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The spin-wave theory in a modified form is applied to antiferromagnetism. The interaction between
different modes of spin-waves, which is due to the higher order terms omitted in the customary spin-wave
treatment, is taken into account in a self-consistent manner. It is shown that the interaction terms cause a
change of the frequency spectrum of spin-waves which is equivalent to the existence of an anisotropic field.
The upper limits of the ground levels are calculated. The variational method can also be applied to the
discussions of the stable configurations of magnetization vectors in anisotropic and external fields, and it is
consistent with the molecular field theory.

INTRODUCTION

'HE spin-wave theory first invented by Bloch' as
an approximate method of treating ferromagnets

at low temperatures has recently been applied by several
authors to antiferromagnets. ' 8 The main di8erence
between the two cases lies in the fact that the theory
remains approximate for antiferromagnets even at
absolute zero, where it becomes rigorous for ferro-
magnets. The reason is simple; it is because the spin-
wave theory applied to antiferromagnets necessarily
starts from the assumption that there exists an ordered
pattern of the sublattices at low temperatures, whereas
the ground state of an antiferromagnet should be a
singlet which is described by a very complicated com-
bination of the patterns of the spin ordering.

The inverse pattern of an ordered pattern, that is,
the spin con6guration in which the directions of spins
are just reversed, is also to be included in the linear
combination. The interaction between the opposite
orderings, however, will be so indirect that it can be
neglected, and a fairly good approximation is obtained
by taking the configurations near one of the ordered
states. ' The transition from such a state to its opposite
pattern should be so slow that neutron diffraction ex-
periments' can actually prove the ordering. Such a spin-
wave treatment of antiferromagnets is a reasonable
approximation to the ground states as has been dis-
cussed in detail by P. %.Anderson, ' and it can be used
to derive the thermodynamic properties' as well as the
microwave absorption of antiferromagnets at low tem-

peratures. ~~

It should be remembered here that the spin-wave
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theory customarily omits the higher order terms in the
original Hamiltonian, which in the spin-wave language
give the interactions between the diGerent modes of
the spin-waves and cause the broadening of resonance
absorptions. Very little is known, however, concerning
how these interactions e6'ect the energy levels and the
thermodynamic behavior of ferromagnets or antiferro-
magnets. 3 Obviously the contribution from the inter-
action terms is zero for ferromagnets at absolute zero,
but it will be considerable at higher temperatures.
It will be even greater for antiferromagnets, for which
it is not zero at absolute zero. This is one of the reasons
that one might feel somewhat skeptical about the spin-
wave theory of antiferromagnets.

It should be also noticed that the neglect of inter-
action terms gives rise to a certain diKculty in the spin-
wave theory. This is revealed, for example, in the fact
that the fiuctuation of the magnetization (of the sub-
lattice in the case of antiferromagnets) diverges ab-
normally for both ferromagnets and antiferromagnets,
or, more exactly, it is of the order of E'I~, X being the
total number of magnetic atoms or ions, and D the
dimensionality of the lattice, if there exists no aniso-
tropic field acting on the spins. ' This abnormal Quctua-
tion might, at first sight, be correlated with the free
rotation of the resultant spin-moment in the absence
of the anisotropic 6eld. However, such an interpretation
is inconsistent with the current picture that describes
the spins primarily aligned by strong exchange forces,
the resultant moment moving around in a relatively
weak anisotropic field and also in an external field, if
any. This picture requires the resultant moment to be
a well-defined quantity with a normal fluctuation of the
order of E.The fact that the spin-wave theory does not
give such a picture may be regarded as a difBculty of
the theory. Corresponding to this we have to suGer
from many divergences if we apply simple perturbation
methods to the interaction terms starting from the
usual spin-wave approximation.

The purpose of the present paper is, in the first place,
to examine the importance of these interactions terms,
and secondly, to remove the di6iculty mentioned above,
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applying the spin-wave theory in a di8erent form from
the usual one, namely as a variational method. To do
this, we choose a system of spin-waves with a certain
spectrum of proper frequencies representing the best
approximation of the spin-system. These spin-waves are
diGerent from those obtained in the usual spin-wave
theory. They are determined in a self-consistent way,
taking the interaction terms into account. Thus, for
instance, the ground levels obtained are the best upper
limit of the true values as far as we confine ourselves
in the picture of spin-waves. This variational method
will give a Gnite frequency for the spin-wave of in6nite
wavelength in the absence of an anisotropic field. This
follows because, in antiferromagnets, where the spin-
waves collide with each other even at absolute zero,
the wave trains must be of 6nite length and accordingly
the frequency of long waves cannot be exactly zero.
The method proposed here can be applied to ferro-
magnets as well, but here we shall confine ourselves to
antiferromagnets.

1. VARIATIONAL METHOD IN QUANTUM
STATISTICS

energy
P= —kT logZ (1 3)

should be minimized with respect to {c„}.The calcu-
lated minimum of the free energy is the best approxi-
mation as far as we con6ne ourselves in the frame of the
trial system set up by Eq. (1.1). The trial Hamiltonian
itself might then be considered as a certain representa-
tion of the system at the temperature T.

The variational procedure of this program is sim-
pli6ed if the diagonal elements H„„can be given in the
form

H =H( X X* ) (1.4)

Then it can easily be proved that the extremum condi-
tion of F, Eq. (1.3), is reduced to a set of equations

where X„means the diagonal element of the operator
X„ in the representation I". X„ is dependent on the
quantum number e and on the parameters {c,}.The
diagonal elements of H~„, or the eigenvalues, are ex-
pressed as

e„=Hg„(ss)=Q c,X,(n)

First we describe in a general way the variational
method employed. Let the Hamiltonian of the system
under consideration be H. Ke define the variational
functions for this Hamiltonian by the eigenfunctions of
a suitable operator H&„, called the trial Hamiltonian,
which is assumed to be of the form Bc„

r —f 2 0 ~ ~

)

r=1 2

(1.6)

II„=Qc,X„,

where X„'s are some known operators, and the sum
should include the adjoint operators such as c„*X„*if
X„ is not Hermitian. The trial Hamiltonian should be
selected of solvable form, and in most cases must be
separable into components having only a few degrees of
freedom, so that the eigenvalue problem of H~„will be
solved explicitly in the form

H]„%„=e0'„] (1.2)

where 0'„and e„are naturally functions of the constants
{c,}.If such a trial Hamiltonian is properly chosen,
the smallest diagonal element of H in the representa-
tion F diagonalizing H~„, will be an approximation of
the lowest level of H, the best approximation of which
will be given by minimizing it with respect to the varia-
tional parameters {c,}:As to the excited levels, there is
a theorem proved by Peierls' which states that the
approximate partition function

Z=P exp( —H„„/kT),

constructed by the diagonal elements of H in any
.representation, can never be larger than the true parti-
tion function of the system Zs ——trace exp( —H/kT).
Therefore, at finite temperatures, the approximate free

N R. Peierls, Phys. Rev. 54, 918 (1938).

where H is considered as a function of {X„}in the form
of Eq. (1.4) and F&, is the "trial free energy" of the
system represented by H&„, that is,

F~„= kT log Q exp—(—e„/kT). (1.7)

AH)„'
X„=

8C„
f=1 2

(1 9)

where H~„' means the lowest eigenvalue of H~, . Of
course, Eq. (1.9) is easily proved directly.

Applied to a many-electron system, Eq. (1.9) is
nothing but the Hartree-Pock equation, provided that
the set of our trial Hamiltonians covers the whole set of
Hamiltonians corresponding to the one-body approxi-

The solution of Eq. (1.6) gives the most favorable values
of the variational parameters and the averages of the
operators X„'s at the temperature T. Inserting these
values, the function H of Eq. (1.4) gives the average of
the energy, and the equation

F=Fg, II(„+II—
gives the free energy, which is an upper limit of the
rigorous one. At absolute zero, the equations are
reduced to

BB

BX„



RYOGO KUBO

mation. Then Eq. (1.6) is the extension of the Hartree-
Fock equation at finite temperatures. YVe shall not go
further in this, but we see that the variational method
used in the following just corresponds to the Hartree-
Fock method in the sense that the coupled oscillators
are represented in a self-consistent manner by a set of
independent oscillators.

2. SPIN OPERATORS

The spin-wave theory is most conveniently formu-
lated by using the "spic doeiaiion" operators introduced
by Holstein and PrimakoG. " The spin deviation is
de6ned by

Therefore, if we wish to go a step further than the
simple spin-wave theory, we have to supplement the
definitions (2.1) and (2.2), which are primarily valid
for O~n~25& by some definitions for n~25+1.

Mathematically, the most convenient de6nition will
be that which is periodic. Let us introduce a new oper-
ator [e] refined by

(n'l [n] l
e")=n'8 ~ -, for O=n™28

(e'l [e]le') =(e"
l [e]le"),

if n'= e", mod (25+1). (2.5)

[n] is commutable with n, and so is a periodic function
of N. With this we de6ne the spin operators %y

e=S—S„ (2.1)

5 being the magnitude of the spin and 5, its component
along a given axis of quantization. In terms of the
annihilation and creation operators a and a~, which will
be called the spin doeia-tion operators in the following,
the other components are written as

( a*a/
5,+iS„=(25)&l 1—

l a,
E 25)

S,=5—[n],
5,+iS„=(2S)&fa,
5, iS„—= (2S)iaaf,

where f is a function of e defined by

[n]i '
f=

l
1—

l {[n]+1)&(n+1)-&.
25i

(2.6)

(2.7)

( aea) &

5,—iS„=(2S)&a*l 1
25) '

(2.2)

where u and a~ satisfy the commutation rule

(2.3)

"T.Holstein atrd H. Prima)ME, Phys. Rev. SS, 1908 (1940).
'2 G. Heller and H. A. Kramers, Proc. Roy. Acad. Sci. Amster-

dam, 37, 378 (1934);L. Hulthda, ibid. 39, 190 (1936);M. J. Klein
and R. S. Smith, Phys. Rev. SO, 1111 (1951),

(2.4)

The merit of this formulation lies primarily in this
commutation rule, which is much simpler than those
for the spin operators. The spin-wave method consists,
essentially, of writing the Hamiltonian in terms of the
Fourier components of the spin-deviation operators
de6ned over the whole crystal, and diagonalizing the
expression by retaining only quadratic terms in the
Fourier components. Naturally the equivalent approxi-
mation is obtained in a semiclassical way, "which has
been adopted for antiferromagnets by Anderson. ' But
we prefer the Holstein-Primakoff expression, since we
want to give rigorous expressions for the higher terms.

However, there is an inherent dBBculty in this ex-
pression. Due to the commutation rule of Eq. (2.3), the
spin-deviation operators have to be matrices of infinite
dimensions in the representation diagonalizing e, Kq.
(2.4). By definitions, (2.1) and (2.2), the parts where
n=25+1 (or ls. l &5} is separated from the part
lS, l

S. This separability no longer holds in the spin-
wave formulation, so that the unwanted contributions
will necessarily come in from the part n~25+1.

In the representation where all the e's are diagonal,
the Hamiltonian of a spin-system will correspond to a
direct product of matrices, each of which is defined for
each of the spins and, because of the definition (2.6),
each composed of an infinite repetition of a (2S+1)-di-
mensional matrix. This Hamiltonian, which has an
in6nite dimension with respect to the spin-deviations, is
to be distinguished from the usual Hamiltonian of the
spin-system with (25+1)-dimensions for each of the
spins. Yet the new Hainiltonian has the same spectrum
of the eigenvalues as the usual one. In particular, the
upper limit of the lowest eigenvalue is the same for both.
Thus the new Hamiltonian treated by the variational
method gives the answer for the spin-system. The
variational method will also be applied at finite tem-
peratures using Eq. (2.6), although in this case it is
less rigorous than at absolute zero because the virtual
multiplicity introduced by the periodic definition of
(2.6) might result in some errors.

An alternative of the definition (2.6) would be to
introduce projection operators such as

(n, 'l ele') =1, O=n™==25

=0, ' 25&e'

and to multiply the density matrix of the spin-system

by the product of such operators de6ned for all the
spins. But this introduces mathematical difhculties,
because then one has either to treat the problem ap-
proximately as for the spherical model of ferromagnets,
or to abandon the simple commutation rule of Eq. (2.5)
introducing the operators sue and ~u*e instead of a
and u*. The latter method may be practical only for
the case of S=-', .5
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3. DIAGONAL ELEMENTS OF THE HAMILTONIAN OF
ANTIFERROMAGNETS IN SOME TRIAL

REPRESENTATIONS

For simplicity we assume the Hamiltonian of an anti-
ferromagnet to be

(3.1)

from a lattice point. The higher order terms of the spin-
deviation operators omitted in Eq. (3.6) represent the
interactions of the spin-wave modes. Now we de6ne
the trial Hamiltonians of the spin-waves by

K.=Z [eu,u), *u1+e2di'bi+ e3) (ud 1+u) *bi,')j, (3.7)

in the absence of anisotropy and of external 6elds.
Assuming two opposite directions as the. quantization
axes of the spins on each of the sublattices, into which
the lattice is assumed to be divided in the ordered state,
we introduce the expressions for the spin operators by

which is a generalized form of Eq. (3.6). The operator
(3.7) can easily be diagonalized to

K,=Z [(iiu,+-', )(~1'+&~1)

+(~21+5)(~1'—~~1)—2(e11+emi) j, (3.&)

S,,=S—[I];1
S;,+iS;„=(2S)~f;u;,
Sr, iS;„=(2S—)&u,*f1,

(3 2) [{2(&11+~21)} &Sk j I ~~X= 2(&11 &21).

Si*=—S+[11)i,
Sa*+iSsw= (2S)'4*fk,
Sa* &Si y—= (2S)~fA,

with [11 and. f defined by (2.5) and (2.7'). Inserting
Eqs. (3.2) and (3.3) in (3;1) one obtains

B„=——,'XJs5'
+zJS(P [el +g [eli}—JP [nl

[nlrb

+JSZ {fiuif~b~+ui*fA*f~) (3 4)

The two modes with the same wave number X corre-
spond to the precessional motions of spins in opposite
sense. These classical pictures have been discussed by
KCBer eI al.s More general forms of the trial Hamil-
tonian will be any quadratic form of spin-deviation
operators, but for simplicity we shall not go into such
generalizations. Equation (3.7} means that we confine
ourselves to the representations where

dlRg Gy= diag Cy =dlRg 6y= diag 6y =0,

, diag CyCy~=diag Cg Cy~=dlag Cy Cyl

=diag uibi = ~ =diag bi,*b&, *=0for X&V. (3.9)

diag ui*ui=0(1), diag bi*b1 =0(1),
diag uib), =0(1), diag uj*bi,*=0(1). (3.10)

ui, = (2/E) &Pe'&~u.

up*= (2/E) &pe-'&'"u;*

bi = (2/E) &pe-'""bi.

b),*=(2/Ã) &pe""bi,*.

This means that we exclude those states where some
modes of spin-waves are highly excited. One might
suppose that such excitation may happen for the
infinitely long waves, but we have to exclude such
con6gurations because they correspond to the rotation
of all the spins in phase. '

Kith the above conditions we can show the exact
cxprcsslon of thc diagonRl clement of H, ls glvcn by

(3.5)

Substituting these expressions into Eq. (3.4) we have a
very complicated operator, which in itself may be
beyond mathematical means. But we can give exact
expressions for its diagonal elements in a certain family
of representations,

The spin-wave approximation is obtained from Eq.
(3.4) if we retain there only the quadratic terms of
spin-deviation operators. This is given by

diag H, =II.,(A, B, C„C,*)

Ã 1 j.= ——zJS' 1——AG(A) ——BG(B)
2 5 5Irs pin wave=

+zJS P [ui*u),+b1*b),+y1(uib), +u1*4')], (3.6)
+—p Po, (A, B, C„C,*)

—Q eight/z

which is, strictly speaking, different from (3.1) in that These conditions allow us to derive exact expressions
the dimensions of (3.4) is ~, whereas that of (3.1) is for the diagonal elements of H„, Eq. (3.4), provided
(2S+1)N that we make an additive condition that

Now let us introduce the Fourier components of the
spin-deviation operators

with p denoting the vectors to the nearest neighbors
+-2 ~1.(~ »Cn Cn*) (3.11)
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2
A =—p diag Cl 8&„

g )

2
B= Qd—iag b),*bI„

g
2

C,=—p c's" diag alba,

favorable value of e. The functions A and C can be
calculated from the expressions""

A I (smP) =—Z (sing) ——',,

(3.12) Cl (sing) = ——sinfD (sing),

2
As (sing) =—IVI sin—

2]

G(A) = 1—(25+1)A"((1+A)'~I—A'~')-I, (3.13)

Cs (sing) = —cosecfA s (sing)

As (s1118) sec8 cot 8d8,

(4.2)

~ v/2

A o (slnlp) =— As (Slue s1118)d8,

X (A+A B C,C,*)"(B—+BA C,C,*)"(C—,C,*)'

XC(1+A)(1+B)—C,c,*j ' " ", (3.14)

t'l+m+1y jt 1+I+1i
~I.=C.Z Z Z (l+1)i )&l+1)

Xf(l+m) f(l+N)(A+AB CpC, *)~—
X (B+AB CpCp*) "(CpCs*)—'

XC(1+A)(1+B)-C,C,*j--"-=-. (3.»)
(See Appendix. ) Since the diagonal elements of 1f„are
expressed by Eq. (3.11) as was assumed in Eq. (1.4),
we can apply the variational formulas given in Sec. j..

Now we shall go to the discussion of ground levels.
In the absence of any anisotropy and magnetic 6eld,
we can. assume in Eq. (3.8) that cII,= col by symmetry.
Then we have A=B in Eq. (1.2) and Eqs. (1.9) are
reduced to

A=B= —s+—Z (1—~'V~') ',
g x

(4.1)

where we assume that C~ is independent of p, which ls
true for cubic and also tetragonal systems. A and C
are functions of a, which is the only parameter now
remaining in our variational problem, although we
started from a general assumption, Eq. (3.8) involving
(3/2)1V parameters. Thus Eq. (4.1) gives the most

Cs (sing) = —cosec&A s (sing)

)w/s

As (sinIIt sin8) cot'8d8,
vr ~0

where E and D are the complete elliptic integraIs, or
from the power series like

p2nq 4

As (sing) =-,' P 2-'"i
i

sin'"P,
&e)

C (sing) = —-' P (2n 1) '2——'"i—
i

sin'"P
n=l &I

In these equations the suKces refer to the dimension-
ality of the lattice and the three-dimensional lattice is
assumed here to be the body-centered type (CsCl type
arrangement). Some examples of the numerical values
of A and C are given in Table I.

If A and C are small enough, an approximate solu-
tion of Eq. (4.1) is given by

rr 1+CS '+4(1—1/25) &—4](A (1)—C(1))& 1,

which can be used for three-dimensional cases. For
example, if 5= j., the most favorable value of 0. is
around 0.9/5. In this case, the interaction between the
spin-waves raises the frequency of long waves to a few
percent of the frequency of the shortest waves. In
efFect, this is equivalent to a certain anisotropic 6eld,
which, if present, helps the ordering and produces a
finite frequency for long waves. Therefore, if we start
from the wave functions obtained by our variational
method, all the divergent difFiculties are removed and
the fluctuations will always be normal.

Some numerical results of the preliminary calcula-
tions are shown in Table II. For convenience, we list

» G. ¹ Watson, Quart. J. Math. 9-10, 269 (t938); Qua«J
Pure and Appl. Math. 39, 27 (&908).



the values of c de6ned by the equation TABLE II. Numerical examples of c calculated by
the variational method.

Es „s= ——sJS'(1+eS ')-
2

(4.3)

Anderson' has proved by a varlatlonal argument that
c lies in the limits

S i/2 1 3/2

Linear chain 0.198 0323 0.345
Quadratic layer 0.147 0.197 0.212
CsC1 type 0.069 0.073 0.074

0.330 0.363 0.5
0.1580 0.25

0.073 0.0730 0.125

0&@(s-'. (4 4)

Our calculation replaces the lower limits of e in (4.4)
by more accurate values. The spin-wave theory, ''
neglecting the higher terms, gives the approximate
values of c.'

TALE I. The functions A and C.

A1(sintI) C1(sing) Ag(sing) C2(sing) A 3(sing) Ce(sing)

90'
80'
70'
60'
50'

0.5038
0.2973
0.1865
0.1161

—0.6831—0.4696—0.3475—0.2618

0.1966
0.1469
0.1074
0.0759
0.0510

—0.2756—0.2258—0.1847—0.1499—0.1'196

0.0593 —0.0958
0.0534 —0.0898
0.0433 —0.0795
0.0329 —0.0679

"P.W. Anderson, Phys. Rev. 83, 1260 (1951).
'5 H. A. Bethe, Z. Physik 71, 205 (1931).

which should be the limit of our values for 5= ~.
For one-dimensional cases, Eq. (4.5) gives sur-

prizingly good agreement with the rigorous value
c=0.375 calculated for 5=-,'."This agreement is more
or less accidental, because the complete Hamiltonian
evaluated by the wave function in the simple spin-wave
Rppr'GxlmRtloQ divcrgcs ln onc «IlDlcnslons. Thc Inost
favorable values of 0. are actually smaller than I. It
is, however, remarkable that our c's are rather close to
c„for 5~1.

In three dimensions, A and C are small even for e= 1,
and our results are very close to the spin-wave approxi-
mation. This is because of a tendency for the higher
terms to cancel. For example, the third term on the
right-hand side of Eq. (3.4) contributes to e by 0.011 for
5= 1, but at the same time. the higher expansion terms
in the fourth term nearly compensate this increase.

One point which seems unfavorable for the variational
method is that the theory fails to show the ground states
of one-dimensional chains to be disordered. For ex-
ample, the minimum of the energy plotted against
n=sinP occurs around P 65' for S=1, which gives

0.23. Thus the ground state of our variational
method has a 6nite magnetization of the sublattice,
which is generally given by the formula

M = —,'XgpgS —AG(A) $.

Most probably the one-dimensional antiferromagnets
are disordered even at absolute zero. ' The off-diagonal
elements, neglected in the variational method, should
then be very important in this case.

5. ANTIFERROMAGNETS IN ANISOTROPIC
AND EXTERNAL FIELDS

In the molecular Geld theory of a,ntiferromagnets,
which has been adopted by Nagamiya'6 and by KCGer
and Kittel'~ for the calculation of resonance frequencies,
each of the resultant moments of the sublattices, is
pictured precessing in the resultant 6eld due to the
exchange forces, the anisotropic 6eld, and the external
6eld. Thc counterpart of this picture in. the present
analysis is as follows:

In Fig. 1, the crysta, llographic axes are given by
(as, ys, ss). Let us assume the axes of the precessional
motions of the spins of sublattices to be s' and s", and
take the bisector of these two axes as the y axis, the
s axis being chosen orthogonal to y in the plane (s', s",
y), and the a axis orthogonal to y and s. Then the com-
ponents of the spins on one of the sublattices can be
represented by Eq. (2.6), choosing the axes (x, y', s')
where y' is orthogonal to s' and x. Similarly, the spin-
components of the other sublattices can be expressed
with respect to the axes (x, y", s"). Then the Hamil-
tonian of the spin-systen1 is a function of the spin-
deviation operators referred to the prescribed axes of
precession, of the relative orientation of (a, y, s) with
respect to the crystallographic axes and the applied
magnetic 6CM, and of the assumed distortion angle 5,
the angle between s' and —s", which can be assumed to
be small. In this form, the odd power terms of the spin-
deviation operators do Qot vanish, which means that
torques remain making the precession axes deviate
from the assumed directions. The variational method
can be applied here in various ways. For instance, wc
can put 8 equal to zero, and instead assume some finite
shifts of equilibrium point, say ~, for' the spin-wave
oscillator of inhnite wavelength, which should be de-
termined in a variational way (in this case the spin-
waves of finite wave numbers have the precessional
axes in s(—s) direction). Or, assuming e to be zero, the.
most favorable value of 8 can be determined. More
generally we can seek the most favorable values of e

and 8, which means the spin-waves are precessing
around s' and z", except the longest spin-wave which
has a little different axis of its precession.

In this way, we can 6rst obtain the free energy of the
system which depends on the other parameters left,
that is, the orientation of (x, y, s) axes, the anisotropy
constants, and the field strength. The most stable state
of tlM RQtlfclloIQRgnct ls thRt 1Q which thc flcc cQcI'gy

IT. Nagamiya, Prog. Theoret. Phys. 6, 342, 350 (1951)."F.Ke8er and C. Kittel, Phys. Rev. SS, 329 (1952).
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Zo- at low temperatures. More detailed discussion is out of
place here and will be given elsewhere.

Yo Yo

APPENDIX

Any function of the operator a=a*a can be repre-
sented by

(A.1)

with the generating function f defined by

(A.2)

Zo

FIG. 1.Axes of quantization in anisotropic and external fields.

The operator x" is conveniently expanded as

~ (x—1)v
a*2'a1'. (A.3)

(or the energy at O'K) is minimized with respect to the
orientation. The calculation will not be carried out here,
but we can show that the free energy is given in the form

F=F +F,„;, ', g~(H~'+—-Hv') zx„H,'.—(5.1)
Here F means the free energy of the system in the
absence of the anisotropic and the external fields, and
F,„;, is the additional free energy due to the aniso-
tropic Geld. The last two terms are the magnetic energy
due to the external Geld, and x„and x~ are the parallel
and perpendicular susceptibilities. This expression is
proved on the assumption that both the anisotropic field
and the external field are far weaker than the exchange
force, which allows us to use a perturbation method.
If, for instance, the anisotropy is strong enough, F
cannot be separated into such terms as in Eq. (5.1).

In Eq. (5.1) the first term F,„is isotropic with respect
to the orientation of the precessional axes, while the
others are anisotropic. The stable orientation is de-
pendent on the relative magnitudes of the anisotropic
field and the applied field, so that the effective sus-
ceptibility is generally dependent on both the direction
and the magnitude of the applied field.

These are the same conclusions one gets from the
molecular field theory" ' except that the quantities in
Eq. (5.1) have different functional forms as regards
tempersture dependence, and that the anisotropic part
of the free energy is calculated in a dynamical way.
Some of such thermodynamic quantities have been
studied by the author' in the frame of the spin-wave
theory. The variational method does not change the
results significantly for three-dimensional lattices,
where the corrections due to the higher terms are small
except in the case of Ructuations. For instance,

g2p 2

XL
2 sJ
4 Eg'pp' ( kT ) '

3 zJS ( zJS)
"L.Noel, Ann. phys. 123 Serie 5, 232 (1936).

Thus we have

2 f(m, )a;"f2(e,„)b;„"

XZ a;*va)~"b,,p"b,,p~ (A.4).
Now we define the notation

diag Q a,*va,"+'b,+,* b,+„~".
&V

=—(P, P+r, q, (f+r)v, (A.S)
2

where "diag" means the diagonal elements of the oper-
ator in the representations satisfying the conditions
(3.9) and (3.10). Then we can show that

(P P+r (I (I+').=(P+r)'0'
1x- (A+ c,*f—') (8+c,f)~ i

—"-'df. (A.6)
27ri

For instance,

S
(p, p, nv). —

2

XexpL —i(gX—pt( —p v+p)() j+i(p)(—p v) pj
Pp

E (py ( q i
2 i Et) (q—t)
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where the second formula obtained in a combinatory
way is rigorous provided (3.10) holds. The general
formula (A.6) can be established in like manner. Then
the diagonal elements of (A.4) are expressed

diag Z fi(~~)o "fo(~ +.)&~."

=l&(2 o-'graf (*)* '&~f (x)x 'Aq-(*, ~), (Aff

with

" " (x-1)"(y-1)'
~.,(*,y)= Z r. (p p+~ V V+r).

o=o q=o pf gf

(P+r) l

(x-1)o(y- 1)q

2Ã'L 9 q p.
X(A+C *V')"(B+Cf)""f-" 'dt. -

which satisfy the recurrence formula

and the similar expansion of Ci, , Another useful ex-
pansion 1s

(l+ffo ) (l+tN 'f

f=o~om'mg l ) i l )
X(x 1)l+m(y 1)l+m'AmBm'(C C 8)l

which give the formulas

(l+qfo) (ltqo)

f=o~m'~( l ) & l )
Xgl+ [qmo]pl+ [m~ jAmBm'(C C o)f

(1+m+ ii (l+qfo'+1&
~f,=C, Z 2 Z (l+1)i

f o~o =m=o & l+1 ) i l+1

Xgf+mfgl+m'fAmBm'(C C q) f

BC „„/ofCq~= (x—1)(y—1)C~L,

In particular,

(A g) where the difference operator 6& means the pth differ-
ence of [n] or f(qo) evaluated at I=0. Thus if the spins
are of the magnitude 5, Fo, will be

C'o.=[(1—(x—1)A}{1—(y—1)B}
—(x—1)(y—1)C,C *] '

(A.9)

F =AB+C C *—(25+1){A' +'+B' +'}+

F;o——C, [1 +2{(1——',5)&—1}(A+B)+ . j.
The function Fo, can also be given in a closed form

The. integral on the right-hand side of Eq. (A.7) can be
carried out if the poles of the generating functions are Po&=AG(A)BG(B)+C,C,*(1 G(A) G(B)— —
known, or it can be done by expanding C„, in x and y p Q ofoq'[(1+A —ofA)(1+B—of'B)
or (x—1) and (y —1). A simple example is ep too

—(~—1)(~'—1)C.C.*j '}
diag Q [Njq.

Ã
Q [fo'jx "'{1—(x—1)A} 'x 'dx
n'=0

S (25+1)A's S
=——AG(A).

2 (1+A)'s+' A's+' 2

Equations (3.14) and (3.15) are obtained by the ex-
pans1on

(l+ts'tf (l+fo)
ixf+myf+n

f~~~o& l ) (
X(A+AB C,C,~) (B+AB C—,C,*)"—

X(C,C,*)'[(1+A)(1+B)— ,CC]qo' " " "

where ~ and ~' are the roots of the equations, oP~+'= 1
and co"8+'= 1.

Some generalizations of these formulas are also
possible. In particular, a useful generalization of
Eq. (A.3) is

x+("& fq+~& = f 1+«*(x—1)+O(o')}
X (1+(x—1)oa*+-,'(x—1)'o'a*'+O(oo) }

(x—1)&

u*"a"(1+(x—1)o*u

+-', (x—1)'o*'a'+0(oo) },
which is employed for the treatments described in
Sec. 5.


