
REVIEWS OF MODERN PH YSI CS VOLUM E 25, NUM 8 ER 1 JANUARY, 1953

.V. :agnetic . & nergy . & orriiu. .as ani t.weir .Xe..ation
to .V. :agnetization .. .&eory

WILLIAM FULLER BROWN, JR.

Sue Physical Laboratory, Xmtomrl, Sqmare, Peeesylvama

Present theories of magnetization are based largely on energy formulas. These are incomplete because
they rely on a calculation of magnetization work in the absence of strain and of strain work in the absence
of magnetization. The present paper summarizes and relates to magnetization theory a calculation, already
published elsewhere, in which magnetization and strain are assumed from the start to be present simul-
taneously; furthermore forces are calculated directly, without use of energy arguments until the properties
special materials are considered. An important result is that the separation of the force on part of a body
into a "magnetic" force and a force derivable from "stresses" can be accomplished in more than one way.
The theory confirms the traditional results for fluids; but for elastic solids, it yields terms not present in
the formulas of the traditional theory. These terms may be important in the magnetization process. For a
uniformly magnetized ellipsoid they lead to a nonuniform magnetostriction "form effect" with a mean
strain equal to the strain calculated by Becker.

HE theory of domain formation, magnetization,
and magnetostriction is based on the concept of

spontaneous magnetization, on symmetry requirements,
and on energy formulas. The energy formulas are usually
quoted as if they were a part of everybody's back-
ground of knowledge. Unfortunately this knowledge is
not in a very satisfactory state. Many of the textbook
treatments assume a constant permeability; the results
are therefore useless for ferromagnetic purposes. Other
treatments introduce other restrictive assumptions,
which are often not stated explicitly.

The basic formulas used in magnetization and
magnetostriction theory may be summarized as follows.
The work of magnetizing unit volume is calculated for
a body with no strains:

dh =H dM (&)

(8=magnetizing force, M=magnetization). The work
of straining unit volume is calculated for a body with
no magnetization:

dw, =X&e,.+ +V,de„,+ (2)

(the stress and strain notation is that of Love' ). These
two expressions are added to get a formula for the
change of free energy density when magnetization and
strain both occur:

dF=dzo +derv . (3)
The free energy density is expressed as a series in the
magnetization and strain components, in conformity
with symmetry requirements and to as many terms as
seem necessary. Other formulas are derived from this
one by simple applications of diGerential calculus:

BF/BM =H„BF/Be„=X„BF/Be„.= I', =Z„. (4)

Occasionally a magnetician becomes uneasy abou
the eGect of strains on magnetic formulas. Stoner' i

1937 recognized that his formulas applied strictly only
to a rigid body; but he found no way of improving on
them. Becker' in 1933 took account of magnetization
and strain simultaneously, in his calculation of the
magnetostriction of an ellipsoid. He concluded that the
magnetostriction is shape-dependent, and he veri6ed
this conclusion experimentally. Nevertheless this "form
eGect" is scarcely mentioned in Becker and Boring's
book;4 and it has been ignored by recent authors.
Furthermore, Becker's calculation does not tell us
what happens to the form effect when the specimen is
not an ellipsoid or the magnetization is not uniform.

Occasionally, also, an elastician becomes uneasy
about the eGect of magnetization on elastic formulas.
Brillouin, in his book on tensors, remarks that in a
polarized body the stress tensor is no longer sym-
metrical: that is, I"„the y component of force across
unit area perpendicular to s, is no longer equal to Z„, the
s component of force across unit area perpendicular to
y. SokolnikoG' makes a similar statement in his book on
elasticity. If Brillouin and SokolnikoG are right, then
what does one get by diGerentiating a free energy
density with respect to a shearing strainP

The traditional formula for magnetization work has
various "derivations. " One of them is the following.
When the magnetization is changed by controlling the
current I through a coil, work is done against the in-
duced electromotive force E,. The rate at which work is
do'ne can be expressed as a volume integral:

dW/dt= IF.,= —~J Ed, —

where J is the current density and K the electric 6eld

'A. E. H. Love, A Treatise on, the Mathematical Theory of
Elasticity (Cambridge University Press, New York, 1934), fourth
edition.' Edmund C. Stoner, Phil Mag. 23, 833 it937).

3 R. Becker, Z. Physik 87, 547 (1933).
R. Becker and W. Doring, Ferrorrtogletssrrtgs {Julius Springer,

Berlin, 1939).
L. Brillouin, I.es Tensegrs en Mecaniqle et en Elasticitd (Dover

Publications, New York, 1946), pp. 11, 216—217.
6 I. S. Sokolnikoff, Mathematical Theory of E/usticity (Mcoraw-

Hill Book Company, Inc., New York, 1946), p. 43.

13i



WILLIAM FULLER BROWN, J R.

intensity. The integral can be transformed by use of
Maxwell's equations. The result is

dS" d - 1 p -i p BM
=——

~

H'dr y ~H dr
dt dt' 2y~ » Bt

plus terms that are unimportant in magnetostatics. The
constant y is 4x in Gaussian units. Up to this point the
derivation is completely general. In the next step the
quantity (8M/85)dh, the change of magnetization at a
6xed point of space, is identified with the change dM of
magnetization at a definite point in a body:

dW= perfect differential+ ~H dMdr.

This step is valid only for rigid bodies and, under special
conditions for Quids. In the 6nal step a transltlon ls
Inade from a whole body to a volume client, by rc-

a paper on the subject, and Diesselhorst, 9 Gans, "and
Boring" promptly rushed into print to refute it.

Are such postulates necessary, or can the general
problem of magnetic forces and energies be handled
by using only the laws of mechanics and the formula
for the forces between dipoles? I once thought that
additional postulates were necessary, because the dipole
formula does not lead to any unique expression for the
"effective 6eld intensity" inside a magnetized body.
Several years ago, however, I decided that despite this
fact, the dipole formula should be sufIlcient, without
additional postulates. My reasoning is illustrated by
Fig. I.

The basic problem is to calculate the magnetic force
and torque on an arbitrary part of a magnetized body.
To do this, let us 6rst calculate the force and torque
exerted on the matter inside a surface S2 by the matter
outside a slightly larger surface SI, and then let us find
the limit as the surfaces come together. For this calcula-
tion we do not need to know anything about an effective
field inside 52, all we need to know is the part of the 6eld
inside S2 that is due to magnetized matter outside SI,
and this we know how to calculate.

The result can be written in several equivalent forms;
here is one of them:

F= M. VHdr+-,'y t nM„'ds,

FIG. 1. Dehnition of the mugnegc or /ONg-ruwge force on an
arbitrary part of a magnetized body. First calculate, by macro-
scopic methods, the force exerted on the matter inside 82 by the
matter outside SI', then let 51~52. Deviations of the actual force
from the force thus calculated are interpretable in terms of
stresses. Such deviations are due partly to the presence of non-
magnetic short-range forces and partly to inaccuracy of the macro-
scopic magnetic formulas at molecular distances. In a macroscopic
theory, the two terms cannot be distinguished, and even the
separation of the total force into a long-range term and a stress
term can be made in several ways.

moving the integral sign (Kq. (1)). This step has no
mathematical justi6cation, for the preceding formula
has been established only when the integral is extended
over all space. The 6nal formula is therefore not a logical
consequence of the preceding argument; it is an addi-
tional postulate suggested by it.

Other derivations use other postulates. Some of these
postulates concern the nature of the "eQective 6eld"
inside a magnetized body. Some concern the localization
of energy in the electromagnetic field, or the deriva-
bility of forces from tensors. The literature in this 6eld
is full of speculations and controversy. I,ivens' at his
death in 1950 was still publishing polemics on the
subject. Sommerfeld' shortly before his death published

G. H. Llvens, Phil. Mag. 36, 1 (1945) and 38, 453-479 (1947};
Phys. Rev. 71, 58—63 (1947);Proc. Cambridge Phil. Soc. 44, 534-
545 (1948). Editorial note, Proc. Cambridge Phil. Soc, 47, 450
(1951).

'A. Sommerfeld and F. Bopp, Ann. Physik 8, 41-45 {1950).

L= rXIM VH]dr

+-', y rX [nM„']ds+ My Hdr. (9)

These formulas are rather distressing because each
contains a surface integral that cannot be transformed
into a volume integral. The force is not just so much per
unit volume; it also contains a term that depends on
the shape of the volume considered. Such forces are
quite different from the "body forces" allowed in the
standard theory of elasticity. Therefore, how can we
justify applying the elasticity formulas to a magnetized
body?

In the end I decided that there was only one way
out of this difhculty.

' to abandon the standard theory
of elasticity, and to develop, instead, a theory that
would take account of the peculiar nature of magnetic
forces.

It turned out that the modi6cations needed were
rather minor. One is the asymmetry of the stress tensor
mentioned by Brillouin and Sokolnikoff:

I'.—s„=(MX 8).;
this comes from the existencc of a couple per unit

9 H. Diesselhorst, Ann. Physik 9, 316—324 (1951).
'0 Richard Gans, Ann. Physik 9, 337—340 (1951)."%'. Doring, Ann. Physik 9, 363-372 (1951).
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volume, M)&H. Then there are some extra terms in the
surface traction formula:

X„=[X,+,'y(M-, ' M„—')]&+X„m+X,N. (11)

Finally, there are extra terms in the equations of
motion:

(B/Bx) (X,+ ', yM-, ') +(BX„/By)
+(BX,/Bs)+M VH, +pX= pf, (1.2)

Once these formulas were derived, the special case
of a Quid was easy to treat. All the electrostrictive or
magnetostrictive properties of a Quid in equilibrium
came out of the theory directly, without introduction
of thermodynamic arguments as such. But the results
were very perplexing. All the final formulas for observ-
able quantities were identical. with those derived by
the energy method and given, for instance, in Abraham-
Becker."Vet some of the intermediate formulas were
incompatible with those of Seeker. For instance,
according to Becker a Quid is a substance in which
"there is only one kind of elastic stress, namely equal
pressure in all directions"; but according to my for-
mulas the pressure in a polarized Quid depends on the
orientation of the surface element across which the
pressure is being computed. This same anisotropy of
of pressure had been found earlier by Guggenheim. "

Eventually it became clear that these diQ'erences were
differences only of definition: my "pressure" and
Becker's "pressure" were diferent quantities. The
principle involved here is the following. There is no
unique way of separating the total force into a long-
range or "magnetic" force and a short-range force
described in terms of "stresses. " The reason is that
"long-range" forces, such as magnetic forces, do not
act exclusively over large distances; they are also
effective at small distances. The expression for the
magnetic force can always be changed by adding a term
that affects only the short-range behavior; for the
change can be neutralized by making a corresponding
change in the definition of the stresses. Whether such a
term is to be considered part of the magnetic force or
part of the stress system is purely a matter of definition,
and it happens that my definition is diferent from
Seeker's. The reason that this nonuniqueness has
escaped attention so long is that most of the calcula-
tions have been done by energy methods, rather than
by direct calculation of the forces. In an energy method,
it is diKcult to determine what definition. of magnetic
force is implied by the equations.

Once this nonuniqueness principle has been grasped,
most of the controversy in the literature becomes point-
less. The question is not "Which of these formulas is
right?" It is "What definition of magnetic force and

'2 Max Abraham, The Classical Theory of E/ectricity and Mag-
netism, revised by Richard Becker, translated by John Dougall
(G. K. Stechert and Company, New York, 1932), Chapter V."E.A. Guggenheim, Proc. Roy. Soc. (London) AISS, 49—70
and 70-101 (1936).

stress is implied by each of these formulas'" It is not
important which definitions are used, but it is essential
that the stress formulas used be the ones appropriate
to the force definition adopted.

With this apparent discrepancy explained, the next
step was to calculate the work done, in an arbitrary
change of magnetization and deformation, upon an
arbitrary mass nz. One form of the result is the following.
The work done can be separated into two terms:

dW=dU + dzdm.

The first term is the differential of

1
U„=—— t M Hgd7;

2~,

here 7. is the volume instantaneously occupied by the
mass m, and H~ is the contribution to H from mag-
netization in r. The value of U for two parts of a body
combined is not the sum of its values for the separate
parts. The other term of dS' does have this additivity
property but is not in general a perfect differential:

d~=H DM+V[(X.+',~M, )de..+ .
+,'(F,+Z„)d-e„,+ j. (15)

Here M is the moment and V the volume of unit mass,
and the symbol D is used for a change computed with
respect to axes attached to the mass element. In this
formula the strains are not necessarily infinitesimal:
de„etc. are defined not as differentials of strains but
as products of dt by velocity strains.

The separation into two terms is not unique; it can
be made in various ways, corresponding to choice of
I, of 8, or of something else as independent field
variable. The ultimate formulas for observable quanti-
ties will be independent of this choice.

For reversible isothermal processes, the term with the
additivity property becomes the differential of a free
energy. Since the formula holds for an arbitrary part of
a material body, and not just for all space, the integrand
is the differential of a free energy per unit mass. This
differential is given by an expression (Eq. (15)) more
complicated than that of the traditional theory.

For elastic strains, the free energy per unit mass can
be expressed as a series in the strains, through degree 2,
with coefficients that are functions of the components
of specific magnetization M in axes fixed in the mass
element. Symmetry can be used, high order terms
neglected, and so on, as in the traditional theory. In
this way the theory of magnetization and magneto-
striction can be put on a sound basis. If the quantity
being calculated in shape-dependent, that fact will
emerge automatically from the calculation, because
everything relevant has been put into the basic equa-
tions. No restrictive assumptions have been made, and
no arbitrary postulates have been introduced.
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I have worked out the details of such a calculation
for an ellipsoidal specimen of isotropic material, in a
state of uniform magnetization and strain. The problem
is to find the applied tractions necessary to maintain
such a strain, and in particular to find whether the
assumed uniform strain is compatible with zero surface
traction. It turns out that it is not. The magnetostric-
tion is therefore not uniform, as was assumed by Becker
in his form eGect calculation. The actual strain can be
calculated approximately by the following method:
first find the surface tractions necessary to maintain
zero strain; then imagnine the negative of these trac-
tions applied to an ordinary elastic, nonmagnetic body,
and calculate the resulting strains. The second step
is dificult to carry out completely, except for a sphere;
but the average strain is easy to compute. It turns out
to be equal to the strain that Seeker computed by
assuming uniform strain and minimizing the energy.

The details of this special calculation are given in an
appendix to this paper. The general theory appeared in
the American Jo24rnal of Physics in 1951.""I hope
that it will prove useful in other problems in magnetiza-
tion and magnetostriction.

1/V = (1/Yp) (1—2xl —x3), (A4)

where Vo is the specific volume in the unstrained state,
and therefore

Now suppose further that the rotation vanishes; that
the only nonvanishing strains are an extension x1 along
the fixed x and y axes and an extension x3 along the
fixed z axis; and that x1, x3, and m=~, are all inde-
pendent of (x, y, s). Then since the magnetization is

along and the strain symmetric about the z axis,
H (=OF/834 ) and H„(=OF/83r„) must vanish; and
the relation B,= BF/82r, requires that P, be independ-
ent of (x, y, s). Since 3r and the dilatation are independ-
ent of (x, y, 2), so too is M. lf, therefore, the specimen
is an ellipsoid, the assumed state of magnetization and
strain can be maintained by a uniform applied field and
by suitable surface tractions, which will now be
determined.

Under the assumed conditions M)&H=O, so that
Y,—Z„=O, etc. , by Eq. (10); and since x4 ——x3 ——xp ——0,
Y,+Z„=O,etc. byEqs. , (A3). Therefore Y,=Z„=O, etc.
The remaining stress components are given by Eqs.
(A2). To the first order in the strains,

APPENDIX. MAGNETOSTRICTION OF AN ELLIPSOID

ln Voigt'sip notation (xi=e„, , x4 ——e„„),for
small elastic strains

V' —(Y,+Z„)= aF/8$4= C44$4,

V,'(Z.+X,) = BF/a' xp-C44$3, ——
V' —,'(X„+Y,) = BF/8$3 Cppxp. ——

(A3)

"William Fuller Brown, Jr., Am. J. Phys. 19, 290—304 and
333-350 (1951}.

The work reported here grew out of the author's activities
as a member of the Coulomb's Law Committee of the American
Association of Physics Teachers. The Committee, under the
chairmanship of Professor K. C. Kemble, was appointed in 1944
and presented its report in Am. J. Phys. 18, 1—25 and 69—88
(1950).

«6 Woldemar Voigt, Lehrbuch der Kristallphys~k (B. G. Teubner,
Leipzig, 1910and 1928), p. 563.

F=A++;B;x,+ ',Q;Q,C,,X,X-;, (A1)

where A, B;, and C;;=C,, are functions of m„m„, and
~,. The strain and specific magnetization components
are referred to axes that rotate with the mass element
(reference 14, Sec. 4.4).

Suppose first that M is everywhere along the local
z axis: then for isotropic material, by symmetry,
B1=B2, B4=BS=B6=0,and the nonvanishing C's are
C11= C22p C33y C44 = C55p C66y C12=C11 2C66) and C13
(reference 1, p. 160, Sect. 110, (2)). Since M =M„=O,
the conditions that dF in Eq. (15) be a perfect differ-
ential give

VX~= &F/~xi Bi+Cllxl+C12$2+C13$3I
VY„=BF/8$2= Bl+Clpxl+Cllxp+Clpxp, (A2)

V (Zg+2 ALP) l9F/I9$3 B3+C13(xl+x2)+C33$3 )

Xg= YII bl+(Cll+C12)$1+C13$3y

Z.+2yM'=b3+2c»x, +c33$3, (»)
with

b, =B,/Y„c;;=(C,,—B,)/Vp. (A6)

Consistently with the symmetry already assumed,
suppose the ellipsoid to be one of revolution about the
z axis. Then if the ellipsoid is finite, the quantities on
the right vary with position on the surface because of
the term —-', pM'e'. Consequently, no values of x1 and

x3 will make X„, I'„, and Z„vanish at all points of the
surface. The assumed uniform state is not a possible
one for an ellipsoid with its surface free; such a state
can be maintained only by applying forces to the
surface.

The tractions required to maintain zero strain are

X„p——(bi—-,'yM )l2, n2

Y„=(b,——'2~M'n2)m,

Z„p ——(b3 ', M2n2) n—- (A9)

The actual magnetostrictive strains can be calculated
approximately by finding the strains produced in a

(Note that if B3/B1, then c13WC31.)
The tractions on the surface of the ellipsoid are, by

Eqs. (11),

X„=(X, ', yM„'—)l-, Y„=(Y„',yM„')m, ——

Z, = LZ, +23y(M2 —M„')jn.
(A7)

Substitution of Eqs. (AS) in Eqs. (A7) gives

X„/l= Y„/m= (cll+c12)$1+c13$3+bl 27M n
(A8)

Zp/n 2c31$1+c33$3+b3 27M n
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NONmagnetic elastic ellipsoid by the tractions (—X.s,—F.e,
—Z„e). In the limiting case of a long needle-

ellipsoid, the term —-,'yM'e' becomes negligible except
near the ends, and the strains are those due to tractions
(—&I&, —kryo, b—sn) Th. is part of the strain is independ-
ent of position and corresponds to uniform stresses
X,= P'„=—bi, Z, = —b3 in the nonmagnetic ellipsoid.
%ith respect to it as standard, the "form eGect" strain
is that produced by normal tension ~~y3Pe'.

The strains produced by such a normal tension can
be computed for a sphere by methods described in
reference 1, Chapter XI. For a nonspherical ellipsoid
of revolution, the complete solution would require an
extension of methods at present available. "However,
the volte average strains can be computed by formula
(13) of reference 1, p. 175:

XI= (yM'/2ZV) flX o(m—y+NS)]lsd',

(A10)

Here E is Young's modulus, 0. is Poisson's ratio, and t/'

is the ellipsoid volume. For a prolate spheroid, the para-
metric equation of the surface in cylindrical coordi-
nates is

s= a cos8, p= b sin&,

and the volume is nab'/3 B.y inte. gration over P and
introduction of the eccentricity e = (1—k'/a') ', the
problem can be reduced to the evaluation of the two
integrals

'7 M. A. Sadomsky and E. Sternberg, J. Appl. Mech. 14, A19I-
A201 (j.947).

I

JI—— I'(1—e'I')—Idg =e-'{-' inL(1+ @)/(1—e)]—e}2

=E/L4Ir(1 —e') $, (A12)
pl

I'(1—e'I')—Idl = e '(JI—-', ).
&0

(A13)

Here Ã is the longitudinal demagnetizing factor.
The strains given by Eq. (A10) consist of a pure

(41atatlon

xI' ——xs'= yM'(1 —e')JI/6k= (y/47r)EM'/6k (A14)

(k =bulk modulus) and all equlvolumlnal stI'aIII

—2xI"——x,"=yM'(1 —e') (3Js—JI)/4G
= (y/4rr) [(3 e')N —4'(1—e') 5M—'/4e'G (A15)

(G=rigidIty). These agree with Becker's formulas for
the form eBect, which he assumed to be uniform.

This method of evaluating the strains is an approxi-
mation, not merely because it neglects the variation
of "elastic constants" (c;;) with magnetization, but also
because it neglects in all the equations some terms that
no longer vanish when the strain varies with position.
A rigorous calculation mould require simultaneous
solution of the equations of elastic equilibrium and of
Poisson's equation and would probably show that the
magnetization as well as the strain varies with
position,

My crystal calculation of 1945,'8 which led to a
paradox, was valid for a rigid crystal; but for a crystal
capable of deformation, the derivation holds only if the
approximations of the traditional theory are accepted.
The theory outlined here provides a method of carrying
out a rigorous calculation for a deformable crystal.

"William F. Brown, Jr., Revs. Modern Phys. 17, 15—19 (1945).


