neutron occupation numbers, the com-
plete wave function of the ground state of Be? in the
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(j7) model (in the configuration S%ps?) is
\I/(jj)=‘(3(l+3b—26—26,+d+d'—8““6,)/(30)%. (38)

With this more complicated wave function in place
of ¥y, one could conceivably pursue a calculation
similar to Wergeland’s in order to calculate the ex-
pected degree of mixing of the central model and the
alpha-model of the ground state of Be? as a simple
example of a typical nuclear state. One might again
allow an ellipsoidal distortion of the single-nucleon
orbitals, but there might be more energetic tendency to
resist this distortion, at least when one is near the
central-model side, both because the m;==1 states
are occupied as much as the m;=0 state [within the
¥m; states given by Eq. (22), etc.] and because the spin-
orbit term (3) in the Hamiltonian is an important
contributor to the energy. This is the general sort of
procedure that we imagine when we think of a partial
admixture of alpha-model wave functions to modify
the properties of specific nuclear states. It may be
expected to be energetically advantageous only when a
fairly low state of the alpha-model is available with the
same symmetry (that is, J, 7, and parity) as has
the state of the central model under consideration.

In so complicated a calculation, it is not entirely
clear that there would be only one local minimum as
one varies A. It might, for example, be possible to find
a local minimum near the central model with little
ellipsoidal distortion, and one near the alpha-model
with much more, though this would seem a strange
result of a variation procedure. The rise between them
would then perhaps act as a potential barrier to isolate
these as two essentially separate almost stationary
states of the system, one resembling the central model
and another at a different energy resembling more
closely a state of the same symmetry of the alpha-model.
The possibility of such a two-model interpretation of a
nuclear energy spectrum has been discussed (I51) for
Li" as a result of the preliminary identification (P52) of
the 7.4 Mev state as having J=3%, the same as that of
the ground state. (It seemed that the only place one
can find another J=% state is from the other model.)
While the relevant experimental measurements have
not been completed, it appears on the basis of the
available data that this excited state may instead have
J=5/2, so that such an unorthodox interpretation may
not be required.

If, as seems more likely, there is effectively only one
minimum for each such problem, then it may turn out
that some states of a given nucleus resemble the central
model rather closely, and others of other symmetries
resemble the alpha-model, depending largely on which
model provides the lower state of a given symmetry.
In this case, each variation problem provides either a
central model state (approximately) or an alpha-model
state, but not both; or it might provide a state about
midway between the models, as we presume to be the
case among the low even-J states of Be®.
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The Alpha-Model States of Li’

The alpha-model of a nucleus not containing 4
nucleons is described (H38) in terms of incomplete
occupancy of molecular orbitals such as those shown in
Fig. 19. The lowest state is described by saying that Z,
is occupied by four nucleons and 2, by three, or alter-
natively that there is a =, “hole.” The wave function
changes sign by interchanging the positive and negative
2 axis, which is physically the same as rotating the body-
fixed coordinate system by 180° in space, so single
valuedness requires that the rotational function be odd,
with rotational quantum number 1, having a projec-
tion 0 along the body-fixed z axis, a 22, as it is called in
molecular spectroscopy. Such a doublet has two com-
ponents depending on the relative orientation of spin
and orbital moments, analogous to a 2P in atomic
spectra. In the interpretation given above these are
supposed to account for the ground state and 0.48-Mev
state, the “isolated low doublet,” whose splitting is
then largely an alpha-model characteristic. The other
fairly low state in this model is the one described
similarly as a =, “hole,” called a 23, but likea 2S'itis a
“doublet” having only one state. If this is at about
6.5 Mev as is supposed above, it has enough energy
(and appropriate symmetry) to break up quiekly into
an alpha and a triton, so is expected to have short life
and be broad, as is the state observed at that energy.

An alternative alpha-model of Li’ would consist
simply of an alpha and a triton, if they would attract
each other. Its ground state would be a %S, and higher
states similar to 2P, etc., would arise from rotation. In
view of the instability of He® and Be® and the large
size of the triton, it seems unlikely that the alpha and
triton would attract each other enough for this model
to stick together. The model discussed above, con-
sisting of Be® with a “hole,” is favored by the impor-
tance of the exchange process, with resonance between
the two positions of the “hole.”

11. BETA-DECAY AND THE SURPRISING
LONGEVITY OF C

General Situation of Beta-Decay in the p Shell

The squared matrix elements encountered in beta-
decays of the various elements, or their reciprocals the
ft values, vary so widely in order of magnitude that
one might at first sight expect to find little meaning to
a refined factor, such as 3% by which a calculated
matrix element might differ between two models, or
between (LS) and (j7) coupling. Yet there is a similar
variation of gamma-lifetimes, and once these transi-
tions are sorted out according to their magnetic or
electric multipole order, there is, at least among the
very numerous magnetic 2%pole transitions, a very
surprising exactitude with which they may be plotted
on a straight line on the usual logarithmic plot (Go51).
This phenomenon among the moderately heavy nuclei
encourages the hope that matrix elements may have a
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fairly exact meaning in beta-decay, if ever we can calcu-
late them. Attempts to compare the experimental
matrix elements in the p-shell nuclei with those calcu-
lated with (LS) coupling on the one hand and with (57)
coupling on the other, always using the wave functions
appropriate to a symmetric Hamiltonian, have indi-
cated no uniform preference for either coupling scheme,
which fact, in itself, is suggestive of the prevalence of
intermediate coupling or other such complexity among
these light nuclei (Fe50). Yet certain facts do appear
particularly clearly in these light nuclei. The occurrence
of several pairs of self-mirrored nuclei in this region
gives rise to the highly favored or “super-allowed”
transitions in which the nuclear matrix elements are
expected to be unity because of the great similarity of
the ground-state matrix elements of two mirror nuclei.
Among the polyads centered about odd-odd nuclei, the
allowed transition HeS—Li®, with J changing from 0
to 1, shows that there must be a strong component of
the Gamow-Teller operator,
V=¢ 2

nucleons

740, (39)
effective in the transition, and the two examples of
0—0 transitions, C%—B® (Ot state at 1.74 Mev) and
O“—NU" (0 state at 2.32 Mev), show that the Fermi
operator, which is similar to Eq. (39) but lacks the
factor o, must also appear. Comparison of these cases
and others shows that the two operators must be
present with at least very roughly equal coefficients
(Mo51, BI52). [Those discussions are based on the
assumption that in Li the contribution of the spin-
orbit term, Eq. (3), is not large enough to cause a
strong deviation from (LS) coupling, which does not
seem to be quite assured in the light of the above
review of the energy levels, so the equality of the coeffi-
cients may be only very rough.] The existence of a
strong Gamow-Teller term demonstrated by the He®
decay brings about what has probably been the most
persistent puzzle in the study of beta-decay, the long
life of CY, which also involves a 0—1 transition. While
this long life has made C* a very useful radiological
tool for archeology because of its cosmic-ray origin in
the atmosphere (L49), it has been considered so
anomalous that some rather farfetched ad %oc assump-
tions have at times been reluctantly introduced in an
attempt to account for it, but have been disproved by
subsequent experimental results, as has been mentioned
in Sec. 7.

The Lifetime of C! as Calculated in
Intermediate Coupling

It has been recognized that the alternative to those
unsuccessful ad koc assumptions would be to admit a
chance cancellation within a complicated matrix ele-
ment, but the factor 10% by which the transition rate
appears to be suppressed is so large as to make this
explanation seem very unlikely, ¢ priori. It happens
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Fi16. 20. The broken curve gives the nuclear matrix element for the beta-decay of C on the left and of He$
on the right. The solid curves give the fractional constitution of the ground state of N (and Lif), that is,
the squares of the coefficients in the wave function, in terms of 35, 1P, and 3D.

that C* is a part of the one polyad, Py", for which we
have been able to present an analytic solution to the
intermediate-coupling pfoblem in the ground configura-
tion. This makes it possible at least to calculate whether
or not complete cancellation is possible with a reason-
able value of the parameter a/K. We shall show that
it is not possible within the ground configuration, but
that the amount of configuration mixing required to
supply the cancellation is not exorbitant.

The energies of the three (J, T) = (1, 0) states plotted
in Fig. 5 are derived from a cubic equation (4) of refer-
ence (I52), and from the energy matrix there given we
may write the corresponding secular equations

(Hy— &) Ci+Hi15Co=0,

H21C1+ (Hzr" 61)C2+ Hy= O,

H32C2+ (Hys— &)= 0,

with Hy= Hz=(2/3)% [note misprint in (I52) on this

point], Hs=g+a/2, etc. Similarly for the two (0, 1)
states we have the secular equations

(Hu— €)Cit+Hyp=0,

H54C4+H55— €= 0,

with Hg= — 2%, Hu= —a/2, Hs=¢+a/2. Here eand g

are energies arising from the specific nuclear interaction,

Eq. (2), and when we specialized for L= 6K, they be-

came e=6.6K, f=—8K, g=3K. The C’s are coefficients
in the expansions of the wave functions

¥(1,0)=N1[Cry(CDy)+Cop (\P1)+¢(3S1) ],
¥(0,1) = N[ Cal (*Po)+¥(1S0) 1.

With the Gamow-Teller interaction, Eq. (39), we

(40)

(41)

(42)

have the matrix element for the beta-transition

f U¥(1, 0) (0, Ddo= (1, 0| V|0, 1)

=N1No[C:Co(*P1| V[*Po)+(3S:| V|1S0) ]
=N1NoVis{ (Has/Hs2)[ (Hs3— 1)/ (Hus—€2) ]
X (Vas/Vis)+1}.

This sum has only two terms because of L orthogonality,
since the interaction operates on the spin and isobaric
spin only, not on the space coordinates of the nucleons.
There is a similar reduction of the number of terms,
because of orthogonality in M z, when we evaluate the
two terms of the matrix of V in Eq. (43) using the
expansions:

Yo=y(1Py) = PY(af—Ba)(yr—7v)/2,
3=y (351) = S%aa) (vr—mv) /2%,

Vi=yY(*Py) =[P'BB— P*(aB+Ba)/2}
+ P laaJvy/33,

(43)

(44)

Us=Y(1So) =S af— Ba)vy/2%.

Here we write two-nucleon wave functions to represent
two holes in the p shell, on the assumption, to be
justified in Appendix III, that holes behave as do
nucleons in beta-decay as well as in energy matrices.
We use a spectroscopic notation such as P! for L¥Z or
Y.ML the « and B are the usual Pauli spin functions,
v and 7 are analogous functions for isobaric spin, and
within each product of two of these the first factor is
associated with the first nucleon and the second with
the second. There are three equal matrix elements of
the form, Eq. (43) corresponding to the three states
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My=1, 0, or —1 associated with J=1. It suffices to
calculate with any one of them, and we select M ;=1 in
writing and working with Eq. (44).

The wave functions, Eq. (44), are used to calculate
both the matrix elements H;;and V;;, and the arbitrary
choice of phase thus does not, of course, affect the final
result. The same is true of the sign convention in the
well-known operator

I (JakiJ Y= [(7Fm) (j+1£m) Y+,

which is used with A~ 'J y™=my™ Examples of this
operator as we use it are lt¢=2%, Itb=2%, 370
=stf=q, ttr=y, etc., with positive square roots. We
abbreviate J,41iJ,=J%, i+ij=i* and the combina-
tions of them with which we operate on the wave
functions are

@-8)=3(*ts+Ist)+1.s., (45)
from Eq. (3), and from Eq. (39)
T20= (1) (sti—+s7Tt42s,k). (46)
The relevant beta-decay matrix elements are then
Vu=("P1|V|*Py)=374(g/8)
X[(aB—Ba)(yr—mv) | otri| fByv]
=3"¥g/8)[(aB—Ba)(vr—7v) | afmy— Bavr Ji~
= _3_%gi—: (47)
and similarly
V35= (3511 Vi lSo) = gi_. (48)

In verifying the spin-orbit elements Hj and Hg as
given above, one further specifies S'=3~*(ac+ca— bb),
Pl=2"%ab—ba), etc., in Eq. (44). Thus in the first
term of the last number of Eq. (43) we find

(Hys/Hz) (Vat/ Vi) =1, (49)

the sign being definitely positive. This is multiplied in
the first term by the ratio of two expressions, each of
the form (e;—Hj;), and they both have the same sign
because in solving secular equations of this sort one
always obtains a lowest root lower than the lowest
diagonal matrix element used, and we are here dealing
with two lowest roots (ground states), e;. Thus there
is no opportunity for the two terms in Eq. (43) to
cancel one another, so it appears from this calculation
that the long life of C!* may not be attributed to acci-
dental cancellation within the matrix element here con-
sidered. Since there appears to be no other possibility
within the framework of our present interpretation of
nuclear structure and beta-decay (in the approximation
in which we neglect configuration interaction), it is
important to examine carefully all the assumptions in-
volved in the determination of the relative sign of the
two terms in Eq. (43). This is done in Appendix III.
One must be careful because questions of phase some-
times arise when transferring from wave functions of
particles to those of holes, and it is shown there
explicitly that there is no change of relative sign in
transferring the beta-decay matrix elements from par-

441

ticles to holes if the wave functions are those which give
the usual change of sign in the more familiar transfer of
the matrix of I-s from particles to holes.

Although there is no cancellation between the two
terms in ground-configuration matrix element, the de-
tailed nature of the coefficients in the wave functions do
provide a little tendency to make the lifetime of C!* at
least slightly longer than would without calculation be
expected, by a factor of about 10 which is only a very
small part of the factor 10® needed. This comes about
because the ground state of N, well out in intermediate
coupling to the left of the value a/K~ —3, contains
almost 90 percent of ®D, only a little more than 10 per-
cent of 45 and P combined. The behavior of the squares
of the coefficients in the wave function is shown by the
three full lines in Fig. 20. The interesting sudden cross-
over in the vicinity of a¢/K=—2 is to be compared
with the close approach of the two low (1,0) energy
curves in Fig. 5. )

The cross-over of the 35 and 3D contributions is to
be understood this way: without the influence of non-
diagonal matrix elements, the 35 and D energy curves
in Fig. 5 would follow their sloping (LS)-coupling
asymptotes as straight lines which cross each other
near ¢/K = —2, and further to the left the lowest (1, 0)
state would be a pure 3D following this straight line a
little above the actual line drawn in Fig. 5 and a little
above the (§7) asymptote, while to the right of a/K = —2
the lowest (1, 0) state would be a pure 3S. The influence
of the nondiagonal terms is to mix the two (LS)-
coupling states quite completely where they came quite
close together, in the region of the cross-over, and to
mix the states only to a limited extent elsewhere, almost
none at all in the vicinity of ¢/K=0 where the non-
diagonal elements vanish.

The effect that this suppression of the beta-decaying
5§ and 'P components has on the matrix element is
indicated by the broken line in Fig. 20, which gives
(1,0|V]0,1)/V3s from Eq. (43) with Eq. (49), that is,
the nuclear matrix element relative to the 1S—3S transi-
tion. For most of the region of ¢/K that is expected to
apply to Py it has about one-third of the value that
it has in the region appropriate to Py®, and the square
of this nuclear matrix element gives a factor 10 in the
lifetime of C* relative to HeS.

Other Possible Sources of the Cancellation

Since the required cancellation does not occur in the
ground-configuration matrix element with charge-inde-
pendent central interactions, and there remains a factor
10° in the lifetime of C* to be explained, the question
arises what modification of our assumptions could
permit sufficient cancellation to occur, and whether the
modification would invalidate our intermediate-coupling
interpretation of the ground-configuration states as a
plausible or useful approximation for other nuclear
properties.
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TaBLE VIII. Spin-orbit energies of the electron configuration ? in the M, M s representation.
Mg

mi Ms mi s mi Ms My, Mg Zmims=Z(1-s) AMLMg A/a My 1/2 3/2
1 + 1 - 0 + 2 3 0 2D, 0 0 2 1 0
1 + 1 - -1 + 1 3 0 2D, 0 0 1 2 0
1 + 0 - 0 + 1 3 2P0 0 0 3 1
1 + 0 + -1 + 0 3 0 45,0

If we depart from the charge-independent Hamil-
tonian by introducing the Coulomb interaction we do
not introduce any new contribution to this matrix
element, for this still leaves J, L, and S conserved. The
only state with the same J that could be admixed is
the (J, T)=(1,1) state from the P, but this is not
admixed because it has a different (L, .S) from any of
the (LS)-coupling states contained in the ground state.
The introduction of a tensor interaction also fails to
admix any effective states of the ground configuration.
Because a two-nucleon or two-hole wave function is
purely symmetric or antisymmetric in space and the
tensor interaction is symmetric, there is no mixture
of the P multiplets with S or D, so the only non-
diagonal matrix element of a tensor interaction is
between the 3S; and the ®D;. This would appear in the
first equation of (40) but we used only the third in
showing there is no cancellation, that is, it is only the
ratio of the terms in the wave function %S to !P and not
of these to 3D that matters, so this tensor matrix ele-
ment does not affect this result. (The influence of that
nondiagonal tensor matrix element on €, affects the
detailed curves of Fig. 20, but not the lack of cancella-
tion in the ground configuration p—2.)

Thus we are forced to look to configuration mixing as
a'source of the apparently fortuitous cancellation that
makes the lifetime of C* so long. We may conveniently
formulate the configuration mixing thus:

¥(1, 0) =2 [csata(*S)+craba('P)+cpaba(*D) ],
¥(0, 1)=2a [dsatba(’S)+draba(*P)],

where the summation index « indicates successively
each of the configurations p~2%, p3f, p~4d?, p~'s% etc.,
including many higher configurations. The beta-decay
matrix element that must so nearly vanish is then

(1,0[V]0, )=2[csads5a(*S| V['S)a
+Cpadpa(1pl V| 3P)a]. (50)

We have seen from Fig. 20 that c¢s; and cpy are each
roughly equal to ¢pi/4, and that their signs do not
permit the two leading terms of Eq. (50) to cancel one
another. If, for example, only one other configuration,
a=2,should contribute, it would be possible for Eq. (50)
to vanish with |css| =cs1/2=cp1/8|dss| ~ds1/2, and
similarly for the subscripts P, or, as a second possibility,
with |css| =csi=cpi/4, dsa~dgi/4, if the matrix ele-
ments like 35| V|1S), do not depend strongly on the

(49)

subscript. In the second possibility the mixture from
the excited configuration appears with an amplitude %
or a probability % relative to the leading term of each
wave function. It is the probability rather than the
amplitude that measures the modification of some
properties of the state, such as magnetic moments.

Thus we see that it is possible for configuration
mixing to provide the fortuitous cancellation without
destroying the validity of the ground-configuration
representation of the state as a valid approximation.
Whether the fortuitous cancellation is not @ priori so
unlikely as to make it seem to be an unacceptable way
to account for the long lifetime is another question.
A factor 1/300 is needed in the matrix element. If the
configuration mixing is just of the order of magnitude
required, the probability that the cancellation should be
so exact is somewhat more than 1/300. There are of the
order of perhaps several dozen beta-transitions with
J-values well enough known that an accident of this
sort would have been recognized as troublesome. The
probability that such an exact cancellation should have
happened in any one of them is of course much greater
than 1/300, and, indeed, not so improbable as to make
implausible an otherwise acceptable interpretation of
nuclei which requires this to have happened.

CONCLUSION

From the foregoing review we see that the situation in
the p shell is more complicated than we might have
hoped. An attempt has been made to outline the nature
of the complexities as far as this can, at present, be
done, with the expectation that this beginning may
serve as a useful guide to further investigation, both
experimental and theoretical. The type of agreement
found between theory and experiment is such as to
provide some indication but not very convincing proof
that the intermediate-coupling interpretation is correct.
The fact that the intermediate-coupling parameter a/K
has been freely varied to fit the empirical needs of the
various polyads, and that the range of variation about
the rough mean value |a¢/K|=35 has become rather
wide (from 3.7 in Py!? to 5.6 in Py!) as slight refine-
ments have become possible, leaves the uncomfortable
feeling that such an array of rough fits might have been
arranged even if the theory were not essentially correct.
The variation of the energy parameters ¢ and K indi-
vidually is also disturbing. Surely the theory must be
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TaBrE IX. Further spin-orbit energies in the nucleon configuration p2.

mi s me mi ms me mi s me ML Mg Mp Zmms=Z(-s) (A/e)MpMg Ala
1+ + o+ + 1 + - 2 3 3 1 D, 1 D, }
1 + + -1 + + 1 + - 1 3 3 ‘D, %

1+ o+ o + + 0 + - 1 ‘P, } P, }
1+ 4 -+ 1+ - 3% 3 F, } F, }
1+ o+ 1 - + 0 + - 2 3 3 2D* 0

1 + + 0 + + 1 - - ‘D,

14+ o+ o - + 1+ = 17, §

1 -+ o+ + 1 4+ - 1 "D, } "D, }

looked upon as exploratory and subject to verification or
disproof by the accumulating evidence of further experi-
mental assignments of quantum numbers as they in-
crease in number and certainty. A propitious beginning
of such verification has been made. The best that can
be hoped is that the theory will merely have to be
modified, and that the necessary modifications will be
indicative of the more detailed nature of nuclear inter-
actions, both specific and spin-orbit.

The reason for the peculiar behavior of the lightest
p-shell nuclei, and the nature of the transition from
these to the heavy nuclei, is here left in urgent need of
further study and more detailed understanding. The
intermediate-coupling interpretation is the most natural
extension down toward light nuclei from the successful
(77)-coupling interpretation of the heavier nuclei, but
its lack of spectacular and detailed success, even if that
could hardly be expected, leaves one with some feeling
of reservation concerning the general approach. Just as
is sometimes said of other unfinished endeavors (such as
the “majority plan” in the United Nations for the
international control of atomic energy), we should
perhaps stick by the approach we have already de-
veloped until something better is presented ; but may its
existence and its shortcomings stimulate the search both
for improvements and for something better and more
clearly acceptable.

In conclusion, there comes the opportunity to thank
many colleagues for the help provided by their remarks
on these varied subjects. They include Maria G. Mayer,
Dieter Kurath, and Eugene P. Wigner for discussions
and for communication of theoretical results before
publication, Louis A. Turner for suggestions concerning
parts of the presentation, Thomas Lauritsen and Fay
Ajzenberg for sending preliminary sheets of the latest
edition of their very valuable review of the experi-
mental data, and William W. Buechner, Anthony P.
French, Harry W. Fulbright, and Denys H. Wilkinson
for communication and discussion of recent experi-
mental findings.

APPENDIX I
Multiplet Splittings in Py’

Without the slight complication of isobaric spin, the
calculation of multiplet splitting energies by trace in-

variance is familiar. In the three-electron configura-
tion p3, by way of example, the permitted multiplets
are first found to be 2D, ?P, and %S by counting the
numbers of sets of electron quantum numbers for each
My, Mg, as listed in Table VIII, and the spin-orbit
coupling parameter 4 for each multiplet is then calcu-
lated by trace invariance as in the right-hand columns
of this table. It is remarkable that in this particular
configuration all multiplet splittings vanish in first
order. For three nucleons, when they each have the
same charge with, say, m;=%, the same calculation
applies. Thus for the nucleon configuration $? there are,
among others, three 7=% multiplets (which we denote
by an asterisk), 2D* 2P* and 4S* each with zero
multiplet splitting.

In Table IX a start is made of listing the allowed
states having M r=3. Aside from the 7=$% multiplets
already mentioned, these also require the 7’=% mul-
tiplets %F, ‘D, 2D, *P, *P, 2P, and 2S. In Table IX it is
calculated by trace invariance that each of the first four
of these have A=a/3, which suffices to show the
method, and the table carried one step further shows
that the sum of the A4’s for the two %P’s is (2/3)a,
which is all that this method of trace invariance can
show. A detailed calculation of the ground-state wave
functions (B38) shows that for the ground 2P we have
A=a/3, so this must be true for the remaining %P as
well. Of course, 4 has no meaning for the 4S and 2S for
which L-S=0.

APPENDIX II

Nuclear Quadrupole Coupling in Polar Molecules

The sign and magnitude of a nuclear quadrupole
moment Q are in most instances measured only in-
directly through the effect on molecular energy levels
which depend on the product of Qg, where ¢ is the
quadrupole coupling constant determined by the dis-
tribution of electric charge in the molecule. The calcu-
lation of ¢ is difficult and in many cases unreliable
because it depends on taking a difference, and sometimes
a relatively small difference, between positive and nega-
tive contributions representing the competing effects of
electronic charge and the charge of the other nucleus.

Although molecular binding forces are expressed in
terms of “exchange forces,” it must be remembered
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Fi16. 21. Schematic charge redistribution in one of the ions of a
polar molecule, and the terms of the potential which contribute
to the calculation of the quadrupole coupling constant ¢ at its
nucleus.

that these are nothing but the result of making a
quantum-mechanical average of the Coulomb inter-
actions of the electrons and nuclei which constitute a
molecule, and that the forces acting on a nucleus within
the molecule are entirely electrical forces (aside from
very small magnetic forces). It is important not to
confuse the question of stability of a molecule at a
given internuclear distance R with the question of the
force acting on a nucleus, or the potential effective on
the parts of the nucleus as it alters its orientation: In
making this distinction, let us neglect zero-point vibra-
tion and consider a nonrotational state, so the molecule
may be assumed to be at rest and in equilibrium at a
constant internuclear distance. The equilibrium depends
on the fact that, if R should be altered, the energy of
the molecule would be higher after the electrons had
readjusted their rapid motions to fit this adiabatic
change. The total energy of the calculated ground
state of the molecule, plotted against R, has a minimum
at the equilibrium value of R. This statement says
nothing about the electric potential in the vicinity of
‘the nucleus. It may perfectly well be true that the
nucleus is sitting at the top of a potential hill, but never
slides off because the hill changes its height every time
the nucleus moves a little. The electrons which de-
termine the height of the hill are governed in their
motions by the position of the nucleus. In a first-order
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treatment of hyperfine structure, which is a relatively
small effect, we assume that the electrons are not
appreciably affected in their motions by the orientation
of the nonspherical nucleus, and thus use a potential
function in this calculation. The “hill” is level on top,
or the valley is level at the bottom, as the case may be
(that is, there is no electric field acting on the nucleus,
so that it may remain unaccelerated in its equilibrium
position) but the sign of the quadrupole coupling con-
stant ¢ is negative or positive depending on whether
the potential function is a hill or a valley, in the profile
made by cutting along the internuclear axis 2.

The charge distribution of a diatomic molecule has
rotational symmetry about the z axis, and the potential
in the neighborhood of a given nucleus resulting from
all charges outside of (an arbitrarily small sphere sur-
rounding) that nucleus may be described, in the light
of the Laplace equation, by the derivatives

92V /9x2= 92V /9y>= — 192V /92,

that is, essentially by‘ 92V /2% the first derivatives
being zero because of the equilibrium. The nonspherical
nature of the nucleus is defined by its quadrupole

moment
0= 2 Q2’7
protons

where z, and 7, are proton coordinates in the nucleus,
with the z, axis the preferred one along the nuclear
angular momentum, which in this section we tradition-
ally call T (elsewhere J). With I oriented along the
z axis of the molecule, the two coordinate systems
coincide and the orientation energy is

e=%e 3. (x%0°V/3x*+y%0°V/0y?+ 2202V /82%)a

protons
=21e) (252—x2—y?)n0%V /022
— 1600V /05 =1e(g,

e being proton charge. In the orientation normal to this,
with z, along x, one obtains e= —eQq/8 (after using the
symmetry of the nucleus about z,). The quadrupole
coupling constant ¢ as here defined, ¢g= 9%V /922, agrees
with the definition usually used in the experimental
analysis (F45),

eq= f de;(3z2—r) /17,
which is equal to
f de,-azrf‘/azﬂ.

In the case of a diatomic polar molecule, such as LiCl
and the other alkali halides, the molecule may be
assumed to consist essentially of two ions, and an
important contribution to the electric potential at the
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Li nucleus, say, is the Coulomb term V= —e¢/r arising
from the charge of the negative Cl ion. We shall show
that one may plausibly conclude that this is the pre-
ponderant term in determining the sign of ¢.

If the ions remained unpolarized (spherically sym-
metrical), V; would be the only potential acting on the
nucleus and the nucleus would be accelerated by an
electric field E;. The field to annul this must be supplied
by polarization, and, since polarization forces are com-
paratively short-ranged, this must come primarily from
the ion in which the nucleus is located. The simplest
model for polarization would be to consider that the
nucleus moves away from the center of a uniformly
filled sphere of electron charge, but this is too simple.
In the Thomas-Fermi approximation to atomic theory,
for example, it is known that the electron density in-
creases toward the center, and correspondingly, there
is a tendency for the nucleus, if displaced, to carry the
electron density in its immediate vicinity along with it.
As a simple model intended to describe this effect,
with a discontinuity replacing a gradual change, let us
consider that the polarization of the positive ion (for
example) is accomplished by moving the nucleus and
all the electron charge within a sphere of radius @ about
it bodily to the right, as sketched in Fig. 21, by appli-
cation of an imaginary constraint. In this step we have
introduced no new electric force acting on the nucleus:
the total force of all the electrons in the positive ion on
its nucleus remains zero, because the nucleus is at the
center of a spherical distribution of charge and, at
the same time, inside of a spherical shell, each of which
makes zero field. In this step, we have, however, piled
up the charge in the region of overlap and thus made it
necessary to occupy high energy parts of momentum
space in one crescent-shaped segment, and have left
another empty. If we relax the constraint, the most
marked readjustment to this inequitable situation is
expected to be that some of the charge from the over-
lapped segment will settle in the empty segment.
Electrically, this readjustment is roughly equivalent to
placing a positive charge, let us say ¢, at about a
distance a to the right of the nucleus, and a negative
charge —¢’ at about the same distance to the left. The
corresponding equivalent charges and potentials are
shown in the lower part of Fig. 21.

The electric potential caused by all other charges
(the electron cloud and the other nucleus) at and near
the nucleus of the positive ion is the sum of three terms,
which along the z axis are

Vi(z)=—e/(R—2),
Va(z)=¢'/(a—2),
Vi(z)=—¢/(a+2).
The z components of the corresponding electric fields

are E;= —dV;/dz, and from the vanishing of the total
electric field at the nucleus we have Ey,=E;=—E;/2,
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TaBLE X. Observed sign of ¢Q for various nuclei in various
molecules (Lo52), and the sign of.Q deduced.

Homo- Other ion

Nucleus polar F 1 Br K Tl Q Config.
Li7 + + + + + - pud

Na2 - - - - - 4+ (wdsn)?(vdsn)t
S SO f
3718D4g - - ™[50
5Csr!®  + + ) —  (wgp)™®
17CI35.37 — = = (wdsp)

in the approximation in which the similar polarization
of the other ion is here neglected. Thus the two polar-
ization terms in the electric field have the same sign
and combine to annul the ionic term.

Among the corresponding contributions ¢;= 2V ;/dz*
to the quadrupole coupling constant ¢, the two polariza-
tion terms annul one another in this approximation, for
g2= — s, corresponding to the fact that the curve result-
ing from ¢’ is concave upward and the curve resulting
from —e¢’ is concave downward in Fig. 21. This leaves
the quadrupole coupling ¢=g¢; with the sign determined
simply by the sign of the charge on the other ion,
corresponding to the downward curvature of the curve
due to —e in Fig. 21. Thus ¢ is in this approximation
expected to be negative at the Li nucleus and a similar
treatment of the polarization of the other ion makes it
positive at the Cl nucleus in the molecule LiCl, for
example.

This oversimplified approximation is of course only a
beginning of a calculation, intended to give some initial
insight into the quadrupole coupling process, and. it is -
gratifying that it does seem to have a simple corre-
spondence with the observed results. The next higher
terms in such a calculation may be of two types. First,
there are those involving a difference in the curvatures
g: and ¢s, which might be troublesome, being indi-
vidually larger in magnitude than the presumably
dominant term ¢; by a factor R/2a, because of the
shorter range @ in the equations ¢g,=E,/a, etc. These
are essentially higher approximations in the treatment
of the polarization of the ion caused by the application
of the constant field E;. Second, there are the effects of
the ionic distortion caused by the derivatives of Ej,
that is, by ¢: applied to the electrons, and their sub-
sequent effect on the nuclear orientation. Since E;
curves downward in Fig. 21, the corresponding potential
energy for electrons curves upward and the electrons
tend to shun the z axis, concentrating slightly near the
xy plane. This makes the electric potential acting on
the bulges of the nucleus lower in the xy plane, opposing
the direct effect of the downward curvature of E; to
make it lower along the z axis. The electrons thus tend
to shield the nucleus from ¢.

Note added in proof.—The extent of this shielding is
being investigated by Foley and Sessler (according to
a private communication). By a spherical-harmonic
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expansion of the potential applied to an atom and a
perturbation-theory expansion of the statistical atom,
they estimate that the shielding can be as high as 90
percent.

The consistency of the experimental results seems to
indicate that these higher order effects still leave ¢
dominant in determining the sign of ¢. The measured
signs (L052) of the products ¢Q are shown in Table X.
The sign of Q, deduced from the rule that the sign of ¢ is
the sign of the charge on the other ion in the case of the
alkali halides, is also listed. The (j7) configurations are
listed. In the case of Li’, where the (j7) model appar-
ently does not apply, Q is expected to be negative on
any reasonably simple model (essentially because the
configuration ® is near the beginning of the p shell),
and it is very gratifying to have the experimental
evidence in favor of this expectation, since this was not
clear earlier when the evidence depended on an un-
certain calculation of ¢ in Li,.

Recent results (F52) show that ¢ at the Cl nucleus
in KCl is very sensitive to vibrational quantum num-
bers, so presumably to internuclear distance. This
suggests (Du52) that the molecule is not quite com-
pletely ionic, and that a small admixture of a non-
spherical 2p! shell in Cl contributes very significantly
to ¢, so that the variation of the admixture with inter-
nuclear -distance may account for the variation of g¢.
The p electrons in Cl tend to overlap with the other
atom to contribute some valence binding, and the
corresponding sign of the quadrupole polarization of
the atom makes a negative contribution to g, opposite
to the contribution of the charge of the positive K ion.
The small atomic admixture to the K ion (or the Li
ion in LiCl) etc.) involves an s electron so does not
appreciably affect ¢ at its nucleus, so our conclusions
concerning Qr; are unaffected.

The signs of Q listed for K, Rb, and Cl are also in
keeping with expectations based on the theory of
nuclear structure, negative at the beginning of a sub-
shell corresponding to an orbit spread out in a flat
distribution near a plane normal to J, and positive for
proton ‘“holes” near the end of a subshell. In the cases
of Na® and Cs™ we do not have such a simple possi-
bility with just one proton or “hole” in addition to
closed subshells, so the shell-model expectation is not
so clear. The Na® configuration is complex enough that
anything could happen, but in this case (0 has been
measured (by F. Bitter et al., private communication
from P. Kusch) to be positive by an atomic method not
involving the uncertainty of a molecular ¢. This gives
us our only direct verification of the signs here deduced.
The Cs'® configuration listed should have positive Q,
being nearer the end of a subshell, but the higher pairing
energy (MS50) of the competing nucleon level /iy
would favor the configuration /11/s'g72, which woulp
have a negative Q as observed, if the /4 protons pair
to give zero.
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For the polar molecules, a more physical argument
may be given leading to the same picture of polariza-
tion of the ions, and not involving the temporary
application of imaginary constraints. When an ion
containing only closed electron shells begins to overlap
with another ion, one may expect the angular factor of
the electron distribution, originally isotropic, to begin
to be affected by admixture of higher configurations
(electrons being partially excited to higher shells) in
such a way as to move electrons away from the region
of overlap and over to the far side of the ion. This sug-
gests that in case of modest overlap, the angular re-
distribution is most important near the outside of the
ion and the parameter ¢ in Fig. 21 should be approxi-
mately equal to R/2. In this case the curvature of the
individual curves involving ¢ is about equal to that of
the ionic term and higher approximations (such as the
existence of radial as well as angular redistribution) are
not apt to be more important than the terms already
discussed.

Purely classically, one may describe the same effect
by thinking of the balance of electric forces. The two
ions must attract one another electrically, either in the
unpolarized or polarized approximation. Thus some of
the matter in each ion is accelerated toward the other
ion, while the average charge distribution remains
fixed. There is a reciprocal flux of electrons between the
ions, which in their effective z motion come to rest on
the far side of the ion and start back. It is their rela-
tively low probability density in the region between the
nuclei, where their z motion is rapid, and high density
in the region where they come to rest that provides the
polarization of the ion which we have described.

The signs of ¢Q for the homopolar molecules Lis, etc.,
are also listed in Table X. Here the calculation of the
sign of ¢ appears to be more difficult because ¢ is zero
in the approximation corresponding to the one we have
discussed, there being no simple Coulomb term from
the charge on the “other ion.” The deviation from
spherical symmetry of the separate atoms is influenced
by the symmetry of the electron wave function in the
space coordinates and the consequent tendency for the
electrons to concentrate in the region of atomic over-
lapping between the two nuclei. This effect appears to
predominate, for it gives the negative sign observed
for ¢ in the alkali molecules, but it has to compete with
the effect of the penetration of one nucleus into the
initially spherical screening charge distribution of the
other atom. It is perhaps gratifying that the effect
predominates which sets in first as the atoms begin to
overlap, but in an actual molecule the result might be

“expected to be a fairly delicate balance between the
positive and negative contributions of electron and
nuclear charge. That the balance is not extremely
delicate is suggested by the consistency with which the
homopolar value of ¢ agrees with the value at the
nucleus of the positive ion in Table X.
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APPENDIX III
Transfer from Particles to Holes in the Theory of Beta-Decay

A convenient notation for calculations of beta-decay and other matrix elements is to list terms in a wave
function according to entries of nucleons as 1, rather than 0, in a little table with rows and columns labeled with

the quantum numbers of the substates of the p shell as follows:
my= 1 0 —1 a b c

B
Il
(N
I
(NI
Boj=
|
Boj
-
|
[N
Q
W
Q
)
)

@

11t 0o 0 0O 0O O0Oor » |10 0O 00O

o o0 o 1 0 O = | 00 01 0 O

Of course one need not bother to write the labels of the rows and columns in calculating. A “term” indicated thus
is understood to be antisymmetric in exchange of the nucleons, and normalized. In our previous notation, the

“term” given in this example is

100 0 0O
(abafBvr—baBamy)/2t= .
’ 000100

This is a two-nucleon “term’ applying to Li®, and the ten-nucleon “term” of N associated with this one according
to a generalization for nucleons of the systematization used by Condon and Shortley. (C35, p. 284) in their treat-

ment of the matrix of /-, is

111110

110111,

which has the same value of M 1, M 5, and M r. The nucleons are numbered in standard order consecutively from
left to right across the upper row and then across the lower row, in the first term of the antisymmetric sum of

products implied by this symbol. ‘
The first line of Eq. (44) can be written

Yo=y¢(1P1}) =8 *(ab— ba) (af— Be) (v — )

/100 000 000100 010000 001000
1
=3 + - - )
000100 100000 001000 010000
and for ten nucleons we have for this 1P; state and correspondingly for the 351, the 2Py and the 1S, states, respec-
tively, the wave functions

111110 110111 111101 111011
Ya=3)— = : o+ + ,
110111 111110 111011 111101

111110 101111 111011

101111 111110 111011,

111111I111111 111111 111111

Ya=— —%{2% + + +2! :

101011 011110 101101 110101

111111 111111 111111

011110 |101101 11001 1]
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Here the sign has been changed (C35, p. 285) of each ten-nucleon “term” having odd M , from the sign of its
two-nucleon counterpart, for reasons which we shall see presently.
Thus we have, for example,

1000 00O 1000 00 10 00 0O
T =0, 3Tkt —2 :
000100 000100 000010

with only one term because the operator st on the spin function « of the first nucleon gives zero. The corresponding
examples for ten nucleons are

111110 111110 111110
2l =0, 3> It =2} .
110111 110111 101111

Here the number of effective operations in the sum is limited because the antisymmetry gives zero if more than
one nucleon is recorded in the same space, and the only effective operation is one that changes the seventh nucleon
from ap to ba, with no change from the standard order of nucleon numbers. Thus the relation between the corre-
sponding terms is the same in the two-nucleon and ten-nucleon cases in these examples and continues similarly
(C35) for all the operations involving /*s~ and /=s*, which change M 1, by one unit. The change of sign introduced
into the wave functions for “terms” of odd M 1, as mentioned above, makes the contribution to the matrix element
have opposite sign in the two cases, in keeping with the familiar fact that the spin-orbit coupling energy for two
holes is the opposite of that for two particles. In the operations involving /s, the summation gives the opposite
sign in the ten-nucleon case from the two-nucleon case, a familiar fact which constitutes the most elementary
part of the theory of holes. Thus the matrix of 3_l-s has opposite sign for particles and holes.
The beta-decay operator works somewhat differently. We have, for example,

100000 000100 010100
tts =0; tts~ == !
000100 10 0000 00 0O0O0O
111110 111111 110111
AK =— ;o ItsT . =0.
110111 110101 111110

In the two-nucleon case which has a nonvanishing result, a negative sign appears because the second nucleon has
been moved by the operation into a position where the first nucleon should appear in the standard order, and a
permutation introducing a negative sign must be affected before the symbol implying standard order may be used.
Similarly in the ten-nucleon case, the effective operation moves a nucleon, in this case the ninth, upward toward
the right to put it ahead of an odd number of other nucleons, in this case three, placing it where nucleon number
six should be, and an odd permutation is required to get it back where it belongs in the standard order (so as to
match a term in the other wave function appearing in the calculation of the matrix element). The two two-nucleon
terms operated upon in this example differ from one another only in an interchange of neutrons and protons, and
always appear together in the wave functions we consider, the same being true of the two ten-nucleon terms, so the
operator acting on the sum of the two terms has just the corresponding effect, including the same negative sign,
in the two cases. The generalization of the theorem here illustrated involves showing that the permutation to
compensate the operator always has the same “parity” in the two cases, essentially because one fills in places in
the table in adjacent pairs when filling up the shell from the particle case to the hole case.

While this theorem is sufficient, we may complete the explicit demonstration of a lack of cancellation by listing
the results of the operations involved in calculating the four crucial matrix elements:

111110 110111 111101 111011

2 lspa=(3) + + =+
110111 111110 111011 111101

111110 101111 111011
—2} 2 +2i ,
101111 111110 111011
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_ 111111 111111 111111
Sl sps=—3} + +28 +2) :
011110 101101 110101 101011

[aey
—-
—_
—
—
—_

111111
ZT;U¢2=’L.+ +--e
110101

: 111111 111111 111111
3 reops= 3"}t : — — I
011110 101101 110011

Here the dots indicate that terms have been omitted having the wrong M 7. The matrix elements are

CS1H'|'P1)/a= (s, X1 s¢) =~ (2/3)},

(3P0 I o I ISO)/G= (¢4; Zl S‘bﬁ) = 2%7

CPo|V[1P1)/g= (s, Lraayn) = —37H,

(1S0|V[S1)/g= (Y5, Zraos) =i".

The ratio of the first two divided by the ratio of the last two is 41, just as it appeared in Eq. (47) as calculated
for the two-nucleon case, and this is the sign which gives no cancellation in the ground-configuration beta-decay
matrix element to the ground state of Py'*. With the arbitrary phases of the y’s chosen so that the nondiagonal as

well as the diagonal matrix elements of H” have the opposite sign, those of V have the same sign, for holes as for
particles.
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