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Experimental results are reviewed for Fe, Co, Ni, the Co—Ni and Ni—Cu alloy series. Most of the
measurements were made at room temperature. In the case of Ni, data are available from about 10°K

to 800°K.

In every case studied, the Hall emf consists of a sum of two terms. The first term is proportional to the
magnetizing field and has been called the ordinary Hall effect. Its order of magnitude and sensitivity to varia-
tions in temperature and in composition are comparable with the Hall effect in nonferromagnetic metals.
The second term is proportional to the magnetization and has been called the extraordinary Hall effect.

At room temperature, the extraordinary effect is usually much larger than the ordinary effect. Large
changes in the extraordinary effect may be produced by variations in temperature or composition.

In the theory of the ordinary effect, a representation is employed in which conduction may take place
in both the s- and d-bands. This theory appears to be moderately successful in interpreting the experi-

mental data.

Various proposals that have been advanced to account for the extraordinary effect are considered briefly.
We consider that a satisfactory physical basis for this phenomenon has not yet been established.

1. INTRODUCTION

S early as 1893, it was known that the Hall effect
in the ferromagnetic elements Fe, Co, and Ni is
determined mainly by the magnetization. In subsequent
experiments by one of us,? it was established that the
Hall voltage is proportional to the magnetization at
fields up to magnetic saturation and has all of the
inherent irreversibilities of magnetization curves. These
experiments were made with polycrystalline materials.
Webster® measured the Hall effect in single crystals of
iron and obtained similar results. Webster’s measure-
ments were made with the primary current and Hall
potential along the simple crystallographic axes [100],
[110], and [111]. His results showed that the Hall
effect due to magnetization is practically isotropic.
Most of the early measurements were made for
fields below saturation. The Hall constant was defined
as it is in nonferromagnetic materials. That is

R=E,/Hoj., ¢Y)

where R=Hall constant, E,=Hall electric field, j,
=primary current density, and Ho=applied magnetic
field in the z direction. Usually a sample was measured
that was sufficiently thin in the z direction relative to
the dimensions in the x and y directions so that the
demagnetizing factor would be very nearly 47 and
Hy=B, the magnetic induction of the sample.

In Fig. 1 the measurements made by Smith* for Ni
are reproduced. We have plotted the Hall electric field
per unit current density e,=E,/ j,, against the applied
field or magnetic induction of the sample. The Hall
constant according to Eq. (1) would be the slope of the
initial steep portion of each curve. The temperature
dependence of R, as shown in Fig. 2, is particularly

1 A. Kundt, Wied. Ann. 49, 257 (1893).

2E. M. Pugh Phys. Rev. 36 1503 (1930), E. M. Pugh and T.
W. Lippert, Phys. Rev. 42, 709 (1932).

3W. L. Webster, Proc. Cambrldge Phil. Soc. 23, 800 (1925).
4 A. W. Smith, Phys. Rev. 30, 1 (1910).

striking because the Hall constant does not usually
vary significantly with temperature in metals. More
recent measurements for Ni by Kikoin® confirm the
essential features of Smith’s data. Smith* also made
measurements for Co and Fe which show similarly
anomalous behavior.

The Hall effect in ferromagnetic metals appears to
be a fundamentally different phenomenon from the
Hall effect in other metals according to the experimental
data for fields below saturation. When magnetic satura-
tion is achieved, or the domains have been oriented
in the direction of the applied field, the magnetization
is almost constant. The Hall effect continues to increase
with increasing applied field, but much more slowly as
can be seen in Fig. 1. Accordingly the following empirical
formula has been suggested for the Hall effect in
ferromagnetic metals?::

= R()H +R1M, (2)

where e,=Hall electric field per unit current density,
H =magnetizing force in the z direction, and M =mag-
netization in the gz direction. R, and R; have been
designated the ordinary and extraordinary Hall con-
stants, respectively. The data of Smith for Ni have been
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F1G. 1. Hall effect in nickel from the data of A. W. Smith.

81, K. Kikoin, Physik. Z. Sowjetunion 9, 1 (1936).
6 A. W. Smith and R. W. Sears, Phys. Rev. 34, 1466 (1929).
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FiG. 2. Hall constants for nickel determined from the slopes
of the initial steep portions of the plots of Hall electric field per
unit current density versus magnetic induction.

reconsidered” on the basis of Eq. (2). Although Smith’s
data above saturation are not very accurate it was
possible to determine approximate values of Ry and R,
over the entire temperature range studied by Smith.

The constant Ry=—0.61 X102 volt cm/amp gauss
at room temperature, was of the same order of magni-
tude as the Hall constants for the nearest neighbor
nonferromagnetic elements in the periodic table
(R=-0.93X10"2 volt cm/amp gauss for Mn and
R=—0.55X10"" volt cm/amp gauss for Cu). The
Hall constant defined in the usual way for ferromagnetic
metals by Eq. (1) is about a factor of 20 larger. Of
particular significance was the fact that the values of
Ry determined from Smith’s data were approximately
independent of temperature over the entire tempera-
ture range.® Recently Jan and Gijsman® have obtained
more accurate data at low temperatures which show that
R, decreases significantly in magnitude between room
temperature and 14°K. With the possible exception of
this fact, the order of magnitude and temperature de-
pendence of Ry is about the same as for the Hall con-
stant of nonferromagnetic metals. (Above the Debye
characteristic temperature of the lattice the Hall con-
stant is almost independent of temperature in most
metals. Low temperature behavior is rather varied.
According to Alterthum,'® when the temperature is
decreased from room temperature to very low tem-
peratures, the Hall constant increases to a maximum
in diamagnetic metals such as Au, Cu, Cd, and de-
creases to a minimum in paramagnetic metals such as
Al, Pt.)

The constant R;=—74.9X10™ volt cm/amp gauss
for Ni at room temperature. It increases rapidly with
temperature by as much as a factor of about 5 in the
neighborhood of the Curie point.” The Hall effect due to
magnetization is of a fundamentally different character
from the usual Hall effect. Although it has been ob-
served only in ferromagnetic metals, it should be
pointed out that if such an effect were present in other
metals it would be indistinguishable from the ordinary
Hall effect because M would be proportional to H. The

7 Pugh, Rostoker, and Schindler, Phys. Rev. 80, 688 (1950).
& N. Rostoker and E. M. Pugh, Phys. Rev. 82, 125 (1951)
9 J. P. Jan and H. M. Gijsman, Physica 5, 277 (1952).

10 H, Alterthum, Ann. phys. 39, 933 (1912) 40, 391 (1913).
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existence of this effect above the ferromagnetic Curie
point when Ni is still strongly paramagnetic suggests
the possibility that it may occur in nonferromagnetic
materials, 258

In most of the earlier measurements found in the
literature, investigators have studied the Hall effect
below saturation. The main reason for this is that a
very high magnetic field is required to study most
ferromagnetic materials above saturation. The only
data above saturation that has been available is for Ni.
The recent acquisition of an A.D.L. magnet at Carnegie
Institute of Technology has made fields up to 40
kilogauss available. The group at C.I.T. has under-
taken the study of a variety of ferromagnetic metals
with the primary objective of measuring the ordinary
Hall constant R, for which no data have been available.
The results to date will be reported herein, and the
interpretation of the measured values in terms of the
usual theory of the Hall effect will be discussed. These
data help to fill an existing gap in the knowledge of
the electrical properties of ferromagnetic metals and
when completely understood may considerably enhance
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F16. 3. Temperature dependence of the field
parameter «, for nickel.

our presently inadequate understanding of the behavior
of the d-shell electrons.

The origin of the Hall effect due to magnetization
must be of a fairly general character since similar effects
due to magnetization are present in an entire class of
conduction phenomena. For example, the Ettinghausen,
Nernst, and Righi-Leduc effects are also proportional
to the magnetization below saturation and increase
linearly with H after all of the domains have been
oriented.!!:12

Considerable thought has been given to the possi-
bility that an effective magnetic field deflects™? the
conduction electrons. That is,

H.:=H+47waM,, 3)

where H=magnetizing force, M,=saturation magneti-
zation in a domain, a=a parameter which would
usually be much greater than unity.

uy, L. Campbell, Galvanomagnetic and Thermomagnetic
Effects (Longmans Green and Company, New York, 1932).

12°G, S. Nielson, Phil. Mag. 18, 575 (1934).

13K. Kondo, Rep. Inst. of Sc. and Tech., Tokyo 4, 79 (1950)
(in Japanese).
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Below saturation when the domains are only partially
aligned, the effective field given by Eq. (3) would
produce a Hall electric field whose magnitude and
direction would be different for each domain. However,
it has been proved’ that the resultant observable Hall
emf would depend on the macroscopic magnetization
M or the average domain orientation and the Hall
constants for the sample would be the same as the Hall
constants for the domains. Therefore without loss of
generality we can forget about the domains and replace
the 4raM, term of Eq. (3) by the uniform field 4waM.
Then Egs. (2) and (3) imply the following expression
for Hall effect:

ey=RoHs1, 4)

where Hops=H+4maM is the effective field in the
z direction, and a=R./47R,.

In the case of Ni it has been possible to estimate the
values of o over a wide range of temperatures from
Smith’s data. In Fig. 3, a has been plotted against
temperature. It is not possible to estimate a satis-
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F16. 4. Comparison of Hall effects for a number of materials
investigated by S. Foner. (The Hall voltages refer to samples
which are 1 mm thick in the direction of the field and carry a
current of 25 amperes.)

factorily for low temperatures from these data. This
gap has recently been filled by the measurements of
_Jan and Gijsman® which are also shown in Fig. 3. It
appears quite definite that « approaches 2 at very low
temperatures.

This is in good agreement with the recent work on
the magnetoresistance of Ni carried out by Smit.
According to Smit the magnetoresistance produced by
the influence of the Lorentz magnetic force on the
electron orbits is obscured by the much larger magneto-
resistance due to the influence of changes in intrinsic
magnetization on the scattering probability of elec-
trons, except at low temperatures. He has studied the
“orbital” magnetoresistance at liquid nitrogen tem-
perature and finds that an effective field with a=22 is
consistent with his data.

Several attempts have been made to give a physical
basis for the effective field.?+13:15:16 These attempts have

1 J, Smit, Physica 17, 612 (1951).
15V, Rudnitsky, J. Exp. Theoret. Phys. USSR 9, 262 (1939).
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Fi1c. 5. Ordinary Hall constant versus composition from the
measurements of Hall emf above saturation by Schindler and
Foner. (n* is the number of conduction electrons according to ele-
mentary theory for the Hall effect. #, is the number of s-band
electrons according to the simple band picture.)

all started from the one-electron approximation in a
perfect lattice corresponding to 0°K and might be
considered as possible explanations for the low
temperature behavior of the Hall effect due to magneti-
zation. However, no success has been achieved in ex-
plaining the increase of « from about 2 to almost 100
in Ni when the temperature is increased up to the Curie
point. These attempts also fail to clarify the experi-
mental data for Fe, Co, the Co—Ni and Ni— Cu alloy
series presented herein.

2. RECENT MEASUREMENTS OF HALL EFFECT AT
ROOM TEMPERATURE

Hall effects in the Cu—Ni and Co—Ni systems have
recently been measured by Schindler'” and Foner.!® In
Fig. 4 the Hall voltage is plotted against the applied
magnetic field for a number of materials investigated
by Foner. From such curves, the values of Ry and «
in Eq. (4) were determined. In Fig. 5 the values of R,
are shown for all of the elements and alloys measured
to date. In Fig. 6 the corresponding values of « are
shown.

3. INTERPRETATION OF THE ORDINARY HALL
EFFECT IN FERROMAGNETIC MATERIALS

According to the Sommerfeld theory the Hall con-
stant R is related to the number of conduction electrons
by the formula'®

R=—1/(nNec), 5)

where #n=number of conduction electrons/atom, N
=number of atoms/unit volume, ¢e=magnitude of elec-

16 A. G. Samolovich and B. L. Konkov, J. Exp. Theoret. Phys.
USSR 20, 783 (1950).

17 A. 1. Schindler and E. M. Pugh, Phys. Rev. 83, 208 (1951).

18 S, Foner and E. M. Pugh, Phys. Rev. 87, 210 (1952).
References 17 and 18 refer to abstracts of papers presented to the
American Physical Society. The experimental results have not
yet been published at the time of writing this paper and are repro-
duced here with the kind permission of Dr. A. I. Schindler and
Dr. Simon Foner.
( 19 A, Sommerfeld and N. H. Frank, Revs. Modern Phys. 3, 1
1931).
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F16. 6. Field parameter o, estimated from the measurements
of Schindler and Foner.

tronic charge, and c¢=velocity of light. Equation (5)
is applicable to a case where conduction occurs in a
single band which is nearly empty. In this case the
energy levels are approximately given by

e=(B*/2ms)k?, (6)

where e=electron energy relative to the lowest energy
level of the band, £=magnitude of electron wave vector,
and m,= effective mass of electrons in for example an
s-band.

An effective number of electrons #* can be calculated
from Eq. (5) and the experimentally determined values
for Ry. Making use of Eq. (5),

n*=—(1/RoNec) @)

has been calculated and plotted in Fig. 5. The numbers
of s-band electrons/atom indicated by magnetization
measurements, are also shown in Fig. 5 for each material.
Excluding the case of Fe, #* does not differ from #, by
more than a factor of 2 in any case. This is about the
extent of agreement usually obtained between the
number of conduction electrons expected and the
number calculated by means of Eq. (5) and Hall
effect measurements for nonferromagnetic metals. For
example the agreement in the case of Cu shown in
Fig. 5 is within a factor of 1.5.

In the case of nonferromagnetic metals the dis-
crepancies between the measured Hall coefficients and
Eq. (5) can often be resolved by replacing Eq. (6) with
a more realistic assumption for the band structure.
For metals that conduct in a single band such as Cu, a
more general formula for R such as Jones and Zener?
have given indicates that the discrepancies may be
accounted for by departures of the Fermi surfaces from
spheres. For metals that can be expected to conduct
in more than one band a representation has been
employed where one band is nearly empty and the other
nearly filled. In the nearly empty band (s-band) the
energy levels are assumed to be given by Eq. (6) and
in the nearly filled band (d-band) by

€= en— (12/2ma) 12, (8)
where e, =maximum energy of the band, —m,=effec-

(120 g Jones and C. Zener, Proc. Roy. Soc. (London) A145, 269
934).
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tive mass of d-electrons, |=wave vector measured from
the highest level ¢,. With this representation Sondhei-
mer? gives for the Hall constant,

171 /0:\% 1 /0a\2
v o 0 e ) S
Necln \ o AN

where n,=number of s-band electrons, #4=number of
d-band holes, o¢,=s-band conductivity, os=d-band
conductivity, o=0;+04=total conductivity. Equation
(9) has been moderately successful in explaining depar-
tures from the Sommerfeld formula? and the occurrence
of positive Hall coefficients in many metals where con-
duction can be expected from more than one band.

It appears to be both reasonable and necessary to
assume for the ferromagnetic materials that the
d-electrons are itinerant and contribute to conduction.
We can for example account for the measured Hall
coefficient of Ni by means of Eq. (9) with #,=#4=0.6/
atom and o4/0=0.23.7 Similarly the measured Hall
coefficient for Fe can be accounted for with #,=0.6
atom, ng=2.2/atom, and o4/c=0.87. It should be
noted that Co, according to the old definition of Eq. (1)
for the Hall constant, had a positive Hall constant
indicating predominating hole conduction, whereas ac-
cording to the present definition, R, is negative and
agrees fairly well in magnitude with the Sommerfeld
formula and #,=0.7/atom. (The reason for this can
be seen in Fig. 4. The slope of the plot of Hall voltage
versus magnetic induction is positive below saturation
and negative above.)

The main features of the R, constants for ferro-
magnetics can be understood in terms of the usual
theory of Hall effect for a uniform applied field. The
degree to which measured values of the Hall constants
agree with predictions by theory is about the same as
for nonferromdgnetic metals. Close agreement with
formulas based on spherical Fermi surfaces such as
Egs. (5) and (9) usually cannot be expected since most
attempts at calculating wave functions and energy
levels for ferromagnetics indicate that the Fermi
surfaces are not spherical to a good approximation ex-
cept in limiting cases.?

4. SPECULATIONS ON THE ORIGIN OF THE
HALL EFFECT DUE TO MAGNETIZATION

There are usually transverse voltages present which
are not due to the Hall effect. Transverse temperature
gradients produced, for example, by the Ettingshausen
effect, result in a transverse voltage due to the thermo-
couple action of the sample and potential leads.
Magnetoresistance effects which are particularly large
in ferromagnetic materials may also result in a trans-
verse voltage. In the data reported herein, particular

2 E. H. Sondheimer, Proc. Roy. Soc. (London) A193, 484 (1948).

2 For example, see E. Justi and M. Kohler, Abh. Braunschweig
Wiss. Ges. 3, 44 (1951).

% For example, see H. M, Krutter, Phys. Rev. 48, 664 (1935);
G. C. Fletcher, Proc. Phys. Soc. (London) A65, 192 (1952).
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care has been exercised to correct for these voltages so
that the corrected measurements may be properly re-
garded as Hall effect.

In order to describe the Hall effect in ferromagnetic
materials within the framework of existing theory, an
effective Lorentz force has been introduced. We assume
effective magnetic fields for the Lorentz force,

H,=H+4naM (10)
for electrons that are mainly in s-states and
H,=H+4radM (11)

for electrons that are mainly in d-states. This leads to
the Hall effect expression of Eq. (4) where R, is given
by Eq. (9) and

() ()]
a= — ) —{—) — |
RoNeck \ ¢/ n, o/ ng

In order to explain the observed values of o« for Ni,

it is necessary to give a physical basis for values of a,

and o4 that are much greater than unity and to account

for the rapid increase of a with temperature from about

2 to almost 100 mainly through a temperature de-

pendence of a;, aq. A correct explanation must also sug-

gest the changes in « with changes in composition
shown in Fig. 6.

(12)

a. Lorentz Force due to Internal Magnetic Fields

The magnetization arises from the electron spin which
produces dipoles that are very small even on an atomic
scale. The magnetic field produced by these dipoles
varies over a wide range of values in extremely short
distances. The resultant effect on an electron which
traverses many interatomic distances can be described
in terms of an effective magnetic field such that

(= —(e/c) (v XM= —(/c) (V) XHerr),  (13)

where f=Lorentz force; the { )s denotes an average for
the electron being deflected, h=actual magnetic field
at the location of the electron under consideration,
v=celectron velocity, Hey=effective magnetic field.
For a beam of Dirac electrons with extremely high
velocity, so that v may be considered a constant of the
motion, Weizsicker® has shown that Hey=H-+47M.
According to Lorentz the spatial average of h is
(h)=H+47M so that in this case the beam electrons
simply report the average field. Wannier’s® calculations
for high energy cosmic ray particles consider the effect
of the beam particle on the local distribution of mag-
netization. He finds small deviations from the limiting
case treated by Weizsiicker which are produced by
Coulomb interaction between the beam particle and
the d-electrons.

These calculations do not apply to the relatively slow

2 C. F. v. Weizsicker, Ann. Physik 17, 869 (1933).
% G. H. Wannier, Phys. Rev. 72, 304 (1947).
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conduction electron for which the crystalline field can-
not be neglected and for which v could not be con-
sidered a constant of the motion. Nevertheless, it has
been considered by Webster?® that on the basis of
Wannier’s calculations the effective field for conduction
electrons would be less than ¢h)s because the Coulomb
repulsion between conduction and d-electrons would
prevent conduction electrons from reaching the high
field regions near the d-electrons.

Kondo? has recently made a calculation appropriate
to the conduction electrons of Ni and finds that
Heps=H-+4raM where «,=0.34 for s-electrons and

aq=2.5 for d-electrons. He has also found a linear in-

crease with temperature of a,, oz due to the influence
of the lattice vibrations on the microscopic distribution
of magnetization, but it is much too small to explain
the Hall effect:

There does not seem to be any possibility of account-
ing for values of « very different from unity on the basis
of the magnetic field due to the polarized d-electrons.

b. Effective Field due to Spin-Orbit Interaction

Rudnitsky?®® first suggested the possibility of a Hall
effect due to the action of the inhomogeneous field
from the primary current on the spins of the d-electrons.
The magnetic field due to the current is illustrated in
Fig. 7. For simplicity we consider a model where there
are N electrons per unit volume of magnetic moment
pu and charge —e. These electrons are assumed to
produce the primary current and to have their spins
aligned in the z direction so as to produce a magnetiza-
tion M = Nu. Due to the inhomogeneous field from the
primary current, the force on an electron in the y

cglmm
Probes for measuring ]
Hall e.m.f
Y
4. l primary
} t current
. }l /dens:ty Ix
|
'1;_— / »’—:_':-:\:“ 'lon " "X
PN '1 ! magnetiza ‘/

b# lcm

magnetic field due to a
uniform current density j,

F1c. 7. A typical Hall effect sample. The directions’ of mag-
netization, primary current, and Hall voltage are shown. The
magnetic field due to the primary current density is indicated
roughly by field lines.

26 D, L. Webster, Am. J. Phys. 14, 360 (1946).

27 K. Kondo, Saitama University, Tokiwacho, Urawa, Japan.
We wish to thank Professor Kondo for showing us his calculations
prior to publication.
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direction would be
fv=wu(8H,/3z), (14)

where H,=magnetic field due to the primary current
density j.. According to Maxwell’s theory,

0H,/3z=(0H,/dy)— (4n/c) j=. (15)

H,, H, may be calculated from the Biot-Savart law
with the assumption that j, is constant. For a sample
of the dimensions ordinarily employed in Hall effect
studies

0H, /92— (47/c)fz

fi=2— (47rﬂ/5)jz- (16)

In order to satisfy the condition that 7,=0, there must
be a transverse electric field such that f,—eE,=0.
Making use of Eq. (16) and writing M = Ny, we obtain
the following rough estimate of the Hall effect,

E,=—(4rM/Nec)j.. a7

Equation (17) has the required symmetry and form of
a Hall effect expression. Aside from the questionable
formulation, the main objection is that the estimated
effect is too small to explain the Hall effect except
perhaps at very low temperatures. If we take into
consideration the fact that the d-electrons carry only a
small fraction of the primary current in most ferro-
magnetic materials, the predicted Hall effect would
be still smaller than the right-hand side of Eq. (17) by
a factor of (04/0). Furthermore, there is no suggestion
of the observed temperature dependence in this theory.

Rudnitsky’s theory can be interpreted as a classical
calculation of the interaction of the spin of an electron
with the orbits of other electrons. Presumably the
coupling of the spin of an electron with its own orbit
should be a much greater effect. Several investigators
have attempted to calculate the Hall effect due to
this. 1417

The spin-orbit interaction energy of an electron can
be written in the form??

Uso=—(1/2mc)[(w XE)-p], (18)

where y=magnetic moment of the electron under con-
sideration, p=momentum of the electron, E=electric
field due to all the other charges. In a one-electron
Hartree type approximation U, may be regarded as a
perturbation term. It is similar in form to the pertur-
bation term (e¢/mc)(A-p) that accounts for the Hall
effect in the usual theory? for a constant field H= curl
A. For a rough calculation we consider the effective
field due to spin-orbit interaction to be

H,,=curl— (uXE)/2e
=(1/2¢)[(w-V)E—u(V-E)]. (19)

28 1. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1949), Chapter XII.
(13"3%. Jones and C. Zener, Proc. Roy. Soc. (London) Al44, 101
934).

and
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An order of magnitude estimate is obtained by regarding
the magnetic moment and velocity of the electron under
consideration as constants of the motion and H,, as an
operator for which the average value is

Heff= ‘Pk*Hsoﬂade- (20)

¢r is the unperturbed Bloch wave function for the
electron under consideration in a crystal lattice. We
shall consider a unit volume over which ¢y, is normalized.

For a perfect lattice | ¢x|? and E should have crystal
periodicity making possible the reduction of Eq. (20)
to an integral over a single atomic polyhedron. Any
polyhedron may be approximated by an inscribed
sphere of radius 7, and volume 7o=1/N where N is the
number of atoms per unit volume. In the atomic poly-
hedron we assume that ¢; has the symmetry of an
s- or d-function and E=~E(r)r/r is approximately
spherically symmetric. With these assumptions Eq. (20)
can be reduced to

Heie=— (47rNy/3e)f| ox| 20d0, (21)

where p is the charge density define by V-E=4mrp,
which is due to the nuclei and all other electrons except
the one under consideration. Equation (21) is essentially
the same as the result obtained by Konkov and
Samolovich.1®

In the limiting case where the electron under con-
sideration is free, | ¢i|2=1, NS pdro=e, so that the
result due only to the missing charge under consideration
is Het=— (4/3)p which is vanishingly small. _

A very much larger result can be obtained when the
electron under consideration is not free. We shall con-
sider the case of a d-electron and assume that near the
center of the polyhedron the wave function approaches
the atomic wave function which vanishes at the center.
This is a characteristic property of the d-state. Accord-
ingly, the charge density p to be considered in evalu-
ating Eq. (21) is only that due to the Z electrons outside
the nucleus. Forany polyhedron S pd7ro= — Ze, omitting
the nuclear charge and neglecting the charge of the
electron under consideration. Therefore

fl or| 20dTo= —Ze! Ri(r1)]?,

where Ry(r) is the radial part of ¢; and 7; is some value
of » between 0 and 7, the radius of the inscribed sphere
of the polyhedron. Since Ny is of the order of magnitude
of the magnetization M, the effective field is of the form

Heyi=4raM,
with
a=3Z ] Ry (r1) 12- (22)

For the ferromagnetic elements Z is about 26, and it is
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reasonable to suppose that | Ri(r1)|? would be greater
than the free electron value of unity so that a value of
« might be obtained that is much greater than unity.
According to this rough calculation, the direction of
effective field for an electron depends on the spin
orientation. Therefore a net effect would only be ex-
pected if there is a net polarization of the conduction
electrons.

A Hartree type calculation such as we have outlined
would give too large a result for the effective field be-
cause it neglects correlations of the electrons. The
probability of finding any other electron close to the
electron under consideration should be very small. It is
especially improbable to find an electron of the same
spin close to the electron under consideration. Kondo™
attempted to correct for correlation of electrons by
introducing “Fermi holes” around electrons where it
would be improbable to find any other electron. From
a numerical calculation he estimated «as~~14 and
2228 for d-electrons in Fe and Ni, respectively. His
calculations show that these results are extremely
sensitive to the choice of wave functions and therefore
should not be taken too seriously except perhaps as
order of magnitude estimates.

Calculations to date have only been attempted for a
perfect lattice with all spins oriented consistent with the
Pauli principle and the observed magnetization. The
temperature dependence observed for « has not yet
been explained. It does not seem likely that the in-
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fluence of lattice vibrations on charge distribution can
account for this. A possible explanation of the tem-
perature dependence may be in the spin dependence of
the correlations of electrons. The correlation of electrons
when there is a net polarization of electron spins at low
temperatures should be substantially different from the
correlation near the Curie point when the net polariza-
tion becomes very small. It will be necessary to im-
prove considerably the semiclassical calculations made
to date in order to investigate such effects.

5. CONCLUSIONS

The ordinary process for Hall effect accounts for
only a small part of the observed Hall voltage in ferro-
magnetic materials. A satisfactory physical basis has
not yet been established for the large Hall effect pro-
duced by the magnetization. Of the proposals ad-
vanced to account for this, only the spin-orbit coupling
of conduction electrons appears to offer any possibility.

Since the situation is simpler at low temperatures
from a theoretical point of view, we are of the opinion
that at present, the most profitable approach to the
problem is to study Hall effect in ferromagnetic
materials at low temperatures where experimental
data is nonexistent except in the case of Ni.
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