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This paper is intended to supplement the review articles pub-
lished by Stoner in 1948 and 1951, firstly by considering in greater
detail the quantum-mechanical and statistical-mechanical founda-
tions of the collective electron theory and secondly by considering
briefly a wider range of relevant experimental results.

In Sec. 1 previous theoretical work is recalled. In Sec. 2 the
difficulties of a rigorous quantum mechanical derivation of the
internal energy of -a ferromagnetic metal at absolute zero are
outlined. In order to determine at least the form of the expressions,
a calculation based on the tight binding approximation is described
for a crystal containing N singly charged ions, which are fairly
widely separated, and IV electrons. The forms of the Coulomb and
exchange contributions to the energy are discussed in the two
instances of maximum and minimum multiplicity. The need for
a correlation correction is stressed, and the effects of this correc-
tion are discussed with special reference to the state of affairs at
infinite ionic separation. The fundamental difficulties involved
in calculating the energy as function of magnetization are con-
sidered below; it is shown that they are probably less serious for
tightly bound than for free electrons, so that the approximation of
neglecting them in the first instance is not too unreasonable. The
dependence of the exchange energy on the relative magnetization
¢ is then of the form 2,4 ,¢2*/2n, and the relative orders of mag-
nitude of 4, and 4. are considered. A previous calculation by
Slater is critically reviewed.

In an application of statistical mechanics the difficulty arises
that only if {=1 or 0 will the zero-order wave function be in
general a single Slater determinant. A calculation by Lidiard on
this problem, that of spin degeneracy, is referred to. The relevance
of the dependence of the interaction energies on wave vector is
stressed. If these energy contributions are constant, then the free
energy expression is that derived by Stoner, based on Fermi-Dirac
statistics, even if spin degeneracy is taken into account. Several
related difficulties are exemplified by a discussion of the properties
of the free-electron gas, for which the exchange energy varies
rapidly with wave vector ki, k; when |k;—k;|—0. For tightly
bound electrons the dependence on wave vector is much less
rapid, and it is suggested that spin degeneracy effects are here
less serious. A simple calculation of the low temperature electronic
heat of tightly bound electrons, including exchange and correla-
tion, is referred to in exemplification.

In Sec. 3 several experimental results are briefly discussed,
including the following: (1) The variation with composition of the
Curie temperature and saturation magnetization, and the varia-
tion with temperature of the susceptibility of nickel alloys; (2)
the variation with temperature of the magnetization, electronic
heat, and magnetocaloric effect of cubic cobalt, nickel, and nickel
alloys below the Curie point; (3) the high temperature electronic
heat of nickel and palladium; (4) the electronic properties of
chromium and some other transition metals; (S) the electronic
properties of palladium and its alloys.

1. PREVIOUS THEORETICAL WORK

INCE many aspects of the collective electron treat-
ment of ferromagnetism have recently been re-
viewed by Stoner,!'? there appears little justification for
writing yet another review. Perhaps the main apology
for, nevertheless, doing so is that the present paper is
intended to supplement the earlier reviews, rather than
to present their main substance again, by covering more
fully the quantum-mechanical and statistical-mechanical
foundations of the treatment and considering a wider
range of relevant experimental results.

In this section a brief outline of the historical de-
velopment of the subject is given. The earliest analysis
of the ferromagnetic properties of collective electrons
was made by Bloch,> who considered the effects of
introducing exchange terms into the Sommerfeld de-
scription of a free-electron gas. Bloch predicted that the
lowest energy state at 0°K is the ferromagnetic state if
the electron density is small enough. The problem was
later taken up by Brillouin.* The introduction and dis-
cussion of correlation effects by Wigner®® left little
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doubt, however, that the conditions for ferromagnetism
of free electrons are so stringent as to be practically
never satisfied. The first attempt at analyzing the
properties of a real ferromagnetic metal, nickel, was
made by Slater.”:# Basing his discussion on the energy
band calculation by Krutter,® Slater recognized the
essential features of a satisfactory theory of ferro-
magnetism and attempted to calculate the exchange
energy for the 3d electrons. The main results of this
calculation? are: (1) The main contribution to the ex-
change energy is provided by the atomic exchange
integral for electrons within one cell; (2) the contribu-
tion arising from nearest neighbor interaction is only
about half a percent of the total exchange energy.
These conclusions are critically discussed in Sec. 2.
Slater also discusses temperature effects:® He calculates
the magnetization, temperature curve of nickel below
the Curie point, using Fermi-Dirac statistics and repre-
senting the exchange energy by a Weiss term, notes
that magnetic saturation is not necessarily complete
at 0°K, and attains good agreement with the observed
low temperature electronic heat coefficient of nickel.
In a further paper Slater'® discusses ferromagnetism by

7]. C. Slater, Phys. Rev. 49, 537 (1936).
8 J. C. Slater, Phys. Rev. 49 931 (1936).
9 H. M. Krutter, Phys. Rev. 48, 664 (1935).
10 J, C. Slater, Phys. Rev. 52, 198 (1937).
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interpolating between band theory and spin wave
theory. He concludes again that the occurrence of
ferromagnetism is determined in the main by the mag-
nitude of the interaction energy for electrons close to
one atom and by the band width, but also that the low
temperature variation of magnetization follows the 7%
law. In a progress report Slater! has recently discussed
these problems again, and the writer is indebted to him
for much fruitful correspondence.

In the meantime Stoner had published two papers on
collective electron ferromagnetism.!?** The main as-
sumptions underlying Stoner’s calculations are: (1) the
ferromagnetism of a metal results from the holes in the
so-called 34 band, taken to be parabolic in the neighbor-
hood of the Fermi limit; (2) the exchange energy
J(¢) is proportional to the square of the relative mag-
netization ¢, as in the Weiss theory—specifically,
J(§)=3N k0’2, where N, is the number of holes and ¢’
a constant parameter; (3) the particles obey Fermi-
Dirac statistics. The results of the deductive treatment
based on these assumptions were discussed in the earlier
reviews.!'? Later Wohlfarth*6 was able to make some
extensions of the treatment and to apply the results in
an analysis of experimental data (see Sec. 3). By ex-
tending Stoner’s work to rectangular energy bands
Wohlfarth'” showed that band shape is less decisive
in determining many of the properties of ferromagnetic
substances than the form of J({) (see Sec. 2). The
success of Stoner’s treatment in correlating experi-
mental results emphasizes the need for a satisfactory
fundamental theoretical treatment to justify the as-
sumptions underlying it and to provide an estimate
of the parameters inherent in the treatment, particu-
larly the parameter #'. A preliminary discussion has
already been given.!® Recently, Lidiard has considered
several of the outstanding fundamental problems of the
collective electron treatment. He discusses!® the proper-
ties of the free-electron gas, including exchange, and
stresses the need for a correlation correction. He also
discusses®® the fundamental problem of spin degeneracy
(see Sec. 2). This work is valuable in indicating the
conditions under which Stoner’s equations are valid or
approximately valid. Some discussion of relevant prob-
lems has also been given by Bell* and Smith.?

2. QUANTUM-MECHANICAL AND STATISTICAL-
MECHANICAL FOUNDATIONS
In this section a quantum-mechanical derivation of
the absolute zero internal energy expression, applicable

“] C Slater, Quart. Progress Rept. M.I.T. No. 2, 4 (1951).
C. Stoner, Proc. Roy. Soc. (London) A165, 372 (1938).
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15 E. P. Wohlfarth, Phil. Mag. 40, 1095 (1949).

16 . P. Wohlfarth, Proc. Leeds Phil. Soc. 5, 89 (1949).

17 E. P. Wohlfarth, Phil. Mag. 42, 374 (1951).
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19 A, B. Lidiard, Proc. Phys. Soc. (London) A64, 814 (1951).
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to a simple model of a ferromagnetic metal, is first
outlined. Then the problems of statistical mechanics
are briefly discussed.

(a) The Internal Energy of a Ferromagnetic Metal
at Absolute Zero

In calculating the internal energy of a ferromagnetic
metal many of the hitherto unresolved difficulties in
the theory become immediately apparent. It is par-
ticularly difficult to treat what is almost an experi-
mental fact, that the electrons outside closed shells may
be divided, apparently, into those responsible for a large
part of the conduction properties and those responsible
for ferromagnetism. The usual description of this state
of affairs, first given by Mott,® regards the loosely
bound electrons, originating largely in the 4s shell of the
isolated atoms, as principally the conduction electrons
and ascribes ferromagnetism to the more tightly bound
electrons originating largely in the 34 shell. Although
Mott’s hypothesis finds some confirmation in the band
calculation of Krutter? and Slater,” there is little evi-
dence that the conduction electrons are entirely s
electrons or the ferromagnetic electrons entirely d
electrons. Because of band overlap, there is, doubtless,
some very strong mixing between them, and a fully
satisfying theory would have to be based on wave
functions including this effect.

It is proposed in this paper to consider the collective
electrons responsible for ferromagnetism by the tight
binding approximation. A first attempt at a quantita-
tive treatment is the energy band calculation of Fletcher
and Wohlfarth.?$? In this work the tightly bound
electrons in nickel were ascribed pure d character solely
so as to keep the computational labor within manage-
able limits. Even so, an extension to calculate the ex-
change energy is at present quite impracticable, again
owing to computational difficulties. In order to deter-
mine at least the form of the energy expression, a cal-
culation is outlined below for a crystal containing NV
singly chatrged ions which are widely separated, and
N.,=N electrons described by Bloch type wave func-
tions. The Hamiltonian operator for this assembly is

H=— (1/8n%u) Z Vf-l—z ; Vi(ry)

e e
t3 )P ri XL R, (1)

where 1, 7 refer to the positions of the electrons, /, m the
positions of the ions, and V(r;) is the potential energy
operator for electron ¢ in the field of ion /. For maxi-
mum and minimum multiplicity (the relative mag-
netization {=1 or 0), the zero-order wave function may

2 N. F. Mott, Proc. Phys Soc. (London) 47, 571 (1935).
(%G C. Fletcher and E. P. Wohlfarth, Phil. Mag. 42, 106
1951

2 G, C. Fletcher, Proc. Phys. Soc. (London) A6S, 192 (1952).
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be written, in general, as a single Slater determinant and
as the product of two such determinants, respectively,

Y(E=1)=W)HAYu(r)], )
Y(¢=0)=[W/2) TA*|[Yu(x))| - A~ [¢u(xp)], ()

where At contains wave functions for electrons with
+ spin and A~ with — spin. The total energy is

E= f () f CHYr(ry, - 1y). (@)

The one-electron wave functions in (2), (3) take the
form

Yi(r)=N" Zz exp(tki-Ri)¢(r;—Ry), (5)

where k; is the wave vector of electron 7 and ¢ the
atomic wave function. If the atomic level generating
the energy bands is degenerate, e.g. a 3d level, then (5)
is replaced by a more complicated function.?* The
evaluation of (4) is straightforward,? giving

E=(F'+2K)+(C'-K)—J, ()

where
P=L = [V /sy

+§; V() Wi(x)dr(x),

=-zz f f I Pl drten e, |

e é
==X 5ii]ii=52 2. 85
H LI

i

X f f i\l/i*(l‘x)\lff(l'z)11’:‘*(1’2)1/’1(1'1)47 (11, 13),

712
6222 1 Né& 1
—2 i mRzm_ 2 lRl’

and where §;;=1 for ¢, j representing electrons with
parallel spins and O for antiparallel spins. The energy is
written in the particular form (6) since then each of the
three terms converges, although F’, C’, K separately
diverge for an infinite crystal. Each of the terms in (7)

2 F, Seitz, Modern Theory of Solids (McGraw-Hill Book
Company, Inc., New York, 1940).
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may be simplified using (5). Thus
FemEet S [ 160 TV~ U01ir(o)

8
+T f o*(r—R)[V(r) ®

—U(x)]J¢(r)dr(r) exp(ék;-Ry),

where N E, is the energy of the isolated atoms, U(r) the
potential energy of an electron in the field of an iso-
lated ion, and the summation means that the potential
whose mean value is required is that of the electron in
the field of all the ions except the central ion. The second
term in (8) thus diverges after summation like —2K
(see Eq. 7) so that F'4-2K in (6) converges. The third
term in (8) converges since the overlap integral de-
decreases exponentially and is here to be taken neg-
ligible beyond nearest neighbors at distance R. The
overlap integral is called 4 (R). This term is the one of
interest in energy band calculations and its exact form
depends on the lattice structure.?® The dependence of F’
on relative magnetization ¢ is found by summing F;
over the occupied volume of k space and this contribu-
tion to the total energy, the Fermi energy, is in general
least when ¢{=0. The second term in (6) is the Coulomb
energy, and

1
—¢*(r)¢(ri—Ry)

=N3> ¥
m n P 712
X ¢*(ra—R,)¢(ra—Rp)dr(ry, 12)

Xexpi{k: Rn—k;- (R.—Rp)}.  (9)

For simplicity neglect all 3- and 4-center integrals,?
although these as well as nonorthogonality integrals
could in principle be included. Also, the exponentially
decreasing integrals in (9) are assumed to be negligible
for all but nearest neighbors. Then

Cij=N_l{Io+Z I1(R1)}+ZN_1{412(R) COSki'R
i

o
+2I3(R) cosk;-R cosk;-R},

where

1 -
Io=f —| (1) 2| $(rs) |2d7(xy, 12),

712

1
LR)= f f (e 2] @(ra—Ry) 1 (ry, 1),
(1)

X ¢*(ra—R) @ (r2)dr(1y, 12),
'S, 0. Lundqvist and P. O. Léwdin, Arkiv Fys. 3, 147 (1951).
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where 2z(R) is the number of nearest neighbors.
Relation (10) for C;; contains overlap integrals inde-
pendent of interatomic distance, Iy, integrals varying as
R, I, and integrals decreasing exponentially, I, and
I;. For an infinite crystal the sum involving I, diverges
after summation over %, 7, canceling then exactly with
—K in (6), so that C'—K in (6) converges. The final
term in (6) is the exchange energy and

1
—¢*(11)¢*(r:—Ra)

712

X¢(r1—Ry)¢(rs—Rp)dr(ry, 1)

Jij=N"1 %: PIDM

Xexpi{k;-R,—k;- R»—R.)}, (12)
and with the same simplifications as before
J,~,~=N”1[Io+z;‘, I,(Ry) cosk;-R; cosk;-Ry]

(13)

+ZN~1I:412 (R) cosk;-R
+I3(R)(1+cosk;-R cosk;-R)].

Here the sum involving I, converges rapidly after sum-
mation over %, 7, as shown below, and may be replaced
by its leading term involving I;(R), corresponding to
nearest neighbor interaction, as for I, and I;.

With Ci; and J;; given by (10) and (13) the last two
terms in the total energy expression (6) may be calcu-
lated by summation over k;, k;. It is convenient to
discuss separately the two cases {=1 and 0.

(i) ¢=1. Here the electron spins are all parallel and
every state in the Brillouin zone is singly occupied.
In summing over the zone it may be noted that, if R,
is a lattice vector,

0 when R;=0,
oo

k-R)=
Z costkR)= L hen R,=0,

zone

where IV, is the number of electrons. Hence the total
energy is easily seen to be identical with that calculable
with the Heitler-London approximation, a well known
theorem?® relating to full zones which has applicability
in discussing nonconducting solids like diamond.?® It
may be specially noted that the term ;3" ;[ in C’ is
here canceled exactly by the term 3_;3 i[od:; in J.

(if) ¢=0. Here (14) no longer holds and the total en-
ergy differs from that calculable with the Heitler-Lon-
don treatment. Consider first the terms in (6) which do
not vanish as R— . In this limit

7 N2  Néil,

€
E—NE=—X % (1=b;)=—0I
2N i § 4N

[ St 4’

(15)

when N,=N. Hence as R— the total energy is larger
for {=0, by an amount given by (15), than for {=1,

28 K. Ganzhorn, Naturwiss. 39, 62 (1952).
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so that the crystal is apparently ferromagnetic at
infinite separation of the atoms. This “catastrophe” was
noted by Seitz.?6 Now as R—w E—NE, must vanish
whether {=1 or 0, and this result is given correctly by
the Heitler-London treatment. The form of the integral
Iy in (11) shows that the anomalous molecular field
arises from the interaction of electrons close to one
atom. Hence the anomaly results from the overemphasis
in the Bloch approximation of ionized states. In this
limit the anomalous term is in fact canceled exactly
by the correlation correction, equal to —Ne*l,/4 when
¢=0 and zero when {=1, when E—~NE;=0 on both
approximations [see (i) above].

For finite values of R the total energy of the demag-
netized crystal includes all the terms given in (10) and
(13). The problem of calculating the correlation energy
in this general case is perhaps the most difficult one in
the electron theory of metals. A similar problem, that of
calculating configurational interactions, arises in the
quantum theory of molecules.?® For H,, Coulson and
Fischer®® have given a very clear exposition of the na-
ture of the problem and have gone a long way towards
its solution. A similar calculation for the present case
is, however, quite impracticable. Since, as already
noted, the correlation energy in the limit R—o is
known, and in the absence of a rigorous treatment, it
will be assumed that for finite, though still large values
of R, the correlation energy remains equal to the value
—Nely/4 for infinite separation, thus canceling ex-
actly the anomalous terms in the Coulomb and ex-
change energy involving 7. Although it is clear that the
R dependent terms must also be modified, it is probable,
though impossible to prove, that these modifications
are slight, since the bulk of the correlation correction
must be included in the large term required to cancel
the anomalous terms in C’ and J. On the basis of this
approximation the parameter ¢’ varies with R via over-
lap integrals of the type I(R) given in (11). At the same
time the degeneracy temperature, which depends on the
band width, varies with R via overlap integrals of the
type A(R) given in (8). Hence ¢ and the degeneracy
temperature are expected to be both very much of the
same order of magnitude and, as pointed out below,
this result is also indicated by the experimental results
for real ferromagnetic metals.

In order to calculate the Coulomb and exchange
energies arising from the R dependent terms in C;; and
J i for the demagnetized crystal, it is strictly necessary
to calculate first the shape of the occupied part of the
Brillouin zone. For simplicity this may be assumed to
be spherical with radius k. Now

vV N,
3 cos(k-R)=———3 cos(k-R)d'r(k)=7f(koR), (16)

sphere 8

29 Coulson, Craig, and Jacobs, Proc. Roy. Soc. (London) A206,
297 (1951).
3 C. A. Coulson and I. Fischer, Phil. Mag. 40, 386 (1949).
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where
f(x)=3(sinx—x cosx)/x*=3(w/2)dx 3T 32(x), (17)

V is the volume and N, the number of electrons. The
function f(x) tends to 1 as x—0 and converges rapidly
as x increases. Hence the R dependent terms in C’ and
J have the general form

neN 2I(R) fr(kR)/N, (18)

where # is a numerical factor of order unity, 7(R) one
of the overlap integrals in (11), and $=0, 1, or 2 de-
pending on whether the term which has been integrated
is constant, depends on either k; or k; only or on both.
In particular, p=2 for the term in J;; in (13) which
involves I;. Hence this contribution to the exchange
energy converges very rapidly beyond nearest neigh-
bors through the convergence of f2(kR) and will at
most be of the same order of magnitude as the other con-
tributions to J involving I; and I3, for some of which
$=0. For these latter terms the convergence occurs only
through the exponential dependence on R of the in-
tegrals which may not be as rapid as the dependence on
R of f(kR). In an early calculation by Brillouin®
integrals of the form I, I; were not considered, the
exchange energy being taken to be proportional to
I,(R) only. The above discussion shows that Brillouin’s
calculation may be at fault (see also below). In the same
paper® Brillouin also considers the Coulomb contribu-
tion to the total energy. The present discussion shows
that, whereas terms in C;; which are independent of
k;, k; reduce after summation to the same value whether
¢=1 or 0, those terms which depend on k give differing
contributions depending on {. Hence the Coulomb as
well as the exchange energy contributes towards the
molecular field energy. It is only for free electrons,
where C;; is constant, that C’ is strictly independent of
magnetization.

The discussion so far has been limited to the two ex-
treme cases {=1 or 0, since only then can the total
wave function be represented by a single Slater de-
terminant. As shown below, however, the-approxima-
tion of using the above expressions in calculating the
total energy as a function of magnetization E({) is
probably less serious for tightly bound than for per-
fectly free electrons. Then, considering the expres-
sion (13) giving J;;, a term, involving the integral
I3(R), is independent of k;, k;. The corresponding con-
tribution to the exchange energy J({) is (2¢*/2N)I3(R)
X(NP+Ng2), where Ny, No=3iN.,(124{). Hence the
contribution to E({) is — (2¢?/4N)N 2I3(R){?, equiva-
lent to a constant value of the parameter ¢, given by
k0’ =%2q6*3(R), where g=N,/N is the number of elec-
trons per atom. Again (13) contains a term, involving
I(R), which depends on k; but not on k;. This con-
tributes to E({) a term equal to

— (26¢*/2N)Io(R){N ¢ f(karR)+ N2’ f(ko2R) },
31 L, Brillouin, J. phys. et radium 4, 333 (1933).

(19)
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where ky’= (61F2N 1/ V) y kol = (61!'2N 2/ V) Now f(x) may
be expanded in the form f(x)=1—x%/1040(x%). Hence
(19) becomes

— 3NV R0 P(1+34840(59),

where
k' =32qeTo(R), A= (2/243)(3x%NR/ V)3,

corresponding to an effective # which increases with
magnetization. For nickel, ¢=0.6, 45=0.07. Finally,
(13) contains terms, involving 7;(R) and I3(R), which
depend on both k; and k;. These again give a contri-
bution to E(¢) of the form (20) but with A twice as
large as before. In general, with the approximation
that E(¢) is calculable from the above formulas, the
dependence of energy on magnetization has the form
> nA n$2"/2n; the rough calculation just outlined shows
that A=A,/A1 may be of order 0.1 (see Sec. 3).

This subsection will be concluded by a critical dis-
cussion of Slater’s paper.” It seems to the writer (1) that
in taking the main contribution to the exchange energy
to be the atomic integral he calls J, Slater has taken no
account of correlation, thus obtaining anomalous ferro-~
magnetism at large interatomic separation as discussed
above. Slater has recently reconsidered this problem!
and also concludes that the result of the earlier paper is
due to the neglect of correlation. His method of over-
coming the difficulty, however, is to postulate that
beyond some large value of R ionized states must be
completely excluded from the treatment and the Heitler-
London treatment used in describing the metallic state.
This view is also held by Mott.®? The work of Coulson
and Fischer®® suggests to the writer, however, that the
Bloch approximation, duly corrected for correlation as
suggested above, is applicable over the whole range of
R. In both cases the correct energy is obtained as
R— . (2) With the atomic integral J virtually can-
celled by the correlation correction Slater’s expression
(3) is reduced to the R dependent second term. The
reason why this gives only half a percent of the total
calculated exchange energy (which, incidentally, leads .
to roughly the correct value of the Curie temperature)
seems to be the following. Slater, like Brillouin, re-
duces this term to

(z¢2/2N)[(R)Y:Y j cosk;-R cosk;-R (21)

(see Eq. 13), and states that “the quantities k; and k;
should be allowed to range over a polyhedral cell in k
space.” Now (14) shows that then the above contribu-
tion vanishes identically. A small nonvanishing contri-
bution was in fact obtained only because Slater re-
placed the zone by a sphere of equal volume and radius
ko, which, understandably, makes the value of (kR) lie
close to a zero of f(kR) (see Eq. 17). The above discus-
sion suggests that the exchange energy is given by
summing the full expression for J;j(R) given by (13)
over the occupied part of the zone, while Brillouin and

(20)

2 N. F. Mott, Proc. Phys. Soc. (London) A62, 416 (1949).
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Slater consider only the term (21) involving 7;. Further,
the occupied volume in k space only corresponds to a
full zone, and summation only reduces the contribution
to zero, when ¢{=1. For the unmagnetized state the
zone is half-full and the contribution does not vanish.

Although the formulas derived above are applicable
to a very simple model of a ferromagnetic, it seems clear
empirically that many features of a satisfactory theory
of ferromagnetism, applicable to real metals, are given
by considering the magnetic carriers (holes in the d band)
much in the same way as were the tightly bound elec-
trons to which these formulas apply. In summing ex-
pressions like (13) over effectively the unoccupied part
of the d band, the volume of integration for holes with
+ and — spin depends on ¢ and does not in general
correspond to a full zone. Consequently, the nearest
neighbor contribution to the exchange energy, here sug-
gested to be the most important contribution, does not
vanish after summation.

(b) Statistical Mechanics—Spin Degeneracy

For an arbitrary value of the relative magnetization
¢, a Slater determinant including spin functions may be
constructed to give the total wave function for the
metal. The spin functions may, however, be permuted
in a large number of ways, so that the energy state is
very highly degenerate. The correct zero-order wave
function is thus a linear combination of a large number
of Slater determinants. If this problem could be cor-
rectly formulated,* the final energy expression would be
accurate even in as far as it would include some correla-
tion terms. In analyzing this problem, that of spin de-
generacy, Lidiard?®® shows that the more accurate free
energy expression is identical with that derived by
Stoner, if the sum of the Coulomb and exchange ener-
gies, Cij+Jj, is independent of k;, k;. Now, as shown
above (see also Lidiard"?), if C;; were constant summa-
tion over 1, 7 gives C’ independent of ¢, and if J;; were
constant J({) « {? corresponding to a constant molec-
ular field coefficient. For this simple case, it is permis-
sible to consider the electrons (or holes) with -+ spin to
be distributed in a sub-band whose lowest state is dis-
placed relative to that of the sub-band for electrons with
— spin by an amount proportional to { and to the (con-
stant) value of J;;. On the other hand, if J;; is not
constant, this familiar description of the ferromagnetic
state, on which Stoner’s equations are based, is no
longer applicable. This situation arises in its most
serious form in discussing the free-electron gas. Here
C;; is constant but J;; is not, being given by

= (4x/V) |ki—kj| =2 (22)

It is thus easy to understand why use of (22) in calcu-
lating many of the properties of the free-electron gas
leads to absurd results: (1) The low temperature elec-

S, F. Boys, Proc. Roy. Soc. (London) A200, 542 (1950).
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tronic heat varies anomalously with temperature ;336
(2) the magnetization, temperature curve drops sud-
denly at a critical temperature;® (3) the low energy
tail of the soft x-ray emission curve has infinite width.3”
It was suggested®®?7 that results in better agreement
with observation could be obtained if allowance were
made for correlation by the use of a screened Coulomb
potential in the Hamiltonian operator [ Eq. (1)], giving
a less rapid variation of J;;. The fundamental validity
of this procedure is, however, very doubtful (Wohl-
farth® pointed out that the total energy could not now
be calculated correctly); the problem has been recon-
sidered by Macke,?® and Bohm and Pines.?

Relation (13) for tightly bound electrons shows that
here the variation of J;; is much less rapid than the
variation (22) for free electrons. It is, therefore, sug-
gested that here spin degeneracy effects are much less
serious and that Stoner’s equations, based on Fermi-
Dirac statistics, give a very good approximation to the
accurate statistical equations which would be obtained
by inclusion of spin degeneracy effects. Apart from the
general consistency of the above argument, two further
supporting arguments for the general viewpoint may be
given: (1) As already noted, constant J;; implies a con-
stant value of the parameter 6. For tightly bound
electrons it was shown earlier that the effective ¢’ varies
with ¢, the molecular field energy being given by
—1N k0 2(1+32A4A%4--+). Both theory and experi-
ment (see Sec. 3) show, however, that the variation is
very gradual, since 4 is only about 0.1. (2) A calculation
has been carried out ° of the temperature variation of
the electronic heat C, of tightly bound electrons includ-
ing that contribution to Ji; which depends most
strongly on k, viz. the term in (13) involving /;. The
method of calculatlon used was that suggested by
Koppe,* giving C,= T, where v is related to the corre-
sponding coefficient neglecting exchange, vo, by

m=1+ie2ﬁ<koze>zl<x>/A<R). (23)

Here R is the interatomic distance, z the number of
nearest neighbors, f is given by (17), and A(R) is the
overlap integral determining band width, given in (8).
In deriving (23) the electrons are taken to be dis-
tributed in a sphere with radius %, in k space. The other
contributions to J;; have similar but less pronounced
effects. It appears, therefore, that, contrary to the be-
havior of the fres-electron gas,®® the electronic heat of
tightly bound electrons is strictly proportional to T,
with v only slightly less than the value derivable by

# H., Koppe, Z. Naturforsch. 2A, 429 (1947).

3 E. P. Wohlfarth, Phil. Mag. 41 534 (1950).

% A. B. Lidiard, Phil. Mag. 42, 1325 (1951).

3P, T. Landsberg, Proc. Phys Soc. (London) A62, 806 (1949).
38 W, Macke, Z. Naturforsch. 54, 192 (1950).

3 D. Bohm and D. Pines, Phys. Rev. 80, 903 (1950); 82, 625
(1951); 85, 338 (1952).

#E.'P. Wohlfarth (unpublished).
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neglecting exchange. It may be recalled, however, that
unless a correction is made for correlation, the assembly
exhibits anomalous ferromagnetism at large R and
hence an anomalous magnetic specific heat. As for free
electrons,®® reasonable results are only obtained after
allowing for correlation.

(c) Summary

The results obtained in this section may be conve-

niently summarized by relating them directly to the
premises underlying Stoner’s treatment,'>? recalled in
Sec. 1, (1) “The ferromagnetism of a metal results from
the holes in the so-called 3d band.” It is suggested that
the magnetic carriers are best described by tight bind-
ing wave functions. These allow in principle the calcu-
lation of band shape and width, determined by overlap
integrals of the form A(R) given in (8). (2) “The ex-
change energy J({) is proportional to the square of the
relative magnetization—specifically J(¢)=3N k6'¢2.” It
is shown that this assumption is not strictly true, J({)
being more generally given by relations of the form (20),
involving overlap integrals I(R) of the type given in
(11). The fundamental requirement of correcting for
correlation has been discussed. It is shown how, in the
absence of a rigorous treatment, this requirement may
be approximately satisfied. The condition for ferro-
magnetism in Stoner’s treatment, that the ratio of the
parameter ¢’ to the degeneracy temperature be larger
than a critical value, may be formulated in principle in
the form that the ratio of certain overlap integrals be
large enough. The appearance of ferromagnetism is thus
closely related to the structure of the metal and to the
magnitude of the interatomic distance. (3) “The par-
ticles obey Fermi-Dirac statistics.” The fundamental
problem of spin degeneracy is outlined and the relevance
of the dependence of J;; on k;, k; pointed out. It is
suggested that for particles described by tight binding
wave functions the variation is slow enough for Stoner’s
statistical equations to be good approximations to the
exact equations.

3. SOME EXPERIMENTAL RESULTS

In this section certain experimental results are briefly
discussed, including some having a bearing on the
theoretical results obtained in Sec. 2 and others having
some topicality in view of recent devélopments in the
theory of the properties of transition metals.

(a) The Variation with Composition of the Curie
Temperature and Saturation Magnetization,
and the Variation with Temperature of the
Susceptibility of the Alloys Ni-Cu,

Ni-Co, and Ni-Pd

(i) Ni—Cu."* Analysis of the susceptibility results
leads to an estimated variation with concentration ¢
of k9'/er and (o, where /% is the degeneracy tempera-
ture and { the relative magnetization at 0°K. The
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observed variation with ¢ of the Curie temperature 6

‘may be used to estimate the variation of {o, in good

agreement with the values derived from the suscepti-
bility results, and of 6’ (reference 14, Fig. 4). Now the
working formula for 6’ derived in Sec. 2 is k6’ = 12qe’ I (R).
For Ni-Cu the overlap integrals I(R) probably do not
vary appreciably with ¢, since the atomic functions ¢
of Ni and Cu are probably not very different, and the
interatomic distance R is almost constant. The prac-
tically linear variation of ¢ with ¢ derived from the 6
values is thus in qualitative agreement with this
formula, since ¢=0.6—¢. Using the estimated values of
¢o the variation with ¢ of oy, the saturation magnetiza-
tion, may be obtained (reference 14, Fig. 5), in good
agreement with the observed linear variation. Values
of k0'/e estimated from the data are of order 1, con-
firming that the molecular field arises from overlap
forces of the same origin and order of magnitude as
those causing band spread (see Sec. 2).

(i) Ni-Co.!® Analysis of the susceptibility results in-
dicates that 6’/ and ¢, are practically independent of
¢. Since for this alloy system both ¢ and 7(R) must
vary appreciably with ¢, the analysis is less conclusive.
Using the experimental values of o the variation with ¢
of the Curie temperature ¢ may be estimated, in fair
agreement with experiment (reference 15, Fig. 5).

(i) Ni-Pd.'® Analysis shows that ¢’ varies only
slowly with ¢ (with particular approximations ¢'=1.23
X10*°K for Ni, 1.02X10*°K for Pd). For Ni-Pd, ¢ is
probably constant (remaining equal to about 0.6),-and
the above formula for ¢’ shows that the slight variation
of ¢ results from small changes of I(R) with Pd con-
centration ¢. The observed values of ¢y may be used to
estimate the variation of ¢ with ¢, in excellent agree-
ment with experiment (reference 16, Fig. 2).

(b) The Variation with Temperature of the
Magnetization, Specific Heat, and
Magnetocaloric Effect of Co, Ni,
and Ni Alloys below the Curie Point

The curve for Ni relating the reduced magnetization
o/ a0 with the reduced temperature 7/6 differs consider-
ably from the theoretical curve deduced from Stoner’s
calculations.!? It was suggested 7:*3 that better agree-
ment should be obtained by using the more general
expression for the exchange energy (20) in carrying out
the calculation. A full analysis by Hunt,* based on this
suggestion, indicates that excellent agreement may be
obtained for Ni and Co® with the parameter 4 in (20)
equal to about 0.1. Hunt also considers the data for
Ni-Cu alloys™ and finds that 4 decreases with increas-
ing Cu concentration, in qualitative agreement with the
expression (20). A similar modification of Stoner’s
equations is necessary in analyzing the specific heat
data. For Ni, for example, the calculated reduced spe-

4 K. L. Hunt, Proc. Roy. Soc. (London) A (to be published).

2 H. P. Myers and W. Sucksmith, Proc. Roy. Soc. (London)
A207, 427 (1951).
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cific heat discontinuity at the Curie point, AC/N (k, is
about 0.6,''7 the observed value being 1.5. Hunt shows
that the excellent agreement over the whole tempera-
ture range may again be attained with 4s0.1; a value
of this order is also required in interpreting the magneto-
caloric data for Ni, but here difficulties arise from do-
main effects.®

Went* has recently found that the o/, 7/6 curves
for many Ni alloys are all, to a varying extent, less
concave to the 7/6 axis than the curve for pure Ni.
He interprets this finding by postulating the presence
of small isolated nickel-rich particles in the alloys,
giving rise to rapid density fluctuations.’® It seems to
the writer that this interpretation is strictly inadmis-
sible for the more dilute alloys, where the deviations
are probably mainly the result of the above mentioned
effect, a variation of the parameter A with composi-
tion. For the less dilute alloys the deviations may be
the result of density fluctuations, the alloy consisting
of regions of differing compositions and Curie tempera-
tures, giving rise to pronounced tailing of the curves in

2
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F16. 1. The electronic heat of Ni above the Curie point, Pd and Cr.
C,, electronic heat, cal mole™ deg™; T, absolute temperature.

the “Curie point” region: Went’s curve for Ni-Si for
example is suggested to be “all tail.” This situation has
been very fully investigated by Marian.*6 Both the
above effects are the more pronounced the higher the
valency of the solute metal, in qualitative agreement
with Went’s results.*

(c) The High Temperature Specific Heat
of Ni and Pd

(i) Ni. Very reliable data were obtained by Persoz*’
(800°~1300°K). The variation of the derived electronic
heat C, (C,—C,, Stoner;® #p=400°K) is shown in
Fig. 1. Contrary to earlier theoretical treatments®® C,
does not approach a constant value at high tempera-
tures. The observed variation is, in fact, that given by
Wohlfarth,* who showed that an approximately linear

4 E. C. Stoner, Trans. Roy. Soc. (London) A235, 165 (1936).
4 7, J. Went, Physica 17, 98, 596 (1951).

45 A, D. Fokker, Physica 8, 109, 159 (1941).

4V, Marian, Ann. phys. 7, 459 (1937).

47 B, Persoz, Ann. phys. 14, 237 (1940).

4 E. C. Stoner, Phil. Mag. 22, 81 (1936).
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variation, as observed, is calculable by inclusion of the
“transfer effect” (reference 14, Fig. 14). With the over-
lap parameter 7 equal to 10 and ¢=0.6, the theo-
retical and experimental curves may be brought into
coincidence taking the degeneracy temperature to
equal 2.3X10%°K, in agreement with independent
estimates. (ii) Pd. Experimental data are available
covering the temperature range 0°-1800°K.%-5' The
variation of C, (C,—C,, Jaeger and Rosenbohm ;?
0p=275°K) is shown in Fig. 1. The low and medium
temperature values of C, are anomalously low; at higher
temperatures C, is approximately proportional to T" as
for Ni, but the Pd values are consistently smaller. The
deviations are difficult to explain on the assumption!®
that the band structures of the two metals are closely
similar [see (e) below].

(d) Magnetic and Thermal Properties of Cr

Recent investigations give the following results: (i)
The linear low temperature electronic heat coefficient
v is equal® to only 3.74X10~* cal mol™! deg™?, (ii) the
high temperature variation of electronic heat C, is
anomalous, the observed values® being many times
larger than vT (see Fig. 1, curve drawn from published
data), (ili) the paramagnetic susceptibility increases
quite markedly at high temperatures.’® In metallic Cr
the overlap of d as well as s wave functions must be
much stronger than in nickel, and the electrons outside
closed shells will then behave much more nearly as if
they were free.!® The supposition that the d-s band in
Cr is relatively wide has recently been supported by the
results of soft x-ray measurements.55 If the Fermi limit
of the electron distribution lies close to a minimum in
the density of states curve, the v value would be lower
than for neighboring metals in the periodic table,® the
susceptibility would increase with temperature’®* and,
as for Ni, owing to the transfer effect, C. would be
anomalously large at high temperatures, as observed.
Measurements on some other transition metals®—5°
indicate that an increase of susceptibility with tempera-
ture is at least as common as a decrease. The interpreta-
tion put forward above to account for the properties

E“ G. §4 Pickard and F. E. Simon, Proc. Phys. Soc. (London) 61,
1 (1948
8 K, Clusius and L. Schachinger, Z. Naturforsch. 2A, 90 (1947).

8L F, M. Jaeger and W. A. Veenstra, Proc. Koninkl. Nederland.
Akad. Wetenschap. 37, 280 (1934).
( 52F) M. Jaeger and E. Rosenbohm, Rec. trav. chim. 51, 13
1932

6“Frledberg, Estermann, and Goldman, Phys. Rev. 85, 375
(1952

54L D. Armstrong and H. Grayson-Smith, Can. J. Research
A28 51 (1950)

. McGuire and C. J. Kriessman, Phys. Rev. 85, 452

(1952)

s E, M. Gyorgy and G. G. Harvey, Phys. Rev. 87, 861 (1952).

% E. C. Stoner, Proc. Roy. Soc. (London) A154, 656 (1936).

87 C, J. Kriessman, Bull. Am. Phys. Soc. 27(3), 33 (1952).

58 F, E. Hoare and J. C. Matthews, Proc. Roy. Soc. (London)
A212 137 (1952).
( (. F. Squire and A. R. Kaufmann, J. Chem. Phys. 9, 673
1941).
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of Cr may have wider applicability, although for some
of the other transition metals the vy values are large,
an extreme case being W60

(e) Magnetic Properties of Pd and its Alloys

The electronic properties of Pd had been discussed
earlier.!® Recent very careful low temperature measure-
ments® show that the paramagnetic susceptibility x
varies anomalously with temperature at about 80°K,
where the curve passes through a slight maximum.
No immediate interpretation of this behavior can be
given, but, as stated,® it cannot result from the metal
being antiferromagnetic since there is no corresponding
anomaly in the specific heat curve at this tempera-
ture.®® Also, recently, magnetic measurements have been
reported by Wucher® on alloys of Pd with diamagnetic
metals and on Pd-H. Although the susceptibility meas-
urements were not extended to low temperatures,
some attempt may be made to extrapolate the 1/x, T
curves to 0°K. Figure 2 shows the variation of xo, the
extrapolated paramagnetic susceptibility, with the elec-
tronic concentration (H/Pd for the Pd-H system). The
points for the alloys lie approximately on a single curve
A, showing that, as for the variation of oo in nickel
alloys, the decrease must be primarily an electronic

effect. The points on B for Pd-H are higher than those’

for the alloys; the difference may result from the more
complicated phase diagram of this system. Both curves
A and B tend to zero at a value of ¢ close t0.0.6. Figure 2
also contains a “‘theoretical curve” C, calculated on the
assumption of parabolic band shape and taking the
parameter 6’ to be proportional to ¢, the number of holes

6 A, A. Silvidi and J. G. Daunt, Phys. Rev. 77, 125 (1950).
81 J. Wucher, Ann. phys. 7, 317 (1952).
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Fic. 2. Paramagnetic susceptibility of Pd alloys and Pd-H.
X0, mass susceptibility at 0°K (see reference 61) (Pd-Au, 90°K
(E. Vogt, Ann. Physik 14, 1 (1932)); ¢, electronic. concentration
or H/Pd. 4, Pd alloys; B, Pd-H; C, theoretical (see text).

per atom (see Sec. 2). The difference between 4 and C
may result from a variation of 6’ which ¢ more com-
plicated than that assumed, since, owing to an ap-
preciable variation of interatomic separation with
concentration, the overlap integrals I(R) discussed
above may also vary appreciably on alloying.
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