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This paper surveys current theoretical work on spin-spin and spin-lattice relaxation in ferromagnetic
substances kith reference to ferromagnetic resonance. It is shown that it is possible to give a reasonable ex-
planation of the principal features of the experimental results. The calculations, carried out for nickel in
particular, make use of a macroscopic spin-lattice interaction determined by the observed magnetostriction
and a pseudo-dipolar spin-spin interaction determined by the observed anisotropy. It is not sufhcient to use
magnetic dipole coupling alone for either of the two relaxation processes. The zero-point fluctuations in the
pseudo-dipolar field play a central role in the development of the theory.

~HIS paper is concerned with the problem of re-
laxation processes in ferromagnetic substances.

The ferromagnetic phenomena in which relaxation
CGects are exhibited include the following:

(i) Line width in ferromagnetic spin resonance ab-
sorption.

(2) Power saturation with intense rf magnetic fields
in ferromagnetic resonance.

(3) Velocity of propagation of the Bloch wall separat-
ing domains in ferromagnetic insulators.

(4) Lag and elevation angles of magnetization with
respect to the direction of a rotating Inagnetic 6eld.

(5) Time delay in the establishment of a new equilib-
rium position for the magnetic moment of a specimen
after a sudden change in the external magnetic 6eld.

(6) Time delay in heat transfer between lattice and
spin systcIQs.

We shall review below the current experimental and
theoretical positions with regard to spin-spin and spin-
lattice relaxation times. The review will draw heavily
on work recently completed at Berkeley by F. Keller,
and also on unpublished work done in collaboration
with J. M. Luttinger at the Institute for Advanced
Study,

When a spin-resonance absorption experiment' is
performed on a ferromagnetic single crystal at the usual
microwave frequencies it is observed that the resonance
line has a half-width AII of the order of 50 to 500
oersteds, corresponding to over-all relaxation times of
10' to j.0' sec. Ke believe that the principal contribution
to the line width at room temperature and below comes
fronl spin-spin rclRXRtlon.

By thc half-width of thc linc wc IncRn onc-hRlf of thc
width on a plot of the efFective permeability tin (or,
with ferrites, n") against the static magnetic field in-

tensity H between the points at which an='-,'tin(max).
Typical values of the half-width are given in Table I.
Measurements on polycrystalline specimens must be
interpreted with considerable caution because the crys-

'Ferromagnetic resonance is reviewed by J. H. Van Vleck,
Physica 17, 234-252 (1951);C. Kittel, J.phys. et radium 12, 291-
302 (1951}.

talline anisotropy energy causes an apparent line
width as a result of the scatter in the resonance frequen-
cies of the individual crystal grains. '

It has always been. the occasion of some astonishment
that the line widths are as broad as they are observed
to be, and it is only recently, as discussed below, that
we have recognized what seem to be the real mecha-
nisms causing the widths. A number of somewhat super-
6cial mechanisms were explored without success in the
early phases of research on ferromagnetic resonance, as
discussed in the reviews cited above.

If wc merc to neglect all mutual interactions among
the electron spins in an atomic model of a ferromagnet,
other than the isotropic exchange interaction, then the
resonance line would be exceedingly sharp, the width
being determined by magnetic 6eld inhomogeneities,
saturation effects or radiation damping. The energy
levels in the static magnetic 6eld II are given by

8'= gpgIIM, (~)

where M is the magnetic quantum number associated
with the total spin SA of the entire specimen, and g is
the spectroscopic splitting factor. The selection rules
for magnetic dipole transitions are AS=0, AM= ~1, so
that only the single frequency

a) =g(e/2rnc) P (2)

will be observed, Ke should, strictly, write H, ff„t, ,
Twsx,z I. Half-width of ferromagnetic resonance lines

(near 24 000 Mc/sec and at room temperature).

Substance

Silicon iron (single crystal)
Nickel
Superma11oy (annealed)
Supermalloy (cold rolled)
Nickel ferrite (single crystal)
Nickel zinc ferrite

.-Manganese zinc ferrite
Heusler alloy

Approximate half-width
in oersteds

several hundred
400
100
300

75
150

50—400
100

a Appears to vary from sample to sample.

' The half-width in unoriented polycrystalline specimens from
this effect alone is expected to be roughly of the order of ~ of the
anisotropy field Ho=2E/M„provided that H,&&H„,.
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instead. of II, to allow for sample shape and crystal
anisotropy. The exchange energy —2JQS; S; does not
change during the transition. The resonance line width
in this case will be determined by the secondary effects
mentioned above, and we may expect a very narrow line.

The identical model may be considered from the
viewpoint of the spin wave approximation to the low-

lying states of a ferromagnet. The energy in the external
magnetic Geld is now, for low k,

W= Q (xi+-', )(Ck'+gpeH),

where nI, is the excitation quantum number of the spin
wave of wave vector k and C is a constant proportional
to the exchange energy. The former selection rules go
over to the rule that transitions in a uniform rf field
will occur only among the k=0 levels, and we have
Esp= +1; Aiii(k/0) =0. The resonance frequency is
thus identical with Eq. (2). We have introduced the
spin wave viewpoint because it is used in the recent
developments in relaxation problems.

Our model considering only the exchange and Zeeman
interactions is thus too idealized to yield a description
of the line width. It is known however that there are
other interactions among ferromagnetic electrons, in-

cluding magnetic dipole interactions and also interac-
tions of a spin-orbit-exchange-lattice character, which
contribute to the important phenomena of magneto-
crystalline anisotropy and magnetostriction. It is essen-
tial to include these interactions in the theory. We first
consider the calculation of the spin-lattice relaxation
time characterizing the exchange of energy between the
system of spin waves and the system of lattice vibrations
(phonons). What shall we use as the interaction between
the spin system and the phonon system? We recall that
the observed magnetostriction of ferromagnets results
from the magnetoelastic interaction of the magnetiza-
tion or spin direction and the crystal lattice. We know
that we can account approximately for the observed
magnetostriction by postulating a coupling term in the
free energy density of the form4

f&=Bi(~Pe +~2 e +as e )
++2(~1oi2e +&2&3e +&3oile* ) (4)

here the 0.'s are direction cosines of the magnetization,
and the t,"s are elastic strain components. Terms of this
form may be thought of as representing the dependence
of the anisotropy energy on the state of strain of the
crystal. Values of the constants 8&, 82 are readily
deduced from the observed magnetostriction.

Starting from the macroscopic interaction represented
by Eq. (4), we may calculate the spin-lattice relaxation

3 An elementary semiclassical treatment of the Bloch theory of
spin waves is given in the forthcoming book, Introdlction to Solid
State Physics by C. Kittel (John Wiley and Sons, Inc. New York,
1953), Appendix J.

'See, for example, Sec. 2.3 in C. Kittel, Revs. Modern Phys,
21, 541 (1949); the equation above is the "two constant" form for
cubic crystals; more general forms are given in the standard
literature.

time using some of the standard methods of quantum
field theory. VVe set up a macroscopic spin-wave field
and a macroscopic phonon field. The magnetoelastic
interaction given by Eq. (4) is treated as a perturbation
which causes collisions between the spin waves and the
phenons. The kinetic equation for the collision process
leads us directly to the spin-lattice relaxation frequency.

The Hamiltonian of the exchange and Zeeman ener-
gies is, writing M as the magnetization,

—H M)dV, (5)

where A is the usual macroscopic exchange constant'
and on the atomic model is related to the exchange in-
tegral J by

A =Zs'R'J/60, . (6)
where Z is the number of nearest neighbors of any given
atom, E. their distance and 0 the atomic volume. Near
saturation we may assumt: that the magnetization M is
oriented very nearly in the s direction, so that

X.p,„— ((A/ M') [(VM,)'+ (V'Mg)'5

+ (H/2M, )(M,'+M„m)) d V, (7)

apart from a constant term.
We consider M„M„as amplitudes of a vector field.

The Geld is quantized6 by use of the commutation
relation

S;xSi=~s, &p, .
We express the magnetization in terms of a spin density

M(r) =(g~»/a')ZSJ&(r —rj), (9)

where v is the number of atoms per unit cell of volume
a'. We find, using Eq. (8),

[M.(r),M„(r)5=igiieM, b(r r') —(10. )

It is convenient to introduce the usual creation and
destruction operations aI,*and a~ into the Fourier analy-
sis of the transverse components of magnetization:

M, (r) = (giieM, /2V) &Q(ai,+a i*)e'"'.
M„(r)=i(gIIeM, /2V) &g(a i,

~ ai,)e'"' —(11)
where V is the volume of the sample. The commutation
relation becomes

[ai, av 5=@v (12)

On substituting Eq. (11)back in to Eq. (7) and carrying
out the volume integration using Eq. (12), we find for
the eigenvalues of the unperturbed Hamiltonian

W.„=Q (ep+-', )[(2gp Ae/ M)k'+giiiiH5, (13)

~ Reference 4, Eq. (2.1.11).
6 The field theory of spin waves is treated by C. Herring and

C. Kittel, Phys. Rev. 81, 869 (1951); a simple introduction to
quantum field theory is given in L. I. SchiB, Quantum Mechanics
(McGraw-Hill Book Company, Inc. , New York, 1949).
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where mI, is the eigenvalue of the operator aj,*a~ and is a
positive integer. We gain insight into Eq. (13) on rec-
ognizing that eA, is the number of reversed spins in the
spin wave of wave vector k; the term in k' is the familiar
spin wave term arising from exchange energy, while the
term in H is the Zeeman energy.

%e treat the lattice vibrations as a macroscopic Geld
in a crystal which is elastically isotropic. On expressing
the elastic energy in terms of the phonon creation and
destruction operators b~*, b~ we Gnd for the unper-
turbed elastic energy, using bz*bz ——Xz,
W= PPicrK(Nx&'&+ ',)-

+her K(N&r &'&+Nx&'&+1)j, (14)

where the superscripts 1, 2, 3 refer to orthogonal polari-
zation directions; cl, and cz are the longitudinal and
transverse sound velocities, respectively. This expres-
sion becomes more familiar on recognizing that col.=
cI,E, etc. The operator for the lattice displacement
vector used in deriving Eq. (14) is

u= V &Pqxe'"' (15)

conditions prevailing in microwave resonance experi-
ments the rf magnetic Geld excites spin waves with
wave numbers in the range 1. to 10' cm ', the higher
values occurring in metals where the eddy current skin
depth rather than the radiation wavelength is decisive.
The thermally excited spin waves have k's for the most
part much higher, near 10' cm ', so that for all practical
purposes we may regard the spin waves excited by the
rf Geld as having k=0.

The calculations of Luttinger and Kittel gave, for
typical values of the ferromagnetic constants and using
the interaction (17) which is linear in the strains, a
spin-lattice relaxation time of the order of 10—' sec.
The experimental data suggest a spin-lattice relaxation
time of the order of 10 ' sec at room temperature, so
that the disagreement is very serious. The interpretation
of the experiments is not, however, unambiguous. It is
also possible to consider an interaction quadratic in the
strains: for a cubic crystal one adds to Eq. (4) terms of
the form

B3(cx&'e .'+n2'e„„'+n3'e'„),

plus other terms quadratic in the strains. These quad-
ratic terms are responsible for the dependence of the
velocity of a given elastic wave on the direction of
magnetization in the crystal. ' For nickel it is found
experimentally that 83 6&(10' cgs. By use of only the
coupling (B3/M, ')M,'e„', the relaxation was calculated
to be approximately 10 ' sec, still much too long.

We are faced then with the problem of accounting
for a factor of 10' to 10' discrepancy between the experi-
mental and calculated values of the spin-lattice relaxa-
tion times. On studying the calculation above and
comparing it with a related calculation by Akhieser'
we are able to see where the trouble lies. Akhieser
calculated the lifetime averaged over all k of a spin wave
state with respect to interactions with other spin waves
(spin-spin relaxation) and with the lattice vibrations
(spin-lattice relaxation). Akhieser s spin-lattice relaxa-
tion times are shorter by a factor of the order of 10 '
than those calculated by Luttinger and Kittel for their
problem, even though Akhieser used only the magnetic
dipole interaction which is known to be too weak to
account for the observed magnetostrictive properties of
ferromagnets. The reason Akhieser gets short times is
that he is interested in thermal problems and is there-
fore dealing with an average over all spin wave states,
thus weighting states of high k(=10' cm ') heavily,
whereas Luttinger and Kittel deal with a state of low
k(=0) excited by the microwave field.

Now if the k=0 spin waves were to come into equilib-
rium with other spin-waves in a time short in compari-
son with the time for equilibrization with the lattice
vibrations, then the microwave spin-lattice problem
would take on a form very close to Akhieser's problem,
and we might expect to come up with reasonable theo-

where

Qx 2 &K gx
s=l

3

=(k/2pK)l g c, lex&'&tb—x'&+b x&'&*]; (16)

here the a~&' are an orthonormal set of unit polarization
vectors such that s&'xis&parallel to I;p is the density;
cl= cL,, and c&, c3=cz. The strains e;; are readily derived
from Eq. (15) by differentiating with respect to the
spatial coordinates.

Ke next treat the collisions between the spin waves
and phonons caused by the magnetoelastic coupling
term given in Kq. (4). The interaction Hamiltonian in
the present approximation is

K;„t—— ( (B&/M, ') [iV,'(e„e„)+M„'(e„—„e„)]—
+ (B2/M', ')[M,M„e,„+M,M,e„

+M„M,ey,])d V. (17)

This may be written in terms of phonon and spin wave
creation and destruction operators using the transfor-
mations in Eqs. (11), (15), and (16).The form resulting
from the transformations may be interpreted directly
in terms of various types of collision processes. For
example, a term aI,.*ai,b~* represents a process in which
the spin wave k decays into a spin wave k' and a
phonon K.

The machinery above was set up in 1950by Luttinger
and Kittel in work which has remained unpublished. .
They went on from Kq. (17) to calculate the relaxation
time characterizing a spin wave state with k=0 in the
presence of a distribution of spin waves and phonons in
thermal equilibrium at room temperature. Under the

' W. P. Mason, Phys. Rev. 82, 715 (1951).' A. Akhieser, J. Phys. (U.S.S.R.) 10, 217 (1946).
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retical values of the spin-lattice relaxation time in
ferromagnetic resonance. Fortunately there are in fact
good. reasons for believing that the spin-spin relaxation
time is usually shorter than the spin-lattice relaxation
time, at least at not too high temperatures.

%'e note first that if we neglect spin-lattice relaxation
the width of the resonance line is a measure of the
spin-spin relaxation time. Our earlier result that reso-
nance occurs only at a discrete 6eld strength resulted
directly from the selection rules d ee ——+1,Des(k 40)=0
applied to Eq. (3). However, in the presence of mag-
netic dipolar and pseudo-dipolar interactions between
the spin waves the states of a single k will no longer be
eigenstates. The correct eigenstates are mixtures of the
unperturbed states of various k's. The mixing may be
thought of as caused by the action of the fluctuating
demagnetizing or pseudo-dipolar fields of the spin waves
on each other. For temperatures of the order of half the
Curie temperature or less the zero-point demagnetizing
fields associated with the zero-point motion of the
transverse components of the spin waves are expected
to be more important than the magnetic fields associated
with thermally excit d spin waves. The transverse
magnetization components go as S,= (S, +S„')&=

tS(S+1)—S']'=S&. In the classical limit S-+oe, the
zero-point tl'aQsvcl'sc coIQpoQcQts of thc magnetlzatloQ
become relatively insigni6cant, and the mixing CGcct

vanishes: The interaction energy per spin is of the order
yH, pM, /S', where M, is the saturation magneti-
zation, ' or pH~ C/S&, where C is the pseudo-dipolar
interaction energy of two adjacent spins.

As a result of the mixing of the originally unperturbed
states caused by the dipolar-type interaction, admix-

tures of the k=0 state will be found in other states,
especially in those within IJ,II& of the original state. This
means that magnetic dipole transitions may now be
expected to take place over a broad group of states,
instead. of only between the equi-spaced. k=0 levels.
For T less than, say, half of the Curie temperature the
mixing arises almost entirely from the zero point
motion and in this way we can account for a tempera-
ture independent line width (within an order of magni-

tude) from room temperature to absolute zero, although
the experimental evidence for such an extrapolation is

at present incomplete. Yager in preliminary unpub-
lished measurements finds that the line width in Super-
malloy is roughly constant between room temperature
and liquid air temperature. The constancy of the line

9 In reality ere have to deal vrith a pseudo-dipolar interaction |
(arising from spin-orbit effects) which may be 10 to 100 times
stronger than the magnetic dipolar interaction; the mixing is
increased in the same ratio. For estimates of the magnitude of the
pseudo-dipolar interaction, see J. H. Van Vleck, Ann. inst.
Henri Poincarh 10, 57 (194'l); see also reference 4, Appendix B.
For nickel Van Vleck 6nds that the pseudo-dipolar interaction
must be about 50 times greater than the magnetic dipolar inter-
action in order to account for the anisotropy. For the super-
exchange interaction a relation due to Van Vleck and Kittel gives
C=J(g—2)'.

widths measured by Bloembergen" in nickel below
100'C and in Supermalloy below 300'C is very sugges-
tive, although he did not continue the measurements
below room temperature. Healy" finds an increase o f
width in a nickel ferrite single crystal by a factor of two
on going from 600'C to —200'C.

We-now suggest that ordinary ferromagnetic sub-
stances are characterized, at temperatures substantially
below the Curie point, by a spin-spin relaxation time of
the order of j.0 8 to 10 ' second. We have not made a
direct calculation of the spin-spin time, but our estimate
follows plausibly on introducing the pseudo-dipolar
interaction into Akhieser's results; it also follows from
the argument below. An apparent objection to our point
of view is based on Van Vleck's calculations" of the
second and fourth moments of magnetic resonance fre-
quencies in paramagnetic and ferromagnetic crystals.
The result of Van Vleck which is apparently the strong-
est contradiction of our arguments is that at 0 K in a
ferromagnetic crystal

(A(o')A„——0. (18)

This wouM require unambiguously that the line be of
zero width. However, we believe that the argument by
which Uan Uleck derived Eq. (18) is incomplete, as
shown by KCGer." The essential point is that Van
Vleck has worked throughout with a truncated Hamil-
tonian, omitting entirely those parts of the dipolar
Hamiltonian corresponding to transitions with AM=
0, ~2, ~3, while the part he retains allows only
63f=~1, The other transitions are omitted in para-
magnetic problems because they are associated with
weak satellite lines distinct from the principal line.
However, .when the dipolar energy is comparable with
the Zeeman energy the satellites can spread out over
the main line and the classification of transitions by
5M changes is no longer applicable. For the AM=2
transition Eever finds that the second moment about
its center contains terms of the order J', indicating that
the satellite has spread out. The part of the Hamiltonian
Van Vlcck retains gives no mixing of spin wave states,
while the part he drops does give mixing, KCGer's argu-
ment is that in the ferromagnetic problem (J,C))pH),
because of the overlap of the satellites with the main
line, we should work with the whole Hamiltonian. The
second moment at absolute zero as calculated by KCGer
comes out to be, for a fcc lattice,

)s'(A(a')A, —(3gpggM, /S&)'. (19)

We note that the second moment vanishes if we let
5—+00 while keeping M, constant. The nonvanishing of
the second moment is therefore a quantum CGect, as

"N. Bloembergen, Phys. Rev. 78, 5'72 (1950)."D. %. Healy, Jr., Phys. Rev. 86, 1009 (1952)."J.H. Van V1eck, Phys. Rev. 74, 1168 (1948); 78, 266 (1950).
«'F. Keffer, thesis, University of California, Berkeley, 1952,

pp. 40—59; Phys. Rev. 88, 686 (1952). Keffer has also shown
that the width in the paramagnetic region {T&T,) under the
same conditions is increased by the factor 10/3, a result later
obtained by P. %.Anderson independently.
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544 o) =C'/JS. (21)

Estimating C=3cm ' and J=100cm ', we see that the
line width may very reasonably be of the order of
O. l cm ', corresponding to a spin-spin relaxation time
of the order of 10 ' second at O'K. This is the proper
order of magnitude.

We have thus made our basic assumption v„;„,~;„
«»,~ i,44;« for T/T, & ,' seem plausib-le. We can ac-
count for a spin-spin relaxation time of the order of
10 ' second, which is shorter than the room tempera-

.ture spin-lattice time (~10 7 sec). We suppose then in
what follows that for the purpose of calculating spin-
lattice relaxation times we may assume the spin system
to be eGectively in thermal equilibrium.

The calculation of spin-lattice relaxation times at
various temperatures under the assumption that the
spins are in thermal equilibrium has carried out by
Abrahams. "The calculation is not too unlike one which
Akhieser carried out for another purpose, but Abrahams
uses the realistic interaction given in Eqs. (4) and (17),
while Akhieser used the magnetic dipolar interaction
which is known to be 10 to 100 times too small. Abra-
hams applied the general method discussed above as
it lends itself easily to the use of the phenomenological
interaction, while Akhieser used an extension of the
Holstein-PrimakoB method. " It would be quite pos-
sible, however, to apply the Holstein-PrimakoG method
with a pseudo-dipolar interaction.

It turns out from the calculations of Abrahams that

'4Elihu Abrahams, thesis, University of California, Berkeley,
1952; E. Abrahams and C. Kittel, Phys. Rev. SS, 1200 (1952).

'~ T. Holstein and H. Primakoff, Phys. Rev. SS, 12 (1940).

expected from our earlier discussion of the Quctuating
transverse demagnetizing Gelds associated with the
zero-point spin waves.

Except for the numerical constant and the depend-
ence on the spin quantum number S, Eq. (19) has the
same form as the usual Van Vleck expression for the
second moment of the resonance line in a paramagnetic
salt, and we may expect just as in the paramagnetic
case to find that Eq. (19) is not by itself a good index
to the apparent width of the resonance, as the fourth
moments in both the paramagnetic and the absolute-
zero ferromagnetic calculations involve J'. The general
efFect of the exchange interaction may be interpreted
qualitatively following Van Vleck and Gorter as leading
to a motional narrowing of the resonance line. - The
concept is useful, but probably not rigorous. The ap-
parent line width due to spin-spin relaxation is given
qualitatively on this empirical analogy by

Saic=It(ac4)4'(h&c)g/J j, (20)

where (640)e is the dipolar width which would obtain in
the absence of the exchange interaction. The eGect of
exchange is to reduce the width in the ratio A(&4d)e/J.
Writing the pseudo-dipolar interaction energy between
two atoms a,s C we have

the terms of greatest importance in Eq. (17) are those
describing the scattering of a spin-wave with the emis-
sion or absorption of a phonon. The efFective part of
the interaction Hamiltonian then consists of a phonon
emission term

Z bx*aaaa *f(K), (22)

plus a phonon absorption term

X;„4'~ Q bxai, ai, *f(K), (23)

with the condition
lr'=4+K (24)

Now the matrix elements of the creation and destruc-
tion operators are simply expressible in terms of the
occupation numbers Xrc, ni„nq, so that Eq. (25)
assumes the form

2'
~,.„=—P ~f(14.) ~

Lz,n„(n,.+1)
fg, x,I

(Xir+—1)(ex+1)ni4.]8(«+ei ei.) —(26).

We now define a spin temperature T, and a lattice
temperature TI. This permits us to express the occup-a
tion numbers in terms of the Bose-Einstein factors
appropriate to the two temperatures. We proceed from
Eq. (26) to calculate the net rate of energy transfer Q
between the two systems. The result of the calculation
is that

VAT 1 &Birn ~hey'
~ ~ ~

T' (24r)' 2pk &2A)

where, writing c for the sound velocity,

y = (hc)23'./2gl4eA kT;

$=2(gpe/Ac)'(AH/3f, ),

x44Ex e~+&&—e &*

E(y, g) = — log
coshyx —1 e~&&—1

where a=y(x —1)'/4. The integral must be evaluated
numerically.

applying in both cases. Here f(K) denotes a function
of K.

The net number of collisions for unit time which
transfer energy to the lattice is given by the kinetic
equation, where e denotes the energy,

2x
P [I&;„,I2—Ia;„,-I'3~(«+.,—., ). (25)
K,k
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Assuming that the temperature dBerence AT=
T,—TI, decays exponentially, the spin-lattice relaxation
time r is defined by

d i—AT= ——61'.
dt r

(29)

In terms of the rate of energy transfer Q and the heat
capacities C„C& of the spin and lattice system, we find

AT

Qf(&/C. )+(~/Ci) j (30)

We can estimate both C, and C~ as a function of tem-
perature, so that with Eq. (27) for Q we can determine r

In this way Abrahams calculates for nickel, at 300'K,
r=6&(10 ' sec; at 3 K, r=s)&10-4 sec; at 1'K, r=1
sec. The spin-lattice estimates reported here do not
include the effect of relaxation by coupling with the
conduction electrons. At low temperatures in metals
we might expect this process to be important, and the
relevant calculations are underway. In ferrites, however,
the present estimates should be valid. There are at
present no direct experimental measurements available
for the spin-lattice relaxation time, although the line
width measurements by Bloembergen" may be inter-
preted as suggesting that at high temperatures spin-
lattice relaxation makes an appreciable contribution to
the line width, so that the spin-lattice time well above
room temperature may perhaps drop to 10 ' to 10 ' sec.

An important question not yet fully solved is the
interpretation of several reorientation experiments
which it had originally been thought measured the spin-
lattice relaxation time. Gait" has deduced a spin-lattice
relaxation frequency of 3)&10' sec ' in magnetite at
room temperature from measurements of the velocity
of propagation of a domain wall. " Bloembergen and
Damon' deduce a spin-lattice time of 3&(10 sec for
nickel ferrite at room temperature, while a similar value
is found in manganese zinc ferrite. These values are
obtained from ingenious microwave saturation measure-

"J.K. Gait, Phys. Rev. 85, 664 (1952).
~7The connection is derived by L. Landau and E. Lifshitz,

Physik. Z. Sowjetunion 8, 153 (1935); C. Kittel, Phys. Rev. 80,
918 (1950).' N. Bloembergen and R. W. Damon, Phys'. Rev. 85, 699
(1952); N. Bloembergen and Shyh Wang, Phys. Rev. 87, 392
(1952). According to a private communication from Bloembergen,
this time should be reduced by a facter of 4~.

ments using intense rf fields, of the order of 40 oersteds.
It has been suggested to the authors by M. H. Cohen
and independently by P. %. Anderson that, as in
%aller's calculations, experiments of these types meas-
ure essentially (to within a numerical factor) the same
relaxation time as determines the line width. In brief,
one argues that when the spins have come into equilib-
rium with each other in the time r, they will also have
come into equilibrium in the external field. The proc-
esses which mix the spin wave states must give rise
to angular momentum exchange with the specimen as
a whole, thereby allowing the spin system to change
its orientation with respect to an external field in a
time of the order of r,. It may be expected that this
question will shortly be resolved experimentally by low
temperature measurements. At room temperature the
reorientation time appears experimentally to be quite
close to the time associated with the line width, in
approximate agreement with the "one time" viewpoint.

The over-all picture given here of relaxation processes
in common ferromagnetic substances suggests that, to
within an order of magnitude at least, line widths (in
single crystals) at O'K will be roughly equal to line
widths at temperatures as high as one-half the Curie
temperature, " the spin-spin relaxation process being
dominant and having values in the range 10 ' to 10 "
sec. At higher temperatures the spin-spin time may
decrease, and the spin-lattice time. will als'o decrease,
perhaps in some cases sufficiently to dominate the line
width near the Curie point, although calculations valid
in this region have not been carried out. The reorienta-
tion time is thought to be approximately equivalent to
the time associated with the line width. The spin-lattice
time in ferrites is expected to become very long at low
temperatures, of the order of one sec at 1'K, but will

appear directly only in thermal measurements.
In conclusion we wish to express our thanks to Pro-

fessor J. M. Luttinger and Professor F. Keffer for their
collaboration on this problem, and for permission to
refer to work of theirs unpublished at the time of
writing. We are indebted to Professor J. H. Van Vleck
for discussions of various aspects of the problem. This
work has been supported in part by the U. S. Once of
Naval Research.

' There is no reason to exclude width changes by a factor of two
or so such as are reported in a nickel ferrite single crystal by D. W.
Healy, Jr., Phys. Rev. 86, 1009 (1952).

DISCUSSION

G. T. RADO, Xuvu/ Eeseurch Luborutory, 8'ushing-
toe, D. C.:Did you consider in your calculations the
eGect of crystalline imperfections on the line width?

C. KITTEL, University of California, Berkeley, Cali
foreia: One can produce situations in which imper-
fections control the line width. Yager has, for

example, broadened the line in Supermalloy by deliber-
ate cold working. In the rather carefully selected speci-
mens usually employed in resonance experiments I do
not think that the width is caused by imperfections.
The general agreement of the order of magnitude of the
line widths over a wide range of substances is perhaps
evidence for this statement.


