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The general formula for the angular distribution in collisions between pairs of particles is simplified by per-
forming explicitly all sums over magnetic quantum numbers. The resulting expressions involve coefEcients
introduced by Racah for the study of complex atomic spectra. The cross sections are expressed as series in
Legendre polynomials, each coefficient in the series being manifestly real.

The general theory is then specialized for the case of nuclear reactions and scattering associated with one
isolated resonance level of the compound nucleus. Formulas are derived for the various differential reaction
cross sections and for scattering with and without change of channel spin. The interference terms between
resonance and potential scattering are written explicitly, both for neutral and for charged particles.

1. INTRODUCTION through 7, we apply these general expressions to the
special case of reactions and elastic scattering from a
single isolated resonance level of the compound nucleus.
The Racah coefFicients, and the associated coefFicients
used in this paper (see Eq. 4.3), are described in an
accompanying paper, f which contains, in addition, a
summary of the relevant properties of these coefficients.

HE general expression for the differential scatter-
ing or reaction cross sections for an unpolarized

beam in terms of the scattering matrix has been given
in the literature. ' However, the practical evaluation of
this expression runs into difFiculties as soon as some of
the particles involved have intrinsic spins. In that case,
we must average over the spin directions of the incident
particles and sum over the spiri directions of the out-
goig. g particles. The resulting sums over Clebsch-
Gordan (vector addition) coefficients are quite tedious
to evaluate directly. However, all sums over magnetic
quantum numbers are essentially geometrical in char-
acter and can therefore be performed without any
detailed knowledge of the particular collision process
(of the elements of the scattering matrix). We have ob-
tained. explicit expressions for the scattering and reac-
tion cross sections free of all sums over magnetic quan-
tum numbers. These explicit forms have the additional
advantage that they express the cross sections directly
as sums of Legendre polynomials, with coefFicients that
are manifestly real numbers.

In Sec. 2 of this paper we illustrate the method b
application to a very simple problem: the elasti
scattering of a single spinless particle by a center o
force. Sections 3 and 4 are devoted to the derivation o
the general result, applicable to all scattering and reac
tion processes of particles of arbitrary spins. In Secs.

2. ELASTIC SCATTERING OF A SPINLESS PARTICLE
BY A CENTER OF FORCE

The expression for the diGerential cross section do- for
scattering into the solid ang'le element dQ at an angle 0
to the incident beam is well known

~a= (f(0) ~

sdn, (2.1)

where the scattering amplitude f(0) is a complex func-
tion depending upon a set of real parameters 8 called
phaseshifts:

f(0)=i(rr) &X p (2/+ 1)&(1—e"s') 7't, s(e), (2.2)
l=o

*Now at Yale University, New Haven, Connecticut.' E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947), see
Eqs. (33), (35), and (42); L. Eisenbud, J. Franklin Inst. 251, 231
(1951). See also: L. Diesendruck, thesis, The Johns Hopkins
University (1950); D. R. Inglis, Phys. Rev. 74, 21 (1948); 76,
1319 (1949);E. Gerjuoy, 'Phys. Rev. 58, 503 (1940); C. L. Critch-
field and E.Teller, Phys. Rev. 60,'10 (1941) E.Eisner, Phys. Rev.
65, 85 (1944); F. Bloch, Phys. Rev. 58, 829 (1940); G. Breit and
B. T. Darling, Phys. Rev. 71, 402 (1947); W. Hauser and H.
Feshbach, Phys. Rev. 87, 366 (1952); L. Wolfenstein, Phys. Rev.
82, 690 (1951).

where K=X/2'=/'t ' is the deBroglie wavelength (di-
vided by 2s) of the incident particles and Fi s(8) is the
normalized spherical harmonic defined as in Condon

f and Shortley. '
While (2.1) and (2.2) give an explicit expression for

5 the scattering cross section, it is tedious to compare
directly with experiment because the absolute square of
an infinite sum must be evaluated for each scattering
angle 0. It would be more convenient to have a formula

t'Biedenharn, Blatt, and Rose, Revs. Modern Phys. 24, 248
(1952); references to this paper will be designated by BBR.

~N. F. Mott and H. S. W. Massey, The Theory of Atomic
Collisions (Oxford University Press, London, England, 1933),
Chapter II.' E. U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, Cambridge, England, 1935).
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SCATTERI NG AND REACTION CROSS SECTIONS 259

which contains only real terms with simple angular
dependences. To get such a formula, we write

~
f(8)~'

= f*(8)f(8) and use the fact that a product of two
spherical harmonics can be expressed (like any other
function of 8 and @) as a linear superposition of spherical
harmonics:

i+i' r (2l+1)(2/'+1) l

=( )" Z Z
47r(2L+ 1)

X (/l'00' ll'LO) (/l', —m, m'i l/'LM) &r,M(8, P), (2.3)

where (ll'mm'~ //'LM) are the Clebsch-Gordan (vector-
addition) coefficients defined as in Condon and Short-
ley. ' The sum over 3f is actually unnecessary since the
only nonzero term is the one with M=m' —m. It is
sometimes useful to retain the sum over M for formal
reasons, Using (2.3) we get the following expression
for the cross section:

do'=)1 g BzPr, (cos8)dQ,
L=O

(2 4)

where Pz, (cos8) is the usual Legendre polynomial, and

Br,—P(2/1 1)'I (//00—~//LO) j' sin'bi
L 0

+2+
L=O

l+L

(l +I,' —I.=even)

(2l+ 1)(2/'+ 1)

XL(//'00~//'LO)j'sinbi sinai cos(bi —bi). (2.6)

We conclude this section by pointing out that the
usual formula for the total cross section is contained in

' G. Racah, Phys, Rev. 61, 186 (1942); 62, 438 (1942).

Br,= Q Q (2/+ 1)(2l'+ 1)L(//'00
~
//'LO) $'

l=o l'=) l—L)

gsinbi sinb~ cos(bi —bt ). (2.5)

Expression (2.4) is directly comparable to experiment.
The coeKcients BL can be determined by straight-
forward analysis of the data. All quantities in (2.4) and
(2.5) are manifestly real. A simple explicit formula for
the Clebsch-Gordan coefficients (//'00~//'LO) has been
given by Racah. ' (This formula is reproduced in BBR,
Eq. 5.) We remark here that this Clebsch-Gordan
coefficient vanishes unless l+l' —L is an even number.
This is a consequence of the conservation of parity.
This selection rule reduces the number of terms in
(2.5) by about a factor of two.

For practical computations, (2.5) should be con-
tracted so that each separate term appears only once in
the sum (in the form stated so far, the terms l=a,
P=b and l=b, /'=a give identical contributions). The
result is

(2.4), namely, it is given by the term with L=0:
o =4wX'Bo. (2 '/)

The usual formula follows directly from (2.6) and the
relation

(//'00'//'00) =alii (—)'(2l+1) &.

3. NOTATION AND GENERAL EXPRESSION
FOR THE CROSS SECTION

(2 g)

We now drop the assumption of pure elastic scatter-
ing as well as the assumption of spinless particles. We
consider the reaction

(3 1)

in which particle a collides with nucleus X. After the
collision, particle b emerges at an angle 0 to the direc-
tion of the beam, the recoil nucleus I" being projected
in the opposite direction. All quantities are measured
in the center-of-gravity system. We use the language
of nuclear reactions for the sake of convenience only.
The formulas derived below are app/icab/e to any co//ision

process in which two particles collide and two particles
emerge.

The system before the collision is described by three
numbers: the channel index n, the channel spin s, and
the orbital angular momentum (in the center-of-
gravity system) l. The channel index a defines the type
of the incoming particle (neutron, proton, n-particle,
etc.) and the state of the struck nucleus (usually the
ground state). The channel spin s' is the total spin
angular momentum in the channel; it is formed by
vector addition of the intrinsic spin i of the incoming
particle and the spin I of the struck nucleus. For neu-
tron-proton scattering, i=I= ~~, and s=1 for triplet
state scattering, s=o for singlet state scattering. The
observed scattering cross section is the weighted average
of the cross sections for pure triplet and pure singlet
scattering. The expressions derived below are for "pure"
collisions in which both the initial channel spin s and the
final channel spin s' are known; (e.g. , s=s'=1 corre-
sponds to pure triplet scattering in the neutron-proton
case). These expressions must therefore still be aver-
aged over the possible incident channel spins s and
summed over the possible out-going channel spins s',
both with the proper statistical weights, in order to ob-
tain quantities comparable to experiment. These fur-
ther sums are not geometrical in character but depend
upon the dynamics of the collision process; e.g., the
phase shifts for neutron-proton scattering in the singlet
and triplet states are not related, in general, but must
be found separately from the force laws for these two
spin states. ' Thus, the geometrical (group theoretical)

~This quantity is called j, by Wigner and Eisenbud; their"s" includes both of our 0. and s.' One gets tremendous simplifications, of course, if one assumes
that the dynamics of the collision is independent of the intrinsic
spins of the incoming particle and struck nucleus. This assump-
tion is, however, quite unjustiled in general: in neutron-proton
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methods used here do not lead to simplifications for
the average over s and sum over s'.

The state of the system after the collision is described
by the channel coordinate ct' (which includes specifica-
tion of the outgoing particle and of the quantum state
of the residual nucleus), the channel spin s' (which is
formed by vector addition of the intrinsic spin i' of
the outgoing particle and of the spin I' of the residual
nucleus in whatever quantum state it is left), and the
,outgoing orbita1 angular momentum /'.

The angular'momenta s and $ combine to form the
total angular momentum J of the system; in resonance
reactions, this J is the angular momentum of the com-
pound nucleus; J is preserved during the collision,
so that s' and l' combine to give the same J. Similarly,
the parity is conserved. We shall not write the index m.

for the parity explicitly until later on.
We now introduce theprobability amplitude S

for a collision with total angular momentum J from
channel O,sl into channel 0,'s'l'. This quantity is often
referred to as an element of the scattering matrix. ' For
reactions with only one possible channel (i.e., pure
elastic scattering) S is related to the phase shift 8

through 5= exp(2ih). In general, for a reaction with E
open channels 5 is an E-by-E matrix which must be
unitary and symmetric, An example is neutron-proton
scattering with tensor forces in the state with J= 1 and
even parity, for which two channels are open: the 'S&

state and the 'D~ state. In terms of our formalism,
0.= 0.', s=s'=1, and l as well as l' can take two values,
0 and 2; thus, S is a 2-by-2 matrix, whose matrix ele-
ments are the probability amplitudes for 'S&-to-'5&,
'D~-to-'D~, 'Si-to-'Di, and 'D~-to-'S~ collisions, re-
spectively; the last two matrix elements are equal, by
reciprocity. All matrix elements are functions of the
energy 8 of the collision.

Since the general expression for the cross section in
terms of the scattering matrix is not given in standard
treatments of quantum mechanics, we include the main
steps of the derivation here. The first step consists in
defirsissg the scattenssg rrsatrix itself. To do this, we re-
strict ourselves for the moment to one d.efinite value of
the total angular momentum J and its s component
J,=M. At any one energy E, the channel wave number
k and the relative speed v in each channel n are given
by the energetics of the reaction. We consider only
those channels a which are "open" at the energy in

scattering the basic force is spin-dependent, while in resonance
reactions the system may go through a resonance in one spin
state s, and be nonresonant at the same energy in another spin
state.

~ Our SJ is practically the same as the uJ of Wigner and Kisen-
bud; the precise relation is

Sa'e'l', asl =& usl;s'l'J—'l+/' J
where their "s"stands for our a and s combined. The factor P+'
occurs because their standard wave functions go asymptotically
(for large r) like exp(&ikr) whereas we use standard forms which
behave asymptotically like expL&i(kr ——',ls) j. Our choice has
the advantage that the scattering mstrix for no events at all is
given by S=&a'a&s's&)')-

question, i.e., for which k is rea1. Let 4, be the product
of the wave function of the nucleus X and the particle
u, both in the quantum states appropriate to the speci-
fication n, s. We define the spin- and angle-dependence
of a wave function with total angular momentum J, z
component thereof J,=3f, orbital angular momentum
I, and spin angular momentum s, by'

l s

~L—t ms—s

(3.2)

This expression is a function of the angular coordinates
(), @ as well as of the spin coordinates which appear in
the spin function ys, m, .

In terms of these definitions, the most general wave
function in channel o, , s with total angular momentum
quantum numbers J, 3f consists of the superposition of
an ingoing and outgoing spherical wave, each with
spin-angle-dependence (3.2). At suRiciently large dis-
tances, we can write

&& (A „(~~expL —s(k r ——',l7r))

B,t ~ exp—L+i(k r —tsar))}. (3 3)

The coefficients A, ~J~ and B,~J~ are not inde-
pendent of each other. Rather, if the amplitudes of the
ingoing waves are known, the amplitudes of the out-
going waves are determined uniquely by the wave
equation. The relation between them defines the
scakterirIg mo,tris:

B~., ( =Q P Q S;) ~,) A~, i
a s l

(3.4)

Notice that the factor ge in (3.3) is different in differ-
ent channels n. Because of it, the coeScients A and 8
correspond to amplitudes of probability Rux, rather than
amplitudes of probability density. With these defini-
tions, S is a unitary matrix (to.conserve the normaliza-
tion of the wave function in time) as well as symmetric
(reciprocity theorem). We also observe that the coeK-
cients S in (3.4) are independent of M. This is neces-
sary because di6erent values of M can be obtained by
simple rotation of the coordinate system, an operation
which cannot affect the dynamics of the collision.

The next step consists in the decompositi art of a pearse
mace. The incident wave in channel 0, , s is given by
exp(ik s )xs, m O' . We may assume one definite spin
orientation m, even though all spin orientations are
contained in the usual beam, because different values of
m, lead to irlcohereet contributions. This can be seen

s The Clebsch-Gordan coeflicients (tsm~m,
~

isJM) vanish unless
mg+m, =M. Hence one of the two sums in (3.2) is purely formal.
It is a considerable convenience in the later work, however, to
carry along these formal sums, and we shall do so from now on.
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by observing that the spin direction m, can be measured
(e.g., by a Stern-Gerlach experiment) without inter-
fering with the plane wave character of the beam. On
the other hand, contributions of terms with different
values of / are coherent and cannot be separated from
each other without destroying the plane wave nature
of the beam. We now write

(sr)~
exp(iks)y. . .= (4s)& g P(2l+1)&~

l=O (Zkr)

Ji„)(kr)Fi, p( 8)y s, m, (3.5)

l+a J
Yt, p(8) xs, m, —— Q Q (ls0m,

~

lsJ M) 'JJzi. . (3.6)
J=il—ai M J

Using the asymptotic forms of the Bessel functions
Ji+y for large values of kr (kr&)l) we get the following
expression for the plane wave in channel n, s with spin
direction given by m, :

exp(ik s.)xs, m, C.,

+=+inc++ress& (3.10)

where 4&, is given by (3.7). We now combine (3.7),
(3.9), and (3.3) to obtain the usymPtotic form (for large
r) of 4'„„in channel a', s'.

(&rva) ~ 1
e „.,(~ s') =it. ] ~

—C„...
En.. 3 r..

"'

xg
J=O M=J l I J—s) l'=I J—s'(

X (ls0m,
~

lsJM)i'(2l+ 1) '*

Xexp[+i(k r —-', l'x-) j
X( 8'aalu' &sl8' t ~ ' als'' las) g Jvs' (3~ 11)

the entrance channel n, s itself. There we have both
ingoing and outgoing spherical waves. For the purpose
of investigating reaction and scattering cross sections,
we are interested only in that part of the wave function
4 which is due to the occurrence of the reaction; i.e.,
we write

~ara J=O M~J l~) J—8)

X (ls0m,
~

lsJM)i'(2l+ 1)&'Jjsi,~

X (exp[—i(k.r, ——',l&r) ]
—exp[+i(k r ——,'l&r) j). (3.7)

J+8
8 ...i.~~ it (n.s&

——)&
l=) J—s)

X (ls0m,
~

lsJM)i'(2l+ 1)&5, , „s. (3.9)

Notice that there is no sum over cs or s in (3.9). This
corresponds to the fact that there are no ingoing spheri-
cal waves in any channels other than the entrance
channel 0., s.

%'e now investigate the asymptotic form of the wave
function N of the system at energy E in the region of
con6guration space corresponding to channel a', s'.
For +', s' not equal to a, s the wave function corre-
sponds to outgoing waves with amplitudes proportional
to the corresponding matrix elements of the scattering
matrix. However, the behavior is more complicated in

Comparing (3.7) with the standard form (3.3), we see
that the amplitudes of the ingoing spherical waves are
given by

Aasi~~=it (srp )'(ls0m. ~lsJM)i'(21+1)&
in channel n, s,

JM 0
in other channels.

The amplitudes of the outgoing spherical waves are
then determined by (3.4), i.e.,

This expression would be sufFicient if the detector in
channel a', s' could be made to select the particular out-
going spherical wave with total angular momentum J,
s component thereof 3f, and orbital angular momentum
l'. Actually the common detectors select particles travel-
ing in a given direction 8, g. For the purposes of this
discussion, we shall assume, however, that the detector
is able to select particles corresponding to outgoing
channel spin s' and spin direction rn, (Sum.s over m,
and over s' will be performed later). We therefore use
(3.2) to decompose the spin-angle-function 'Qadi, ~ in
(3.11), and we write 0'„„(n's') in the form

t's& ) &exp(ik. r )e,...(~s)=it.
~

—
~

C....
('pa&)

Ila'
'sms;Iasm(s8&g) gs', ms~. (3.12)

s'

The quantity q defined by (3.2), (3.11), and (3.12)
can properly be called the reaction amplitude for the
reaction o.sm, —+o,"s'm, . q is given explicitly by formula
(3..14) below.

We are interested in the diGerential cross secti:on for
the process O.sm,—+0.'s'm, corresponding to known spin
directions m, and m, in the incident and outgoing
channels, respectively, for a collision in which the 6nal
particle emerges within the solid angle element dQ in
the direction 8, P with respect to the incident beam
(all angles, etc. , are measured in the center-of-gravity
system). This cross section can be expressed in terms of
the reaction amplitude pa's'm '; as m (8, &t&) for this
particular collision, as follows:

Jg a's'ms', asms= ta
~

ga's'ms'asm&(8& &l&)
~
, dQ& (3 13)
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where K =k ' is the de Broglie wavelength (divided
by 2s) of the relative motion in the incident channel n,
and where the reaction amplitude g for the collision is
related to the scattering matrix 5 as follows

oo J J+s J+s' L'

&-"'-."--.(8, e)= Z Z Z Z Z
J=O M=—J l=( J—8) l'=[ J—s') p, ' l'

Xi' 's—&(21+1)'* (ls0m,
~

lsJM) (l's'p'm, '~ l's'JM)

X(&..&".~«—S. "~', .~') I'i. (8i 0) (3 14)

have been discussed by many authors, " the paper of
Yang being prominent for its derivation of these rules
directly from symmetry considerations. While the sym-
metry considerations show that (3.15) can be simplified
considerably, the actual evaluation of this expression
has not been carried out so far, except for special cases."

~e can write (3.15) explicitly by performing the
operations indicated in (3.13) and (3.14), as follows:

~~- *;-=&-'(2s+1) ' Z Z 2 2 Z 2
J1 l1 l1' J2 ly,

Since the vector addition coeKcients vanish unless

m&+m, =M, the sums over M and p' in (3.14) are purely
formal, the only contributing term being the one with
M=m, and p'=M —m, '=m, —m, '. Nevertheless, it is
advantageous to keep these sums formally, for later
work. The collision amplitude q, and hence also the
cross section da., depend upon the angle p, since the
spin directions m, and m, ' are specified. The cross
section for the ns—&o.'s collision with an unpolarized
beam is obtained by averaging over the incident spin
directions m, and summing over the 6nal spin direc-
tions m, ':

8

do' '; = (2s+ 1) P P do '8'm '; sm . (3.15)
7738~8 ties =—8I

YVe shall show that this expression can be simplified
greatly by using sum rules for the Clebsch-Gordan
coefficients. Finally, the diGerential cross section for the
a~a' collision, without regard for the channel spins s
or s', is obtained by averaging over the possible values
of s and summing over the possible values of s':

Xs ' ~ s (8 «8, ,81r'ly Sa'8—'lr', a8l, ')

X (8a'aha'~mls'Is Sa—'s'ls';asls )

XE(Jill ll; J24 is' s s; 8) dQ, (4.1)

where E is a purely geometrical quantity which is
independent of the nature of the channels a, n' and
of the dynamical aspects of the collision process (inde-
pendent of the scattering matrix); E depends only
upon the indicated angular momentum quantum
numbers and upon the angle |II. In accordance with the
general theorems, E is independent of the angle P; it is
defined as follows:

E(Jy/1 /r ) 7212 12 ) s s I 8)

=(2l~+1)'(2ls+1)'~Z Z Z E Z 2
ms ~s' M1 M2 l41' ling'

X (lrs0m,
~
lrs JqM, ) (lss0m,

~
lssJsMs)

X (l, 's'pr'm, '~ lq's'JrMr) (ls s 1JQ pL
~ ls s JQMs)

1+i I'+i' 2s+1
da. ', = do. ,'..., (3.16)

=ir-'i "=tr'-"! (2I+1)(2i+1)

X I'll'~1'(80) 7/s'~s (8$). (4.2)

where I and i are the spins of the struck nucleus and
incident particle, I' and i' those of the residual nucleus
and outgoing particle, respectively, and the fraction
represents the statistical weight of the channel spin s.
As was mentioned before, the sum (3.16) cannot be sim-
plified by geometrical considerations. Thus, we shall
restrict ourselves to the difFerential cross section (3.15)
in what follows; it being understood that the sums (3.16)
must be performed on the final expression before com-
parison can be made with experiment.

4. REDUCTION OF THE DIFFERENTIAL
CROSS SECTION

It is apparent from symmetry considerations that
the sum (3.15) is essentially simpler than the individual
terms which enter into it. For example, the averaged
cross section (3.15) is independent of the angle g,
whereas the individual terms depend upon p. The
restrictions upon the difFerential cross section (3.15)

9 This follows directly from a comparison of (3.11) and (3.12),
using {3.2).

E can be reduced completely to an expression in-
volving no sums over magnetic quantum numbers.
The necessary formalism has been developed by Racah4
in connection with the theory of complex atomic spectra.

Introducing (2.3) into (4.2) gives a sum over seven
magnetic quantum numbers and over I.. These various
sums can be reduced by a sum rule of Racah (BBR,
Eq. (19)) which expresses sums of products of three
vector addition coeScients in terms of "Racah coeffi-
cients" 8' which depend upon 6 angular momentum
quantum numbers (none of which, however, has the
interpretation of a magnetic quantum number). After
substitution of (2.3) into (4.2), the sums over m, ', pr',
and p, 2' combine into a Racah sum. After performing
this sum, the sums over m„M j, and M2 again combine
into a Racah sum. The result of this second Racah sum

'0 R. D. Myers, Phys. Rev. 54, 361 (1938);E. Eisner and R. G.
Sachs, Phys. Rev. 72, 680 (1947);L. Wolfenstein and R. G. Sachs,
Phys. Rev. 73, 528 (1948); C. N. Yang, Phys. Rev. 74, 764 (1948).
The theorems were originally stated by E. Teller."The paper of Myers (reference 10) comes nearest to the present
work, but it is restricted from the outset to resonance reactions
and su6ers from the fact that no explicit expressions are given for
some of the coeKcients {similar to the W of Racah) which enter
the final expression.
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is proportional to the vector addition coeKcient
(/i/s00

~
/i/sLM). This coefticient vanishes unless M =0,

thereby eliminating the need for a summation over M.
This is of course the well-known result that the cross
sectiori for an unpolarized beam is independent of the
azimuthal angle ot, so that the only Yi,si(8&) which can
appear in the final expression for the cross section are the
ones with 3f,=0.

The 6nal result can be written most simply in terms
of quantities Z(liJi/sJs, sL) defined as follows:"

where W is the Racah coeKcient defined in reference (4).
The definition of W is reprinted in BBR, Eq. (12),
and the properties of 8' are discussed there. The factor
i~"+"is either +1 or —1, never imaginary.

In order to write the cross section as a sum of terms
all of which are manifestly real numbers, we also need
the identity

Z(/iJi/s Js, sL) = (—) Z(/s Js/i Ji, sL). (4 4)

Z(/iJi/sJs, sL)

=s~"+ie(2li+1)&(2/s+1) &(2Ji+1)&(2Js+1)&

W(/1J1/2J2& SL) (/1/200 I/1/2L0)e (4 3)

The differential cross section can then be written as
follows:

OO

do, ', ,= Q Bz(u's'; rrs) I'z, (cosft) dQ, (4.5)
2s+1 r s

where

( )e'—e

B z(n' s'; ns) =
J1 Jq t1 lq l1& lq'

XZ(/iJi/sJs, sL) Z(/i'Ji/s'Js, s'L)

XR P [(.ba. 'abe"b&i'ii Sa—"'ii', aeii ')*

X (b 'aba' ebel sl s Sa'e'ls';aels e)j. (4.6)

Here R.P. stands for the real part of the expression
in brackets. All sums in (4.6) are unrestricted and go
from 0 to ~; however, in practice only one of these
sums is really infinite (say the sum over Ji). The other
five sums are Gnite because of selection rules for non-
vanishing Z coe%cients (see BBR, Sec. IV). It should
be noted that Br,(oxs; rx's') =Br,(n's', ns) in accordance
with the reciprocity theorem.

Just as in (2.5), the sum needs to be contracted for
practical computation. The generalization of (2.6) is
the contracted general formula"

( )
e'—e oo J+e Z~e'

B (rn's'; mrs) = g P P Z(/J'/J, sL) Z(l'J/'J, s'I)
~

b ~ b, ,bi i S-
J=O l=t J—s( E'=I J—s')

(—)e e oo Sl+e Ji+e' oo Js+e SS+e'
+ P P P g g P Z(/iJi/sJs, sL) Z(/i'Ji/s'Js, s'L) R.P.[j

2 JI=O &1-IJI—S) l]. -J J&—S') JmJ1+1 4 ) J~S) ~2=)J2—S't

Jg+S Jg+S

+ P P Z(/i Ji/s J» sL) Z(/i'Ji/s'J» s'L) R.P.[Js=Ji]
4-&I+i i~'-~ Jj,—S'~

Jy+s'
+ 2 Z(/iJi/iJ» sL) Z(/, 'J,/s'Ji, s'L) R.P.[Js——J»/s=/i7,

i2 ll +1
(4.7)

where "R.P. [ j"stands for the corresponding expression in (4.6). R. P. [Js——Ji) means the real part of the square
bracket in (4.6) with Js set equal to Ji. While (4.7) looks much less symmetrical than (4.6), it is better adapted for
actual computation since each term appears only once. In addition to the restrictions indicated on the various sums,
the following restrictions reduce the number of actual terms:

it+le —L= even, li'+/s' L= even, — (4.8)

even
(/i+ li') and (4+4') =

odd
if channels 0. and n' have

equal
parities.

opposite
(4.9)

The parity of channel n is the product of the parity
of the incident particle u and the parity of target nucleus
X. The intrinsic parity of neutrons, protons, deuterons,
tritons, and alpha-particles is +1,so the parity of chan-
nel 0. usually is equal to the parity of the target nucleus,

~ This definition divers slightly from the one. used in our earlier
Letter to the Editor of the Phys. Rev. (82, 123 (1951)).

and the parity of channel a'usually is equal to the parity
of the residual nucleus F in whatever state it is left.

ie In our earlier Letter to the Editor LPhys. Rev. 82, 123 (1951)j
the restrictions on the sums over J~, lm, and l2' were stated incor-
rectly resulting in the omission of some contributing terms (e.g.,
with Je)J& but 4(4). The expression of Hauser and Feshbach
(reference 1}corresponds to the omission of all but the first line of
Eq (4.&)
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We emphasize that nowhere in the derivation did we
assume anything about the mechanism responsible for
the reaction. Thus (4.5) and (4.6) apply to all possible
collisions in which two particles enter and two par-
ticles emerge; they can be used, for example, for the
exchange scattering of mesons by single nucleons, for
neutron-proton scattering, and for nuclear reactions
in which the compound nucleus treatment is not correct.
The rather complicated appearance of these formulas
is a direct consequence of their generality. In any
special case of practical importance, considerable sim-
plihcations can be made. We shall give one example in
this paper (reactions and scattering due to a single
resonance level of the compound nucleus) and another
example in a different paper (neutron-proton scatter-
ing with spin-orbit coupling). f. The rules of reference
(10) about the limitations upon the complexity of the
angular distributions can be shown to follow from (4.6)
by the use of Racah's selection rules for nonvanishing S'
coefFicients. There is of course no sense in re-doing
Yang's very nice derivation by such a sledge-hammer
method; the advantage of (4.6) lies in the fact that it

gives an explicit formula for the differential cross
section.

For collisions of spinless particles (4.6) simphfies
greatly owing to the fact that

Z(lIJIlsJs, 01)=6IIzthIszs( —s)z-I&+I&

X[(2lI+1)(24+1)j'(lIl200~ lI4LO) (4.10)

In particular, the differential cross section for pure
elastic scattering of spinless particles is obtained by
substituting (4.10) into (4.6) and using the relation

5~BI;~ 8I 8I I exp(2i8I),

valid for $= 0. The result is identical with (2.5).
Finally, the total cross section (integrated over all

angles) for the n$—+n'$' reaction is also contained in
(4.6). We use the relation

Z(/IJIlsJ2p $0) 8IIIISJIJs(—) ' '(2J+1)i (411)

to get the well-known result

4m'A ' g X~2 ~ J+~ J+s'
os(u'$', oI$) = Bs(n'$'; n$) = Q Q Q (2J+1)~6 ~ 6...6, I

—S
2$+1 2$+1 &=s I=I~—e[ I' [ J—s'f

(4.12)

So far we have written all expressions as if the ele-
ments of the scattering matrix were independent of each
other. For each value of J and parity, there is a certain
number, say N, of diferent combinations e, s, /. Each
scattering matrix element is a complex number; hence
the formulas involve 2N' real parameters for each value
of J and II. Actually these parameters are not inde-
pendent of each other. The scattering matrix S must be
unitary and symmetric. This implies that S can be
written in the form

S~n =exp(2iQ~n), (4.13)

where Q~n is a Hermitean (S=unitary) and symmetric
(S=symmetric) E by %matrix. Q is t-her-efore real and
symmetric, i.e., it corresponds to a rotation in a z'eal

1V-dimensional vector space. We can always write Q in
the form

to specify rotation U» in anN-dimensional space. Thus,
there are altogether sE(%+1) real independent param-
eters necessary to specify the scattering matrix S~" for
a de6nite J and parity, rather than the 2N' real but
dependent parameters contained in the formulas written
so far. f

The parametrization (4.15) is advantageous for the
cases /=1, 2, and perhaps %=3, where it is fairly
straightforward to write the orthogonal transformation
U explicitly in terms of the slV(E 1) real indepe—ndent
parameters (Euler angles for X=3) on which it de-
pends. For larger values of N, it is preferable to have a
more direct way of constructing U' from a matrix into
which the ,'1V(E 1) parameters —deftnin—g the rotation
enter directly. This is supplied by the Cayley transform
for orthogonal transformations:

Q~n= Urn I~znUzn, (4.14) Ugn = (Ben—1)/(Ben+1), (4.16)

where b is a real diagonal N-by-N matrix, and U is an
orthogonal (unitary and real) 1V-by-X matrix. The
diagonal elements of d are the "eigen-phaseshifts. "The
scattering matrix (4.13) then becomes"

S~n = (UJn)—' exp(2sh jn) Ugn. (4.15)

where 8 is a real, antisymmetric (i.e., a skew-Hermi-
tean) X-by-X matrix. The representation (4.16) is
possible whenever U has all its eigenvalues diGerent
from +1.In terms of this 8 matrix, then, we obtain an
explicit parametriz;ation of the S matrix through

There are N eigen-phaseshifts necessary to specify hz&,
and glV(X —1) independent real parameters necessary

f J. M. Blatt and L. C. Biedenharn, Phys. Rev. 86, 399 (1952)."We recall that iff(x) is any function of x which allows a power
series expansion, then f(U 'A U) = U 'f(&) U.

+Jn+1 ~Jn
exp(2ia~n)

8J'Q Bgn+1
$ E. Wigner, Proc. Nat'I Acad. Sci. 32, 302 (f946).

(4.17)
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We illustrate this procedure by writing down the
most general S matrix for a two-channel reaction, i.e.,
we assume S=2. This applies, for example, to neutron-

proton scattering with tensor forces in triplet states with

total angular momentum J and parity II= —(—1)~.

Omitting the indices J and II, we can write

(Bi 0 ) ( 0 cof(2c) ) (4»)
EO 8i) E—cot(~e) 0 )

Substitution into (4.16) and (4.17) then yields

( cos6 sllle )
(—sine cose)

t cos2e e2ibz+ sjn2& e2i52
&& sin(2e)(e2illa e2i52)

E-', sin(2e)(e""—e"") sin'e e' i'+ cos'e e""J (4.19)

This is the expression for the most general S matrix of a two-channel reaction, in terms of the three real param-
eters 8~, 82 (the two eigen-phaseshifts), and e.

There are considerable simplifications which take place in the cross section formula (4.6) when the S
are parametrized according to (4.15).We start by deriving a simple formula for the total (transmission) cross sec-
tion in a channel n. The cross section in question is given in terms of (3.5) and (4.12) by

2s+ 1
Op A op(n's'; ns)

(2I+ 1)(2i+ 1)
7l A~

(2J+1)2 2 2 2 2 I ~- -~".~i i—S- " ',- '"
(
'

(2I+ 1)(2i+ 1) ~=o n=+i e l n' e'

The sums over n', s', and t' combine to give the diagonal (nst, nsl) element of the matrix (1—S+)(1—S). Since S is
unitary, this matrix is equal to 2—S—S+. Thus the total cross section becomes

are 2

oo(n) = (2J+1)Z Z [2-S "-(S ").3..
(2I+1)(2i+ 1) ~=»~i e l

(4.20)

This formula is the direct analog of the usual relation
between the total cross section and the imaginary part
of the amplitude for elastic scattering in the forward
direction.

In the general case of many di8erent channels a,
(4.20) involves not only the eigen-phaseshifts contained
in the diagonal matrix 6 but also the transformation
coeKcients contained in the orthogonal matrix U.
However, if elastic scattering (n' = n) is the only
energetically possible reaction, (4.20) allows a further,
drastic simpli6cation. For then we can add a formal
sum over n on. the right side of (4.20) without changing
the result. We then get the trace of the matrix 2—S—S+.
By use of the parametrization (4.15) or (4.17), this can
be written as

trace[(1 —S+)(1—S)j= trace[(1 —e 2'i') (1—e"~)$
=4 trace (sin'6).

Thus the total cross section is given by

4'
0'p A) CX

(2I+ 1)(2i+ 1) ~-»mi

X(2J+1) trace (sin'6jn). (4.21)

This is the natural analog of the usual formula for
the total scattering cross section in elastic collisions of
spinless particles. The trace of the matrix sin'6 is equal
to the sum of the sin'(8~) of the various eigen-phase-
shifts 8, since 6 is a diagonal matrix. Three remarks
should be made concerning (4.21): (1) This formula
is invalid if reactions other than elastic scattering are
energetically permitted. An analogous formula can be
derived for that case, but it is of no practical interest.
(2) In the special case of neutron-proton scattering, it is

usually assumed that there are no singlet-to-triplet-
state transitions during the scattering; that is, s is taken
to be a constant of the motion. In that case it is not
necessary to sum over s and s' in order to get a simple
formula analogous to (4.21).Rather, the singlet scatter-
ing and the triplet scattering separately are given by
expressions similar to (4.21). (3) While the total scatter-
ing cross section can be given in terms of a small number
of parameters [X eigen-phaseshifts for each J and II
instead of the full ~X(%+1) parameters necessary to
define Ssn completely), this is no longer true for the
angular distribution.

Ke now derive a general formula for the angular
distribution valid when the scattering matrix is param-
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etrized according to (4.15). It is well known that the
eigenvectors N~, u2, ~ ~ ~, N~, ~ ., NN of the scattering

. matrix associated with the eigen-phaseshifts b~, 82,

, 6& can be read oG from the unitary matrix U in

(4.15). That is, the first row of U contains the compo-
nents of N~, the second row of U contains the compo-
nents of N2, etc." We now introduce the projection
operators P(uk) whose matrix elements are defined

by

and rewrite the scattering matrix in the spectral form

5= Q exp(2ibk)P(uk). (4.23)

1—5= 2i—Q exp(i8k) sin(bk)P(uk). (4.24)

The matrix which enters the cross section formulas is not
5 itself, but 1—5, which becomes

(P(uk))a's'i', asi= (uk)as'(uk) ' al's (4.22) Formula (4.6) can then be rewritten as follows:

NI N2

&z(~'&' ~&) = (—1)" ' E Z Z Z Z 2
J1. HI Jg IIg A'1=1 @2=1

sin(8 J1IIlk1) sin(8 JsII2k2) cos(871IIlkl ~~2n2ks) T (4.25)

where T is the following sum:

7=g P P g Z(liJil2J2, $L)Z(li Jii2 Js, s L)(P(uJiuiki))a's'ii'asli(P, (u Jmn2ks))a's'ls', aslm.

This can be rewritten by the use of (4.22) in the product form

T= [g p Z(4Jil2Js, , sL)(uziniki) sii(uzin2k2) si2j&([p p Z(li'Jil2'Js, , s'L)(uziniki) s'tai'(uz2u2k2) ' I2s'1 (4.26)
L2

Expressions (4.25) and (4.26) are the direct analog
of (2.5) for spinless particles. While the notation ap-
pears rather formidable, the actual evaluation of the
sums (4.26) is quite simple. An example appears in a
separate paper on neutron-proton scattering in the
presence of spin-orbit coupling. We remark that for the
special case of pure elastic scattering (i.e., scattering
without change of either the energy or the channel spin,
symbolized by n'= n and s'= s), the two square brackets
in (4.26) become identical, so that the coeKcient T is the
square of an expression linear in the Z coefFicients.

5. EVENTS CONNECTED WITH A SINGLE RESONANCE
LEVEL OF THE COMPOUND NUCLEUS;

(A) REACTIONS

The general formulas can be simplified greatly if
special assumptions are made about the nature of the
scattering matrix. A very useful special case is obtained
by assuming that the reaction proceeds via a definite
resonance level of the compound nucleus, with angular
momentum Jo and parity IIO. The expression for the
scattering matrix in that case has been given by Wigner
and Eisenbud, ' their Eq. (56). In order to get simple
expressions, we shall make two additional restrictive
assumptions: (1) The channel radius R [equal to the
a, of reference (1)$ is independent of the channel spin s,
although it may vary for different channels n. (2) The
constant matrix (R in Eq. (46) of reference 1 can be
neglected compared to the resonant term. It is ad-
vantageous to rewrite Eq. (56) of reference 1 in an

'~ In general, the rows of U would contain the complex con-
jugates of these components; however, U is a real matrix.

equivalent form. We de6ne the partial widths F,& in
the same way as Wigner and Eisenbud [the I'isi in
their Eq. (55)], but instead of their nk, & we introduce a
real quantity g, & defined by

g, i
——a (I', i) &. (5.1)

The ambiguity in sign is typical of the dispersion formu-
las; this uncertainty does not appear in the formula for
the total cross section, but we shall see that a study of
the angular distribution of scattering and reaction
products allows in principle a determination, not only
of the magnitude of the partial widths F,~, but also
of the relative signs of the parameters g, ~ which enter
into the dispersion formula. We mention that both g, ~

and I',
& are functions of the channel energy through

the usual penetration factor.
We also introduce the phaseshifts for the "poten-

tial" (hard sphere) scattering $i, through

G, (R)—iF,(R)
exp(2i&, )=

Gi(R)+ iFi(R)
(for neutral particles), (5.2)

Gi(R) —iFi(R)
exp(2igi) = exp(2ini)

Gi(R)+iF i(R)

(for charged particles), (5.3)

where Fi(r) and Gi(r) are the conventional regular and
irregular solutions of the radial wave equation outside
the nuclear surface, R is the channel radius (i.e., the
sum of the radii of the target nucleus and incident
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particle), and ol is the phaseshift for Coulomb scatter- We also introduce the notation Eo for the observed
ing from an impenetrable sphere of radius R; the resonance energy, i.e., in terms of the notation of
formula for 0~ is reference 1,

(5 5)

(I+iq)(/ —1+iq) (1+i') (iq)!exp(2iol)=, (5 4)
(i- ir!)(/ —1 i—t!) (1—it!) ( i—r!) !

where tt =Z&xe'/he and s! is the usual factorial func-
tion. The potential (hard-sphere) scattering cross sec-
tion is given by Eqs. (2.4) and (2.5) with 6l replaced
by cl

Ig principle, Ep is not a constant but depends on the
channel energy through the quantity 6&. In practice
the energy variation of 6& can usually be neglected,
however, so that Ep can be considered a constant.

In terms of the notation introduced so far, and mak-
ing the approximations indicated above, Wigner and
Eisenbud's formula for the scattering matrix can be
rewritten in the form"

5 ., l . ,l~o"o——expLi($ l
—r! ln2k r )] exp/i($ l

—r! ln2k r )]
gastga'8't'

!! 5, ,5l l+i
E,—E—-',ir

(J=Z„rr= rr, ). (5.6)

In this formula, r„ is a screening radius for the Coulomb
field in channel a, and r ~ is a simijar quantity for
channel 0.'. These screening radii drop out of the 6nal
formulas. I' is the total width of the level Jp, IIp Ep..

(5.7)

This quantity depends on the energy. Formula (5.6) is

appropriate for the particular value of J (=Jo) and
II (= IIo) for which the resonance occurs. We assume
that resonances of diferent J and parity are sufFiciently
far away in energy that we can neglect their inAuence.

Thus, for all other values of J and II, we get

5, l, ,l "——8 ~ 8. ,8l l expf2t($ l r! l—n2k r„)]
(J, IIW Jo, Ilo) (5 g)

In this section we shall give an expression for the
differential reaction cross section, that is, we assume
either a'& a or s'/s or both. "In that case the scatter-
ing matrix elements vanish unless J=Jp and II=IIp,
and simple substitution of (5.6) into (4.6) gives Lwe
introduce the notation Rl.(n's'; ns) for later use]

Br,(cl s; As) =El, (lx s; lxs),
where

( )s'—s Jp+s Jp+s Jp+8' Jp+s'
Rr, (n's'; ns) —=

4P(+—8 ) + (—I') ] l =I ~o—
1 l =I &o—I l '=I & 'I l ' !Zo—'!=

XZ(I1~04~0) sL)Z(I1 Jofs +o) s L)gaaltgaslsga's'lz'ga's'ls' cosLgalt —coals+ $a'll' —$~'!s'] (for lr, s+ lr', s'), (5.9)

In addition to the restrictions on the ranges of /~, etc.,
indicated on the sums, all these orbital angular mo-
mentum quantum numbers must satisfy the parity
conservation laws; if we denote the channel parity of
channel a by II, that of channel a' by II, and of the
compound nucleus by IIp, the restrictions are

(—)"=(—)' = rr.rf (—)'~'= (—) s'= ll .Ilo (5 10)

Each term in (5.9) occurs twice. Hence for practical
computations the sum should be contracted along the
lines of (4.7). We need not write down the result here.

The total cross section is given by (4.12) which
becomes

2So+1 I aslI a'8'l'
so(a' s', crs) = ora. s

2s+1 l r~ (E—Zo)s+(sl')'

(for a, SAn', s'), (5.11)

where the ranges of summation over / and I' are as in
(5.9) and (5.10). We see that the total cross section
does not allow a determination of the signs of the
quantities g, &, but that a measurement of the diGeren-
tial cross section for the O.s—+a's' reaction allows such a
determination, at least in principle.

According to the selection rules for nonvanishing Z
coefricients (see BBR, Sec. IV), Br, vanishes for values

"We have not been able to get sitnple results by reducing (5.6l
to the standard form {4.15). Simplifications do occur, however,
near the peak of the resonance, provided that the resonance
scattering dominates over the potential scattering.

'7 From the theoretical point of view, scattering without change
of energy but with a change in the channel spin should be con-
sidered inelastic scattering; it can be treated by the same expres-
sions which are applicable to reactions (for which a'Wa). In
practice, of course, the spin-Qip events are included in the meas-
ured cross section for elastic scattering. We shall return to. this
point in Sec. VI.
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of I.which violate the condition

I.&~ 2Jp. (5.12a)

'A 2 L'max

dfTn', a= Br,(n', n) Pl.(cosg) dQ,
(2i+1)(2I+1) z=p

(5.13)

where Br,(n'; n) is given in terms of (5.9) by

Br,(n', n) =—RJ.(n'; n)

e=j I—ij s'=j I'—i'j
R ( z' nsns). (5.14)

We emphasize that (5.13) and (5.14) apply only to

Furthermore, according to (5.10), the sum li+lq is
always an even number, so that BL vanishes for odd
values of L,

L= even. (5.12b)

Sometimes the penetration coefFicients are such that
there is a maximum value of / of the incident particles
for which the widths are appreciable; or else there may
be a maximum effective value of /' for the outgoing
particles. If we assume that g, l=0 for /&/ and
g, l =0 for /'&/, ', we get the additional restrictions

L &~2l, I.~& 2l .„'. (5.12c)

These well-known restrictions on the complexity of the
angular distribution" therefore follow also from our
explicit expressions for the reaction cross sections, as
of course they must. We mention that the quantities
g, l involve the square roots of the penetration coe%-
cients. Thus, care must be exercised in estimating the
value of /

The formulas given so far apply to reactions in which
the incident particles collide with a definite channel
spin s and the outgoing particles emerge with a de6nite
channel spin s'. In practice, the channel spins are not
measured, and the observed cross section for the n +n'—
reacHoe is given by

reactions, i.e. , to the case n'W n, whereas (5.9) applies
also to the case o.'=n provided that s'&s. We have
introduced the notations Rr, (n's'; as) and Rr, (n'; n) for
later use, since these sums also enter into the cross
section for elastic scattering. The range of summation
over L in (5.13) is determined by the restrictive con-
ditions (5.12).

6. EVENTS CONNECTED WITH A SINGLE RESONANCE
LEVEL OF THE COMPOUND NUCLEUS;

(B) ELASTIC SCATTERING OF
NEUTRAL PARTICLES

We now use expressions (4.6), (5.6), and (5.8) for
the case n= n', s= s' which corresponds to true elastic
scattering, i.e. , scattering without change of either the
energy or the channel spin. We observe that we would
get pure hard-sphere (potential) scattering by using
(5.8) for all values of I and II, including I=Jp and
II=IIp. It is therefore advantageous to add and sub-
tract the cross section for potential scattering. The
actual cross section then consists of three parts: the
resonance nuclear part, the potential scattering, and
the interference term between these two. "We write the
cross section in the form (4.5), with n'= n and s'=s,
but we break up the coefficient BI.(ns; as) into these
three contributions:

Bl,(ns; ns) =Rr, (ns; ns)+(2s+1)HI. (n; n)
+II,(ns; ns), (6.1)

where EL stands for the resonance contribution, III.
for the hard sphere contribution, and II, for the inter-
ference term, The calculation of these terms is straight-
forward but tedious. Use must be made of the sum rule
LBBR, Eq. (26)) for the Z coefiicients. As indicated by
the notation, the resonance contribution EL is equal
to (5.9) with n' set equal to n and s' set equal to s.
The hard-sphere scattering is by assumption indepen-
dent of the channel spin s [the factor 2s+1 merely
serves to cancel the corresponding factor in (4.5)) and
is given by (2.5) with the hard-sphere scattering phase
shifts $i in place of 8i, i.e.,

oo l+L
Hz(n; n) =P P (2l+1)(2l'+1)((lt'00

~

ll'IO))' sing~ sin/i cos($i—$~ ).
l=p l'=jl—Lj

(6 2)

In order to write the interference term in a simple form, we introduce an angle parameter P to measure
the deviation of the energy from resonance. We define p through

tanP = (E—Ep)/-,'I'. (6.3)

The interference term in the cross section is then given by

~O+8 l+L
I (ns; as) = —(2J,+1) P P (2t'+1)L(tl'00~ ll'LO))' sin$t sin(p+2)i —$i ). (6.4)

l j O'0—sj l'=jl—Lj L'(E-E.)'+(ll)')'
' The last two parts do not make any contribution to scattering without change of energy but with change of channel spin.
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It is interesting to observe that the sign ambiguity
associated with the quantities g, l does not appear in
this interference term.

The contribution RL vanishes as soon as L violates
one or more of the conditions (5.12). The quantities
IIL and IL never become exactly zero. However, in
the case of scattering of neutral particles, the phase
shifts $t for the potential scattering approach zero as t
becomes large, and hence HL as well as IL become small
for large values of I., so that the sum (4.5) converges
well. This is not true for the elastic scattering of charged
particles, and this case will be treated separately in the
next section.

Equations (6.1) through (6.4) give the cross section
for scattering without change of either the energy or the
channel spin s. Experimentally, this quantity is not

I+i
r.,= g r.„. (6.5)

We then get the following formula for the experirmem

tally observed dkgereetial cross section for elastic scat
teririg ie the rwigkborhood of a resonartce level of aegmtar
moritentlns Jp arid parity IIp'.

measured. The experimental "elastic scattering" cross
section includes events in which the spins are Qipped.
These events are described correctly by (5.9) with
0,'=0, but s'/s. The experimentally observed elastic
scattering cross section is given by (3.16) with cx'=a.
We introduce the partial widths F l for emission into
channel n with orbital angular momentum /, summed
over all possible channel spins s, i.e.,

L max

da, = P Rr, (n; o.) Pr, (cosa) dQ+X ' P Hr, (n; n) Pr, (cosa) dQ
(2I+1)(2i+1) r=p L=O

oo J0+~+& l+L2Jo+1—x.' p p p (2t'+1)L(tt'oo~ tt'I.o) jp
(2I+1)(2i+1) r-«=t l i'=li—r I

~al
X sin)i sin(P+2gi —gi ) Pr(cose) dQ. (6.6)

HE—Eo)'+(or)'3'

In this formula the 6rst term represents resonance
nuclear scattering; the coefFicient Rr, (n; n) is given by
(5.14) with o.'=o. ; I. is determined by the restric-
tions (5.12). The second term is the hard-sphere
(potential) scattering; the coefficient Hr, (n; n) is given

by (6.2). The last term contains the interference be-
tween nuclear and potential scattering. The range of
summation over / is such that the three angular mo-
menta /, I, and i can combine by the vector addition

rules to give a total angular momentum JO. That is,
the maximum value of / is as indicated on the sum, while
the minimum value of l is given by

t;„=Jp
—(I+i) if Jp) I+i,

t;„=0 if
~
I—i

~
~& Jp ~&I+i, (6.7)t;.=

f
I—

i/
—Jo if Jo( )I—if.

Finally we give the total cross section, which is 4~
times the coefficient of Pp(cose) in (6.6):

2Jp+1
oo(~; ~) = or&.' EZ +4orX ' P (2t+1) sin'$i

(2I+1)(2i+1) «' (E—Ep)'+(-'I')'

2Jp+1»+r+' r~i sin)i sin(P+$i)—4n.lt ' — Q . (6.8)
(2I+1)(2i+1) i-t-. $(E—E,)'+(-', r)')&

As before, the erst term gives the contribution of
pure resonance scattering, the second is the pure hard-
sphere (potential) scattering, and the last is the inter-
ference between the two. If $t is negative and

~ $i~ is
less than -', x, the corresponding interference term is
negative below resonance and at resonance and. then
becomes positive; the range of energy over which this
term is appreciable is much wider than the usual half-
width, because its magnitude decreases far away from
resonance like ~E—Ep~ ' rather than like (E—Ep) '.

We also observe that the interference term in both (6.6)
and (6.8) can be considered the sum of terms with
different l', each of which is equal to the interference
term obtained from a resonance of given l and partial
width for emission into channel n equal to F l if all
spins I, I', i, i' are set equal to zero; the only eGect of
the spins consists in the multiplication by the usual
statistical factor, and in the need for summing over the
many possible values of l consistent with JO and IIo.
One sometimes encounters the statement that this is
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the only eGect of the spins for the total scattering cross
section. We see that this is not entirely accurate because
the treatment neglecting spins does not lead to any
scattering with change of orbital angular momentum /,

whereas such scattering does occur when spins are
present. However, this scattering contributes to the
resonance term [the first term in (6.6) and (6.8)] but
not to the interference between resonance and potential
scattering.

'7. EVENTS CONNECTED WITH A SINGLE RESONANCE
LEVEL OF THE COMPOUND NUCLEUS;

(C} ELASTIC SCATTERING OF
CHARGED PARTICLES

f(8)=f.(8)+f-(8)+f.«8), (7 1)

The expressions derived in the preceding section are
still correct for the elastic scattering of charged par-
ticles, but they are not useful in practice because the
sum over I.converges very slowly. Thus we must treat
the Coulomb scattering explicitly in order to get
usable expressions. The potential scattering is now
scattering by a charged hard sphere of radius 8, which
can be written as scattering by a point change plus
correction terms to take into account the finite nuclear
radius. We shall Grst derive the expressions for the
scattering of spinless charged particles by a nucleus of
zero spin (I=i=0). The cross section is given by (2.1)
where f(8) consists of three parts:

where fc(8) is the scattering amplitude for pure Ruther-
ford scattering, foie(8) is the diRerence between the
scattering amplitude from a charged hard sphere and
fc(8), and foal(8) is the nuclear resonance scattering
amplitude, which we assume to be associated with a
resonance of angular momentum l (since i=I=0 by
assumption, this / is equal to the total angular momen-
tum of the compound nucleus), of partial width P l,

total width I', and resonance energy Eo.
The expressions for the scattering matrix, (5.6) and

(5.8), contain factors exp[ —ig ln(2kr)], where r is a
screening radius for the electrostatic Geld of the nucleus
within the atom. In practice the eGect of screening on
the angular distribution of elastically scattered par-
ticles is negligible at all angles except for very small-
angle forward scattering (where the screening eRect
prevents the cross section from becoming infinite). We
can therefore ignore those factors. It is useful to factor
out a common phase factor exp(2io. 0) from all terms of
(7.1).We introduce the notation

s =—Z,Zxe'/2Mit', (7.2)

where Z and Z~ are the atomic numbers of incident
particle and target nucleus, respectively, and M is the
reduced mass for the relative motion in the center-of-
gravity system. We also define phase shifts Qi and pl
through [Fi(R) and Gl(E) are the usual regular and
irregular Coulomb wave functions, evaluated at the
nuclear radius E$

Thus we have

4ll =pl lrl— —

4'l= &l &0—
Gl (Z) —izl(Z)

exp(2igl) =
Gl(R)+iI",(E)

(i+i))(l—1+i)). (1+i))
exp(2igl) =

(l—ill) (l—1—ig) (1—i')

$l 4 l+ 4'l+ 0 0.

(7 3)

(7.4a)

The S wave Coulomb phase shift 00 cancels out in the argument of the cosine in expression (5.9). This is typical of
all subsequent formulas: The value of era is never needed; the final results can all be expressed in terms of differences
of phase shifts, such as pl and pl. @l can be interpreted as the additional phase shift by which scattering from a
charged hard sphere di6'ers from scattering by a point charge. This additional phase shift approaches zero for large
values l. In terms of this notation, and factoring out a common exp(2i0. 0), we get

fc(8) = —s cosec'(-,'8) exp[ 2irl ln s—in(-', 8)j, (7 5)

fear(8) =iX~& g (2l'+1)& exp(2+i ) [1—exp(2ipl. )j Yl., 0(8),
l '=0

(7.6)

I' l exp(iP)
foal(8) =iX~&(21+1)&exp[2i(pl+@i)) I' (8)l.0

[(&—&0)'+(0P)'j'
The cross section for elastic scattering is then given by (2.1), i.e.,

d~= Ife(8)+f~~(8)+fsl(8) I'df}= [Ifoal'+2 R P. (fc'fo~)+ I fr~I'1 dfl

+ [2 R P. (f&*f&)+2R.P. (f,~*fs)jdQ+
I fil, I

' dQ. (7.8)

(7.7)

The separation above is into the usual three parts: potential scattering, interference between potential and
resonance scattering, and pure resonance scattering. By performing the indicated operations and using relation
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(2.3) in various places, we get

Ifol'+2RP (fo*fo~)+If«l'=e'cos«'(z8)

—2ts p (2/+1) sini/il cos[2zt ln sin(-,'8)+2ipl+ i/ lj cosec'(-', 8) Pl(cos8)
l=0

+t' P P P (2l+1)(2l'+1)[(ll'OOI//'IO)]zsinitl sinitl cos[(2fi+i/ii) —(2ii/l +@i)j PL(cos8). (7.9)
L~O l=O l' Il—L)

This expression reduces to the differential cross section for potential scattering of neutral particles if we set
s= ill 0an——d i/ l

——pl. The interference term between resonance and potential scattering is equal to

2 R P (fc'foal i)+2 R.P. (fczr*fil i)

~al= ts(2/+1) —sin[2rt ln sin(~8)+2iPl+2itl+Pj cosec'(z8) Pl(cos8)[(~-~.)'+(!I)')'
oo l+L r l—t' P P (2l+ 1)(21'+ 1)[(/l'00

I
//'LO) ]'

L=o l ~=I l—Lt [(~—@)'+(21')'3'

Xsini/l sin(p+2i/l+2iti —2ipi —it l ) PL(cos8). (7.10)

Finally, the pure resonance scatteririg cross section in the absence of spins is given by

(I'-i)'
I fRl I

'= ~t'(2/+ 1) —,
—

I
I'l. a(8) I

'.
(~—P-o)'+ (21')'

(7.11)

In this simple case it is not advantageous to use (2.3).
Formulas (7.8), (7.9), (7.10), and (7.11) give the

elastic scattering cross section for the special case
i=I=0. They can be used directly to analyze the elastic
scattering of n-particles by even-even nuclei. We now
show that the more general case i&0, I&0 can be ob-
tained from these expressions and (6.6) by simple in-

spection. The first line of (6.6) is the pure resonance
scattering. This expression can be used as it stands
even in the presence of Coulomb 6elds, since the sums
over I. and the various l are Gnite and no question of
convergence arises. Thus, the first line of (6.6) replaces
(7.11). The second line of (6.6) is the pure potential
scattering and is identical with (7.9); the only diGer-
ence is that (7.9) involves rapidly convergent sums,
whereas the sum in (6.6) converges very slowly.

Finally, consider the last line of (6.6), the interference
between resonant and potential scattering. Ke re-
marked at the end of Sec. 6 that this term can be con-
sidered the sum of terms with different values of l, each
of which is equal to the interference term (7.10) for a
resonance of given 1 and i=I=0, except for the sta-
tistical factor in front. The latter change means replace-
rnent of (2l+1) by (2JO+1)/(2I+1)(2i+1). This can
be seen formally also by considering (7.10) with s = ill =0
and @i=pi (corresponding to no Coulomb field), which
differs from the interference term in (6.6) only through
the statistical factor and the sum over permissible
values of /.

Putting together all this information, we arrive at
the following formula for the elastic scattering of charged
particles near a resonance level of the cornpomnd nzzc/ezzs:

L max
do= — . P EL(n, cx) PL(cos8) dQ+ s' cosec4(~~8) dQ

(2I+1)(2z+1) L=o

—2t s p (2/+ 1) sinii l cos[2zt ln sin(zz8)+ 2ipl+ @i)cosec'(28) Pl(cos8) dQ
l=o

oo oo l+L+t ' P P P (2/+1)(2/'+1)[(//'OOI//'IO))'sini/ii sinit l cos[(2/i+Pl) —(2iPl +&i )jPL(cos8) dQ
L=O l=O lr=[l—LI

t e(2J0+1) ~0+r+' I'ml —cosec'(z28) sin[2z) ln sin(z8)+2iPl+2i/ i+ PjPl(cos8) dQ
(2I+1)(2i+ 1 ) l=lmin [(E—Eo) + (2 I')

t '(2JO+1) m ~o+I+' l+L
(2/'+ 1)[(ll'00

I
//'I. O) $' sini/ l

(2I+1)(2Z+1) L-0 l-lmin l [l L[—
I' l

X . sin(p+2ipl+2@l —2ipl —@l ) PL(cos8) dQ. (7.12)
[(&—&0)'+ (kI')'3'
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Ke repeat the interpretation of the various terms in
this formula: the 6rst term is pure resonance scattering,
with Ez, (n, n) defined by (5.14). The next term is pure
Rutherford (point charge) scattering, with z defined

by (7.2). The following two terms represent the correc-
tion due to the 6nite size of the nucleus; the phaseshifts
f& and P& are defined by (7.3) and (7.4), respectively.
The next to last term is the interference between reso-
nance scattering and pure Rutherford scattering, while
the last term is the 6nite nuclear size correction to this
interference term.

There is one case of special interest here, in which the
rather complicated expression (7.12) reduces to more
manageable proportions. This is elastic scattering of

protons on even-even (I=O) target nuclei. In that case
i =-,', I=O, and there is only one possible channel spin,
namely, s=~. Furthermore, for a resonance of given
J=Jp and parity IIp, there is only one value 3= lp of the
orbital angular momentum of the protons; that is, lp

is defined uniquely by the conditions that (1) lo is one
of Jo+—', Jo——,' and (2) (—1)"=IIoIIx, where IIx is
the parity of the target nucleus. In that case the quan-
tities g, & do not enter; indeed we need to know only
two widths, the width I' for elastic scattering, and the
total width I'. The cross section for elastic scattering of
charged particles with s=zi (protons, tritons, or He'
nuclei) by nuclei with I=O (even-even nuclei) is given
by

2P 2 2Jp —1

d~~~= g [Z(toJoloJO, gI)j'Pr(cos8) dQ+ (do)»t
g[(~—&.)'+(ll')'j z=o

+-', X z(2Jg+1) ' cosec (~~8) sin[2it ln sin(~~8)+2ft0+2@to+P] Pto(cos8) dQ
[(&—~0)'+(z I')'j'

r &o+L

(2t'+1)
[(+ jv ) +(—'I') j z=o i =[io—r.

~

X[(lol'00~ lot'LO) j' sin&i sin(P+2gto+2gto —2/i —gi ) Ez(cos8)dQ. (7.13)

In the first term, the resonance scattering, the sum
over J contains only even values of J. It is interesting
to observe that this resonance scattering has a de6nite
angular distribution which depends on /p and Jp but
not on the widths or the energy of the resonance. The
next term, (do)~,~, is the differential cross section for
the potential (charged hard-sphere) scattering, and is
given by the second, third, and fourth terms of (7.12).
Experimentally, one usually measures the scattering
cross section at some de6nite angle, as a function of
energy E. The cross section for the potential scattering
can be subtracted directly by interpolating a smooth
curve between the data above and below resonance
and then taking the diRerence between that smooth
curve and the observed cross section in the resonance.
The last two terms in (7.13) represent the interference

between resonance scattering and Rutherford (point
charge) scattering and the finite nuclear size correction
to this interference term, respectively.
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