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The Boltzmann theory treatment of electrical discharges in
gases has been one of the undeveloped 6elds in physics. The aim
of this paper is to show what type of molecular model makes the
mathematical treatment of the problem possible.

The fundamental processes of the molecular kinetic theory of
electrical discharges concern the collisions between gas molecules
and charged particles such as ions or electrons. The effective
cross sections of the molecule for elastic, exciting, and ionizing
collisions are the fundamental quantities regarding these phe-
nomena. Two methods are considered, according to how these
fundamental quantities are introduced, to establish the molecular
kinetic theory.

One method is to adopt a proper molecular model for collision
processes. The other method is to adopt the "exact" (i.e., ob-
served or quantum-mechanically calculated) values of collision
cross sections. This paper concerns itself with the 6rst method,
and the principal objective is to attain mathematical simplicity
for the theory. The second method is abandoned because the
statistical calculation on each step is complicated, and further-
more, the calculation must be achieved separately for each kind
of gas. This second method may be adequately adopted after
the treatment based on a model is accomplished.
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I. BASIS OF THE KINETIC THEORY OF
CHARGED PARTICLES IN GASES

1. Introduction

EFORE we proceed to the main subject of elec-
trical discharges, let us summarize certain features

of an ideal gas. Take the simple gas, i.e., a gas composed
of one kind of molecule, and consider the distribution of
molecular velocities, cl. Let the number of molecules,
whose x, y, s component of velocity cl is between I&
and Ni+dli, vi and ei+dvi, wi and wi+dwi, respec-
tively, be per unit volume,

fi(ci)dsidvidwi= fi(ci)dci. (1.1)

fi is called the velocity-distribution function. The triple
integration of this function with respect to the com-
ponents of the molecular velocity,

~00 ~00 F00 fO

fi(ci)dgideidwi=— fi(ci)dci, (1.2)

Let Q(ci) be any function of the molecular velocity;
then the mean value of P is defined by

4fidei.N". (1.3)

kT =mal ——mlV1 ——mlW1 .2 — 2— —2 (1.6)

Let P be the pressure of the gas, then the equation of
state is

or
P= XkT, (1.7)

P=™1+1+~1V1 =ESS1Wl . (1.8)

If the gas contains charged particles such as positive
ions or electrons, the velocity-distribution function f(c)
of the charged particles of each kind is to be considered
similarly.

n= f(c)dc

is the number-density of the charged particles. For any
function @ of the velocity c of the charged particles,
the mean value is given by

In case the gas is uniform, fi takes the Maxwellian
distribution,

fi=N(mil2~kT)~ expL —(mici'l2kT)3 ci= Icil (1.4)

where ml denotes the mass of the molecule and k the
Boltzmann constant. T is the absolute temperature of
the gas, whose relation to the mean energy of transla-
tional motion of molecules is

-'kT=-'m c ',.2 2, 1 lq
or

is the number-density of molecules,
gfdc. (1.10)
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characterized by the gas temperature T, m being the
mass of the charged particle. The same relation as (1.5),

2-'kT = -'mc',

holds for the mean translational kinetic energy of the
charged particles.

In Part I the motion of charged particles in gases is
investigated generally. The treatment of this part is
restricted, however, to the phenomena in which only
elastic collisions occur.

2. The Boltzmann Equation

The velocity-distribution of charged particles in a gas
with uniform temperature and pressure is not neces-
sarily Maxwellian if their density is not uniform or if
an external electric Geld exists. In cases of this nature,
their velocity-distribution function, f, would depend not
only on the velocity, c, but also on the position, r, and
the time, t. The fundamental equation which determines
this function f(c, r, t) is that of Boltzmann,

Bf Bf e Bf B,f—+c —+—E —=
8$ Br m Bc 85

(2 1)

where the second term on the left side is the scalar
product of c and the gradient of f,

Bf Bf Bf Bf
C' ——=I—+V—+W—.

ar 8$ Bp Bz

The third term is the scalar product of the external
electric Geld E and the gradient of f in the velocity
space, multiplied by e/m, e and m being the charge and
the mass of the charged particles, respectively (Chap-
man-Cowling's' notations are used throughout this

Pro. 1. Change of direc-
tion of the relative velocity
as a result of an encounter.

In the case when the density of the charged particles
is uniform and no external force is acting, the velocity-
distribution of the charged particles is also Maxwellian,

( m pi ( mes)
f=~I l expl —

I e=lcl, (1.11)
L2vrkT) E 2kTI

treatise). The right side denotes the change of f caused
by encounters which we will consider later.

When a magnetic 6eld, H, and an electric
field, E, exist, the force acting on charged particles is
(e/m)(E+c&(H), where e, E, and H are all expressed in
ane lectrostatic unit. (If we measure e and E in cgs
electrostatic units, the value of H equals its values in
Gauss units divided by light velocity 3&&10".) In this
case II'oltzmann's equation is generalized into

Bf Bf e Bf Bgf—+ c —+—(EycXH) —=
Bt Bc m BC 8$

(2.2)

where ci and fi denote the velocity and velocity-dis-
tribution function of gas molecules, respectively;
f'fi' ffi is the ab—breviation of f(c')fi(ci') —f(c)fi(ci);
c' and c~' are the 6nal velocities of the charged particle
and gas molecule encountering with initial velocities
c and CI with deviation angle 0 for the orbit of relative
motion; I(g, 8) sin8d8d» is the differential cross section
for the relative speed, g =

l
c—ci l

=
l
c'—ci' l, to be

scattered into the solid angle sin8d8d» (see Fig. 1).
(f'fi' ffi is propo—rtional to the difference in the fre-
quencies between direct and inverse encounters, see
Fig. 2.)

3. Auxiliary Theorem

The right side of Boltzmann's equation (2.2) for the
velocity-distribution function f(c, r, t) of the charged
particles, can be treated as follows. If the electric field,
E, and the magnetic field, H, were zero, and the density
of the particles were uniform, f would be Maxwellian
(1.11),

m y&
t

mc'y

(2 kr) & 2k2)
' (3.1)

The right side of Boltzmann s equation is the time varia-
tion of f as a result of encounters with other charged
particles and gas molecules. When the density of charged
particles is much smaller than that of the gas molecules,
collisions of the charged particles with each other can
be neglected in contrast to their collisions with gas
molecules. We assume this condition, since in this case
Boltzmann's equation becomes linear for the velocity-
distribution of charged particles, and furthermore, we
can disregard the diverging cross section of collisions
between charged particles.

Under this condition B,f/Bt is expressed in the form

B~f t (' ('
(f'fi' f fr) g7(g,—8) sin8d8d»dci, (2.3)

' S. Chapman and T. G. Cowling, The 3la51zemalicul Theory oj
t)ters Uesform Gases -(Cambridge University Press, London, 1939).

and the condition of the detailed balancing,

f(o)'fr~ f(o)jr —0

would hold. Generally let

f f(())(1+@)

(3.2)

(3.3)



ELECTRI CAL D I SCHARGES I N GASES

where C is not necessarily a small quantity. Inserting
(3.3) into (2.3) and considering Eq. (3.2), we have

= —Sf&'&JC. (3.4)

1
JC =— f&(C C')—gI(g, 8) sin8d8d~dc» (3.5)

g ~

where J is a linear operator operating on any function
@(c) of the velocity of the charged particle; it is delned
generally as

f P f

J$=—
i f&(@ P') gI—(g, 8) sin8d8dedc, (3. .6)g~a J

Here X is the number-density of the gas molecules, @'

denotes @(c'), c' being the velocity of the charged par-
ticle after encounter.

Let us dehne the inner product of two functions
y(c) and P(c) by

(~, 4)=- f&"~ed,
e~

(3.7)

C.
'

and consider the following expression,

(4, Je)=- f'"4J@dc

f f f
~ f'"f~(0 e')kgI(g 8)—

a .J
X sin8d8dedc~dc (3.8).

exchange p' for p and lt for p'. The expression (3.8),
therefore, is equal to

f~'&f&QQ —P') gI(g, 8) sin8d8dedc~dc,
$N &

and we have the symmetric property of the operator J,

(4 J4)=(4, J4)

Similarly, expression (3.8) is equal to

f f f
' f'"fi(4 4')(0 4')gI(g—8)—

2 e$4

(3 9)

X sinedededcgdc

Considering the inverse encounters, and taking into
account Eq. (3.2) and the relation dc&'dc'=dcqdc, we
can in the integral,

f
~ f"'f&P'PgI(g, 8) sm8d8dedc~dc,

0 J

FIG. 2. The direct and the inverse encounter.

and, when we let &=f,
(~, Je) =0, (3.10)

i.e., J is a positive-defjnite operator.
Now, the Boltzmann equation (2.2) is expressed as

follows

Bf Bf 8 Bf—+c —+—(E+cX8) —= iVf~ 'JC'. —(3.11)
Bt Br m Bc

Multiplying @(c)dc on both sides and integrating, we
have

8 f 8
fPdc+ i fcgdc

at~ ar ~

e a
+— (E+ XH) —Pd = —S f"'QJCd .

5$ ~ ac

On the left side we integrate by parts the third term and
consider the identity

8/Bc (cXH)=0.
On the right side we use the relation J(1+C)=JC and
the symmetric property of J; then we get

8 t
8

fgdc+ feed—c
gt ~ Br ~

e f 8$
f(E+cX8)—dc= —X tfJydc,

ec
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l9Ã 8—+—(m(c) A„)= 0,
N Br

(3.13)

where ri(c)»„ is the ffow of the charged particles.
If we let $=c, we get

i.e., with the mean value symbols, ()A„or a bar over
letter,

8 8—(a4')+—'(s(c4') )
Bt Br

ee 8$
(E+cXH) — = S—ri(J/)», (3..12)

Bc Ay

This is the fundamental equation to be used in the
following sections.

Let &=1, then we have the equation of continuity,

Now let us consider the tensor

m((cc)A —(c)A.(c)A ) =m((c —(c)A ) (c (c)A ))A ~

By equating these elements to kT„ the temperature T,
of the charged particle is dined. Generally let us de-
fine the temperature of the charged particle T, as a
tensor by the relation

m((c —(c)A„)(c—(c)A„))A„=kT,.

Then (4.2) becomes

(4.3)

If the velocity-distribution of charged particle is
spherically symmetric around the drift velocity (c)A„,
the tensor is diagonal and the diagonal elements are all
the same,

m((N —u)') A„——m((s —8)')A„——m((w —m)') A„.

8 8—(N(c)A„)+—.(e(cc)A„)
Bt Br

8(c)»„e e (
&(Jc)A.+ ——(c)A.XH= —

~

E—
at m m(

kT, aine)
(4 4)

e ar]
——(E+(c)A,XH)= —Se(JC)A„, (3.14)

where cc in the second term denotes such a tensor as two
vectors a and b determine

aA
ab= a„b.

.a,b,

a~b„c,bz

Cyby Cybz

uzby azbz

(4.1)

Substituting (4.1) into (3.14) and taking account of the
smallness of 8(cc)A,/Qr, we get

l

8(c)A, 1 Bs
S(Jc)Alf+ + ((cc)« (c)A.(c)«)—

Bt e Ir
e——(E+(c)A,xH) =0. (4.2)

The differentiation of the second term is to be inter-
preted as

t' 8 i aa, b, aa„b, aa, b,
~

—ab)= + +
&ar &. ax ay as

N(cc) A„ is, so to speak, the partial pressure of the charged
particles divided by their mass, m.

4. Quasi-Homogeneous Phenomena

In dealing with Boltzmann's equation, let us conlne
ourselves within the "quasi-homogeneous phenomena, "
i.e., let us assume that the spatial variations of such
quantities as E, H, (c)A„, and (cc)»„are small.

The spatial variation of (c)A„being small, we have in
place of (3.13), the equation of continuity

af e af 8Af—+—(E+CXH).—=
Bt m Bc Bt

(4.7)

The auxiliary theorem regarding any function, p, of the

The first term on the right side is the eR'ect of the
electric 6eld on the drift of the charged particle, and the
second term indicates the effect of the diffusion. The
relative decrease in the number-density of the charged
particle —8(inn)/Br multiplied by kT,/e is equivalent to
the electric 6eld. We have, therefore, the relation be-
tween the mobility and the diffusion-coefEcient,

diA'usion-coefficient = (kT,/e) mobility. (4.5)

In the special case when the tensor T, degenerates to
the scalar T„

diffusion-coefficient= (kT,/e) mobility. (4.6)

Later we shall see that the velocity-distribution of
electrons in an electric field is spherically symmetric
around the drift velocity, and we can consider the
"electron temperature" as a scalar. Regarding ions in
such a weak electric field that we can neglect the square
of the field strength, the temperature of ions is equal to
the gas temperature T. If we regard ions in a strong
ffeld, however, T, does not generally become scalar.
(In the next section we shall call 3i of the diagonal sum
of the tensor T, the temperature of ions. )

The temperature of the charged particle is nearly
the same whether the field is homogeneous or quasi-
homogeneous; consequently, the efFect of difFusion on
the temperature can be neglected. Under this condition
let us first treat the homogeneous phenomena, in which
Boltzmann s equation for the velocity-distribution func-
tion of charged particles becomes
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which, in case &=c, reduces to

8(c)a„e
$(Jc)a„+ ——(E+(c)a„XH) =0.

Bt 5$
(4.9)

5. Maxwellian Model of Molecules

The coeKcient of elastic scattering, I(g, 8), between
gas molecule and electron or ion is rather complicated.
We can, however, much simplify the mathematical
treatment by assuming a model for this fundamental
quantity —n.amely, by assuming that I(g, 8) is inversely
proportional to the relative speed g. This type of model
was introduced by Maxwell, and it may be reasonable
to call it by his name.

When the interaction potential between an ion and a
gas molecule is inversely proportional to the fourth
power of the distance, (attracting or repulsing) the
foregoing assumption hoMs accurately. In fact, a neu-
tral molecule and an ion attract mutually with an
inverse-fourth-power potential beyond a certain dis-
tance. In case of ions, therefore, this model for the
elastic encounter has some ground. As for electrons, we
cannot authorize the assumption in such a manner.
However, since the elastic collision cross section of
molecules decrease almost monotonously with increas-
ing speed of electrons (excepting Ramsauer effect for
slow electron), the assumption aforementioned is not
far from the reality.

If gI(g, 8) does not depend on g,

velocity, c, is given by

8$ e l9$
$(Jy)a„g——(E+cXH) — =0, (4.8)

Bt m Av

E is called. the mobility, which in general depends on
the gas temperature or the 6eld strength. In case of
Maxwellian model, however, the mobility does no t
depend on temperature or Geld strength, and it is a
constant except that it is inversely proportional to the
number-density S of the gas molecules.

(ii) When the electric and magnetic fields are static
(i.e., when 8/Bt= 0),

(c)a,—E(E+(c)«XH) =0 (5.5)

Fxo. 3. Drift mo-
tion of charged par-
ticles in electric and 0

I

magnetic Geld.

from which we see that the vector (c)a„—EE is per-
pendicular to both (c)a„and H. As shown in Fig. 3, draw
from the origin, 0, the vector EE=OP, then the end Q
of the drift velocity (c)a„——OQ lies on the sphere with
diameter OP. Since (c)a,—EE is perpendicular to H,
Q lies also on the plane on which P lies and to which
H is perpendicular. In the special case when H is per-
pendicular to E, Q lies on the circle whose diameter is
OP and whose plane is perpendicular to H. Generally
we have from (5.5)

(c)a„——(1+E'II') 'fEE+E'(EX H)+ E'(E H) Hj,
(5.6)

Jc=Xc; (5.1)

m
X= 2~ — (1—cos8)gI(g, 8) sin8d8, 2 (5.2)

fSi+1Ã p

which is a constant related to the encountering pair.
Inserting (5.1) into (4.9), we have

d(c)a„e
SX(c)a,+ ——(E+(c)a,XH) =0.

dt m
(5.3)

i.e., the velocity c of the charged particle is an eigen-
function of the operator J. The corresponding eigen-
value is

where II=
~
H~ is expressed in electrostatic unit. From

this equation we have

~(c)a, (
=EX cosrl,

os'= 5&+E'(E H)'j/L~+E'g II ] (5 7)

g equals angle POQ, i.e., the. angle between the electric
field E and the drift velocity (c)av. The absolute value of
drift velocity does not change if one imposes a magnetic
6eld and at the same time makes the density of the gas
(cosy) ' times as dense as before.

(iii) When only a periodic field

E= E, exp(j~t)

Let us investigate some special cases.
(i) When only a static electric field exists (i.e., when

H= 0 and 8/Bt =0), the drift-velocity is given by

exists,

()
(c)a~+

SX Bt

1 BCAv
EEp exp—(jppt) =0, .

(c)a,——EE, E= e/mÃX. (5.4)

T. Kihara, Imperfect Gases (originally written in Japanese,
translated into English by U. S. Air Force, and to be published as
Air Force Technical Reports), Eq. (21.1).

from which we have as the periodic solution of the drift
velocity

(c)a,= $1+(j~/&&)j—'EE, exp(jppt), (5.8)
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which is the same as the relation between ac voltage and
current.

Equation (5.1) indicates that the velocity, c, of
charged particles is one of the eigenfunctions of the
operator J, and the corresponding eigenvalue is X.
Next to c, (mcm/2kT) —(—,') is an important eigenfunc-
tion —namely,

In the periodic case (c)A„——a cos~t, we have

kT, kT—= -', mia'[1+cos8 cos(2cot 8—)), (5.13)
where

8= tan —'[(mi+m)s)/mÃX). (5.14)

For large frequency or small mass of the charged par-
ticle, i.e., for

(mc' 3i m (mc' 3
JI

&2kT 2) mi+m E2kT 2)

(mi+ m)(o/milt X)&1,

(5 9) the time variation of T, T is sm—all and

(5.15)

On the other hand, Eq. (5.3) gives

( d(c)Avl
e(c)A E=m(c)A '

I
NX(c)A +

dt )
From these two equations we have, after some calcula-
tion,

m
[-',m(c' —(c)A„(c)A„)——,'kT)2g'A

m]+ m

fg»fS
+—[l ("-()"()")-lkT)= &~()" ()".

dt mi+m

If we introduce the temperature of the charged
particle T, by the relation,

2m(c' (c)A. (—c)A.) =km(le (c)A I

—
)A skT (5 10)

the preceding equation becomes

3S'X
mi+m

3
(kT, kT)+ (kT, —kT)—— —

2dt

SX
I (c)A, I

'. (5.11)
mi+m

Adopting this eigenfunction as vs into the auxiliary
theorem (4.8), we have

m I'mc' 3q d (mc' 3y e——I+—
I

mi+m E2kT 2) dt (2kT 2) kT

kT, kT=: —,
'—mia'=-', mi mean I(c)A, I' (5.16)

where "mean" denotes the time-mean.
In cases of extremely high frequencies where the

electrons make many oscillations per collision, namely
when

0&cVX/~d((1
v

we have from (5.8)

1
(c)A,————Eo exp(j~t)

QG) S$

and from (5.16)

kT,—kT = —,'m, (eZO/~m)'.

These relations are independent of the gas density E
(so long as Ã)&e) and cross section X,—a fact which may
be easily understood.

APPENDIX TO PART I. VELOCITY-DISTRIBUTION OF
HEAVY IONS IN A LIGHT GAS

The aim of this paper is chieRy to develope the theory
on the basis of a special model of molecules, namely
Maxwellian. Here, however, let us insert a discussion
of the motion of heavy ions without restricting to special
models. The necessary assumptions are:

j.. The mass of ions is large enough in comparison to
that of gas molecules, i.e., m»m».

2. The drift-velocity of ions is much smaller than the
thermal velocity of gas molecules, i.e., (c')A„((kT/mi.

3. Quasi-homogeneity.
Under the above assumptions 1 and 2, the ion-

velocity c is an eigenfunction of the operator J

kT,—kT = —,'m,
I (c)„I', (5.12)

A characteristic feature of this result is the difference
of the temperature of the charged particle, T„and the
gas temperature, T, is proportional to the square of the
drift velocity I(c)A, I

. And, since I(c)A, I
is proportional

to the 6eld strength E, T,—T is proportional to E2.
Especially in static or quasi-static cases, the simple

relation,

Jc=7vc,

the eigenvalue X being'

16 m»
X=— 0&'&(1)

3 mi+m

Here, generally,

(A.1)

holds even if a magnetic held exists. Taking into ac-
count the effect of the magnetic field on I(c)A„I, we
And that, as regards the temperature of the charged
particle, an imposing of the magnetic 6eld is equivalent
to magnification of the gas-density by (cosset)

' (see
Eq. (5.7)).

0&'&(r) = (s)'* @&"U'"+' exp( —U')d U, r= t, 1+1,

tv' mim 1

&m, pm 2kT)
' T. Kihara, see reference 2, Eq. {20.8).
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is the statistical mean of the general collision cross
section

The Boltzmann equation (2.2), therefore, takes the
form

4O
(1—cost8)gI(g, 8) sin8d8. t= 1, 2, 3,

B(c)A„kT Bst e Bf B,f—+—(E+(c)A„XH) —
=. . (A.S)

Bt me Br m Qc Bt

It depends on the temperature unless the interaction is
Maxwellian.

In the case of static electric field alone (B/Bt=O,
B/Br=0, H=O), we get from (4.2),

eE/m=ÃX(c)A„, (A.2)

Bf Bf
ÃX(c)A,—=

Bc Bt
(A.3)

the solution of which is given by'

m q& m
f=1~

~
exp — (c—(c)A„)',

(2srkT] . 2kT
(A.4)

where T, the temperature of ions, is the same as the
gas temperature.

Let us show in the following that this Maxwell dis-
tribution satisfies the most general Boltzmann equa-
tion (2.2), so far as (c)A„satisfies a certain differential
equation.

When ss depends on time t and position r and (c)A,
depends on t (B{c)A„/Br=0 is assumed under quasi-
homogeneous condition) we get from (A.4)

Bf B(c)A Bf f Bts Bf f BN
c'—=M'—

Bt . Bt Bc e Bt Bx e Bx

which yield, together with the equation of continuity
(4.1)

Bf Bf B(c)A Bf f Btt—+c —— —+ (c (c)A)—
Bt Bx Dt Bc e Qx

(B(c)A„AT Bn) Bf

& Bt mn Sri -ac

On the other hand, we have if we assume (A.4),

Bf Bf
cXH —=(c)A.XH —.

Bc Bc

E being the number-density of the gas molecules. W'e
thus get the result that the mobility of heavy ions is
independent of the 6eld strength, though it depends on
the temperature —a fact which agrees with observation. 4

The relation (A.2), inserted into Boltzmann's equa-
tion (2.2), yields

Since from (4.2) holds

B(c)A„AT Bss e
Ãli(c)A, + + ———(E+(c)A,XH) =0. (A.6)

Bt me Br

Equation (A.S) is just the same as Eq. (A.3), from whose
solution we have started. We thus obtain the theorem;
the velocity-distribution of heavy ions in a light gas is
Maxwellian function (A.4), the center of which is given
by Eq. (A.6).

Equation (A.6) differs from (5.3) by the fact that X
here depends on the temperature and that the eRect
of diRusion is taken into consideration without any
mathematical difhculties. (We considered in 5 homo-
geneous cases, since the eRect of diRusion would make
the problem complex. )

II. VELOCITY-DISTRIBUTION OF ELECTRONS

In this part we investigate the velocity-distribution of
electrons adopting a simple and suitable model of
molecules. The contents of this part lay the foundation
of our molecular theory of electrical discharges in gases.

6. Velocity-Distribution of Electrons in the Region
of Elastic Collisions

Ions and electrons are both charged particles. These
two types of particles in gases, however, have rather
diRerent quality. First, the mass of the electron, m, is
much smaller than that of gas molecules, m~. Secondly,
inelastic collisions are important between the electron
and the gas molecule while they can be neglected be-
tween ions. In this section we investigate, as prepara-
tion, the velocity distribution of electrons in case only
elastic collisions occur—i.e., in case the mean energy of
electrons is not su6icient to excite or ionize the gas
molecule.

The fundamental quantity determining the motion
of electrons in a gas is the eRective collision cross sec-
tion of the gas molecule for electrons. In this respect
we adopt the Maxwellian model which was mentioned in
5; namely, we assume that the scattering coe%cient,
I(g, 8), for angle 8 is inversely proportional to the rela-
tive speed g. Then, what we have investigated in 5 can
be applied to the case of electrons, if we interprete m as
the mass of electrons and take into account the relation
m&&m&. Th,e electron velocity c is one of the eigen-
functions of the operator J and the corresponding eigen-
value is

A. M. Tyndall, The Mobitity of Positsve Ions in Gases {Cam-
bridge Physical Tracts, 1938),. Fig. 31.' T. Kihara, see reference 2, $20.

X= 2sr (1—cos8)gI(g, 8) sin8d8.
4p

(6.1)



TA RO K I H A RA

g xI0
Ig* ('N/

6-

2-
r

0, $0 +0 60 80 /00 f go /40 /6O f fO QOO

FIG. 4. Drift velocity of electrons in hydrogen,

Bf Bf&e' B,j
XX(c)., —+

Bc Bt Bt
(6.4)

it be f&e&. To the second approximation f is a function of
scalar Ic—(c)A„I. It is our purpose to derive the form
of the function.

To this approximation, the second term of (6.3) is
obviously zero. Since

Bf Bf&e' Bf d(c)A, Bf&" Bf d(c)A,

Bf Bf 8(c)A, dt Bf Bc dk

the Eq. (6.3) can be transformed into the following
form,

The drift velocity (c)A, can be determined by the
equation

After expanding the function. fof the scalar
I
c—(c)„„l,

we have

d(c)A„e
Ã1&(c&A.+ ——(E+(c)A,XH) =0.

dt m
(6.2)

1 Bf&e)

j=f e)+(c&a 'cf&i f&i)= ——
c Bc

(65)

Especially in the case of static' Geld

(c)A„——EE, Z= c/mÃ1&,

i.e., the drift velocity of the electrons is proportional
to E/1V or E/P. Measuring E in volt/cm, P in mm of
Hg, (c)A„ in cm/sec, and X in cm'/sec, we have the
numerical relation at 0 C

(c)A„=0.050K/XP

(at O'C, X /P='3. 55X1 0'/cm' mm Hg). In fact, the
drift velocity of the electrons is roughly proportional
to E/P. In Fig. 4 the full line is the observed curve'
in hydrogen, and tlm dotted line is the calculated one
choosing X= 7.7X10 ' cm'/sec, which may be regarded
as one of the molecular constants of hydrogen.

Generally, when we eliminate E from Boltzmann's
equation (4.7) making use of (6.2), we have

Bf e Bf
ÃX(c&A ' —+—(c—(c)A,)XH

Bc m Bc

pBf d(c&" Bf&
+I — +—

I
= (63)

k Bc dt Bt) Bt

From (5.10) and (5.12) follows the relation

I(c)"I'«&I c—&c&"I'&" or l(c&A I'«c'

indicating that the drift motion of electrons is much
smaller than the thermal (i.e., random) motion. This we
can understand easily considering that the transfer of
energy between electron and gas molecule is very small
because of a great diGerence between their masses.
After all, the velocity-distribution of electrons, f, is a
function of the scalar c to the 6rst approximation. Let'

L. B. Loeb, Fuedumentul Processes of E/ectricul Dischurge in
Gases (John Wiley Bz Sons, Inc. , New York, 1939), Table 29.

' This definition of f&0& is different from that in 3.

This, expression being inserted into (6.4), the first term
on the left side becomes

1 Bf&nq c Bf&&0

x~l(c)„l'I f&»+-c I+x~&c).„-
3 Bc) c Bc

and the right side of (6.4) becomes

B f'" B ((c&A..cf'")

Equation (6.4), therefore, becomes final]y

Bfo) ) Bf&0) B f&Q)

»l&c&A I'I f"'+ cl+ -=, (6.6)
Bc ] Bf Bt

the right side of which has been expressed as

B f&e) 1 B )kT Bf&'i m
+—csf&»

I
c Bc (mi Bc mi ) (6.7)

after complicated calculations. '
Now let us expect that f&" may be Maxwellian

m )t' ( mc'y m
f"'=&I

I expl —
I

f"'= f'" (68)
&,2~kT. ) & 2k'. J kT.

Chapman-Cowling, see reference j., p. 349.

Now, since the electron speed suGers no considerable
alteration by collisions and molecules, we have

B,((c)A, cf&'&)
= —Sf&"(c)A„Jc

. Bt
= —ÃX(c)A, cf&i&

c Bf&e)

=A(c&A, .—~

c Bt
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then the terms of (6.6) are calculated as follows: By making use of Eq. (6.7)

B f(o) m kT, kT—
I

mc'y
=iv&

I
3—

m, ( kT)

f(o) (Bf(0))
+I

Bt E Bt ] ~0(g,

Bf' Bf(o) dT, 1 ( mc' 3) dkT,
(o)

Bt BT, dt kT, (2kT, 2) dt

1 Bf(r)y
&&(l(c)A I'I f "+ c—

) 3 Bc)
m t 1mc'q

=&l(I(c) .I' I
1— If(o) ~

kT, I 3kT i
Hence, when the electron temperature, T„satisfies the
equation

m 3 dkT,
3NX—(kT,—kT)+— =mE), I(c)A~I' (6 9)

ml 2

the assumed expression of (6.8) really satisfies the
equation of Boltzmann. Thus we get the theorem. The
velocity of electrons is described by a Maxwellian dis-
tribution whose center is the drift-velocity (c)A„de-
termined by (6.2) and whose temperature satisfies (6.9).

Equation (6.9) is the same as we have from (5.11) if
we neglect m/mi for 1. In case of such a high frequency
f(eld that the angular frequency or satisles mior/mÃX&)1,
the electron temperature T, suffers no time-variation,
and

kT,—kT= ',mi mean I(c-)A, I'

as already mentioned in S.

7. Velocity-Distribution in Case Excitations Occur

Since the, mass of the electron is much smaller than
that of molecules, transfer of energy between electron
and molecule at the time of an elastic collision is small.
At high electron temperatures, however, electrons can
excite gas molecules, and be deprived of the excitation
energy. Therefore, the effect of exciting collisions on the
energy distribution of electrons cannot be neglected
even if their frequency is so small that the effect on the
drift velocity can be neglected.

In the case exciting collisions occur, we should add
to the right side of Boltzmann's equation (6.3) the time
variation of f due to exciting collisions, (Bf/Bt)
which can be replaced by its spherically symmetric
approximation (8 f ('&/Bt)

If the number of electrons per unit volume and per
unit time, which undergo inelastic collisions and whose
speeds decrease from values above c to values below c
because of the collisions, are denoted by S(c) we have

1 B kT Bf('& m S(c)-
=E7 ——c' + (,"f—('&+, (7.2)

c Bc sory Bc Sly 4' g X

by which the right side of (6.6) should be replaced.
Now, let us denote by Q(co, c) the effective cross

section for such a process that the speeds of electrons
decrease from co to values below c because of inelastic
collisions. Q(co, c) is a monotonously increasing function
of c(~co) and Q(c0, c(r) is the total cross section of
inelastic collisions for electrons with initial speed ca.
Regarding this quantity we assume a characteristic
model, —namely,

Q(c„c)=pc'/cP, (7 3)

which we shall make the basis of our mathematical
theory. p is a molecular model-constant with the di-
mension of area divided by velocity. According to this
model the total cross section Q(co, c(r) = pc(r is propor-
tional to the speed of colliding electrons.

Here let us see the basis of the fundamental assump-
tion (7.3). In general a molecule can be raised to several
excited states. Denoting by e, the energy diRerence
between the ground state and the sth excited state,
the molecule can be put in the sth excited state by the
collision of an electron whose kinetic energy is larger
than ~,. By this transition the electron loses the energy
e,. The eRective cross section for this process is usually
as shown in Fig. 5. For these molecules Q(co, c) increases
stepwise regarding c as shown in Fig. 6. And the total
exciting cross section Q(co, co) increases nearly monoton;
ously as shown in Fig. 7. Replacing these real- natures
by such smooth curves as shown in the figures, we ob-
tain the foregoing molecular model. (The effective cross
section to be excited to the sth state may be approxi-
mated by such a formula as

8~(gmcp —t'q)~/2mcp r gmco )8q.

If we suppose that these excited states distribute with
an equal interval 6 as shown in Fig. 5 and that u, is
constant independent of s, we obtain (7.3) by taking
the limit 6—+0 keeping u,h constant. )

1 BS(c)(Bf((r) q

& Bt ] „„4s.c' Bo
(7.1) DIG. 5. Effective cross section to be transferred to each excited

state. The abscissa shows the electron energy.
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Q(G,&) suKciently, i.e., when

kT,/m)&mX/mip,

we have the simple relation,

which indicates that the electron temperature is pro-
portional to the absolute value of the drift velocity and
therefore to the field strength E.

In case of no magnetic Geld, we have for static field E,

FrG. 6. Effective cross section
for the process that the speeds (msy/3p)

~ (c)„~s (static)of electrons decrease from co to (7.7)
elastic collisions 'Full l',.ne
real values. Dotted line —for
the model (7.3).

Introducing this model of Q(co, c), we hav«he
afore-mentioned S(c) as follows:

e
——E

(3Xp)' N

and for high frequency Geld E& cos~t,

( oos ) i 1 eEo
kT,=] l.+ --

(N'X') (3Xp)' N V2

(7.8)

(7.9)

=4~N pc f(eo)codes,
C

where f(co) is velocity-distribution function of electrons.
Now again expecting the Maxwellian distribution

t' me ) I' m
f A expj —— [, A=%I — [, P.4)

2kT, ) (2s.kT.)

we can show the self-consistency of this expectation.
In this case

kT,
5(e) =4~N p e'f,

and we see in fact that f&oi given by (7.4) satisfies
(7.2), provided that the electron temperature satisfies
the equation

P m
3N'—(kT.)'+3Ãlt—(kT,—k T)

3 dkT,+- = mN'X
) (c)A, (

'. (7.6)
2 dt

When the frequency is so large that oi/1VX&)1, holds the
relation

k T,= (eEo/o)42) (X/3 p) i,

which is independent of gas density but depends on the
ratio of the. elastic and the exciting cross sections.

8. Nature of Ionized Gases

We are dealing from the outset with gases in which
the number-density of charged particles is much smaller
than that of gas molecules, e(&X. Even in these cases,
if the density of charged particles grows to a certain
amount, we cannot neglect their mutual interactions.
These interactions are the long-range force of Coulomb
which does not allow us to use the notion of collision
cross section, and they are usually taken into account
by considering the Geld of space charge.

An ionized gas in which positive and negative charges
balance each other is called plasma In this se.ction we
derive the well-known qualities of the plasma made of
electrons and positive ions by means of our molecular
model.

Since the mobility of ions is much smaller than that of
electrons, current in plasma, on which an electric field
is imposed, is mainly a result of electrons. Electric con-

We have, therefore, the theorem; if the cross section of
the gas molecule for elastic collisions is inversely pro-
portional to the electron speed, and if its effective cross
section for excitation is expressed by (7.3), the electron
velocity is described by the Maxwellian distribution
whose center is the drift velocity (c)A„given by (6.2)
and whose temperature T, is given by (7.6).

The electron temperature determined by (7.6) be-
comes nearly constant in case of static or sufBciently
high frequency field. In these cases and when the elec-
tron temperature is so high that the excitations occur

Q (c.,c.)

FIG. 7. Total cross
section of excitation.
The abscissa shows
electron speed. Full
line —real values.
Dotted line—for the
model (7.3).
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ductivity, therefore, is equal to the product of the
electron charge e, the number-density of electrons e,
and the electronic mobility E,—i.e.,

eeE.

For our molecular model the mobility is E=e/mÃX in-

dependently of the Geld strength. Ke have, therefore,
Ohm's law.

In a high frequency field, E„ the dielectric constant, e,
of plasma is defined by

eE= E+4wP.

Here P is the electric polarization which, neglecting the
motion of ions, is expressed by

P=scr,

/I
VL

I I 2
e

r being displacement of electrons caused by the Geld.
In case

E= Ee exp(jcet),

the displacement is

1 e
r~

j(0 tm 8)+j(o

Ke have, therefore,

ne'4x
c= 1+—

joe m(Ãh+j a))

ne'
= j.—4m.

m(te' —jr' X)

then
Coo =4llmc /tw;

c= 1—top'/(co' —jreÃX).

(8.1)

(8.2)

~0 is usually called the angular frequency of plasma-
oscillation; it may not be reasonable, however, to
associate with it a mechanical proper oscillation.

9. Ionization by Collision with Electron

The gas molecule can be deprived of its electrons by
encountering with other electrons and change into a
positive ion. This process is termed ionization by colli-
sion. In this case, a certain amount of work is necessary
to deprive a molecule of an electron and change it into

IIL IONIZATION BY COLLISION

In this part we investigate the ionization by collision,
most important among electron-generating processes,
on the basis of a suitable molecular model. Since the
processes of ionization and electron capture have, in
general, no remarkable inQuence upon the velocity dis-
tribution, these processes can be treated as a kind of
perturbation added to the processes mentioned in the
preceding sections.

FIG. 8. Effective cross section for ionization. Full line —observed.
Dotted line —for the model (9.1).

o (c'—cP)&/c;c' (c)c;)
(9.1)

which is a good representation of the actual quantity in
the low energy region, Fig. 8. Here 0. is a molecular
constant with the dimension of area, and mcP/2 is
the ionization energy. c; may be determined by equat-
ing mc2/2 directly to the actual value eV;. But it is
more adequate to fix c; and o so that the model (1) may
coincide with the actual form as closely as possible. The
values' of 0 and c; determined in this manner are listed
in Table II.

Since a few electrons with exceptionally large energies
usually take the main part of ionization, we may con-
sider that the velocity distribution of electrons is not

~These values are determined as follows: Making use of
Table I we take c;=0.8(2eV;/m)&, and fix e eo that Q=Q
for v=0.9(2eV /m)&.

a positive monovalent ion. This amount of work is called
the ionization energy or, being expressed in terms of
electon-volts the ionization potential of the molecule.
For a gas molecule to be ionized by collision with an
electron, the electron must obviously have possessed
kinetic energy larger than the ionization energy.

Denoting by Q the effective cross section of a mole-
cule for the process of collision-ionization, we can plot
the variation of Q es electron energy xmc' or the ac-
celerating voltage V of the electron as shown by the full
line in Fig. 8. Q vanishes below the ionization voltage V;,
takes maximum Q for a voltage V several times
greater than V;, and tends to decrease for the larger
electronic energy. For some important gas molecules,
the values of V;, V, and Q are given in Table I.
In the phenomena of electrical discharge the mean
energy of electrons is usually much smaller than the
energy corresponding to the maximum of Q. Taking
this fact into account, we adopt the following model of
the effective cross section,



TARO KI HARA

TABLE I. Molecular constants for ionization by collision.

He
¹

A
Hg
H2
¹

02
CH4

Vs volt

24.5
21.7
15.7
10.4
15.6
15.5
12.5
14.5

V~ volt

112
174
88
85
68

102
118
80

0.355
0.849
3.66
5.46
1.02
2.90
2.93
2.28

Reference

P. T, Smith, Phys. Rev. 30, 1293 (1930).
b P. T. Smith, Phys. Rev. 3'F, SOS (1931).
o J. T. Tate and P. T. Smith, Phys. Rev. 39, 270 (1932).
& A. L. Hughes and E. Klein, Phys. Rev. 23, 4SO (1924).

ns q
&

- nzcs-

f n( ) exp
(2~~x,) 2ur,

' (9 2)

the relative rate of increase v in the electron density e
is given by

1dn t" f
Q

—4orc'dc
s 4 4ci 'S

disturbed by the ionization process. When the velocity-
distribution is Maxwellian as derived in the preceding
Part II,—i.e., when

Under constant temperature the density of the gas
molecule, X, is proportional to the pressure of the gas
I'. For instance, at O'C, measuring I' in mm of Hg,

N/P=3. 55X10' 1/cm mm of Hg. (9.6)

In this case the Townsend coeKcient e is expressed
in the form

a =A oP exp( —BoP/E), (9.7)

where Ao and Bo are molecular constants independent
of pressure and electric Geld (at O'C or room tempera-
ture), namely,

N o (3lti"* Nmcs
&o=

~ ~, Bo= (3X—p) '. (9.8)
Pc;Ep) P 2e

According to (9.7), the variation of a/P es E/P is
shown by the dotted line in Fig. 9. The model we have
assumed for the efFective cross section for ionization is
too large in the region of large electron energy. The a
derived from this model, therefore, is presumed to be
too large for large values of E/P. In fact, in the region

30- kT,=S— exp-
c; m 2kT,

(9 3)

18Ã v
tX— E=

EEn dh EE
(9.4)

a is called Torcnsend coscient Whe'n the m. olecules are
ionized, the exciting collisions occur frequently enough
in ordinary cases. Therefore, the electron temperature
is given by (7.8), from which; we have

o. 13lti & N wc'
a=N—

(
—

( exp —— (3ltp)& .
c;Ep) E 2e

(9.5)

TABLE II. Four molecular constants.

He
He
A
Hg
N2
CH4

cg&(10 &

cm/sec

2.35
2.22
1.89
1.89
1.87
1.81

o )(10&6
cm2

0.20
0.31
1.74
0.59
1.23
1.1

X )(108
cm'/sec

2.0

7.8
5.5

16.5
16.7

p )(102&
cm sec

0.14
0.20
1.35
0.81
1.80
1.63

The coefBcient of collision-ionization per unit time, v,

is not only proportional to the number-density of the
gas molecules Ã but also a function of the electron
temperature T,.

Next, suppose the electrons move with a constant
drift velocity EE under the influence of a uniform elec-
trostatic Geld E. Take the s axis in the direction of
field and designate the relative increase of the current
density per unit length, (1/i)di/ds, by a, then we have

Fro. 9. Townsend coetlicient (qua!itative). Full line~bserved.
Dotted line—for the formula (9.7}.

of exceedingly large E/P the decrease in a beyond the
maximum has been observed as shown by the full line
in Fig. 9.

Anyway, the Townsend coe%cient 0. is suKciently
approximated by the formula (9.7) in the greater part of
the region signiGcant to discharge phenomena. Equa-
tion (9.7) is a semi-empirical formula which has been
widely used for a long time.

The values of A() and Bo at O'C are given in Table III.
These values substituted into (9.7) show good agree-
ment with the experiment in the region of electric Geld
Bo/2 ~E/P ~2Bo.

With these values, together with the already axed
constants c; and cr, we' can determine the other two
molecular constants X and p. The results of this estima-
tion are given in Table II.

The value of ) determined in 6 from the drift velocity
of electrons in hydrogen is 7.7X10 ' cm'/sec, which is
in rather sufhcient agreement with the value in the
table, 5.5X10 ' cm'/sec.

IV. DIELECTRIC BREAKDOWN

In the preceding parts we have laid the foundation
for investigating discharge phenomena from the molecu-
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lar point of view. In Part IV, therefore, we are concerned
with the dielectric breakdown of the low pressure gas
in a homogeneous electric Geld. In order to discern the
characteristics of the phenomena, we may separately
deal with three types of electric Geld distinguished by
the frequency: namely, microwave of suKciently large
frequency, ordinary radiowave of several Mc, and
static or quasi-static field.

He
Ne
A
Hg
N2
CH4

Ap
lcm mm Hg

2.0
4.0

13.6
5.0

12.4
12.0

Bp
volt/cm mm Hg

50
80

200
130
340
300

TABLE III. CoeiI&ciente in i9.7l.

Reference

IO. Dielectric Breakdown by Microwave

Suppose a microwave field be imposed on a low pres-
sure gas between two parallel plates which are at the
dist', nce L apart. We assume that the area of the plates
is large enough in comparison with L to justify the one-
dimensional treatment of this problem. Furthermore
the wavelength of the electric Geld is assumed to be
much longer than L. Take the origin of the coordinate
at the center of the gap and let the z axis be perpendicu-
lar to the plates.

In the gas between the plates, the number of electrons
is increased by collision-ionization and decreased by
diffusion. If we disregard the other effects for the
present, the rate of increase in the number-density is
given by

Be/Bt= ve+
i
DB2n/Bs'i

&
(10.1)

where D is the diffusion-coe%cient and v the relative
rate of increase in e by collision-ionization. D is in-
versely, and s is directly proportional to the number-
density of gas molecules E. It may be reasonable to
suppose that e(s, t) vanishes on the plates s= +L/2.

Unless the density or the pressure I' is exceedingly
low, v and D vary with 8 as shown in Fig. 10. That is
to say, the collision ionization rarely occurs for a weak
Geld; when the electric field reaches a certain strength,
however, it supercedes the diBusion eGect, resulting
in the discontinuous increase in the electron density
between the plates. This phenomenon is called dielec-
tric breakdown. At the critical voltage —the breakdown
voltage —Be/Bt =0, i.e.,

8 fl
vn+D =0, (e= 0 at s= WL/2) (10.2).

az2

The lowest eigenvalue is given by

(L/m)'v = D,

for which we have the distribution

e=n& cos(ns/L),

(10.3)

(10.4)

where eo is the electron density at z= 0.
In the ideal case like (10.1), no electron density ap-

pears below the breakdown voltage. If ionizing agents
like x-ray are irradiated from the outside, however,
some electron density appears even 'below the break-
down voltage. Let 6 be the number of electrons created
per unit volume and per unit time by such external

agents. Then the rate of increase in e is given by

Be/Bt=G+ve+
i
DB'e/Bs'i. (10.5)

For the distribution of m in the stationary state we have

G (cos(v/D)Is q L (v i I
0=—

]
—

I
&-. (10.|)

v E cos J 24D) 2

The value of e at the center is estimated by

Gt 1

v EcosO
(10.7)

The relation of eo to the field strength 8 is shown oo
Fig. 11(a).

In view of (10.6) n increases with the voltage, and
becomes infinitely large when O~= ~/2, in dicating the
occurrence of dielectric breakdown. Actually a certain
finite electron density is sufficient to cause the dielectric
breakdown. This can be interpreted as described in the
following in which account is taken of the inRuence of
space charge.

When electrons are created by ionization, positive
ions are brought forth at the same time. These ions,
however, are diGused very slowly because of their large
inertia, and. remain within the gap as space charge.
This positive space charge exerts Coulomb force on
electrons and deters them from diffusing. Being affected
by the space charge, therefore, the relation between the
electron density and the field strength becomes as
shown in Fig. 11(b). In this case the maximum field is
the breakdown Geld which corresponds to a certain
value of 0 below m/2. The breakdown field correspond-
ing to 0'=s/2 in (10.3) is the value at the limit when
the external ionization effect vanishes.

FIG. 10. Collision-ion-
ization coeKcient and
diBusion coefBcient vs
electric field.

a M. J. Druyvesteyn and F. M. Penning, Revs. Modern Phys. 12, 99
(1940), Table I.

b A. v. Engel and M. Steenbeck, Plektrische Gasentladungem I (1932),
Table 15.

o M. E. Rose and W. E. Ramsey, Phys. Rev. 61, 199 (1942).
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(ai

the gap length, and L/&r, the ratio of tbe gap length to
the wavelength; we get from (10.9)

&pP (CrL/&)' »

1+ ) ~

= 2 in(A, PL),
E &W,PL&

(10.10)

FIG. 11.Electron density vs electric Geld.

Since in our molecular model the diBusion coe%cient
D is given by

D= f T,E:/e= I r,/~Nl

and the coefFicient of collision ionization v by

3/0 kT, mc~
v= exp

c, m 2kT,

the condition of breakdown (10.3) is written in the form

where Bp is the constant (9.8) involved in the Townsend
coefficient 0. , A» and t."» are given by

A, = (N/P~)(3~7/c;)», C,= (~& /~)(3~/Xc, )». (10.11)

The relation (10.10) is shown in Figs. 12 and 13. In
the latter the ordinate shows the breakdown voltage.

By means of the molecular constants given by Table
II in 9, we can calculate A» and C», the results being
shown in Table IV (Cp is a constant necessary in 11).

The full lines in Fig. 14 are the results observed by
MacDonald-Brown" for the dielectric breakdown of
H2 in an electric 6eld of 10-cm wavelength. If we take
Bp = 172 volt/cm mrn Hg, Ar ——5.0 1/cm. mm Hg, and
Cr =377 as the constants in Eq. (10.10) so that we may
obtain a result as close as possible to the experiment, we

A
Bo

/00 "

exp
2kT,

proc/ 3oX ~1UL) '

c; (w) (10.8)

With the relation (7.9) between the electron tempera-
ture T, and the amplitude of the electric 6eld Eo, we
know the functional form of Ep/N in terms of NL and
pp/N. That is,

N rhpcP ( pp' ) '* 3o.X tt'NL) ''
(3X&)»~ 1+

E 2e E N'X'& c;

(E=Ep/v2). (10.9)
F»G. 13. Breakdown voltage for microwave.

It is often more convenient to express the breakdown
6eld E in terms of PL, the product of the pressure and

lpI

o. J .-

obtain curves expressed by dotted lines in Fig. 14.
There is no great discrepancy between these constants
and A» and C» given in Table IV.

In the low pressure region, the theoretical and the
experimental curves show remarkable discrepancy. The
reason may be as follows: for the availability of ordi-
nary notions in the kinetic theory of gases, especially
the notion of diGusion, it is necessary that the mean
free path of the particle is short enough in comparison
with the gap length; this condition does not hold for
extremely low pressures. In fact the mean free path of
the electron with ionization energy is nearly equal to
c;/NX= 0.1/P cm/mm Hg in hydrogen gas.

11. Dielectric Breakdown for Radiofrequency Field

0.0 I
l

I s i ~ ~ I

l0 l00

Fro. 12. Breakdown Geld for microwave (10.10).

tOOO

As in the preceding section, we treat the dielectric
breakdown of low pressure gas by high frequency 6eld
between parallel plate electrodes. In this section we
assume that the angular frequency or satis6es the con-

'0A. D. MacDonald and S. C. Brown, Phys. Rev. 76, 1634
(&949).
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dition,
m/mr« pp/XX«1.

&- v. vote

For such a frequency, we must take into account the
periodic mass-motion of electrons caused by the Geld.
Hence, the equation to be satis6ed by the electron
density e is expressed in the form

H, h=l0 ~

BR 8 's Bfl—= vrs+D KE——p cosppt —,
Bt 832 82'

(11.2)

where KEp cosrpt is the drift velocity of electrons. Just
as in the foregoing case, we have the boundary condition
for ps(z, t)

n(aL/2, t) =0. (11.3)

The breakdown 6eld can be derived from the condition
that (11.2) should have a solution periodic in time.

Since the drift velocity is usually larger than the
diffusion velocity, the electrons in the periodic so1ution
move to and fro as a whole as shown in Fig. 15. In the

10

PL m~$ c~

FIG. 14. Dielectric breakdown of hydrogen for microwave.
Wavelength 4=10 cm. V is the effective (rms) value of break-
down voltage.

He
Ne
A
HQ
N2
CI44

Ai
1/cm mm Hg

0.81
1.53
5.2
2.5
6.5
6.2

Ci

210
190
360
250
210
200

Ce

530
730
520
560
660
750

TABLE IV. Coefficients in {10.10) and {11.8).

eE
f r.= (E=E,/K2).

E(3Xp)&
(11.6)

We get, therefore,

corresponding to (10.8). The electron temperature T,
is given, from (7.9) and (11.1), by

analytical expression hoMs

g mC2

exp — (3Xp)i =
E 2e

3~X ~ JV Ly '
p 2eE, q

'

c; E pr ) 0 m)I'LL)

AS'

Rp cos
L 2KEp/cv—

Z&p
for /z'f &—

2 07

L EEp L
for — & iz'i &—,

2 co 2

where z'—=z—(KEp/a&) sinppt. Then, to obtain the condi-
tion of breakdown we may replace L in (10.3) by L
minus the amplitude of the mass-vibration of electrons,

~~/2 2KEp
L— EEp cosortdt= L——

which indicates the functional form of E/N in terms of
EL and coL. With regard to the pressure I' and the
wavelength A we have

B,P p E/BpP~
exp =AtPL~ 1—

2E E C,L/~)
'

Hence, we have

1 ( 2KEp)' r

pr' 4 rp ) D

FIG. 15. Mass-vibra-

(114) tion of electrons in a
radiofrequency Geld.

The explicit form for our molecular model is given in
the form

t mc;s q 3oX plVLy't 2KEpq'
exp/—

&2kT'.) c, l. ~ ) I ~L )
(K= e/ lVmX), (11.5)
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10:
- Be'P age in this region is known to be approximately equal

to the static breakdown voltage.

12. Dielectric Breakdown for Static Field

For high frequency electric fields the breakdown takes
place when collision-ionization supplies sufficient elec-
trons to cancel the dissipation by diffusion. In case of
electrostatic field, however, electrons created by ioniza-
tion in the gas are carried away by the field itself.
We must, therefore, consider a secondary electron-
creating mechanism besides the collision-ionization in
order to understand the dielectric breakdown. This role
is usually played by the electron emission taking place
when the positive ions created in the gas hit upon the
cathode.

Assume that the voltage V=EL is imposed on parallel
plates electrodes with gap length L. Then one electron
emitted from the cathode ionizes the gas molecule and
increases in number to exp(uL) until it reaches the
anode. Since the number of the positive ions thus created
is exp(nL) —1, the breakdown takes place for the Town-

A, PL
o.l

I

FIG. 16. Breakdown fields of radiowave frequency, (11.8}.

where Bs and At are the coristants in (10.10) and Cs is
given by

coL 1(X)&
c,=

W2 cP (3p)
(11.9)

The numerical values can be calculated by means of the
constants in Table II; the results are contained in
Table IV. Figures 16 and 17 illustrate the relation (11.8).

The full lines in Fig. 18 show the experimental results
of Githens" for the breakdown voltage V=EL of
hydrogen in an electric 6eld of several Mc frequency.
The dotted lines are der!ved from the formula (11.8)
with the constants Be=105 volt/cm mm Hg, At ——2.54
1/cm mm Hg, and Cs ——1800. The constants have been
6xed in such a way that (11.8) is in agreement with the
experimental results as closely as possible. The com-
parison of these three values to Bo in Table III, A~ and
C2 in Table IV reveals that the diGerence in C2 is large.
It may be said, however, that we have roughly explained
the discharge phenomena by means of the mechanism
considered in this section.

The experimental curves for various frequencies show
conspicuous discrepancy with theoretical curves in the
region of small I'L. It is because in the foregoing treat-
ment we have not taken into account the eGect of
electron emission from the electrode (the 7-effect to be
mentioned later) which takes an essential part in the
low I'L region. The peak value of the breakdown vo-

V
mt t

+00

f00

$00

100I S 6 f /0 20 30

I"zo. 18. Breakdown voltage of hydrogen for field of radiowave
frequency. Gap I.= 1.05 cm. V is the rms value of the voltage.

send coeKcient given by

y[exp(tsL) —1i= 1 (12.1)

where we denote by p the number of electrons liberated
on the cathode by one positive ion; i.e., the breakdown
condition is given by

e!L= I', where I' =ln(1+ y)/y. (12.2)

A PL

FIG. 1'l. Breakdown voltage for radiowave frequency.

lt
Such an electron-creating process is called y-eAect.

The mechanism of this process, however, is rather com-
plicated; for the electron emission from the cathode hit
by ultraviolet photons and excited molecules in meta-
stable states are likely to participate to a great extent
besides the eGect of the collision of positive ions. Since
these eKects are apparently involved in y-eGect, the
estimation of y from the molecular point of view is
diKcult.

In view of (12.2) we know that a change in y has no
considerable inhuence upon the breakdown voltage.
Hence, we may be able to regard p as a constant; in
fact, the breakdown voltage calculated with n given
by (9.7),

"„S.Githens, Phys. Rev. 57, 822 (1940).

/

V= BsPLDn(AsPL/I') j ', (12.3)



ELECYRrCAL DrSCHARGES rN GASES

has been known to be in good agreement vrith experi-
ment.

Figure 19 shows the relation {12.3). We note its re-
markable characteristics in the fact that the breakdown
voltage V has a minimum. By rewriting {12.2) as
Vo/Z= I'. , we can see that the existence of a minimum
in V corresponds to the existence of a maximum in n/K
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