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1. INTRODUCTION

~~

~~

~

S early as 1893,' it was known that the Hall effect
in the ferromagnetic elements Fe, Co, and Ni is

etermined mainly by the magnetization. In subsequent
experiments by one of us' it was t bl' h d h

a vo tage is proportional to the magnetization at
fields u to mp magnetic saturation and has all of the
inherent irreversibilities of magnetization curves. These
experiments were made with poly t llycrys a ine materials.
Webster' measured the Hall eff t

'
1e ec in sing e crystals of

s. e ster s measure-iron and obtained similar results. Webs
ments were made with the primary current and Hall
potential along the simple crystallographic axes [100j,
[110], and [111j.His results showed. that the Hall
effect due to magnetization is practically isotropic.

fields e
Most of the early measureme t

e s below saturation. The Hall constant was defined
as it is in nonferromagnetic materials. That is

E.=E„/IIoj„(1)
where A=Hall constant, E„=Hall electric field, j
=primary current density, and IIo= applied

HO=8, the magnetic induction of th 1 .
In Fi . 1 t

e samp e.
n ig. 1 the measurements made by Smith' for Ni

are reproduced. We have plotted the Hall electric Geld

per unit current density e„=E„jj„against the a l' d
magnetic induction of the sample. The Hall

constant according to Eq. (1) would be the slope of the
initial steep portion of each curve. The temperature
dependence of R as shown in F' 2) in ig. , is particularly

' A. Knndt, Wied. Ann. 49, 25'I (1893).
~ E. M. Pugh, Phys. Rev. 36, 1503 (1930);E. M. Pu h

W. Lippert, Phys. Rev. 42, 709 (1932).' W. L. Websterbster, Proc. Cambridge Phil. Soc. 23, 800 (1925'.' A. W. Smith, Phys. Rev. 30, 1 (1910).
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I'zG. 1. Hall en'ect in nickel from the data of A. W. Smith.

. Kikoin, Physik. Z. Sowjetunion 9 1 (1936
and R. W. Sears, Phys. Rev. 34, 1466 (1929).
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striking because the Hall constant does not usually
vary signiGcantly with temperature in metals. More
recent measurements for Ni b K'k ' 'y i oin conGrm the
essential features of Smith's d t Ss a a. mit ' also made
measurements for Co and Fe which show simi a
anomalous behavior.

e w ic s ow similarly

The Hall effect in ferromagneti t 1e ic me as appears to

Hall e
e a un amentally different phenomenon f thon rom te

e ect in other metals according t th
ata for fields below saturation. Wh

o e experimental
'on. en magnetic satura-

te omains have been orientedion is ac ieved or t
in the direction of the applied field the ma

a mos constant. The Hall effect continues to increase
with increasing applied Geld, but much more slowly as

formula has been suggested for the Hall effect in
ferromagnetic metals".

e„=ROE/+EiM, (2)

where e =Hall
II=m

e ectric Geld per unit current d 't,n ensity,
=magnetizing force in the s direction, and M =ma-

netization in the s direction. R d E
esignated the ordinary and extraordinary Hall con-

stants, respectively. The data of Smith for Ni have been
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FIG. 2. Hall constants for nickel determined from the slopes
of the initial steep portions of the plots of Hall electric 6eld per
unit current density verses magnetic induction.

reconsidered' on the basis of Eq. (2). Although Smith's
data above saturation are not very accurate it was
possible to determine approximate values of R& and Rp
over the entire temperature range studied by Smith.

The constant Rs= —0.61X10 "volt cm/amp gauss
at room temperature, was of the same order of magni-
tude as the Hall constants for the nearest neighbor
nonferromagnetic elements in the periodic table
(R= —093X10 " volt cm/amp gauss for Mn and
R= —0.55X10 "' volt cm/amp gauss for Cu). The
Hall t:onstant defined in the usual way for ferromagnetic
metals by Eq. (1) is about a factor of 20 larger. Of
particular significance was the fact that the values of
Rp determined from Smith's data were approximately
independent of temperature over the entire tempera-
ture range. ' Recently Jan and Gijsman' have obtained
more accurate data at low temperatures which show that
Rp decreases significantly in magnitude between room
temperature and 14'K. With the possible exception of
this fact, the order of magnitude and temperature de-
pendence of Rp is about the same as for the Hall con-
stant of nonferromagnetic metals. (Above the Debye
characteristic temperature of the lattice the Hall con-
stant is almost independent of temperature in most
metals. Low temperature behavior is rather varied.
According to Alterthum, "'when the te'mperature is
decreased from room temperature to very low tem-
peratures, the Hall constant increases to a maximum
in diamagnetic metals such as Au, Cu, Cd, and de-
creases to a minimum in paramagnetic metals such as
Al, Pt.)

The constant Rr= —74.9X10 "volt cm/amp gauss
for Ni at room temperat'ure. It increases rapidly with
temperature by as much as a factor of about 5 in the
neighborhood of the Curie point. ' The Hall eftect due to
magnetization is of a fundamentally di6'erent character
from the usual Hall effect. Although it has been ob-
served only in ferromagnetic metals, it should be
pointed out that if such an eBect were present in other
metals it would be indistinguishable from the ordinary
Hall eGect because M would be proportional to H. The

~ Pugh, Rostoker, and Schindler, Phys. Rev. 80, 688 (1950).
8 N. Rostoker and E. M. Pugh, Phys. Rev. 82, 125 (1951).
9 J. P. Jan and H. M. Gijsman, Physica 5, 277 (1952).
» H. Alterthnm, Ann. phys. 39, 933 (1912);40, 391 (1913).

existence of this eGect above the ferromagnetic Curie
point when Ni is still strongly paramagnetic suggests
the possibility that it may occur in nonferromagnetic
materials. ".

'
In most of the earlier measurements found in the

literature, investigators have studied the Hall eGect
below saturation. The main reason for this is that a
very high magnetic fMld is required to study most
ferromagnetic materials above saturation. The only
data above saturation that has been available is for Xi.
The recent acquisition of an A.D.I . magnet at Carnegie
Institute of Technology has made fields up to 40
kilogauss available. The group at C.I.T. has under-
taken the study of a variety of ferromagnetic metals
with the primary objective of measuring the ordinary
Hall constant Rp for which no data have been available.
The results to date will be reported herein, and the
interpretation of the measured values in terms of the
usual theory of the Hall eGect will be discussed. These
data help to fill an existing gap in the knowledge of
the electrical properties of ferromagnetic metals and
when completely understood may considerably enhance

80
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FIG. 3. Temperature dependence of the 6eld
parameter a, for nickel.

our presently inadequate understanding of the behavior
of the d-she11 electrons.

The origin of the Hall e6'ect due to magnetization
must be of a fairly general character since similar sects
due to magnetization are present in an entire class of
conduction phenomena. For example, the Ettinghausen,
Nernst, and Righi-Leduc sects are also proportional
to the magnetization below saturation and increase
linearly with B' after all of the domains have been
oriented. ""

Considerable thought has been given to the possi-
bility that an eBective magnetic field deRects~" the
conduction electrons. That is,

H, rr
——H+4rraM„

where H= magnetizing force, M, = saturation magneti-
zation in a domain, +=a parameter which would
usually be much greater than unity.

~' L. L. Campbell, Galvanomagnetic and Thermomagnetic
sects (Longmans Green and Company, New York, 1932).

» G. S. Nielson, Phil. Mag. 18, 575 {1934)."K.Kondo, Rep. Inst. or Sc. and Tech. , Tokyo 4, 79 (1930)
(in Japanese).
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tive mass of d-electrons, I=wave vector measured from
the highest level e . With this representation Sondhei-
mer" gives for the Hall constant,

aoi
1 1 pir, i ' 1 )a~i'

Nec I, 0 0 ) ee ( o. ) (9)

QP I s & s

Fe Co

Composition of Sample

FIG. 6. Field parameter n, estimated from the measurements
of Schindler and Foner.

tronic charge, and c=velocity of light. Equation (5)
is applicable to a case where conduction occurs in a
single band which is nearly empty. In this case the
energy levels are approximately given by

e = (li'/2m, )k' (6)

where ~=electron energy relative to the lowest energy
level of the band, k= magnitude of electron wave vector,
and m, =eRective mass of electrons in for example an
s-band.

An effective number of electrons e* can be calculated
from Eq. (5) and the experimentally determined values
for Ro. Making use of Kq. (5),

e*=—(1/RON ec) (7)

has been calculated and plotted in Fig. 5. The numbers
of s-band electrons/atom indicated by magnetization
measurements, are also shown in Fig. 5 for each material.
Excluding the case of Fe, e* does not differ from e, by
more than a factor of 2 in any case. This is about the
extent of agreement usually obtained between the
number of conduction electrons expected and the
number calculated by means of Eq. (5) and Hall
eRect measurements for nonferromagnetic metals. For
example the agreement in the case of Cu shown in
Fig. 5 is within a factor of 1.5.

In the case of nonferromagnetic metals the dis-
crepancies between the measured Hall coefBcients and
Eq. (5) can often be resolved by replacing Eq. (6) with
a more realistic assumption for the band structure.
For metals that conduct in a single band such as Cu, a
more general formula for R such as Jones and Zener"
have given indicates that the discrepancies may be
accounted for by departures of the Fermi surfaces from
spheres. For metals that can be expected to conduct
in more than one band a representation has been
employed where one band is nearly empty and the other
nearly filled. In the nearly empty band (s-band) the
energy levels are assumed to be given by Kq. (6) and
in the nearly filled band (d-band) by

e = e„—(Ii'/2me) P, (8)

where e =maximum energy of the band, —m&=eRec-

"H. Jones and C. Zener, Proc. Roy. Soc. (London) A145, 269
(1934).

where n, =number of s-band electrons, nd= number of
d-band holes, o,=s-band conductivity, 0 &

——d-band
conductivity, a.= 0.,+0.&= total conductivity. Equation
(9) has been moderately successful in explaining depar-
tures from the Sommerfeld formula" and the occurrence
of positive Hall coeKcients in many metals where con-
duction can be expected from more than one band.

It appears to be both reasonable and necessary to
assume for the ferromagnetic materials that the
d-electrons are itinerant and contribute to conduction.
We can for example. account for the measured Hall
coefficient of Ni by means of Eq. (9) with I,=e&= 0.6/
atom and oe/0=0. 23.' Similarly the measured Hall
coeKcient for Fe can be accounted for with e,=0.6
atom, eq=2.2/atom, and od/a=0. 87. It should be
noted that Co, according to the old definition of Eq. (1)
for the Hall constant, had a positive Hall constant
indicating predominating hole conduction, whereas ac-
cording to the present definition, Eo is negative and
agrees fairly well in magnitude with the Sommerfeld
formula and e,=0.7/atom. (The reason for this can
be seen in Fig. 4. The slope of the plot of Hall voltage
versus magnetic induction is positive below saturation
and negative above. )

The main features of the Eo constants for ferro-
magnetics can be understood in terms of the usual
theory of Hall eRect for a uniform applied field. The
degree to which measured values of the Hall constants
agree with predictions by theory is about the same as
for nonferromagnetic metals. Close agreement with
formulas based on spherical Fermi surfaces such as
Eqs. (5) and (9) usually cannot be expected since most
attempts at calculating wave functions and energy
levels for ferromagnetics indicate that the Fermi
surfaces are not spherical to a good approximation ex-
cept in limiting cases."

4. SPECULATIONS ON THE ORIGIN OF THE
HALL EFFECT DUE TO MAGNETIZATION

There are usually transverse voltages present which
are not due to the Hall effect. Transverse temperature
gradients produced, for example, by the Ettingshausen
eRect, result in a transverse voltage due to the thermo-
couple action of the sample and potential leads.
Magnetoresistance eRects which are particularly large
in ferromagnetic materials may also result in a trans-
verse voltage. In the data reported herein, particular
"E.H. Sondheimer, Proc. Roy. Soc. (London) A193, 484 (1948),~ For example, see E. Justi and M. Kohler, Abh. Braunschweig

Wiss. Ges. 3, 44 (1951).
~ For example, see H. M. Krutter, Phys. Rev. 48, 664 (1935);

G. C. Fletcher, Proc. Phys. Soc. (London) A65, 192 (1952).
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care has been exercised to correct for thew voltages so
that the corrected measurements may be properly re-
garded as Hall effect.

In order to describe the Hall effect in ferromagnetic
materials within the framework of existing theory, an
effective Lorentz force has been introduced. We assume
effective magnetic fields for the Lorentz force,

H, = II+47m, M

for electrons that are mainly in s-states and

for electrons that are mainly in d-states. This leads to
the Hall effect expression of Eq. (4) where Rtt is given
by Eq. (9) and

1 fo,$ 2 o., (oep 2 ne

RpNec ~ o) e, E o) Ne

In order to explain the observed values of 0. for Ni,
it is necessary to give a physical basis for values of 0,,
and o.& '.hat are much greater than unity and to account
for the rapid increase of 0. with temperature from about
2 to almost 100 mainly through a temperature de-
pendence of n„u~. A correct explanation must also sug-
gest the changes in 0. with changes in composition
shown in Fig. 6.

a. Lorentz Force due to Internal Magnetic Fields

The magnetization arises from the electron spin which
produces dipoles that are very small even on an atomic
scale. The magnetic field produced by these dipoles
varies over a wide range of values in extremely short
distances. The resultant effect on an electron which
traverses many interatomic distances can be described
in terms of an effective magnetic field such that

(f)»= —(ejc)(v Xh)A, = —(e/c) ((v)Av XH,n), (13)

where f=Lorentz force; the ( )A, denotes an average for
the electron being deflected, h=actual magnetic field
at the location of the electron under consideration,
v= electron velocity, H,«= effective magnetic field.
For a beam of Dirac electrons with extremely high
velocity, so that v may be considered a constant of the
motion, Weizsacker'4 has shown that H, ff—8+4+M.
According to Lorentz the spatial average of h is
(h)A„——8+4m M so that in this case the beam electrons
simply report the average field. Wannier's25 calculations
for high energy cosmic ray particles consider the effect
of the beam particle on the local distribution of mag-
netization. He finds small deviations from the limiting
case treated by Weizsacker which are produced by
Coulomb interaction between the beam particle and
the d-electrons.

These calculations do not apply to the relatively slow

~ C. F. v. Weizsacker, Ann. Physik 17, 869 (1933).
~ G. H. Wannier, Phys. Rev. 72, 304 (1947).

/

magnetizaton M

I

it I l

Ii
I

I 1 Il I
I

Ii i

li I
r

Iiir

/ P
magnetic field due to a
uniform current density j„

primary
current
density j„

X

FIG. 7. A typical Hall eEect sample. The directions of mag-
netization, primary current, and Hall voltage are shown. The
magnetic field due to the primary current density is indicated
roughly by field lines.

~6 D. L. Webster, Am. J. Phys. 14, 360 (1946).
2'K. Kondo, Saitama University, Tokiwacho, Urawa, Japan.

We wish to thank Professor Kondo for showing us his calculations
prior to publication.

conduction electron for which the crystalline field can-
not be neglected and for which v could not be con-
sidered a constant of the motion. Nevertheless, it has
been considered by Webster' that on the basis of
Wannier's calculations the effective field for conduction
electrons would be less than (h)A, because the Coulomb
repulsion between conduction and d-electrons would
prevent conduction electrons from reaching the high
field regions near the d-electrons.

Kondo'~ has recently made a calculation appropriate
to the conduction electrons of Ni and finds that
H ff=B+4m a3f where n, =0.34 for s-electrons and
n~=2.5 for d-electrons. He has also found a linear in-
crease with temperature of O.„cx~ due to the inhuence
of the lattice vibrations on the microscopic distribution
of magnetization, but it is much too small to explain
the Hall' effect;

There does not seem to be any possibility of account-
ing for values of 0. very different from unity on the basis
of the magnetic field due to the polarized d-electrons.

b. Effective Field due to Spin-Orbit Interaction

Rudnitsky" first suggested the possibility of a Hall
effect due to the action of the inhomogeneous field
from the primary current on the spins of the d-electrons.
The magnetic field due to the current is illustrated in
Fig. 7. For simplicity we consider a model where there
are S electrons per unit volume of magnetic moment

y and charge —e. These electrons are assumed to
produce the primary current and to have their spins
aligned in the s direction so as to produce a magnetiza-
tion M=EIJ, . Due to the inhomogeneous field from the
primary current, the force on an electron in the y

c ~ lme
Probes for measuring

Hatt e. m. f.



E. M. PUGH AND N. ROSTOKER

direction would be

f„= (r?H, /8 ), (14)

8H„/8»= (47r—/c) j„
fs= (4~—p/—c)j ' (16)

In order to satisfy the condition that j„=0,there must
be a transverse electric Geld such that f„eE„=—O.

Making use of Eq. (16) and writing 3f=Ep, we obtain
the foDowing rough estimate of the Hall effect,

E„=—(4m M/Sec) j,.
Equation (17) has the required symmetry and form of
a Hall efFect expression. Aside from the questionable
formulation, the main objection is that the estimated
efFect is too small to explain the Hall efFect except
perhaps at very low temperatures. If we take into
consideration the fact that the d-electrons carry only a
small fraction of the primary current in most ferro-
magnetic materials, the predicted Hall efFect would
be still smaller than the right-hand side of Eq. (1?) by
a factor of (oe/o). Furthermore, there is no suggestion
of the observed temperature dependence in this theory.

Rudnitsky's theory can be interpreted as a classical
calculation of the interaction of the spin of an electron
with the orbits of other electrons. Presumably the
coupling of the spin of an electron with its own orbit
should be a much greater efFect. Several investigators
have attempted to calculate the Hall efFect due to
this "'7

The spin-orbit interaction energy of an electron can
be written in the form'8

U„=—(1/2mc) [(y XE) y], (18)

where @=magnetic moment of the electron under con-
sideration, y=momentum of the electron, E=electric
field due to all the other charges. In a one-electron
Hartree type approximation U„may be regarded as a
perturbation term. It is similar in form to the pertur-
bation term (e/mc)(A y) that accounts for the Hall
effect in the usual theory" for a constant Geld 8=curl
A. For a rough calculation we consider the efFective
6eld due to spin-orbit interaction to be

H,.=curl —(y XE)/2e
= (1/2e)[(y ~)E—y(~ E)l (19)

28 L. I. SchiG, Quantum 3Achanks (McGraw-HiO Book Corn-
pany, Inc., New York, 1949), Chapter XII.

s' H. Jones and C. Zener, Proc. Roy. Soc. (London) A144, 1G1
(1934).

where H„=magnetic field due to the primary current
density j,. According to Maxwell's theory,

BH„/8» = (BH,/8y) (4rr/—c)j,. (15)

B„, II, may be calculated from the Biot-Savart law
with the assumption that j, is constant. For a sample
of the dimensions ordinarily employed in Hall efFect
studies

An order of magnitude estimate is obtained by regarding
the magnetic moment and velocity of the electron under
consideration as constants of the motion and H„as an
operator for which the average value is

H fr=a ps H vpad& (20)

qI, is the unperturbed Bloch wave function for the
electron under consideration in a crystal lattice. Ke
shall consider a unit volume over which q q is normalized.

For a perfect lattice
I ps I' and E should have crystal

periodicity making possible the reduction of Eq. (20)
to an integral over a single atomic polyhedron. Any
polyhedron may be approximated by an inscribed
sphere of radius r, and volume re=1/E where E is the
number of atoms per unit volume. In the atomic poly-
hedron we assume that q~ has the symmetry of an
s- or d-function and E—E(r) r/r is approximately
spherically symmetric. With these assumptions Eq. (20)
can be reduced to

H, ii= —(4sXp/3e) ~l rpsI'pdrs,

I v. l'pdrs= —Zel&~(ri) I',

where Es(r) is the radial part of ys and ri is some value
of r between 0 and ro, the radius of the inscribed sphere
of the polyhedron. Since Xp is of the order of magnitude
of the magnetization M, the effective field is of the form

with
H, ii 4'

nM~,
——

== sZI~.(ri) I'

For the ferromagnetic elements Z is about 26, and it is

where p is the charge density deine by V' E=4mp,
which is due to the nuclei and all other electrons except
the one under consideration. Equation (21) is essentially
the same as the result obtained by Konkov and
Samolovich. '~

In the limiting case where the electron under con-
sideration is free,

I
»~sl'=1, EJ pdrs=e, so that the

result due only to the missing charge under consideration
is Herr= (4a/3) p, whi—ch ls vaillshlilgly slllall.

A very much larger result can be obtained when the
electron under consideration is not free. Ke shall con-
sider the case of a d-electron and assume that near the
center of the polyhedron the wave function approaches
the atomic wave function which vanishes at the center.
This is a characteristic property of the d-state. Accord-
ingly, the charge density p to be considered in evalu-
ating Eq. (21) is only that due to the Z electrons outside
the nucleus. For any polyhedron J' drp——s—Ze, omitting
the nuclear charge and neglecting the charge of the
electron under consideration. Therefore
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reasonable to suppose that ~RA(r~) ~' would be greater
than the free electron value of unity so that a value of
Ot might be obtained that is much greater than unity.
According to this rough calculation, the direction of
effective 6eld for an electron depends on the spin
orientation. Therefore a net eGect would only be ex-
pected if there is a net polarization of the conduction
electrons.

A Hartree type calculation such as we have outlined
would give too large a result for the effective field be-
cause it neglects correlations of the electrons. The
probability of finding any other electron close to the
electron under consideration should be very small. It is
especially improbable to find an electron of the same
spin close to the electron under consideration. Kondo"
attempted to correct for correlation of electrons by
introducing "Fermi holes" around electrons where it
would be improbable to find any other electron. From
a numerical calculation he estimated ad—14 and
n~28 for d-electrons in Fe and Ni, respectively. His
calculations show that these results are extremely
sensitive to the choice of wave functions and therefore
should not be taken too seriously except perhaps as
order of magnitude estimates.

Calculations to date have only been attempted for a
perfect lattice with all spins oriented consistent with the
Pauli principle and the observed magnetization. The
temperature dependence observed for n has not yet
been explained. It does not seem likely that the in-

fluence of lattice vibrations on charge distribution can
account for this. A possible explanation of the tem-
perature dependence may be in the spin dependence of
the correlations of electrons. The correlation of electrons
when there is a net polarization of electron spins at low'

temperatures should be substantially diferent from the
correlation near the Curie point when the net polariza-
tion becomes very small. It will be necessary to im-

prove considerably the semiclassical calculations made
to date in order to investigate such eGects.

5. CONCLUSIONS

The ordinary process for Hall effect accounts for
only a small part of the observed Hall voltage in ferro-
magnetic materials. A satisfactory physical basis has
not yet been established for the large Hall eGect pro-
duced by the magnetization. Of the proposals ad-
vanced to account for this, only the spin-orbit coupling
of conduction electrons appears to oGer any possibility.

Since the situation is simpler at low temperatures
from a theoretical point of view, we are of the opinion
that at present, the most profitable approach to the
problem is to study Hall eGect in ferromagnetic
materials at low temperatures where experimental
data is nonexistent except in the case of Ni.
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