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I. INTRODUCTION

'HE composition of angular momenta, one of the
basic elements of quantum mechanics, is ac-

complished by means of the vector addition coefFicients—known also as the Clebsch-Gordan or signer coefIi-
cients. This, in principle, constitutes a complete solution
to problems with coupled angular momenta; but, in
practice, say in the evaluation of matrix elements of
composite systems, one is quite often led to involved
summations of products of several vector addition coeK-
cients that are carried out, if at all, with difhculty. A
quite typical situation might involve the matrix ele-
ments, for a composite system, of operators acting on
only one or more of the subsystems. An elementary
example of this is the evaluation of the matrix elements
(lsj rI

NLu+bSIl's'jm') for the magnetic moment of a
particle with spin. A direct evaluation —which, of
course, in this example could be avoided —involves a
cumbersome sum of the product of three vector addition
coeKcients. This direct procedure, in eGect, computes
the matrix elements in a "decoupled" scheme, and then
seeks to relate them to the desired matrix elements in
the "coupled" scheme. The complicated sum of vector
addition coefIicients automatically eGects this trans-
formation between coupling schemes, keeping proper
account of the conservation of angular momentum.

Racah, in his work on complex atomic spectra, dis-
cussed in detail the properties of these transformations,
and defined the coefficient W(ubcd; ef)—since known as
the Racah coefficient —as the transformation between
the coupling schemes (a+4= e; e+d=c) and (b+d=f;
a+f= c). We discuss this in more detail in Sec. III.

Since Racah's pioneer work, the 8' coefficients have
been applied to a wide variety of problems, the angular
correlation of successive radiations and the angular
distribution of scattering and reaction cross sections
being conspicuous examples. From the utilitarian point
of view (effecting difficult summations of vector addi-
tion coeKcients), the usefulness of the Racah coeffi-
cients for these angular correlation problems is appar-
ent. The relationship of the "recoupling" approach to
these problems is less obvious, but more fundamental,
as has been clearly pointed out by Fano (reference 12).II
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The coefFicients that enter most naturally into the
angular distribution of scattering and reaction cross
sections are not the Racah coefficients themselves but a
combination designated in reference 6 as the "Z coeK-
cients" (defined by Eq. (23) below). For the specific
application of the 8' and Z coefFicients we shall, how-
ever, refer to the original literature. A bibliography for
this purpose is included below. Besides giving algebraic
tables of the 8" coefFicients, we shall summarize the
relevant algebraic properties of the coeKcients.

The algebraic tables of the 8" coeS.cients are suK-
ciently complicated, especially for large values of the
variables, that a numerical tabulation would be of
great value. We have prepared such tables (reference 19)
not only for the 8' but also the Z coefficients. However,
space does not permit their inclusion here. Copies of
these tables can be obtained from the Oak Ridge Na-
tional Laboratory. The tabulation consists of 54 nu-
merical tables of W(liJitsJs, sL) for s=-', through 3 in
steps of 2 and L= 0 8 in integer steps. The remaining
parameters have the range l;= 0 through 4 or 5 (integer
steps) and J';=0 through 9/2 (rs integer steps) with the
necessary restriction J;—s= integer Lsee discussion fol-
lowing Eq. (12)J. The Z coefficients are tabulated in 54
tables for the same range of parameters.

II. VECTOR ADDITION COEFFICIENTS

We shall not repeat here the. definition of the vector
addition coeKcients, since this is extensively treated in
references 1 and 2. Tables of these coeffjLcients are given
in reference 2. However, some of the symmetry relations
for the vector addition coefFicients are less well known,
and we repeat the rules given independently by Racah
(reference 3) and Eisenbud. tt

(ubnP
I
ubcy) = (bu 8 n

I
bu—c —y)—

= (—1) +~'(buPn
I bucy)

= (—1) +~'( b —un p I
ubc p)— —

2c+1 &

=(—1) ~ (ucn y I
ucb p)— —

2b+1

'2c+1- &

=(—1)~' ~ (cb yP I
cbu n)— —

2u+1 (1)

Other symmetry rules result from a combination of
these basic symmetries.

$ L. Eisenbud, Ph.D. thesis, Princeton University (1948).
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Racah also gives an explicit formula for the often-
occurring coefficient (ab00l abc0). This formula is most
easily written in terms of the "triangle" coeKcient
A(abc) defined by

(a+b —c)!(a—b+c)!(—a+'b+c)! b

A(abc) =
(a+b+c+1)!

(2)

A(abc) is clearly unchanged by any permutation of
a, b, c. In general, we shall need the triangle coefficients
only for values of a, b, t, which satisfy the triangular
inequalities

a+b&~c, b+c~&a, c+a&~b.

Racah then defined the quantity g by

2g= a+b+c
and obtained

(ab00 l
abc0)

= (—1)'+'(2c+ 1)&h(abc)
(g a) '(g b) '(g c) '

(jljsmlM —ms —ml
l jlj2J»M —ms)

(J jM—m ms l J»jsJM)

4(~jlml)%( j2M —m3 —ml)+( jsm3). (7)

The wave functions thus formed are again orthonormal
in J, M, and also in J~2. It is clear, though, that such
wave functions are not unique, since we could just as
well have combined first j2 and ja to give J» and then
j& and J» to give J.That is,

C'Lj jj (J )' JMj
(j 2j sm2M ml—m3—jl 2j3J23M ml)

SL2, OPSIS,

(jlJ23mlM —mll jlJ23JM)

' +(jlml) +(j2m2) +(j8M ml™2)~ (8)

To identify the composite wave functions we must indi-
cate the coupling scheme, as in Eqs. (7) and (8). Compo-
site wave functions for one coupling scheme are, how'-

ever, linearly related to the wave functions for another
scheme. Thus, we may write

(ab00l abc0) =0

(a+b+c= even)

(a+b+c= odd)
C'I jl jsj3(J28);JM]=Z (jl jsj3(J28)Jl jlj2(J») jsJ)

III. RACAH COEFFICIENTS

The physical significance of the 8' coefficients, as
well as their properties, can be most easily obtained by
a procedure due to Racah. Consider orthonormal wave
functions, %(jm), of sharp angular momenta, that is
to say, %(jm) is an eigenfunction of the rotation oper-
ator with eigenvalues j(j+1)for J' and m for J,. If we
have two such wave functions, in diferent spaces, then
a product wave function with sharp total angular mo-
mentum, is obtained in. the usual way by application of
the vector addition coeKcients:**

C[jlj2, J~»]
=p (jljsmlM» —mll jlj2J12M12)e(jim])e( j2M12—ml).

(6)

The unitary property of the vector addition coeKcients
guarantees that 4 [jlj2, J»M»j is itself orthonormal in

J~2 and M~2. For the addition of three angular momen-
tum vectors we consider a third wave function 4'(jsm3).
A composite function with sharp total angular mo-
mentum can be obtained by combining %(jsm8) with
C[jlj2, J»M»] using again the vector addition co-
efBcients:

C [jlj2(J12)j8

=Q (J12jsmsM —ms
l J»j8JM)%(jsm8)

saba

X@j[jl2; J12M ms]
*sThe vector addition (abnP abcy) vanishes unless a+P=y.

In the following, we shall explicitly satisfy this requirement,
eliminating a formal sum over y.

By using Eqs. (7) and (8), and the orthonormality of
the 4'(j,m~), one can obtain a relation for the trans-
formation coeKcient in terms of the vector addition
coe%cients:

(jl j2j3(J23)J l jlj2(J»)j3J)

(jlj23II—mm2
l jlj 2J12M m+m—2)

(jsjsmsm —msl jsj3J23m)

(j 1J23M mm lj —1J23JM)

(J12j3M—m+m2 m ms l
Jls—j,JM)

It is this relation that Racah used to define the W
coeKcients originally. In his notation we have

(2e+1)i(2f+1)~W(abed; ef) =(ab(e)dcl a, bd(f)c). (11)

Racah was able to perform the sum indicated on the
right hand side of (10). His result is

W(abed; ef) = D(abe) D(cde)h(acf) h(bdf)mr(abed; ef)

(—1)*'+ '(s+1)!
mr(abed; ef) =g' (s a b e)!(s—c—d——e)—!—

~ (s a c f)!(s—b——d——f—)!
(12)

(a+b+c+d s)!(a+d+e+f —s)!(b+c+e+f s)!— —

As the interpretation in terms of recoupling angular
momenta indicates, the Racah function is defined for
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W(anbP, cy)W(a'ub'P; c'y) =Q (2K+1)

W~ (a'Xnc; ac')W(bXPc', b'c)W(a'Xyb; ab'). (17)
(a, b, e) (c, d, e) (a, c, f) (b, d, f) (13)

integral or half-integral values of the quantities a, b, c, d, functions:ft
e, f, with the limitation that each of the four triads

has an integral sum. The sum in (12) goes over integral
values of s such that none of the factorials in the de-
nominator has a negative argument.

According to its definition, S' satisfies various selec-
tion rules, all of which can be summarized by saying
that each of the four triads (13) must form a possible
triangle, i.e., must satisfy the condition that any side of
a triangle is smaller than or equal to the sum of the
other two sides. If one or more of those four triangles
degenerates into a straight line, the summation in (12)
reduces to one term (see Eq. 29).

The Racah coeKcients are highly symmetrical func-
tions of the parameters a, b, c, d, e, f. The basic sym-
metry relations are

W(abed; ef) = W(bade; ef) = W(cdab; ef) = W(acbd; fe)
=( 1)'+f ~—"W(ebcf ad)

= (—1)'+/ ''W(aef—d bc). (14)

Additional symmetry relations follow from the ones
stated here, so that there are altogether 24 diferent
permutations of a, b, c, d, e, f Lwhich correspond to all
possible permutations between the four triads (13)), for
which the corresponding Ws dier at most by a sign.

One can readily obtain the properties of the 8' coeK-
cients from the above "recoupling" technique. Since
the composite wave functions 4L; JMj are ortho-
normal, we know immediate from Eq. (9) that the
transformation coe%cients are unitary. In terms of the
t/V functions the unitary property is expressed by

Q (2e+1)(2f+1)W(abed; ef)W(abed; eg) = br, . (15)

Another sum rule given by Racah, which can be ob-
tained from this procedure, is

W(agfb; cd) =P (2e+1)(—1)~+~'

W(abed; ef) W(bacd; eg). (16)

A'n extension of the recoupling procedure to four wave
functions yields yet another sum rule for the Racah

Racahf f. has shown that, except for a phase, Eqs.
(14), (15), (16), and (1/) define the W functions com-
pletely. Hence, no further independent relations can
exist.

The Racah coefhcients are useful for the study of
angular distributions since their application eGects the
summations over the magnetic quantum numbers. If
we substitute Eqs. (7), (8), into (9), and use the ortho-
normality of the 4(j,m;) we And the relation

(abnP~ aben+P)(edn+Pb~ edcn+P+b)
=P (2e+1)&(2f+1)&(bdPb~bdfP+b)

f
(afnP+b~ afcu+P+b) W(abed; ef) (18).

The usefulness of (18) may not be immediately ap-
parent. In a fairly typical problem where one is faced
with summing a product of several vector addition
coe%cients over a single magnetic quantum number,
however, successive application of (18) will allow "re-
coupling" of the angular momenta involved in the
vector addition coeKcients until the magnetic quantum
number 'sum can be carried out.

Vsing the unitary property of the vector addition
coefficients Eq. (18) can be given a form that proves
very useful for summations involving products of three
vector addition coeKcients:

P (abnP
~
aben+P) (edn+Py n —P ~

edcy)—

(bdPy n —P i bdfy n)—= (2e+1)l—(2f+1)'
~ (afuy n~ afcp) W—(abed; ef). . (19)

The result given in Eq. (19) is more particularized than
that in (18) above, since in the former we are restricted
to a single Racah transformation.

For calculational purposes, a recursion formula for
the W coeKcients is desirable. Equation (17), it will be
readily observed is, in fact, a generalized recursion rela-
tion. By specializing this formula various recursion
relations can be derived, For example, take c'=-,'. The
W's involving c' then have a simple algebraic form (see
Sec. V) and we get as one case

(u+P+v+2)(u+P v+1)—
W(an+ ', bP+ ,'; c+,'y) = (2c-+1).-- W(anbP cy)

(n+ c+a+ 2) (n+ c+1 a) (P+b+ c+2) (P+—c+1 b)—
(a+ n+1 c)(a+ c n)—(b+P+1—c)(b+c P)— —

(n+a+c+2)(n+c+1 a) (P+b+c+2)—(P+c+1 b)—W(an+ ,'bP+~ $; c—-', y-). (20)

tf L. C. Biedenharn, to appear in J. Math. Phys. (M.I.T.).
ff. Unpublished manuscript.
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It will be observed that Eq. (20) is indeterminate if
either a=et.+c+1 or b=P+c+1 or both. Although a
recursion formula can be written for these cases, it is
unnecessary to do so, since the desired lV coeKcient has
a simple explicit form [see Eq. (29)).

Useful algebraic formulas for the S' coefFicients result
from giving numerical values to one variable (say the e)
in Eq. (12). Two triangle conditions then restrict the

remaining variables:

(1)
~
a—e

~ & b & a+
(2) [c—e~ &d&c+e. (21)

The formulas can thus be conveniently tabulated in a
square array of (2e+1)' entries, similar to the tabulation
of the vector addition coeKcients. We give such tables
for e= —'„1, ~, 2 in Sec. V. If algebraic formulas for
higher values of e are desired, the recursion formulas
can be used to generate them.

In the correlation of successive radiations involving

pure multipoles the Racah coe%cients that enter have
two repeated indices, in the form W(avcd; ad). Only

integer values of v can.occur. A recursion relation for
these g 's takes a particularly simple and useful form:

W(av+1 cd; ad)

2v+1 2a(a+1)+2d(d+1) —2c(c+1)—v(v+1)
0

v+ 1 [(2a+2+ v) (2a—v) (2d+ 2+v) (2d —v) j'*

W(avcd; ad)—

-(2a+v+1)(2a+1—v)(2d+v+1){2d+1—v) l

(2a+ v+ 2) (2a—v) (2d+ 2+ v) (2d —v)

W(av —1 cd; ad). (22)

IV. Z COEFFICIENTS

CoefBcients which are more appropriate for the angu-

lar distribution problem, as mentioned earlier, are not

Equation (22) is by far the simplest way to obtain
algebraic forms for the W(avcd; ad). A short tabulation
of these 8"s is given in Sec. V.

the Racah coe%cients themselves, but the combination

Z(abed ef) =i«+'[(2a+1)(2b+1)(2c+1)(2d+1)]i
.W(abed; ef)(ac00i acf0). (23)

Since there exists the simple explicit formula (7) for
the relevant Clebsch-Gordan coefficient, the computa-
tion of Z is a simple matter once the tabulation of the
8' coefFicients has been carried out.

The Z coefFicients obey all the selection rules for the
Racah coeKcients [see (12) and the discussion there(
as well as the selection rule

(24)Z= 0 unless a+c+f=even,

which follows from (5). This restriction has the conse-
quence that the phase factor i«+ ' in (23) is always real
and equal to &1. Of the various symmetry relations
for the Racah coefficients, only one is needed for the
angular distribution problem, namely,

Z(~1+lf2+2 j ~+) ( 1) Z(12J2/1J1) $1) (25)

A sum rule for Z coefficients follows from Racah's sum
rule (15).This becomes for the Z coefncients

P Z(abed; ef)Z(abc'd; ef)

= 8„(2a+1)(2d+1)[(ac00
i acf0) j'. (26)

Finally, we give here the values of Z when either e or
f vanish. e=O corresponds to vanishing channel spin;
f= 0 is related to the total cross section.

Z(abed; Of) = 8 t,b.~(—1)'«i«+'
[(2a+1)(2c+1)$'(ac00

~

acf0), (27)

Z(abed; e0) = b„bbe( 1) t '—(2b+1)&. (28)

In the application to angular distributions in nuclear
reactions f=l. is integral, so that the factor (—1)'« in
(27) is always equal to +1.

Tables I, II, III, and IV for the 8' coefficients com-
bined with Kqs. (5) and {23)suflice to determine the Z
coefficients explicitly.

V. ALGEBRAIC FORMULAS FOR THE 8' COEFFICIENTS

The summation in Kq. (12) reduces to a single term
if any one of the triangles formed from the triads
(abe) (cde) (acf) (bdf) reduces to a line. In all such cases
the symmetry conditions (16) allow the coeKcient in
question to be permuted to the form

W(abed; a+b f)
2a!2b!(a+b+c+d+1)!(a+b+c d)!(a+b+d—c)—!(c+f—a) t(d+f b)I—

(2a+ 2b+ 1)!(c+d a—b)!(a+c—f)!(a+f c)!(a+c+—f+1—)!(b+d f)!(b+f d) t (b+f+—d+ 1)t—(29)

For any one variable equal to zero we have a special

case of Eq. (29), and the result is [after using symmetry

conditions (14)j
W(abed; Of) = (—1)~' «(2b+1) l(2c+1) 'b, t,b,d (30).
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TxsLE I. W(l,J,/2J2, —,', I).

l2= J2+P

l2= J2—k

ti =J1+$

(A+A+ L+2)(A+ A —L+1)
( 1}Ji+J&—L

(2A+1) (2Jg+2) (2J2+1)(2J2+2)

(L+A J~+—1)(L A+—Jg)
( 1)Ji+J2 L-

(2Jz+1)(2Jg+2)(2J2)(2Jg+1)

l1 =J1-$
(L—Ji+J2+1)(L+Jx—J2)

( 1}Ji+J'2-L

(2A) (2J&+1)(2A+1)(2Jg+2)

(A+A+L+1)(A+A I)—1

( 1}Ji+J2-I—1

2A(2Jr+1)(2Ju) (2A+ 1)

TABLE II. 8'(l1J1l2J2, 1, L}.

l1=J1+1

l1 ——J1—1

l1=J1+1

4 =J2+1

(L+J&+JR+3)(L+Jl+J2+2) ( L+A+A—+2)( L+Jg+J—2+ 1)
{ 1)Jg+Jm I, —

4(2Jg+ 3) (Jg+1)(2Jg+ 1)(2J2+3)(J2+1)(2J,+1)

(L+Jg+ Jm+2)( L+Jg—+J2+1)(L Jg+J2—+1)(L+Jg Jg)—
( 1}Ji+J2—L

4J&(2J&+1)(J&+1)(2Jp+1) (Jn+1) (2Jg+3)

(L+Jz Jg) (L+—Jx Jg 1)—(I —Jz+ Ju+ —2) (L Jy+J2+—1)
( 1)jy+j2 L—

4(2Jg+1)(2Jg —1)(A) (J2+1)(2A+1) (2Jg+3)
h =JR

(L+A+A+ 2) (L+A—A+1)(A+A —L+ 1)(L—A+A)
( j}Ji+J2—L

4(2A+1) (J&+1)(2J&+3)(J2) (Jg+ 1)(2J2+1)

( 1}Ji+J2—L—1
Jg(Jg+1)+J2(J2+1)—L(I+1)

L4Jg(Jg+1) (2J&+1)(Jg)(J2+1)(2J2+1)g&

l1=J1—1

l1 ——J1+1

(L+4+Ja+1)( L+A+A) (L—+A A) (L A+A—+1) '—
(—1}»+J2-L-1

4(2A+1) (J&) (2Jg—1)(J2) (2A+1) (Ja+1)
h=J2 —1

(L Jg+ Jg) (L Jg—+J2 1)(L+—Jg—Jg+—2) (I.+Jg —J2+ 1)
( 1}Ji+J2-L

4(2Jg+ 1)(Jy+1) (2Jy+ 3) (2J2—1)(Js) (2Jg+ 1)

(L+Jl+JR+ 1)(L+Jl J2+1)(L+J2 Jl)(JI+J2 L)
(—1)&i+&a-&—

&

4Ji(2Ji+1)(A+1)(J~) (2J~+ 1)(2Jg—1)

(I+A+ J2+1)(L+Ji+ Jm) ( L+Ji+J2) ( L+—Ji+J2 1)— —
(—1}J1+J2—L

4(2Jg+ 1)(Jg) (2Jg—1)(2Jg+ 1)(Jg) (2Jg—1)

The Rucuh Cocci eat W(uvcd; ud)

In order to remove irrational normalizing factors,
define

(2u —v)!(2d —v)!
W(uvcd; ud) —= Y„(ucd). (31)

(2u+ v+1)!(2d+v+1)!

Vx ———2x7

F 2
——6x'+6x —8ad

F3———20x' —80x'+ 16x[3ad—a —d —3]+80ad,
F4——7ox4+ 700x'+ x'[1560—240ad+ 200a+ 200d]

+x[720+480a+480d —1360a d]
+48ad[2ad 4a 4d 27]. ---

In addition, dehne the variable x by

x—=c(c+1)—u(u+1) —d(d+1),
The T„ for higher values of v may be generated from

(32) the recursion relation

and introduce the convention that a= u(u+1), etc.
The F„are then rational polynomials of the vth order

in x with coefficients involving a, d rationally. The
lowest polynomials are

(2v+1)
7'„+(=

( i
Fg Y',—(2v+1) F„( v+1)

—
~
(4a+1—v')(4d+1 —v') F, . (33)

&v+1)
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TABLE III W(l] J]l2J&j $y L).

4=J~+5

lg= J2+-',

l2= Jg—
~

lg ——J2—$

l4=J1+3/2

(L+Jl+J1+4)(L+Jl+J1+3)(L+Jl+A+2) ( L+—A+Ja+3) ( L+J—l+Jl+2) ( I+J—1+A+1)
( 1)Il+Il I—

(2Jl+4) (2Jl+3) (2Jl+2) (2Jl+1)(2Jl+4) (2Jl+3) (2Jl+2) (2Jl+1)

3(L+A+A+3) (L+A+A+2) (L+A—A+ 1)(L—A+A) (—L+A+A+2) (—L+A+ Jg+1)
( 1)Ix+Il I—

(2Jl+4) (2Jl+3) (2Jl+2)(2A+ 1)(2Jl+3) (2Jl+2) (2J1+1)(2A)
' 3(L+Jl+Jl+2) (L+Jl—Jl+2) (L+Jl—Jl+1)(L—Jl+Jl) (L—Jl+Jl—1)(Jl+Jl—L+1)

( 1)Ig+I1 I—
(2Jl+4) (2Jl+3) (2Jl+2) (2A+1) (2Jl+2) (2A+ 1)(2Jl) (2Jl—1)

(L Jl+Jl) (L—Jl+J1 —1)(L—Jl—+Jl—2) (L+Jl—J1+3)(L+Jl—Jl+2) (L+J,—J,+1)
( 1)Il+I1 L—

(2J1+4) (2Jl+3) (2Jl+2) (2Jl+1)(2Jl+ 1) (2A) (2Jl—1)(2Jl—2)

l2= J2+g

l2= J2+4

l2 ——Jg—g

lg= J2+-',

l2=A —g

l2 ——J2—
2

4=J2+4

3(L+Jl+Jl+3) (L+A+Jl+2) (—L+Jl+A+2) ( L+Jl+Jl+—1)(L Jl+A+1)—(L+Jl J1)—
( 1)Ia+I1—I

(2Jl+3) (2J1+2)(2Jl+1)(2A) (2Jl+4) (2J1+3)(2Jr+2) (2jr+1)
[(L+J1+J1+2) ( L+Jl+J—1+1)7&[(L+Jl+Jl+3) ( L+J1+J—l) —2 (L—Jl+Jl) (L+J,—Jl)7

( g) J1+J2—L—1

[(2jl+3)(2Jl+2) (2Jl+1)(2jl) (2jl+3) (2jan+2) (2jl+1)(2jl) 7&

[(L+jl—J2+ 1)(L—Jl+J2)7&[2(L+Jl+J2+2) (—L+jl+J2) —(L—JI+J2—1)(L+Jl—J2)7
( 1)Ig+Il—I—1

[(2Jl+3) (2Jl+2) (2Jl+ 1)(2A) (2Jl+2) (2Jl+ 1)(2A) (2J,—1)7&

3(L+jl+J2+1)(L jl+J2)(L jl+—J2 1)(L+j—l—J2+2—)(L+jl—J2+1)(—L+Jl+J2) ~

( 1)Il+Il I 1——

(2J'1+3) (2J1+2) (2Jl+ 1)(2Jl) (2Jl+ 1)(2A) (2Jl—1)(2J1—2)

l1=J1—~

3(L+A+A+2) (—L+A+A+ 1)(L—A+A+2) (L—A+A+ 1)(L+A —J1)(L+A —Jl—1) '
( 1)Il+Zl L-

(2Jl+2) (2Jl+1)(2Jl) (2Jl- 1)(2@+4)(2J1+3)(2Jl+2) (2Jl+ 1)

[(L—J1+J1+1)(L+Jl J1)7'1[(L Jl+—JI)(L+Jl—Jl 1) 2(L+—Jl+—Jl+2) (—L+Jl+Jl)7—
( 1)Ig+Im —I

[(2A+2) (2Jl+1)(2Jl) (2Jl—1)(2J1+3)(2Jl+2) (2Jl+1)(2J~) 7&

[(L+Jl+JP+ 1)(—L+Jl+Jl) j&[(L+Jl+JP+2) ( L+A+ JP 1)—2(I+J—1
—JP) (I.—J—l+ Jl)7

( 1)Ig+Z1—I
[(2J1+2)(2J1+1)(2Jl) (2Jl—1)(2Jl+2) (2jl+1)(2Jl) (2Jl—1)7&

3(L+Jl+J2+1)(L+jl+J2) (L jl+J2)(L+jl J2+1—)( L+jl+J2) (—L+jl+—J2 1) '— —
( 1)I1+IiL-

(2Jl+2) (2Jl+1)(2Jl) (2Jl—1)(2Jl+1)(2J1)(2A —1)(2Jl—2)

l1 =Jx-3/2

(L+Jl JP) (L+Jl Jl 1)(L+J—l—Jl——2)—(L—Jl+JP+3) (L—Jl+Jl+2) (L—Jl+J2+1)
( 1)Zg+Zl —L

(2jl+1)(2A) (2jl—1)(2J1—2) (2J1+4)(2jl+3)(2jl+2)(2J1+1)

lg= J2+~ ( 1)Il+Ig L1——3(L+Jl+J1+1)( L+Jl+J1)(L+Jl J—g)(L+Jl Jl 1)(L—Jl+Jl+2)—(L——Jl+J—1+1) &

(2Jl+ 1)(2Jl) (2Jl—1)(2Jl—2) (2Jl+3) (2J1+2) (2A+ 1)(2Jl)

4=J2—
g ( 1)I,+el—I 3(L+Jl+J2+1)(L+jl+J2)(—L+jl+J2)(—L+JI+J2—1)(L+jl—J2)(L—Jl+J2+1) '

(2Jl+1)(2Jl) (2A —1)(2Jl—2) (2J1+2) (2Jl+ 1)(2Jl) (2A —1)

4=J2—
g

(L+A+A+1) (L+jl+jl) (L+A+J1—1)(—L+A+A) ( L+A+ Jl 1)(—L+A+A —2—) ~—
( 1)I1+Ii-L—1

(2Jl+ 1)(2A) (2Jl—1)(2jl—2) (2A+ 1)(2Jl) (2Jl—1)(2Jl—2)

Algebraic formulas that result from taking the vari- gives the Racah coefficient W(lIJll2J2; ~L); Table II,
able e in Eq. (12) to have the values ~, 1, 2, and W(lIJIl2J2, 1L); Table III, W(lIJIlqJ2, ~3L); and Table
2 are given in Tables I through IV below. Table I IV, W(lIJIl2J2, 2L).
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