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In this paper the problem of the line shape in paramagnetic
resonance when large exchange interaction is present is discussed
from the standpoint of a simplified mathematical model. The
mathematical model can be called the model of “random fre-
quency modulation”: It is assumed that the atom absorbs a single
frequency, which varies over a distribution determined by the
dipolar local fields, but that this frequency varies randomly in
time at a rate determined by the exchange interactions.

The predicted line shape in the case in which exchange is large
is of resonance type in the observable center of the line, but falls
off more rapidly in the wings. This line shape has been verified
experimentally in a number of cases. This conclusion seems quite
independent of any assumption about the type of random fre-
quency modulation, etc. The quantitative conclusions are reached
in the following way: It is suspected, since the exchange motion is
the superposition of the effects of a number of neighbors which is
not particularly small, that a good approximation to the modula-
tion function is Gaussian noise with a Gaussian spectrum. This, of

‘ course, is what would result from the superposition of a large num-
ber of rather small effects. Under this assumption both the second
moment (which is independent of exchange) and the fourth mo-
ment of the line shape can be calculated. This kind of modulation
is the simplest one which does give a finite fourth moment; a
Markoffian, or “jump,” type of modulation, which might seem

more reasonable at first, does not. These moments are then com-
pared with the moments computed by Van Vleck [Phys. Rev. 74,
1168 (1948)7] to fix the two adjustable parameters, mean square
frequency, and average rate of change of frequency, of the theory.
The result as to line breadth, which is essentially
AN((sz))Av dipole-dipole
= J/h ’
if J is the exchange integral, can be compared with observed line
breadths by estimating J from Curie-Weiss constants for a num-
ber of materials. The results are quite satisfactory if the theory is
extended in two ways: (a) When the exchange frequency is larger
than the resonance frequency, it can be shown that the off-
diagonal elements of the dipolar interaction must be included,
leading to a line-width larger by a factor of roughly 10/3; (b) in a
number of cases hyperfine and Stark splitting is contributing
importantly to the width.

The good agreement with experiment in the cases we have
investigated leads us to believe that a quantitative approach to
the paramagnetic resonance line breadth problem, using only the
already known concepts of dipolar interaction, exchange narrow-
ing, and fine structure splitting, will probably explain all the
observed phenomena.

I. INTRODUCTION

\HE phenomenon of exchange narrowing was first
suggested as a possibility by Gorter and Van
Vleck! and was demonstrated mathematically by Van
Vleck.? These authors pointed out that in most pure
salts the exchange interaction cannot broaden' the
paramagnetic resonance line because it commutes with
the components of the total magnetic moment and,
therefore, has no direct effect on either the Zeeman
energy (~S,) or the radiating dipole moment (S;). On
the other hand, exchange can cause rapid motion in the
spin system, which can result in averaging out the
effects of the broadening interactions such as mag-
netic dipolar interactions, thus narrowing the line.

At nearly the same time Bloembergen, Purcell, and
Pound?® observed that temperature motion of atoms in
liquids and some solids had much the same kind of
narrowing effect on nuclear magnetic resonance lines.
These authors considered these narrowing phenomena
in a way roughly similar to our present theory, but with
a somewhat less schematized and therefore less quanti-
tative model. With their considerations they deduced

1C. J. Gorter and J. H. Van Vleck, Phys. Rev. 72, 1128 (1947).
2J, H. Van Vleck, Phys. Rev. 74, 1168 (1948).
3 Bloembergen, Purcell, and Pound, Phys. Rev. 73, 679 (1948).

that narrowing occurred if the rate of motion (which we
shall call w,) is rapid compared to the amplitude in
frequency of the perturbations, which we call w,; and
that then the line breadth is roughly

Aw~w % we. 1)

We have applied a similar model to the problem of
narrowing by motion in the spin system because of
exchange. In our model we assume the system to be
absorbing a single frequency, which varies in a random
way over a certain range determined only by the mag-
nitude of the perturbations (primarily because of the
magnetic interactions) but at a rate controlled by the
motions. This is not an entirely new concept (see, for
example, reference 1), but we have tried to carry the
work through in a consistent, at least semiquantitative
way, and to give the model as good a justification as
possible.*

~ With this model it becomes possible to compute the
actual line shape and line width, in contrast to the
method of Van Vleck in which only the second and
fourth moments of the line shape can be practically

* This justification, as well as some of the other more mathe-
matical parts of the theory, will not be given fully here; we hope
to cover these points more completely in a later publication.
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calculated. This is important because these moments
fail to describe the line shape with any accuracy just
when exchange narrowing becomes important. In all
the possible forms of the model the line shape is of
resonance type in the center when the narrowing is large,
falling off more rapidly on the wings near the frequency
we. This agrees with the results of a number of ex-
periments.*:®

We have also found it possible, picking the “Gaus-
sian” form of the model which is most suited to the
exchange problem, to compute second and fourth
moments and, comparing these with those of Van Vleck,
to fit the adjustable constants w, and w, of the theory.
That the forms of these moments are such as to make
this possible in the first place is confirmation of the
essential physical correctness of the model. When
certain corrections are made, also suggested by the
model, we find quite excellent agreement with measured
line widths, using exchange integrals computed from
paramagnetic Curie-Weiss constants.

In this quantitative aspect we feel that our theory,
in spite of its apparent arbitrariness, is valuable both as
an aid to understanding, particularly in regard to the
corrections which have to be made, and as an extrapola-
tion method encouraging one to try to use the rough
relation (1) quantitatively. We feel that the success we
have had indicates that the concepts already available
are completely adequate to explain most of the ob-
served phenomena; there seem to be no important
mysteries left.

II. THE MODEL OF RANDOM
FREQUENCY MODULATION

It is true in general® that the spectrum of the radia-
tion or absorption of any quantum-mechanical system
is given by the Fourier integral of the Heisenberg opera-
tor for the dipole moment .S:

f Sa(t)eiotdt
ds.,

th—=HS,—SH.
at

2

I(w)="Trace , (2)

where

©)

In our problem the Hamiltonian consists of three parts:
H=H}+Hp+He,. 4
H, is the unperturbed Hamiltonian,

Ho=gﬂHZ Szis (5)

which causes the energy-splittings leading to the lines
we are investigating. H, is the ‘“perturbing” Hamil-

4 Unpublished work by R. T. Weidner on diphenyl picryl
hydrazyl.

5 Kumagai, Ono, Hayashi, Abe, Shimada, Shéno, and Ibamoto,
Phys. Rev. 83, 1077 (1951).

6P, W. Anderson, Phys. Rev. 76, 647 (1949).
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tonian, for the time being assumed to be due to the
dipolar interactions, which causes the broadening of
these lines (Van Vleck, reference 2, has written it out
in full); and H,, is the exchange Hamiltonian,

Hez=2 ]ij]--Sk. (6)
ik

We now calculate the spectral intensity (2) for a given
absorption line (state —state 7) under the following
assumptions:

() 7:th= (Hot+Heosy Hy]~[H.., H,]. )

This is not really an assumption, but merely the ex-
pression of the fact that the perturbation of the
dipolar interactions varies in time because of the ex-
change Hamiltonian, according to the standard com-
mutator law. Since very many states are available to
the system, and since thermal energy is large compared
with all the Hamiltonians of (4), this time variation will
be a random one, the order of magnitude of the rate
being given by H../h. We write down (7) as an assump-
tion to emphasize two facts: first, that H,, does not
commute with H,, and thus it does cause a time varia-
tion of H,; and second, that we leave out, at least for
the time being, the time variation due to H,; this is
only justifiable on the basis of the later assumption (d),
by which we throw away all the parts of H, which are
off-diagonal in H, as being, in the language of reference
3, nonsecular perturbations. In a later section we will
consider the case in which H(XH..; then, of course, no
part of H, is any more “secular” than any other part,
and we retain assumption (a) but leave in all parts of H,,.

(b) [Hes Ho]=0.
(C) [Hez; S:]= 0.

These two easily verified assumptions express ' the
fact that H.., causes narrowing rather than broadening,
since it cannot directly change the unperturbed ener-
gies (by b) or interrupt the radiation in any way
(by ©).

(d) Finally, the assumption is made that H, is so
small as to have no important matrix elements connect-
ing different unperturbed states of H,. This is the
assumption which is most vital to the model, since it
expresses the assumption that H, changes only the
frequency of the radiation from the system, without
causing transitions or changing the amplitude.

This assumption is obviously not a rigorous one,
since Hy has many states of the same energy (e.g., all
states of given .S,, no matter what S? is, have the same
energy). Thus obviously H, will have important off-
diagonal elements. However, the assumption is very
far from being as bad as this reasoning would make it
appear. In the first place, it always turns out that we
need not leave out of our calculation the off-diagonal
elements of H,; we need only treat them as if they were

®)
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diagonalf For instance, in the present theory, we use
Van Vleck’s full mean square value of H,, including
both diagonal and off-diagonal effects.

A second way of thinking of assumption (d) is as an
“isolated-atom” assumption; for-the isolated atom H,
will not have important off-diagonal elements, so that
we get qualitatively right answers; and then we re-
normalize by using the full perturbation as mentioned
above.

It now becomes possible to compute the spectral
intensity (2) for a given spectral line, which we pick
out by using only the 7— 7 matrix element of S,(¢) in (2).
This matrix element, from Eq. (3) and assumption (c),
satisfies the equation

’iﬁ(Sz) i=[Ho+H p, Sz i
=[Hoi+ Hpii(t)1Szij— [Ho;;+ Hp;i(t) 1S=i5.  (9)

Here assumption (d) has eliminated all off-diagonal
elements, and assumption (b) shows that

HO{;—HOj]'=hwo, (10)

the unperturbed resonant frequency, is not a function
of time. The solution of (9) is obvious:

t

(S,,(t)),-j=(Sx,-j)oexp[—iwot——if Awij(tl)dt’], (11)

where

1
Awi;(t) =f—L[H pii(t)—~ Hpj5(8)] (12)

is the randomly varying frequency introduced by the
perturbation H,, which in turn varies in time due to
Eq. (7).

Equation (11) introduced into (2) gives

2

exp[—i(w—wo)t—iftAwi,-(t')dt'] . (13)

Lij(w)~

Equation (13) is the basic equation of the random fre-
quency-modulation model; it states that the spectrum
is that which one would obtain from a frequency which
varies about the mean frequency wo in a random way,
with amplitude controlled by the size of H, but rate
determined by H.,. through Eq. (7).

Before going on to the actual exchange narrowing
problem let us introduce some transformations. First,
we shall always think in terms of frequency differences
from the line center, so that instead of w— wo we write
simply w; wo enters nowhere else in the problem except
in assumption (a). Second, we transform to the correla-
tion-function form of the Fourier integral by the well-

T Thus we follow the procedure——remarkably successful quanti-
tatively—of the “adiabatic approximation” in pressure broaden-
ing, replacing the transition effects of off-diagonal elements by
equivalent energy perturbations.
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known process of Wiener and Khinchin:

L= [ eerotrar, (14)
<p('r) = (Sxij(t)sxij*(t+ T))Av over ¢
t+r
= <exp[i f Aw,-j(t')dt']> . (19

Equation (15) forms the basis for our mathematical
manipulations. It should also be noted that Eq. (15) is
a very simple way of understanding the phenomena of
exchange and motional narrowing. Namely, since I
and ¢ are Fourier transforms of each other, if ¢ has a
“breadth” T in time, i.e., falls off appreciably in time
T, then the breadth of I is 1/T.

Now, first suppose Aw;;(t') varies quite slowly in time.
Then the integral in (15) will become appreciable when
Aw;jt1, so that if w, is some average of Aw;; we have
wpT~1, and thus the line breadth ~w,, as in the case
of no narrowing ; the rate of change is unimportant.

But now suppose w,, the rate of change of Aw;;, is
much faster than its average w,. Then before /" Aw;; can
have reached any large value the integrand Aw;; will
have changed sign, and the whole integral will roughly
average out. Thus ¢(7) becomes very much broader,
and I;;(w) correspondingly narrower.

III. THE SPECTRUM FOR GAUSSIAN RANDOM
MODULATION; EXCHANGE NARROWING

Before any progress can be made in finding the corre-
lation function, we must make a decision as to what the
amplitude and random properties of the function
Aw;i(t) are. This decision must be made, in the present
state of the theory of random functions,” more on the
basis of mathematical convenience than anything else;
fortunately, in the exchange narrowing case physical
realism is probably also satisfied fairly well.

The most easily handled type of random function is
the Gaussian type. This may be defined in a number of
ways: The physical way is to appeal to the law of large
numbers and say that the superposition of the small
effects of a large number of random causes is always a
Gaussian random function, e.g., Brownian motion or
the voltage due to motion of electrons in a resistor. A
way of producing a Gaussian random function is to put
“‘white”” Gaussian noise—that is, Gaussian noise with
an equal amount of energy in every frequency range,
such as is produced by electrons in a resistor—through
an arbitrary electrical filter. All the probability distri-
butions, for instance the probability of finding a given
amplitude in a given frequency range, are Gaussian.
On the other hand, it must be emphasized that the ac-

" For a reference on random theory see M. C. Wang and C. E.
Uhlenbeck, Revs. Modern Phys. 17, 323 (1945). The authors are
indebted to Dr. Shannon and Dr. McMillan of Bell Laboratories
for helpful discussions of this subject.
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tual spectrum, corresponding to the type of filter in the
above example, is still completely arbitrary.

In exchange narrowing the frequency Aw;;(¢) is due
to the random perturbing effects on the frequency of a
number of neighbors, 6-10 or more, which is not large
in the usual sense but from experience with random
theory seems to be fairly large in the sense we need.
In addition, Van Vleck has shown that the mean fourth
moment of the value of Aw;; is near to that ex-
pected from the Gaussian shape. Measured shapes,
when narrowing is small, are indeed roughly Gaussian.
This, of course, does not insure that all distributions are
Gaussian, as is required for the true Gaussian random
function, but it does verify our reasoning that the func-
tion should be Gaussian. One can be sure that this
assumption is by far the least drastic of this theory.

Once one has picked the Gaussian type of random
function one still has the freedom, as pointed out above,
of choosing either the spectrum or the correlation func-
tion of the random modulation in a completely arbi-
trary way. This spectrum characterizes the properties
of the motion due to exchange, in contrast to the ampli-
tude of the random function Aw;;, which is a conse-
quence of the dipolar interactions alone. We should
emphasize that now we speak of the spectrum of
Aw;;(2), which we call I5,(»); the corresponding correla-
tion function, related by (14) to Ia., we call pa,(t).
Fortunately, Van Vleck’s computations again furnish
us a very useful condition: The mean fourth moment
even with exchange is finite, which one can show re-
quires that the spectrum not have an anomalously long
“tail”; it must fall off at large » more rapidly than »~3.
In particular, this excludes the Markoffian type of
random modulation in which the motion proceeds in
jumps, such as one might expect from the oversimplified
picture of electrons jumping back and forth due to
exchange It is more realistic to think of exchange
causing fields which cause the electrons to precess at
rates not much greater than J/A.

Again we appeal to the fact that the exchange effect
is also the superposition of the effects of a number of
neighbors which is not particularly small, to assume
that Ia,(») is Gaussian. Here our assumption is not
really quite so sound, but we can be sure that with the
condition that the fourth moment is finite, and assum-
ing a reasonably smooth spectrum, the final results will
be quite typical of those we would obtain with other
spectra.

The assumptions then are:

Aw;;(?) is a Gaussian random function
(Awi;(t)Awi;(t'+)n
(A“’M’z)l\v

PAw 13

= exp[——:—;wﬁzJ. (16)

[Equation (16) is equivalent to assuming I, Gaussian;
w, is an average exchange frequency, of order J/%.]
We now find that these assumptions make it possible

-
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to compute (15). First we use a well-known theorem
relating to Gaussian random functions: The distribu-
tion of any linear combination of values of a Gaussian
random function is itself Gaussian. Now the integral in
the exponent of (15),

t+T
X= f Awis(#)d, 7
t

is itself just such a linear combination, so that we know
the distribution of X,

POOIX =—— 2 )dX
T 2rX ] exp( 231

where (X?),, is the average value of X2,

(X2>,,v=< fo " fo Tdt’Aw,-,-(t)Aw,~,-(t’)>M.

This, after manipulation, can be shown to be

(X2 0= 20,2 f AHr—1) pan(d). (18)

0
Here we have defined w,” as the mean square of Aw;;:
wp= (Awi.?)Av. (19)
With the distribution of X, P(X), known, we can im-
mediately take the average of (15)
o(r)= f IXP(X)e'X,

X 2)»]

sr-es] -

—exp| o [ Tdt(r—nm(z)]. (20)

Thus we see that with the Gaussian assumption, we can
relate the correlation function for the spectral line to a
rather easily performed integral (18) of the correlation
function ¢a. of the random modulation, together with
the second moment w,? (19) of the original distribution.

Before going on to discuss the Gaussian form forea,
(16) which is of most interest to us, we shall obtain a
few rather general conclusions which are valid in the
limiting cases.

Case I: w,>w, so that a,(f) is constant at its value
for t=0, unity, throughout the region in which the
exponent of (20) takes on appreciable values. Then we
have

¢(7') case I— exp[ Wp f dt(T—t)

=exp(—

Wy T

,,22 2). (21a)
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This can easily be shown, through Eq. (14), to give a
Gaussian line of mean width w,? This is, of course,
exactly what we started out with; other forms of modu-
lation function have been tried, but the general con-
clusion can always be drawn that in case / the modula-
tion has no effect whatever.

Case II: ws>w,. In this case pa, will have caused
the integrand in (20) to vanish long before ¢ can take
on a value comparable to 7. Then

@(7) case ngexp[(—wf)r j; ) sko(t)dl] (21b)

Wit
=exp(— ) (21b)
We
Here w, can be defined by the equation (consistent

with 16)
1 00
i f ona(i)dl,
We 0

and it is clearly a good measure of the inverse of the
total width of ¢a,, and thus of the true width of the
spectrum Ia,(v). This Eq. (21b) is also remarkably
general, holding as well for other types of random
modulation. The line shape resulting from (21b) is the
resonance shape:

2 (wpz/ we)
Fif(w) = .
7w (wpz/ we)?

Clearly, if I(w) is to have a finite second moment, as it
must if Aw;; is Gaussian, (22) cannot hold throughout
the frequency spectrum. It can be shown that the wings
of the spectrum, which are determined primarily by
o(7) at very small 7, where (21b) is no longer valid,
fall off more rapidly than (22) indicates. In fact, (22)
is a good approximation out to the frequency w,,
beyond which the wings fall off quite rapidly.

As mentioned in the introduction, in a number of
experimental cases of extreme narrowing?® the reso-
nance shape (22) has been found to be correct. We feel
that the shape (22) is probably the most accurate
conclusion of the theory.

Some of the moments of the distribution can also be
found from Eq. (20) directly. The theorem which is
most convenient to use is easily proved from Eq. (14),
and is

(22)

dre
<‘*’">Av=7:n (23)
7" =0
For the second moment this gives
d2 T
= ——fesp| o [ atr=nend] || L a0
dt2 0 7=0

<w2 Ay — wp"’.
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We see that the second moment is completely inde-
pendent of the effect of exchange, a fact which Van
Vleck derived for the rigorously correct model.

The fourth moment is somewhat more complicated
to derive from (23), but we shall write it down:

2

(0hn=3wp'— wp'—¢au(7)
dar? 7=0

(25)

Note that this will not be finite unless the spectrum
of Aw;;(t) has a finite second moment, as stated pre-
viously. :

With the specific Gaussian form (16) for the correla-
tion function of Aw;;, we can immediately write down
the correlation function for this case. It is

W2

wWeT
T
f e 192y
We Yo

20,° T
+-——[1—exp( ———w.}r’) ]) (20a)
Twe 4 .

The actual spectral line shape is not of much interest
except in the limiting cases, in which (22) and (21a)
are quite satisfactory. It is of interest to go ahead and
compute the fourth moment in this special case [ (24)
of course being quite satisfactory for the second
moment ]. One can do this quickly with (25) and obtain

¢(T)=CXP(—

(25a)

: T
{0Ha=3w p4+—2-wp2w 2.

IV. COMPARISON WITH EXPERIMENT

These general formulas, containing w, and w. as
adjustable parameters, represent the extent of this
model’s ability to give quantitative information. We

_know only that

wp~ H o/ h==(g*6"/ 1)

and w,~J/k as to order of magnitude.

Fortunately, there is a way to make the method
quantitative. We can use Van Vleck’s values for the
second and fourth moments and compare these with
our values (24) and (25a). This gives two relations for
our two parameters, w, and wy, so that then we can use
(22) (at least in the extreme narrowing case) to predict
the breadth. Thus we plan to use our model to “extra-
polate” Van Vleck’snumbers to get the entire line shape.
Naturally no accurate limits of error may be set on
such a procedure; nonetheless, one would be quite
surprised if our assumptions combined to give an error
of more than a factor of two, and less than this would be
far -more likely. For example, the two most extreme
spectra Iaq.(v) one could expect, the square spectrum
and the simple exponential (¢=/“¢), lead to errors of
only about 1.5 in our extrapolation procedure, one in
one direction and one in the other. The true deviation
from the Gaussian is probably far less than these.
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TaBLE I. Exchange narrowing in Fe*++ and Mn*+ salts.

Salt '] Hp H. AHcalc(® AHobs (10/3) AHcalc®
A. Extreme narrowing, H, >H,
FeNH,(S0,): 13°K 840 oe 13 800 oe 51 oe 290 oe 170 oe
Fes(S04)s 70 1200 74 100 19 90 64
MnCl, 16 1750 17 000 175 625 585
MnSO, 24 1600 25 400 100 330 330
B. 6~~0, weak narrowing
MnCl;-4H,0 3 750 <3000 >175 670
MnS0,-4H0 2 730 <2000 >250 570} Upper limit
MnSO,- SH,O 3 630 <3000 >125 625 ~1000
MnSiFs- 6H,0 ~0 460 ) 800
The moments as given by Van Vleck are, for a simple . and w,:
cubic lattice structure,
H,2=5.1(gBn)’S(S+1), (27a)
gZ 62 2 S( S+ 1)
X0 =36.8(——-) J
@ 3 H,=283—[S(S+1)7, (28a)
gB
X (ANt N34—0.187), (26a) and
AH=H//H, (29a)
g\ S+ . . .
I oDn= 3(&2((»2),“)2—!—490(———) ]2( ) is the predicted half-width at half-power.
a? 3 Kumugai and co-workers® have measured or com-
; : ++
X (v Aabh Msi—0.187).  (26b) piled the line breadths for a number of salts of Mn

The notation is: g=g-factor, 3=Bohr magneton, a=lat-
tice constant, Ay, 4, 3 are direction cosines of the external
field with respect to crystal axes, S=spin quantum
number per atom, and J = exchange integral.

We should point out that the remarkable similarity
between (26b) and (25a) in general form is not a neces-
sary result of either theory; for instance, terms of form
(g28%/a*)* can and do occur, but are extremely small,
according to Van Vleck, and he drops them; while the
coefficient of ((«w?))a? is not exactly, but approximately
3. The angular dependence is also an ‘“accident.” It
seems to us that this agreement is good evidence for the
physical sense of our model.

The uncertainties we already have seem bad enough
that we need not worry about either crystal structure or
directional properties very much, so we shall use the
isotropic averages of (26). We then find for the two

parameters
wp2=§(@j)2n25(5+ 1), (27)
3\ %
wﬁ=§ﬁ§({)25(5+ 1). (28)
3\

n is the density of spins per cubic centimeter. The line
breadth is then (half-width at half-power)

(29)

In terms of magnetic field, as most measurements are
made, this gives us the following fields corresponding to

Aw=w,*/we.

and Fet**, where crystal anisotropy broadening is
minor and thus powder data are reliable. For most of
these salts an estimate of the exchange integral can be
made from the Curie-Weiss law x=C/(T+6), with 6
obtained from the Weiss molecular field equations as

3k0=2JZS(S+1). (30)

Z is the number of nearest neighbors, which we always
set equal to six for consistency with our previous as-
sumption of simple cubic lattices. These salts are also
advantageous in that crystal splittings do not contribute
importantly to 6.

In Table I we make a comparison of our predicted
line breadths from Eq. (29a) (column labeled AH 210?)
with the observed breadths (under AH,ps). The com-
parison is valid only for those salts with large 6 which
are collected in Table TA, both because the § measure-
ments are in most cases not valid to more than #=2°K,
even if nothing but exchange is important, and because
for the other salts the H, values are not extreme enough
to make our limiting formulas correct.

We see that in spite of the belief that our calculations
should be good within a factor 2 at most, the compari-
son is bad, since errors as large as a factor 6 appear.
This discrepancy is the same as that noticed by Ku-
mugai e/ al,® using the simple order-of-magnitude
formula (1). Fortunately, we can show that two very
important sources of broadening have been so far
neglected, and that their inclusion leads to good agree-
ment with experiment.

The first source is the following. In Van Vleck’s
computation of the mean square broadening he leaves

8 Kumugai, Ono, and Hayashi, Phys. Rev. 85, 925 (1952).
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out terms in H, which connect different Zeeman energy
levels. (These are terms mixing S,#+1 and S,24-2 with
S..) Van Vleck is perfectly correct in doing so, since
when H,&KH,, as in all resonance experiments, and
when exchange is not too large, these terms contribute
only in second order to the main line. On the other hand,
because they mix up the S, states they can lead to
satellites at frequencies 0, 2w,, and 3w, which are so
far from the main line that in spite of their weakness
their mean square breadth contribution is large.

In the present exchange narrowing cases, on the other
hand, H., is not small compared to H,, which intro-
duces a new effect. One can show in a number of ways,
by quantum-mechanical thinking or by the reasoning
of reference 3, for instance, that these terms should no
longer be omitted. Namely, the rapid variation of these
terms due to exchange makes the fact that their
“natural”’ unperturbed frequency is not zero im-
material.{

One can demonstrate this on our model by assuming
that these terms have a Gaussian spectrum centered
not about zero but about wo. Van Vleck points out that
the total mean square amplitude of these terms is 7/3
of that contributed by the zero-frequency terms, so
that we may write

g
(AwiP)npao(t) =exp ( — Zweyz)

Lo+ 7/3w,coswet].  (31)

This equation embodies the assumption that the fre-
quency w, of exchange motion is the same for the two
types of terms, but otherwise is the only simple way
to represent the situation. Using (31) one immediately
sees that, if wo>wo, pa, will be zero long before coswet can
vary much from unity, so that we can for practical
purposes use (16), just multiplying «,? by 10/3 in
obtaining the breadth. On the other hand, if w,&w, the
cosine term will be rapidly varying and will eventually
average to zero in its contribution to the main line.
In the last column of Table IA we see that the factor
10/3 greatly improves the agreement with experiment,
bringing the ratio of theory and experiment within the
factor of two we have allowed ourselves.

We can still improve this agreement, however, as is
suggested by a glance at Table I. Those cases in which
H, is least still seem to have too great an observed
breadth. Can there be still another source of broaden-
ing? A number of authors®!! have measured very ap-
preciable fine structures, of order 1000 to 2000 gauss in
total width, in dilute salts of Mn*+ and Fet++, These
fine structures are due both to the nuclear hyperfine

1 F. Keffer has arrived independently at the same conclusion
(thesis, University of California, Berkeley, 1951).

® Bragguley, Bleaney, -Griffiths, Penrose, and Plumpton, Proc.
Phys. Soc. (London) 61, 551 (1948).

10 B. Bleaney, Physica 17, 175 (1951).

11 Ubbink, Poulis, and Gorter, Physica 17, 213 (1951).
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splitting and to crystal field splittings. Naturally, the
latter, major, source of splitting varies from crystal
to crystal, but the order of magnitude is roughly con-
stant; and there is no reason whatever to believe that
the forces causing these splittings are not operative
in the more concentrated salts. It is known (see, e.g.,
reference 2) that such splittings will be narrowed out
by exchange just like dipolar interactions; but none-
theless they represent an extra interaction which must
be added in with the dipolar interactions to compute
the full width.

This extra contribution is taken into account in the
following rough manner: we assume the fine structure
fields to be roughly constant, of mean square magnitude
Hy? in all salts. Hg® will represent only in order of
magnitude the true mean square width of the fine
structure since we know only to order of magnitude how
to compute the corresponding exchange narrowing;
even given the mean fourth moment we certainly could
not use the Gaussian assumptions. The introduction of
Hy? has been done graphically in Fig. 1 as follows.
We assume, for extreme narrowing,

AH: [(10/3)HPZ+HH2)]/H2)

which may be written H,AH= (10/3)H 2+ Hy*. Thus
-if, as in Fig. 1, we plot H,AH against (10/3)H,? for
various salts we should get points which cluster around
a line of slope unity with a positive intercept on the
H,AH axis, of order of magnitude Hp*~105. The
figure shows that this is the case; the slope of the line is
14-20 percent or so, the intercept 141X 108. The agree-
ment is excellent considering the variations of crystal
structure effects from salt to salt which are to be
expected.

In the second half of Table I we list those salts with
small . We can certainly make no definite predictions

12

M/
a
; i
//
M.nSO4
8
?s . Fea(SO,)5 @ //

. Fe NH4(S‘O4)2/
4




276

about these salts, in view of the experimental and
theoretical uncertainties, but we have listed, first
(H;2/H,) taking H, the maximum possible as a lower
limit, and second ~ (H,*+ Hz*? as an upper limit, to
the predicted breadths. All cases lie within the limits.

The first three salts seem on the face of it to agree
excellently with H,, i.e., the Van Vleck theory, and to
need no exchange narrowing correction. However, it
is a little hard to believe that the authors who meas-
ured @ could be in'such great error as to mistake =0
for 6=2 or 3, as would be required to explain this fact.
The fourth salt, the fluosilicate,? is included to show
that the agreement with Van Vleck can be illusory;
we see that this salt has a breadth considerably larger
than H,, so that certainly there is a considerable Hy
contribution. Thus we believe that the other three
salts do indeed have exchange narrowing effects, with
H, of order 10° gauss, compensating the extra width
owing to fine structure.

It is worth mentioning one other substance we have
considered, CuSO,-5H,0. Bagguley and Griffiths® have
measured single crystal lines at a number of frequencies
and in a number of directions. Cu*+, under conditions
of roughly axial symmetry as in this salt, shows a
fairly. large anisotropy both of g and of hyperfine
structure, with the width of the hyperfine structure
being usually fairly negligible perpendicular to the
axis. In this direction the half-width is about 25 oersted
at their highest frequency, which leads one to estimate
an exchange field of ~1600 oe. The Curie point is about

12 The measurement here is an unpublished one by W. A. Yager.
18D, M. S. Bagguley and J. H. E. Griffiths, Proc. Roy. Soc.
(London) A201, 366 (1950).
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0.7°K," which corresponds to 2400 oe exchange field, in
quite good agreement ; while Bagguley and Griffiths were
themselves able to estimate an exchange field, from
the frequency at which they could resolve certain lines
owing to the two molecules per unit cell, of around 2000
oe. In addition, at their lowest frequency (~3 cm) these
authors found a slight increase in line widths, as would
be predicted because here the “10/3 effect” should be
beginning to appear.

It would be of interest to measure more directly the
10/3 effect” in a salt in which the exchange frequency
can be bracketed by two measuring frequencies. It is
extremely important, however, to avoid difficulties
which are due to anisotropy broadening by using either
single crystals or salts with L=0, and to be sure that
spin lattice broadening is not present (i.e., that the
spin-spin interactions make the lines reasonably broad).

Thus we find that in no cases we have considered are
the data in appreciable disagreement with values pre-
dicted from our theory, if the corrections for off-
diagonal elements of the dipolar interactions and for
fine and hyperfine structure are taken into account.
We feel that the theory and the concepts it uses are
thus essentially correct. There seem in paramagnetic
substances to be no unexplained sources of broadening
such as are present in ferromagnetic materials and in
antiferromagnetic materials near their Curie points.

14 This value comes from ‘de Haas and C. J. Gorter, Leiden
Comm. 210d. K. S. Krishnan and A. Mookerji, Phys. Rev. 54,
841 (1938) find a considerable anisotropy of 8, with only the
roughest agreement with the above value found for the powder.
Both sets of measurements are at 14°K or higher. T. H. Gaballe
and W. F. Giauque, J. Am. Chem. Soc. 74, 3513 (1952), working
along a single axis, agree somewhat better at liquid helium tem-
peratures with the earlier 0.7°K value than with the 1.8°K value
found for this axis by Krishnan and Mookerji. In view of the un-

certainties in the susceptibility work it is best to regard our
agreement above as somewhat fortuitous.



