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r. INTRODUCTION

"N his doctors dissertation of 1925, Ising'$ proposed a
~ ~ simple model of ferromagnetism which has been the
subject of considerable investigation during the past
6fteen years. The model is based upon the view that
ferromagnetism is caused by an interaction between the
spins of certain electrons in the atoms making up a
crystal.

We must therefore associate with each particle of the
crystal, a spin coordinate 0. We imagine the particles to
be rigidly 6xed in the lattice, either neglecting the vi-
brations of the crystal or assuming that they act inde-
pendently of the spin configuration and can therefore
be considered separately. Instead of adopting the ac-
cepted model and considering o. as a vector spin,
we consider 0. as a scalar quantity which can achieve
either of two values 0.=& j..The value 0 = 1 corresponds
to a spin state with the spin in some preassigned direc-
tion, and 0 = —1 corresponds to a spin in the opposite
direction. The spin is considered to be either "up or
down.

The interaction energy between two particles located
at the jth and 4th lattice points and having spins 0-,.

and o.~, respectively, is postulated to be

—Jo"OI, if j and k are nearest neighbors
(1.1)

0 otherwise.

of the strength of this coupling and must be determined
from the physical properties of the system. J will be
positive for a ferromagnetic system and negative for an
antiferromagnetic system.

In addition to this energy, we postulate that the
particles can interact with an external magnetic 6eld.
A magnetic moment y is assigned to each lattice point,
and the energy of interaction of the jth particle with
the 6eld is chosen to be

(1.2)

The thermodynamic and magnetic properties of a
crystal which contains X lattice points can be deter-
mined from the partition function

o 1~1 tr~=+1

11 if j and k are nearest neighbors
~jjc= '~ (1.4)

I 0 otherwise,

@=S/kT, g =II/kT. (1.5)

For example, the internal energy per particle is given by

E=E 'kT'8 logZ/BT- (1.6)

and the magnetization per particle by
Thus, we postulate that only particles on nearest
neighbor lattice points interact; that the energy is —J M=X '8 logZ/89 (1.'1)

if the nearest neighbors have the same spin and +J if
e have unlike s ins The zero of ener has been If the only reason for studying he s'

g P i ion
function (1.3) is to advance the theory of ferromag-

constant J, whl h appears as a parameter, ls a measure
problem considering that the spin interaction used is a

*This vrork eras partially supported by the Once of Nav» scalar one and that the lattice distances are 6xed and
Research. Part of &is paper vras presented at the Washington
Conference on Magnetism, September, 1952.

f References vnH be found under bibliography at end of article. sPread interest in the model is Primarily derived from
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Fio. 1. The exact specific heat curve of the two-dimensional
Ising lattice (curve 1) is compared with approximate curves of
Kramer-Wannier (curve 2), and Bethe (curve 3) (see reference 3).

the fact that it is one of the simplest examples of a
system of interacting particles which still has some
features of physical reality in it. The model forms an
excellent test case for any new approximate method
of investigating systems of interacting particles. If a
proposed method cannot deal with the Ising model, it
can hardly be expected to be powerful enough to give
reliable results in more complicated cases.

Underlying the interest in this problem as a study of
some physical model, there rests the more fundamental
question. Does the formalism of statistical mechanics
predict phase transitions and, if so, how? We can hardly
give satisfactory answers to these questions without
examples. Even an artificial example is better than
none. So far only a few examples have been successfully
studied. One of these is the famous Einstein-Bose gas
condensation and another is Onsager's brilliant analysis
of the two-dimensional Ising model. A third is the
spherical model of cooperative phenomena. The model
and not some mathematical approximation is in each
case the sole cause of the phase transition represented
mathematically by a singularity in some of the thermo-
dynamic quantities.

Even though the Ising model is not considered to be a
very realistic model of ferromagnetism, it is equivalent
to a very good model of a binary substitutional alloy and
an interesting model of a gas or liquid.

It can easily be shown (see Appendix 1) that the grand
partition function used to describe the order-disorder
phenomenon in binary alloys has exactly the same
mathematical form as that of an Ising ferromagnet in a
magnetic field. An alloy with equal numbers of two
atomic species is equivale'nt to the Ising model in the
absence of an external field. The coordinate 0.; no
longer represents a spin, but rather represents the two
possible states of the jth lattice point. 0;=+1 or —1
accordingly as the jth point is occupied by an atom of
type 1 or type 2.

The "lattice" model of a gas or liquid is formed by
dividing a given volume into a large number of cells of
equal size, with each cell being occupied by either one
or no molecules. An empty cell is represented by 0.= —1

and a filled one by 0 =+1.It is shown in Appendix 1
that the specific volume of a lattice gas is related to the
magnetization of the Ising model.

The Ising model can also be related to a theory of
adsorption of gases on surfaces.

This paper is a review of the work done on the Ising
problem (and its equivalents) since the appearance of
the comprehensive review of order-disorder phenomenon
by Nix and Shockley. ' Much of the emphasis in this
period (and hence in this review) has been on the de-
velopment of exact analytical expressions for thermo-
dynamic quantities. It has been shown that critical
phenomenon are not always accurately described by
approximate theories. ' For example, the critical tem-
perature of the two-dimensional Ising problem is in-
correctly given by approximate theories, as is the na-
ture of the specific heat singularity. The exact specific
heat curve derived by Onsager' is compared with the
corresponding curves of various other theories in Fig. 1.
It is to be noted that the form of the approximate
curves at temperatures above the critical temperature
are especially poor.

The thermodynamic properties of two-dimensional
lattices of various sorts (with nearest neighbors inter-
action only) can now be derived by either of two
methods. In the first, that used by Onsager, the par-
tition function is expressed as the largest characteristic
value of a certain matrix. This characteristic value was
determined by Onsager using a complicated algebraic
development. Through the use of spinors and the theory
of I.ie algebras, Kaufman" and van der Waerden (in
an unpublished letter to Onsager, 1946) have simplified
the Onsager analysis considerably and have given more
motivation to the individual steps in his work. The
second method, which has been developed recently by
Kac and Ward' is based on the van der Waerden' com-
binational formulation of the partition function. The
partition function is expressed in terms of the number of
ways closed graphs with a given number of bonds can be
constructed on a lattice. Finally a determinant is con-
structed such that each term in its expansion (by the
definition of a determinant) corresponds to a closed
graph. We shall discuss both of these methods in parts
2 and 4 of this paper.

To date no one has found exact expressions for (a)
the partition function of a three-dimensional Ising
lattice; (b) that of a two-dimensional lattice in a mag-
netic field; or (c) a two-dimensional lattice with inter-
actions between next nearest neighbors as well as
nearest neighbors. The first few terms in high and low
temperature series for the partition functions of (a) and

(b) will be reviewed in Sec. 7.

2. MATHEMATICAL FORMULATION OF PROBLEM

In this section we express the partition function (1.3)
in several alternative forms so that we can proceed
with both the matrix and combinational analysis of the
two-dimensional lattices.



THEORY OF THE ISING MODEL OF FERROMAGNETISM

2.1 Matrix Formulation

Here we relate the partition function of the Ising
model to the largest characteristic value of a certain
matrix whose elements are functions of T and the coup-
ling constants. "We first derive the required relations
for a more general class of system than the Ising model
and finally specialize to it.

We coIlsider R 1Rttlce co11slstlng of 8t 1Ryers of
particles. We represent the possible states of the jth
layer by v;. For a one-dimensional nearest neighbor
system such as the Ising problem, the "layers" mill be
individual particles and v; mill be described by the
internal coordinates cr, of these particles, Fox a two-
dimensional lattice the "layers" will be rows of particle
and v; will be given by the set of internal coordinates
o-I, of all lattice points in the jth row, For a three-
dimensional lattice, the "layer" will be a layer in the
usual sense and v; will be given by the set of all internal
coordinates of that layer.

In general the word "layer" will be used to describe
any subdivision of the lattice into small (usually iden-
tical) parts but in such a way that the jth layer inter-
acts only with the j—1th and j+1th layers. If there are
interactions between nearest and next nearest lattice
points, we choose a layer, in the one-dimensional case
for example, to be a pair of particles which interacts only
with a neighboring pair of particles. If the lattice has
forces of finite range, we can still consider it a type of
nearest neighbor system but with interacting units
containing more than one lattice points.

The energy of such a system we assume to be of the
form

elements I'(v;, v;+i) between the states v; and vs+i.
Because of the particular choice of P with ~V(v;) and
—,V(v;+i), P is a symmetric matrix. It is sometimes con-
venient but not necessary to make P symmetric. We
could have defined a matrix

~'( J, '+)= p( —LV(', +)+V(')1/&&} (22b)

which would substitute for P in (2.2).
One recognizes that the sum over v; in (2.2) yields

simply the conventional matrix product. Indeed con-
sidering P as a matrix

Z = trace (P"')=P;X;,
where {X;}is the set of characteristic values of the
matrix P.

We are not usually interested in knowing Z exactly
for arbitrary ne but only

lim m '1ogZ=logX, .

+ lim m ' logL1+ P (X,/X, )"'j.

Here we have factored. out the largest eigenvalue X

and numbered the ); so that ), is XI. If ), is non-
degenerate then X;/X,„(1and (X,/X, „)"-+0.Thus,
the second term above does not contribute. Even if
X, is degenerate or asymptotically degenerate as
m—+~, the second term will not contribute unless the
number of degenerate states or asymptotically de-
generate states increase exponentially with m. To our
knowledge such a situation has, however, not arisen in

any applications; thus

V= Q V(v;, v;~i)+ P V(v;), (2 1) lim ni ' logZ=log) (2 4)

where V(v, , v;+i) is the interaction energy between the
jth and j+1th layers, and V(v;) is the internal energy
of the jth layer.

It is mathematically convenient to assign periodic
boundary conditions by inserting an additional inter-
action V(v, vi) between the mth and first layers.
Physically this is equivalent to bending the lattice into
a ring, but, as one takes a larger and larger system, such
surface eGects become negligible.

The partition function of a system in which the neth
layer is connected to the first is

Let us now find explicitly the matrix P for the one-
and two-dimensional Ising lattice (without a magnetic
field).

In the one-dimensional case v; is simply o; and

V(0, 0') = —f00', V(0)=0.

Hence (since a'=1),

P(o, o')=exp(Ega')=(1+lao') coshE,

I= tanhE,

& II ~(v~, v~+i), (2.2)

(~X ~
—X)

P=
] )

=exI+~xC
(e-x ex )

where I is the identity matrix and

(2.&)

~(v v+i)=exp( —LV(v, vJ+i)+2V(')
+ 2 V(v~+i) j/&2"} (2 2a)

Notice that I' is a function of a two-parameter set
of numbers ~; and v;+I, which we shall assume to be
discrete. We may consider P as a matrix with matrix

~0 iq
C=I Ioi

Another form for P is

P= (2 sinh2E) & exp(E*C), (2.6a)
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where EP is dehned by

tankK =8 Smh2E slnh2K = 1.

Since the characteristic vectors of C are

( 1)
2b ——2-&(

/
and 2b=2-&]

&1) &-1i

(2.6b)

and (Vi') „, any arbitrary matrix, then

(V2Vi')- =2 (V2) &. "(Vi')" "=(V2).(Vi')-"

Notice that P' is of this form if we write

P'= V2Vi',

and every vector is a characteristic vector of the iden- (V')""' =~""' " '' ' ' '"'"' P(" ~ ' '+')'
j=l

tity matrix
XI——2 coshE, X2 ——2 sinhE,

Z= (2 coshE)"'+ (2 sinhE) (2 coshE) .
(2.7)

The thermodynamic and magnetic properties of a
one-dimensi. onal Ising lattice are discussed in Ap-
pend1x 2.

The matrix associated with, the two-dimensional
Ising lattice is much more complex. In the absence of a
magnetic field, the potential energy V(v) is the potential
energy of interaction between neighboring particles in
the same rom. If n is the number of particles per rom,

V(v)= —~'2 a ai+i

(V,')„„=exp(EQ a;a, ')=g exp(Eo;o ).

Each of these two matrices can also be simpli6ed.
We notice that Vl is simply the nth direct product of
the 2)&2 matrices for the one-dimensional problem
LKq. (2.5)J.For some remarks about direct products see

Appendix 3.

Vi' ——(e I+e- C)X(e"I+e- C)X X(e I+e- C)
= (2 sinh2E) ""exp(E*C) Xexp(E*C)

Xexp(E*C).

This includes an interaction O„o.„+1.For the purposes
of obtaining greater symmetry, we impose periodic
boundary conditions also in the rows by de6ning
0~&=—0-1. Physically this means that the lattice is
wrapped on a torus; it is periodic along both the rows
and columns. We again anticipate that this device
should have a negligible effect upon the physical
properties of the system.

The potential energy between two neighboring rows is

n

V(v, v')= —J Q o,a, '.
i=1

C;=IXIX "XIXCXIX" XI
with C in the jth factor, then

Vi' ——(2 sinh2E)"" g exp(E*C,).
j=l

To simplify V2 we dehne a matrix

f'1 0)
&0 -1)

s,=IXIX".XIX.XIX ".

(2.10)

Ke have introduced here two different coupling
constants J and J'. We thus consider the possibility
that the lattice will have stronger couplings in one
direction than the other. Wherever no additional com-
plications arise from such a generalization we shall
continue to consider J/ J' even though this generaliza-
tion leads to no very interesting physical sects that
J'=' J' does not show.

Using (2.2b), we obtain

If we de6ne

V2 ——exp(E' Q s,s,+i).
j'=1

n

Vi= exp(E* P C,),
j=l

(2.12)

(2.13)

s, is also a diagonal matrix with diagonal elements +1
if the state v has o;=+1 and —1 if o;= —1. In terms
of these matrices s;, we may write

I"(v, v') =exp(E P o,a,+i+E' P a;a, '); (2.8)
j-l j=l

P' is a matrix of dimension 2".A state I is described by
the values of oq, 02, ~ ~, o„with fT;=+1.

P' can be put into a more convenient form by fac-
toring it into the product of simpler matrices. ' We 6rst
make use of the following simple fact. If (V2)„„ is a
diagonal matrix with diagonal elements (V2) „,

(V2) ~v" (V2) vbvv"

P'= (2 sinh2E) "I'V,Vi.

The symmetric matrix P of (2.2a) can be deduced in

the same manner to be

P= (2 sinh2E) "12Vp)ViV2'.

This differs from P' only by a similarity transforma-
tion by V2|'. Since neither the eigenvalues nor Z= trace
P are altered by a similarity transformation to P, we

again confirm that we can use either P or P'.
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It is easy to generalize the form of P' to include an
interaction with a magnetic 6eld. In this case

P'= (2 sinh2E)""V&V&V&,
(2.14)

V3 ——exp(p@ P s,).
j=l

We shall return to this matrix method again in Secs.
3.2 and 4.

By imposing slightly different boundary conditions,
Kramers and Wannier' showed that one could also
formulate this problem with a different matrix. Whereas
the matrix P represents the contribution to Z of an
entire row of the lattice, we can define a matrix M
which represents the contribution of only a single
particle.

To do this we must choose "screw" boundary condi-
tions. Instead of imposing an interaction between the
nth and first particles of the same row (periodic bound-
ary conditions), we let the nth particle of one row inter-
act with the first particle of the next row. Thus the
rows are connected to each other as on a screw. To
eliminate any loose ends on the lattice, we connect the
nth particle of the last (mth) row to the first particle
of the first row. The rows of the lattice thus have the
geometry of a helix with its ends connected to form a
torus.

With this geometry, it is natural to number the par-
ticles consecutively from 1 to eXm. The interaction
between particles in the same column appears then as

and that in the rows as

TI—J 0 j0 j+].

The partition function for this system is

Z= P ~ Q exp[E' Q o,o;+i+K Q 0~a',+ g
&1=+~ &nm=+1 j=1 j=l

(2.15)
with

&n~j=0 j
We wish to represent this as a matrix product in

such a way that the jth factor contributes the terms
depending upon 0-;. Since the contribution of 0j de-
pends upon the state of the j—nth particle, it is still
necessary to have a matrix of dimension 2".The physical
significance of this matrix will be more apparent after
the discussions of Sec. 3.2.

The appropriate matrix is de6ned by

~&n ' '&1 i&n ' ' '&1

—=exp(E'o„'0„) exp(E0 'o,) g 8(0. —g;+i). (2.16)
j~l

are zero. They are nonzero only if 0.&' ——0-&, 0-&'=o-&,

~, r &'= 0„.0„' is the only "free" index and may be
interpreted to be 0.„+&. The matrix thus may be con-
sidered to connect the states 0-~, , r„ to the state
o~, , 0.~~ and to produce a factor appropriate to
describe the energy of interaction between 0-„+~ and
0~, ~ ~ ~, 0.„. Since the indices are dummy indices, we
can also interpret it as connecting the state 0-,+~,
aj+„ to the states 0j+~, . , 0.j+~~.

Regardless of how one interprets the matrix M one
observes from (2.15) and (2.16) that

2n

Z=traceM"m=P g ""
j=l

(2.17)

2.2 Combinational Formulation

At high temperatures and zero magnetic field, an
expansion of the partition function in powers of tanh'E
can be constructed by counting the number of ways of
forming closed paths of given length along the bonds of
the lattice. This formulation of the problem was sug-
gested by van der Waerden. ' (Kirkwoodi4 gave the
first systematic approach to the order-disorder problem. )

We modify (1.3) slightly to read

Z= g P g exp(Ka, ui)
o1 +1 a~=+1 n. n.

One can also express the matrix M in terms of simpler
matrices. In addition to the matrices already de6ned by
Eqs. (2.5), (2.10), and (2.11), we define a matrix

+&1 ' ' '&n ~1 ' ' '&@=0(&1 02)&(02 03) ' ' '

Xb(0 „ i' —0.)b(o.„'—(ri) (2.1.8)

This matrix merely cyclically permutes the n particles
of one row. Thus, R = I. One easily deduces that"

M= (2 sinh2E)& exp(K's s,) exp(K*C„)R. (2.19)

Loosely speaking one can say that the operator R turns
the lattice from one point to the next, and the other
factors introduce the appropriate Boltzmann factor
for the new point.

Following the procedure above, one can also easily
construct matrices appropriate for the three-dimen-
sional lattice. One can in fact do this in at least three
ways. By appropriate choice of boundary conditions,
one can form matrices which represent the contribution
to Z of an entire layer, a single row or a single particle
in a manner analogous to that used in deducing P and M
for the two-dimensional lattice. The matrices will in
each case be of dimension 2"" if the layers are l par-
ticles wide and ns particles deep.

The reader may wish to try this as an exercise. Since
there has been little progress toward solution of these
matrices, we shall not discuss them in any detail.

The matrix connects the state 0.~,
~ ~, 0-,„ to the state The product over "n.n." denotes the product over

, 0&'. Most of the matrix elements, however, values of j and k corresponding to nearest neighbor
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that the only graphs of interest are those in which each
lattice point is connected by an even number of bonds
(0, 2, or 4 for the square net). We conclude from this
that all contributing graphs must be the superposition
of simple closed polygons (polygons with no loops)
having no common sides. Also the converse is true;
there is a nonzero term in Z for each such superposition
of simple closed polygons. (Such polygons may have
common points however. ) For simplicity we shall call
such graphs, "closed graphs" (Fig. 3).

FIG. 2. An example of a graph connecting points of the
lattice with no bond repeated.

points of the lattice. We next write"

expKo;oq= (1+NO, 01,) coshK

n= tanhE
to give

(2.20)

Z= (coshK)'"" P P g (1+&O,aa),
cr1=+1 rrpr=—+1 n. n.

where c is the number of nearest neighbors of a given
particle and Ec/2 is the total number of interactions.
For the square lattice c=4. The formalism to this point,
however, is also applicable to other lattices. For three-
dimensional simple cubic lattices c=6.

We next expand the product

Z=(coshK)'~~' P P {1+u Q 0,0.;

+&' 2 (~'~~) 2 (««)+ ) (221)

The coefficient of n' is the sum of products of 2t o-'s.

The o's occur in pairs corresponding to nearest neigh-
bors, and no such pair is to occur twice in the same
product (by the simple rules of the expansion).

To obtain a convenient geometrical picture, we can
associate with a pair o-;o-;, a bond connecting the neigh-
bors i and j, and with the pair o-&o.

& another bond co»-
necting k and t, etc. With each product of 2l o-'s, we
associate a "graph" or set of l bonds. Since pairs occur
at most once in a given product, no bond is to appear
more than once in the same graph. In Fig. 2 we have
drawn the graph associated with the term

&1&2 O 3&4 O1O5 &2O6 &8OV OSO6 O10&11

Since
Q 0=0, P o'=2, (2.22)

the only terms of (2.21) which contribute to Z are those
in which each o; occurs to an even power. Since a bond
can appear only once in a term, o-, can occur at most c
times or' 4 times for the square lattice, This also means

FIG. 3. An example of a closed graph in which each point
is connected by 0, 2, or 4 bonds.

Each closed graph of m bonds contributes to Z a
term 2~I after summing over o-1 to o~. Hence, the
partition can be written as

Z=2~ (coshK)~"'P„n(r) tanh"K, (2.23)

where e(r) is the number of closed graphs of r bonds
which can be constructed on the lattice. m(0)=1 and
in a square or cubic lattice e(r) =0 unless r is even.

Equation (2.23) can be generalized to include more
complex interactions. If, for example, K represents the
interaction between lattice points of a square lattice
which lie in the same row and E' that between pairs
in the same column, then

Z = (coshK coshK') v2~' P n(r, s) tanh'K tanh'K', (2.24)
r, s

where m(r, s) is the number of closed graphs with r+s
bonds, r in the horizontal and s in the vertical direction.

Equation (2.24) is the startin'g point of the combina-
tional derivation of the two-dimensional Onsa ger
formulas by Kac and Ward. '

It is also possible to obtain a low temperature expan-
sion of Z which involves a somewhat different combina-
tional problem (except in the two-dimensional square
lattice in which, as we shall see in the next section, both
high and low temperature counting procedures are
equivalent).

For any given state of the system, let

Kg=number of 0's that are +1,
iv12 ——number of unlike pairs of nearest neighbors.



H g(E, X&, iVi2) is the number of ways a given Xi
and EI2 can be chosen on a lattice of E points, then

Z= exp(X@y) exp(ScE/2) P g(E, Ei, Si~)¹,¹o
Xexp( 2KIVi2 2@pX])~ (2.25)

In the absence of a magnetic 6eld

g—cNcx/2g ~(r)o 'ixr —
(2 2Q)

where tn(r) is the number of ways r pairs of unlike
neighbors can be arranged on a'lattice.
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Since iVc/2 is the total number of nearest neighbor
pairs (as before, c is the number of nearest neighbors for
one lattice point),

Q o o "="(iVc/2 —Si2)(+ f)+Ei2(—l) = iVc/2 —2Xi2,
NsR4

Q o,=iVi(+1)+(X—cVi)(—i) =Ã —227&.

enough to yieM an analytic expression for thc partition
function, it was Sufhcient to locate the Curie point if
we assume one existed. Onsager (see Wannier') gen-
eralized this relation by a topological argument to a
wider class of two-dimensional lat tlces.

Onsager constructed a "dual lattice" to a given lat-
tice by drawing a bond through each bond of the original
lattice and connecting these new bonds at points in the
center of each unit cell of the original lattice. In Fig. 4
is shown the square lattice (solid line) and its dual
(dotted lines) also a hexagonal lattice and its dual
which ls R tr'1RngUlRI' lRttlcc. Since thc duRl of thc square
is also a square lattice, we describe it as self-dual.

To derive %annier's duality theorem between the
high Rnd low tcIQpcrRtUr'c behavior by gcometllcRl
arguments, we consider the square lattice of Fig. 5.
We represent lattice points with o=+1 by dots and
those with fT= —j. by g. Each bond joining unlike spins
is bisected by a bond of the dual lattice. It is clear that
(except perhaps for points near the boundary of the
lattice) this set of bonds on the dual lattice forms a
closed graph of the type described in the preceeding
section and that the number of bonds of the dual lattice
is exactly the number of unlike pairs of the original
lattice. Indeed there is a one-to-one correspondence
bctwccn RrrangcIIMnts of bonds connecting Unllkc 0' s
on the original lattice and closed graphs of the same
number of bonds on the dual lattice.

By comparing the definitions of n(r) (2.23) and. m(r)
(2.26), we notice that

m(r) =Nn(r),

mn(r) = e(r),

where thc subscript D refers to functions on the dual
lattice. These relations hold for other two-dimensional
lattices as well as the square lattice used in the
illustration. In the case of the square lattice, we can
discard thc subsclipt D bccRUsc thc dURl lRttlcc ls thc
same as the original lattice.

FxG. 4. A square lattice (above) hexagonal lattice E,
'below) are

illustrated by solid lines along the bonds joining nearest neighbors.
The dual lattice, formed by bisecting the bonds of the original
lattice, is similarly illustrated by the broken lines.

High and low temperature expansions based upon
(2.24) and. (2.25) will be discussed further in Sec. 7.

3. PHASE TRANSITIONS

3.1 Duality Theorems

ThI'ough ccI'tR1Il syIQmetllcs ln thc matrix Rppl'oRch
to the Ising problem, Kramers and %'annier' derived
an interesting relation between the high and low tem-
perature expansions for the partition function of a
square lattice. Although this relation was not powerful

a»
& I 1

Fio. 5. An example to show that each con6guration of, "up
spins" denoted by dots and "down spins" denoted by x can be
described by a closed graph on the dual lattice. The bonds of the
closed graph bisect bonds of the original lattice joining unlike
pairs of spins.
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Using the definition of E* given in (2.6b) and the
relations (3.1), we see that the expressions (2.26) and
(2.23) for Z are related as follows:

Z(E)s NpEc/—2 p 222(r)s 2Ãr-

=g,nn(r) tanh"E*
=Zn(E*)[2» (coshE*)» Di27-'.

Since there is a bond of the dual lattice to each bond
of the original lattice, iVncn/2=iVc/2. The above can
be simplified somewhat to read

Z(E) =Zn(E*)2»(2 sinh2E)N'". (3.2)

A large value of E* is associated with a small value
of E by (2.6b). Hence the partition function of one
lattice at a high temperature is related to the-partition
function of its dual at a low temperature and vice versa.

In a self-dual lattice such as the square lattice, (3.2)
implies that if a singularity exists at a temperature
T= I/kE, then another singularity exists at a tempera-
ture T*=J/kE*(E). If, however, as is intuitively ex-

pected, . only one singularity exists, it must occur at
T= T*. From (2.6b) we see that this critical point is

given by
~

sinh2E,
~

= 1, E,=&0.4407

(E. will be positive if J is positive, negative if j is

negative). Substituting T=T, into (3.2), we see that
(3.2) is identically satisfied so that we know the singu-

larity is not a discontinuity of Z.
The above arguments cannot be directly applied to

either the triangular or hexagonal lattices since these
lattices are not self-dual. It is possible, however, to locate
the Curie point. Onsager (see Wannier') found another
quite di6erent relation between the triangular and hex-
agonal lattices, the so-called star-triangle transforma-
tion derived in Appendix 4. This relates the low tempera-
ture behavior of the triangular lattice to the low tem-
perature behavior of the hexagonal lattice. Using both
the star triangle and the dual transformations, one ob-
tains a relation between the low and high temperature
behaviors of the triangular lattice (also the hexagonal
lattice). Thus, we can use the same arguments as above

P exp{—[V(V2, vi)+ V(v2)7/kT) Pi(i i)

P2(») =
exp{ [V(p2 pi)+ V(p2)7/kT}Pi(pi)

&22vl

to deduce the Curie points of each of these lattices,
assuming that one such exists.

3.2 Long-Range Order

The Ising lattice has many very interesting proper-
ties that would not generally be classified as thermo-
dynamics. If, in the lattice, we shouM fix the spin con-
figuration of part of the system, we might ask what
eGect this has upon the system as a whole. If when we
fix the spin of one particle, particles far away from the
6xed spin show a preference for some definite spin
direction, we say that the system has a long-range
order. We describe a system as ordered if the spins
show a strong tendency toward some organized pattern.
In a ferromagnet, for example, the spins of an ordered
state are predominantly in the same direction.

Ashkin and Lamb" showed that long-range order in

a nearest neighbor system is associated with a degen-
eracy or asymptotic degeneracy of the largest eigen-
value of the matrix P defined in Sec. 2.1.

Imagine that we build a large crystal by starting with
a single layer and add new layers one at a time to the
existing conlguration. Suppose we should fix the state
po of the original layer or, to be more general, suppose
we assign a probability distribution pp(vp) to the
states vo.

We next add to the zero layer, the first layer of par-
ticles. Let pi{vi) be the probability that the first layer
is in the state s ~ if the zero layer is distributed according
to pp(vp). We see that the equilibrium distribution is
given by

exp{—[V(vi, vp)+ V(Pi)7/kT) pp(vp)
vQ

Pi(vi) = . (3.3a)
2 exp{—LV(» vo)+ V(»)7/kT)Po(vo)

The denominator is a normalization factor chosen so
that g~&pi(vi) =1.The numerator is the sum over all

vo of the Boltzmann factor of the state vi if the neigh-
boring state is vp times pp(vp). In a similar manner, we

scc that since p2(v2) dcpcllds ollly upon thc sta'tc vi)

In general, we 6nd

exp{—[V{v2, vi)+ V(vi, v )+V(v )+V(v,)7/kT) pp(vp)

(3.4a)
exp{—LV(», vi)+ V(», ")+V(»)+ V(») 7/kT) Po(v p)

&2&&ls&0

2 " Z exp{—2 [V(v )+V(v, v i)7/kT)Po(vo)-
j22N-I j20 j

m, &m

"2exp{—2 LV(v )+V(PJ P2 i)7/kT)Po(vo)-
»n &0 j 1

(3.5a)
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This procedure of adding one layer of particles at a
time describes a Markov process. The probability dis-
tribution of the mth layer depends only upon the state
of the m —1th layer. The usual theory of Markov
processes is ideally suited to the analysis of this type of
system.

We can simplify considerably the notation of Eqs.
(3.3a) to (3.5a) by considering p; to be a vector with
components p;(v;), I a vector with unit component for
each state v, and P' the matrix defined in Eq. (2.2b).
The above equations can then be written in the usual
matrix notation

PI=
I P' po

P' yI
P2=

I P' p) I (P')'yo
P' y=i (P')" p.

Pm, =
I P' p g I.(P')" yo

(3.3b)

(3.4b)

(3.5b)

The matrix P' is similar to the symmetric matrix P
and thus has a set of eigenvalues );and complete set of
eigenfunctions g;. We can expand yo in a series of
these f;,

yo= Z ~'~~'4.

By delnition of the X; and Q;„

P'4= »4
Therefore, (3.5b) becomes

(3.6)

Ke again order the eigenvalues so that )I&X2
, so that if c~/0,

If Xj is neither degenerate nor asymptotically de-
generate as m-+~, (X;/X~)~~0 and

y ~&q/(I g~) as m—&~.

This means that the distribution of layers fax' from the
original layer are independent of the coefFicients c;
which describe the distribution of the zero layer. y is
independent of yo. If there is no degeneracy, there is
no long-range order.

If, on the other hand, the largest eigenvalue were
degenerate, for example if XI= X2& X3 ~, then

y-~L~~Ci+~24~]/L~i(i Ci)+~2(i 42)j.
The distribution of a layer arbitrarily far from the
original layer still depends upon c2 and cI which in turn

depend upon po. A degeneracy of the largest eigenvalue
therefore implies the existance of long-range order.

The question of what matrices have degenerate
largest eigenvalues becomes a signi6cant one. There is
in some cases a de6nite answer to this question. Fro-
benius proved that if all the matrix elements of a finite
matrix are positive and nonzero, then the largest eigen-
value is nondegenerate.

The matrix elements of P' are indeed positive and
nonzero. It follows then that if we are to have long-
range order, it is necessary that the number of states v

be in6nite or become in6nite as m~~. In a two-di-
mensional lattice such as the Ising lattice, we are
interested in the properties of lattices in which the num-
ber of particles per rom is of the same order of mag-
nitude as the number of rows. If we let m—+, we must
also let the number of particles per rom e—+~, and the
),; will depend upon m in the sense that as we add new
layers (rows) we also wish to add new particles to the
layers. As m—+~, the number of states per row also
becomes in6nite. Frobenius' theorem thus does not
apply to a lattice ln6nlte ln two or more directions but
it does forbid long-range order in most (if not all)
systems of interest which are in6nite in only one di-
rection. "'~

Just as the matrix P describes a Markov process that
gives the distribution of the mth layer in terms of the
distribution of the m —1th layer, the matrix M dis-
cussed near the end of Sec. 2.j. described a Markov
process giving the distribution of the particles j+1
to j+e in terms of the distribution of the particles j to
j+n 1. No—tice that the "screw" boundary conditions
make it possible to generate a lattice by iterating the
procedure of adding a single particle at a time. This is
not true of the periodic boundary conditions because
one must change this procedure of adding single par-
ticles when one has filled a row and starts a new row.
One can also build a three-dimensional lattice by an
iterative procedure of adding single particles.

Frobenius' theorem does not directly apply to the
matrix M because not all matrix elements of M are
nonzero. There are equivalent theorems which do

apply, however.

4. THE TWO-DIMENSIONAL SQUARE LATTICE

The solution of the two-dimensional square Ising
lattice in zero magnetic 6eld has been obtained in
several ways. No one has found a short cut to success.
All these methods are quite lengthy and very tricky.
It would hardly be appropriate to describe in detail
here all the various procedures. We shall discuss only
one combinational method and one algebraic method.

Although the original solution by Onsager' couM be
easily followed from step to step, the motivations
and over-all plan were obscure. In Sec. 4.2, we shaB
attempt to give some of the key steps in this original
formulation and to describe, as we see it, the motiva-
tions that lead from one step to the next. We have
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pro. 6. Polygons contain-
ing the above type of con-
necting bonds are not to
be counted.

chosen to discuss this method as the one example of an
algebraic procedure not because we consider it the best,
but because it aBords an opportunity to present some
ideas about it that have circulated privately but have
never been published.

Interest in this problem reached a climax several
years after Onsager's publication when Kaufman' de-
scribed a simplihed procedure based upon the theory of
spinor representations of the rotation group. Her
analysis was not only elegant but very clearly presented
even to those not disciplined in the mathematical tech-
niques employed. We shall have little to say about this
procedure here for we see no way to add to or improve
upon her analysis of the problem. For the details of this
method, which in many ways still seems the most
elegant despite more recent developments, we refer the
reader to her original presentation.

Nambu'8 also independently discovered a method
which was in principle very similar to Kaufman's.

Following these papers came a rapid sequence of
minor rehnements and applications. The method was
also applied ' to the matrix M discussed in Sec. 2 in-
stead of the matrix P originally considered by Kaufman.
It was also applied to other lattice types than the square
lattice. Some of these supplementary calculations are
discussed in Secs. 5 and 6.

In Sec. 4.1 we discuss one of the most recent tech-
niques based upon the combinational procedure de-
scribed in Sec. 2.2. This technique was discovered by
Kac and Ward. ' Bomb has also solved the problem by
obtaining recursion formulas for the N(r) of Eq. (2.23).
The method has not been published but has been de-
scribed as being very lengthy.

The thermodynamic properties of the square lattice,
based upon the results of Secs. 4.1 and 4.2, are sum-
marized .ln See. 4.3.

for the partition function of a square lattice of em
lattice points. Here e(r, s) is the number of closed
graphs with r+s bonds, r in the horizontal and s in the
vertical directions, which can be constructed on the
lattice. The aim is to construct a matrix A whose de-
terminant generates terms which are in a one-to-one
correspondence with closed graphs on the lattice. We
seek an A such that

Z~ „=(2 coshE coshE')"" detA.

To see that there is a relation between determinants
and closed graphs formed by connecting points on a
lattice, let us examine the dehning equation of the de-
terminant of an Eth order matrix whose elements
are A;;

(4.3)detA=Q+A())A2)g An)~.

6(Af)(JA42(3' ' 'Ala(l) ll)(Af)/'2A 2213' ' 'A 18(2)g)) ' '

x(A B))Al g2'(' 'A)8(„)()). (4.4)

The permutation 1, 2 3 Ã—+k~, k2, , k~ is thus
described as a cyclic permutation of i ~, i2, ~3, ~, i,{~~

timesacyclicpermutationof j~, j2, js, . ~ ~, j,~~), etc. The
sign is + or —accordingly as the second indices

I'
j(

The set of indices k~, k~, , k~ is some permutation of
the indices 1 2 E:the sum extends over all permu-
tations, and the sign is + or —accordingly as the per-
mutation is odd or even (it is even if an even number of
interchanges of the indices k&, k2, , k& are required to
put them in the order 1, 2, , Ã).

It is well known in the theory of permutations that a
given permutation can be expressed as a product of
cyclic (see Carmichael, Theory of Finite Groups, Ginn
and Company, 1937, p. 6) permutations, no two of
which have a letter in common. Hence, the. product of
the A;), 's in any term of (4.3) can be rearranged in the
form

4.1 Combinatorial Method
1

In this section we shall obtain an expression for the
partition function of a two-dimensional square lattice
by employing a combinatorial method, recently de-
veloped by Kac and Ward. This method is "elementary"
in the sense that no spinors, Lie algebras, or other
specialized algebraic techniques of the type used in the
matrix method solution are required; however, it in-
troduces some problems in topology that have not been
rigorously solved. The starting point is the formula (2.24)

Z —(2 coshE coshE') "P e(r s) tanh'E tanh'E'
F,S

(4.|)
Pro. 7'. Diagram (a) illustrates a closed graph on an NX2m

lattice, whereas (b) illustrates the corresponding oriented closed
graph on an N&(m lattice as described in the text.
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or odd permutation of the erst indices i~, i2, i,(~),
.

j», j2 ~ . The number of interchanges necessary to
bring i2 'L3 ' i {i) 'E] into the order i~, i2, i3,
is s(l) —1 as one can easily see by interchanging suc-
cessively the last and next to last numbers, the next to
last and second from the last, etc. Thus, the sign is

( I)8(1)—1( I)s(2)—1( $)8(3)—1. . . ( $)s(r)—l (4 $)

We now ask in what way are the terms (4.4) similar
to terms of the expansion of ZP First, we note that the
cycles of (4.4) can be pictured as simple closed polygons.
If the indices ii, i2, represent points of a lattice and
the matrix element Ai~~~ represents a connection (bond)
3oining iq and iq, then (4.4) is associated with the
superposition of r simple closed polygons, one connect-
Mg thc points ti

& ~g&
' ' '

r 'bs(i) anothcI conncct1ng

j» j» ' ' ') j -(&) ~
etc.

This association is not quite what is required, for
these polygons are somewhat diGerent from the closed
graphs of Z. The polygon i&, i2, , i,(i) has no point
in common with ji, ~ ~ ~, j,(2), they are dis jf,ivy polygons.
As we saw in Sec. 2.2, the closed graphs of Z were not
restricted to be the superposition of disjoint simple
closed polygons but rather the superposition of simple
closed polygons with no common sides.

This restriction on the polygons which generate Z
suggests that perhaps we can establish a correspondence
between the sides of these polygons and the indices of
(4.4). Indeed, we can in this way come one step closer to
success because the bonds of the simple closed polygons
which generate the closed graphs are such that each
bond joins another bond in a sequence which forms a
cycle, but the same bond can appear in only one cycle.
These are just the properties of the indices of (4.4).

In (4.4) we see that each bond is so represented as
both a first and a last index of some A, I„ i.e., each bond
is part of some polygon. In Z, however, not all points
are parts of a graph. This can be remedied in a rather
trivial manner. We interpret a cycle of order 1, an
element A... as indicating the absence of the jth bond
in any polygon; the jth bond does not connect with
anything except itself.

We have now established at least a one way corre-
spondence between closed graphs of Z and terms of
det A. There is for every closed graph a corresponding
term in det A. There are many terms of det A which
must be eliminated. The only nonzero matrix elements
of A;,' would be those between two bonds j and j'
having an end point in common; thus, most of the
matrix elements would be zero,

There remain some very troublesome barriers to es-
tablishing a one-to-one correspondence between terms of
Z and the terms of det A. The cycles A ti~2A ~2~3 A~, (i)'i
and A~ii, (j) A~ai2A'2'&, which are inverses of each
other, correspond to the same polygon. Also terms in
the expansion of the determinant which correspond to
cycles such as A»A» or A»A»A» (see Fig. 6) are not

fc)
I'IG. 8. The closed graph illustrated above can be oriented in

many ways of which four examples are shown. Each is associated
with a superposition of simple clockwise oriented polygons. If we
first separate the space into two regions designated in (d) by +
and —,then one can assign the unique orientation (d) to the
closed graph by always choosing the bond orientation so that the
+ region is to the right of this direction.

related to any closed graphs on our lattice. The diffi-
culty here seems to be rather fundamental. The terms
of the determinant expansion seems to be more closely
associated with oriented polygons, those traversed in a
given direction. We must be able to distinguish between
the two ends of a bond so that we can connect a new
bond only to the "loose end" of its predecessor.

Kac and Ward~ overcame this hurdle by showing that
the expansion of the partition function of an rs&(2m
lattice could be discussed in terms of oriented polygons
on an e)&m lattice. This correspondence is illustrated in
Fig. 7. In the e)&2m lattice (a) upon which we draw
the closed graphs that generate Z, we disregard those
polygons which cross the center line. We are therefore
really considering an e)&2m lattice consisting of two
independent nXnz lattices so that

Z, 2 =Z-'
For any closed graph on the n&(2m lattice (7a), we

construct oriented graphs on the mXm lattice (7b) in
the following manner. We erst adapt a rule for uniquely
orienting the bonds of all graphs in Fig. 7a, a rule which
is the same for both the upper and lower parts of Fig. 7a.
Those graphs or parts of graphs in the upper half of
(a) are transcribed on to (b). Those in the lower half of
(a) are reflected across the center line and then tran-
scribed on to (b). Kac and Ward suggested that the
graphs in 7a be oriented "clockwise, " This is a rule
which is unambiguous if the graphs are simple closed
polygons. It is also easily applied to the superposition
of disjoint simple closed polygons each of which would
be oriented clockwise.

Even though any closed graph is a superposition of
simply closed polygons with no common sides, each of
which would be oriented clockwise, the decomposition
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I'IG. 9.An oriented polygon is not to contain this bond connection
in which a right bond foHows a left bond I'or vice versa).

of a complex graph into its component polygons is not
always unique (see, for example, Fig. 8). Since we want
to count diferent graphs and. not all ways of decom-
posing them, we must adapt some rule for extracting a,

unique dccoHlposition.
Such a rule can be given for the graphs of interest by

recaHing the basis of the dual theorem in Sec. 3.I. This
theorem is based. upon the observation that the closed
graphs on the dual lattice uniquely separate the lattice
into two parts, one having spins in one direction (up or
down) and the other part having the opposite spin
(down or up). For any closed graph, it is possible to
separate the space into two such parts which we desig-
by + and —(see Fig. 8). One can then uniquely assign
a direction of the bonds to be such that a + region is
always to the right of the bond direction. The unique
decomposition i.nto simple closed polygons is achieved
by choosing those polygons surrounding + regions and
orienting them clockwise.

The problem of calculating Z has been described now
as a problem of counting oriented closed graphs of the
above type. The plan to write

Z~ i„=Z„,„'=(2 cosh' coshE')'"" det A (4.6)

has been aided by the fact that det A does count oriented
polygons, but we have achieved this goal at the expense
of complicating the type of oriented graphs to be
counted.

A bond-in Fig. 7b can now appear at most twice,
which n1cRns that lt, CRIl no longcl bc RssoclRtcd ln a
one-to-one manner with the indices of (4.4). It will now

bc ncccssRry to cstRbllsh a two-to-onc correspondcncc.
Although the correspondence is not as elegant as one
might have hoped, the scheme tha, t finally leads to
success is to associate directed bonds with the indices
of (4.4).

A directed bond can be characterized by its direction
and. the lattice point toward which it is directed. In-
stead of numbering thc bonds consccutlvely with R single
index as in (4.4), it is convenient to replace these indices

by a set of three parameters. The pair of variables
(i, j) will be used, to represent the row and column
which locate the lattice point toward which the bond
of interest is directed. The letter I' wiH be used to repre-
sent the direction of the bond. I' will have one of four
values E, I., D, or U depending on whether the bond is
directed to the right„ left, up or down. The symbol

A(i, j, I; i', j', P') (4 7)

will replace the matrix element A;, ~ of (44) Th&s

symbol will be associated with an ordered pair of bonds,

tl1c 6rst of which ls ln thc direction F dircctcd towRrd
the lattice point (i, j) and the second, which wiH be
interpreted to start at (i, j), proceeds in the direction
I" toward the lattice point (i', j'). The matrix (4.7) will
be of dimension 4 em with 4 values of I' for each of the
en& lattice points.

Kven though wc have not yet completely established
the desired one-to-one correspondence between un-
oriented graphs of Fig. 7a and the terms of det A, let us
consider some properties that should be required of the
matrix A.

As was indicated earlier in this section, in order to
make the terms in the expansion of det A corrcspond
only to oriented polygons on our lattice, we must set RH

matrixelementsA(i, j, I";i', j', I") equal to zero unless
the point (i, j) can be connected by a bond in the direc-
tion 1" to the point (i', j'). (The only exceptions to this
arc the diagonal elements which represent the bonds
that are absent. ) Of these possibilities we also wish to
rule out those situations illustrated by I'"ig. 9 in which
one step on a directed polygon is followed by a retracing
of itself in the opposite direction. These rules can be
summarized by the condition A(i, j, I'; P, j', I"')=0
unless

l=Z'
i=i'+1,

j=j'
j=j'+»
j=j'—I,

Rnd
I"=L, and
I"=E, and
I"=D, and

I'= I"„(4.8a)
I'AR, (4.8b)
I'W L, (4.8c)
I'W U, (4.8d)

i=2—1 j=j', I"=U, and I'WD. (4 8e).

A(i, j; i, j )=A(0, 0;i i, j j)-. -(4.9)

In view of'the conditions (4.8), the only independent
matrices (4.9) that are not null matrices are A(0, 0;0, 0),
A(0, 0; 0, +1), A(0, 0; 0., —1), A(0, 0; +1, 0), and
A(0, 0; —1, 0}.

To make these conditions also valid at the boundary,
we introduce periodic boundary conditions as in Sec. 2, I
by wrapping the lattice on a torus. Ke see then that the
above conditions are invariant to rotations of the torus
Rbout clthcx' of its Rxcs, l.c., to cyclic pcrmutations of thc
indices i +i+1(e-i~m+1= 1) or j~j+1(e—&m+1= 1).
Indeed. , we expect that the matrix elements themselves
must be invariant to such transformations since these
transformations leave the geometry of the lattice
lnVRrlRnt, .

In order to take advantage of the periodicity of the
1Rttlcc, lt ls convcnicnt to imagine 'thc 45$XQth order
matrix as consisting 4+4 blocks or as an mxmth order
matrix, the matrix elements of which are themselves
4&&4 matrices. We use the convention that A(i, j;i', j')
is for each i, j, i' and j' a 4&(4 matrix with matrix ele-
ments A (i, j, I'; i', j', I").We realize that the matrices
A(i, j; i', j') should be invariant to the cyclic trans-
formations of the lattice, therefore
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According to (4.8), A(0, 0, 0, 0) is a diagonal matrix,
the diagona, l elements of which correspond to the ab-
sence of a bond in a closed graph. All graphs are not
weighted equally as seen by (4.1). The weight is as-
signed according to the number of vertical and hori-
zonta, l bonds in the graph. Since the total number of
possible bonds of a graph is 6xed at 4lm, this unequal
weighting can be introduced either into the off diagonal
matrices A(0, 0, 0; —1), etc. , which in a certain sense
count the number of such bonds or into A(D, 0, 0, 0)
which counts the number of such bonds that are
mlsslng. '

Another way of describing this freedom is to recall
that multiplication of any rom or column of a matrix
by some constant changes the determinant into this
constant times the original determinant. Thus, we can
always replace a determinant, by a known multiple
of another determinant all of whose diagonal elements
are one.

We may, without any loss of flexibility, set

A(0, 0, 0, 0) = I, (4.10a)

I4 being the 4&4 identity matrix, and then choose the
other matrices so as to give the desired weights.

We know that for every horizontal bond that appears
in a graph, (4.4) must contain a factor x= tanhE. The
number of such bonds will be equal to the number of
times a matrix element from A(0, 0, 0, &I) appears in

(4.4). To simplify notation we write

A(0, 0, 0, &1)=—xA(0, &1), x= tanhK, (4.10b)

similarly

A(0, 0, &I, 0)—=yA(&1, 0), y= tanhE'. (4.10c)

A(0, &I) and A(&1, 0) will now be matrices indepen-
dent of x and y. They will depend only upon the
geometry of the lattice.

Most of the matrix elements of these matrices will

also vanish as a result of (4.8). A(0, 1) must in fact be
of the form

0 0 0

A(0, +1)=, (4.1la)

,n 0 0 0,

in which the matrix indices are taken in the order 8, L,,
U, and D and y, P, and 0, are as yet unspecified. Thus,
y corresponds to an element with I'= 8, I"=2; P corre-
sponds to the element I'= U, F'=E and n to the ele-
ment F=D, I"=E.

From A(0, —1), one uniquely determines also
A(0, +1) and A(&I, 0). We ask that the matrix (4.7)
be invariant to the interchange of x and Y a,long with the
transformation which rotates the positive horizontal
direction into the positive vertical direction (a W' rota-
tion if the lattice were on a flat surface). Such a trans-
formation preserves the topology of the graphs. Thus
A(i, j, I'; i', j', I") must remain invariant if we simul-

taneously send z~J~ g~—$) l ~J ~ J~—z ~ ~~/J~
U-+I., I.—+D, D—+E and. x+-+y. It follows from this that

0 0 0. 0'

A(+1 0)= 0 0 y 0 '

,0 0 0 0,

(4.11b)

'0 0 0 0

A(0 -1)=
0 0. 0 0'

,0 P 0 0,

(4.11c)

'0 0 0 P
0 0 0 a

(—10)— 0 0 0'
,000

(4.11d)

Pro. 10. The three types of bonds connections illustrated above
correspond to the elements a, P, and y in Eq. (4.11).

One might be tempted to also make A invariant to
reflections. Although it is true that Z is invariant to
rejections, the topology of the oriented polygons is not
invariant; a reQection takes a clockwise polygon into a
counterclockwise polygon. A. will in fa,ct not be invariant
to reflections. n corresponds to a counterclockwise turn
of s/2, P to a clockwise turn, and y to no turn of
connecting bonds (see Fig. 10).

The values of u, P, and y are now to be chosen so
that any term of the expansion of det A corresponding
to a superposition of simple closed polygons of the pre-
scribed type contributes j.)&tanh"E tanh'E'= x"y' in
accordance with (4.1). The substitution (4.10) assures
that a term of the expansion will have the correct power
of x and y but (4.5) indicates that we must choose a, P,
and y to give a positive sign.

Each simple closed polygon on a square lattice has
an even number of bonds, therefore s(j)—1 in Eq. (4.5)
will be an odd number and the sign (4.5) will be (—1)".
To make the terms positive, a, p, and y must be chosen
so that an additional factor of (—1) appears with each
cycle in the expansion. A simple closed polygon directed
in a clockwise direction has four more clockwise turns
then counterclockwise turns. Thus, in (4.4) there will
be 4 more powers of P than a for each clockwise cycle
and 4 more powers of n than P for each counterclock-
wise cycle. There is for each cycle a factor of the form
(np)"p or 4(np) n4 for some n We can . obtain the de-
sired factor (—1)"if we choose n= p ', n'= p'= —1, and
y= i. Thus,

u= exp(Ar/4), P= exp( —wr/4), y= 1. (4.12)
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1(

(c)
FIG. j.i. The unoriented closed graph (a) corresponds to many

oriented graphs. Among these are the unicursal paths (b) and (c)
in which both polygons of (a) are traversed in a single cycle.

The matrix A has been completely speei6ed on the
basis of a few simple requirements which do, however,
guarantee that det A will count correctly at least the
simple closed polygons and superpositions of disjoint
polygons on the lattice of Fig. 7b. The terms in det A

which are associated with the bonds appearing in such

graphs, consist of one term for each possible combina-
tion of clockwise and counterclockwise orientation of
the disjoint polygons and each such combination does

appear once in a 6gure such as 7b.
DetA also correctly counts many other types of

graphs but there is as yet no proof that it correctly
counts all possible graphs. Actually we know that there
are some which are not counted correctly, namely those
which "loop" the torus. Such failures would not be con-
sidered serious however since one would attribute them
to the selection of periodic boundary conditions.

Kac and %ard considered a few simple cases of over-

lapping polygons and showed that they also are counted
correctly.

One class of eon6gurations w'hich they considered was

the graphs consisting of simple closed polygons on the
lattice 7b which touch each other at single points only
(no overlapping bonds). A simple example is given in

Fig. 11a. A troublesome feature of such graphs is that
det A includes terms corresponding to unicursal paths,
i.e., those which traverse more than one polygon in a
single cycle as illustrated in Figs. 11b and 11c. One

readily sees that Fig. iib has an excess of 4 clockwise

turns and therefore is counted as a positive term,
whereas 11c has an equal number of clockwise and
coruntereloekwise turns and therefore contributes a
negative term to det A. One can easily check that the
net contribution of all unicursal paths of Fig. iia is
zero. Kac and %'ard claim that this is true of the
entire class of graphs which are composed of more than
one polygon and in which each polygon has a point in

common with at least one other polygon.
It is apparent that after the elimination of the uni-

cursal paths, det A properly counts all possible graphs
at least for the simple cases such as in Fig. 11 or dis-

joint superpositions of these. One might still question
the count on a graph such as Fig. 8 which proved to be
an annoyance earlier.

Perhaps even a more troublesome category of graphs
is that in which bonds from the upper and lower parts
of Fig. 7a overlap when transcribed onto Fig. 7b.
Because of the choice of clockwise orientations in Fig.

7a, these double bonds may consist of either two bonds
directed the same or two bonds directed oppositely.
Since indices in (4.4) are never repeated in the same
term, detA will not contain terms corresponding to
graphs having an identical pair of bonds such as in

Fig. 12a or Fig. 13a.
On the other hand, detA will count some super-

positions of clockwise oriented polygons which have
common sides forming a pair of oppositely directed
bonds such as Pigs. 12b and 13b, and even single poly-
gons which loop back on themselves to form an op-
positely directed pair as also illustrated within Fig. 13b
and in Fig. 14. None of these graphs appear on the
lattice of Fig. 7b because the graphs of Fig. 7a do not
contain double bonds.

Kac and %ard did. resolve the difhculties presented
by the cases illustrated by Figs. 12 and 14. The contri-
butions of Figs. 14a and 14b cancel as do all terms corre-
sponding to similar type graphs. Regarding the situa-
tion in Figs. 12a and 12b, they pointed out that there is a
one-to-one correspondence between graphs of type 12a
and those of type 12b. Instead of counting the "allowed"
polygons 12a, the determinant counts the "forbidden"
polygons 12b.

FIG. 12. (a) illustrates a superposition of simple closed polygons
forming an identical pair of bonds. (b) illustrates a superposition
of polygons forming an oppositely directed pair of bonds. Det A
counts only type (b), whereas Fig. 7b contains only graphs of
type (a).

A graph such as in Fig. 13 which contains both an
identical pair and an oppositely directed pair of bonds
was not considered. One cannot establish a one-to-one
correspondence between allowed and forbidden paths
by merely reversing the direction of one of the polygons
as in Fig. 12.

It is certain that det A does correctly count all closed
graphs since the partition function derived below checks
(at least for large lattices) with that obtained by other
methods. The manner in which some complicated
graphs are counted is still uncertain, however. Although
the analysis is as yet logically incomplete, the ideas
presented are very praiseworthy.

It is worth pointing out here that this method of
counting cannot be generalized in any obvious way to
the three-dimensional problem nor to the two-dimen-
sional problems with a magnetic 6eld or longer-range
interactions. The magnetic 6eld problem involves a
much more complicated counting procedure. One must

keep account not only of the number of bonds in the
polygon but also the area. The crossing of diagonal
bonds in the next nearest neighbor problem causes



trouble, whereas in three dimensions, one encounters

polygons with knots. Perhaps even more serious is the
fact that a polygon in three dimensions does not divide
the space into an "inside an d outside. " The solution
above thus lcsts hcavlly upon thc pccullar topological
properties of this particular problem.

In view of the evidence presented above, we sha11

accept as correct the postulate that det A correctly
counts closed graphs and proceed to obtain an explicit
expression for Z based upon (4.6),

There 'would bc llttlc advRntRgc ln cxprcssing Z ln

terms of det A if it were not for the fact that det A is
invariant to any similarity transformation of A. In
particular det A is equal to the product of the eigen-
valucs of A.

The matrix A 18 defined by Eqs. (4.7), (4.9), (4.10},
(4.11),and (4.12), of which Eq. (4.10) represents the icey
to the simplihcation of det A. This equation expresses
the cyclic character of A and immediately suggests that
one transform the matrix A by a double Fourier expan-
sion, thus transforming to a set of base vectors that are
eigenfunctions of the two cyclic permutation operators
(one for the vertical symmetry and one for the hori-
zontal symmetry) that leave the lattice invariant.

and l =P Su. bstituting Eq. (4.10) into (4.15), we find

B(k l k l) —=B(k, l) = I4+yA(1, 0)

Xexp( 2—haik/m)+yA( 1—, 0) exp(2srik/m)

+xA(0, 1) exp( 2—nil/e)+xA(0, —1) e xp(2~ii/ I)

1+xe( yes 'u-' yhscr
(4.16)

O

where

s= exp(2mil/e), N= exp(2+ik/m), n= exp(iver/4)

Since the eigenvalues of A are the eigenvalues of the
B(k, l)

detA=II II detB(k, l)
k=1 l='1

= II II ((1+~')(1+y')—y(1—~')(ei+s~ ')

-*(1-y')(&s+hs ')},

Z„,„s=2'"~ II II fcosh2E cosh2E'

Flo. 13. A graphs such as (a) can appear as a graph in Fig. 7b
but @rill not by counted by det A because it contains an identical
pair of bonds. It also contains an oppositely directed pair. (b)
illustrates another orientation of the same graph with no identical
bond paIrs

%c define a unitary matrix I of dimension 4' with
matrix elements

R(k, l; k', l') = (rsm)
—'I4 exp(2s.ikk'/m+ 2s ill'/rs). (4.13)

The convention here is consistent with that used in
Eq. (4.10). I4 is the 4X4 identity and R(k, l; k', l') is a
4&4 matrix. If wc define 8

B=—RAR-',

then detA=detB. One easily finds by using the
orthogonality properties of the Fourier exponentials
that

—sinh2E' cos(2s'l/I)

—sinh2E cos(2s'k/m). (4.17)

The quantity of particular interest is

liin (lm) ' logZ

=log2+ —', (mN) ' Q P log Icosh2E cosh2E

—sinh2E' cos(2s'l/n) —sinh2E cos(27rk/m) ]
pe=iog2+ss-' i', log (cosh2E «h2E'

—sinh2E cosw —sinh2E' cosw') dwdw'. (4.18)

An attempt has been made by F.J.Murray's to apply
a coIBbmatorlal Rpploach to a three-diIDCHslonal lRttlcc.
The calculations have not yct been developed far enough
to yield analytical results.

B(k, l; k', l') = hss~h~ p P g A(0, 0; &, s)
s=l 5=1

e —2mikt m —2mi7s I . 4X xp( / /) (*15)
FIG. 14. Bet A has terms corresponding to oriented polygons

that "loop back on themselves" as illustrated by the tern examples
All elements of B vanish except those for which k=k' above. The terms corresponding to (a) and (b) canceL
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4.2 Algebraic Method

We now consider an algebraic procedure for finding
the eigenvalue associated with the partition function
for the two-dimensional square Ising lattice in zero
magnetic field. We shall brieQy outline Onsager's
original solution with special emphasis on the method
and motivations rather than the detailed algebra. For a
more extensive discussion of the latter the reader is
referred to Onsager's original presentation. '

As was shown in Sec. 2, the operator to be investi-
gated is V&V& [see Eqs. (2.12) and (2.13) for definitionsg.
It is convenient to express this in terms of two operators
Ap and A& defined by

Pa, b suCg+1Ca+2' ' 'Cb-lsb
(4.21)

using the convention that s~;—=s, and C~;=—C;. Thus,

methods take advantage of very special properties of
the operators, and it has not been possible to generalize
them in any very interesting way.

The first step of the procedure is to generate a Lie
algebra from Ab and A~. Rather than generate this
element by element, we shall anticipate the results and
write them in the most convenient form.

We define a set of operators

Ap ———P C Ag ——P s;s,+g (4.19)
Ap ——P P,, „Ag——P P,, ~~.

a=1
(4.22)

2'=1

p, =g—& io and p,„=t,a'z1 (4.20)

The general plan for solving this problem is to first
perform some algebraic transformations. Starting from
Ap and A&, we generate a Lie algebra (see Appendix 5)
by forming the commutator [Ab, A&], then forming the
commutators of this with Ap and AI. We continue to
generate commutators of commutators until we obtain
a set of operators such that the commutator of any two
is a linear combination of operators already in the set. f.

One can, of course, generate a Lie algebra starting
with any set of operators. Matrices of dimension 2"
will in many cases lead to a Lie algebra of 4" elements,
i.e., an algebra which contains as many independent
elements as there are matrix elements in the matrix of
dimension 2". The first fortunate feature of the opera-
tors Ap and A& is that they generate a Lie algebra of only
3n—1 linearly independent elements.

We next notice certain very convenient symmetries
in the structure constants of the Lie algebra. Because of
these symmetries we can, by applying linear trans-
formations in the Lie algebra, decompose the Lie
algebra into subalgebras of very simple structure. By
expressing Ab and A~ in terms of these subalgebras we
obtain a form of V&V& which is readily factored into
commuting matrices which can be diagonalized sepa-
rately,

Attempts to apply this procedure to the three-
dimensional problem or even the two-dimensional
problem with a magnetic field are seriously hindered at
an early stage because the operators of interest generate
a much larger Lie algebra, so large in fact that it would
seem to be of little value. All the various algebraic

f van der Waerden is credited with the observation that the
algebra so generated and the transformations that follow belong
to the theory of I,ie algebras. The authors are indebted to Dr.
3ruria Kaufman for describing this connection.

with s~;—=s;. (In the following we shall also have
occasion to use the convention C„~;—=C;.) The matrices
of interest are

These are but two operators of a set Aq which we de-
fine by

(4.23)

There are 2n linearly independent Ab. From (4.21) we
see that

Pa, a+I+„———UP, , ~g,

U—=C)Cb C..
(4.24)

(The minus sign appears because s; anticommutes with
C;, as one readily observes from the definitions [(2.6a),
(2.10), and (2.11)g.) Thus

Ab~„= —UAb and Ab+b. ——Ab. (4.25)

(Note that Ab commutes with U and Ub= I.)
Kith the addition of a set of elements

Gb ———,'[Ab, Abj, (4.26)

[«, 6;-b7=2(Ar+; b
—A~;pb),

[6;,6,)=0.
(4.27)

We have defined 2e operators GI, but actually
only e—1 are linearly independent. Since [Ab, A;]
= —[A;, Abj, we see from (4.27) that 6 = —6
= —Gb~— Go= [A;, A;]=0 because an operator always
commutes with itself. 6 = [A;+, A;j= [—UA;, A;j= 0
because U also commutes with A;. Ke, therefore, have
only 6&, 6&, , G & as linearly independent operators.

We have seen so far that Ab and A~ generate a Lie
algebra of only 3m —1 elements (2e Ab's and e—1 Gb's).
We also observe that the structure of this Lie algebra
is rather unique. Notice that if in (4.27) we replace
A; by A;+„ the commutation relations remain un-

we can define a complete Lie algebra containing the
elements A~ and GI, . The commutation rules for this
algebra are (see reference 4, p. 127)

[A;, Abj=46; b,
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changed. From (4.27) alone there is no "preferred"
A;; there is no way to single out one AI, as being differ-
ent from all the others. The symmetry here is formally
very similar to the symmetry of the cyclic matrix in
Sec, 4.1, the cause of which could be traced to the fact
that the crystal has cyclic symmetry, i.e., all particles
in a row of the lattice are equivalent (with the periodic
boundary conditions). The cyclic symmetry in (4.27)
arises, however, from a di6erent source. The periodicity
in the lattice has already been incorporated into the
A; and GI, which are themselves invariant to a cyclic
transformation of the lattice points. The cause of the
cyclic symmetry in (4.27) is not obvious physically.

The existence of this symmetry, however, suggests
the next step. From general properties of the group of
cyclic permutations, one is assured that a Fourier
transformation of the operators A~ and Gi, will give an
even simpler description of the Lie algebra. Just as a
Fourier transformation of a cyclic matrix makes most
of the matrix elements vanish, so also does a Fourier
transformation to this cyclic Lie algebra make most of
the structure constants vanish.

The Fourier transformation is achieved by intro-
ducing the operators

2n

X„=(2e)—' P A„cos(arm/e),

small subalgebras of very simple structure. The sub-
algebras are in fact very similar to those associated with
the three-dimensional infinitesimal rotation group (see
Appendix 5).

Our aim now is to express V2Vl in terms of this new
set of operators and to take advantage of the simple
structure (4.30). The relation (4.28) can be easily
inverted by the usual rules of Fourier transforms to
give A and G„ in terms of Xr, Y„, and Zr. The result
of this is

2n

A = P [X,cos(mar/e) —Y„sin(mar/e)],

(4.31)
G„= i Q—Z„sin(mr~/e).

In particular,

A, =P X,= X,+2X,+2X,+ +2X„,+ X.,

2n

A, =P [X„cos(rs/e) —Y„sin(~r/e)]

=X0+2[X' cos(~/e) —Yq sin(m /e) ]+
+2[X„ i cos((e 1)s/e—)

Y,= —(2e)—' P A„sin(n. mr /e),
m —I

(4.28)
—Y„~sin((e —1)~/e)] —X„. (4.32)

Substitution of (4.32) into (4.20) gives

2n

Z„=i(2e)—' g G„ins( mrs/ )e V~vq ——exp{E' P [X,cos(sr/e)
r=l

We notice that

X„= X „= X2„„,

Y,= —Y,= —Y~. „
Z.= —Z-, = —Z2-'

(4.29)

—Y„sin(~r/e)]} exp{ E*g X„}. (4.33—)

We can make valuable use of the commutation rules
(4.30) by noting that if two operators A and 8 commute,
then e++~= e e = e e+. It is therefore possible to factor
(4.33) into the product of commuting matrices:

A check on the number of independent operators shows
that there are m —1 independent Y„, e—1 independent
Z„, but e+1 independent X„.

The commutation rules for these operators are easily
calculated from (4.27) to be

[X„,Y,]=—2iZ„,

[Y„,Z„]=—2iX, 1&r&e 1, —

[Z„,X„]=—2iY„.

(4.30)

All operators (including Xo and X„) commute with any
other operator with a diferent subscript; thus, for
res, [X„,X,]=0, [X„Y,]=0, etc. The three operators
X„,Y„,and Z„(for each r) themselves form a Lie algebra
which is a subalgebra of the complete set. We have, as
predicted, decomposed the original Lie algebra into

n

V,V =g U„,
r=0

U, =exp{2E'[X, cos(7rr/e)
—Y„sin(s.r/e)]) exp{—2E*X„) r/0, e, (4.34)

Uo ——exp {(E'—E*)XD),

U„=exp {—(E'+E*)X„}.

The fact that the U„commute with each other also
implies that they can all be simultaneously diagonalized
and that the eigenvalues of V2Vl are products of eigen-
values of the U„.

We can find the eigenvalues of the U„by a somewhat
indirect procedure. It is not wise to try to determine
explicitly the matrices X„, Y„, and Z„ in the original
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representation. The multiplication table of the X„, Y„,
and Z„ is independent of representation as are also the
eigenvalues. The latter are, with the help of a few rather
simple bits of knowledge such as the dimension of the
matrices, etc. , determined by the former.

Ke have so far given only the commutation rules of
the X„, Y„, and Z„. To proceed further we must also
know X 2, Y„', Z,2, X„Y„etc., which can be found by
direct evaluation using the abstract properties of the
P, t, (see reference 4, p. 129). The complete multiplica-
tion table is given below (the operators R„are defined

by the expressions below):

X„2=Y„'=Z„2= R„=R,',
X„=R„X„=X„R„=iY„Z,= —iZ„Y, [
Y„=R„Y„=Y„R„=iZ„X„=—iX„Z„
Z„=R„Z„=Z„R„=iX„Y„=—iY„X„ {4.35)

X„'=R,= R,'
X,=R,X,=X,R,f"='"

From this table one can calculate any combination
of products of X„, Y„, and Z„. The important features
of the table are the following. The operators X„Y„,and
Z„anticommute with each other and X„', Y„', and Z„'
are all projection operators (R„'=R„), i.e., they have
eigenvalues either zero or one.

We can very easily establish that R„ is not the unit
matrix and is truly a projection operator with some zero
eigenvalues. From (4.28) we notice that since A +
= —UA„,

X =(2e)—'[I—(—1)"U) P A cos(mm. r/I)

V2, VI, and all the operators used in describing them,
including the {X,}, (Y„},and (Z„},commute with U.
This means that in the representation above, all these
matrices must be of the general type

( X:. 0 q

(0 X')

where X denotes some 2" ' dimensional matrix. In par-
ticular, since X„, Y„, and Z„contain [I—(—1)"Uj as a
factor, these operators must be of the type

X:Oy
for r odd(0:.0)

( 0.:0 q
for r even

&0 X'&

The nonsingular part of the projection operator R„ is
at most of dimension 2" '.

Equipped with the multiplication table (4.35) and
some simple properties of the X„, Y„, and Z„we return
again to the eigenvalue problem (4.34).Matrices such as
(4.35) have been studied extensively, particularly in
connection with representations of the rotation group
and the Lie algebra discussed in Appendix 5. One need
not be an expert on such things, however, to solve this
problem.

We 6rst observe that a transformation with exp(is„Z„),
with s„a constant, produces the following transforma-
tion of the X„, Y„and Z„(rWO, e):

Similarly Y„and Z„contain a factor [I—(—)"U].
The operator U defined in {4.24) plays a rather im-

portant role in this problem. U is the operator which
changes all spins 0.; to —a-;.

The eigenvalues and eigenfunctions of U are very
simple. Since U2= I, the eigenvalues are &1. U operat-
ing on any state given by v: (o i, o 2, , o „) changes it
to a new state Uv: (—oi, —o~, , —o„).For each pair
of states v and Uv as described above, there is an "even"
and an "odd" state given, respectively, by v+ Uv and
v —Uv. In the "even space" U=I' and in the "odd
space" U= —I'. Each subspace is of dimension 2" '. In
this representation U has the form

(I' Oq
& O:.-I)'

where I' is the 2" ' identity matrix and 0 is the 2" '
dimensional null matrix. In this same representation
z~(I+U) and io(I—U) are, resPectively, the Projection
operators

(0:.0)
&O:. I'2

exp(is„Z„)X, exp( is„Z„)—= X„cos2s„+Y„sin2z„,

exp(is„Z„)Y„exp(—is,Z„)
= —X„sin2s„+Y, cos2s„(4.36)

exp(is„Z„)Z, exp( is„Z„)—=Z„

If we imagine the X„, Y„, and Z„ to be orthogonal vec-
tors, then the above similarity transformation also pro-
duces an orthogonal transformation of the vectors X„,
Y„, and Z„. In general any orthogonal transformation of
the X„Y„and Z, can be produced by a similarity
transformation of the type

exp(s„Z,+y,Y,+x,x„). (4.37)

This correspondence between orthogonal transforma-
tions and similarity transformations is the basis for the
theory of representations of the rotation group and
also underlies the Dirac theory of the electron. A
generalization of this is also the basis of Kaufman's
scheme for solving the Ising problem.

If now we should expand the exponentials in (4.34)
using the rules (4.35), we can express U, as a constant
plus a linear combination in R„, X„, Y„, and Z„. Note
that any power of X„for example, is either X„or R„.



By using a transformation of the type (4.37), which
leaves R„ invariant, we can eliminate X„and 7„.If we
considered the linear expression in X„, Y„, and Z„as a
vector, then this procedure is identical to the rotation
of coordinates so that the vector is along the "Xaxis."

It will not be necessary to 6nd this transformation
explicitly. %'e can easily show that U„ is transformed
into the form

U, (I—R„)+R„cosh'„+X„sinhy„= exp(y„X„) (4.38)

(~ indicates similarity). We already have argued that
this expression will be linear in R, and X,. In addition,
we know from (4.34) that the projection 2(I—R,)U„ is
a unit matrix (since X„,Y„Z„and R„all vanish in this
space) and is unaffected by the transformation (4.37).
Furthermore, we see that transforms, tion of (4.34) by
exp(-', wiZ„) changes both factors of U„ into their re-
ciprocals, X,~—X, and. Y,~—Y„. U„and U are
therefore similar and

~

det U„~ =1. Since this property
also must be preserved by a similarity transformation,
the coefFicients of R„and X„are restricted in the
manner lIldlcated.

The problem of finding y„ is very easy because the
similarity transformation affects only the coeKcients
of X„,Y„and Z, leaving the coefficient of R, unaltered.
cosh'„ is therefore the coeKcient of R„ in the original
expansion of U„:

cosh'„= cosh2K' cosh2E*
—sinh2K' sinh2K* cos(r~/I). (4.39)

Since X„,Y„,and X„commute with operators of a difer-
ent index, we can apply the appropriate transformations
for each r to V2Vi and bring all U„simultaneous into
the form (4.38).

We have thus established

V2Vi exp[ ——',(yoXO+2yiXi+

+2y„,X„,+y„X„)], (4.40)

where

yo K* K' and ——y„=—K'+K~

are also consistent with (4.39).
We have not as yet commented on the sign of the p, .

The signs of yo and y„are defined by (4.41) but except
for j=0 and n, only ~y, ~

are dered by (4.39). This is
all that is necessary, however, because the transforma-

'

tion exp(-', krZ, ) sends X, into —X„ t Eq. (4.36)j.Equa-
tion (4.40) is thus valid if we replace X;by —X;or y, by

(jWO, I). For convenience we shall hereafter
choose all y„, (j/0, m) as the positive solution of (4.39).

Since the X„commute, they can all be simultaneously
dlagonallzed. The X„satisfy the equation

All eigenvalues of V2VI must be of the type

X,.= el&", (::&" or 1 for r= 0, n, (4.43)

A„=e&", e &" or 1. for r&0, e.

Unfortunately, the converse of this is not true; not all
1(, of the type (4.43) are eigenvalues of V2Vi (there are
3"+' possible combinations of (4.43) but only 2" eigen-
values). Even though the X, can be simultaneously
diagonalized, the subspace in which X, is +1 might be
a space in which, for example, Xi could be only +1.
We are still confronted with the task of determining
which combinations in (4.43) are allowed.

We can very easily eliminate a large number of the
solutions of (4.43) by recalling that in the even space
(U=+I'), X„=O for all odd r, whereas in the odd
space (U=' —I'), X„=O for aH even r We th. erefore
know that either the X„with r odd are 1 (in the even
space) or li, with r even are 1 (in the odd space),

X= XIXBXS or X= XOX2'A4 (4.44)

The C; all commute and are very easily diagonalized
simultaneously. Since CQ= I, the eigenvalues of C; are
&1 and since the C; are direct product matrices, the
eigenvalues of C; do not depend in any way on the eigen-
values of other Ci. The 2" eigenvalues of Ao are given by

—Ao ——&1&1&1+ +1. (4.46)

There are e terms in (4.46) and the 2" solutions are
obtained by selecting all possible combinations of the +
signs. If the C; are all diagonalized, then U =CiC2 . C
is also diagonal and has the value &1 accordingly as
the right side of (4.46) has an even or odd number of
minus signs. In particular we note that the lowest
eigenvalue of Ao is nondegenerate, belongs in the even
space, and has the value

Whereas the spinor analysis method automatically
gives all the eigenvalues arid their degeneracies, the
problem of completely disentangling the proper combi-
nations of the above is at this state a rather tedious
operation (although not a difficult one). Fortunately,
we are interested only in the largest eigenvalue of V2VI
and perhaps also in any that are asymptotically de-
generate with the largest.

The problem is to determine the simultaneous eigen-
values of the X„. To 6nd at least some of these we
consider

2n—I
(4.45)

X„(X,'—I)=0; (4.42)

therefore they have eigenvalues X„=Oor &1. The next lowest eigenvalue of Ao is degenerate, belongs
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serve that in the odd space, the smallest eigenvalue of
lS

As ———Is+2= Xs+Xs+ ~ ~ +Xs~s

tX,+2X,+2X,+ "+2X,+X for I even

Xs+2Xs+2X4+ +2X for Q odd.

P 8
2 kT/i J,+Js)

I"IG. 15. The specific hey, t of the two-dimensional Ising lattice
with (1) J=J' (isotropic), (2) J=100J', and (3) J'=0 (hnear
chain) (see reference 4).

in the odd space, and has the value

The X„cannot all simultaneously be —i for this wouM
contradict the above being the lowest eigenvalue of As.
The only possible solutions of the above are Xs=+1
and all other X,= —1, X„=+1(for Is even) and all. ,

other X;=—1 or some X;=0 (jWO, Is) and all other
X;=—1. We shall not pursue further the question of
which of these possibilities are really solutions (it turns
out that they all are). The solution of particular in-
terest is the case Xe——+1 all other X;=—1, for this
leads to the largest eigenvalue of VIVI in the odd space:

As= —Is+2. (4.48) ) =expt:', (—Vo+Vs+V4+ +Vs=s)7 (45~)

Returning to (4.45), we also recall that for V=+I',
all X, for r even vanish. There is one eigenfunction of
the X, which gives

As= —N=XI+Xs+ +Xs„ I

2XI+2Xs+. +2X I+X„ for n odd

2XI+2Xs+. +2X

Since the X, can be only +1 or 0, there is only one way
that this equation can be satisfied, namely for all X„
(r odd) to have the value X„=—1.

This simple argument tells us that VIVI has an
clgcnvRhlc

expLs(2vl+2vs+ ' ' '+2vn —I+vs)7
for I odd

If E*&E', ~,=E*—E' is negative and for large ~
approaches the value of —yl. If E*&E', ) and )+
are asymptoticaHy degenerate. At E~=E', yo changes
sign and for E~&E' the degeneracy no longer exists.

The situation here iHustrates very nicely the predic-
tions IDadc in Scc.3. TlicI'c wc pI'cdlctcd that lf R phRsc
transition exists, at least in the case E'=E, it occurs at
E'=E*, the point where this degeneracy disappears.
We also saw that a degeneracy of the largest eigenvalue
is associated with long-range order, thus the critical
temperature truly represents a transition from an
ordered to a disordered state.

To complete the analysis of this section, we 6nd an
asylllp'to'tlc expl'essloli fol' Z. As Sllowll by Kq. (2.4) a
dcgcncI'Rcy of thc Rbovc natulc has Qo cGect upon thc
thermodynamic pI'opcI'tlcs dcI'lvcd from z

expLs(2VI+2Vs+ . +2V.-I)7
for Ã cvcIl

lim (nrss) ' logZ ——,
' log(2 sinh2E)

4.49

= lim (24s) '(VI+ Vs+ +Vs I)
or by extending the definition (439) of v, for j&ss

).=-pL-,'(v+v+" +v. )7. (4.5o)

3y comparing this with other expressions in (4.44),
we see that this is certainly the largest eigenvalue in
the even space. The next largest in this space is smaller
by at least a factor e». Comparison with the possible
eigenvalues of the odd space shows that this is also
larger than any of these but one of the possible eigen-
values of the odd space is asymptotically equal to the
above, namely the solution with all positive ex-
ponentials.

There is one final question to be answered. Is the
solution of (4.44)

)t=expL-;(Ivsl+vs+v4+" +vs s)7

really an eigenvalue of VIVID To obtain a partis, l

answer to this question we notice again (4.48) and ob-

= lilll (2%) Q cosll Lcosh2E cos112E*

—sinh2E' sinh2Ea cos((2r —1)sr/I) 7

p2%

= (4sr) '
) d40V(te), (4.52)

V(oI) = cosh ' (cosh2E' cosh2E*

—81111I2E SIII1I2E cos40).

log(2 coshÃ —2 cosoi)doi= 2srs.

Th.ls expression docs Qot show' the syIQIQctl'y 1Q E
Rnd E .c cRQ obtRln a InoI'c sylTlIQctric forID by coIl-
verting (4.52) into a double integral using the relation
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This yields

lim (nni) ' logZ=log2
n, m-+cc

f 8

+-', ir
—'

d&g ' du' log (cosh2E cosh2E

—sinh2E cosa& —sinh2E' cosset'). (4.53)

g/g Llg

FIG. 1 /. A square lattice with four independent coupling constants
denoted by JI, J2, J3, and J4.

4.3 Thermodynamic Properties

In Secs. 4.1 and 4.2, we have derived by two quite
different procedures the partition function of the two-
dimensional square Ising lattice. The result of this
calculation was

The internal energy per particle is found from

E= k T'8[(nni) 'log-Z]/8 T (1 6)

= —JB[(nm) ' logZ]/BE
= —J'coth2E[1+2m. '(2 tanh'2E —1)Ei(ki)], (4.54)

lim (nm)
—' logZ= log2

n, m-+co

where
k~=2 sinh2E cosh '2E

+-,'ir '
) ) log (cosh2E cosh2E

0 0

and Ei(ki) is the complete elliptic integral of the first
kind„

—sinh2E cos~ —sinh2E' cos~')d~d~0'. (4.18)
f n/2

Ei(ki) =
i

0

(1—ki2 sin'y) 'dy.

This expression shows the symmetry with respect to
interchange of E and E'. One of the integrals is easily
performed using the identity

f
log(2 coshx —2 cos&o)da&=ex

Jo

to give the less symmetric form

lim (nni) ' logZ
%,1$~oo

where

=—', log(2 sinh2E)+ (2ir) '
~

y(io)dc0, (4.52)

cosh'(co) = cosh2E' cosh2E*
—sinh2E' sinh2E* costd.

Although the above integrals are not of a common

type, the thermodynamic functions involving deriva-
tives of these integrals can be expressed in terms of
elliptic functions. The analysis of these integrals for
arbitrary E and E' is given in Onsager's paper. This
analysis is considerably simplified if we let E=E'
as we shall do in the following. p(~) is then given by

cosh'(&0) = cosh2E ctnh2E —cos~.

XXXX)
(XXXX

V V V
FIG. 16. The Kagome lattice.

sinh2E sinh2E' = 1. (4.55)

If we fix J+J', the spin-spin internal energy at 0'
Kelvin, and let J' become small. The critical tempera-
ture becomes smaller. If J'=0, the two-dimensional
lattice degenerates into a system of independent one-
dimensional chains which, as already seen, has no
critical temperature. As J~0, the critical point tends
toward T=O and Anally disappears for J'=0. (See
Fig. 15.)

5. OTHER LATTICES

The detailed analysis in the previous sections has
been primarily restricted to properties of the square
lattice. Other lattice types have been considered by
several authors. '~~ However, when these types have
been successfully treated, the results have not differed
in any very interesting way from the properties of the
square net. . We shall therefore only briefly summarize
the calculations that have been done.

The critical point for this system has already been
predicted in Sec. 3.1 as the point where

~

sinh2E,
~

= 1.
For E=E„k&——1 and 2 tanh'2E=1. Even though
Ei(ki) has a logarithmic singularity at ki ——1, the coefFi-
cient of Ei(ki) vanishes linearly with the result that E
is continuous at T,. There is no latent heat.

The speci6c heat is, however, given by

C= 8E/BT.

Since one of the terms of E is proportional to
~

T T.~—
Xlog

~

T—T,
~

near T= T„there is a term in C which is
proportional to log~ T T, ~. The speci6c—heat has a
logarithmic singularity at T= T,.

The more complicated analysis of the general case
E/ E' shows that the speci6c heat still has a logarithmic
singularity at a temperature given by
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~ 0 4

,Ig, lg i', lg

Vz

, lg l~ Ig

stants, for example, the critical temperature of the
triangular lattice is given by the solution of

(cosh2E2 cosh2E'3 cosh2E4

+sinh2E2 sinh2E'3 sinh2E4)'
=2+sinh'2E2+ sinh'2E3+ sinh'2E4

E:,=J,lkT. (5.1)
lq, lg ilg

&JAN

FIG. 18. (a) is obtained from Fig. 17 by setting J&——0, thus
eliminating the bond so designated. (a) can then be deformed into
the hexagonal lattice (b). The partition function depends only
upon the J's and the topology of the lattice.

The triangular and hexagonal lattices which have
already been described in Sec. 3.1 can be solved ex-
actly by essentially the same technique used for the
square lattice. Another lattice that has been treated in
the same way is the Kagome lattice, "a woven bamboo
pattern as shown in Fig. 16.

All these lattice types can be considered as special
cases of a generalized square lattice. " In this gen-
eralized square lattice we introduce several interaction
constants. For example, we may use four diGerent
constants, one for each of the four nearest neighbors as
shown in Fig. 17. Each bond is labeled with its coupling
constant.

The techniques used for solving the usual square net,
particularly the method of spinor analysis, can with
minor modifications solve this more complex lattice.
It is in fact possible to solve exactly a square net with
even more complex arrangements of coupling constants.
The details of such will however not be given here.

.We shall notice that from the solution of this lattice
we obtain as special cases, the solution for both the
triangular and hexagonal lattices. If we set Ji ——0 we
eliminate the bonds so designated. The resulting lattice
shown in Fig. 18 is then deformable into the hexagonal
lattice.

If, on the other hand, we take the limit J~~, the
spin pairs so coupled must take the same values. They
therefore act as a single particle. The lattice resulting
from bringing the particles joined by JI into a single
particle gives the triangular lattice.

The Kagome lattice is a special case of a more com-
plex square lattice. - The specialization is illustrated in
Fig. 19 where we have designated by ~ and 0 those
bonds of the square lattice whose coupling constants
are ~ and 0, respectively.

With but a few special exceptions mentioned below,
the properties of these lattices are of the same general
type as the regular square lattice discussed in Sec.
4.3. They all exhibit a logarithmic singularity in the
specific heat corresponding to a transition from an
ordered to a disordered state. The critical temperature
depends upon the values of the various coupling con-

The exceptions to this type of behavior are furnished
by special antiferromagnetic lattices which have no
"perfectly ordered" state. An example of such is the
triangular lattice for which the three coupling constants
are all exactly equal and negative J&——J2 ——J3&0.
Each particle tries to have its spin opposite to that of
all its neighbors. One readily sees that it is not possible
to arrange positive and negative spins so that each spin
in the lattice is diGerent than all its neighbors. There is
no ordered state as for example in the rectangular and
hexagonal lattices illustrated by Fig. 20.

This triangular lattice fails to have a transition if and
only if one or three J s are negative and the two
weakest

~
J,

~

are exactly equal. All these cases lack an
ordered state. It is interesting that, if one or three J;
are negative and we let the two weakest

~
J,

~
approach

equal values, the value of T, becomes smaller and
smaller until it 6nally disappears at T,=O much as the
singularity in the two-dimensional square lattice
vanished as we let one of the couplings go to zero.

Even in the general case Ji/ J2/ J3, it is possible
to obtain both a dual transformation and a star-
triangle transformation as in Sec. 2. These are obtained
in the same manner as before but the algebra becomes
more cumbersome. The fact that certain triangular
lattices have no transition does not imply, however,
that the hexagonal lattice has any such solutions of
physical interest. By applying the star-triangle trans-
formation to these special triangular lattices one finds
that they correspond to hexagonal lattices with imagi-
nary couplings. All hexagonal lattices with nonzero real
coupling constants have phase transitions.

The triangular lattice may be considered as a 6rst
step toward the solution of a nearest and next nearest
neighbor square net problem. We can deform the tri-
angular lattice as shown in Fig. 21. It is then apparent

0 40 '

Q ce o

&2' g cX) C

OP O OO 0 OO

Fio. 19.Sy eliminating those bonds designated by 0 and joining
points connected by the bonds 00, one can deform the above lattice
into the Kagom5 lattice of Fig. 16.
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That of a triangular lattice Z& is given by
2

log(i2Zr) = I ~l log(cosh2Ei cosh2E2
8~2

)&cosh2E3+ sinh2Ei sinh2E ~ sinh2E3

—sinh2EI cosa~ —sinh2E2 cosco2

—sinh2Eg cos(coi+G)g) jdMidM2.

6. SPECIAL PROPERTIES OF THE T%'O-DIMENSIONAL
ISING LATTICE

6.1 Ferromagnetism

Perhaps the most interesting feature of the Ising
lattice is its spontaneous magnetization, a necessary
feature of any ferromagnet. Peicrls" was the first to
show that the Ising model was ferromagnetic and series
expansions for the spontaneous magnetization were
long ago given for low temperatures by van der %'aerden'
and Ashkin and Lamb. "

The magnetization per particle has already been
defined as

M=Ã 'y Q 0 =X '8 logZ/8@ (6 &)

C
I 4

\ J 4 '~ L )

~ e

%C ~ Pfl Ef

~ 4 4 t II 4 ~

FIG. 20. For an antiferromagnetic square or hexagonal lattice, a
state of "perfect order" exists. This state is illustrated with circle
describing up {ordown) spins and x describing down {orup) spins.
Such a state does not exist for the triangular lattice.

that the triangular net is a square net with an additional
interaction along one of the diagonals. Unfortunately, it
has not been possible to solve the case of interactions
along both diagonals. Indeed none of the cases con-
sidered involve interactions that "CIoss."Thc difficulties
here are remindful of those in the three-dimensional
lattice where the topology of closed paths involve knots.
It would appear that this also may be a very dificult
problem.

The partition function per particle Z~, of a hexagonal
lattice ls given by

] 2~ iw

log(-', ZII) =
~

~ log-,'(cosh2Ei cosh2E2
16m' ~o ~o

Xcosh2E~+1 —sinh2E2 sinh2E3 cosa& i

—sinh2E3 sinh2Ei cos~2

—siiili2Ei Siiili2E2 Cos(ld i+C02) )dCOlk02.

FIG. 21.A triangular lattice can be deformed into the above form
which can be interpreted as a square lattice with interactions
along one of the diagonal directions.

To be ferromagnetic, a system must have a discon-
tinuity in M(H, T) as a function of H at H=0 and T
less than some critical temperature T,. If wc take the
limit M(H, T) as H-+0 from positive values of II, then
M(0~, T) )0. The ferromagnet retains its magnetiza-
tion in the direction of H even after the magnetic field is
turned oR. If, on the other hand, we let II—+0 from the
negative side, then M(0, T) &0.

The energy levels of the Ising lattice are given by

—I Q oa" pH+0—.

Z(H) =Z( II), —
M(H) = M( H). — — (6.2)

For any finite lattice M(0)=0. This is apparent
since, for a finite lattice Z is a sum of a finite number of
functions each analytic in H. Z and M must therefore
be analytic in H, and M(H) = M( H) implies— —
M(0) =0. H, however, we allow the system to be in-
finite, Z becomes the limit of a sequence of analytic
functions which is not necessary analytic. To calculate a
spontaneous magnetization, it is necessary to first let
E—&~, then let II—+0. If we put II=0 6rst, we shall
always obtain M(0) =0.

Although we do not have a solution of the Ising prob-
lem for arbitrary II, the spontaneous magnetization
depends only upon the behavior of Z(H, T) for small H
to terms linear in II.

The existence of a spontaneous magnetization was
first proved on the basis of the low temperature expan-
sion of Z. Regarding Eq. (2.25), we note that because of
the symmetry with respect to changing a- to —0,

gpss, Wi, 1V,2) =g(X, cV—Xi, iV,2),

where 1Vi is the number of 0's that are +1 and X Fi-
the number that are —1. Wc combine the terms of
(2.25) with E)E/2 and those with Ã E/2 to obtain-
Z=2e ' "Q Q g(E ItI X )

Nlg ¹&X/2

)&exp( —2EXi2) cosh[(S—2Xi)p@j. (6.3)

If we change the direction of the magnetic field (H + H)——
and all the spins (0.,—+—0;), the energy remains un-
changed. Since Z involves the sum over all ~;=&2 or

0 '=+1
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Z(P) Z(0) cosh(XII@)

M(H) p lim tanh(IVII')) = (6.4)—p, for Ego

(except in one dimension).
A closed expression for M(0) as a function of T has

not bccD dcllvcd by conlblnR'tol'1R1 Incthods although
rather lengthy series expansions have been calculated
(see Sec. 7). The spontaneous magnetization of the two-
dlmcnslonal Ising 1Rttlcc hRs bccn - derived~ howcvcrp
uslilg RlgebrRlc nlc'tllods. Tllls WRs do11c by Yang (lt

(The one term with EI X/——2 for IV even is incorrect by
a factor. of 2 but this error is neghgible for large 1V.)

For Ã is 6mite, (6.3) is a function only of @' and
therefore gives 3f(0)=0. For low te,mperatures and
posl'tlvc Eq thc Inaln con'tI'lbutlon 'to Z con1cs fI'oID

tel'1118 wl'tli XII((lVc/2.
The existence oi nonexistence of a, spontaneous mag-

QctlzRtlon hlngcs oD thc dcpcQdcQcc of Ej oD Xyg.
These two are certainly not independent quantities for
example%~2= 0 lmplles %~=0 or E.In a one-dlmenslonal
lattice, there is, however, very little correlation between
Ej and X~2 for XI2&0 because each unfavorable bond
(joining unlike spins) gives a boundary between regions
of 0 =+1 and 0 = —1. One can shift these boundaries
almost at wiH. Such a shift. leaves X~2 unchanged but
FI depends upon the length of the regions with 0 =+1.
One can make all regions with 0 =+1 small to give a
small Ã~ or Q1ake them all large to give a large X~,

In two or three dimensions, the situation is quite
diGerent. The correlation between Ej and X~~ is Q1uch

stronger. The feature we will want to exploit is that
small XI2 implies small EI (or small IV—XI); if there
are few unlike pairs, then most particles must have the
same spin. This difference between the one-dimensional
lattice and those of' higher dimension is the cause of
most of the marked dissimilarity of the thermodynamic
and magnetic properties of the one-dimensional lattice.

The dependence of Z on B is contained in the factor
cosh[(X—2/I)II@$ and the spontaneous magnetiza-
tion comes from 6rst allowing X to become ininite and
then letting p@—+0. The behavior of Z for small @ de-

pends strongly on whether or not for most states
X—2%I~ as Ã—+. Such is the case in two or three
dimensions at sufBciently low temperatures because a
low temperature implies that %~2 is small for most
states and therefore IVI/IV is also small. (In one dimen-
sion such is not true. )

If XI/Ã((1 for most states as IV-+~, then for any
nonzero Itio,

COSh[(N —2%I)l Oj~-,'exp[(1V —2llTI)
~ pg ~ j

for most states. Here lies the source of the spontaneous
magnetization, for if we now let

~
II@~~0.Z contains

terms linear in
~ II@~ leading to a nonzero magnetiza-

tion for @—+0 and a discontinuity. For very low tem-
perature and small O,

was reported but never published by Onsager at the
Cornell Phase Transition Conference, 1948) using a
6rst-order perturbation of the solution of the Ising
problem in zero Geld. %C shaH only indicate here the
preliminary steps to this calculation. Although the basis
for the Q1cthod is quite obvious, the detailed calculations
are both tricky and tedious.

Ill Eq. (2.14) 'tile pR1 tl'tloli fllnctloll ls wr1ttcll Rs

Z= (2 sinh2E) """trace (V&V&VI) "'

(2 sinh2L) ""I'X'"

where X ls the lRI'gest, eigenvalue of

VAVI= VIVI+~@(Z s;)V2VI+ .
i=i

We write )I, = lla +II@X' with lio,„the largest
eigenvalue of VIVI and, we determine V,„by the usual
6rst-order perturbation theory.

Perturbation theory is somewhat more elegant if the
matrices are symmetric because then the eigenfunction
are orthogonal. Instead of treating the matrix V,V,V, ,
Yang considers matrix VI&VSVRVI& which is similar to
the above but also symmetric. This is not a generaliza-
tion of the symmetric matrix P of Sec. 2. Such a matrix
would be V2'*VS&VIVI&VI'*. All three of these matrices are
similar and therefore have the same eigenvalu. cs. Onc
should be able to carry through all the analysis irrespec-
tive of representation but to avoid confusion we usc
here the same matrix as Yang. We therefore write

VI'*VSV2VI'*= VI&V2VI&+ ~VI' p s;V2VI&
1

Perturbation theory warns us that we must distin-
guish between eases where X' „ is degenerate and cases
where it is nondegcnerate. Ke therefore consider sepa-
ra'tely the cases ~&Tc and T'& ~c.

We have seen (Sec. 3.2) that for 2'& T., the largest
eigenvalue of VI&V2VI& is nondegenerate and its eigen-
function ItI~ belongs to the space of even functions.
Each of the matrices V2 and Vi commutes with U,
thus they send even functions into even functions and
odd functions into odd functions. 8;, however, anti-
commutes with U, it sends even functions into odd
functions and vice versa. The perturbing term above
therefore has no diagonal elements in the representation
ln which Vy~VIVj~ ls dlRgonRl Rnd

li', =(&+, Vi& P s;VRVI'&+) =0.

For T)T, there is no correction to X linear in @thus
Qo spoDtMlcous magnctlzatlon.

For 7&T„ the situation is quite difI'erent. %e have
scen that X' is then twofoM degenerate in the limit
s~~. Thci'c Is Rll elgcIlfllllc'tloll Qy 111 tllc cveil space
and an eigenfunction g in the odd space. The perturba-
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tion "splits" the degeneracy, and we have a situation
quite analogous to the anomalous Zeeman eGect in the
quantum theory of the hydrogen atom.

The first step in a perturbation procedure is to con-
sider separately those parts of the matrices correspond-
ing to the space in which X,„is degenerate. In this case
we consider the 2X2 section of the matrices correspond-
ing to the space Q+ and Q . We wish to choose a repre-
sentation in which the 2X2 part of both the zero-order
and 6rst-order matrices Vr~VsVt& and

1.0

(2)

Vil Q s;VsVr',

respectively, are diagonal. This. portion of the matrix
Vi&VsVr is simply )ts, times the 2X 2 identity matrix
and is invariant to any transformation of g+ and Q .
It will be diagonal in any representation including that in
which this part of the first-order matrix is diagonal.
The 2&(2 portion of the first-order matrix is symmetric
and has zero diagonal elements in the representation

Q~ and Q . The first-order eigenfunctions are therefore
2r(g++Q ) and

n

)'- =L2 '(0++4-) Vi'2 s VsVr'2 '(0++0-)]
j=l

'Since Vr~VsVr'(st++/ ) =)ts . (/++ g ),

)~'-,=-', )~'-,t.(4,+0 ), V,—: P,V (g,yg )]
j=l

7L

=) s ..(q, V,—:ps,V;:g,)
j=l

because s; has no matrix elements connecting Q+ to Q+
or Q to Q but s; is symmetric.

Using (6.1), we see that to order @,

M=e 'cl log),„/c)@=n 'fr, ) ', /)s,
n

=rs-'p(&, Vi' P s,Vt-lit~).
j'=1

Since each point in the row is equivalent to any other
point, each of the e values of j give the same contribu-
tion; therefore,

M= p(r'f , Vi'siVi *&~). -
The magnetization is thus described by a single

matrix element which formally looks quite simple. The
evaluation of it is, however, rather complicated even
though the answer is relatively simple. Yang" found
for E=E'

0, 5
V/T;

FIG. 22. The spontaneous magnetization of the two-dimensional
Ising lattice is plotted es the temperature (curve 1) (see refer-
ence 29). Curve (2) is an extrapolation of the low temperature
series expansion in powers of z=e~~, including terms of order
z" )deduced by van der Waerden (see reference 8) and Ashkin
and Lamb (see reference 16)].Curve (3) is the expansion to terms
of order z" as given by Domb (see reference 34), the longest series
known prior to Yang's exact treatment.

branch point

M(O)=&L4(v2+2)(s, —&)] .

The magnetization M(0, T) is shown in Fig. 22.$

6.2 Correlations

Aside from the usual thermodynamic quantities, one
is also interested in the correlations between spins at
di6erent lattice sites. Such correlations are observed
experimentally in x-ray diffraction eGects.

A great deal of literature exists on approximate
theories of ferromagnetism and binary alloys based
upon short-range and long-range correlations. A review
of such work would carry us far away from our purpose
here. This voluminous literature has been reviewed
elsewhere.

Exact expressions for correlations have been calcu-
lated only for the two-dimensional square Ising lat tice."
The correlation of the ~th spin to the jth spin is dered
as the average of o, if o;=+1.We may re-express this
in many ways. It is also the average of o, if o;=+1, or
the negative of the average of 0; if a;= —1. The most
convenient expression is the average of 0;0; written
below as ( ~o,) The equ. ivalence of these de6nitions is
apparent since o,=+1 with equal rr priori probabilities.

(o,o,) is calculated from

(o,o;)=Z—' P Q o.,o; exp( —E/kT). (6.6)
&1=+1 o'N=kl

These averages are evaluated by again using matrix
expressions. For a two-dimensional lattice, let a.

;A, be
the spin of the particle in the jth row and kth column.

~M(())
~
=y(1+as)&(1—ss) &(1—6ss+s4)rls

$ Note added in proof: Formulas for the magnetization of the

z=~ 2X (6 5) asymmetric square and triangular lattices have been presented
by R. B.Potts )Phys. Rev. 88, 352 (1952)j.The formulas of the
former were also given by C. H. Chang [Phys. Rev. 88, 1422

Near the critical point s=s, =v2 —1, M 0 has a . (1932)g.
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0.5.-

f.O

FIG. 23. Correlation coeEicients of the two-dimensional square
Ising lattice as a function of temperature (see reference 30);
(a) (0 1la 12) (b) (0 11022) (c) (0 11&18) (d) (0'11023) (e) (&11014)
(f) N'. Since, as one observes from the figure, these averages are
monotone functions of the distance between the points, the long-
range correlations approach a limit 3P independent of direction
on the lattice.

If ~I, represents the state of the kth row as in Sec. 2.1,
then (6.6) can be written in the form

on 2n

(~,b~.b)=& ' P P P 1.1X
vi~1 vrrb=l

xP; 1;(»);,P;;, x".

in which case

~ )=ll -- "'L(4+, s P" '»0+)
+(0-, s P 's 4-)l (6 8b)

The correlations between nearby point (u and b

small) in an infinite lattice (m and I +~—) are used to
describe "short-range order. "Long-range order already
discussed in Sec. 3.2 is described by the limit of (o.»a.ab)
aS a and b +~ (—after m and 11~ao ).

The correlations have been calculated by Kaufman
and Onsager for several of the nearby pairs of points.
The detailed evaluation of the matrix elements (6.8a,b)
is again a rather tedious operation. The results of these
calculations are plotted in Fig. 23.

Long-range order and spontaneous magnetization
describe essentially the same thing as we shall see below.
One can very easily see from (6.8) and (6.8a) that no
long-range order exists for T&T,. If we let l= 1 corre-
spond to the largest eigenvalue (it is nondegenerate),
then

(allo, b)-+ill '+'(%' 's1%'%' 'P' '%'%' 'sb%') ll

XPvalva(Sb) vavaP-vava+lX ' ' ' XPvmvl&

where I'„„ is the matrix dered in Sec. 2.1.The above is
again expressible as the trace of a matrix product,

((r ba, b) =Z—' trace (Pl-'slP —&sbP"—'+')

=l;.+' p (%-'s,%), X'-'(%-'sb%);,

~(%' 's1%')11(% 'Sb%') ll

=Z—' trace (sbP'-1sbP"-'+1'). (6.7) (0 11)(0lb)

The right side depends upon u and j only through the
combination of j—a as is to be expected physically as a
result of the periodic boundary conditions. Also it
depends upon k and a only through k—a because the
matrix P is invariant to a cyclic permutation of the
particles in a row. One needs only consider (&r»o, b)

Also the correlations are independent of rejections
about vertical or horizontal lines, they depend only
upon

l
a—1

l
and

l
b 1 l, thus we ne—ed only consider

1(a(-',m+1 and 1(b(-,'lb+1.
Since the trace is invariant to a similarity transforma-

tion, we apply the transformation which diagonalizes P.
Let %' be this transformation matrix,

because both O.
~q and O.jq are zero. Thus, we again

prove that long-range order cannot exist unless the
largest eigenvalue is degenerate.

We might look at this from a slightly diferent point
of view. Suppose

l Ml =M(0+, T) = —M(0, T) is the
spontaneous magnetization per particle, X~ the number
of "up" spins and X2 the number of "down" spins, then

lMl = lx,—,v.,l/x=~y, —x,)/x, Jv=x,+iv, .
The ~ is chosen accordingly as the magnetization is in
the positive or negative direction (up or down). This
gives

x,/x=-', (1~ lMl), x,/~v, =-', (1~ lM l).

We now ask what is the average magnetization if one
spin (call it 0.11) is positive? We use the symbol Pr{a}
to denote the probability of the event a. Ke have just
deduced that

( „..)=(P~,-)- P~,=+(%-s,P.-s,%)„. (6.8)

Since a—1 (m/2, m —a+ 1 will be large for m large and
we need only consider the values of / corresponding to
the largest eigenvalue. For T)T„ the largest eigen-
value is nondegenerate and we neglect all 1 but one:

Pr{~»&0 lf M= M IMI }=5(1~IMI).

(&»&ab) llmax (lt+&—SIP Sbf+).

For T&T, the largest eigenvalue is doubly degenerate,

However,

( )
Pr(011)0 and M=& lMl }

=Pr(0'll & 0
=Pr{M=W

l
M

l
if ~„)0}Pr{~„&0}.
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In the absence of a magnetic field Pr(M= &
I
M

I }and
Pr f o ii ——&1}are all z. Thus,

«»»}
Pr(a'»)0 if M=+ IMI }=z(1~ IMI).

We find that the average magnetization if crier)0
to be

IMIPr(M= IMI if oii)0}
—IMIPr{M= —IMI if ~») 0}

=z IMI(1+ IMI) —
z IMI(1—IMI) =M".

M' is the conditional average of all spins if o-~~) 0. It
can also be expressed in terms of the correlations above

tn n

M'= lim (mm)
—' Q P (a,ia, g).

m, n-+x a=1 b=l

As e and m~~, no 6nite set of a, 6 contribute to this
sum. We obtain a nonzero M' if and only if (o»~, &) is

nonzero for arbitrarily large a and b. Thus, we see that
the existence of long-range order is equivalent to the
existence of a spontaneous magnetization.

7. THREE-DIMENSIONAL LATTICES

It has already been mentioned that the methods
used in finding exact- expressions for properties of two-
dimensional lattices break down when they are applied
to the investigation of three-dimensional lattices. How-

ever, the 6rst few terms have been calculated in certain
power series expansions for the partition function of
three-dimensional Ising lattices. Expansions exist which

are valid in the high and low temperature ranges. These
have been obtained by both the matrix and combina-

0 0.5 &.0 5.5 Z 0
kT/s J

FIG. 25; Approximate spontaneous magnetization curves for the
cubic lattice corresponding to the curves of Fig. 24.

torial methods. Although it is impossible to base a
rigorous discussion of critical phenomenon on these
series, they give accurate results at temperatures not
too close to the critical point and are useful for the
es'timation of the range of validity of approximate ex-

pressions for thermodynamic properties.
Since Rushbrook" recently published a detailed re-

view of the status of these series, we shall merely state
the best available results for the simple, body-centered
and face-centered cubic lattices and present specidc
heat and spontaneous magnetization curves (see Figs.
24 and 25) for the simple cubic lattice. These curves are

compared with those computed on the basis of the
Bragg-Williams and Bethe formulas.

A large number of articles have been written about
series expansions. Some of the more recent ones are

those of Rushbrook" and Wakefield;" Bomb;" Tre6tz;"
Somers" Ter Haar;" Oguchi;" Tanaka, Katsumori,
and Toshima;" and Kikuchi. "

We shall consider only the case in which the inter-

action parameters in all directions are equal. We let

x= tanhK. (7.1)

(Q)
I

i
'

I(g)
I(

0 Q.5 1.0 .5 2.0
KT 5J

FIG. 24. Approximate speci6c heat curves for the three-dimen-
sional cubic Ising lattice {see references 2, 31). In order of their
apparent accuracy they are {1)Bragg-Williams approximation, {2)
Bethe second approximation, (3) Kirkwood approximation, and
{4) and extrapolation of high arid low temperature expansions by
Wakefield known'~to be accurate everywhere except near the
critical,'-point.

Then the high temperature expansions for the &7th

root of the partition function (in a lattice of X particles)
are

a. simple cubic lattice

Z" = 2 cosh'E(1+3x'+22x'+192x'

+2070x"+24 943x"+ ) (7.2)

b. body-centered cubic

Z" = 2 cosh'E(1+12x'+148x'+1860x'+ ) (7.3)

c. face-centered cubic

Z'~~= 2 cosh'E(1+8x'+33x'+168x'

+962x'+5928x'+ ) (7 4)

The low temperature series for Ã 'log Z are expressed
in powers of z=exp( 2J/kT), —
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c. face-centered

c/a
kf/II, = 1—2s"—24s~+26s'4 —48s"—252s"+720s"

—43826—i9226—984m« —i00882—".
It has frequently been conjectured that the partition

function Z for a three-dimensional lattice is the simple
generalization of the Onsager formula

I'zo. 26. Speciic heat vs temperature for the spherical model in {a} log&g&l&—
one dimension, (b} two dimensions, and {c}three dimensions.

1

0-

a. simple cubic lattice

7 313
se+3sio —si2+ 15s14 33s16+ s18

2 3

X log(cosh2Ei cosh2E2 cosh2Ei sin—h2Ei cosy',

—slnh2E2 cos(a2 —slnh2Eg cost@3)dcoik02dM3.

56i
s"+849s"—

2
g24

%hen the interaction constant in the s direction, E3,
vanishes this expression reduces to the correct two-
dimensional formula (4.53). Unfortunately, if one sets
E~=E2——E~——E the high temperature power series in
x= tanhE is not the same as the exact series (7.2).

b. body-centered cubic

9
s-2I .8+4.i4—.i6+2S.2o—64s22

2

i45
+ s'4+204s" —786s"+1164s"

3
369i

+ s"—8760s"+ " ~; (7.6)

c. face-centered cubic

8. SPHEMCAL MODEL

The partition function (1.3) of the Ising model (in
the absence of a magnetic field, @=0) is a multiple sum
whose summand is the exponential of a quadratic form
in the 0's. The infinite integral over an exponent, ial of
a quadratic form whose real part is negative definite can
be evaluated much easier than the sum by employing
the formula

~I exp( —P u;;o;0;)doi day

= s ~12 (det( u;~ ~)
—

&. (8.1)( 13
8

~

s12+6s22 24+ 8@0
2

2i7
+42s"—120s'4+ s"+24s"+123s"

3

The formulas for spontaneous magnetization are
a. simple cubic~~

3f/II, = 1—2s' —12s"+14s"—90s"+192s"
(8 2)

This suggests that if one could replace the summation
operation in (1.3) by an integration, it might be possible
to evaluate the resulting partition function rather
easily.

%ith this Inotlvatlon Kac proposed the sphellcal
+126s4'—1623s~+2418s4'+ ~. (7.7) model of cooperative phenomenon in which the spin

variables (0,} are considered to be continuous rather
than discrete. The 0's of the Ising model satisfy the
relations

—792s"+2148s"—7716s"+23 262s"
I

—79 512s"+252 054s"+

N

Q uP=S. (8 3)

b. body-centered

M/p = 1—2s' —16s"+18»"—168s'"+384s~—314s"
—i i84s26+6248s" —9744''"—io 174'"+ - .

;

~~ Note added ie proof: The coe%cient of s" is that given in
reference 39, Wakefield (reference 33), however, gives 79530.

The spherical model is characterized by the relaxation
of the strong conditions (8.2) and the postulation that
the 0's can simultaneously have any real values which
lie on the hypersphere (8.3).

There are certain properties of the spherical model
which are physically unrealistic. For example, the fact



that the o's a,re continuous suggests that the thermo-
dynamic behavior should be classical at low tempera-
tures (for exainple, the specific heat does not approach
zero as T-+0). On the other hand, the magnetic proper-
ties of the spherical model may resemble those of a real
ferromagnetic more closely than does the Ising model.
The two-dimensional spherical model has no transition
while the corresponding Ising does. There is consider-
able evidence4' that a real two-dimensional ferromagnet
does not have a transition either; it has been suggested
that the magnetic anisotropy of the Ising model in-
duces the transition in two dilnensions.

The attractive feature of the spherical model is that
all its thermodynamic and magnetic properties can be
calculated exactly in one, . two, and three dimensions
for any common type of lattice. Also the interaction of a
particle with other than nearest neighbors can be intro-
duced into the spherical model without causing any
signihcant mathematical difhculties. In three dimen-
sions a phase transition exists with long-range order
below the critical temperature. The thermodynamic
properties have been calculated by Berlin and Kac"
and one of the authors. 4' Since the recent paper of
Berlin and Kac is quite complete in all the details,
we shall merely outline the methods used and sum-
marize the results.

The partition function (normalized to unity as T +~)—
of the spherical model in the absence of a magnetic
6eld is

~=~sr '
J

' da'i' ' 'do'x exp(k+Zoo'&i&i)~ (8 4)

A~ —— .)~ do, . do~ 27rl"Ã~&"——u/I'( ', N) (8.5)-.
N
Z eP=N
jee$

All other symbols have the meaning given to them in
Sec. 1.One way of evaluating the partit. ion function is to
lDtI'oducc thc S-function,

X
b(N +0/) =——

~ exp(iy(E POP) }dy—(8.6)
g=» 2gJ „

into the integrands of (8.4) and (8.5).Since 8(E—Q o.P)
j=»

vanishes, unless the sphericalization condition (8.3) is
sat, is6ed, the integration over the o's can be allowed to
extend over all real values, —~ &o;&~ for all j.
The integration over the o's is then easily carried out by
applying (8.1).The integration over the new variable y
ls pcrforIQcd by thc Incthod of stccpcst dcsccnts.

The 6nal expression for the part. ition function of an
5 dlIQcnsloQR1-slIQplc cubic 1Rttlcc ls

lim —logZ= —$—-', log2E —-', f(s,)+Es„(8.7)
g-+to g

and the specific heat per particle is

(8 8)

when a, real position solution 2', exists for the equat. ion

1
I P . dory'' dc@A

2E= ~ 0 0

(2s') ~ ~ s,—cosvy —~ ~ ~ —cosco,
(8.9)

The function f(s,) 1s de6ned by

f S

f(s)= ' inLz —Z «»~ jd~i d~ (8 1o)
(2s.)' J J

0

When s=1 or 2, Eq. (8.9) has a solution s, for all
0&X& ~; that is for all temperatures. Indeed, in these
two cases s, is an analytic function of E, as is the speci6c
heat (8.8). No phase transitions occur.

In the three-dimensional case Eq. (8.9) has a real
positive root s, (which is &3) only when

T& T,=3.N68J/k. (8.11)

I3 T&T,
~4 (8.14)

I 3—2(1-T/T, )' for T& T,.

(Of course, ~ =1 in the Ising model. ) If on the aver-
age only one spin was abnormally large, say ~~2K&,
and the rest small and equal, we would have (0 )

For T&T„ it can be shown that the speci6c heat per
particle ls glvcn by

C=-,'k, T& T,. (8.12)

The function C/k is not analytic in this case. It has a
singularity at T=T,. The speci6c heat is plotted in
Fig. 26. Notice that as T—C it has a finite limit rather
than zero, the corresponding limit in the Ising model.
Berlin and Kac showed that the long-range correlation
coeKcient vanished at temperatures above T„while

(~~/~A)A. /(~ )A '(~A')A'~1 —(T/T.), T(T, (8.13)

as
~ r; rA ~~~. The sp—ontaneous magnetization is pro-

portional to (1—T/T, )A for T& T,.
ODc might RI'guc that thc CI'ltlcRl phenomenon dis-

cussed above are caused by a small number of exces-
sively large spina Lsuch are possible according to (8.3)j.
However, the statistical weight of such spins is very
small, It can be shown that
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iV(1+9)V ')/16 which is in contradiction to (8.14).
Hence, we can say that the existance of even one very
large spin is such an improbable event that it could
hardly be responsible for the critical properties of the
IIlodC1.

The magnetic susceptibility of the spherical model in
the presence of a homogeneous magnetic field @is very
similar to that given by the Curie-gneiss phenomeno-
logical theory of ferromagnetism. In the Curie-Weiss
theory the susceptibility per particle is

g/ g[T T gl

where I,* is the transition temperature and ~' an
empirical parameter. The spherical model with a simple
cubic lattice yields

x= T,/n[Th(T) —T,j,
where T ~4J/k rather than the Curie-%eisa value
T,*=6J/k. The parameter n = 6J/y' is to be identified
with n*. The quantity h(T) is defined by

h(T) = T,s,(Q)/3T,

where s3(o) is a positive real root of

type 2. These particles are diIstributcd on lattice sights
and the state of the system is described by giving the
type of particle on each lattice sight. The energy of the
system is chosen to be the sum of the energies of inter-
Rctlng pairs of nearest nclghboI's. Thc cncrgy bet%'ccn
pairs is written as E;;=8;;, if one member of the pairs
is of the ~th species and the other is of the jth species,
Furthermore, we let the chemical potential of the jth
spcclcs bc p~.

The grand partition function of our system is

Zg = g g exp[(pini+y2n2 —Z )/kT j. (A1.1)

w; has the signi6cance of being the number of i type
particles; m numbers the states of the system for Axed

e;; and 8 is the total energy of the system in the state
m. The chemical potentials must be chosen in such a
way that the system gives the preassigned composition.

X;=(n,)=Z 'g— P n;

Xexp[(mini+ p2n2 —E„)/kT1

=kTB logZ/Bp, . (A1.2)

de) ld M2dC031

(2n') ~ ~ & s3(gl) —cosa&i —cosco2 —cosa&q

~2@2
+

2k'T'E'[s3g)) —3j
Berlin and Kac have shown that if one sets T,~= yT„

We again represent the "state" of the jth lattice
point by fT;= +1.g;=+ j. lf thc jth 1Rttlcc point ls oc-
cupied by a particle of type I, and 0= —j. lf it is occu-
pied by a particle of type 2. (1+a;)/2 is 1 if the jth
point has an atom of type 1 and zero if it has no atom
of type j.. Th.us

ni ,' g ——(1—+0;),

x= (T.*/n)/[TV h(T) T.*j. —(8.15) (A1.3)

The combination yh(T) is, in the entire temperature
range T,&T& ~, restricted by the inequality

3/2&yh(T))1.

Hence, Eq. (8.15) differs very slightly from the phe-
rloIQcnologlcR1 Curie-Wclss lR%'.

Interesting results have been obtained by Berlin
and Thomsen'4 and Lax4' by applying the sphericaliza-
tion technique to the theory of electric dipole-dipole
interaction in crystals. It can also be applied to a classi-
cal vector spin model of a ferrornagnet.

APPENDIX 1

Wc stR ted ln Scc. 1 thRt, R very satisfactory model of R

binary substitution alloy or a binary mixture is mathe-
matically equivalent to the Ising model of a ferro-
magnet. "Also the Ising model is equivalent to a sim-
pli6ed model of a gas and liquid, "We shall here describe
these models in more detail and show their relation to
the Ising problem.

Let us 6rst consider a binary system of S molecules
Of which On the average ÃI are of type 1 RDd X2 are of

ls EIj, 822, oi Ej2 Rccordlngly Rs thc $ Rnd j lattice
points arc occupied by two pRrtlclcs of type I, two
particles of type 2, or a mixed pair. w(n;, n;) thus repre-
sent~ the energy between the pairs i and j. The total
crlcI'gy ls given by

&-= Z ko'~(n', n~), (A1.5)

where a;; is as defined in 1.4. If we rewrite (A1.1) in the
new notation of the o;, the sums over ni+n2 Pand m-—
is equivalent to the multiple sum over all a;=+I,

Z, = P P exp[(p, n,+p,n, —Z„)/kT]

If i and j are a pair of nearest neighbors on the lattice, -

the expression

e(0;, cg) =-,'Eii(1+0;)(1+a;)
+-;E22(1—0;)(1—o;)+-',Big(1—a,o,) (A1.4)
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where in view of (A1.3) to (A1.5)

jll221+ j22222 E)))

N

=2 Z I:j 1(1+o))+j2(1 o—j)]

)2;)LAE11(1+o;)(1+o,)

+-,'E„(1—o.;)(1—)rj)+-,'E12(1—)r,oj)]
(+/g) t4jll+4jA2 C(E11+E22+2E12)]

N

+-,'L2pl —2p2 —c(E)1—E22)] p o,

(1/g) (Ell+E22 2E12) 2 12)jo)oj. (A1.6)

(Q a' =c).

c designates the number of nearest neighbors for a given
particle

lattice with II=0 thus corresponds to a binary alloy
with Xl——X2——X/2.

If J is positive, the Ising model is a model of a ferro-
magnet, if J is negative an antiferromagnet. In the
binary alloy, J positive corresponds to a binary mixture
which at low temperatures separates into two phases.
J negative corresponds to a substitutional alloy, and a
phase transition would be described as an order-dis-
order transition with the ordered state having type
1 and 2 particles on alternating lattice sites.

It will be shown in Sec. 6 that the Ising ferromagnet
in two dimensions has a spontaneous magnetization
(also in three dimensions), i.e. , M as a function of H has
a discontinuity at H =0 from M =

I M(0) I
for H= 0~ to

M= —IM(0)
I

at H=O . Knowing the value of M(0)
for II=0, one deduces the critical composition from
(A1.9) .

The mathematical formulation of the "lattice gas"
model is very similar to the above. As a starting point we
choose the familiar expression for the grand partition
function of a gas enclosed in a volume V,

Zg(V, j, T) = 2 y"QAI/&'

To finally transcribe this into the notation of the
Ising problem, we de6ne y= (27rrjlkT/k2)' exp(jA/kT), (A1.10)

AAH= &(~All 2jA2 c—(E)1 —+22)]=—jACkT

J=—A(E„+E22—2E12) =KkT
n —(1/8)L4jll+4j12 C(E11+E22+2E12)])

so that

Zg =exp(Sn/kT)
2rl=+1 . 2r~=+1

N N-

xexp(z P 2~;,o,oj+,8 g oj}

(A1.7) QA)= ' ' drld72' ' dry exp( —UAj/kT).
J J

y is known as the fugacity, p, is the chemical potential
and UN is the potential energy of a system with Ã
particles. The other symbols have their customary
meaning.

From the evaluation of Z, one deduces the pressure
from

= exp(Xn/k T)Zr. p=kT lim V—'logZO(V),
y~~

(A1.11)

Zy denotes the partition function for the Ising problem.
%e have thus established a simple relation between the
Ising problem and the binary alloy.

The important thermodynamic functions of each are
also related. For example, in the alloy

& =( ) =l 2 ((1+ ))"=P/2)(1+( )")

The constant n has no effect upon any average so that
(o.)A„ is the same as in the Ising problem, where the
magnetization per particle is given by

M= jl()r)A))

thus,

1V1——(N/2) (1+M/jA) ) cV2= (A/2) (1—M/jl) . (A1.9)

If H=0, the Boltzmann factor is invariant to the trans-
formation 0,= —u;. Therefore, M= —M=O. The Ising

and the density is given by

p= lim B(V '1 gos)/ lcojgy. (A1.12)

Since either p or p in addition to V and T is usually
known, one uses one of the above equations to select
the value of p, which appears as a parameter in Z.

The lattice gas4~ is described by dividing V into cells
of uniform size. For convenience we shall choose the
units of V such that these cells are of unit size. UN is
expressed as a sum of the potential energies I, between
pairs of particles. I in turn is described in this model by

if the two atoms occupy the same
lattice sight,

if the two atoms are nearest neigh- (A1.13)
bors,

otherwise.
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FIG. 27. p —v diagram
for the two-dimensional
lattice gas (see reference
47). The solid curve is the
exact boundary of the two-
phase region. The dotted
curves are the isotherms.

then
logy= 2(IrH Jc)/—kT= 2(p@ cE)—,

Zg ——exp[(pA ——',cE)V]
a 1=+1 rr V=+1

particle and t/' is not only the volume but also the num-
ber of cells.

The formal similarity between Z6 and the partition
function for the Ising problem is quite apparent. . If we
write

Xexp[-,'E P a,,o,o,+Ir@ P o,]

This interaction has the desirable feature of being
very repulsive (infinitely so) at very short distances,
attractive at intermediate distances, and zero at larger
distances. It qualitatively represents the true inter-
action between gas molecules.

The in6nite repulsion between particles in the same
cell prohibits the occupation of a cell by more than one
particle. The energy of the system can be described by
giving for each cell the value of a set. of coordinates
0-;, 1 &j& t/. 0.,=+1 if the jth cell is occupied and —1
if unoccupied. In terms of the o;, U~ becomes

=exp[(p@—ocE)V]Zr (A1 15)

From this, we can establish relationships between the
thermodynamic properties of the Ising lattice and of
the lattice gas. Since V is the number of lattice cells,
the free energy per particle Ii of the Ising problem is

0.8-

0,6-

Uii = —J Q -', a;,(o,+1)(o,+1). (A1.14) 0.4-

Since the integrand of Qrr is a constant over-all cell,
we can replace it by a multiple sum. There will be a term
corresponding to each possible allocation of the S
particles among the cells. For any choice of the o-, there
will be just X~ equal terms of the sum corresponding to
the E~ permutation of the particles among each other
which leave UN invariant.

Since —,'P(o.,+1) is the number of particles in the
lattice, we write

0.5 0.8

given by

FIG. 28. Magnetization of the one-dimensional Ising chain as a
function of the magnetic field p@=IJII/kT for several values of
K=J/kT.

Q~=rY!T P exp[(J/2kT) P a;, (o~+1)(o,+1)],
i, j=l and we find

Zr =exp(F V/kT),

where the multiple sum is over all o.j=~1 with the
restriction —,'P(or+1)=rY. When we substitute this
into Z, the summation over E eliminates the restriction
on the above sum, and we write

Zg —Q . . . Q yyx j(er+o
&1~+1 o'V~+1

P= kTV 'logZg= pH ,'-Jc+F. ——

The density is given by

(A1.16)

The specific volume e is given by

p= BV ' logZ/8 logy=-', V ' P ((o,)A„+1)=q(1+M/p).

Xexp[-,'E Q a;;(o,+1)(o,+1)] o= p '=2(1+M/p) '. (A1.17)

1 o V=+1
exp[2E P a,,o;o,]

Xexp[(cE+k logy) P o;] exp[2(cE+logy) V],

E=J/kT, —

where c is again the number of nearest neighbors of a

As was pointed out by Lee and Yang, "the P—o iso-
therms of the lattice gas are closely related to the 3f, II
isotherms of the Ising lattice. In particular a discon-
tinuity in M gives a discontinuity in v. As has already
been noted, the Ising lattice has a spontaneous mag-
netization or a discontinuity in M at II=0 for tempera-
tures below the ferromagnetic Curie temperature T,.

Although the two-dimensional Ising problem for
arbitrary fields has not been evaluated, it is indeed



foI'tuDRtc that tlM lntcl'cst, lIlg pRlt of thc dlagraII1 fox'

the two-dimensional lattice gas, naInely the condensa-
tloQ cux'vc, corrcspoDds to II=0 foI' which wc know
all thc DcccssRx'y dRtR. %c know thc magnctlzatlon has
a jump from

)
M

~
to —

t
M )

at H=0. We know both
M aDd Il as a, function of T. The Curie temperature
colIcsponds to thc clltlcR1 temperature Rbovc which no
condensation occurs. The two-phase bounda, ry is ob-
tained by evaluating p and s for H= 0 and is shown in
Fig, 27.

In conjunction with their study of the lattice gas
Yang and Lce have also proved many interesting
theorems regarding the general properties of gases.
They also announce the solution of the Ising problem
in a magnetic field @=srr/2 or H=i7rkT/2

Some of thc pI'opcltlcs of the onc-dllncnslonal Ising
lattice were derived in Sec. 2. One must be an optimist.
to expect a one-dimensional system to behave like its
two- or three-dimensional analog. If one is hopeful that
techniques used to solve a one-dimensional problem
will help solve a two- or three-dimensional problem,
his optimism quickly subsides when he tries to apply
them to the Ising lattice.

Dcspltc this, wc shRll summarize hclc R few otlMr
properties of the one-dimcnsiollal Ising lattice. Although
they may be rather useless, they are at least simple.

TlMx'c ls Do dlf6culty ln cxtcDdlng thc Rnalysls of
Sec. 2 to include a magnetic 6eld interaction, For such a
system

(ex+s@ e—lr

i,x err spy
(A2. 1)

h, =e" cosh@@+[e'xsinh'po+e-'x]r. (A2.2)

Xl ls R11Rlyt, lc ln 7 fox' 0~ T+ ~
&

thus thcx'c ls Qo t,IRDsl
tion (see Sec. 3.2). It has no spontaneous magnetization
S1DCC

M = kTB logXr/Bo
= (p sinhp@) [sinh'pg+e —ex j& (A2.3)

goes to zero as H goes to zero. 3I as a function of @
ls S4OWD 1D Flg. 28.

We note that for @=0

Ai =2 coshE)

) t ——2 coshirgt;

thus, the usual thermodynamic properties (excluding of
course the magnetization) for a system of noninteract-
ing particles (J=O) in a magnetic field are similar to
those of a system of interacting particles with II=0.
(This is not 'tl'ue in htgher dimensions. )

Even though the system is well behaved, the proper-
tlcs of tlM system RIc quite sensltlve to small D1Rg-

Detiz 6elds. If H is small compared with E, the terID

8 stnh pQ ln (A2.2) may not be small compared wtth
.%c certainly RQtlclpRtc cvcQ R small 8 to hRvc R

considerable CGect at suSciently low temperatures
since it forces the spins to be all the same as T—+0, but
it turns out that II has an appreciable efI'ect up to
temperatures of the order

T 2J[k log(J/Iu@)g
—',

a temperature which is rather insensitive to II.Figure 29
shows the speci6c hea, t es temperature for some small
values of H/J. In view of the spontaneous magnetiza-
tion for two- or three-dimensional systems, they are also
sensitive to small 6elds though in a quite different
IDRDQCl .

- As a 6nal remark on this problem, we note that for
B=O, the partition function can be evaluated quite
simply without appeal to the matrix method of Sec. 2.1
or without imposing the periodic boundary condit. ions.

Z(Ã)= P ''' Q g exp(E0'r. o'i+r)

Only one of the above factors involves ag, so we can
6rst sum o.~=~1.

Z(X) = P P [g exp(Eo;o.;+t)12 coshE0~ t.

Z(Ã)=2coshE Q . Q [Q exp(E, ; )j
tr]. +1 tr&-I=p l j=1

= 2 (coshE)Z(X 1). —
.By iterating this and noting that Z(l) =2, we obtain

Z(Ã) = 2~ cosh~ 'E.

I

kT/iJ+p H&

FIG. 29. Specific heat es temperature for the one-dimensional
Ising chain for several values of /= pe/(J+pH). Temperature
is measured in units (J+pH)/k so that all curves have the same
normalization.
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/" /"

FIG. 30. Star-triangle transformation. The hexagonal lattice is
shown by the solid line and its corresponding triangular lattice by
the broken lines.

a6ects only the x; components and an operation 8
which effects only the y& components. In quantum
mechanics the direct matrix product could be used,
for example, to represent the product of an operation
that aQects only particle one-wave functions and aa
operator that affects only particle two-wave functions.

The most important property of direct product
matrices is the manner in which they multiply. Let
A1X81 and A2X82 be two direct product matrices.
Then according to the usual rules of matrix multi-
plication,

[(A iXB&)(A2X82)7;~, ,i

= Q (AiXR);g, .(A2X82)~n, &(

APPENDIX 3

We present here a brief review of the properties of
direct product matrices used in Secs. 2.1 and 4.1.

Consider two matrices A and 8 of dimension e and
m, respectively, with matrix elements A;; and 81,~. The
direct product AX8 of A and 8 is defined as a matrix
of dimension mXe with matrix elements,

(AXB);a, ;&= A, ,Ba&. (A3.1)

The first index of AX8 is the pair of 6rst indicesi and
k of A and 8 usually considered to be ordered in dic-
tionary order. For example, let is and nz both be two

Au ) (Bn
UA21 A 22) (821 822)

then

:A 12811
:.A12821

A 11811 A 11812
A 11821 A 11822

X8= ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

&A 21821 A 21822

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

:A22811

A 12812
A 12822

~ ~ ~ ~ ~ ~ ~ ~ ~

Q (A XB), gx&,y( ——Q A;,8&,(x,yl,

Direct product matrices are used extensively (dis-
guised perhaps) in physical problems particularly in
quantum mechanics. If x; represent vector components
in the e dimensional space in which A operates and y&

components in an m dimensional space in which 8
operates, we can de6ne an mXm dimensional vector
with components x,y~ ordered according to the index
pair (j, 1) upon which A XB can operate.

Since

= Z (A~)'-(Bi)~.(A2)-&(82)-i

= (A 1A 2) &j(8182)&'&l= (A 1A 2 X8182)&k, j l&

(A1XB&)(A2X82) A]A2X8182 (A3.2)

This relation is the key to almost all the theorems
regarding direct products. We can immediately con-
clude that if T and T* are transformations which di-
agonalize A and 8, respectively, then TXT* diagonal-
izes A&8.

(T 'XT* ')(AXB)(TX T*)= (T 'AT)X(T* 'BT)

is the direct product of two diagonal matrices which is
also diagonal. If the eigenvalues of A are X; and those
of 8, X~*, then AX8 has eigenvalues X,X~*.

APPENDIX 4

In Sec. 3.1, it was shown that one could locate the
Curie point of a self-dual lattice by using the dual trans-.

formation (3.2). We stated that although the hexagonal
lattice is not self-dual, one could find the Curie point
by using the dual transformation in conjunction with
the star-triangle transformation to be derived here. '

To derive the star-triangle transformation, we 6rst
divide the lattice into two sublattices with equal num-
bers of particles in the manner shown in Fig. 30. One
sublattice is represented by dots, the other by circles.
We shall represent the coordinates of the former by
&r1„1&k&X/2 and the latter by 0&'. It is important
to notice that a point of one lattice interacts only with
points of the other lattice.

We write Z in the form

~~=K 2 {2
= (E A'&~&)(Z B~iyi),

a1~1 aN/2=+1 a1'=+1 a N/2=+1

Xexp(P EHo;0 )), (A4. 1)

the direct product operating on a vector xy carries xy
into the vector (Ax) (By). AXB is thus the matrix where Ezz= JIr/kT; Jrr is the coupling constant for the
representation of the product of an operation A which hexagonal lattice.



Consider now only the quantity in braces, which we
shall denote by Z'(01 0~~2). A 0 does not inter-
act with other 0.~' and for any set of values of O.l, 02,
o-~/2, the 0 behave as independent particles. The sum-
mation over o are easily performed. If we let 0.;, o-I„

and a~ be the three nearest neighbors of a point 0. ,
then

Z'(01 . 0m~)= Z
tr'X/u +1

X/2

Xexp[g K11(0 0;'+0 0&+0 01)]

comparing (A4.2) and (A4.3), we see that Zz and Z11

will diGer only by a known factor if we choose

crsr(cr+sr)/(cr'+sr') = tanh2KIg

A somewhat neatei velsion of this relation is

exp4Kp ——2 cosh2EH —1. (A4.4)

Under condition (A4.4), the partition function (A4.2)
and (A43) are related by

Z11(Krr) [2 sinh2K11]—~&12

=Zr(Kr) [2 sinh2Kr] ~r", (A4.5)

= II { Z exp[Ex(0 0 +0' 0~+& 01)]}

N/2
= ii { Q (cH+0,'a,sH)(ca+00, sa)(err+. 0 a,sH) }

N/2
= II {2ca'+2sa'ca(0;01+0,«+au«) },

where

CJI=CoshEII) SJI—=slnhKII.
bus,

X/2
Z =2~" cosh' "K

X [1+tanh'KrI(0, 01+0,01+0101)]. (A4.2)

The manner in which the 01 appear in (A4.2) sug-
gests that we compare Zl~ with the partition function
for the triangular lattice represented in Fig. 30 by the
dashed lines. We again use the index i to number
the circles in Fig. 30 or the centers of alternating
triangles. The partition function for this lattice can be
written in the form

N/2

II expLKr(0 01+0&«+0101)].

where XII=X is the number of particles on the hex-

agonal lattice and Er =X/2 is the number of particles
on the triangular lattice.

Eqllatlolls (A4.4) aIld (A4.5) give tile results of 'tile

star-triangle transformation. We see from (A4.4) that
a small Ey gives a small EH and a large ET a large XII.

To also apply the dual-transformation we write

(3.2) in the more symmetric form

Z11(K11)[2 sinh2KH] ~0"
=Zr(K11*)[2 sinh2K11*] ~r~'. (A4.6)

Equations (A4.6) and (A4.5) together give

Z, (K,)[2 s1nl 2Kr]-»&'
=Zr(KH*) [2 sinh2K11*]»". (A4.7)

lf we use (2.6b) to eliminate KH from (A4.4), we obtain

[exp (4Kr —1][exp(4K'*)—1]= 4.

Equations (A4.7) and (A4.8) describe a relation be-

tween the high and low temperature behavior of the
triangular lattice. If a Curie point exists, it must occur
Eg= XII* or for 4K~= log3.

Similar relations for the hexagonal lattice give

Zrr(Krr) [2 sinh2Ka] —""~'

=ZH(Kr*)[2 sinh2Kr*] 'va"

However,

exp[Kr(a'Sa'q+ o';«+ 01o'1)]
= (cr+ 0;«,sr) (cr+ 0;01sr) (cr+ «,&@sr)

=cr +sr +crsr(cr+sr)(ay&a+&s01+01 «)
with

cz =—coshK~, s~—=sinhK~.
Thus,

sinhKH sinhKT ~——2.

The Curie point is at sinh2EII= ~.
It is interesting to notice that in the triangular lattice

4Ey= log3 has a solution only for E&0.The antiferro-

magnetic triangular lattice (K(0) has no Curie point
(see Sec. 5). The properties of the hexagonal lattice are

however invariant to KH~ —EJI,

APPENDIX 5

cr~[g=+1 )=1

X[1+(0'jO'k+ 0&0'1+010~)

A Lie algebra is a set of elements x1, x2, xa, . (non-

denumerable, however) upon which the usual rules of
addition and multiplication by any complex number

Xcrsr(c„+sr)/(cr'+sr')] (A4.3) apply. The algebra includes ax+by if g and y are ele-
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ments, and u and b are any complex numbers. There is
also defined another operation [x, yj which satis6es the
conditions

(a) [*,yj+[y, xj=O;

(b) [Lx, yj, s3+[[y, sj, xJ+[[s,*j,8=o;
(Lie—Jacobi equation) (A5.2)

(c) if x and y are elements, then [x, yj is also an
element. The Lie algebra is in every respect the same
as the usual abstract algebra except that, the multipli-
cation operation is replaced by the operation [x, yj
having the above properties. If x, y, and s are squa, re
matrices, a Lie algebra can be defined with the usual
1'ules of addltlon of Iila"tl'ices and all opel'atloil [x» yj
=my —yx the commutator of x and y. One readily
checks that the commutator satisfies conditions (a)
and (b).

A set of elements xI, x2, ~ ~, x„are said to form a
basis for a 6nite Lie algebra if there exists a set of
numbers fc i, ') which have the property

[x;, xi/=+ c;g'x, . (A5.3)

cosy —sing 0
sing cosj 0 Ia+ HZ+0(y'),

0 0

0 —1 0
X= 1 0 0.

0 00.

These constants are called the structure constants of
the algebra. The abstract. properties of the algebra are
completely described by the structure constants.

An important example of a Lie algebra is that asso-
ciated with the three-dimensional rotations. According
to Euler's theorem, any rotation in three dimensions
can be decomposed into three successive rotations, one
about the s axis, followed by one about the rotated
x axis, and then one about, the new s axis. A general
rotation can also be considered as a vector (really a
pseudovector) with components in the x, y, and s
directions.

Let us consider an in6nitesimal rotation through an
angle y about the s axis. The matrix for such a rotation is

hence, the direct expansion of expyz yields

~000100
expyZ= 0 0 0 + 0 1 0 cosy+Z sing

, 0 0 1. , 0 0 0„
cosp
sing

0

—sing 0
cosy 0
0 1.

0 0
I3+aX with X= 0 0

'0 1

0

0

and a finite rotation by exp(nX).
Euler's theorem implies that any general rotation

can be written as

exp(nZ) exp(pY) exp(yZ).

It can also be written in the form

exp[(uX+PY+ yZ)]

which is a rotation through an angle (n'+P'+ y') '*

The operators X, Y, Z take vectors into new vectors
which are normal to the original one. For example,

If we let xI ——X, x2 ——Y, and x3——X, the commutators
of these operators generate a Lie algebra with the three
base elements x~, x2, and x3. %e obtain

[xi, x2)=x3
[x„x,j=x,
[xg, xa)= xi.

This structure constants of the algebra, are

c;g, '——0 except ci2' ——csg2 ——c23' ——1.

(A5.4)

There is also another representation of the Lie algebra
defined by (A5.4). Consider the Pauli spin matrices

which is a rotation through a 6nite angle y about, the
s axis.

In a similar way, we can show that an infinitesimal
rotation by an angle P about the y axis is given by

0 0 —1
I3+pY with Y= 0 0 0,

1 0 0.
and a rotation through a finite angle P by exp(PY). An
infinitesimal rotation 0. about the x axis is given by

t 0 1~ (1 Oq ~ 0 1q
I3 is the identity matrix, and 0(y') indicates order y'. C=

) ~, s=
~

!and
sC=

(

Note that I, 1 0) &0 —1) 0)

1
Z2n 0

0

0 0
0 72n+I X ~

0 0

It is easy to see that the three operators xi=is/2,
x&———zC/2, and x3 ——sC/2 have the same commutation
rules as X, 'Y, and Z.
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