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Two rival methods of handling molecular problems, the Heitler-
London and the molecular orbital methods, have been used for
many years, and they have their counterparts in magnetism in the
Heisenberg and the energy-band methods. The first part of this
paper shows that the Heitler-London and Heisenberg methods, as
usually applied, are not appropriate for problems containing
more than a few electrons. The reason is the lack of orthogonality
of the one-electron orbitals of atomic type. This involves the
presence of overlap integrals which, if included in the calculation,
make the method essentially divergent and unsuitable for numeri-
cal calculation if the product of the number of electrons in the
system, times an overlap integral between nearest neighbors, is
large compared to unity, which in practice confines the applica-
tion to problems of a few electrons. Most applications of the
method, including all applications of the Heisenberg method to
ferromagnetism and antiferromagnetism, disregard many inte-
grals which are not as a matter of fact negligible, and for this reason
cannot be regarded as valid.

Van Vleck many years ago tried to overcome this difficulty,
but his results are only partially satisfactory on account of lack
of generality. The straightforward way to overcome it is to use
really orthogonal one-electron orbitals, either molecular orbitals
or Wannier functions, and the remainder of the paper considers
how the familiar facts of ferromagnetism are to be explained on
this basis. If we use a single determinantal wave function composed
of energy-band orbitals, we have the familiar energy-band or
collective electron theory of ferromagnetism. This simple method
may well be fairly accurate at small internuclear distances; it
predicts correctly that ferromagnetism must be impossible when
the atoms are close enough together to broaden the energy bands
greatly. For large internuclear distances, however, it leads to quite
wrong limiting behavior, since it gives a wave function involving
a considerable contribution of ionic states. To eliminate these
ionic states, at large internuclear distances, we must make linear
combinations of different determinantal functions, corresponding
to different assignments of electrons to orbitals. The results of
such a calculation are sketched.

To treat magnetic problems properly, we must make such calcu-
lations for different total spins, calculate the energy of the states
of different magnetizations as a function of internuclear distance,
and see which states lie lower, the magnetic or nonmagnetic. At
infinite separation, the energy will be independent of total mag-
netization, since in this limit the spins of different atoms can be
oriented in any arbitrary way without affecting the energy. At
very small distances, the elementary band theory shows that the
nonmagnetic state must lie below the magnetized state, so that

ferromagnetism is impossible. At intermediate distances, the ele-
mentary theory can show only that ferromagnetism is possible,
not that it is necessary; to find whether it actually exists, we should
really have to carry out a calculation of the type described. If we
find ferromagnetism, we shall necessarily find that the energy
difference between nonferromagnetic and ferromagnetic states
was zero at infinite internuclear distance, increased as the inter-
nuclear distance decreased, went through a maximum, and then
went to zero and changed sign. This behavior is often postulated
for the Heisenberg exchange integral, although we do not feel
that this integral has the direct theoretical meaning often ascribed
to it.

These problems are closely related to the correlation energy,
which is discussed. We do not feel that the familiar Wigner-Seitz
calculation of correlation energy is very accurate; the correlation
energy is in fact a function of magnetization, decreasing numeri-
cally with decreasing internuclear distance, and its interpretation
cannot be given properly except by considering its intimate con-
nection with magnetization. The net result of the present discus-
sion is that to give a proper account of ferromagnetism, we are
forced to use orthogonal orbitals and, therefore, must make close
connection with the band theory. We must, however, carry our
theory further than has usually been done, though the prediction
of the elementary band theory, i.e., that ferromagnetism is im-
possible for broad bands and can exist only for narrow bands and
electronic wave functions which overlap only slightly, is verified
by the present more accurate approach.

As an illustration of the general method of calculating magnetic
energies described in this paper, we may mention the recent
calculation of Meckler, not yet published, on the oxygen molecule.
This has been carried out by setting up many determinantal wave
functions formed from orthogonal atomic orbitals made out of the
original nonorthogonal orbitals. The secular equations involving
these determinantal functions were solved by use of a digital
computer. The resulting energy levels and wave functions reduce
to the proper type to represent the 3P ground state of the oxygen
atom at infinite internuclear distance. Meckler’s energy for the
triplet ground state is very accurate; that for the next singlet
excited state is quite good. The energy separation between singlet
and triplet shows the behavior expected for the energy difference
between a ferromagnetic and nonferromagnetic state, being zero
at infinite distance, then increasing, going to a maximum, then
decreasing again. As far as the writer is aware, this is the first
time when such a behavior has been found as a result of straight-
forward calculation from quantum mechanics.

OR many years, there have been two competing

approaches to problems in molecules and solids.
First there is the Heitler-London method for molecules,
with the related Heisenberg method for magnetism;
second, there is the molecular orbital method for mole-
cules, with the energy-band method for solids. Many
students of molecular structure, following Pauling, have
based their work on the Heitler-London method, and
many students of magnetism, following Van Vleck, have
used the Heisenberg theory as fundamental. Another
school of molecular theory, following Lennard-Jones
and Mulliken, has used the molecular orbital method;

and other workers in magnetism, as for instance Stoner,
have used the energy-band or collective electron
method. It has often been shown that for simple sys-
tems, in particular the hydrogen molecule, the two
methods as properly amplified are equivalent, and this
has been regarded as a justification for the use of either
method for complicated molecules and solids. For a
very long time the present writer has believed other-
wise: He believes that the Heitler-London and Heisen-
berg methods are by their nature incapable of being
rigorously applied to systems containing more than a
very few electrons, except in special cases like ionic
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crystals, and feels, therefore, that they are unsuited
for most problems in the structure of molecules and
solids and for almost all problems in magnetism. It is
the purpose of the present paper to give the reasons for
this belief and then to outline how. the energy-band
method can be adapted to problems of solids, particu-
larly in the limit of large internuclear distance where
difficulties in its application are sometimes pointed out.

1. THE OBJECTIONS TO THE HEITLER-LONDON
AND HEISENBERG METHODS

All methods under discussion work with one-electron
orbitals; the characteristic of the Heitler-London and
Heisenberg methods to which we object is that in these
methods the orbitals represent atomic functions on
different atoms, and hence necessarily are not orthogo-
nal to each other. In the present section we shall make
two points: first, that for systems of more than a few
electrons, the use of nonorthogonal orbitals involves us
in practically insuperable computational difficulties;
secondly, that the use of nonorthogonal orbitals is in-
herent in the Heitler-London and Heisenberg methods.
Before making these points we must note that there
are three general methods which have been proposed
for using one-electron orbitals for many-electron prob-
lems. Before 1929, the group theory was generally used.
This method involved a great deal of superfluous mathe-
matical machinery, and it was supplanted in 1929 by
the determinantal method suggested by the present
writer! and by the spin operator method proposed by
Dirac.? The determinantal method is completely general
and will be made the basis of the discussion of the pres-
ent section. The spin operator method, which has been
widely used by Van Vleck® and his school for magnetic
problems, is less general. It will be shown in Sec. II
that this lack of generality makes it inadequate as a
foundation for a theory of magnetism.

We now take up our first point: that the use of non-
orthogonal orbitals involves practically insuperable
difficulties in many-electron problems. The writer? has
discussed in principle the application of the Heitler-
London method, using nonorthogonal orbitals, to such
problems and has carried through illustrative cases in-
volving a small number of electrons. The characteristic
step in this application is the calculation of matrix
components of the energy of the #n-electron system, and
of unity, between determinantal #-electron functions
formed from nonorthogonal one-electron orbitals u;(x),

17, C. Slater, Phys. Rev. 34, 1293 (1929).

2 P. A. M. Dirac, Proc. Roy. Soc. (London) A123, 714 (1929);
or The Principles of Quantum Mechanics (Oxford University Press,
London, 1947), third edition, Chap. IX.

3]. H. Van Vleck, The Theory of Electric and Magnetic Sus-
ceptrbilities (Oxford University Press, London, 1932); Phys. Rev.
45, 405 (1934); J. H. Van Vleck and A. Sherman, Revs. Modern
Phys. 7, 167 (1935); J. H. Van Vleck, Physica 15, 197 (1949);
;. phys. et radium 12 262 (1951); P. w. Anderson, Phys. Rev.

9, 350 705 (1950); and many other references by Van Vleck
and students

4 J. C. Slater, Phys. Rev. 38, 1109 (1931).
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us(x), etc., where the orbitals, and the coordinates, x,
involve both spacial coordinates and spin. Once these
matrix components are calculated, we can set up a
secular equation for finding the energy levels, and the
combinations of determinantal functions which best
represent the correct wave function. The difficulties
arise in the calculation of these matrix components, and
can be illustrated by the very simplest example, the
calculation of the diagonal component of the matrix of
unity with respect to a “determinantal function
det|u(x;)|, which is required in order to normalize
the determinant, provided the #;’s are normalized but
not orthogonal. We wish in other words to compute
S det|u*(x;)| det|ui(x;) | dxy: - - dxn. We can at once re-
duce this to the form

n! Y (permutations P) f ur*(%1)

'un*(xn) (ip)ul(xl) U (n)dt1 < - Ao, (1)

where P represents a permutation of the subscripts of
the #’s. The term of this summation for which P repre-
sents the identity is unity, by the normalization of the
ws; and if the u’s were orthogonal, all other terms
would give zero, so that the result would be simply #!,
and the normalized determinant would be (»!)~}
Xdet|u;(x;)|. If the u’s are not orthogonal, however,
we shall next have n(n—1)/2 terms involving single
interchanges of two subscripts. If the kth and /th are
interchanged, the integral in (1) will be

- f i () u* () wi(oe)ur (1) dardxs
=—[fuk*(xk)u;(xk)dxk] y (2)

the square of the overlap integral between the kth and
Ith atomic orbitals. We know that these integrals fall
off rapidly with internuclear distance, so that only
those terms of (1), involving interchange of two sub-
scripts, will be appreciable in which 2 and / represent
near neighbors. There will be of the order of magnitude
of z1/2 pairs of near neighbors in the system, if z is the
number of near neighbors which a given atomic orbital
has. Thus, from interchange of pairs of subscripts we
shall have of the order of z1/2 terms in the summation
(1), each of the order of magnitude of the square of the
overlap integral between neighboring atoms. Since these
squares can well be of the order of 0.01 or larger in
practical cases, it is clear that the sum of the terms of
(1) coming from simple interchange can be of the order
of #, as compared to unity for the leading term. Simi-
larly, by considering more complicated permutations
we see that next we have sets of terms adding to some-
thing of the order of #?, then something of the order of
#3, and so on. If # is more than a very small integer,
it is clear that this sum involves terms each of which
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is enormously larger than the preceding one. Closer
examination shows that the signs of the terms alternate,
so that the sum can be finite; but it will be found as
the difference of very large positive and negative quan-
tities and, hence, is entirely unsuited for computation.
We shall point out later how to get around this diffi-
culty, but the present point is that it cannot be avoided
by direct and straightforward methods.

Closely related to the difficulty just mentioned is
that encountered when we start calculating the matrix
components of the energy and the exchange integrals
which are involved in the calculation. The energy
operator H is a sum of quantities f;- - « fn, each involv-
ing the coordinates of one electron only (the kinetic
energy operator, plus the potential energy in the field
of all the nuclei), and of quantities g;;, the Coulomb
repulsive energy between the ¢th and jth electrons.
The resulting integral is just like (1), but with the
operator H inserted after the factor #,*(x,). The in-
tegral coming from. the identity permutation is the
Coulomb integral, which will not concern us further;
it is easy to compute. The only remaining term in the
two-particle case is the ordinary Heitler-London or
Heisenberg exchange integral,

J12=fu1*(x1)“2*(x2)(_fl+f2+gl2)
wa(x1) 1 (x2)dx1ds.  (3)

In the general case of » particles, if the #’s are or-
thogonal, two things happen. First, the exchange in-
tegral (3) reduces to the form

Ji2= f ur*(w0)ue* () gratea (o) ur (w2)dndwe.  (4)

Second, the sum in the expression similar to (1) reduces
to the Coulomb term, minus the sum of the exchange
integrals, of form (4), for all pairs of orbitals. If the
u’s are not orthogonal, however, there is no comparable
simplification. We have a very great variety of types of
exchange integrals, involving permutations of many
electrons, which by no means vanish. The whole prob-
lem of computing the diagonal or nondiagonal matrix
component of energy between two determinantal func-
tions becomes even more formidable than that of com-
puting the normalization integrals.

Thus, we see the computational difficulties involved
in the use of nonorthogonal orbitals. Unless some
simplification can be made, they are quite insuperable
for anything but very simple problems, and no one has
tried to carry through all the terms in a complicated
case. Much work has been done, in both molecular and
magnetic problems, by making the following assump-
tions: We assume that the diagonal matrix component
of energy can be written as the Coulomb integral,
minus the sum of the Ji/’s, as we should have for or-
thogonal #’s, but use the form of Jx; given in (3), ap-
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propriate only for nonorthogonal #’s: and we disregard
all overlap integrals in the matrix component of unity.
These assumptions are completely unjustified. The
molecular orbital or energy-band methods can be used
to make accurate calculations of molecular energy
levels, as Mulliken and Lennard-Jones and Coulson
and others of their school® have shown; and the energy-
band method can be used for accurate calculations of
the structure of solids, as Léwdin® and others have

shown. These calculations, though made with a dif-

ferent starting point, eventually encounter the same
exchange and overlap integrals which are met in the
Heitler-London and Heisenberg methods. It is very
clear from these accurate calculations that the terms
which are disregarded in the approximate methods
described above are by no means: negligible, and that
if they are omitted from a correct calculation, agree-
ment with experiment is completely vitiated.

We reject completely, then, that large body of work
which has simply neglected the nonorthogonality or
overlap of one-electron orbitals, as representing an
unjustified oversimplification which forms no valid
approximation to the real predictions of wave me-
chanics. To be taken more seriously, however, is Van
Vleck’s” attempt to justify the procedure outlined in
the paragraph above. This attempt was made as an
answer to the criticism of Inglis® regarding the catas-
trophe produced by nonorthogonality in a many-elec-
tron system. This criticism was equivalent to that
made in the preceding paragraphs of this section; the
same difficulty had been pointed out earlier by the
present writer.® Van Vleck showed essentially that the
matrix components of unity and of energy between
two determinantal functions, which we have been con-
sidering above, could be factored, if we neglect certain
terms. The final answer in every case will be a ratio of
two integrals, one coming from the energy in the nu-
merator and one from the matrix of unity in the de-
nominator. Most factors in numerator and denominator
are identical and can be canceled. The remaining ratio
theh proves, as Van Vleck showed, to be of the sort
described in the preceding paragraph, and to involve
sums in which the number of integrals coming from
simple exchange was only proportional to z, the number
of near neighbors, rather than to nz/2.

If Van Vleck’s treatment had been really general, it
would have provided the complete answer to the
difficulties. Unfortunately, it was not; we have men-
tioned that certain terms had to be omitted, and the

5 R. S. Mulliken and R. G. Parr, J. Chem. Phys. 19, 1271 (1951),
and many other references given there; numerous papers in Proc.
Roy. Soc. (London) A207, 1-136 (1951), and many references
given there.

6 P.-O. Lowdin, A Theoretical Investigation into Some, Properties
of Ionic Crystals, thesis, Uppsala, 1948; J. Chem. Phys. 18, 365
(1950) ; 19, 1570, 1579 (1951).

7J. H. Van Vleck, Phys. Rev. 49, 232 (1936).

8 D. R. Inglis, Phys. Rev. 46, 135 (1934).

ng (73 Slater, Phys. Rev. 35, 509 (1930); see particularly pp.
526-527.
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results were worked out only for special cases. We can
give an idea of how it works, however, from our simple
example of the normalization integral f'det|u.*(x;)]
Xdet|ui(x;)|dxy - - dxn. At the same time our example
will show how Van Vleck’s method can be extended so
as to be perfectly general. Suppose we have a par-
ticularly simple case, in which the # functions %, repre-
sent atomic functions, all corresponding to electrons of
the same spin, on the # lattice sites of a regular lattice.
In other words, our determinantal function represents
a state in which we have a completely filled set of wave
functions, one per atom, corresponding to one spin.
Then we know that we can make from the #’s a set of
» normalized, orthogonal Block functions, which can
easily be shown to be.

bi(r)=dant 3 (w)exp(iki- R)u(r—R,), ©)
where

—%
= | Z R R [wouo—RI| . @

Here 7 is the vector position of an electron, and #(r—R,)
is an atomic function located on the lattice point at
R, and corresponding to a + spin. If the #’s on dif-
ferent lattice sites were orthogonal, the quantity d;
would be unity; if they are not orthogonal, we have an
additional term which involves only a summation over
the z near neighbors of an atom. There are # functions
b.(r), corresponding to the # values of the propagation
vector k; consistent with the boundary conditions in the
crystal (for instance, periodic boundary conditions).
Now we know that if we form the determinant (n!)—}
Xdet|b:(r;)|, this function will be normalized, since
the &’s are normalized and orthogonal. However, we
also know by general properties of determinants that
this determinant is proportional to (%!)~* det|u(x;)].
In fact, it is not hard to find the relation between these
two determinants and to show that the function
(n!y"H{TI(s)d;}* det| wi(x;)| is normalized. In other words
we have found our difficult normalization integral, for
this special case, and we have shown that it factors into
a product of d;’s. This is the simplest example of the
factoring procedure that Van Vleck used in the reference
quoted above, although he did not use the Bloch func-
tions directly. It is clear that the product of all the
di’s, as defined in (6), will have the form described
earlier: It will have unity for the leading term, then
something like 2% terms each of the order of an overlap
integral between neighboring atoms, then (z) terms
involving products of overlap integrals, and so on. But
its factorization has simplified the situation. We can
carry out a similar factorization in the energy integral,
and the ratio of the two, giving the diagonal energy of
this state, has most of the factors canceling in nu-
merator and denominator, reducing to a simple final
result, in accordance with the findings of Van Vleck.
We thus see how Van Vleck’s result can come about:
that the catastrophe of nonorthogonality in a many-
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electron system really follows from the method of
calculation, and is not inherent in the problem. We
may well believe that if we could really set up a Heitler-
London approximation for a problem of many elec-
trons, and carry through the calculations exactly, the
results would be quite reasonable and might well form
as good an approximation as with hydrogen. Never-
theless, the computational difficulties remain. We may
ask, then, can we not extend Van Vleck’s method to
the general case, without making the approximations
which he was forced to make in reference 7? The answer
is obvious from the discussion we have just given:
We can rewrite our problem in terms of really orthogo-
nal one-electron orbitals, and then everything goes
through simply. We have just pointed out that we can
use Bloch combinations of atomic orbitals, so as to get
orthogonal functions; this was pointed out in reference
9. We can also use Wannier functions,!® orthogonalized
one-electron orbitals, as the writer has done for mag-
netic problems,! and as Lowdin® has done for problems
in cohesive energy in crystals. Either of these methods
gets away from the nonorthogonality catastrophe; and
it ‘is doubtful whether any essentially independent
method would accomplish the same purpose.

By introducing orthogonal orbitals, either of the
Bloch or the Wannier type, ther, we escape the non-
orthogonality difficulty. But at the same time we find
that we no longer have the Heitler-London method;
we have instead the energy-band method, which is the
one which the writer is advocating. We might think
that all we had to do was to introduce orthogonal or-
bitals, and then proceed exactly according to the pat-
tern of the Heitler-London and Heisenberg methods;
but this is not true, and those methods depend essen-
tially on the use of nonorthogonal orbitals. Thus, we
come the second principal point of the present section,
the fact that nonorthogonal orbitals are essential to the
Heitler-London and Heisenberg methods. The writer
has already pointad this out'® with reference to problems
in molecular structure. Let us state the argument in
somewhat different language, appropriate for the mag-
netic problem. Let us suppose specifically that we set
up Wannier functions, which in many ways resemble
atomic functions, and that we set up a theory analogous
to the Heisenberg theory of ferromagnetism, using these
functions. They are orthogonal, and hence the exchange
integrals Jy; take the form (4), which is necessarily
positive, since it represents the electrostatic interaction
of a charge distribution with itself. But we remember
that a positive exchange integral, in Heisenberg’s
theory, corresponds to ferromagnetism. We &hould
therefore conclude, if we used the Heisenberg method
naively, that all substances were ferromagnetic, an
obviously absurd conclusion. To get a negative ex-
change integral, as in the Heitler-London method, we

10 G, Wannier, Phys. Rev. 52, 191 (1937).

1 7. 'C. Slater, Phys. Rev. 52, 198 (1937).
2 J. C. Slater, J. Chem. Phys. 19, 220 (1951).
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must have the interaction term between electrons and
nuclei in f; and f, in the expression (3); these are the
only negative terms in the exchange integral, and in the
case of the hydrogen.molecule they outweigh the
positive terms. But they are missing with orthogonal
orbitals. Since most substances are not ferromagnetic,
it is clear that we must carry a calculation, starting with
Wannier functions, through a further step than we are
used to in the Heitler-London or Heisenberg methods,
to get results of any reliability.

We can easily see what this additional step is, by
considering the familiar case of the hydrogen molecule.
If @ and b represent (nonorthogonal) atomic functions
on atoms ¢ and b, we can set up orthogonalized atomic
orbitals, as in reference 12, by the relations 4 = ¢1a4-¢2b,
B=cya+c1b, where ¢; and ¢, are determined to make 4
and B orthogonal and normalized. We can set up the
spin degeneracy problem corresponding to one electron
being in orbital 4, one in B, either electron having either
spin. The resulting spin degeneracy problem is carried
through exactly as in the Heitler-London calculations
for H,, and it results in a singlet and a triplet. The
orbital part of the triplet wave function (disregarding
normalization) is 4 (1)B(2)— B(1)A(2), where 1, 2 sym-
bolize the electronic coordinates; substitution shows
that this is the same as @(1)5(2) —5(1)a(2), so that this
method gives the same result for the triplet as the
Heitler-London method, and hence the energy of this
state must be the same. For the singlet, the wave func-
tion is A (1)B(2)+ B(1)A(2). This singlet state must lie
above the triplet since as we have seen the exchange
integral is always a positive for orthogonal wave func-
tions. Thus, the singlet state as given by this method is
not attractive; this fact was pointed out in reference
12, but this is a more direct proof than is given in that
reference. Since we know that the Heitler-London
singlet state lies below the triplet, and has an energy
low enough to lead to the molecular binding in Hy, it is
clear that the wave function for the singlet given by
the orthogonal atomic orbitals is very incorrect. Let
us see why this is true, by writing 4 and B in terms of
a and b. When we do this, we find the wave function
to be equivalent to

(e +e)[a(1)b(2)+5(1)a(2)]
+2c1¢La(1)a(2)+8(1)6(2)]. (7)

The first term is the ordinary Heitler-London function
for the singlet, which gives an energy below the triplet;
but the second is the Heitler-London function for the
ionic state where both electrons are on the same atom.
Since this state has a much higher energy, it is the ad-
mixture of this ionic state which spoils the singlet wave
function as calculated by the Wannier function method.

We know, of course, that the Heitler-London calcu-
lation for H, is surprisingly good, so that to get a good
wave function for the singlet state, we must modify
(7) to restore it very nearly to the Heitler-London form
a(1)b6(2)+5(1)a(2). To do this, starting with the Wan-
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nier functions, we must consider a configurational inter-
action between the state already described, in which
one electron is in a state A4, one in state B, and the
state where both electrons are in orbital 4, or both
in B. The singlet function of proper symmetry which
can be formed from this configuration is A(1)A4(2)
-+ B(1)B(2). Writing this in terms of a and b, it is

(e +e))La(D)a(2)+5(1)5(2)]
+2a0:[a(1)5(2)+0(1)a(2)]. (8)

The result of a configurational interaction between this
wave function and that given in (7) will yield two final
functions, one of which will be close to the function
a(1)6(2)+58(1)a(2), or the Heitler-London ground state,
the other close to the Heitler-London ionic function
a(1)a(2)+5(1)b(2). In other words, the use of Wannier
functions artificially introduces an ionic character into
the wave functions, and a configurational interaction
with the configuration in which a Wannier function is
occupied by two electrons, oné of each spin, is absolutely
necessary in order to counteract this ionic effect and
get a description of covalent binding, or of a negative
Heisenberg exchange integral or a nonferromagnetic
state. It is the absolute necessity of this configurational
interaction which distinguishes this calculation from
the ordinary Heitler-London or Heisenberg approach,
where the interaction with ionic configurations is re-
garded as a refinement, which is generally disregarded.

The net result of this section, then, is that a direct
calculation of any molecular problem except the very
simplest by the Heitler-London method is impossible.
If the calculation could be made, the answer might be
quite a good representation of the true wave function.
The only practical way to get at it, however, is to start
with orthogonal orbitals, either of the energy-band
Bloch type or of the localized Wannier type. When we
do this, the calculation becomes practicable. But all
exchange integrals become positive, which puts us on
our guard against using a naive form of the Heitler-
London or Heisenberg method. Rather, to get correct
results, it is essential to consider configuration inter-
action with ionic states, in which one Wannier function
is occupied by two electrons. When this is done, the
method may be expected to give good results; but it is
now so far from the original Heitler-London or Heisen-
berg method that it should no longer be described in
terms of those methods.

II. OBJECTIONS TO THE DIRAC SPIN OPERATOR FOR
MAGNETIC PRABLEMS

Before we go on to the applications of the energy-
band method, we should consider one additional point,
the validity of the expression

—% > (pairs &, D) T (14455 53), 9)

where J; is an exchange integral, and s; and s; are the
spin matrices of the kth and I/th electrons. This expres-
sion was introduced by Dirac,? and it gives the impres-
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sion of being a justification of the Heisenberg method,
and the use of exchange integrals, on a’ sufficiently
general basis so that we are led to ask if it avoids the
difficulties with the Heisenberg method, pointed out in
the preceding section. We shall see when we examine
it that it does not avoid these difficulties, and that it
does not in fact form a valid starting point for a com-
plete theory of magnetism. '

If we examine Dirac’s derivation of the expression (9),
we see that it was set up for problems of spin degeneracy.
That is, for a problem of % electrons, we start with a
set of orbitals #;- - -4, involving coordinates only, not
necessarily all different, and consider the various func-
tions of coordinates and spin which can be made up
from them by assigning spins in all possible ways to
these orbitals. In such a set of functions of coordinates,
it is clear that any function, on account of the exclusion
principle, can be identical with at most one other func-
tion. Each pair of identical functions must be occupied
with an electron of each spin. If there are »” remaining
functions, each appearing once, each one can appear
with either spin, so that there are 2% ways of arranging
spins. The problem of spin degeneracy then involves
the 27" determinantal wave functions arising in this
way. Dirac’s operator is set up so as to give the same
matrix components of energy between these 2% states
as the correct Hamiltonian operator used with the de-
terminantal method, provided the orbitals #;- - -u, are
orthogonal. It does not give matrix components be-
tween different configurations, that is, between two
determinantal functions corresponding to different sets
of u’s, and it does not give correct values if the #’s are
not orthogonal.

These limitations, though clearly pointed out by Van
Vleck,? are generally glossed over. It is clear, however,
that the method based on (9) is more specialized than
the determinantal method. In the first place, it cannot
rigorously be used for the Heitler-London or Heisenberg
methods, for we have pointed out that the nonorthogo-
nality of wave functions is essential to these methods.
The approximation, often made, of assuming that it
can be used in these cases, with an exchange integral
J i given by (3), which can have either sign, is on exactly
the same basis as the approximation which we have
already dismissed as invalid in Sec. I, of writing the
diagonal energy as the Coulomb energy minus the sum
of all exchange integrals Ji;, of computing these by
Eq. 3), and of disregarding overlap integrals. If we
use really orthogonal orbitals, it is a correct starting
point for discussing spin degeneracy; but we have just
seen that in this case we must also consider configura-
tional interaction with ionic states in which the Wannier
functions are occupied by two electrons, and the Hamil-
tonian (9) is not able to describe these configurational
interactions. Our feeling about this Hamiltonian (9) is

thus very definite, and very adverse, as far as its appli-.

cation to magnetic problems is concerned: We believe
that it has given a false and unjustifiable feeling of
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security to those who wished to use the Heisenberg
method, and that in fact the uses which have been
made of it are unjustifiable and incorrect. We do not
feel that it is correct, in any way which has been justified
from wave mechanics, to speak of exchange integrals
betweea electrons in a crystal, in the Heisenberg sense,
or to decide whether a substance should be ferromag-
netic, or nonferromagnetic, or antiferromagnetic, on
account of a positive or negative sign for such a hypo-
thetical exchange integral. This criticism extends to the
use of the term superexchange'® in its relation to theories
of antiferromagnetism ; the derivation of this quantity,
by Kramers, neglects orthogonality in just the same
sort of way which we are objecting to in the present
paper, and the writer sees nothing in the work on the
subject which overcomes this difficulty in the use of
the method. Before leaving the expression (9), we
should point out that Serber' has shown how to remove
the limitations which we have mentioned, i.e., that (9)
demands orthogonal orbitals, and does not apply to
configuration interaction ; Anderson® uses some of these
methods in his paper on superexchange, though he dis-
regards nonorthogonality.

III. THE ENERGY-BAND THEORY OF
FERROMAGNETISM

In the two preceding sections, we have endeavored
to show that treatments of magnetism by the Heisen-
berg method are unjustified, and that if we try to over-
come the difficulties of that method, we are led inevi-
tably to the use of the determinantal method, with
orthogonal one-electron functions or orbitals. If we have
a complete orthogonal set of one-electron functions
u;(x), involving coordinates and spin, we can pick »
functions out of such a complete orthogonal set and
form a determinantal function (#!)~% det|u.(x;)|. If we
take all possible ways of picking out # one-electron
functions from the complete orthogonal set, and set up
all such determinantal functions, this will form a com-
plete orthogonal set of antisymmetric functions of »
electronic coordinates and spins, so that the correct
wave function of the problem can be rigorously ex-
panded in terms of them. For the one-electron func-
tions, in a problem of a crystal, we may use the solu-
tions of a periodic potential problem, which have the
characteristics of Bloch waves; or we may use the
Wannier functions arising from them. Since either type
of function forms a complete orthogonal set, either
one forms a proper starting point for a rigorous cal-
culation. If we do not have exact solutions of the
periodic potential problem, we can proceed as Mulliken®
and others have done in the molecular problem, or as
Lowdin® has done in discussing crystals: We can start
with atomic orbitals and make orthogonal linear com-

1B H. A. Kramers, Physica 1, 182 (1934); P. W. Anderson,
Phys. Rev. 79, 350 (1950) ; J. H. Van Vleck, J. phys. et radium 12,
262 (1951).

14 R, Serber, Phys. Rev. 45, 461 (1934).
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binations of these atomic orbitals, either of the Bloch-
like or Wannier-like type. The results of these calcula-
tions show that good results can be obtained in this
way. The writer feels that our best hope at present of
obtaining quantitative results for magnetic problems is
to proceed in this way, using linear combinations of
atomic orbitals, of an orthogonal nature, and calculat-
ing the energy of the crystal as Léwdin has done, but
for both magnetized and unmagnetized states, compar-
ing the energies of the two states.

The calculations of Mulliken and Lowdin mentioned
above, and the usual applications of the molecular-
orbital or energy-band method, are more specialized
than we have indicated above. They are based on the
use of a single determinantal wave function, formed
from the #» Bloch-like energy-band functions whose
one-electron energies are lowest. The details of how to
specify these one-electron energies involve a certain
amount of subtlety, relating to problems of the Hartree-
Fock equation, which we shall not go into here. We ex-
pect theoretically, and we find in practice, that a single
such determinant gives a good description of an actual
molecule or crystal at its observed internuclear dis-
tance. However, as the interatomic distances increase
to infinity, it is well known that this single deter-
minantal solution does not behave properly and that
its asymptotic energy, at infinite internuclear distance,
is too high. We have a situation shown schematically
in Fig. 1, where the full curve shows the diagonal energy
of the state represented as a single determinant, as a
function of internuclear distance. The horizontal line is
supposed to represent the correct energy of the system
at infinite internuclear distance, and the dotted line
represents the energy of the correct ground state, as
determined by making linear combinations of deter-
minants, as will be described later. Tt can then very
well be that the single determinant forms quite a good
approximation to the ground state near the minimum
of the curve. It can also well be that we can independ-
ently determine the energy at infinite distance. Thus,
the dissociation energy D can be well calculated from
this single determinant, even though its energy at
infinity is too high by the amount 4. A solution like
that shown in Fig. 1 is found in the simplest molecular
problem, the H, molecule; a very similar situation is
shown in Loéwdin’s'® calculation of the sodium crystal,
where he has been able to make a very good calculation
of cohesive energy, even though his energy curve, like
the full curve of Fig. 1, goes to much too high a value
at infinity. Similar justification for this method of using
a single determinant is provided by the calculations of
Mulliken® and others mentioned earlier: they get good
values for binding energies, from wave functions which
would behave incorrectly at infinite distance.

For magnetic problems, however, this failing of the
simple energy-band method using a single determinant,

1 P.-0. Lowdin, J. Chem. Phys. 19, 1570, 1579 (1951).
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F16. 1. Energy of single determinantal state formed from mo-
lecular orbitals (full curve), and correct energy of ground state
(dotted curve).

at large internuclear distances, can be serious; for it is
well known that the 3d orbitals concerned in magnetism
are far apart in relation to their size, in ferromagnetic
and more particularly in paramagnetic substances.
Thus, we must look at the sort of situation described in
Fig. 1, particularly at large distances, in a good deal
more detail. First let us remind ourselves why the energy
of the single energy-band determinantal function, given
by the full curve in Fig. 1, is too high at infinite inter-
nuclear distance by the amount 4. It is well known that
this results because there is nothing in the wave func-
tion to keep electrons of opposite spin out of each
other’s way, and we are quite likely to find ionic states,
in which positive or negative ions are found on some
lattice sites rather than neutral atoms. Thus, in the
H, problem, where the molecular orbital functions are
a-tb, the determinantal wave function correspond-
ing to this state, as far as its orbital dependence
is concerned, is [a(1)4+56(1)][a(2)+58(2)]1=[a(1)5(2)
+5(1)a(2) T+ [a(1)a(2)+5(1)5(2)], a combination of
the Heitler-London ground state, and of the Heitler-
London ionic state, with equal coefficients. At infinite
separation, there is a fifty percent chance that the
wave function represents an ionic state. In computing
the diagonal energy of the state, as shown in the full
curve of Fig. 1, we then find terms representing the
interaction of two electrons on the same atom, required
to calculate the energy of the H~ ion. The energy 4
represents the energy required to form H+ and H~ ions
from the neutral H atoms, in the fifty percent of the
cases where the ions are found, according to the deter-
minantal wave function.

The situation described in Fig. 1 is for a state with
no net magnetic moment. For investigating ferromag-
netism, however, we must compare the energies of
states of different magnetic moments; in a ferromag-
netic problem, the lowest state will have a magnetic
moment, and in a nonmagnetic case it will not. We next
ask, therefore, how the energy of a single determinant,
as a function of internuclear distance, depends on
whether it represents a magnetic state or not. First,
at small internuclear distances, where the energy band
is broad, increase of magnetic moment will increase
the energy, for in the nonmagnetized state each of the
lowest one-electron energy levels will be occupied by
two electrons, one of each spin, whereas in the mag-
netized state electrons of one spin (say —) are removed
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from low-lying one-electron levels and are placed in
higher unoccupied one-electron levels of the band of
+ spin. Thus, there is an increase of energy of the
whole system, resulting from increased one-electron
energies, the total amount being proportional to the
band width, and hence increasing with decreasing inter-
nuclear distance. On the other hand, another effect
works in the opposite direction, and persists to infinite
separation, tending to lower the energy of the state of
maximum magnetization below the unmagnetized state.
This is the effect of exchange. The diagonal energy of
a single determinantal state formed from orthogonal
orbitals is the sum of the one-electron and Coulomb
energies (these terms take care of the result of broadened
energy bands just mentioned) minus the sum of ex-
change integrals Jy; of type given in Eq. (4), for all
pairs of electrons with parallel spin. These exchange
integrals are always positive; and when the orbitals #;
are Bloch functions, we find that at large nuclear
separations they do not go to zero in the limit, but
become interaction integrals between different electrons
in the same atom. Thus, we have a set of such terms,
coming in with negative sign, one for each pair of elec-
trons with parallel spin. Now there are more such pairs
for a magnetized state than for an unmagnetized state;
thus, this exchange energy is lower for the magnetized
state than the unmagnetized one.

The net result of these two effects, then, is that the
energies of determinantal functions representing non-
magnetized and magnetized states formed from energy-
band orbitals will look as shown schematically in Fig. 2.
We can easily see why the energy of the magnetized
state lies below that of the unmagnetized state, at
infinite separation. This is on account of the incorrect
tendency for electrons of opposite spin to get close
together and form ions, in the determinantal wave
function, as mentioned earlier. But electrons of the
same spin are prevented from getting too close together
by the exclusion principle. Thus, the greater the mag-
netization the fewer are the pairs of electrons which
can improperly get together, and the smaller is the
error. If the completely magnetized state happens to
be one in which a band is just filled with electrons of
+ spin, with no electrons of — spin, then the exclusion
principle by itself will entirely prevent ionic states,

MAGNETIZED
STATE

UNMAGNETIZED STATE

F16. 2. Energy of single determinantal state formed from mo-
lecular orbitals for magnetized and unmagnetized states.
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and the state of maximum magnetization will go to
the correct energy at infinity. This is the case in H,.
It is also the case taken up by the writer!! in a more
detailed study of the present problem; this case is
simple enough so that quantitative results can be ob-
tained in computing the energy as a function of inter-
nuclear distance. A consideration of the exchange terms
coming into the energy of the determinantal state,
which as we have seen involve interaction between elec-
trons on the same atom, shows that these are just the
correct terms to describe this tendency of electrons of
opposite spins in the unmagnetized state to form posi-
tive and negative ions.

Now that we have considered the behavior of the
energy of a single determinantal wave function formed
from Bloch orbitals, both for magnetized and unmag-
netized states, we can ask how the energies of the
correct wave functions are related to them, for ex-
ample, as indicated in the dotted curve of Fig. 1. From
the case of H,, and the magnetic case worked out by
the writer in reference 11, we can tell the general lines
which the discussion must take. To get good results,
we must use many determinantal functions and solve
a perturbation problem between them. If we are using
Bloch functions as one-electron orbitals, we must use
not only the determinant composed of the 7z lowest
orbitals in the energy band concerned, but rather all
determinants which can be formed from the orbitals in
the whole band. We shall find an equal number of de-
terminants formed from the Wannier functions of the
band, provided we consider all the ionic Wannier states,
which we have seen to be necessary from our discussion
of Sec. I. The determinants formed from Bloch func-
tions, or from Wannier functions, are found from each
other by a unitary transformation, so that the same
final result will be obtained by starting with either set.
We must then solve the perturbation problem between
these states, finding the set of resulting energy levels
for each total spin. The lowest such energy level, for
each total magnetization, will of course have to lie
lower than the diagonal energy of the single deter-
minantal function of the same magnetization indicated
in Fig. 2. We can go further than this, however. At
infinite internuclear distance, we shall of course have a
paramagnetic sort of behavior, and the correct solution
will have a very high degeneracy: The energy will be
independent of the orientation of the magnetic mo-
ments of the separated atoms, so that the energy of
the lowest state corresponding to each total magnetiza-
tion, from the maximum to zero, will be the same. If,
for instance, we have the simple case mentioned in the
preceding paragraph, in which the state of maximum
magnetization corresponds to no electrons of — spin,
so that the energy of the single determinant is the cor-
rect energy value at infinite distance, we can be sure
that the lowest energy level of zero magnetization will
come at the same value at infinite distance. This situa-
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tion is clearly shown in the calculation carried out in
reference 11.

Let us now ask what the correct energy levels must
look like, resulting from this calculation. For simplicity,
we take the case just mentioned, where the wave
function of the state of maximum magnetization is cor-
rectly given by a single determinant, though the general
situation is not changed in any essential feature if we
do not have this simplification. Then the correct energy
of the unmagnetized states, as a function of inter-
nuclear distance, must have a form somewhat like that
given by the dotted curve in Figs. 3(a) and 3(b). In
both cases shown there, we have indicated that the
dotted curve lies below the diagonal energy of the
single determinant representing an unmagnetized state,
but reduces to the same energy at infinity as the mag-
netized state. In the case of Fig. 3(a), the unmagnetized
state everywhere has a lower energy than the mag-
netized, and the system must be nonmagnetic. In Fig.
3(b), on the other hand, the unmagnetized energy lies
above the magnetized value at large internuclear dis-
tances and there is a region of distances over which the
substance will be ferromagnetic.

There are many conclusions which can be drawn
from these instructive figures. First, perhaps, is the
nature of the energy difference between magnetized
and unmagnetized states in the ferromagnetic problem,
shown in Fig. 3(b). This energy difference is zero at
infihity, increases as the internuclear distance de-
creases, goes through a maximum, then decreases to
zero and changes sign at smaller internuclear dis-
tances. It is well known that there is much experi-
mental evidence for this sort of behavior. In the lan-
guage of the Heisenberg exchange integral, it has often
been described by saying that one integral, for a ferro-
magnetic material, is positive for large internuclear
distances, negative for smaller distances, just like the
energy difference just described. We have already given
reasons for feeling that the Heisenberg method is in-
valid, and that no exchange integral, of the Heisenberg
or Heitler-London type, can be found which correctly
represents the problem and shows the dependence on
internuclear distance just described. Itis clear, however,
that the energy-band theory, when examined carefully,
must necessarily lead to just the type of behavior which
we have just described.

As a second point, if Fig. 3(b) represents the true
state of affairs with any reasonable approximation, we
see that the correct energy of the unmagnetized state
will cross the energy of the magnetized state at an
internuclear distance not far from that where the
diagonal energy of the unmagnetized state crosses the
energy of the magnetized state. In other words, the
internuclear distance where the ferromagnetic inter-
action (a notation which might well replace “exchange
integral”) changes sign is given to a fair approximation
by finding where the diagonal energies of the magnetized
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F16. 3(a). Energy of single determinantal function, for mag-
netized and unmagnetized states, compared with correct energy
of unmagnetized state (dotted curve), for nonmagnetic case.
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Fic. 3(b). Same as Fig. 3(a), for ferromagnetic case.

and unmagnetized energy-band functions cross. This is
the reason, as pointed out in reference 11, why the esti-
mates made by the energy-band method by the writer!6
as to which elements should be ferromagnetic were
approximately correct, even though these estimates
were based on a naive picture like that of Fig. 2.

We may assume that the diagrams of Fig. 3 represent
the energies of the 3d electrons. Superposed on this, of
course, is the energy of the 4s electrons (which pre-
sumably have no significant magnetic effect). Since the
4s band is much broader than the 3d, and its radius is
much larger, this will result in a much deeper mini-
mum of the energy curve than shown in Fig. 3(b), and
at larger internuclear distances. Thus, we may expect
curves like Fig. 4(a) and 4(b) to represent dctual en-
ergy of the iron group elements as functions of inter-
nuclear distance. If the ferromagnetic interaction is
positive at the minimum of the curve, as in Fig. 4(a),
the substance will be ferromagnetic. If, however, the
3d orbital is of larger size, as in the earlier elements of
the transition group, like Ti and V, then the ferro-
magnetic interaction will change sign at a larger inter-
nuclear distance and will be negative at the minimum
of the curve, as in Fig. 4(b), so that the substance will
be nonmagnetic, even though the interaction of 3d
electrons is as shown in Fig. 3(b).

From Fig. 3(a) or Fig. 3(b), we may conclude that
when the internuclear distance is small enough so that
the diagonal energy of the unmagnetized state, as com-
puted by the energy-band method, lies below that of
the magnetized state, we cannot possibly have ferro-

16 J, C. Slater, Phys. Rev. 49, 537, 931 (1936).
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F16. 4(a). Combined effect of 3d and 4s electrons,
ferromagnetic case.
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F16. 4(b). Same as Fig. 4(a), nonmagnetic case.

magnetism. Furthermore, in this limit the true wave
function of the unmagnetized state cannot lie far from
the single determinantal wave function of the energy-
band method. Thus, in such elements as Ti and V, we
expect each individual atom to have zero magnetic
moment, completely in contrast to the behavior of
individual ions, but in agreement with the experimental
results of Shull'? and his collaborators. For cases where
the 3d shell is smaller, however, we can say from the
energy-band theory only that we can have either the
case of Fig. 3(a) or Fig. 3(b). That is, the energy-band
theory can show unequivocally that for substances with
wide bands, ferromagnetism is impossible. For narrow
energy bands, it can only show that it is possible; but
it cannot distinguish, without more accurate calcula-
tions than have yet been made, whether ferromagnetism
actually exists in these cases, or nonferromagnetism,
or antiferromagnetism.

Let us finally take up the relation between our
energy-band treatment of the problem and correlation
energy. This term has been used to describe the de-
crease of energy when we go from an incorrect model of
a metal, formed from a single determinant of Bloch-like
functions, in which electrons of opposite spin can be
found too close together, to a correct model in which
the electrons of opposite spin are kept apart. Wigner
and Seitz,'® as is well known, have made estimates of

( 17 C, G. Shull and M. K. Wilkinson, Phys. Rev. 86, 509
1952).

18 £, Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); 46, 509
(1934) ; E. Wigner, Phys. Rev. 46, 1002 (1934); Trans. Faraday
Soc. 34, 678 (1938).
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the correlation energy for the alkali metals and have
included a correction for this effect, which amounts to
a large fraction of the cohesive energy. Léwdin,® on the
other hand, has got very good numerical results for the
cohesive energy of sodium, without using such a cor-
rection for correlation energy. Wohlfarth,'® in private
correspondence with the writer, takes essentially the
position that at infinite internuclear distance the corre-
lation energy represents just the difference between the
full curve and the dotted curve of Fig. 1. That is, at
infinite internuclear distance, it is the amount 4 indi-
cated in Fig. 1. The writer agrees with this point of
view; though the term “correlation energy’ has meant
so many things to different people that he feels it
perhaps better not to use the word at all. If the correla-
tion energy does in fact represent the difference between
the two curves of Fig. 1, and if these curves really have
something like the form shown there, then we should
expect it to be a very small correction at the inter-
nuclear distance corresponding to the minimum of the
curve of Fig. 1. This would be in accordance with the
result of Lowdin, who got a very good result for a
single determinantal wave function for sodium. It
would not agree with the calculation of correlation
energy of Wigner and Seitz, as given in reference 18.
The writer is inclined to believe that this calculation of
Wigner and Seitz represents a poor approximation,
inapplicable at the minimum of the energy curve, and
feels that the true correlation energy at the energy
minimum is much smaller. The numerical accuracy of
Wigner and Seitz’s calculation of cohesive energy of
sodium, using their correlation correction, is probably
fortuitous.

Now let us consider the relation between correlation
energy and the ferromagnetic interaction. The point of
view of Wohlfarth'® is that at finite internuclear distance
there are two different effects: a correlation energy,
and an exchange interaction which is responsible merely
for the separation of the final magnetized and unmag-
netized states, like the hypothetical Heisenberg ex-
change interaction. The writer disagrees with this point
of view. From the general argument of the present
paper, he feels that there can be no doubt as to the
actual state of affairs. We must make our correlation
correction, like that described with reference to Fig. 1,
to reduce the energy of the unmagnetized state from
the diagonal value coming from a single determinantal
wave function, to the correct final value; that is, from
the curve marked “unmagnetized state-diagonal en-
ergy” to that marked ‘“unmagnetized state-correct
value” in Fig. 3(a) or 3(b). We must make a similar
but independent calculation for the magnetized state.
In the particular case shown in Fig. 3, this correction
is zero, but in general, where the completely magnetized
state still has electrons of both spins, there will still
be some correlation correction, though not as much as

19 E. P. Wohlfarth, private correspondence.
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for the unmagnetized states. Having carried out these
calculations for both magnetized and unmagnetized
states, we must then compare these final corrected
energies; their difference will be the ferromagnetic
interaction energy whose sign determines whether the
metal is ferromagnetic or not. With this point of view,
the correlation energy is inextricably tied up with the
ferromagnetic interaction, and no independent calcula-
tion of the ferromagnetic interaction can be made; but
it can be found only through the correlation energy
calculation just described.

The detailed method of carrying out these calcula-
lations at large internuclear distance will not be de-
scribed here. We have already mentioned one case' in
which the writer has carried through such a calculation.
A description of that calculation will illustrate the type
of problems which will be encountered. The case taken
up in reference 11 is that in which the magnetized state
has a band entirely filled with electrons of 4 spin,
with no electrons of — spin, so that it is expressed by a
single determinant, as in the case illustrated in Fig.
3(a) and 3(b). The energy of this state was compared
with that of a state which had just one electron of re-
versed spin. Effectively this consists of an electron in
the otherwise empty band corresponding to — spin,
and a hole in the otherwise filled band of 4+ spin. The
lowest diagonal energy of a single determinantal func-
tion representing this state is that in which the elec-
tron is at the bottom of the band of — spin and the
hole is at the top of that of -} spin; this corresponds to
the energy marked “unmagnetized state-diagonal en-
ergy” in Fig. 3(a) or 3(b). The calculation corresponding
to setting up the exact energy of the unmagnetized state
involves setting up the lowest bound stationary state,
in which the electron and hole are executing an oribt
about their center of mass, similar to an exciton. This
type of level has a lower energy, on account of the
binding energy of the electron and hole. It was set up
in detail in reference 11, and it was found that it led to
an energy level of the correct sort. At infinite inter-
nuclear distance, it corresponded to the electron and
hole being on the same atom; that is, to a state in which
each atom of the crystal is neutral. As the internuclear
distance decreased, the dimension of the ‘“exciton”
formed from the.electron and hole increased, and its
binding energy became less and less, until for a wide
energy band the binding energy, which represents teh
correlation energy, was negligible.

Under other circumstances the correlation energy
comes, not from the attractive interaction-of an elec-
tron and a hole, but from the repulsive interaction of

“two charges of like sign. Thus, a band almost filled with
electrons of both spins (like the d band in Ni) will have
a few vacancies, and they will tend to repel each other
and stay out of each other’s way. The calculation of
either of these types of cases will remind us of the
calculation of the behavior of electrons or holes near
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impurity atoms in a lattice of a semiconductor,? and
like that problem, it is most easily handled in terms of
Wannier functions. We shall not try to go further with
these matters here; but it is the belief of the writer
that it is only through such methods that we shall get
a correct understanding not only of correlation energy,
but also of the ferromagnetic interaction which in a
satisfactory theory of magnetism will replace the in-
adequate concept of the Heisenberg exchange integral.

A beginning in the direction of such calculations has
been made by Dr. A. Meckler, who has calculated the
structure of the O, molecule. He has set up atomic 1s,
2s, and 2p orbitals, for each atom, and has made or-
thogonal linear combinations of them. Then he has set

“up the (121)/(81)(4!)=495 determinants formed by

assuming the 1s and 2s orbitals to be all occupied, but
by assigning the remaining eight electrons, with both
possible spins, in all possible ways to the remaining
12 orbitals (including spin). Of these 495 determinants,
9 have the symmetry characteristic of the 3} ground
state, and 12 of the next higher 13 state. He has com-
puted the matrix components of the Hamiltonian func-
tion between these determinants and has solved the
resulting secular equations numerically on the Whirl-
wind digital computer at the Massachusetts Institute
of Technology. This yields energy and wave functions
for the ground state and the next excited state, as
functions of the internuclear distance. Since all possible
determinants are considered, the resulting energies and
wave functions go into the best approximations to the
3P ground state of the oxygen atoms at infinite separa-
tion. Meckler finds, as was to be expected, that the
triplet state lies below the singlet. His calculated dis-
sociation energy and internuclear distance for the
ground state agree with experiment to about a percent,
and the vibration frequency to a few percent. The
values for the next excited state are not as accurate,
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F16. 5. Energy difference between magnetic and nonmagnetic
state, for oxygen molecule, from calculation of Meckler.

20 J, C. Slater, Phys. Rev. 76, 1592 (1949).

2t A, Meckler, Quarterly Progress Report on the Solid-State
and Molecular Theory Group, M.I.T., July 15, 1952, and October
15, 1952.
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FiG. 6. Diagonal energy of molecular orbital state, compared
with correct energy of ground state, for oxygen molecule, from
calculation of Meckler.

but still are good approximations. The separation be-
tween singlet and triplet energies is shown in Fig. 5.
It has the form which we have learned to expect of a
ferromagnetic interaction energy, being zero at infinite
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distance, rising to a maximum, and then decreasing
again at small distances, presumably changing sign at
somewhat smaller distances than those for which the
calculations are made. This, as far as the writer knows,
is the first case where such a magnetic interaction has
been directly calculated from Schrédinger’s equation,
using a correct molecular model.

It is interesting to compare the correct energy level
of the ground state, as calculated by Meckler, and the
corresponding diagonal energy of the molecular orbital
state. This is shown in Fig. 6, and it is the specific
application to this case of the general argument illus-
trated in Fig. 1. We see that the molecular orbital
state, though it gives binding at internuclear distances
of the right order of magnitude, is very inaccurate,
and its energy rises much too high at large distances,
asin Fig. 1. The diagonal energy of the triplet molecular
orbital state, shown in Fig. 6, lies below that of the
singlet molecular orbital state. This is in accordance
with the prediction of Lennard-Jones,? one of \the first
deductions from the molecular orbital point of view.
From Fig. 6, however, we see that the molecular orbital
approximation is really quite bad here, and that it is
very necessary to take linear combinations of a number
of determinantal functions, as Mecker has done, and
as we are advocating for the magnetic problem, in order
to get good agreement with experiment.

2 J, E. Lennard-Jones, Trans. Faraday Soc. 25, 668 (1929);
see particularly p. 684.



