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I. INTRODUCTION

HE infrared absorption spectra of molecules
originate when a molecule is raised from one
vibration-rotation state to another of higher energy by
the absorption of light. The frequency of an absorption
line in cm™! is given by the Bohr frequency relation,

v=(E'—E")/k, L.1)

E’ and E” being the upper and lower energy states,
respectively, / the universal constant of Planck 6.626
X10-% erg-sec, and ¢ the velocity of light. It was
originally believed that the rotational and vibrational
motions of a molecule could be regarded as independent
of each other and that these in turn might certainly be
regarded as unperturbed by the motions of the electrons
in the molecule. Early attempts were made to account
for the characteristics of infrared spectra of molecules
on this basis, but almost at once anomalies appeared
which made it obvious that the effect of the inter-
actions between the various types of motion of the mole-
cule would have to be considered before satisfactory
interpretations were possible. Recognition of this fact
gave rise to a number of papers by various authors! in
which special kinds of interactions were treated. Ulti-
mately, the vibration-rotation energies of certain mo-
lecular models were treated quantum-mechanically
after a method delineated by Wilson and Howard.? In
each case, it was found that the energy relations calcu-
lated in this manner to second order of approximation
depended upon certain quantities which were related to
the nature of the normal modes of vibration, the size and
the shape of the molecule, and the constants multiplying
the cubic and the quartic terms in the anharmonic por-
tion of the potential energy. All of these quantities are
related in a perfectly definite manner to the coefficients
of the various terms which occur in the hamiltonian
operator for the energy of the molecule.

This led to the realization that, except for certain
anomalous cases, it was possible to evaluate relations for
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the vibration-rotation energies of a general polyatomic
molecule® which then could be applied to any individual
case provided it remained practicable to determine the
normal coordinates associated with the modes of har-
monic vibration of the model. This problem, which may
be regarded as the end result of a great many theoretical
investigations, we shall consider in some detail in the
following sections of this review.

II. THE SCHRODINGER EQUATION

Theoretically, the vibration-rotation energies are the
eigenfunctions of the Schrédinger equation:

(H—E)¥=0, (IL.1)

where H is the quantum mechanical hamiltonian oper-
ator for the rotating-vibrating molecule. We shall
derive the hamiltonian after the method of Wilson,? but
for the sake of completeness we shall include the motions
of the electrons, as well as those of the atomic nuclei.

We shall describe the position of a particle by a radius
vector R measured from the origin of a right-handed
coordinate system X, ¥, Z fixed in space. The kinetic
energy may be written

2T=3; MR 2+m > Rf" (I1.2)*

in this system, where M is the mass of one of the ith
atomic nucleus in the molecule and  is the mass of one
of the j electrons. Equation (I1.2) becomes

2T= (T M+ Nm)R*+X; MR *+m ¥; R/* (IL3)

if the position of the center of mass of the molecule is
described by the radius vector Ro(Xo, Y5, Zy) and the
positions of the particles relative to the center of mass
by R/(X’, Y’, Z’), and one makes use of the condition
s MR/+m 3 ; R)=0. N, in Eq. (I1.3), denotes the
number of electrons in the molecule.

We shall require also a moving set of coordinates
¥, 9, 2/, so fixed in the molecule that the origin may be
identified with its center of mass. Denoting the angular
velocity of this system of axes with respect to the fixed
axes by @ we have

R'= (oX1)+1,

where the radius vector r'(«, ¥/, ) defines the position
of a particle relative to the system &', ¥/, 3'.

When Eq. (IL.4) is substituted into Eq. (II.3) and
application is made of the relation '(0X1") = w(t’ X1'),

(I1.4)

3H. H. Nielsen, Phys. Rev. 60, 794 (1941).
* A list of symbols and notations used will be found at the end
of this article.
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we obtain
2T= (i Mi+Nm)R*+3 s Mg/>+m Y ;7
+2:i Mi(oXr) (@Xr)
+m 25 (0X1)- (0Xr))
+20 2 Mt/ Xt )+ 20 X; ¢/ XE/). (I1.5)
Dropping the vector notation, we can write Eq. (IL.5)
explicitly to give
2T=(T: MA-Nm)(X o+ Yo+ Z?)
F2i e M/ Hm 3 Yo af’?

+Za Iaawa2_2aﬂ Iaﬁwawﬁ‘l"z Za Qawa, (II.6)
where
Toa=2%¢ M(B/* %) +m 3; (B4,
Tag=2 i MiaiB/ i o' By,
8 Z ai' B +m ZJ a; B; (11.7)

Qo=—2s Mi(By'—B/vi)
—m; 225 By —Bivi),

in which a, B, v are summed over x, y, and z.

The coordinate system «’, 9/, and 2’ is identified with
the center of mass of the molecule. Hereafter, it will
be convenient to identify this coordinate system with
the center of mass of the nuclei, i.e., we shall neglect
the difference between the center of mass of the mole-
cule and that of the nuclei. We may neglect certain
terms in the kinetic energy which are of the order of
(m/M;) times the ordinary rotational and vibrational
energies by making this simplification.

If we designate the displacements of the nuclei from
their positions of equilibrium along the axes x, ¥, and 2z
by «i/, we may evidently write

> Misa!=0. (IL.8)

It is, moreover, important that the molecule be so
oriented in the body-fixed coordinates that the axes
%, ¥, and z coincide with the principal axes of inertia
when the nuclei are in their equilibrium positions. This
condition prevails when the following relations are
obeyed

Zi Miai/06i10= 0. (119)

It is also convenient to require that to zero order of
approximation the internal angular momentum of the
molecule shall be zero. Since the displacements, da;/, of
the nuclei from their equilibrium positions may always
be regarded as small (i.e., af=a/'4da =/, this
condition is fulfilled by imposing the conditions

i M (a8 —B/%a)=0. (IL.10)

It is desirable, at this point, to make the following
replacements:

(ZZ M,-+]\7m)%Xo=E, (Ez Mi+Nm)%YO=H)
(Zt Mi+Nm)%Z.0= Z) m%dj/= di,
Mi%adi,= Zs lis<a)Qs'

IL.11)

We shall, at a later time, indicate how the Q, may be
identified with the normal coordinates of the molecule,
the constants /;,® being the transformation coefficients.
Here, we anticipate merely that such a transformation
may be made. When these substitutions are made
in the relation (IL.5), taking account of the fact that
Zi Za (lis(“))2=1 and Zl Za lis(“)lis:(a)=0, we obtain

2T = (EH-H 42943, Q243 o

+Za Iaawa2_2aﬁ Iaﬂwawﬂ+2 Za Qawa, (1112)
where now
Qo= —2 . As9Q,—X; (Brvi—Bivi), (IL13)

in which the substitutions )
A@=3 3 lig Pl —1;, B D)0, (IL14)
have been made for brevity.

There remains to transform Eq. (IL1.12) into the
hamiltonian form. To accomplish this we make use of
the fact that $,=(37/9¢;) and P.=(0T/dw,) and
obtain .

p==(9T/9E), etc.,
paj=(0T/0d;)= c;+ 7,0~ B,
b= (aT/aQs) = Qs_Za waAs(a),
Po=(0T/0wa) = nawa—Iapwpg—1I ayisy
—Zs As(a)QS'l'ZJ' (61‘71" 5171) (IL.16)

The expressions (I1.12) and (I1.13) enable us to write

2T in the form:

2T=Za Pawa"|‘§:s Pst
+2i 2oa pasaitpr+pat+pzt  (IL17)

When Egs. (IL.15) are solved for @, ¢; and these are
substituted into Eq. (I1.17), it becomes

2T=3 o (Pa—o)wat 2 s ps?
+205 Xa pattpatpui+pa?, (IL18)
where (Po—1Ilo) =1Iaa’wa—1ag’wg— I ay' w4, in which
=3 AS9p+3; (Bipvi—vips;), (IL19)
Lo =Taa—20s A —3; B2+,
Tog'=Tapgt2: ASDA P -3 B
The first term in II, we shall henceforth denote by p,

and the second by mq.
By an inverse transformation we may obtain

wa=ﬂaa(Pa—Ha)+ﬂaﬂ(Pﬁ-Hﬂ)
+P‘a‘y(P7_H‘Y)) (1121)

a, B, and vy taking, as heretofore, the values x, y, and 2
with as%B7#~y. The coefficients g, and pqg will be seen
to be the following: paa= (Igs'l,y'—15,'2)/A and pep
= upa=(Iyy'Lag’'—Iay'I44")/A, Where

(IL.15)

(I1.20)

Izz, _Izyl _Izzl
A=|—TI, I,/ —I,|=ut (1122
_Iza:l '_Izy, Iu,
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This permits Eq. (II.18) to be written in the hamil-
tonian form:

2T=Za8 #aﬁ(Pa—Ha)(Pﬂ—Hﬂ)+Zs P82
+205 Do paitpPtprp2% (11.23)

The terms pz% pr® and pz% in Eq. (I1.23) are the
squares of the momenta associated with the -transla-
tional motion of the molecule as a whole. Since this
type of motion holds no spectroscopic interest, we shall
henceforth drop these from the discussion.

Before the quantum mechanical form for the hamil-
tonian is derived, it is necessary to know the classical
expression for the components of the total angular
momentum P,. Relating the rotating coordinate system
2/, ¥, 5’ to the system X', ¥’, Z’ by means of the
eulerian angles 6, ¢, and ¢, so that

X’'=a'(—sing sing+cos e cosf cosy)
+9'(— cos ¢ sing—sing cosd cosy)-+2’ sinf cosy,
Y’=4'(sin ¢ cosy+cose cosh siny)
—+9'(cos¢ cosy—sine cosd sing)+2’ sind siny,
Z'=—x’ sinf cos o+’ sinf sinp-+3’ cosd,

and
wz= 6sin o—yYsiné cos,
wy=fcos p+ysind sin e,
wz= ¢+ cos,

we readily obtain, by observing that ps=(97/6)
=30 (0T/0wa)(0wa/d8), etc., and at the same time
remembering that (07/0wa)= P,

P,=sinpps— (cos¢/sind) (py— cosfp,),
P,=cosppst(sing/sind) (py— cosfp,),
P.=p,.

(IL.24)

In the quantum mechanics it is required that the
expression:

f f B(T+V—E)8dV:dVy--dV,, (I1.25)

where dV;=dX,dY dZ; and ® is the solution to the
resulting Schrodinger equation, shall be a minimum sub-
ject to the condition /- S ®®dV1dV;---dV,=1. In
the preceding relation V is the potential energy function
and E is the total energy.

In terms of the coordinates in which Eq. (I1.23) is
expressed we have that

aVdVs: - -dV,=p~* sinfdbd pdy 11 dQs 11, 1 da.

It is somewhat preferable to choose a configuration
space where the element of volume will be

dV{de’st“ . 'dVr,= u*(sin&)‘ldVlde- . dV,-

The solution to the Schrodinger equation will then be
¥ where ¥=yu~¥(sing)*d. When this change is made,
the requirement that Eq. (I1.25) shall be a minimum

is equivalent in our case to stating

5 f . f (5 (/2 )[ (8% /90X )+ (/9T
F(O/OZ TS (1 2m)[(9/0X )
F(0/aV 4 (9%/02,)]

+(V=E)¥)dVydVy---dV,/=0 (IL.26)

subject to the condition,

f f YWwdodgdy 1, dQ, 1, [« doy=1.

Equation (II.26) then becomes

af---f{%zj'zapaj\l,?aj\l/—,_% Zs PS\I,PS\I,

+% Zaﬁ NaB(Pa_ Ha)‘I’(Pﬁ_Hﬂ)\I/
+(V—E)¥¥}dodody I1s dQs I1; [1a day=0. (IL.27)

The minimizing process leads finally to a result for the
Schrédinger equation (H—E)¥=0, where H may be
regarded as the quantum-mechanical hamiltonian. In
the notation of Wilson and Howard? the Schrédinger
equation may be expressed

H-E)¥={3[ut> o (Pa— Ha)ﬂaﬁuf%(l’ p—Tg)ut
Fut 3 poup iV
+2i Zapa? - E}¥=0, (IL28)

in which the quantities Py, II,, p,, etc., are the follow-
ing operators:

P,=(—1h)(sinf)?
X [(—cose/sind) ((3/d¢)—coshd/d o)
-+sind/a807](sinb) %,
P,=(—1h)(sinb)?
X [(sing/sind)((3/d¢) —coshd/d o)
+cospd/807](sind)—2,
P,=(—i%)(sinb)¥d/9 p(sinf)—*
II,= Pa"'. Ta= Zi Zs Zs’ (lis'(ﬂ)lis(y)
—1is®Lis )Qspst 225 (Bipvi— Yibei)s
ps=—1h0/0Qs, paj=—ihd/da;.

The Schrodinger equation (I1.28) is in the form of the
one stated by Darling and Dennison.? It may be shown,
however, that the form in which the Schrodinger equa-
tion is stated by Wilson and Howard? is entirely equiva-

lent to that given here. The wave function in their case
is the function ®, which normalizes as

f f 30yt sin0dfd pdy T1s dQs 1; [« doy=1.4

(11.29)

4 When the perturbation calculations are carried out, the per-
turbing matrix elements will, when Eq. (I1.28) is used, which has
the function ¥ as a solution, be obtained from S ---/¥¥
X H y¥d0d pdy 1, dQ, 11; 14 do;. If, on the other hand, the Wilson-
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Each of the electrons which occurs in the molecule
will have associated with it a spin angular momentum.
It is, therefore, necessary to introduce into Eq. (I1.28),
besides the positional coordinates, certain other coordi-
nates known as spin vectors s used first by Pauli.® The
terms which represent the interactions between the
spins of the electrons and the orbital motion of the
electrons and the rotational motion we shall include as
a part of the term V. It is assumed in this discussion
that the dependence of the moments of inertia upon the
spin orientation may be neglected.

In one limiting case there will be a strong interaction,
mainly magnetic in character, between the spins and
the orbital motion of the electrons. In this case the spins
must be referred to the moving coordinate system «/,
y’, and g/, each coordinate being allowed two values 4;
and B;. Corresponding to these values the spin angular
momentum for each electron will have a component
along one of the body-fixed axes, say, the 2’ axis, which
takes the values #/2 and —7#/2, respectively. This limit-
ing case corresponds to what in diatomic molecules is
referred to as Hund’s case (a).®

A second limiting case is the one where the magnetic
interaction between the spins and the orbital angular
momentum vectors is small compared with the inter-
action between the spins and the rotation of the mole-
cule as a whole. In this case the spins must be referred
to the space-fixed coordinates X, ¥V, and Z, and each
coordinate will be permitted two values, ¢; and &;.
Corresponding to these values the spin angular momen-
tum will have a component along one of the space-fixed
axes, say, the Z axis. This case corresponds to Hund’s
case (b)® for diatomic molecules.

The wave functions will then depend upon the posi-
tional coordinates 6, ¢, ¥, Qs, @j, and in addition the
spin coordinates which we shall designate by ¢; in case
(a) and by s; in case (b). For a molecule of f electrons
there will be 2/ wave functions required to describe the
motion of the molecule including the spin motion.

According to Pauli® the vector s associated with the
spin of an electron is to be regarded as an operator. If
the spin is referred to the space-fixed axes X, ¥, Z, the
components of s, sx, sy, and sz, may be represented in
the matrix notation as

0 1 0 —i/2
Sx= h, Sy= )
3 i/2
(11.30)
0
2
Sz= h

0 -}

If the wave functions ¥(a) and ¥(b) corresponding to
the two values @ and & of the spin coordinates s are

Howard form is used, which has the function & as a solution, the
perturbation terms are computed from the relation /- -- f'®®
X H p®ut sinfdod pdy 11, dQ I1; T daj.

5W. Pauli, Jr., Z. Physik 43, 601 (1927).

$ F. Hund, Z. Physik 36, 657 (1926); 42, 93 (1927).

¥(a)
¥ (b)
sx¥(a)=(/2)¥(5),
sy¥(a)=(—1ih/2)¥ (),
s2%(a)=(1/2)¥(a),
sx¥(b)=(7/2)¥(a),
sy¥(b)=(i#/2)¥ (a),

represented in the matrix form ” I, it is readily

and
s2U(B)=(~H/2) ¥ ().

In the same way in a many electron system where the
electrons are referred to the space-fixed axes it may be
shown that the spin operators have the characteristics®”’

sex¥(are - ape )= (B/2)¥(ay- - by ),
sex¥(ar by - )= B/2)¥ (a1 - ap - +),
V= (—ih/2)¥(ay - bgr ),
D=/ ¥(as - ar -+,
)= BV o),
=(—=h/2)¥(ar by ).

When, however, the spins are referred to the coordi-
nates %, ¥, and z fixed in the molecule, the wave func-
tions ¥(ay, - - - 0% - - ) characteristic of the molecule are,
according to Paul® and Van Vleck,” related to the wave
functions ¥(sy- « - Sk + -), where the spins are related to
the axes X, ¥, Z by the transformation ¥(oy- - -0z---)
=SW(s1: - Sk + +), in which we regard .S as a matrix with
the elements S(o1---op- -} s1° Sk - -)=S(01; 81)- -~
X S(ok; sx)- -+, in which

S(A; az)=eDU+TID cos(6/2)eliID (o=l
S(Ay; by) =ieiDWHTID sin(9/2) D e—rl2)
S(By; ax) =ieliD 1) sin(g/2)etil2 (e=r1D,

S(By; by) =D+ cos(8/2)eti2 (o=l

SkY\I"(al' Qe

(I1.31)
SkY‘I’(dl' . .bk. .

SIcZ\I/(al' DRy TR

skz\I’(ar . 'bk" .

(I1.32)

The wave equation appropriate for the latter case
may be obtained from the equations characterizing the
former case in the following manner: We shall multiply
the function ¥(oy:+ 0% ++) by S~ from in front so as
to obtain SV(gi -0k )=T(ss--S5-+). When
W(sy---Sk+-+) is replaced in Eq. (IL.28), we obtain,
after multiplication in front by S,

{SH(air Qs’ 01 (2} '/’, SkX, SkY, Skz)S_l—E}
XY (aj, Qs, 0, @, ¥, o) =0. (I1.33)

When we carry out the indicated transformation
SHS™L, only those operators containing the eulerian
angles will be affected. In fact; everything except the
operators P, and the term V will remain unchanged.
From the definitions of the transformation matrices .S

7J. H. Van Vleck, Phys. Rev. 33, 467 (1929).
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and S~ and from the characteristics of the spin matrices
(I1.32) it is rather readily shown that

S{(—1k)(sinb)*[ (— cos¢/sind) ((8/0¢)—coshd/d )
+sinpd/ 867 (sind)—} S—1= { (—4%) (sinf)*
X [(—cose/sind) ((9/d¢)—coshd/d o)
+sinpd/ 90 (sind) 3} — S,
S{(—1#)(sin6)?*[ (sin¢/sind) ((9/d¢) — coshd/d o) (I1.34)
~+cos0d/90(sinf)—#} S—1= {(—144) (sinf)*?
X [(sing/sinf)((3/0¢)—cos8d/d o)
+cospd/96](sind)~t} —8,,
SH—1h#)9/9 ¢} S =(—i)(3/0¢)—S$.,

where $,=2_; Sja, in which s;, are the same matrices in
the x, ¥, z coordinates as are the s;x, etc., in the space-
fixed coordinates. When the relations (I1.34) are sub-
stituted into Eq. (I1.28), we have the following for the
Schrédinger equation for a polyatomic molecule, where
the spins are referred to the body-fixed axes, i.e., case

(a):
(H—E)¥(aj, Qs, 0, ¢, ¥, 010 -0+ +)
= {3t Zap (Pa—Tla—8a)
X paguH(Pg—Ig— Sg)u*
Fut 25 ponTipout 205 2 a pes?
+SVS}¥(aj, Qsy 0, @, ¥, o) =0.

It is of interest to note that, although the operators
Skx, Siv, and s,z and the operators m, obey the commu-
tation relations sisp—spsa=ih sr and IIIIg—IIgIl,
=1k II,, the operators (P,—II,— 8,), which we shall
designate as P,/, obey the same commutation relation
as the operator P,, namely, P,’Pg’—Pg P,’=—1ihP,.

The function V in Eq. (II.35) contains all the inter-
action terms between the electrons and the nuclei, and
in case (a) it depends also upon the spins of the elec-
trons. It contains also a small contribution, which arises
from the magnetic fields due to the nuclei as the mole-
cule rotates and the magnetic fields associated with the
electrons as they are carried around with the nuclei.
These two terms tend to compensate each other so that
only for large values of the rotational quantum numbers
will this term become significant. If we, therefore,
neglect this term it is clear that the function V will be
independent of the eulerian angles, since the electronic
energies are the same whether the molecule is rotating
or stationary. We have then to this approximation that
SVS1=V.

Equation (II.35) does not lend itself to an exact solu-
tion; but if we consider as small certain terms in it and
neglect them at present, we may effect a partial separa-
tion of variables in the equation by adopting for ¥ the
following function: ¥©=&(a;, 6, Smn)R(Qs, 8, ¢, ¥),
where s,., is the distance between two atomic nuclei m
and n. The terms which, for the present, must be

(I1.35)

neglected are (U—U), where U is the following:

U= (1/28R){u* 2 ap (Pa—pa)iasu *R(Ps— pg)®
Fut Lap (bapp H(Pg— pp) wiR) (Pa—pa)®)
— 1wt Y ap Mol pap™(Ps— pp)+ (Ps— pp) mapp™
— tapt M g JuiRDH-pt 3=, [ o iR PP
+ (utp:ulR) (p:2) ]},

and where U is the function U averaged over the elec-
tronic coordinates, i.e.,

(I1.36)

(7=Za1.-.a,~f3>U<I>dx]dyjdzj.

In the relation (I1.36) M.=m.+S. in case (a) and
simply m, in case (b). If this procedure is followed, the
Schrédinger equation separates into

EDIPI Paj2+(V_Ee(5mn))}

X‘I’(Ozj, () Smn) = 0, (11378,)
{301t Zap (Pa— pa)apu(Pp— po)ut
+I‘L% Zs Psﬂ—%ﬁsﬂ%]_f" Ee<smn)
—U—E}R(Qs, 8, ¢, ¥)=0. (I1.37b)

The standard method for integrating Eq. (I1.37a) is
to proceed by considering the atomic nuclei as fixed.
The E, are the electronic energies which after integra-
tion over the variables oy still depend upon the inter-
nuclear distances as parameters. If the coupling of the
spins to the electrons is large, the energy will contain a
contribution from the spin interaction and will be
designated as E.q(Sm»); otherwise, it will be designated
simply as E.(sn.). Inasmuch as the electronic energies
of the molecules, E.(sx»,), depend upon the internuclear
distances s.. as parameters, they serve in reality to
define the potential energy function which determines
the manner in which the atomic nuclei may vibrate
when free to move. Equation (II.37a) has been solved
in only certain very special instances; for example, the
H,* ion,® the H, molecule,® and a few other relatively
simple cases. In general, it has not been practicable to
evaluate the function E,. For this reason it is necessary
to proceed in other ways if progress is to be made in
the solving of the second equation (I1.37b).

If the molecule is to be stable in one of the electronic
levels, it is necessary that for certain values of s,., inter-
mediate between $u,=0 and sn,= % the energy of the
state shall be less than the energy of the spearate atoms;
i.e., for certain values of s,, the potential energy func-
tion shall have minima. The values of s, for which the
potential minima occur will then be the equilibrium
values of the nuclear separations s».’. It is reasonable,
of course, to expect that the equilibrium values of su.°

8 0. Burrau, Kgl. Danske Videnskab. Selskab., Mat.-fys. Medd.
7, 14 (1927).

9 S. Wang, Phys. Rev. 31, 579 (1928). W. Heitler and F. London,
Z. Physik 44, 455 (1927).
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of the nuclear separations will vary from one electronic
state to another.

Since the energy values E,(sm,) cannot readily be
determined, we shall replace this function in Eq.
(IL.37b) by another function E.(Q,), which approxi-
mates the actual function very closely, particularly in
the region where, in a classical sense, the atoms spend
most of their time. Those vibration levels which will be
of the most immediate interest are those where the
vibration energies are small. The states of low vibra-
tional energy correspond to the condition where the
nuclei are oscillating classically about their positions of
equilibrium with something resembling simple harmonic
motion. Since in such instances the amplitudes are

small, we shall regard it as legitimate to replace the

actual potential energy surface by a power series expan-
sion about the equilibrium values, sn.°% of the nuclear
separations. As our expansion we take

V= V(Sl, 20; 1, 30’ e Smnde .)
+2m 0 (OV/3Smn)o(Smn—Sma®)
43 2 2kt (02V/3smndsi2)0
X (Smn—Smn®) (St2— 582+ ++.  (I1.38)

In the above expansion V(s12% $13°:Sma’ +-) is the
value of the potential energy function when the mole-
cule is in equilibrium, i.e., when all the $,,=$n,’. More-
over, all the generalized force components (8V/3Smz)o
must vanish, since the slope of the potential energy
curve is zero for the equilibrium value of su,. For our
purpose of studying the normal oscillations of the
atomic nuclei we may neglect all of the terms in Eq.
(IL.38) of higher order than the second. The quantities
(0%*V/smndsk,1)o may be regarded as the generalized
force constants which for convenience we shall denote
hereafter by K,axi. We have then Vo=V —V (a0 - )
=13 mn 211 Kinnki0SmnOSki, Where 88mn= Smn— Sm»’, etc.
The above function may be regarded as a perfectly
general function of the coordinates where the constants
K nr1 are so determined as to give the correct positions
of the fundamental frequencies. Such a function has the
disadvantage, frequently, that it contains more inde-
pendent constants than can be determined from the
experimental data. In such cases simplifying assump-
tions must be made which will supply additional rela-
tions between these constants. The actual form in which
the potential energy of a molecule appears will depend
upon the exact nature of the assumptions which are
adopted. One assumption which has justified itself in
many cases is that of valence forces. This hypothesis
supposes the forces between the atomic nuclei to be
directed along the valence bonds and between the
valence arms. Another simplification which, in general,
has been less successful is that of central forces. In any
case, whatever the simplifying assumptions are which
are adopted, they may be introduced at the end, since
they simply impose definite relationships between the
generalized force constants Kpag.

It is important to express the relation for ¥V, in terms
of the coordinates Q;. In order to accomplish this, the
displacement coordinates ésm, are first expressed in
terms of the coordinates dc;. Each of the NV atoms in
the molecule has three degrees of freedom so that the
molecule as a whole has 3V degrees of freedom. All of
the coordinates das, are, as we have seen, not independ-
ent of each other. The relations (I1.8) remove three de-
grees of freedom from the motion of the nuclei in the
coordinates x, ¥, 2. These are accounted for by the
translational motion of the molecule as a whole. The
relations (I1.10) remove three more degrees of freedom
from the motion of the nuclei in the body-fixed coordi-
nates, and these may be accounted for by the rotation
of the molecule as a unit. There remain, therefore,
3N—6 coordinates, Q;, to describe the vibrational
motion; and these are related to the coordinates da;
through the constants 7;,(® as indicated in relation
(IL.11). -

It is now important to investigate the character of U.
The function ® is independent of the angles 8, ¢, and ¢,
but does depend slightly upon the coordinates Q,. It is,
therefore, evident that the terms in U when averaged
over the electronic coordinates will give two kinds of
contributions, one of which is a function only of the
Qs’s and the other which is a product of a factor multi-
plying the operator P,, the factor being a function only
of Q. For U we may then write

U=Za [ea(QS)/Iaa(e)]Pﬂ+Zd [aa(Qs)/Iaa(c)],

where €,(Q;) and 8.(Q;) are functions of the Q;, the
explicit form of which cannot be determined without a
knowledge of the function ®. The second term in U is
conveniently combined with E.(Q,) as a part of the
potential energy function governing the vibrational
motion of the nuclei.

Equation (II.37b) is most conveniently dealt with
if the coordinates Q, are the normal coordinates of
the molecule. This is achieved by determining the
constants /;(® introduced in Eq. (II.11) in such a
manner that, in addition to fulfilling the requirements
set forth earlier in this review, the harmonic portion of
[EQ:)—2a 84(Qs)/I2a'?] shall contain the Q, only
as square terms. There will evidently be 3V —6 of these,
one normal coordinate for each frequency w,. The actual
methods for accomplishing the transformation to nor-
mal coordinates is beyond the scope of this review. For
a complete discussion of this problem the reader is
referred to a treatise on classical dynamics.}® Not infre-
quently, however, a molecule will have so high a degree
of symmetry that in certain of its modes it will be
oscillating in force fields which are isotropic in two or
three dimensions. In such cases two- and threefold
vibrational degeneracies will arise; i.e., there will be,
respectively, two or three coordinates Q, associated

0 E. T. Whitaker, A Treatise on the Analytical Dynamics of
Particles and Rigid Bodies (Cambridge University Press, London,
1927), third edition, p. 77,



96 HARALD H. NIELSEN

with the same frequency w,. It is convenient, for this
reason, to denote a normal coordinate by Q,, rather
than by Qs, where s will denote the particular frequency
to be associated with the coordinate and ¢ will take the
values 1; 1, 2; and 1, 2, 3, depending upon whether the
frequency is nondegenerate, two-, or threefold degener-
ate, respectively. Thus, for example, the nondegenerate
frequency of a harmonic oscillator oscillating with a
frequency w, will have associated with it the coordinate
Q.,1, while the twofold degenerate frequency of a two-
dimensionally isotropic oscillator oscillating with a fre-
quency ws will have associated with it the two coordi-
nates Q1 and Qs etc. The constants ;¥ must
henceforth be written as 7;5,(®.

For the quadratic portion of the potential energy
function we shall have that

Vo=2sc (\s/2)Qss’, where \,= (2mews)?.  (11.39)

The cubic and quartic terms in the potential energy
expansion, when expressed in the coordinates Q.
will be

Vi=he Yoo 2srar 2srrar Rosrsrr' QsoQsraQstrar
where (s<s'<s"), ‘
Vam he oo Laror Sorrorr Sarrrgrrbssrrsr

XQsoQs10rQsrr51 Q1110

where (s<s'<s” <),

The function [E.(Qss)—> a 8a(Qs0)/Iaa'®] having
been replaced by the expansion V=V,+Vi+Vot---
there remains only to express the moments of inertia
and the products of inertia (I1.6) explicitly in terms of
the normal coordinates before we are ready to consider
the solutions to Eq. (IL1.37b). Explicitly, it may be
verified that the quantities 7.,/ and I.4" will be

Lo/ =Taa 4250 056“Qso 250 2osrror [Asasrron@®
D DR GONELL GUPTRIAL O O

Tag'=—=2"50 @45s“PQse—2 50 25170 [Asasrror P
— 2 srer $oosror @8 sr0500r B JQ50Qsrr07,

(I1.40)

| (1141)

where
@se @0 =23 MBI ise® 4 %ise ™),
Ao B = —3 s M #(a)/ %@+ %:50®),
Asosrrarn @D =3 (LisaPlisrrarn @+ Liggligrrgn ),

A sas”u’"(aﬂ) = Zz lisa(a)lis"a"(ﬂ)7

(I1.42)

and where we define
g‘sa's’u'(a) = Zz (lisa‘<’s)lis'«7’(7) - lis’a’(ﬂ)lisa'(’)')). (II43)

Equation (I1.37b) does not adapt itself to an exact
solution. It becomes necessary, therefore, to replace it

by its expansion in orders of magnitude and obtain an
approximate solution using the methods of the perturba-
tion theory. The expansion which is adopted is made on
the basis that the displacement coordinates &, §y;, and
0z;, and therefore also the normal coordinates Q,,, are
small when compared with the equilibrium values of
the nuclear coordinates, i.e., % v.,% and z,°. When the
quantities u, ueg, €tc., are expanded on this basis, it is
possible, after some algebraic manipulation, to set down
in orders of magnitude, the quantum-mechanical hamil-
tonian for the general polyatomic molecule. After Q,,
is replaced by (%%/A;)g,s, the hamiltonian will be

HO=(7/2) T oo NAL(oo/H)+¢007]

+3 2o (P/1aa), (IL.44a)
HO=hc 3 o0 2 5r0r 250 RsstsQsalsrorQsrrarr
—2a (Pa'Pa/Taa') =% 2sa (B*/N)
XX a8 @50 (Pa—2pa™) Pg/
oo 9159} q,, (11.44b)

H®=3%3 o (p’/Taa'?)
6 S a0 Dty Sarrarr Sasrrgos bgorsrs
X soqs75'Gs7 a1 Qs 76010
=13 Do (BN
XX ap [A 0500’ @O =3 (@56 P18 /1, (9) ]
X PaPp/I a1 58} qocfsror+205r* (H2/Ne)E
XX a 0@ pa' Pa/TaalI55@} g0,  (IT.44c)

In Eq. (I1.44c) Asoee’*® has been used to denote
(A sas’v’(aﬁ)—Zs”o’" g‘sqs"v"(a)f‘s’a’s”v"(ﬁ)). The opera-
tors p./, Egs. (IL.44b,c) are equal to patea(¢so),
where in terms of the coordinate ¢,, and the conjugate
moments p,, the operators p, will be

Pa=Zi st Zs'«r’ lisv(ﬁ)lis'v’(‘y)[(As’/}\s)%stPs’a’
- ()\s/)\s’)%qs'a'Psv]-

It will be seen that the last component of Eq.
(I1.44b) contains a set of terms similar to the last com-

‘ponent of Eq. (IL.44c). These two sets of terms are, in

fact, similar in every respect except that the p,* are
made up of a sum of Coriolis operators where each
operator is associated with a degenerate frequency.
These terms may, therefore, contribute to the energy
in second order. The significance of > * in Eq. (I1.44c)
is that the sum does not include those terms which
already occur in (I1.44b). This set of terms, indicated
by a dagger, will contribute to second order only if
resonance between certain frequencies occur. It will,
moreover, be noted that the coordinates ¢,, are dimen-
sionless. Evidently, the potential energy constants
kogrsrr and Eggrgrrgre will be expressed in cm™,
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III. THE SOLUTION OF THE ZERO-ORDER
SCHRODINGER EQUATION

" It is necessary to know the solutions to the zero-order
problem before one may proceed with the perturbation
calculations. The zero-order Schridinger equation will
be (HO—E©®)Yy©®=0 where H©® is the operator
(IL.44a). It is readily verified that the zero-order
Schrédinger equation will become separable in the vi-
brational coordinates, ¢,,, and the rotational coordi-
nates 6, ¢, and ¢ if one adopts for Y@ a function
YO =TT, s F(g:s)R(6, ¢)ei¥¥, where the function F(g,,)
depends upon the ¢,, alone and R(6, ¢) is a function
only of # and ¢. The separation of variables leads to a
set of differential equations of the following kind, one
for each vibration frequency w,:

{(aN}/2) 22 [(ps?/7)+qs* 1 — Es} F(g:) =0, (IIL1)
and the differential equation for the rotator,
{% Za (Paz/Iaa(e))_ER}R(e, QD)@iM‘bT—O, (III2)

where the P, are the operators defined in Eq. (II.29).

A. The Harmonic Oscillator

If the frequency w, is nondegenerate, so that only one
coordinate is required to describe the motion, the index
o takes only the value 1. We have then the differential
equation for the linear harmonic oscillator

{(ANE/2)[(p*/ )49 ]— E}F(g)=0. (IILY)
Equation (II1.1”) has been studied by Schrodinger,!
who has shown that a suitable solution F(g,) will be

F(Q3) =Nv, eXP[— (qs2/2)]HVs(Qs), (III3)

where Hv, is the hermite polynomial Hv,(g,)=(—1)"*
Xexp(gs2)(dVs exp(—gs?)/dgs"s) and Nv, is a normaliza-
tion factor so determined that

f Fvy(¢:)Fvs(gs)dg.=1.

The characteristic value Ev, is found to be
Ev,= (V43 hcws, (I11.4)
and the normalization factor Nv, is evaluated as
Nv,={(1/7)}(1/2V:V )}i (TIL.5)

In carrying out the perturbation calculations in a
later section it is important to know the matrix elements
of certain functions f(gs, ) of the coordinates ¢, and
the conjugate momenta p,; for example,. ¢,%, ¢.%, ¢:%p.2,
etc. These may be obtained by evaluating the integrals
Vsl f(gsy p) V)= S Fvi(qs) f(gsy ps)Fvr(gs)dgs. Tt is
frequently simpler, however, to build up the matrix
components of such a function from a knowledge of the
values of the matrix components of ¢, and p, themselves

1L E. Schrodinger, Ann. Physik 79, 361 (1926).

than to evaluate such integrals. It is readily verified in
the manner suggested above that the nonvanishing
matrix components of ¢, and p, are, respectively, the
following:

(Vilga| Vem D)= (Vo= 1] q:| V) =[V./2 ],

(IIL.6)
(VsIPs’ Vs— 1)= - (Vs'_' 1 ]Ps[ Va)ziﬁ[Vs/Z:l%'

It is evident that these matrix components conform
with the commutation relations for the oscillator
Pst_93ps= —ih.

If the vibration frequency w, has two vibrational
coordinates associated with it, the index takes the
values o=1 and o¢=2, and Eq. (III.1) becomes the
differential equation for the fwo-dimensionally isotropic
oscillator. It is convenient here to introduce cylin-
drically polar coordinates, i.e., to let g, 1=7; COSXs, qs,2
=7s SinXe, Ps,1= _iﬁI:COSXs(a/ars) - (SinXs/rs)(a/aXs):l
and Ps, 2= _ih[SinXs(a/ar.O‘i_ (COSXs/rs) (a/aXs):la SO
that Eq. (III1.1) becomes

{02/ 0r2+(1/7:)(8/9r)+(1/7:5)(3:/Ix.2)
+LQE/BNS) —r 2]} F (7o, x5)=0.

Equation (II1.1") was originally studied by Denni-
son,? whose method we shall sketch briefly. When the
function F(rs, x,) is set equal to exp[ — (rs2/2)r!1Z(r,)
Xexp(zilsxs), Eq. (IIL.1”) transforms into

Z"(re)+ [((2l8+ 1)/"8) - 27’8]2,("8)
+2[(E/hcws) — (ls+1)]Z(rs)=0.

The condition that F(r,, x,) must be single-valued re-
quires that /, shall be an integer or zero. If a new vari-
able p,=7.2 is chosen and introduced into Eq. (II1.7),
it takes the form of the differential equation for the
associated Laguerre polynomial:

psG" (ps)+ (t+1— )G (po)+ (r—1)G(p,) =0, (IIL8)

where 7=3[(E/hcw,)+1.:—1]=%(V,+1,), V, being an
integer, and where ¢,=/,. The normalized function
F(rs, xs) may, therefore, be expressed as

F(rs’ xs) =N Vs’lse(—ﬂsﬂ)ps(ls/2)L.,sls(ps)eﬂ:ilax.\x’

(IIL.1"")

(IIL.7)

(I11.9)

where L+t is the associated Laguerre polynomial. The
normalization factor is found to be

Nvot,=V2{[(V.— L)/ 2]}/ {[(V+1.)/2]1 2

The solution (II1.9) specifies that the quantum number
I, may take only the values V,, V,—2, ---1, or 0. The
energy Ev, for the two-dimensionally isotropic oscillator
is found to be independent of /; and is equal to

Ev,=(V+1)hcw,. (I11.11)

Recently, this problem has been studied in somewhat
more detail by Shaffer,'® who has evaluated the matrix

2D, M. Dennison, Phys. Rev. 41, 304 (1932).
13 W. H. Shaffer, Revs. Modern Phys. 16, 245 (1944).

(I11.10)
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components of many of the functions of 7, which are
required to carry out perturbation calculations of the
kind to be discussed in Sec. IV. The values of these may
be obtained directly by reference to a set of tables given
in Shaffer’s work. With the aid of the appropriate com-
mutation relations and the values of the matrix com-
ponents given by Shaffer for eF™sr, it is possible to
evaluate also the matrix components of the quantities
exXs(pryipx,/7s). The latter correspond in a rough way
to the momenta conjugate to exixs,. Corresponding to
the relations (II1.6) we have

(Vay L] e=ixor, | Vo—1, 1,41)
=(Vi—1, lt-1]exor,| Vo, 1) =[3(V,~ 1) T,
(Vsy Ls| o7 Vs-j- 1,7,—1)
=(Vo—=1,L,—1] e, | Vo, 1)
=—GW+1)T,
(Voy Ls| e Xe(pro—ipxs/7:) | Vs—1, Lst1)
=—(Vo—1, L1 exs(protipxs/7:) | Vs, L)
=ii[3(Vs—15) 1%
(Ve bs| €% (protipua/7:) | Ve—1, L= 1)
=— V=1, Li—1]e%(pro—ipxs/7s) | Vi, Ls)
=—ih[3(V+1) ]

When there are three coordinates required to describe
a vibration frequency ws, o takes the values 1, 2, and 3
and Eq. (II1.1) becomes the Schrédinger equation for a
three-dimensionally isotropic oscillator. It is expedient
to replace the coordinates g;, by their equivalents in
spherical polar coordinates; i.e., g5 1=7, Sinds Cosxs, ¢s, 2
=7, sind, sinx; and ¢, 3=r, cosd,. The conjugate mo-
ments p,, will be the following operators:

s, 1= —1h{sind, cosx,(9/97s)
+ (cosd; cosxs/7s)(9/ )

— (sinx,/7, sind,)(3/9x:)},
o 2= —1h{sind, sinx(d/9r;)

+ (cos®; siny,/7:)(8/09,)
+ (cosxs/7s sind,)(8/0xs) },

(II1.12)

and .
s 3= —1ih{cosd,(8/dr;)— (sind,/7,)(8/3%)}.

When these replacements are made, Eq. (ITI.1) takes
the form:

{(8%/0r2)+(2/7.)(8/drs)
+(1/72 sind)[(9/39) (sind¥0/3,)
+(1/sind,)(8%/9x.%) ]
F[QEs/hews)—r 2]} F(rs, ¥, x.)=0. (II1.1"")

This differential equation has been examined by
Shaffer,® who has shown that a separation of vari-

ables may be effected by adopting the following for
F(75, 3, Xo):

F(rs, 85, xs) = (1/270) R (rs) O () eimsxs,

where the condition of single valuedness requires #, to
be an integer or zero. The wave equation in ¢ and the
radial wave equation will be found to be the following:

{(1/sind,)(8/93,) (sind,0/9d)

— (mg2/sin?d,)+k} O(,)=0, (II1.13)
where 0<¥:<mand 0K x: <27 and
R"+(2/r)R'+[(2Es/hcws)

—r2—1(+1)/rZ]R=0, (IIL.14)

where 0<7,< .

It may be shown that a suitable solution to
Eq. (II1.13) is the associated Legendre polynomial
Pims(cosds), so that the normalized function may be
written

@ls,ms(lys) = N igms SINT™sY,
X [d—m) sin2lsi,/(d cosd,)Esma) ], (II1.15)
where the normalization factor Ni,m, is equal to

Nigmg= (—1)t{ 2,4 1) [ (Is+ms)1]/2

XL @s—ms) ]} /2011, (I11.16)

'and where O;,—ms(35) = (—1)"O15,ms(¥5). The constant

k is equal to I,(l;+1), where I, is an integer or zero such
that 7,2 m,2> 0. We may regard /; as the quantum num-
ber of angular momentum associated with the threefold
degenerate oscillation, and m, may be thought of as the
component of this angular momentum directed along
the body-fixed axis z.

The solution of the radial wave equation (II1.14) is
facilitated by the adoption for R(r;) of a function

R(?’s) = exp(—rsz/Z)rJSZ(rs),
which yields .
Z" (r)+2L (A1) /1) =712 (7o)

+[QE /hcws)—21,—3]Z(r,)=0.
If now, as in the preceding example, the variable p, be
introduced for 7,2, we obtain once more Eq. (IIL8),
where this time 7,=[(E./2hcw,)+(I,/2)—%] and
ts=10;+%. For the normalized radial wave function
Rv,15(rs) we may then write
Rvety(rs) =Nv,.1,6rDp el

X Lws+is+0/20(py),

(I11.17)

(II1.18)

where L:*(p,) is the associated Laguerre polynomial
and where Nv,,i, is the normalization factor

Nve o =V2{[3(V.— 1)1}/ {3(V+14+1)]1} . (IIL19)

As in the instance of the two-dimensionally isotropic
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oscillator the solution to the spatial oscillator prescribes
that the quantum number /, may take only the values
Vs, Vs—2, Vs—4-- -1, or 0. From the definition of the
quantity 7, which occurs in the Laguerre differential
. equation it is clear that the energy for the spatial
oscillator is equal to

Ev,=V+3)hcws. (I11.20)

The matrix elements of many of the functions re-
quired to make perturbation calculations on the spatial
oscillator have been evaluated by Shaffer.!* Values of
these may be had by referring to the tables in his work.
Here, as in the preceding case, it is possible to evaluate

(Vs bsy ms| 75 cosds| Vi—1, I,—1, m,)

=(Ve—1,l,—1, m,|rs cosds| Vs, bs, ms)= —[

(Vs, bs, ms| 75 089 | Vo—1, b1, ms) = (Vi—1, I+1, m,| 7, cosds| Vs, Ly ms)

(Vey bsy ms| eix5r sind | Vi — 1, Li— 1, m,F 1) = (V,—1, l,—

the matrix components of the quantities

—ih{(cos?°d/drs)— (sind,/75) 0/ 3}
and

(—1h)exixs{(sind,0/97s)+ (cosds/7,) (8/ )
=+ (i/7, sind¥,)d/ 0%}

with the aid of the matrix components of 7, cosd, and
exxsy, sind,, evaluated by Shaffer, and the appropriate
commutation relations. As before, these correspond in a
general way to the momenta conjugate to e*iXsr, sind,
and 7, cosd;. Corresponding to the relations (II1.6) we
have here L

i

Vs+ ls+ 1 %[ (ls - ms) (ls+ ms) T
2 ] 2r,—-1)(21,+41) |

v

_[Vs—ls I =mt1)ltmat1)7
L o2 ][ QLA1)(2+3)

1, m,F1|eFixsr, sind |V, L, ms)

Vet LA 1V (aems) Qom— 1)
[ 2 H (20, —1)(2L,+1) ]

(Vg Lsy ms| etixsr, sind | Vo—1, L1, mF 1) = (V,—1, L,+1, mF 1| eFixor, sinds| Vs, L, ms)

(V oy Lsy ms| —ih[ (cosds8/drs) — (sinds/75)0/08: ]| V—1,1
—ih[ (cosds0/0rs)— (sinds/75)0/ ]| Vs, bsy ms) = ——ih[
(Vs bs, ms| —h[ (c0s8,0/drs) — (sinds/75)3/ 38 1| Vs—1, L1, me) = — (V—1, I+1, m]

— k[ (c0s9:0/d7s) — (sinds/75)0/ 30 | Vsy Ls, ms) = zh[

=1, mg)=—V,—1,1,—1, m,|

e

Ve—I, %[(la:Fms+1)(ls¢ms+2)“
[ 2 ] (21,4+1)(21,+3)

(II1.21)

o

Vel 19 Gs—ms) (lst-ms) ]
2 ][(218—1)(218+1)_ ’

ol

’

Vs""ls %[(ls;ms+1)(ls+ms+1)—
2 ] Q+1)2L+3)

(Vs, Lsy m| —ihexs[ (sind 0/ d7)+ (cosds/7,)(9/09s) = (3/7s sind)d/dxs ]| Vs—1, I,— 1, msF1)
=—(Vs—1,l,—1, mF1| —iheFTx[ (sind,9/0r,)+ (cosds/7:) (8/395)F (3/7s sinds)d/ x5 ]| Vs, bs, m5)

Vet I+ 1731 (Gsems) (Loem,— 1)
e | J
2 2L,—1)(2+1)

(Vs, Lsy ms| —ihexxs[ (sind,0/d7)+ (cosds/rs)(9/08s) £ (3/7, sinds)/0xs 1| Ve—1, I+ 1, msF1)
== (V=1 L1, miF 1| —ihe¥ixo[ (sind 0/ dr:)+ (cosds/r.) (3/ 08:)F (i/7. sind,) 9/ 9x. ] | Vey Lsy ms)

V=LY Fmet- 1) @ Fmet-2)
=im[ ][ ]
2 (20,41)(2,43)
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B. The Rotator

The problem of the rotator has been dealt with by
several authors. Equation (III.2) for the general case
was first formulated by Witmer,** but was later set up
anew and solved quite generally by Wang.’® Kramers
and Ittmann'® independently solved the rotator problem
by transforming to elliptical coordinates and showing
that in these variables Eq. (II1.2) could be separated
into two equations of the Lamé type. The most elegant
method for arriving at the energies of the rotator is, no
doubt, that of Klein,” which we shall refer to at a later
point.

The wave equation for the rotator is written by
Wang as

(h—e)R(0, ¢, ¥)=0, (I11.22)
where 7#2e=2E,/C and where
Wh=(2H,/C)={A(P2+ P+ P+ P.?}

+B(P2—Pp). (II1.23)

A4, B, and C in Eq. (IT1.23) are the following:

A=(1/20)[(1/1:)+(1/1,,)],
B=(1/20)[(1/1::2)— (1/1,4 )],
C={(1/1..9) =3[ (1/L..9)+ (1/1,,*) ]}

I, is taken to be the intermediate moment of inertia
so that —1< B<0. When the two moments of inertia
I,,9 and I,,(? are alike, the quantity B becomes zero
and the Schrodinger equation reduces to that for the
symmetric rotator, which was solved first by Dennison!®
in the matrix formulation of the quantum mechanics
and subsequently by Reiche and Rademacher!® and by
Kronig and Rabi?*® in the wave mechanics. The
Schrédinger equation for the symmetric rotator may be
seen to be

(1/sin)9/d6(sinfOR/ 36) v
F[(12:42/1.,9)+cot20](62R/ 3 ¢%)
+ (1/sin%0) (62R/ ¢?)
—2(cosf/sin%0) (32R/ 3 pdy)

+ (872, @ Er/B)R=0. (IIL.24)

Since ¢ and ¢ in this case are ignorable coordinates, we
may take R to be

R=Y(0)¢iKoeiMy, (II1.25)

where the condition of single valuedness of R requires
that K and M shall have integral values or be zero. The

14 E. Witmer, Proc. Natl. Acad. Sci. U. S. 13, 60 (1927).

5 S. C. Wang, Phys. Rev. 34, 243 (1929).

16 H. A. Kramers and G. P. Ittmann, Z. Physik 53, 553 (1929);
58, 217 (1929); 60, 663 (1930).

170, Klein, Z. Physik 58, 730 (1929).

18 D. M. Dennison, Phys. Rev. 28, 318 (1926).

19 F. Reiche and H. Rademacher, Z. Physik 39, 444 (1926).

20 R. de L. Kronig and J. J. Rabi, Phys. Rev. 29, 262 (1927).
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differential equation for ¥ () will evidently be

V"4 cotd¥’
—[(M—K cosf)?/sin2 Y +AV =0,

where A= (872 .9 Eg/h*) — (I..9/I,.(?) K2,

If the following substitutions are made, s=|K+M|,
d=|K—M]|, t=%(1—cosf), and V() =142(1—1)*2F(2),
we obtain as the equation which F must satisfy

A=) F"+[y— (a+B+1)(]F — af=0, (II1.27)

where o, 8, and vy are defined by y=1+d, a+8
=1+d+s, af=%(d+s)[:(d+s)+1]—A—K*. Equa-
tion (TI1.27) is the hypergeometric equation and F is the
hypergeometric function,

F=1+(aB/)t '
+[a(a+1)B(B+1)/2ly(y+1) 1. (II1.28)

The requirement that R shall remain finite for all
values of the coordinates demands that the series
above shall terminate. In order for this to be so, it
is necessary that « shall be a negative integer or zero,
ie, a=—p(p=0,1, - - -). The energy is thereby deter-
mined and we have

Er=J(J+1)(R?/87] ,.(?)
+(&1/87)[(1/1::9)— (1/12219) ], (I11.29)
where J is the positive integer J=p+(d+-s)/2. Since
3(d+s)=3| K+M|+3| K—M|=|K| for |K|>M and
equal to | M| for |M| 2K, it is clear that J is always
equal to or greater than |K| or |M]|.
The normalized wave function Ryxx (8, ¢, ¥) will be

Ry x n, (0} (2 1/’)=led/2(1—-t)3/2

(I11.26)

XF(—p, 1+d+s+p, 14-d, H)eiXeeiMy (111.30)
where NV is the normalization factor,
N=[(1+d+s+2p)(d+s+p) (d+p) [T/

[4mpl@h2(s+p) 1t (IIL.31)

Wang’s essential contribution was to demonstrate
that where I,,(951,,(9, so that B0, kR, k, »r could
be expanded into the following:

hR; g u=[AJ(J+1)+K*|Rs &, i
+Bg(J, K+1)Rs, k12,1

+Bg(J, K=1)Ry ks, u, (IIL32)

where
—3[(—=K)(—EK+1)(J+K)(J+K+1) ], (IIL33)
from which the elements of the matrix % can be calcu- -
lated at once. It is evident that this matrix will be
diagonal in both J and M and is actually independent
of M. The elements of the matrix % will be the following:
(J, K, M|h|J, K, M)=AJ(J+1)+ K2,
(J, K, M|k|J, K£2, M) (I11.34)
=—i{(JFK)JFK—-1)(JEK+1)(JEK+2)}B.
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The matrix of % will therefore split up into sub-
matrices, one set for each value of J. Since the energy
is independent of M, each submatrix is repeated (27-+1)
times, once for each value of M. Moreover, since
J 2> |K|, each submatrix will have (27+1) rows and

where W=e—AJ(J+1) and e=8x%E,/l*C. The energy
of the rotator in general will therefore be

E,=(RC/8m)[AT(J+1D+W].  (IIL.36)

The method of Klein!? consists in translating the
classical rotator problem into quantum mechanics. The
quantum mechanical hamiltonian for the rotator is
identical in form to the classical expression, i.e.,

=32 o (Pa/I44?), where the P, are the compon-
ents of the total angular momentum P directed along
the body-fixed axes w, y, and z. The relations 3, P
= P2=constant, and the poisson brackets [ P,, Ps =P,
which are known to exist for the classical rotator trans-
late in quantum mechanics into Y, P.2=P? and the
commutation relations

PoPsg— PgP o= —ihP,, (IT1.37)

a, B, v taking the values x, y, and 2, and az£B>7.
Several matrix representations of the components of the
angular momentum, P,, which satisfy these require-
ments may be found. That chosen by Klein is the
following:
(K|P.|K+1)==4i(K|P,| K+1)
=#/DLUFK)(J£EK+1) ],
(K| P,|K)=Kh.
It is readily shown, using the matrix elements (III1.38),
that
(K| P2|K)=(K|P/|K)
=®/)[J(J+1)—K],
(K|P2|K+2)=—(K|P}?| K=+2)
=W/H[JFR)JFK-1)(JE£K+1)(JxK+2) T

(II1.38)

(I11.39)
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columns. The energies themselves are then obtained
by diagonalizing the matrix with the elements (I11.34).
This is most readily achieved by setting the secular
determinant | (K|%|K’)— edgx'| =0 and solving for the
roots. The secular determinant takes the form:

F—W 0 Tk T=2)
0 U-1=Ww 0
(T—2|h|7) 0 (T—2r—W
—-W 0 (1]k—1)
A —0, (ITL35)
(—1]h]1) 0 1—-W
(J—2)2— T 0 (=J42]h—
0 (T—1)—W 0
(—T|h|=J+2) 0 .

Evidently then, we have (K|P?|K)=J(J+D#ékx:,
where 8xx- is the Kronecker symbol. From the above it
is obvious that

(K|H|K)=(7*/2)
XATTH+D50Q/ 1)+ (1/1,9) ]
+KH(1/1..9)

— (/) (/1) ],
(K|H|K=+2)= (#/4)
X {%[(1/1”(9))— (l/lyy(e))]}
X{(JFK)JFK-1)(J£K+1)
X (J£K+2)}%
If the notation introduced earlier is retained, the matrix

components (II1.40) may be regarded as equivalent to
those stated in Eq. (II1.33).

A more recent discussion of the rotator problem has
been given by King, Hainer, and Cross.?! Following the
procedure of Ray,? they write the energy of the rotator
in the form:

E,’(a, b, o)=[(a+¢)/21T(J+1)
+[(a—c)/2]E (),

where a, b, and ¢ are, respectively, 4?/8w2la, h*/8x*ls,
#2/8x%I,, I being the intermediate moment of inertia,
and where E,’(k) is one of the (2/41) roots of the
secular determinant in their case, which is similar to
that given in Eq. (IIL.35), the quantity « being a
parameter of asymmetry k= (2b—a—c)/(a—c), which

(111.40)

(I11.41)

2t King, Hainer, and Cross, J. Chem. Phys. 11, 27 (1943)
2 B. S. Ray, Z. Physik 78, 74 (1932).
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varies from =1 for the oblate symmetric rotator (b= a)
to k= —1 for the prolate symmetric rotator (b=c). The
index 7 assumes the values —J <7< J such that 7=J'is
associated with the highest energy level for a given.J
value and 7= —7J is associated with the lowest level.

The secular determinant for the rotator (e.g., Eq.
II1.35) may always be factored into four submatrices.
This may be accomplished, first, by arranging the rows
and columns so that elements of even values of K stand
together and elements of odd values of K stand together,
and, secondly, by observing that each of these may
further be factored by using as the basic wave functions
(1/V2)[Y(K)=¢(— K)] rather than the wave functions
Y(K) and ¢(—K). King, Hainer, and Cross have de-
vised convenient methods for extracting the roots of
these and arriving at numerical values of E.’(x)
throughout the range of asymmetry x=—1 to «=0,
k varying by intervals of 0.1. With the observation of
Ray® that E,’(x)=— E,’(—«), the tables are applica-
ble to a rotator of any degree of asymmetry, i.e., from
k=1 to k=—1. The work of King, Hainer, and Cross
provides, therefore, a very convenient means of approxi-
mating to the energies of any rigid asymmetric rotator.

Recently Golden® has demonstrated that for large
values of J the energy matrix for the asymmetric rotator
assumes a form which  asymptotically becomes very
similar to that obtained from the characteristic value
problem of the Mathieu differential equation. The
characteristic values of Mathieu’s equation may there-
fore serve as a basis for a good approximation to the
energies of the asymmetric rotator, particularly those
levels which for a given J value correspond to small
values of K in the limiting symmetric case.

IV. THE PERTURBATION PROBLEM

In this section we shall investigate the corrections to
the zero-order energies due to the first- and second-order
hamiltonians H® and H®. Not before the end shall
we include the contribution due to the terms €q(¢ss)Pa,
however. The contributions to the energy due to H®
and H® may be evaluated by the usual methods of the
perturbation theory in quantum mechanics. When one
takes note of the large number of terms in H® and H®,
one observes that this is a formidable undertaking,
especially since the zero order energies may be degener-
ate. It is apparent, however, that no terms in H® except
the degenerate Coriolis terms can contribute to the
energies® in first order of approximation. Moreover,
linear combinations of the zero-order wave functions
can always be found such that the matrix of these terms
will have elements only along the principal diagonal.
This suggests the effectiveness of transforming H by a
contact transformation THT-! into HO'4NH®W’

% S. Golden, J. Chem. Phys. 16, 78 (1948).

2 We shall see in a later section that in special cases where
resonance between certain vibrations occur, other terms in H®
may contribute to the energy in first order. also. At the present
time we assume that no resonance occurs. -
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+NH®'+ ... so that to second order of approxima-
tion H®’ will contain only the degenerate Coriolis
terms. The evaluation-of the second-order energies is
thus, in principle, reduced to a first-order perturbation
calculation. :

We shall denote the transformation function e™S by
T(M\) (and its inverse by 71(\) = e~™5), which to second
order of approximation is equal to

T=1+iNS— (\2/2)S2— (iN3/6)S3+ - --.  (IV.1)

To second order of approximation the transformed
hamiltonian will become H'=THT '=HO®'4+\H®Y’
FNHO' 4. .. where H=HO4+NHOLNHOL ...,
When T" (and T1) is replaced by its equivalent (IV.1),
one obtains by equating like powers of A:

HO'=HO,
HO'=HO—i(HOS—SHO),
H®'=H®+(/2)[S(H®+HW)

— (HO4-HO)HST.
The portion of H® which we wish to remove consists
of terms each of which is a function of the normal co-
ordinates ¢,. (or the conjugate momenta p,,) multiplied

by a coefficient which either is a constant or a function
of the angular momentum operators P,, for example,

(Iv.2)

“agss* and g,,P.2 Coefficients such as those which occur

in the latter example may also be treated as constants,
for the error introduced by the noncommutability of
P2 with H® will be of an order higher than the second.
The complete .S function will consist of a sum of terms,
each element being so chosen that it will remove a single
component of H®,

In the expression (I1.44b) for H® for the general
molecule there are a large number of terms to be re-
moved. To arrive at the basic S-function which will
accomplish this, it will be found useful to make use of
the commutation relations stated by Herman and
Shaffer?s in their Table I. The basic transformation
functions S, which will remove from the first-order
transformed hamiltonian the type of terms occurring in
H®, together with the corresponding values of :(H®S,
—S,H®) are given in Table II of this same work. The
values of many of the quantities (3/2)[.S,(HV+HY’)
— (HO4-H®")S ] corresponding to each of the basic .S
functions required in this calculation and their matrix
elements diagonal in the vibrational quantum numbers
are given in Table III of this same work.

It will be seen that certain of the basic .S func-
tions contain denominators of the type (A;—N\y) and
(4Ne—Xs). The first kind occur in the removal of
Coriolis interaction terms poP. from H®. When such
an interaction arises from the existence of two vibration
frequencies which are degenerate (i.e., where o takes
the values of 1 and 2), it is spoken of as a degenerate
Coriolis term. The contribution to the energy of such

%R, C. Herman and W. H. Shaffer, J. Chem. Phys.\ 16, 453
(1948).
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terms is of first-order importance; and, as has already
been suggested, such terms cannot be removed from
the first-order hamiltonian by a contact transformation.
It may also happen that A, and A, are only acci-
dentally degenerate (i.e., ws=~ w,). When this is so, the
denominator A;— X, vull approach zero and resonance
is said to occur between w, and w,. The second type of
denominator referred to above arises in the removal of
first-order anharmonic terms in the potential energy
function of the type kckoss'@sa’qsrer. If 4Ns is nearly
equal to Ay (i.e., 2w;~w,), so that the denominator
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4\,— )\, approaches zero, resonance between w, and
2w, is said to occur. In cases of resonance between fre-
quencies the usual methods of the perturbation theory
fail and such terms in the first-order hamiltonian which
are instrumental in setting up resonance must also be
retained as a part of H®’, Cases of this kind will be
dealt with in Sec. VII.

Using the S-function described in the preceding to
transform the hamiltonian of the general polyatomic
molecule, one obtains for H’ when written in orders of
magnitude

HO'=H©O (IV.3a)
HOY' =303 1 {$tota @ (Quoprar— qtar pza)(l’a/l «a'?), (IV.3b)
AP =33 a (pa/Taa'®) = Lo (1/NN L ap 050! P (Pa—2pa™) P/ T ae 155"}

Y ap (1/210a) Tso Trar { (/NN AT 35 [ A st @ — Ty (206000079 1)

=220 Coosrror DL orarirar N/ (Ns— Norr) 1qsrar — 2 2R55(@s P /T 55" N )

F2 00" Rser (@ P/ Tgg N ) SNs—=Nor)/ (4N =\ )]qm gsePaPs

F2as 1/ 210a'?) 2o {2 2 sror Zoorrar (/NN 56 ) sosrr ot W S argrarrr “”D Ny /O\ Ne) J(psror/ 1)

+ 21l ksss(@so'@® [ Tg5 NI+ L oo Rossr (@5 “PNo/ T8N )/ (ANs— Nsr) J(Psa/ 1)} (Psa/ ) PP

B Fae Ssrer arrarr Lsrrrarrkagrsrrsrr Qsalss arsrror Qs ars

=2 Lo kass® ([ B/B7) prc*qsr’+ 14300 J/ANSY)

F3 e oo’ {lans LN N ) oo™ 4NN 205070 0

AN eotaot ) (oG ) I pos? B/ IN AN =)

F e Tvre kasskasr s ([(5N e — 2N 052G o+ (AN e = N) (PeoGr o2/ B+ 3N Qo P>/ B2/ BN (AN — X))

=X Zere Larrar” ko XLNNAN A ((Broaopsr s Qs ot Goror oo urrarrporrortGorror porror Poadso) /1)

e TH OV WEE NS 1/ L IORTLE D WEI QWD WD W 1 MIpL NS0 WL [0 NIED WD WO 1/ R V7 AT

+Hy*+ H > (IV.3¢)

The denominator V in Eq. (IV.3c) is the following quantity:

(AN

The quantity Hy* is an extremely complicated relation
which can contribute to the second-order energies only
when certain vibration frequencies become accidentally
degenerate. It contains terms which are essentially of
the form ¢;,°¢sor and ¢seqs0'qs7o»* multiplied by con-
stant coefficients of the order of magnitude (kcks 542/ ws).
Such terms have, to the author’s knowledge, not been
found to be important in any infrared spectra studied

HR*=% st Zs’v’

8'%+ XK”%)()‘S%"— )‘8’%_)‘8”%) O‘s%nxs’%"*" xs”%)()‘s%_)‘s’%")‘ﬁ’%)-

thus far; and for this reason Hy* will not here be repro-
duced. It is by no means safe to conclude, however, that
they may not become important when the overtone
spectra of polyatomic molecules are studied in more
detail. Their significance will be discussed in Sec. VIL.
The term Hg*, which is less cumbersome and which
seems likely to be of more immediate interest, is the
following:

(h'z/)\s)}{ (21!‘6’%33')([(6}\8* )\s’)/Z)\s%(‘l)\s“ )\s’)]q.\mq;’a"" 2[()‘3/)\8’%)/(4)\8’— >\8'):'P*WPS‘»’V'/h’z)

+Zs” 44 (WCkss’s”)((qstS”a”/)\s%)"'[2(xs)\s’)\s”)%(Ps’a’Ps“a'”/hz)

- )\s%(ks— xs' - )\s”)q‘e”a”q‘e’a’])/fv} {Zaﬂ asa(aﬂ)PaPﬂ/Idd(E)Iﬂﬂ(e) } .

The term H g* also contains a component which is linear
in P,. This component is believed to be too small to be
of importance and is therefore omitted. The terms H*

(IV.4)

will not contribute to the energy of the molecule in
second order except in certain cases where resonance
between frequencies occur.



104

The hamiltonian for the vibration-rotation energies
of a polyatomic molecule as expressed by the relations
(IV.3) is in a form which is extremely convenient for
successive approximations to the eigenvalues. Its de-
velopment has been entirely general; and it is therefore
possible, in principle, to evaluate the higher order con-
tributions to the energy for any model in which may be
found nondegenerate, twofold degenerate, and even
threefold degenerate oscillations. We shall now proceed
to evaluate the contributions to the energy matrix due
to the first- and second-order transformed hamiltonians
H,®" and H®'. We shall consider first H®’ and
then H®’.

First-Order Corrections to the Energy

Whenever a vibration frequency w; is twofold degener-
ate, there will be two coordinates ¢, 1 and ¢, » identified
with it. When these are replaced by their equivalents
rycosx, and 7;sinx, and the conjugate momenta p;
and py2 by —ifi[ (cosx:d/dr;)— (sinx./r:)d/dx:] and
—ih[ (sinyx:d/07;)+ (cosx:/r:)d/dx:], respectively, the
twofold degenerate Coriolis terms, H,V’, become

HY =i Y i A a 08O (Paf/Taa’®)} 8/ 0.

In terms of the basic wave functions (I11.9), H,® will
have only elements diagonal in the vibration quantum
numbers V; and /. It will, in fact, be diagonal in all
the quantum numbers, vibrational and rotational, ex-
cept the quantum number K. This suggests that we may
advantageously use these basic wave functions to arrive
at the first-order corrections to the energy matrix. This
becomes, more or less, equivalent to regarding the
hamiltonian in such cases as the hamiltonian of a semi-
rigid rotator. It is easily verified that the only non-
vanishing matrix elements of H,®’ will be the following:

1v.5)

(Kng(l),lK>: :FZhC Zt (t(z)ltKBe(ZZ))
(K{Hz(l)’!K:tl)z:FhC Zt [g—t(x)Be(a:a:)
+ie @B Y[ T(T+1)— K(K+£1)

(IV.6)

where B, =/87% 4 .

If, on the other hand, a vibration frequency w, is
threefold degenerate there will be associated with it
three normal coordinates ¢:1, g2, and ¢;s We shall
consider the coordinates ¢;, , directed along the principal
axes %, y, and z of the molecule. The operators p., p,, and
- then become, respectively, ¢4 24 32 (q:, 2pe, 3—qe, 3P4, 2),
Co3619(qe, 3Pt 1— G 194, 3),and £ 156,32 (qs, 191, 2— G, 2P, 1)
When the coordinates g¢: 1, ¢¢, 2, and ¢., 3 are replaced by
their equivalents 7;sind; cosx:, 7sind;siny, and
7¢ COSXt, respectively, the operators p. become

Pzziﬁ Zz f,(z)(sinx;(a/(')ﬁt)—f—cotz?; COSXta/an>,
py=—1k 24 (¥ (cosx:(/09:) — cotd, sinx:9/dxs),

and

pe=—1h 2 £/P9/ X
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The portion of H®’ which originates with the spatially
isotropic oscillator then becomes

, —# 11 @ &
HY=—73% 13- -+
2 ¢ 2L19 I,
| 8 icotdd
X[e”“ —+ —)(Px—iPy)
80; ax;
) d  -icotd,d
—e Xl —— ) (P4 iPy)]
619,3 6)(,3

1 g-t(x) g't(y)
=626

2 [”(e) [yy(e)
d 1cotd,d

X{—+ —) (Po+iP,y)
(919; 8)(;

0 icotdd
U )(P:-il’y)]
9, aXt

$o?
~2i( =)

IZZ(E)
H "’ is independent of 7, so that the matrix elements
will be diagonal in the quantum number V., if Eq.
(II1.18) is taken as the basic wave function. The rela-
tions (19) and (20), Chapter III, Sec. 4, in Condon and
Shortley?® enable one quickly to verify that H®’ is also

diagonal in /;, and that the only nonvanishing matrix
components of Eq. (IV.8) are these:

— Xt

i)Pz]. av.7)

Ix:

(K, m | HV'| K, m)) = — 2m, K¢ B ke,
(K, mo HV'| K41, m4-1)
=(K+1, m~+1|HY'|K, m,)
=F3[Ce—m)letmt1) ]
X[(T—-K)(J+K+1)J
X[ B, &4 ¢, B, T,
(K, m| HO' | K41, m,—1)
=(K+1, m—1|HY'| K, m),)
=F3[Ctm)li—m+1) ]
X[T=K)(J+K+1)]
X[¢4®B, = — ¢, B, Jhe.

(IV.8)

When m; and m, both are greater than or equal to zero,
the last two expressions take the lower sign. When,
however, m; and m, become less than zero, they take
the upper sign. This is readily seen when one takes ac-
count of the fact that O, m)=(—1)"0(, —m).

26 E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, London, 1935), p. 53.
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Spherically symmetric molecules will have such three-
dimensionally isotropic oscillations because of their
high degree of symmetry in addition to nondegenerate
and twofold degenerate oscillations. The degenerate
Coriolis coupling factors {(® will, moreover, all be
alike as will the equilibrium values of the moments of
inertia [4o(?. The fourth and fifth of the matrix com-

O, DR(K+1)

O I -1)R(K+1—1)---0(, —I+1)R(K—1+1)
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ponents (IV.8) will therefore vanish, while the others
become multiplied by the same factor 2{.B.. This
facilitates the factorization of the secular determinant
of the matrix H®’. For example, for a given value of /,,
the quantum number m, may take the values /;, /;—1,
-+ —1l+1, —1I,. The matrix of H’ becomes, if all the
other [, =0, :

O, —hR(K 1)

U HR(K+D —UK +1) /2T +E+)T —K —1+1)]12---0 0
OUI—DRE+H—1) | (/DHTHEAYT =K —I+D]}  —@=1)(EHL=1) =eooeerenees 0 0
2¢eBoe, (IV.9)
8, —I+1)R(EK —1+1) 0 Qrnreeenes AG=D)E=1+1) =@/ ~E+) T +E ~I+D)1H
O, —hHR(K —1) ] [ —/2} —KE+)T+E—1+D]} UK -D)

where R(K) denotes a wave function of the spherical rotator. Consider, for example, the excited state where
Vi=I,=1. Here the quantum number m, takes the values 41, 0, —1. The secular determinant of Eq.

(IV.9) becomes in this case
—K—1—¢
GU-K)UJ+E+1)]

—€

0 ~U+K)U—K+1)]

The first-order corrections to the energy, obtained
by Teller and by Johnston and Dennison,?” will be
EV=2¢¢hcZ,, where e are the roots of Eq. (IV.9),
e=J, ¢=—1,and e,=—(J+1).

The stabilized wave functions for the three com-
ponent levels in this example will be linear combinations

(J—K+1)(J+K+1)

(30— K)U+K+ 1T 0

~[3U+K) T~ K+1)F| =0.
K—1—¢

(IV.9)

of the wave functions ¥(1, 1)R(K+1), ¥(1, 0)R(K),
and ¥(1, —1)R(K—1), the coefficients multiplying
these being the normalized cofactors of Eq. (IV.9)
where e is replaced successively by the above three roots.
The three wave functions are found to be the follow-
ing:!

~ { (J—K)(J—K+1)

3
- DR(K+1
2+ }‘m DR(E+ )+{

. ={(J—K)(J+K+1)
27(J+1)

v {(J+K)(J+K+1)
27(2T+1)

2

}3(1, DR+ 1)+ {](JH)

}%\Il(l, 1)R(K+1)— {

These wave functions permit the determination of the
selection rules for transitions from the normal state to
the first excited state. They are the following AJ=+-1,

27 E. Teller, Hand und Jahrbuch der Chemischen Physik (1934),
Vol. 9, p. 125. M. Johnston and D. M. Dennison, Phys. Rev. 48,
868 (1935). k

D@+

]i\Il(l, O)R(K)-i—{

U+K)J—K
J(2J+1)

}7\1/(1, 0)R(K)

(+K)(J+K+1)

—{ 2T+H1)(2T+1)

(J+K)(J—K+1)
27(J+1)

}2\1/(1, —DR(E—1),

) }3(1, OR(K)

B { (J—-K)(J—-K+1)

Ifq/a, —1)R(K—1).
27 (27+1)

0, —1 as the transition is to the component states
€., €, and e_, respectively. The states 2w, and w;+w,
where both w, and w, are spatially isotropic have been
investigated by. Shaffer, Nielsen, and Thomas,> who
obtained selection rules for these states also. These
examples will not be discussed here.
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It is more useful in many instances to apply the
general methods of vector addition in quantum me-
chanics to obtain the first-order corrections to the energy
matrix. This may again be illustrated by reference to
the methane molecule.? The first-order hamiltonian may
be written in such a case:

HO'= — (¢/1O) Ty )= (6/19)(Jo- J),  (IV.10)

where J; and J, are the internal angular momenta
associated with the vibration frequencies ws and ws,
respectively (i.e., /3 and ly) and J is the total angular
momentum of the molecule. As we have seen, J; may
have the values V3, V3—2, - - -1, or 0 (and J, the values
Vi V4—2, ---, etc.), where V3 and V, are the total
vibration quantum numbers associated with ws and wy,
respectively. The total internal angular momentum of
the molecule is then Jo= J3+4 J4, where evidently J, may
take the values Jo=J3+J4, Js+Js—1, - -+, J3—J 4 The
total angular momentum of the molecule, J, will then be

J=J+1,, (IV.11)

J1 being the angular momentum of the rotating molecu-
lar framework. J; may then take the values Jy=J4J,
J+Js—1, -+ |J—J;|. When only one of the quantum

(T2 (Js-J1) | o)
(J2| Ja- D) [ T2)
(J2| J5- I [J2—1)
(| Ba- I [J2—1)
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numbers V, is different from zero, it follows that J,=J,
so that HW' = —(§o/T9)(Js- D)= —(¢o/I@)(J,-J). Tt is
readily seen with the aid of Eq. (IV.11) that

H'= = (5/219) (- D)+ (o J) = (Ba ).

When V,=1, the eigenvalues of the above will be
seen to be

(IV.12)

E_= chg';]Be, E0= "Zhﬂg‘tBe,

and
E,=—2hc{(J+1)B.
as before.
When V3 and V, are both different from zero,. the
substitution of Eq. (IV.11) into Eq. (IV.10) yields

H® = —1/2IN{(¢s+ ) T2 To)+ 28335 T0)
+204(Je I+ (a— ) Ts- T5)
F+ (=) Tar T}

The only nonvanishing matrix elements of the quan-
tities (J;-J;) are diagonal in all the quantum numbers
and have the values J;(J,+1)%? (J; denoting J, J1, J,,
Js or Jg). A method similar to that of Condon and
Shortley?® yields the following nonvanishing matrix
elements of (J;3-J;) and (J,-Jy).

(IV.13)

} =[£J:(Js+D)FLT A D+To(JoA D) T (T+1) =T 1(J1+1) =T o(J o+ 1) Jh2/4T (4 1),

}= [Ta=Ts4+T )T+ Ts—T) A+ T+ T+ Ts)

X(A—=JotTs+T)(To+T —Jl)J%[

The matrix elements (IV.14) are diagonal in the quan-
tum numbers J, J1, J3, and J,. The energies corrected
to first order may then be obtained by solving for the
roots of the secular determinant of the matrix H®’.
We shall evaluate the first-order energies when
V3=V,=1 as an example. It is evident from the fore-
going that J3=J,=1 and that J, may be (a) Jo=2,
(b) Jo=1, and (c) J.=0. The corresponding values of
Jiare, therefore, (a) J1=J=42,J41,J; (b) Ji=J%1,7;
and (c) J;=J. Equations (IV.13) and (IV.14) enable
one to set up the matrix of H®’ for the state vs-+v4. It
will be a step matrix and will have the appearance of
Fig. 1. The symbols I, II, etc., in Fig. 1 represent the
following combinations of the quantum numbers:

It Jy=J+42,J,=2; II: J1=J-2,7J,=2;
II1: Ji=J+1, J.=2; 1V: Ji=J4+1,J,=1;

V: J1i=J—1,J:=2; VI: J1=J—1,J,=1;
VII. Ji,=J, Jy,=2; VIII: J1=J,J.=1;
IX: J1=7,T,=0.

28 Reference 26, p. 58.

(J+HT1 =T+ )T+ T+ T o+ 1)<JI+J2—J)]% h*

—. (IV.14)
47 2(4T 2—1) 2

Solution of the secular determinant of Fig. 1 leads to the
following eigenvalues: E;V = 2¢cB,, where

Ji=J+2: e=J ({3t ¢a);
J1=T—=2: = —(J+1) (¢34 ¢0);
Ji=T+1: e54=3{(J—1)({5+¢a)
IV.15
HLTH1)2(¢s— )2 H40384 18, ( :
Ji=T—1: & 6=—3{(J+2)({35+¢4)
FLIU3— Ca)2 400403,

J1=1J,: €759 are the roots of the cubic equation:

€3+2(§'3+ §'4) e
FEE )= 2@ H4T — 1) (53— )Y e
—J(T4+1) (s (F3—a)2=0.

Second-Order Corrections to the Energy

The second-order corrections to the energy matrix
are obtained by carrying out a first-order perturbation
calculation on the second-order transformed hamil-
tonian H®' using the wave functions which diagonalize
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the zero- and first-order hamiltonian H©-AH®’, These
wave functions are certain linear combinations of the
basic wave functions ¥© in Sec. II. As long as we con-
fine ourselves to molecular models where there are no
threefold degenerate vibrations, the matrix elements of
H®W are diagonal in all the quantum numbers except,
perhaps, the rotational quantum number K. The basic
wave functions ¥© for such molecules are consequently
suitable for evaluating the contributions to the energy
matrix due to H®', When the wave functions ¥© are
used, such molecular models as have, in addition, three-
fold degenerate vibrations will show elements in their
first-order energy matrices which are nondiagonal in
the quantum number . The wave functions which
would diagonalize HO-+NH®’ must, therefore, be very
special linear combinations of the basic functions ¥©,
where the coefficients will depend in a very complicated
manner on the quantum numbers J and K. While the
method for accomplishing this is well known!+?* and has
been discussed earlier at some length, the complicated
nature of the stabilized wave functions for such molecu-
lar models makes that evaluation of the contribution
to the energy due to H®' a very laborious task indeed.*
It seems wise for this reason to exclude this latter class
of molecules from the discussion from here on and to
evaluate the contribution to the energy due to H®’
only for molecules which have vibrations which are not
more than twofold degenerate. Molecules with vibra-
tional degeneracies greater than two and certain other
molecules such as those in which internal rotation takes
place or where other anomalies occur had best be treated
as special cases.

The terms in H®' are of two kinds. One kind repre-
sents the corrections to the vibrational energy only and
these originate with the anharmonic terms in the poten-
tial energy function which are cubic and quartic in the
normal coordinates. In this approximation they will
contribute only to the elements of H which are diagonal
in all the quantum numbers, vibrational and rotational.
The other kind of terms occurring in H®’ are essentially
refinements to the rotational energy. Some of these are
quartic in the angular momentum operators P, and
correspond to the centrifugal expansion terms. Others
are quadratic in the angular momentum operators and
are multiplied by coefficients which depend quadrati-
cally on the normal coordinates or their conjugate
momenta. These coefficients may be regarded as correc-
tions to the moments of inertia of the molecule. As we
have seen, the function R(J, K, M) defined in Eq.
(IIL.30), which is the rotational part of the basic wave

2 W. H. J. Childs and H. A. Jahn, Proc. Roy. Soc. (London)
A169, 451 (1939).

% The matrix elements of H®’ for such molecules could also be
evaluated in terms of the basic wave functions ¢®. The energy
matrix would, however, because of the high degree of degeneracy
of the spatial oscillator, be so complicated that it would be im-
practicable to attempt to diagonalize it.
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function ¥©, is in reality not a solution to the general
rotator problem. Hence the rotational part of H®’ will
contribute also to the elements of H which do not lie
along the principal diagonal. To this approximation,
however, H®’ will be diagonal in all the quantum num-
bers except the rotational quantum number K. The
nonvanishing elements of H®’ are these: (K|K),
(K|K=1), (K|K=£2), (K|K=+3), and (K|K=4). The
elements (K|K==1) and (K|K=3) are probably very
seldom important and appear to arise only in molecules
with no symmetry whatever. The actual evaluation of
the matrix components of H®' is a tedious business
which hinges upon deducing the matrix elements of a
number of functions of the normal coordinates, ¢,,, and
their conjugate momenta, p,,. This may be accom-
plished after the methods suggested in Sec. III. In the
case of the two-dimensionally isotropic oscillations it is
important to replace the two coordinates g1 and ¢
associated with such a frequency by r;cosyx; and
7¢ sin:. Also.the conjugate momenta p;, 1 and p; » must
be replaced by their equivalents in terms of 7, and ..

When the zero-, first-; and second-order contributions
are combined, one obtains for the elements of the entire
energy matrix accurate to second order of approxima-
tion the following:3!

Voo Vv WV WV VW

pvai w "X ¥ v I

b Yy Yy

HE g€ g€ g€ g€ g€ g€ g€ o°

F16. 1.

3 Complex matrix components were first encountered in con-
nection with the bent X ¥Z molecule by W. H. Shaffer and R. P.
Schuman [J. Chem. Phys. 12, 504 (1944)7, who pointed out that
these are due to the complete lack of symmetry of the model.
In general, the imaginary parts can never be greater than of the
order of ay, and they are therefore small. It is readily demon-
strated that because of the hermitian character of the energy
matrix, the imaginary parts can hardly contribute in second order
of approximation. They were not included in the earlier work
dealing with the general polyatomic molecule (reference 3) for
this reason. It is barely possible, however, that their effect might
be detectable in the microwave spectra of molecules. They are
included here for this reason.
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(K|H|K)=he{RoF Ri.K+ R.K*+ R:K%},

(K|H|K£1)=he{J(J+1)— K(K£1)}H{Ryzy+ 2K£1)[1/4(By=?FiBy®?)
+ RsWFiRs) T (J+1)+ (R FiRy@) (K*+ (K1) ]},

(K|H|K+2)=he{[JJ+1)—K(K£1)J+1)— (K+£1)(K+£2)]}
: X {(Ra==iRY)+ (Rs== iRy )[ K2+ (K£2)2]}, (IV.16)

(K|H|K+3)=he{[J(J+1)—K(K=+1)J[JU+1)— (K£1)(K£2)[JU+1)
— (K+2)(K+3) ]} 2K £3) (R, @ iR,®),

(K|H|K+£4)=he{[JU+1)— KEED)TIT+1) — (K£1)(K£2) I T+1)
. — (K£2)(K=£3) J[J(J+1)— (K=£3)(K=4=4) ]} H(Res1Ry),
winere

Ro=(Ev/hc)+[5(Bv 4By W) 422D+ Dyx)K 3 15 2T (J+1)— Dy J2(J+1)2,

Ry.=2By® ¥, ¢/l Rygy=3: (£:®By@oi¢, @ Bywn)],

Ry=By®) —4(By*d 4By W) — D ;g J (J4+1)+ @D+ 2D sx)K 3, 15?32

Ry= — Dk,

Ri=3(Bv? =By W) —J(J+1)(F/2567°C) 3so (1/8ws*)[(@50?/ (L1222) %) 2~ (@se / (1,,,49)?)?],

RY/ =3By —J (J41) (#/1287°%) o (1/80.2) {[(@0e"/ (L)) F @07/ (1)) Ja0oe / 1,u91,, 9},

Ry= (B/5127°¢%) 300 (1/8ws®) {(a0s“?/ (122'9)?)* = (@s P/ (11 ?))? = 2(25 "2 062
F2(a56%9)%)/ (122 0)*(L27) 4 2(00s YV 250 9+ 2(02649)?) / (11, 0) 2(1:19)?},

RY'= (12/2567%6) Tao (1/80,2){ @00520,0 / (1aO VT, )4 (045990105 10 (1,,9)) (Iv.17)
+ 2 (080(22)080(1;1/) + 2asu(y2)asv(zy)>/1:cx(e)lyy(e) (Izz(e)) 2 }‘)

Ro= (= I/10247) 3 (1/80) ({00052 (L)) = 000 /(1@ T = 4a0e @)/ (10T, ),
R = (1/2567°6) 3 s (1/80){ (@0r 0000 ) (1) Ty ) = (80699 0009/ Toa Ty )},

Ry @ = — (13/2567%¢%) 3 o (1/80:2) {[ (2068 / (I35)2) = (200%®/ (I 0a'?)2) J060*® /] 0 @1 ,,®
= 20,000, Lo (3s L0} (=3, 7; B=1, 3; ),

Rs(@ = (13/256T%%) T 0y (1/80,2){ (@00 @@ 00,59 — 2a,,(@9a,, ) /
(Laa'®) 55O 0 O+ 3(a0, 8P, 89 /(I 5503 .9},

Ry@ = — (Ry@/2)+ (l/1287°3) 00 (1/80,2)2409,s#8) /T3 (I...(9)5.

The quantities occurring in Eq. (IV.17) are defined in the following manner:

Byle® =B (=3 by (Vit+g:/2),

By(e® =B (@0 —3",, b= (V,42.,/2),

B« = (J/87 1o'9c),

By®==3 0 boe P (Vitg:/2) (a=wx,3;B=x,y; a7p),

byoleP =Be(aa)(h/]ﬂﬂ(e)g82)\s)%{ (ﬁ/lﬂﬂ(e))%[AW”(aﬂ)_Z_y (asv(a7)asa(’rﬂ)/[77(e))
_—4 Zs'u’ g-svs'a’(a)fsas’a'(ﬁ)xs/()\s_ As') - g—ss(a)g-ss’(ﬂ)]— 27"6[3ksss((asd(aﬂ))z/lﬂﬂ(e»%/)\s%
+Zs’a’ ksss'((as’u’(aﬁ))z/lﬂﬁ(e))%(Asz/xs'a): } )

Bsa(aa) = bs’(aa)__l._ 2 ZS'U’ Be(aa) (Be(aa)/gsws)[(s)‘8+AS')/(XS— A;/)](g-suslg,(a))Z,:iS

% The elements of H nondiagonal in K might conceivably also contain terms in Z;/¢,* multiplied by the rotational quantum
numbers to the third power. Since these will very seldom, if ever, be significant, they are not calculated.

8 When the rotation-vibration energies are computed to second order of approximation, the Coriolis contribution is proportional to
B.(@® Tt is evident, however, that in higher order of approximation the B,(*® should be replaced by coefficients which depend upon the
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D= (/1287%) Eow (1/8N)[3((@0o =) (12 @)+ 3((00 )/ (L))

+ 2((13,(‘”")(13,(1”‘)—*}— z(aw(xy))Z)/([”(e)) (Iw(e))Zl
D= D+ (1#/167%) 2o (1/8N)[ — (@569@ss "+ 2(2559)?) / (1s9)*(L2:)*

(IV.18)

— (00090194 200,99 (1 ) Tes ) (@02 (L))
Dyx=—Ds—Dx+ (5/167%) 3o (1/8XNs)[(a:52)%/ (1..49)*].

The quantity Ey in Eq. (IV.17) is the vibration energy of the molecule, which may be written

(Ev/hc)= (EO/]%)"‘ZS ‘*’s(Vs'i"gs/z)‘I"zs ZS’ xss'(Vs+gs/2)(Vs'+gs’/2)+22 o Xigglbide,

(IV.19)

in which g, is a weight factor equal to 1, 2, or 3, respectively as w; is one-, two-, or threefold degenerate,
Xss= (D) {Okssss— 15(Rsss®/ws) — 257 (Rsssr/wyr) (8ws— 3ws?) / (dws® — wyr?) },
%s5r= (5) {ksssrsr — 6(ssskssrsr/ ws) — 4ksss L w5/ (doos2— w5r?) ] = s (ksssrkrrsrsr /@)
=2t (Rswrsr?/ 2wy (wsr = et~ wr?) /[ (st wortwsrr) (Wi 0o — o) (05— wort @) (o — wor— wer7) ]

(IV.20)
+ (Z/gsgs') Za Zﬂﬂ’ (fsas’a’(a)>238(aa) (ws’/ws) } ’

Xigy= — &) { 2ktm+ Zs’ ktts’z[wg'/(‘Lwt?—‘ws'2)]‘4 Za (g‘t 1;¢, ‘l(a))ﬂBe(aa) } ]

Xy = Za (g‘t, 1; ¢ 2(a)§‘t', 1; ¢, 2(&))Be(aa).

In the above ¢ are the values of s for which the vibra-
tion is twofold degenerate.

In the relation (IV.20) Ey/kc is a constant term de-
pending in a very complicated manner on the potential
energy constants. Since in practice one is interested only
in the differences between energy states and not in their
absolute values, this term is not set down.

Darling and Dennison? have pointed out that for
a molecule like H,O a relation A=7,,(V+TI,, W
— I, NI ,,<I,,<I,.) exists such that A is independent
to this approximation of the anharmonic constants.
That such a relation exists in general for all planar
molecules may be verified by setting 2z'=0 in Eq.
(IV.17), in which case @:;®? =4 —a,,*?=0. Such
relations will not exist in general for nonplanar molecules.

It was earlier necessary to replace the quantity U
by U, its value averaged over the electronic coordinates,
in order to effect a separation of the wave equation
(I1.36) into its coordinates. The quantity U consists
of two kinds of contributions, ea(¢ss)Pao/Iaa and
84(gss)/I 2ay Where €, and 8. are coefficients which may
be regarded as functions of the coordinates in case (b)
but which in case (a) contain also a component due to
the spins of the electrons. Because ® is so nearly inde-
pendent of .., the quantity U in its entirety is small

vibrational quantum numbers in a manner similar to By(*®, G.
Herzberg [Infrared and Raman Spectra (D. Van Nostrand Com-
pany, Inc., New York, 1945), p. 4477 has proposed that the B,(*®
be replaced by By(®® Tt may be shown, however, that if {,,(® is
defined in the usual manner, this is not entirely correct and that
when the next higher order Coriolis term is taken into account,
the B.(*® must be replaced by what has been termed Bylao),
It will be shown, however, that a set of effective ¢,,® may be
defined which vary with V, so that the coefficient of the Coriolis
contribution is By (*®.

and with the exception of the fourth term might, for
our purpose, be neglected. The third term in U, how-
ever, may give a contribution which is significant when
the electrons are in a state where their angular momen-
tum is not zero. A further exception, which it is neces-
sary to consider separately, occurs in the instance of the
linear polyatomic molecule, where the last term in U
may significantly influence the positions of the vibration
levels and cannot therefore be overlooked.

We shall here consider the more general aspects
of the contribution to the energy by U and evaluate
more explicitly the energy dependence on the terms
€e(¢so)Pa/Iae and 84(qss)/I aa, in particular the fourth
term in U. The components we need to consider may,
for our purpose, be written:

—(1/28R) o paa{ M o>+ 2M o(Pa—pa)} .

(IV.21)

The quantities M,> may be expressed M 2=#,2
+27%48a+8a2 The cross products will vanish on the
average for a equal to x and y, so that the result in
these cases will be #.2+8.2. When a=z, on the other
hand, the cross product 2#8,, may not vanish, since #.,
while not quantized, will not necessarily be equal to
zero and §, will also, in general, be nonvanishing.

It is seen from the spin matrices (I1.30) that 8, has
elements only along the principal diagonal, these taking
the values 2%, where 2 takes the values .S, S—1, S—2,
-++—.S, S being the quantum number of total spin
angular momentum. These may be expressed as follows:

(S, Z|8.]S, Z)==h. (Iv.22)

8; and §,, on the other hand, are diagonal in the quan-
tum number S, but nondiagonal in Z. It will be seen
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that the nonvanishing elements are the following:
(S, 2|8:| S, T1)=Fi(S, Z|8|S, =+1)
=@/2)LS(S+H1)—=(Z£1). (IV.23)

Evidently then, S$?=3,8.% and 8,2 and therefore
8:*+8,* will have elements only which are diagonal in
S and Z, these being

(S: El 8221‘5’ E) = Egﬁy
(S, 2| S52]S, 2)=S(S+1)72,
(S, 2|8.248,2| S, 2)=[S(S+1)—=2]n2.

(IV.24)

The contributions due to Eq. (IV.21) may, with the
aid of Eq. (IV.24), be shown to be

(Vo 2, K|U| V2, K)=(7:2B = +7,2B, )
+LS(S+1)— 223 (B
+ B W)+ (7,24 27,2+ Z?) B(*2)
—=2(7+2) (K =220 Ui 4P) B&2.

The quantum numbers J and K are, respectively, the
quantum numbers of total angular momentum and the
quantum number of total angular momentum directed
along the body-fixed z axis of the molecule when the
matrix elements (IV.25) are applied to what has been
termed case (a). We have then that J2> K, where
|K|=|>X¢lifi@+7,+2Z+L| in which L is the angular
momentum of the framework of the molecule about the
axis z. L will, in general, not be quantized, but will take
such values that K will be integral or half-integral de-
pending upon whether 2 is an integer or a half-integer.
The terms involving the electron spin are omitted in
case (b); and here J and K are, respectively, the quan-
tum numbers of total angular momentum and of total
angular momentum directed along the z axis when
the spin is neglected. We have then that J2> K, where
|K|=|X ¢l @+ 7.+ L| with L representing the angu-
lar momentum of the framework of the molecule
directed along the z axis. Again, L will not be quantized
in general, but will take values such that K will be an in-
teger. The contribution (IV.25) may be added to (IV.16)
if it is desired. The quantity (#.2B.*?+#,2B,4¥) is
independent of the rotational quantum numbers and
may conveniently be included with E,. It has already
been noted?? that the coefficient of K2 in Eq. (IV.16) is
By, while the coefficient of 3_; l,{;®K is By©?. The
two terms may be written with the same coefficient
By if ¢, is replaced by ({:@)y, where

(g-t(Z))V= ?!(Z) { 1-2 Zsa Zs’o’ (Be(”)/gsws)
X[(s)\s-l_ )‘s’)/()\s_' )\s')](g‘sas'a’(z))z(Vs-*'gs/z) } .

Including the portions of the quantities w1, and 2,
which have ;1,2 as coefficients with the rotational
energy, one may rewrite the (K|K) elements of the

(IV.25)
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energy as follows:
(K|H|K)=he{(Ev'/hc)+3(Bv ==+ By)
X[J(J+1)—K¥]+ By L2
+H By By oSS +1) — 2T
=D,[J(J+1)—K*]

—Ds[JJ+1)—K2|L*—D. L%, (IV.26)

where

L= K= L(;{f)y—7,—Z|

| K= L(§: )y — 7],

respectively, for cases (a) and (b) and where (Ey'/kc)
will differ from Eq. (IV.19) in that xi, and xige will
contain no terms having { ;2 as coefficients. The
two new centrifugal distortion coefficients, Dz and Dy,
may be expressed in terms of the coefficients D;, Dk,
and Dyx already defined as follows:

and

D;1=2D;+ Dk,
Dy=D;+Dg+Dk.

When the differences between the energies of the
electronic states corresponding to two orientations of =
are small, it may be necessary to include in the calcula-
tions also the (2, K|Z4=1, K=41) components. These
are readily obtained from Eq. (IV.21) with the aid of

(Iv.27)

. the relations (IV.23), and they yield

(V, 2, K|U|V, 2+1, K1) =3(B.=2+ B W)
X{LSES+HD)—-2@Ex=)J(+1)

—K(K+=1)T}h  (IV.28)

When the electronic term values are widely separated
(i.e., the deviation from case (a) is not great), the con-
tribution of Eq. (IV.28) may be calculated by the ordi-
nary perturbation theory which gives

(AE/h)=[(B.=2+B,)/v]
X{A[J(J+1)— K2]+BK},

where A and B are constants. The perturbed energy
depends therefore on J and K much as does the unper-
turbed energy. The first component may be added to the
coefficient of [J(J+1)— K?] in the unperturbed energy,
the second to the term —2K (3", L P+#7,+Z)By=2,
The effect of the perturbation is effectively to cause
B2 and B and (30; L P+ #,+2)B“ to depend
upon the multiplet level.

The example of the doublet state where S=% may as
in the instance of the diatomic molecule be solved
exactly.” The secular determinant to be solved for a
molecule where B&® = B is readily found from Egs.
(IV.26) and (IV.28) and will be



VIBRATION-ROTATION ENERGIES OF MOLECULES

K=K,>=1

111

K=K—1,Z=—1%

Eory+[(J+3)—k(k+1)]
XBV(xx)+LZBV(zz) —e€

[(+3)*— k7 Byten

[U+$) = KBy

Eoy_y+[(J+3)*—k(k—1)]
XBV(zz)+L2BV(zz) —€

where K =k-+Z. The roots are similar to those obtained
for the diatomic case and are

€= %(EeV{‘l"EeeV—%)
LT+ 3= BByt L2By )
A+ L{A(A—4EB, @) +4(T+D(B, =)}, (IV.29)

where A= (E, v,;— E., v,—3). This gives just the result
(IV.26) when S=% in the limiting instance of case (a)
coupling where A>>B,®. The equation for the energies
in the other limiting instance, where AKB,=?, gives
E=E.+{[F(F+1)—k]By©?4+L?By+?}, which is
the relation (IV.26) for case (b) coupling when S=13.
F is equal to J==3 and in both limiting cases centrifugal
distortion has been neglected.

Henderson® has more recently carried out a higher
order calculation on the energies where the coupling
between the spin angular momentum and the rotational
angular momentum of a polyatomic molecule corre-
sponds to case (b). The derivation has thus far not been
published, but the results given by him are the following:

aW+8 Yk T*(x, K)K?
{ J(T+1)
AZ{ oW+ T Tk, K)K* }
JU+1)
» [ $C(C+HD—3S(S+D)ITUT+1)
(27 —1)(27+3)

where C=F(F+1)—S(S+1)—J(J+1) and F=J+S,
and where T'(k, ') are the elements of Wang’s trans-
formation matrix,’® the symbol W stands for the unper-
turbed energy of rotation, and «, 3, v are constants of
the molecule.

AW=A4

‘IF'Y}C+

], (IV.30)

V. THE VIBRATION-ROTATION ENERGIES IN
SPECIAL TYPES OF MOLECULES

The energy relations derived in preceding sections
have been extremely general, and in this section we
shall wish to review what restrictions may be placed on
these relations where special types of molecules, wviz.,
linear, axially symmetric, etc., are concerned. The effect
of including the electrons has added no essentially new
complications to the rotational energies; and since these

# R. S. Henderson, Phys. Rev. 74, 106 (1948).

relations will probably be most useful in the interpreta-
tion of spectra measured in the infrared and microwave
regions where the angular momentum of the electrons is
zero, we shall not include their effect except in special
instances.

The Linear Polyatomic Molecule

It is not at all obvious thus far from the discussion of
the vibration-rotation energies of polyatomic molecules
that the relations derived in Sec. IV are applicable to
the linear molecule. It appears, in fact, that the results
are not applicable, since as 1,9 approaches zero, cer-
tain terms seem to become indefinitely large. This is
illustrated by the fact that when the relations of Sec. IV
are applied to a triatomic nonlinear molecule, energy
expressions are obtained which do not go over asymptot-
ically to the energies of a linear molecule as obtained,
for example, by Adel and Dennison' and others, as
1., approaches zero. This paradox has been discussed
by Nielsen,®® who has shown that the inconsistency
arises because of the manner in which the hamiltonian
for the molecule has been expanded. The exact hamil-
tonian must be replaced by an expansion which ap-
proximates it in the region where the nuclei are close
to their positions of equilibrium because the wave
equation does not lend itself to an exact solution. This
expansion is normally carried out on the assumption
that 6x;= (x;—x:%)<<x9, etc.; but an expansion based
on this assumption is, of course, absurd in the case of
the linear molecule where the x;° and y.° are identically
zero. It is necessary in such cases to carry out the expan-
sion on the basis that x,°<<(%;—x;%)=208x;. When the
hamiltonian for a triatomic molecule is expanded on this
basis, it does indeed go over asymptotically to the
hamiltonian for a linear polyatomic molecule as I,,(®
approaches zero. Such a method might be extended to
the general case, but it is easier to make use of a method
proposed by Sayvetz.3® Sayvetz has pointed out that
the linear molecule may be regarded as a limiting case
of the axially symmetric molecule where in the classical
hamiltonian the quantity II,—P,=0. When this is so,
all the terms containing 7,9, ¢,,*?, and a,,@? will
vanish from H and the eulerian angle ¢ may be regarded
as a constant. This carries over into the quantum
mechanics, so that the energy matrix will also not con-

% H. H. Nielsen, Phys. Rev. 66, 282 (1944).
3 A. Sayvetz, J. Chem. Phys. 7, 282 (1939).
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tain terms involving these quantities. The moment of
inertia 1., and I,,(9 will be alike, so that there will,
in general, be no elements off of the principal diagonal.

There may exist certain interesting interactions be-
tween the electronic motion and the two-dimensionally
isotropic off-axis vibrational motion of the atomic
nuclei in linear molecules when the angular momenta
associated with these types of motion are both different
from zero. We shall therefore include the contribution
originating with the orbital and spin angular momentum
due to the electrons in obtaining explicit energy rela-
tions for linear molecules.

When the nuclear motion is along the axis of the
molecule, the electrons move in force fields which are
cylindrically symmetric. It is therefore advantageous
to replace the coordinate x; and y; by the cylindrical
polar coordinates p; cosa; and p;sine; with z; as the
axis and the angle a; measured from the xz plane. It is
* further advantageous to replace as, as--- by the rela-
tive coordinates Bo=as— a1, B3=az—ai- -+, for then
the terms in U will not contain «; explicitly, but only
the derivatives with respect to ay. It is clear that this
must be so from the fact that the force field is sym-
metric, and the energy must therefore be independent
of a rotation of the molecule about z. The potential
energy function will therefore be independent of aj,
but not Of 62, Bg' ‘.

The wave function ® will evidently have the form:

b= eiAaquI(QSvy 62) Bs- - 'Bj) Pj), (V'l)

since «; is an ignorable coordinate. The requirement of
single valuedness demands that A must be an integer or
zero. The component of the electronic angular momen-
tum 7, along the axis z will then be

.= —1hd/day, (V.2)

(Evib/hc)= (EO/hC)+Zs wS(VS+gS/2)+Zs ZS’ xsﬂ’(Vs+g3/2)(V8’+g8’/2)+zs Xlslels?,

in which

HARALD H. NIELSEN

from which one obtains
T.o=Ahd. (V.3)

We have for M., the total component of the angular
momentum directed along 2, if we now include the nu-
clear spins,

M ,=—i(8/dar)+8., (V4)

which gives )
M, P=(A+Z)id, (V.5)
where ¥ takes the values .S, S—1, -, —S. Also, we

have
11,3 (x5, ¥;, 25, B5)F (74, x1) = P,®F=K#®F, (V.6)

where K is taken to mean

K=+ 1+2)=(\+2)

in case (a),

K=(A+X:1)=) in case (b). V-7
In addition to the above we have for the
Vo J, K|V, J,K)
matrix components of U the following:
Ve, J,K|U|V,, T, K)
= — (727 Br—[S(S+1)—2*]By. (V.8)

The first term in Eq. (V.8) is a constant for a given
electronic state and may therefore be absorbed in the
vibration energy of the molecule.

When the Sayvetz condition is observed and the
results stated in Egs. (V.6), (V.7), and (V.8) are incor-
porated into the relations (IV.26), we have the follow-
ing for the vibration-rotation energies of the linear
molecule as long as either Z,J, or A or both are equal
to zero:

(E/hc)= (Bviv/ he)+ (Erot/ c), (v.9)
where

(V.10)

Xss= (%){6k“”_ IS(kSSSZ/ws)—-ZSr (k888'2/ws')(8w32—3(‘03'2)/(4"082_ ws’2)} )
Ksgr = (%) {ksss’x'— 6(kssskss’s’/ws)'—4'ksss’2[ws/(4ws2_ ws’z)]_Zs” (ksss”ks“s’s’/ws”)
- Zs”’ kss’s"zws” (ws”g— ws’2* ws2)/[(ws+ Wyt ws”) (ws+ wWsr ™ ws") (ws— w8'+ (.Ug”) (ws s Cdg”)] (VII)

Xlgls= — (%) { 2kssss— Zs' ksss'ws’/(4w32_ ws’z) } 3

and where

(Erot/ he) =[J (J+1)+S(S+1)—2KZ—N*]By—[J(J+1)+S(S+1)—2KZ -\ J'D

for case (a) and

(Brot/he)=[J(J+1)—N2]By—[J (J+1)—NT°D,

for case (b). In the above

By=B,—>: (Vitg/2)as, Be=(h/8n* ),

o= B (h/TONg)} Lo { (/1) [Assso— ((a00t) 4 (000D /IO =4 T or {0 @Ne/ (A= \or)]

+(2/g3g8') ZO’U’ Za (g-sos'y’(a))ng},

a=x, Yy,

(V.12a)

(V.12b)

(V.13)

'—27"6[3k888((aw(m))Z/I(e))%/)‘s%‘i'gs Zs’a’ ksss’((as'v’(”))2/1(8))%(7\62/)\8’3)%]} .
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The situation which arises when the perpendicular
vibrations are excited has been studied in considerable
detail by Renner.?” The work of Renner is confined to
molecules like CO,, but could, of course, be extended to
embrace linear molecules in general. When a perpen-
dicular vibration arises, the displacements of the nuclei
are described in terms of a radial coordinate, 7, making
an angle x with the xz plane. The force field is no longer
cylindrically symmetric, but will depend upon the angle
(a1—x). A perturbing term, o(7), is thus introduced
which may be visualized as a dipole with the negative
charge at the original nuclear positions and the positive
charge at the new position. This dipole has the value
a(r)=(er/p®) cos(ar—x), where ¢ may be thought of as
the nuclear charge, 7 the displacement, and p the dis-
tance of the first electron to the dipole.

The functions ¢ now no longer transform as e***!, but
rather as ¢*4(«1—%, The perturbation when averaged over
the electronic motion vanishes and therefore introduces
no effect in first order. There are, however, matrix ele-
ments connecting states of A with states of A=+1, ie.,
2- and II-states, II- and A-states, etc., so that the per-
turbation may show an effect in second order. The
second-order contributions to the energy matrix will
be proportional to (A|e(r)|A£1)(A=%=1|a(r)|A) and
(Alo(r)| Ax=1)(A==1] o(7)| A=£2). The first type will
give a displacement of the electronic levels E,, but no
splitting. The second gives no contribution to this
approximation except when A==1, i.e., for Il-states,
in which case elements exist in the energy matrix con-
necting A=1and A= —1. The degeneracy is thereby re-
moved, and the energies may be written as E&= E +e,
where e is proportional to 2. The quadratic term in 7 is
further augmented by the quadrupole associated with
the nuclear displacement.

For a A-state where ® transforms as ef?¥«—%_ the
degeneracy is removed first in fourth order of approxi-
mation, since the off-diagonal elements will have to be
of the type (2|1)(1]0)(0] —1)(—1|—2); and here the
splitting will be proportional to 7% The quadrupole
moment associated with r will also in fourth order
contribute to 7% Thus, one may show that the degener-
acy in E, is removed only in an order 2A. The effect of
the perturbation is therefore of the same order of magni-
tude as the vibrational energy for II-states, but dimin-
ishes rapidly for states of higher A-values. Correspond-
ing to the two energies E,;* and E,~ we shall have two
electronic wave functions ®t=cosA(a;—x)® and
d—=sinA(a1— x)P'.

In Sec. IT it was assumed that, because the depend-
ence of ® on the nuclear coordinates was small, separa-
tion of variables could be effected by adopting a simple
product ®R for ¥. The last term in U, which may be
written for our purpose as

Ui=—(1/29R) 3; {Rp:2+2(p:2)(p.R)},

37 R. Renner, Z. Physik 92, 172 (1934).

(V.14)
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is, however, not small under the conditions described
above. We have of Eq. (V.14) when the operators p; are
replaced by their equivalents in 7, and x,, and account
is taken of the fact that ® is still insensitive to 7,

Ui=--- X (1/28R){ (R/7)(6°/3x2)
+(2/r#)(8%/3x)(9R/3x). (V.15)

It is now readily seen that this contribution will be of
the same order of magnitude as (1/7%)(32R/dx?) in
Eq. (I11.17).
The simple product function ®R must be replaced
by a function
TR+ 9 R, (v.16)

where Rt and R~ are such functions of » and x that
function (V.16) is a suitable solution to the wave equa-
tion (I1.35). A separation of variables may be carried
out much as before when the function (V.16) is used
with Eq. (IL.35) except that instead of Eq. (ITI.1”)
there will now be two equations:

{(8%/9r)+(1/7)(3/3r)+(1/1)(8%/ x*)
— (AP [2(E— EFe(r)) /AN ]— 2} R=
+(2/™MAORF/ax)=0, (V.17)

the former being valid for the electronic state E,~ and
the second for the state E,f. In Egs. (V.17) we have
E.=Y(E;+E;) and e=3(E,t— E,”). The effect of the
perturbation has been therefore to produce in the two
electronic states two somewhat different potential
energy functions.

When the function ¢ is made to go to zero, Egs. (V.17)
must become the same, namely, that for the two-
dimensional oscillator. They may, in fact, be reduced
to the form (II1.17) if we set Rt=efxF(r, x) and
R—=1ie+i8xF(r, x), respectively, in Eq. (V.17), where
F(r, x) is the function (II1.9) which already has been
determined.

Renner has studied the II-state where A==-1 and
where e=ar? and in particular the state where I4+A=0.
Here the terms coupling the two equations drop out,
and an exact solution may be obtained as in Sec. III
with the result that

EviE=hcw,(14+a)¥(V+1). (V.18)

One will, therefore, no longer expect that the energy
levels for the perpendicular vibrations will necessarily
form a simple pattern in the case of linear molecules
where As<0.

The Axially Symmetric Molecule

The geometric arrangement of the atoms in molecules
belonging to the axially symmetric class is such that the
‘two moments of inertia I,,(® and I,,( are alike, while
1.9 will, in general, be different. Molecules of this
kind will always be of a symmetry type C,,, where
n>2; and for this reason the two-dimensionally iso-
tropic oscillations will all lie in a plane normal to the
axis of symmetry, z, of the molecule. Therefore, {;(®
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and ¢ will both be equal to zero. The symmetry of
the molecule will, in fact, cause all the elements of the
matrix which are not diagonal in the quantum number
K to vanish always except in special cases. This is
tantamount to stating that a molecule which is a sym-
metric rotator when the atoms are in their equilibrium
positions will, with certain exceptions, remain a sym-
metric rotator also in higher vibration-rotation states.
The vibration-rotation energies of a symmetric molecule
are then given just by the elements of Eq. (IV.26) in the
energy matrix which are diagonal in K. Because it has
certain advantages over the form (IV.16), we shall
write these in the form: :

(E/h))= (By'/he)+By[TJ+1)~K*]
+CyL2—D,[J(J+1)— K]

—Dsi[JJ+1)—K¥|[*—Dr L4, (V.19)
in which
By(? = By =By = Be—'Zs (Vs+gs/2)0!s,
Be= (h/s"rzlzz(a)c)7 R )
By =Cyp=Co—3 s (Vitg:/2)7s (V.20)

Ce= (h/87 ., 9c),
as=% Za (bsv(xz)‘i_bsa(yy)): 7=Za b”(zz)’

and where Dy, Dz, and Dj, are defined as in Eq.
(IV.27). The contribution due to the electrons having
here beenleft out of consideration |L| = |K—2":1{({s)v].

It is apparent from Eq. (V.19) that the degeneracy in
the quantum numbers / and K have partially been
removed so that each level where K0 is split into two
components. It is therefore of interest to observe what
the selection rules are for / and K when a perpendicular
transition takes place. These are determined by investi-
gating what are the nonvanishing matrix components
of the electric moment (x=-4y) which classically is pro-
portional to X, 7,etixct9) Using the wave functions
(II1.9), which are suitable, since H®+H®’ is entirely
diagonal, one obtains the selection rule of Teller and
Tiza,! which states that Al;=AK=+1. The selection
rule for J remains unchanged.

When these selection rules are applied to-a symmetric
molecule making a perpendicular transition from the
normal state to a state V=, l;=1, the positions of the
lines in the Q and ®Q branches (i.e., AJ=0, AK=7F1)
in the Kth subband are given by
v=(vy+C'—B)F2K{[1—(¢,?)y]C'— B’}

+J(J+1)(B'—B")

+ K (C'-C")—(B'—B")] (V.21)
if the centrifugal distortion is neglected. Similarly, the
positions of the lines in the PP, 2P, and PR and %R
branches (i.e., AJ=—1,
AK =71, respectively) will be
v=(vy+C'—B)F2K{[1—({:?)y]C’'— B’}

FJ(B'+B")+JAB —B")

+K[(C'=C")—(B'—B")]. (V.22)

HARALD H.

AK=7F1, and AJ=-1,

NIELSEN

In relations (V.21) and (V.22) K takes the values 0, 1,
2, ---,.J begins with the values K in the R and *P
branches and with the values K41 in the 2P and PR
branches. The positions of the lines in a parallel type
band (AJ=41, 0; AK=0) remain unchanged by this
type of Coriolis interaction.

I-Type Doubling and A-Type Doubling in Linear
and Symmetric Molecules

The relations (V.9) to (V.12) for the vibration-
rotation energies of a linear molecule are independent
of the algebraic sign of \ as long as either the nuclear
vibrations are along the molecular axis or the quantum
number A=0. It is further seen that although the de-
generacy in / and K is partially removed in the instance
of symmetric molecules by the degenerate Coriolis
interactions, each Coriolis component remains twofold
degenerate. There are terms, however, in the hamil-
tonian for such molecules which will effect these de-
generacies so that the levels will split further. Such a
doubling manifests itself in diatomic molecules when
the electrons are in an electronic state other than a
Z-state, so that they have a component of angular
momentum along the z axis, and is known as A-type
doubling. The doubling originates with a Coriolis inter-
action between the motion of the electrons and the
rotational motion of the nuclei and the theory of this
perturbation has been studied by Kronig®® and Van
Vleck.” That a similar kind of doubling must manifest
itself when the motion of the electrons is entirely
neglected, but where one or more of the perpendicular
two-dimensionally isotropic oscillations are excited, has
first been pointed out by Herzberg,*® who speaks of it as
I-type doubling. The theory of I-type doubling in linear
molecules has been considered theoretically by Nielsen
and Shaffer,* who have shown that this type of splitting
is entirely analogous to A-type doubling in diatomic
molecules. More recently, the question of I-type
doubling in axially symmetric molecules has been
studied by Nielsen,* who has pointed out that an error
exists in the earlier work. Since I-type doubling in
symmetric molecules and in linear molecules is entirely
alike, we shall consider them together.

Consider the terms (IV.3c), which have as coefficients
P2 P2 and (P,P,+P,P,). We have seen that these
terms can contribute to the energy in second order only
when s=s" and ¢=g¢’. An exception to this occurs in
the axially symmetric molecule, where vibrations occur
in the xy plane which are twofold degenerate. Two co-
ordinates gu and g are associated with a frequency w;
in such instances. When ¢:; and ¢:; and their conjugate
momenta are replaced by their equivalents in 7, and
x: and use is made of the fact that

38 R. de L. Kronig, Z. Physik 50, 347 (1928).

3 G. Herzberg, Revs. Modern Phys. 14, 219 (1942).

10 H. H. Nielsen and 'W. H. Shaffer, J. Chem. Phys. 11, 140
(1943).

4 H. H. Nielsen, Phys. Rev. 75, 1961 (1949).
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[A sasv(:m)_ ((asa(xx))g/Izz(e)) - ((a”(xy))Z/Iyy(e))_ ((asv(xﬂ)2/1zz(6))]
= [A sorsor YW — ((a”,(yx))Z/Iu(e))_ ((aw,(w))Z/[w(e)) — ((aw(w))z/[ z(e))]

where ¢=1 and 2 with ¢’=2 and 1, respectively, then the portion of H®’ referred to above which is not d1agonal
in the quantum number K, and therefore not already accounted for in the energies, may be written

H' = . =3 5 + (B,/4w:) {[ (4 1617 — A 4206%) — ((@61%9) 2+ (@,,9)2— (@,9)?
—(0:2)%)/T22®— ((@2*)? = (0:29) ) /L. 0+ 2 Lo (£55 )N/
A= Na) J(eFixer)24+2 3700 (£ @) LN/ (Ns— o) JLeExe(prs
& (i/r) px) /BT (P2 = P2+ Xy ¥+ (iBo/4w ) { [(A 10a@4 A 310)
— ((081(”)%2(”)-}— 082(%)081(%)_{_ asl(yy)a82(yx)+ aw(yy)a“(ym))/[”(e))
+ ((asl(“)dsz(”’)+ asz(”)dn(“’))/lzz(e)) -2 Zs, (ﬁ'ss'”))z)\s/()\s-" )\S,)]
(e5%7)* =2 30t (Cor @)’ LN/ Ne= M) XX (pro— (i/75) pxa) /B T}
X (PePy+PyP.) /15,
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(V.23)

It is readily verified with the aid of Eq. (IT1.12) that the nonvanishing matrix elements of Eq. (V.23) are these:
Ve, Iy K|V, k2, K£2), (Vi by K| Vi, L2, KF2), (Vo by K| Vo2, 122, K£2), and (Vo L, K| Va2,
1,222, KF2). The latter two are of no interest to us and may henceforth be disregarded.

One may convince oneself that for linear molecules and for axially symmetric molecules of the species Cs,

[(14 slsl(zx)—A s2s2<z$))— ((axl(:tx))?._ (a82(zz))2+ (asl(xy))2" (aSQ(xw)z)/I:cx(G) - ((asl(xz))?.__ (a82(12)‘)2)/122(e)j
= — [(A 5152 4 A 526199) — (@519 @520 + 0,500 0,1 D 0, WV ., VD) G- g, VW g, (¥)) /
Iu(e))_*_ ((asl(“)asZ(w)“}‘ asZ(xZ)asl(zw)/lzz(e))]-

The two terms in Eq. (V.23) may in such cases be combined into a single term which is the coefficient in Eq.
(V.23) of (P;*—P,*) multiplied by (P,FiP,)%. The matrix elements (V,, I, K|V

cases, and the nonvanishing elements are the following:

Be2/2ws) { [(A slsl(xz) —4

(I/Y-s‘y ls7 KIH(2)| VS7 ZS:E-27 Ki2)= —hc(

— (asg(”))2— (0'82(:‘:1!))2)/]2;1<g)—— ((dsl(zz))z__

The matrix elements (V.24) would, in general, not be
taken into account in this approximation; but as Herz-
berg®® has pointed out, when /=1, A and = being equal
to zero, these elements are sufficiently important to
remove the degeneracy in /. B

There occur in the quantity U certain terms of the
form 3" up ge(¢ss) Ps (a and B taking the values x and y),
where the functions ga(gs,) are essentially >, (p®) and
therefore functions of the ¢,, alone. These might con-
ceivably also contribute to the /-type doubling. The
influence of such terms on the energy can be estimated
accurately only when the dependence of the electronic
wave functions upon the interatomic distances is known;
but because of the insensitiveness of ® to the coordinates
s, it seems reasonable to assume that their contribu-
tion may be neglected.

The relation (V.25) is much simplified for linear
molecules. One sees at once from the definitions of
As6*® and as,*# (11.42) and with the aid of the nor-
malization requirements placed on the /;,(® that

, ls2£2, KF2) vanish in such

22209) = (60 )+ (@)

(as2($z))2>/1zz<6)+4 Zs' (g‘ss’(x»z)\s/(xs— ks')]}
XJTU+1)-KEED)PLIT+H1)— (KED)(KE2) PLVAFL)(Vkl42) 15

(V.24)

(A 51617 — A 43,97®)=—1 and that the @, =0. One
may, moreover, show in the case of the linear molecule
that the {9 are all equal to 1, so that the Sayvetz
condition fixes K=3_;1;. We have therefore for linear
molecules in a II vibration state

(Vo li==1, A=0, K==1|H®/hc| V., l,=F1,
A=0, KF1)
=Bo(B./2w) {1+4 X (§ss@)wi?/
(0= w2} (VA1) T(T+1)
=q(V,A+1)T(T+1).

A convenient and interesting relation which also
may be proved to hold for linear molecules is that
s (Fewr@)?=1.

When a linear molecule is oscillating in one of its
deformation modes, the degeneracy in A will, in general,
be removed by an interaction between vibration and
the electronic motion. When the nuclear oscillation is

(V.25)
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along the molecular axis, however, this degeneracy may
still be removed by certain terms which we may desig-
nate as U—U, which hitherto have been entirely
neglected. These are of the form 3, 7.Ps (a and B
taking the values « and y) when the spins are neglected
and will have matrix elements linking two different
electronic states. It has been shown by Van Vleck’ that
for diatomic molecules the components of 7, are the
(A] A=1) components. The proof of Van Vleck applies
here also. Since they have no diagonal elements, they
cannot contribute to the energy in first order; and, as
in preceding instances, they may be transformed by a
contact transformation to become a part of the trans-
formed second-order hamiltonian H®’, where they
would yield terms multiplied by (B.2/v)(P./%)? and
(B&/v)(PoPs+ PpP.)/H2, where v is the electronic fre-
quency. The first of these could have matrix elements
diagonal in A (i.e., proportional to [J(J+1)— A*]%%);
and if this were so, they might be incorporated with the
equilibrium value of the moment of inertia for this
particular electronic state. The elements of interest in
A-type doubling are the (A|A=2) elements, and for a
singlet II-state (which is the only one we shall consider)
the doubling is proportional to J(J+1). For a singlet
II-state with /=0, we have the following nondiagonal
elements in the energy matrix:

(Vyls=0,A==+1, K=+1|H®'/
he| Vs, 1,=0, A=F1, K=F1)
= const B.(B./»)J(J+1). (V.206)
It is of interest to compute the actual splitting of the
levels for a linear molecule in a state Vs, I,=1 (i.e, a

II-vibration state) and where A=0. The secular deter-
minant for the energies will quite evidently be

lL,=1,A=0 l,=—1,A=0
l,=1

(Eo/h)—e | q(Ve+1)T(T+1)
A=0

=0.

li=—1 (V.27)
=0 q(Ve+1DJI(T+1) (Eo/hc)—e ’
1:

The quantities Eo/kc are the term values (V.12) for
the state in question. The roots of Eq. (V.27) are
(Eo/hc)x=q(V ,4-1)J (J+1). The actual splitting Av will
then be Av=2¢(V,+1)J(J+1), which is the value sug-
gested by Herzberg®® as best fitting the experimental
data.

The I-type doubling has been observed experimentally
for a rather large number of linear molecules, particu-
larly with microwave techniques, but also actually by
infrared methods.3%2 The only instance of /-type doub-

#2 Kessler, Ring, Trambarulo, and Gordy, Phys. Rev. 79, 54
(1950); Coles, Good, and Hughes, Phys. Rev. 79, 224A (1950).
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ling identified for nonlinear symmetric molecules is that
of CHsCN and CH;3NC,* where it was employed to
explain certain anomalies in the observed spectrum.
No simplification of the quantity ¢ is here possible
except, perhaps, in special cases. We shall here take note
of how I-type doubling affects the energy levels of a
symmetric molecule in a vibration state V, /,=1. Con-
sider the set of levels where J=2. Here the quantum
number K takes the values 2, 1, 0, —1, 2, while [,=4-1.
For brevity we set

E()=(Ev/hc)+J(T+1)B'+D ;I +1),
a= [(Cl“‘B/)—*‘](I-I-l)(DJL— ZDJ):L
B=(C'"+J(J+1)D,y1),

and
Y= (DJL*ZDL).

The unperturbed energy may then be written in terms
of these

(Eo/he)= E(J)+K?a(T)— 2K (B(J)— K*y)+ K*Dk.

The secular determinant for the perturbed energies
factors into the roots

e=8(J)+4a+409B—16¢Dy+16Dx,
e=8(J)+a+2¢,9B—2¢ Dy +Dx,

the roots of the subdeterminant,

K==421=+1 K=0,1=7F1
K=-42 |8())+4a—4¢28 -
—qg(Vi+1)2+6
(uq| 1659y 16D5—d O v
=0’
K=0 _ V.28
—g(V+1)2+6 sn—e |V
I==F1

and finally the roots of the subdeterminant

K=1,1=1 K=—1,l1=—1
K=1 |8()+a—2¢,98
1 | 420y +De—q  TOTAY
X . =0.
T _ EWU)+a—2028 | (yvog
i——1| TN ot Ded VP

Except for the roots of Eq. (V.28) the above all occur
twice.

It is seen that the positions of the levels K=-42,
l==£1 are shifted by the perturbation, but not split,
and similarly for the levels K=0, I=21. The levels
K==+2 I=7F1, and K==+1, /=1 remain com-
pletely untouched by the perturbation. The levels
K=I==1, on the other hand, are split into two com-

4 H. H. Nielsen, Phys. Rev. 77, 130 (1950).
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ponents, their center of gravity remaining at the posi-
tion of the unperturbed levels. As in the linear case the
splitting occurs for the Coriolis component where
K= =1, i.e., where the framework of the molecule
does not rotate about the axis of symmetry. The actual
splitting A» is seen to be Av=2¢(V+1)J(J+1) here
also. The correction is always proportional to J(J+1)
in II-states. The term ¢(V-+1) may, therefore, be com-
bined with the coefficient of J(J+1) in the unperturbed
energy. This is equivalent to regarding the two com-
ponent states to have slightly different B-values.

The selection rules for I-type doubling have been
discussed by Herzberg®® and may be summarized in the
following manner: Suppose a molecule makes a vibra-
tional transition from a =+ vibration state to a II-vibra-
tion state. In the lower state the rotational levels may
be classified as + for even J values and — for odd J
values. In the II-state there are two component levels,
IT* and II~. In these states J begins with /=1 and for
the 4 component the rotational levels may be classified
as 4+ and — for even and odd values of J, respectively.
Similarly, for the — component odd and even J values
may respectively be classified as 4+ and —. The general
selection rule in quantum mechanics which states the
+ rotation levels combine with — rotation levels and
vice versa requires then that for AJ=0, transitions be
from =t to II~, while for AJ==1 the transitions are
between =+ and II*. When a w—= transition takes
place, one will evidently have for AJ =0 that transitions
must be between I~ and IT*; but for AJ= =1 the selec-
tion rule states that II+ combines with II* and II-
with II~.

The I-type doubling may, of course, also occur in
states other than w-vibration states where /,>1. Such
splittings have never been observed, and it is possible
to show for singlet states that the l-type splitting will be
of the order of magnitude B.(B./w;)**. Correspond-
ingly, A-type doubling will be of the order of magnitude
B(B./v)*~1, The splitting may, therefore, be expected
to diminish rapidly with 7, or A. :

The Asymmetric Molecule

‘The geometrical arrangement of the atoms in asym-
metric molecules is such that no two of the three mo-
ments of inertia, /,,(® are alike. The energies of such a
molecule as represented by the relations (IV.16) will
therefore be much more complicated than those for
linear or axially symmetric molecules. On the other
hand, many of the interactions between the nuclear
motion and the electronic motion may be entirely
neglected here because of the lack of symmetry. A
further consequence of the lack of symmetry is that
there will be no degenerate vibration frequencies, and
all the terms which would occur in H®’ will be absent
and the first-order correction to the energy will be zero.

Except in instances where two vibration frequencies
become accidentally degenerate, the secular determi-
nant of the matrix H may be factored into substeps, a
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step for each value of J which has 2741 rows and
columns. The step will be repeated 271 times because
of the degeneracy in the quantum number M. The
secular determinant will in the most general case (viz.,
a molecule like NHDT) be much more difficult to solve
than in the rigid rotator example due to the presence
in it of the extra (K|K=1), (K|K=3), and (K|K=+4)
elements arising from inclusion of the centrifugal
stretching. It seems likely that the imaginary portion of
each of the nondiagonal elements can safely be neg-
lected.®® When this is so, the secular determinant can
further be factored into two subdeterminants, one of J
and another of J4-1 rows and columns.

Fortunately, in a great many examples which are
very important, for example, all the planar molecules,
the (K|K=1) and the (K|K=3) elements vanish en-
tirely. The elements may remain complex as shown by
Shaffer and. Schumann;* but if the imaginary com-
ponent is neglected, the secular determinant may again,
as in the rigid case, be factored once more. It is, in fact,
advantageous in working with such molecules to set up
the secular determinant using as basic wave functions
(1/¥V2)(¥(K)#=¥(—K)) rather than ¥(K) and ¥(—K).
The determinant thea, automatically breaks up into
four subdeterminants. It is interesting to note that
when expressed in terms of the R; the (J4-1)th order
substep associated with a given J is formally identical
with the J’th order substep associated with J'=J-+1.
This fact substantially reduces the work required to
expand the algebraic equations for the roots since only
one of the substeps associated with a given J needs to be
expanded, the other one already having been expanded
for the preceding value of J.

The secular determinant for the energies has been ex-
panded for values of J up to J=06.% Since the resulting
algebraic equations for the roots of W,= (2E/#%*— Ro) /R,
are space-consuming, only those for the states up to
J=3 inclusive are given below as examples. Only the
equations for each value of J arising from the substep
of order J41 are given, those due to the substeps of
order J being identical with the ones of order J+41 for
the preceding value of J:

J=0, W=0;
J=1, W= (1+P3)'—":(P4+2F"S)f;
J=2, W=4+16p;— pef(f—2),
W =3[4+16ps+pef(f—2)]
5 {{4+4ps+pef(f—2)
o H8f(f—2)(pat4ps)?};
J=3, W=34[10+482p5F (ps+2p5)f]

+4{[8+80ps=(ps+2p5) 2]
+4(f—2)(f—6)(pat10ps+ fpe)?} 2. (V.29)
In the above relations p;= (R;/Ry), i< 2 and f=J(J+1).

It will be seen that when the centrifugal distortion is
neglected, these reduce to the relations given by

4“4 H. H. Nielsen, Phys. Rev. 59, 565 (1941).
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Nielsen® and extended by Randall, Dennison, Gins-
burg, and Weber, and by Ginsburg? for the rigid
rotator. The inclusion of the centrifugal distortion intro-
duces a serious complication to the numerical evaluation
of such equations as Eq. (V.29), for while tables have
been prepared for the energies of the rigid rotator (see
reference 21), this is not practicable for the nonrigid
rotator. The best approach is probably to use tables
available for the energies of the rigid rotator as a start-
ing point in the further evaluation of numerical results
from equations such as Eq. (V.29). Fortunately, many
of the transitions, but certainly not all, which are of
importance originate in levels where the centrifugal
stretching is small.

More recently Benedict*® has pointed out the neces-
sity of including also terms in the energy originating
with the sixth and even the eighth power of P,. This
work, which has not been published in detail, has been
carried out principally in relation to the water vapor
molecule.

VI. THE VIBRATION ROTATION ENERGIES OF
SPECIFIC MOLECULAR MODELS

The formulation derived in earlier sections will here
be applied as illustrations of the method to four impor-
tant molecular models. The four models, each of which
will be considered in some detail, have been selected as
specific examples of the three different types of mole-
cules referred to in Sec. V, i.e., the linear, the asym-
metric, and the axially symmetric molecules. The
models selected for this purpose are the diatomic XV
model, the linear XVZ model, the nonlinear XVZ
model, and the pyramidal XV; model; and for these
examples the vibration-rotation constants will be stated
explicitly.

The Diatomic Molecule

The diatomic molecule represents an almost trivial
example where the formulation of the preceding section
may be applied. This example is included because the
diatomic molecule may be regarded as the prototype of
all other molecules. The two atoms shall be designated
as X and V with masses M and M,. The internuclear
axis is taken to coincide with the z axis, and the equi-
librium values of the nuclear coordinates may be taken
as ¥:°=99=0, 2,° and 2, where M 12,4 M 2,=0.

It is readily verified that the kinetic and the har-
monic portion of the potential energies will be 27'= uQ?
and 2V =4n%pw?Q?, where p=MMs/(M:+M,) and
Q=ao+2:—21, ao being equal to z,°—2,°. The anhar-
monic portion of the potential energy may be written
Vi=he(ksg®+kag*+ - - - ), where Q= (#*/4nctu’w?)iq.

45 H. H. Nielsen, Phys. Rev. 38, 1432 (1931).

% Randall, Dennison, Ginsburg, and Weber, Phys. Rev. 52,
160 (1937).

47 N. Ginsburg, Phys. Rev. 74, 1052 (1948).
4 W. S. Benedict, Phys. Rev. 75, 1317A (1950).
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Evidently, we have [;;®=1[;,®"=0 and ;=
—(u/M1)* and 19 = (u/M )%, and thus

A @D =4, = 1, @, =gq,00= 2([(«;))%’
4 11(22) = all(aﬁ) = g—(a) =Fksser=0.

The relations (V.12) lead then to (E/kc)= (Eyin/hc)
+ (Erot/hc) with

(Eviv/he) = (Eo/hc)+ w(V+3)+a(V+3)-- - -,
where x=%{6ks— (15k8/w)}, andt

(Brot/he)=[T(J+1)+S(S+1)— 20 ] By
—[JU+1D)+S(S+1)—205D  (VI.2)

(VL1)

for case (a) and

(Erot/he)=[J(J+1)—L*]By
—[JJ+1)—12]2D (V1.2

for case (b) coupling. In the above By=B,—a(V+1)
with B,=#%/8%%*9¢ and

a=—6(B3/w)}[(Be/w)+V2ks/w].

The centrifugal distortion coefficient D=4B3/w?. For
case (a) we have J 2@, and for case (b) J > L.

The Linear Triatomic Molecule

The vibration-rotation constants for the linear XV 2
model have been evaluated by A. H. Nielsen,* who
designated the masses of the X, ¥, and Z atoms by M,
M,, and Msj, respectively. The internuclear axis is
identified with the z axis so that the equilibrium posi-
tions of the nuclei will be ®=y,"=0, 3,° 2°, and z;°,
where >_; M.°=0.

The quadratic part of the potential energy function
for the XY Z molecule may quite generally be written

3 3
2V= Z Z Ki]Qle+K4(x2+y2)7

=1 j=1

where Q1= 2:—321, Q2=23— 22, Q3=2=2; and where %
and y are the relative off-axis displacements of the
particles 1 and 3 to the particle 2. Introducing the
coordinates

a= (22/30‘) { Qg— (M1a1+M3a3)/2M2} )
(a==x, y, and 3), where

O'=M1+M2 and E=M1+M2+M3,
we have for V,

2V = K1g*+ K 2%+ 2K oqz+ K o (22 +9?),

T In the relation (V.12) will also be found —L2By. In diatomic

molecules we have L=A, which does not vary in a given elec-
tronic state. It may therefore be incorporated with the electronic

energy and is omitted here as a part of the rotational energy.
49 A. H. Nielsen, J. Chem. Phys. 11, 160 (1943).

q=2%1—23,
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in which v
K= {Kll(M3/0)2+K22(M1/0)2+Kss

+Z(MlMa/o')Km-f—Z(Ma/U)K13+2(M1/¢7)K23} )
K;={Ku+Ky—2K15},

and

K,= { _Kll(Ma/O')+K22(Ml/0')
—[K1wo(M1—M3)/0]— K 54K} .

The kinetic energy of vibration becomes simply
2T = u1GP+ ua(2%+92) +usé? in these coordinates, where
m=(M1Ms/0), pe=[M20*I®/MM:Z(2°—2°)%], us

- =(My0/Z), with I(® denoting the equilibrium value of
the moment of inertia.

Although x and y are evidently normal coordinates,
¢ and z are not. We replace (u2)¥x by go1 and (us)ty by ¢s2
and make the transformation (u1)i¢= ¢ siny-+¢; cosy,
(us)iz= —qi cosy+q¢3 siny, such that ¢; and ¢; shall be
normal coordinates. This requires

siny 1 (kl"ka)z i
et |
cosy) V2 4k s>+ (ky— k3)*
where k1=K1/pi, k2=K4/}l2, k3=K3/[.t3, and k4=K2/

(u1ps)t. The normal frequencies will be found to be

equal to
2mcw, 1

| =1t bk ek

2mwCws

It is now possible to set down the direction cosines
liso'®. Tt is easily verified that the only nonvanishing
ones are the following:

Dot = l1ppW = — ([ MM 5(25°— 25°) 7]/ 219},
log1® = lygo® = { [ M 1M 5(2,°— 230)2]/21(»}%,
lgny @ = lgge® = — {[ M1 M 5(2:°—2°) 7]/ I},
@ =[(M:M,/oZ)* cosy+(Ms/0)* siny],
In@=—(0/Z)% cosy,
1P =[(MsM3/2)} cosy— (M1/0)t siny ],
L3P =—[(M:M,/cZ)} siny— (Ms/0)* cosy],
l23®@ = (¢/Z)% siny,
I3y = —[(M2M3/oZ)t siny+(M1/ ) cosy].

We proceed to evaluate the quantities {55/, a56(*®,
A 555,49, etc., which occur in the molecular constants.
The quantities {5/ are equal to the

3
— o @=3" Ligolisr  (s’=1 and 3).
=1

Thus it may be verified that

Co@=—{ W= — (M1M3/c1®)}(3,°—23°) cosy

— (ZMy/aI®)z,0 siny,
$23 @ = — £o3@ = (M 1M 5/ 0 I(®)}(3,°—25%) siny

— (M 3/ aI®)¥3,0 cosy.
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The quantities a,,*? and @,,%¥ are equal merely to
23 M2%:,?, so that we have

0,0 = q,; W= —2{(TMy/0)¥2,° cosy

— (MM 3/ )} (3:°—325°) siny} = 2(1(9)) ¥ 55,
Similarly, we have @3 = g3 = 2(I(®)}{5,®, The con-
stants 4, and A4,,%¥, s=1 and 3 (since o takes one

value only, it is omitted here), are also alike and be-
come A, @¥V=3"; (1;;?)?=1. It is readily verified that

A2191%9 = A 9995@¥ =0 and that 42900 = A1 ¥ =1,

The cubic and quartic portions of the potential energy
function must be even functions of gs; and gs2 because
of the axial symmetry of the force field. They will be

Vi= hC{Zs=1. 3 ksssqs3+Zs=l, 3 Zs’=1, 3 ksss’Qx2Qs'
+Zs=1. 3 k32298(9212+ 9222) } -

and

Va=he{d =1, 3 Bssssqs+ Roroa(gai®+q20)?
‘}‘-Zs'=1, 3 kssss'stqs'+k1133912932
+Zs==1, 3 kss22q32(q212+q222)}~

The energy of the linear X ¥Z molecule will therefore
be (E/hc)=(Eviv/hc)+ (Exot/kc), in which

(Evib/hc) = Ejl ws( Vs+§)

=1 s’=1

3 3 gs gs,
+2 2 xss'(Vd—-z—)(st+7)+xzzzzlz2, (VL3)

where
®so=1{6Fs55s— 15(Rsss?/w35)
— (ksss¥/ ws) (Bws2—3ws?)/ (dws?— wsr?) }
(s=1,3;5'=3,1),
Xoo=1{6k2o90— D sr=1, 3 (R22s:2/ws)
X (Bwa*—3ws?)/ (4w — wsr?) },

x23=%{k22ss“ (4k2232w2/(4w22—— w82))
— (k22s’ks'ss/ws')+2(ws/w2) (g‘zs(z)) 2-Be}

(VL.4)
(s=1,3;s=3,1),
xs2=‘1§{kssz2— 6(ksssks22/ws) - (ksss'ks'zz/ws')
+2(w2/ws)(§02?)Be}  (s=1,3;5'=3,1),
Fser =5 {Rossrer— 0(Rssskssrsr/ws)
—4ksse?ws/ (dwst— wsr?) }
(s=1,3;5'=3,1),
Xigleg= ~%{2k2222+2s=1, 3 k22sws/(4w22""w32)}7
and in which
(Erot/he)=By[J(J+1)—12]
—D[J(J+1)—152]?2, (VLS)
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where :
= Bo(lt/TON)H (/1) 1
—4($20 @)= 4(($52)2Ns/ (Ns— N2)) ]
- 27!'6[6ksssg‘2s'(x)/>\s*+ stss’g-Zs(z) ()‘82/>\8'3) *]}
(s=1,3;s'=3,1),

a2=Bg(h/41(e)>\2)%{(ﬁ/1(e))§ ZB=1, 3
X[(§.2s(x))2(3)‘2+ )\s)/O‘s_ >‘2)]
—8m¢ 2 om1,3 kazs($2s, @) N/ N5
(s=1,3;5'=3,1).

The latter is, of course, the sum of two components
b21(x1)+b22(x:c), which is equal to bzl(”y)-l"bzz(m’). The
centrifugal stretching coefficient D is equal to

© D=4B2 Y 1,3 ({259)Y wer?,

with s=1, 3 and §'=3, 1.

When the two atoms X and Z become alike and
the XYV and YZ distances become the same, the in-
creased symmetry requires that Kij=Kss, Ki3=Kas,
Ki=pk1=0, Fks3=0, siny=({25?)?=1, and cosy
= ({21?)?=0. When these simplifications are intro-
duced, (VI.4) and (VI.6) vibration-rotation constants
are obtained which are equivalent to those given by
Dennison® for the linear X ¥, molecule.

(V1.6)

The Nonlinear Triatomic Molecule

The vibration-rotation energies of the nonlinear XY Z
molecule have been studied by Schumann and Shaffer.5!
The X and Z particles are located at the base vertices
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of the triangle, and the ¥ particle is at the vertex. They
are numbered 3, 2, and 1, respectively. The model is
referred to a system of coordinates Z, ¥, and Z so that
that the plane of the model coincides with the Z ¢ plane
(i.e., 2°=0) and the XZ distance is chosen parallel to
the & axis. The center of mass of the atoms is taken
to coincide with the origin of the coordinate system z,
v, and z. It is convenient to set £,°—Z;"=a, £—Z,°=9,
and §,°—7=c, where Z,° and 7. designate the equi-
librium positions of the nuclei. The principal axes of the
molecule, designated as x, y, and z, have the same origin
as the &, §, and Z coordinates; and the & 7 plane coin-
cides with the xy plane. They are, however, according
to Schumann and Shaffer, rotated through an angle «
with respect to the Z and § axes, where

a=3% tan={2mc(am,— bm.) [ m.(m,+m.)a?
+m,(motmy) b2+ 2m o ab— my (mom,) 21}

The quadratic part of the potential energy may, quite
generally, be written '

3 3

2V0=Z Z Kijlei]le,
i=1k=1
i>i 1>k

where Q;; are the relative displacements from equi-
librium
Qij=(S:")H{ (@"—2,") (11 —2;)+ (3"~ ¥,) 01— 2},

with .5 the equilibrium distances between the ¢ and j
particles.

Introducing the intermediate coordinates, #=x;— o~ (m watmaxs), v= y1— o (myet-mzys), and w=x2—x3

where o= (m,+m,), we may write the potential function

2Vy= {K11M2+K22v2+K33w2+2K12uv+2K13uw—|— 2K231)w} ,

where

Ku=[Ki220>+ K13130"%+ K 3030+ 2K 13330:0” 2K 13930" @'+ 2K 121300 ],

and

2K o= 2[K1212a5+K13;30/ﬁ'+Kzszsa"ﬁ”‘f“%Kms(aﬁ"—l‘ a”'B)+ 3K 1323(a’ B+ "' B)+3K1215( B+ B') ]

The constants K and K33 are obtained by replacing «, o', and o’ in Ky respectively by B, 8,-and 8" and by
v, 7', and "', Similarly, 2K is obtained from 2K, by replacing 8, 8, and 8” by v, v/, and v’ and 2K,;3 from
2K; by replacing o, o/, and &’ by v, v/, and v". The coefficients «, &, etc., are found to be

a=(S12°)7H{ (2"—22") — (my/m2)y:°(5:°— 92°) / (%' —25°) },

o' = (S15°)7H{ (10— %)+ (/M) 1" (91" — 5°) / (2" — %) },
o= (S25°)7H{ (mya/mam2)y:"(92"— y5°) / (22" — %5°) },

B=—(512") 7 {(o/m)x(y:"— ")/ (ws"—s")},

B'= (S15°){ (6/m2)x2" (31" — 35°)/ (2" — %5°) },
B = — (S2") M { (omy/mam.):"(y2"— y5°) / (" — %)},

v=—(S12°) 7 { (ma/ ) (00— 22°) + (2" — ¥5°) (9:° — 32°) / (w2"— %) 1},
v'=(S1) 7 (m./ ) [ (10— 250+ (92°— ¥3°) (91" — 95°)/ (x"— %) 1},
v = (S2a)H{ (20— 250)+ (32" 35%) Y/ (2" — 24%) ..

50 D, M. Dennison, Revs. Modern Phys. 12, 175 (1940).

51 R. Schumann and W. H. Shaffer, J. Chem. Phys. 12, 504 (1944).
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The kinetic energy becomes in terms of the coordinates #, v, and w,
2T = (el o+ st 2usgto-b 2psgtini-+ 2pesin},
pu= pt(o/mam.) [myy:®/ (2" — x5°) %,
poz= 21y (O /mamym, (90— x5°)?,
paz= (mam./ o)1+ (y2"—y3°)*/ (22" —x3")%]
pz=[umyy1®/ (220 — 250 [ (30— 21°) /m, — (20— 21°) /.. ],
paz= 1%/ (2"— %5°) 7] (2" — y5°),
pos=[uZa1%/ o (22" —23%) ][ (y2"—95°)/ (20— %5") ],

with u= (m,0/2) and Z=m,+m,+m..

The normal frequencies will be roots of the secular determinant | K;;— u:A| =0. There will be three distinct roots
corresponding to the nondegenerate frequencies w;, ws, and ws, the expression \; being equal to 4n%c%w? Trans-
formation from the coordinates #, v, w to the normal coordinates ¢; will be

where

[ u @11812¢13 | | Q1
V| = | Gl2:0Q23| | G2,
w @31032033 ) | G3

where a,,= N4, with 4, the 7,th cofactor of the secular determinant for the normal frequencies and N,=[pn4 1
+ p12d 252+ p13d 832]%.

The direction cosines /;;,(* may now be evaluated. All the /;;,(? vanish and for the others we have
L@ =mt(uars/my), 1os®=mi (ua1s/ o)+ (mas/0) ],
I3 = —mA (uars/ o) — (m.ass/0)], 1P =my}(uaz/m,), (s=1,2,3);
oo @ = m AL (/) @191/ (20— 25"+ (/1)@ (265 — 1)/ (20— 25" (1] ) sy (920 — y)/ (0 — %) ],
L@ = —ma[ (my/ M) arsy1®/ (20— %30)+ (/M) @220 — #1°) / (2" — ")+ (1m2/ 0) @50 (920 — y5°) / (20— 25°) ].
We now proceed to evaluate the quantities {;+(®, a,,(*®, etc., and obtain
Coor® = u (01,0000 — B1025) - [10,21%/ (20— %2°) T 30000 — @25@30 T+ [1091%/ (5" — 25°) N[ @153 — @153, ]}
(s=1,2,3;s=1,2,3),
.2 = 2{[ (my/m2)y:*(myy:°+ y20)/ (20— 85°) Jars+ L2/ ma(a50—2°) I 1°92° — 2291 Jass
+[Omam./ o) (y2°—ys")?/ (#2"—x5%) Jass}  (5=1, 2, 3),
@, = 2{m %01+ (mam./ o) (£2°— x3°)ass}, @029 =a,*D4-a, ¥,
a0 =2{myy,"a1+ (mam./ o) (y2"— 95°)ass},
A=A, @D = {[my 0/ mam (50— 25°)*Ja1 2 [ w221, /mamym, (00— x5°) 2 Jaz,?
+ (mam./ o) [ (92°—y5") / (#2"— ") @3> — 2L uZm,1°y10/ Mt (22" — %5°)* Ja1:@25
+ 2[mym1°(y2°— ¥5°)/ 0 (20— 25°) * Jare@ss— 2L uZx1°(y2"— ¥5°) / o (20— #5°) 2 Jasetss §

AW = 4,9 = pay 2+ (mom./o)as?,

3 3
A7 =4, — Z (g-“,(Z))2=Ass(zx)_*_Au(w)_Z (g-ss,(z))2,

8'=1 s=1
A ss(zy)'= A “(Zﬂ) = { [(m:cmz/o') (yZO— y30>/(x20- x30) ]0332_*_ (#2/a)alsa23
+ [myy1®/ (2" —25%) Jaraase— (uZ/ ) [01%/ (12— 25°) Janesa}

In the nonlinear XY Z molecule all the coefficients kyss» (cm™) and kg5 (cm™) will be present in the cubic
and quartic parts of the potential energy function. The vibration-rotation constants cannot here be expressed
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in any substantially more simplified form that that stated in Eq. (IV.17). They will, therefore, not be repeated here.
Inspection will show, however, that when the above constants are inserted into Eq. (IV.17), the obtained results
are equivalent to those of Schumann and Shaffer.5
When the X and Z particles are alike and the XV and XZ distances become the same, the symmetry of the model

is considerably enhanced. The model becomes an isoceles triangle where x,°=0, x3%= — 3%, y.0=y3% Moreover, the
following relationships exist between the potential energy constants:

Kio1:=K313; Kies=K13e3; K1i= (2K1219— K1213) sin?a[ 14 (u/2m) cota]?;

Koo= (2K1212+ K1213) COS?O(; K= %(2K1212+ K1213) sin?a+ Kogos+ K203 sina;

Kiy=K,3= 0; Ko= [K1212+ (K1223/Sin06)+K1213/2J sina Cosa; ksss= k1= koss=Fk123= 0,

k1113= k1123= k1223= k1333= k2223= k2333= 07

where 2o now is the apex angle of the molecule. These conditions lead to the following simplifications of the
transformation constants a,:

(111=0, 012=0, a13= 1/;13%,

1

az =siny/u?, @29=cosv/pt, ax3=0,
an=cosy/(m/2)}, azxp=—siny/(m/2)}, az=0,
where now u=2mM/(2m~+M) and pz= p[ 14 (u/2m) cot?e] and where

siny } 1 I (2uK 33—mK,s)? ¥

cosyl 2 I[(ZuKsa—sz2)2+8mﬂK232]* .

The secular determinant for the normal frequencies factors into a single root and into a double root correspond-
ing to the nondegenerate frequencies ws=[1/2wc(u)}]{K11/(14u cota/2m)}* and

wi, 2= [1/27cum)*¥ |{ QuK s3+mK 22) [ (2uK 33— mK 29)>+8umK o2 }} 1.
The following of the constants ¢ss0?, a,9P) ) etc., are nonvanishing:
f1r= (L)} cosy— (14®)? siny ) L)), ag= ([(2el®)? simy+ (L)} cosy /(L)1)
@D =2(I,,)t siny, @,%?=2(I,,) cosy, @, ¥P=2(I,,?)}cosy, a;¥¥=—2(I,,?)%siny,
4,9 =g, 4 g,V g3V =2([ O, 9 /1,0 Ay @D =sin’y, A =cosy,
A3 = ([,9/1,,9), Ap@= A3 Aap(W)= A1,
A= (I, /1,,), Aped'=1—¢12, Aptd'=1—{,

The vibration-rotation constants will therefore be

Xss= (%) {6kssss_ ls(kssaz/ws)_ (ksss'z/ws') (8(032—3(03'2)/(4(082—'0)3'2)} (S= 1, 2, SI= 2, 1),

2
x33= () {6kssss— X2 (kaserr®/werr) (Bws?—3wsr?)/ (dws?—wer )},

871
Koar= (3 {Rosorsr— O(Rssskosrsr/ws) — s/ (oo — et} (5=1,2;5'=2,1),
%53= (3) [ Ros33— O(ssskozs/ws) — (Rossrksrsa/we)+2(Sss)*(ws/ws) B2} (s=1, 25 5'=2, 1),
35= (3) { kszss— [4Rs3s’ws/ (4ws® — w?) J— (Raserksras/wsr)+2(§3:07)(wo/ w3) B2},
0159 = — B (/12 ON)H{3(h/ 1 :2¢9)* sin®y~+4mc[ (311 siny/Mb)+k1a(N2/ A cosy ]},
bs@D) = — B, (1) L2 ONg) H{3(1/ L 22 ?)H(L 22 @/ T0) 4 kssi(Ns*/ ArP)? siny+Eaza(Ns?/Ae)? cosy 1}

and 6:*® may be obtained from 4, by interchanging the subscripts 1 and 2 and siny and cosy everywhere. The
b, are similar to the 4,» and may be obtained from the latter by replacing B.*® by B, W9, I,,(® by Ivv(e,
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and siny by cosy everywhere. We also have

123

b9 = — B, (h/Izz(E))‘s)%{ (h/Izz(e))%[s((s%(Z)y'*‘ (3>‘s+ >‘3) (.(83(2))2/(}‘8— >‘3)]

4w (Bkosst o 5@/ Nt F koo £ss@ N2/ N}

(s=1,2;5'=2,1),

b9 = — B.OO b/ L ON)H B/ TV [0 Bh A G5 Aa=2)]

+47I'C Zs k33s§‘sl3(2)(>\32/)\33)}} (S= 1, 2, S,=2, 1),

Dy=3{3(B.= ) (sin®y/w:?)+ (cos?y/ws?) T+ 3(B.w»)*[costy/wi’+ (sin2y/ws?) ]
+2(B.2 B W) (w2’ —wi?)/wi’ws?] siny cosy+4B.9 B, WV B9 /wy?},

Dk

= D;—4(B.= B, (¢ siny/wi)+ (152 cosy/w?) ]—4(B. @ B[ (£25® cosy/ewn?)

— (§13? siny/we?) J+4(Bo2P[((§252) %/ e0r®)+ ((§132) %/ w22 ],
Dyx=—D;—Dx+4(BL2)[((£25)% 01?4+ ((§15) %/ w2?) ],
Ry=36,42(B. B 2)H[ ({95 cosy/wi?) — (§13® siny/ws?) ]

— 2B B siny/wid)+ (6 cosy/wi)],

8r=(B.==)*[(sin’y/w?)+ (cos™y/ws) ]— (B.¥)*[ (cos™y/wi®) — (sin*y/w?) ],
Ro= (D){(B.=)'[(sin*y/w:®)+ (cos’y/ws?) ]+ (B.)* (cosy/wr?)+ (sin*y/ws?) ]
+2(B =2 B,9)} siny cosy[ (we?— w12)/wilws*]— 4B, P B, W B (22 /y52}

These constants will be noted to be equivalent to
the ones derived for the nonlinear XYV, model by
Shaffer and Nielsen and by Darling and Dennison.!

The Pyramidal XY; Model

The pyramidal XV; model represents the first ex-
ample in this section which belongs to the nonlinear
symmetric type of molecule. When the molecule is in
equilibrium, the three ¥ particles lie at the vertices of
an equilateral triangle with the X particle located
directly above their center of mass at a distance %,.
The molecule shall be oriented in the body-fixed axes so
that the equilibrium values of the coordinates of
the particles are x1=—ao, y1=0, z1=— (u1/3m)ho;
xe=(a0/2), y2=—1(aV3/2), z=21; x3=ws, J3=—ys
23=21; *2=%4=0, 2= (u1/M)ho. The energy of this
model was studied by Shaffer,> who demonstrated that
the secular determinant for the normal frequencies can
be factored into three second-order equations, one of
which occurs twice, if the energy is expressed in terms
of the following symmetry coordinates:

Q1= (1/12) (21— w2 —23) +V3(y2—y3) ],
Qi =24— (z1+22+25)/3,
Q21'= Xy4— (x1+x2+x3)/3,
Q2 =y4— (y1-+y21+93)/3,
Qu'= (1/12)}[ (21— x2— 25) —V3(y2—13) ],

and Qs'=x3—xs. The first of these equations corre-

sponds to the two nondegenerate vibration frequencies

52 W, H. Shaffer, J. Chem. Phys. 9, 607 (1941).

w1 and ws; the other two correspond to the two doubly
degenerate frequencies we and ws.

Shaffer gives as the most general form for the quad-
ratic part of the potential energy function when ex-
pressed in these coordinates:

2V= k1Q1/2+ 2k2Q1’Q3I+k8Q312+n1(Q21’2+Q22,2)
+2"2(@21’@41"1’@22'@42’)+%3(Q41/2+Q42'2),
where the %’s are constants. The kinetic energy in these

coordinates becomes simply 2T =m(Qy*+ Qa1+ Q4%
+12(Qa12+ Q22+ 13Q5"%, where po= (21..9/I,.) s
and ps=3mM/ (3m+M ). By using these potential and
kinetic energy expressions in Lagrange’s determinental
equations, |AT'y—V,|=0, one obtains readily the
normal frequencies, which in terms of the roots A, are
As=472c%0 2 Explicitly, we have the following for w,:

el GG
L(C-CN+CIIE

el GG
L(C)-CN+CIIT

The normal coordinates associated with the non-
degenerate frequencies w; and w; shall be designated as
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TasBLE 1. The direction cosines /;s0(® for X V.

HARALD H. NIELSEN

1 Tia(e) Lin(® Lizg(@) Lis() Lin(® Tiaa(®)
a=z 1 —Bs/V3 — (uads/3(muz)t 0 B1/V3 — (usds/3(mpg)? 0
+84/V3) —85/V3)
2 Bs/2V3 — (nada/3(mpus)t 54/2 —B1/2V3 — (psds/3(mus)t —83/2
—84/2V3) +82/2V3)
4 0 (u3da/ (M u2)?) 0 0 (usds/ (M p2)?) 0
a=y 1 0 0 — (uad2/3(muz)} 0 0 — (u3ds/3(mpz)t
—84/V3) +82/V3)
2 —B3/2 299 — (uade/3(muz)} B1/V2 1242® — (pada/3(mps)t
+384/2V3) —52/2V3)
3 Bs/2 1390 la9e® —B1/VZ 1342® laas®
4 0 0 (usde/ (Mus)b) 0 0 (usds/ (M p2)?)
a=z 1 (—(us)¥B1/3(m)Y) (—2hodops/3a0(mus)?) 0 — ((13)¥Bs/3(m)?)  (—2hodous/3ao(mpus)?) 0
2 13@ —hin®/2 — (ushods/ (3mus)?) L3 —ha®@/2 — (mhods/ (3mus)?)
3 11? —11219/2 —1395(? 113 —hn?/2 —l242?
4 ((ua)¥81/(0)H) 0 0 ((u3) 383/ (1)) 0 0
Q1 and Qs, respectively; and those associated with the Where
two-dimensional frequencies we and ws by Qs,, Q22 and 8
1

Q41, Quz, respectively. These will be linear combinations
of the coordinates Q,’, where the coefficients will be the
normalized minors of -the secular determinant of the
normal frequencies. Explicitly, the normal coordinates
may be written

Q1= Bius*Qs’ — Bam*Qy,
Qs=BsusQs'+BmQy/,
Q0= 82112}Q2," — 85m*Q4,”,
Qo= 042Q02, + 82m*Q4,’,

]=:!:\/7{1:F|:((k1/m)-(ka/#z))2/((4kz2/#sM)
(b /) — (o)),
02

6 }=::=v2{1i[<<n1/u2>—(ng/m»ﬁ/(@nzﬁ/mm)
' (/) — (/)Y T

The coordinates x;, etc., may be expressed in terms
of the normal coordinates by an inverse transformation
from which the direction cosines /;;,(® are at once avail-
able. These are shown in Table I.

3

We may now proceed to evaluate the molecular constants {s1(®, @.*?, 44,7, etc. We obtain for the Coriolis
coupling coefficients

F1@ = = 1,0 = §,{ 27385 (1— 1,0 /21 11(9) i — By (1,09 /20 ()},
(o= — b W= —5,{ 2738, (1~ 1,9/ 2L 0O 4 Bo(1,.0/21..9)},  (s=2,4);
(@ = — W= —241—1,,0 /2], ()3,
(0= £ O= [0 A ON82=8.), (=245 5'=4, 2),
Co140P = — FauyD = 838, (141,,(9 /21 ,,(9).
For the nonvanishing a,,{*?, we have, further,
0119 = @30 = 2{ (I 1@ — 31, VB4 185(1,.0)H}, 021D = a9, ¥ = — (I,.,9) By,
03159 = 43y = 2{ (1,500 — 31,,) 83— 18, (10N}, @@= a0 = (1,,9) 35,
anCO=2(I. )8, a5 =—2(,.)181, @n@=—(I,,),,
0609 = (1,,0)85, @290 = 3,9 = 2(1 9/ 2 1, O)I(L 1O — L1 ,,0) 5,

and
A4 =0y *D = 2(]’"(8)/2]@2(5))}(I”(e) — %Izz(e))kag_
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For the A ;40P we obtain
A=A, =[(84/2)+8:"], (s=1,3;5'=3,1);
A1 = A 420000 = [38,24+ (1= 1,9/ 21..9)8,2], (5=2,4;5'=4, 2);
Aypes@ = Ay =[18,2408,7], (s=2,4;5'=4,2);
AnP=83% Ap=B2 A0 =4, =[(u3/p2)8:>+8,7], (s=2,4;s'=4,2).

The following anharmonic coefficients may appear in the vibration-rotation constants: kui, ksss, %u1s, k112, kiis,
kiss, kass, Raa, Rasy, Bsas, R1111, Basee, Basss, Rases, R11s, R11oe, R1133, R1144, Boo3s, Rosas, and R3ses. When the above constants
are inserted into the relations (IV.18) and (IV.21), one finds

Tao= 3O sssa— 15(kess?/05) — (baswr /') (S8e0s2— 3000 D)/ Qoo — D)} (s=1, 3; '=1, 3; s545"),
%5s=1{6kso0s— 2 01=1,3 (Rsssr?/ werr) (Buws?—Bwer?) / (4wt —wer?)}  (s=2,4),

Fas =3 {Rossrar— (ORssskostsr/ w5) = 2L srrmt s (RsasrRorrarar/ 0sr)F2Bo(( 66 @) (wor/ws)} (=1, 3; 5'=2, 4; s5%5"),
Zore= 3 hosorr— ot s (Rorororkorrss] 05rr) = Ayr syt Aoy t— 0,24 2B (£ o0 @)X/ 041) }

(s=1,3; s'=2,4; s5s5"),
Zosr =3 {Rsssrsr— (O ssskosrsr/ ws) — Aksssr®ws/ (Quwt—we?)}  (s=1, 3; 5'=1, 3; s5%5'), '
= Reswri— Toret s (RaosBorsts /00 F [2Bo(§ar @4 Coltor ) (wn /) (5=2, 4; 5'=2, 4; s£5),
Stts= =4 Zhvsss— vy bussronr/ (o imap )= ACEDY) (5=2,4),
Xty =Cof s P @  (s=2,4; s'=2,4; s5#5").

The vibration energy may therefore be written

E 4
(_I_,' =Z "’x( s )+Z Z xsa'( a )(V +—)+ Z Z xzszszl Jsr.
he s=1 s=1¢'=1 $=2,4 8'=2,4

The rotation constants ey, as, v1, and s are obtained in the form stated by Shaffer directly by irisertmg the
above data into the relation (IV.18), and they will not be restated here. The constants as, as, 7vs, and v4 each
consists of two parts because of the twofold degenerateness of ws and ws, i.e., @z=ba+bss, etc. It can be verified that

bar=Bo(l/4T 2O Ne) H{[(84%/2)+ (1= 1.9/ 2L 2209) 82— 2(1 .62/ 21 -.9)
21— Lu®/ 2T @) 52— 21— 1,19 /2L o) s/ (ha— A T/ Ts0)?
2w 2 (1= L0 /2L 1O 27365 (1.0 /20, OY) (\g? /A )
+ 2ka0s((1— 1.9/ 21 20(9) B3 — 27481(1.. 9/ 20 2o ) ) N2/ NF) ]},
bae= Bo(h/4L .o Na) H{[ (84*/2)+ bt 2121904/ 2 25 0) = 2(1— 1,9 /21 () N/
Na—=Ng) = 482°(( 27/ 21 29 }B1— 2735 (1 — 1.0 /2125 9) 1) *(Na/ (N2 —N1))
—405((I129/ 21 2 9) 85+ 2731 (1— 1209/ 20222) )2 (Na/ (A2 — Na)) ]
X (/1) —2mc[ 2kany (1= 1,89/ 20 191+ 2748510 /20, (9)}
X N/ NP 2kans (1= 1209 /20 529) 83— 274B1( 1.9 / 2122 @) ) (N2/N)H ]} .
Evidently then, since as=0b91+b4, we have, for as,
ay=—Bo(h/T .Y N)H{ (/1 9) [ (3/2)+ (362%/2) (1 — 1.9 /21 2:1?)
F4(5249) N/ 2= Na)+2(£219) N1/ (N2 — M)+ 2($257) N/ (N2 — N3) ]
+ame[ (Ramhet/ M) (1 =129/ 21259) 1+ 27365(1..(9 / 21 29)?)
+ (kazshad/ Nat) (1= 1,09/ 202933 — 274B1(1.. 9 /21 22 9) ]} 5
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and a4 is derived in a manner similar to a,. It may actually be had simply by replacing the quantities 8,, &,
$219, £23®, and Az in ap everywhere by 84, 82, {01'?, {45, Ay, respectively. The constants y;, where s=2, 4, may

be derived in a similar fashion and for them one obtains

Ys= — Ce(h/lzz(e)xs)%{ (h/lzz(e))%[3(Izz(e)/2-[zz(e))(1 - Izz(e)/Zsz(e))882+ 3(1+Izz(e)/212x(e))2622642
462204 (14 1229/ 20242) Nt/ (Ns— Nor) J-4mcl (Ras1BaN et/ M) — (BassBiNet/AsH) 1} .

In v, the index s’ takes the values 4 and 2, respectively.

centrifugal distortion coefficients D this relation:

After some algebraic manipulation, one obtains for the

Dy=BA4A(1—1..9/2L..)[(Bs*/ ws?)+ 1%/ 01 ]+ 4B185(I .0 /T o2@) (1= 1,09 /21 ;) [(1/ w0s®) — (1/1?) ]
‘ + (I249/ T o) [(Bs%/ 1)+ (81%/ ws?) 4 (84%/ we®)+ 842/ w4?]},

Dg=Ds+4C L (BsY w1®)+ (81%/ws?) 1—4B2C A [2(1 .09 /T o29) (1 — 1,09/ 21 ..¢) ¥]B185[ (1/ws?) — (1/w1?) ]
+[(Bs%/ 1)+ B1¥/ ws? 1+ 2(1— 1.9/ 21 19) [ (823 we2) + 842/ w41},

Dyr=—D;—Dg+4CH (B:*/ wi®)+ (8:%/ ws?) ].

The rotational energy may therefore be written

(Erot/he) =T (J+1)By+K*Cy—By)—J*(J+1)D;s

—J(J+1)K2D;x—K*Dx,
where
BV= Be'—Zs as(Vs+gs/2)

CVzce"‘Zs 'Ys(Vs_*"gs/z)-

The planar XYV; model is a special case of the fore-
going example. It has been considered by Silver and
Shaffer® as a separate model, but the vibration-rotation
constants may be had from those of the pyramidal
model by setting % equal to zero and introducing the
accompanying simplifications. The simplifications at-
tendant on %, going to zero are these: (1) ks in the quad-
ratic part of the potential energy function vanishes for
symmetry reasons, so that w; and ws degenerate to
2mew;= (ky/m)t and 2wcws= (ks/us)}; (2) the constants
B1and B; become 0 and 1, respectively, and the moment
of inertia 7., becomes equal to 27..(). We have
from these facts that {12(’)—: §'12(1’) = _(‘14(1) = §14(y) = §‘24(I)
= §-24(y)=0’ 5-32(:)= _§32(”)= — 04, §‘34(x)= __§-34(y)= — &,
$2@=—{u@=(88—07), and {2P=—{4uP =250,
The anharmonic portion of the potential energy will
now be an even function of Qs so that the constants
k3ssr and Egserr will all vanish. When these simplifica-
tions into the relations for the pyramidal X¥; model
are introduced, the constants derived by Silver and
Shaffer are obtained.

and

The Vibration-Rotation Constants for
Other Models

The vibration-rotation constants have been evaluated
for a considerable number of other polyatomic mole-
cules, viz., the XV, model® the XV3;Z model, the

8 S, Silver and W. H. Shaffer, J. Chem. Phys. 9, 599 (1941).
5 W. H. Shaffer and A. H. Nielsen, J. Chem. Phys. 9, 847 (1941).
5 W. H. Shaffer, J. Chem. Phys. 10, 1 (1942).

planar XY,Z model® the X,¥Z, model,¥ the X,V,
model,’® the X3V, model,® and probably many others.
While a discussion of these many models is beyond the
scope of this review, it may be significant to remark that
when the geometric shape of a molecule is determined
and the transformation to normal coordinates effected,
the actual evaluation of the vibration-rotation con-
stants becomes essentially a detail of arithmetic as
shown in the foregoing examples.

VII. RESONANCE INTERACTIONS

It is frequently true that two or more of the vibration
frequencies of a polyatomic molecule have nearly the
same values. When this condition prevails, it may be-
come necessary to modify the relations stated in the
preceding sections for the vibration-rotation energies.
The quantities ®s, %5 and x4, for example, which
occur as anharmonic coefficients in the expressions for
the vibration energy of the molecule contain terms with
the denominators 4X\;— A, (i.e., 4w,>— ws?). When reso-
nance occurs between the frequencies 2w, and w,, these
denominators approach zero. The constants x, and
%151, may then become indefinitely large, and the usual
methods of the perturbation theory will fail. A similar
instance where resonance occurs, this time between the
frequencies w; and wy, is found in the expressions for
the effective reciprocals of inertia. Resonance terms
between vibration frequencies other than these may
arise if the matrix elements of the second-order trans-
formed hamiltonian, H®’, which are nondiagonal in the
vibration quantum numbers, are taken into account.
We shall here consider the modifications which these
resonances impose upon the vibration-rotation energies
of a polyatomic molecule, in particular their effect upon
the constants ®ss, %557, %isls; By{e®?, etc.

5. Silver, J. Chem. Phys. 9, 565 (1941).

a ;;4\?;/' H. Shaffer and R. C. Herman, J. Chem. Phys. 12, 494

% W. H. Shaffer and R. C. Herman, private communication.
5 W. H. Shaffer and H. Long, private communication.
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First-Order Anharmonic Resonance Interaction

We shall first consider the resonance interactions
which result because of terms in the anharmonic portion
of the potential energy which are cubic in the co-
ordinates. In general, such terms may be written
hckssrs1@s0qs0rqsr . These terms may be removed from
the hamiltonian in first order by a contact transforma-
tion, which, however, introduces a second-order term
with the denominator (\;#+Ay2—\,?). When the com-
bination frequency A+ \,? is nearly equal to Ay/# and
resonance sets in, the term /Acksss'@soqsia'Qsrrorr May
yield a first-order contribution to the energy of the
molecule; and it then becomes no longer legitimate to
remove this term from H®’, A closer inspection reveals,
however, that it is only the (Vs, Virgr, Virrgrr| Visazt1d,
Vo1, Vg F1) matrix elements of this term which
offer difficulties. It has been shown® that if, instead of
the function given by Herman and Shaffer® for remov-
ing this type of terms, a transformation function S* is
adopted, where '

S*= (hckssrsr/4) { (AsF- Ao Agrr
SYINCIWE R EY) ) Yt S R) We ) Wt )
X (Psapstorpsrror/h)— (NstNor—3Nsrr
e AN NIy HN WA T W) Wit )
X (gsoqsrorPsrror/B)F (Ne—3Nor+ Norv
RNV WS BY) W) WL ) Wt ) Wit )
X (Gsopstaqsrarr/BH)+ (—3INst Moo
A+ 20 NG = 20 BN
20N D) (PaoGerorqarrarr/ 12}
X{AdH NN D (A=A
FAr A=A =N )L, (VILD)
the first-order hamiltonian will be transformed into
HY' = (hekssrsr/$){(gsapstart Psoqsrar) (Porrar/ 1)
—[(Psotsrar/B) —qsagsrar Igsr10},

which has the same (Vi Ve, Verer|Vieetl,
Veol, Ve F1) matrix elements as the term
hckssrs1qsaqsrarqstrorr, but has all other matrix compon-
ents equal to zero. The frequencies A, Ay, and A,
will be nondegenerate in practically all cases where a
term ckss s1qseqstarqsr o may occur. No ambiguity will
therefore arise simply by omitting the ¢’s entirely since
they are all equal to 1.

The energies are obtained by considering At
=N +N;* so that Ay} may be taken to be Ay
=4+ N3+8, where 6 is small. That portion of H®
which concerns the frequencies A, N/}, and A} may

(VIL2)

50 H. H. Nielsen, Phys. Rev. 68, 181 (1945).
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therefore be written

HO= (/2N (0s*/5%)+ 0" 1+ Nor*L (P */ 1)+ ¢0*]

+ AN (por?/ B+ g2}, (VILI)
and
H®" = (8h/2)(psr*/H?+¢5%)
+ (hckssror /D) { (qspsrtDogsr) (psr/12)
~[(pepor /B —qsq0Jge}.  (VILA)

We obtain for (E©/kc) then,
(EO/he)=ws(Vs+ Vet 1)+t ws (Ve Vort-1).

The only nonvanishing matrix components of Eq.
(VIL.4) are these:

Vo, Var, Vorr [HO" 1| Vo, Vo, Vrt)
= (Vs +3)(8/2m0),

(Vo Vi, Vorr [HO J1ie| V41, Vo1, Voo— 1) (VILS)
= (Ve 1, Vod 1, Vs 1 [ HO" 1| Vy Vigr, Vi)
=Rgsrar { [(Vs+ 1)/2][(Vs’+ 1)/2][Vs"/2:|} i

The second-order transformed hamiltonian H®’ will
be altered only in so far as the terms containing %s.
as a coefficient are concerned. Only the diagonal ele-
ments of H®’ are of interest, and it is readily verified
that these are the same except in so far as the constant
%5 is concerned. In x,, the term multiplied by &sers/?
will now be

(—hc (kss'sn 2
)
1

1 1
|
ws+ ws’—'—ws"

]

Ws— WerT W1t We— Wer— Wer7

When the frequency At is equal to the frequency Agd,
the case generally referred to as Fermi-Dennison®
resonance arises. When A * and A/} are nondegenerate,
the term in the first-order hamiltonian which permits
the interaction to occur will be /cksssr¢s?qs.. The appro-
priate transformation of this term is achieved by using
Eq. (VIL.1) where s=s" (¢ is omitted) and where the
order of the operators is preserved. Setting this time
Ao d=2734-4, § being small, we proceed as before. The
zero order part will not be given, but the first-order
hamiltonian will be:

HO"= 1/ [ (ps /B +qs*]
+ (hckosor /D) (g5t qopa) (Por/72)
—(0:*/W*—¢:") g ).
The zero-order energies will be
(E%/he)=w(Vs+2Vs+3/2),

6 E. Fermi, Z. Physik 71, 250 (1931).
€ D, M. Dennison, Phys. Rev. 41, 304 (1932). '

(VIL6)
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and the nonvanishing matrix components of Eq.
(VIL.6) are these:

(Voy Vorr |[HO" [l | V gy Vi) = (V sr+3)(8/27c),
(Va, Vs"lH(l)”/hCI V8+2, Vsll— 1)
=Vet2, Vor—1|HD" [Jic| V5, Vi)
= (huesr/ DLV A DV 2) (Vo /DT
When the frequency A} is twofold degenerate, as may
be the case in linear and axially symmetric molecules,
the index may take values ¢=1 and o=2. Resonance
between 2w, and w,» may then occur if the potential
energy contains the term /hcksssrr(gsi®+gs2?)gsr. The
terms above are transformed as before by use of Eq.
(VIL.1). After setting Ny-}=2\,}46 and replacing g1,
¢s,2 and the conjugate momenta p, 1 and p, 2 by their
equivalents in cylindrical coordinates, we obtain for
(E/ke), (E°/hc)=(Vs+2Vs+2)ws. The only non-
vanishing matrix elements of (H®'/kc) can, moreover,
be shown to be
(V87 ls) Vﬂ"lH(l)///hcl VS: ls: Vx")
=(Vert3)(8/270),
(Vsy bsy Vrr |[HO" [l | V42, Ly, Vi —1)
=V+2,1ly Var—1|HD" [hc| Vi, Ly Vi)
= ('—' ksss"/z)[(Vs'l' 2)2_l32]%(V8”/2)%’

2,--+1or0.

(VIL7)

(VILS)

where /,; takes the values V,, V—

Ve=Vy=1, V=0

HARALD H. NIELSEN

The only elements of H®’ which are of interest are
those which are diagonal in V,. These are the same as
those given in Sec. IV except in so far as those terms are
concerned which have k.. as coefficients. These con-
tribute only to %, %551, and %1515, and the terms in &gq,r/2
are altered from (— Ryesr2/4ws) (8wt — 3wsrr) /(A 2 —werr?)
to (—Rsse)[(1/2ws)+1/8Quws+ws)] in %, from
—2kssorPwe/ (A —wer?) 10 (—Esssr?/2)/Quwstwsr) in
®sorry and from (— Eyserr?/4)wsrr/ (42— werr?) 10 (Bassrr?/8)
/Qustwerr) In xis1.

The actual energy values are obtained by diagonaliz-
ing the matrix H. This is accomplished by setting the
secular determinant of H equal to zero and solving for
the roots. We shall here consider the rotation-vibration
states of only the first example studied above.

The elements of H are all diagonal in the vibration
quantum numbers except Vi, V, and V4. The zero-
order energy no longer depends upon V,, V,, and V,»
independently, but upon V4V and Va4V
There exists, therefore, a degeneracy and the degree of
the degeneracy is the number of ways V,+V, and
V4V, can be made to add up to a given value. Let
us take the value one for V4V, and Vo+ V. This
can happen if V,=Vy=1and Vy»=0o0rif V,=V,=0
and Ver=1. In both cases (E/kc)=2(w;+ws) and
the level is twofold degenerate. The matrix components
relating to this level form a step matrix of two rows and
columns grouped about the principal diagonal. This is
illustrated in Eq. (VIL.9), where F(V,, V, V) is the
rotational term value F(V,, Vo, V)2

Ve=Ve=0, V=1

Vs= Vs’=1 ’
2(wstwer)+(8/4c) Bogror/2V2
Ver=0 +F(Vs= Vo= 17 V«?”=O)_e
=0  (VIL9)
Ve=Va=0 bon 2V 2(wstwer)+ (38/4c)
Ver=1 o +F(Vs= V=0, Vs"=1)_e

F(Vo Vo, Varr)=[J(J+1)—K¥|B(Vs, Vor, Vorr)+K2C(Vs, Var, Vorr),

assuming the molecule to be symmetric.

The matrix of the energies will, therefore, have
elements along the principal diagonal only to this
approximation, except in so far as V,, V, and V- are
concerned. The diagonalization may therefore be ac-
complished by diagonalizing each substep independ-
ently. When the roots have been obtained, the stabilized
wave functions for the component states may readily
be obtained, since these are linear combinations of the
wave functions of the unperturbed states, the coeffi-
cients multiplying each term being the normalized
cofactors of the secular determinant.

If we adopt the notation A?=[(kssrs/2/2)4(8/2mc)?]

and Ao=(8/2mc), the secular determinant factors into
the two roots

e=[(wsFwytws)£(A/2) J+F(Ve=Vey=Vo=0)

+(a/24)(A%=A0)+(8/24) (AFA,), (VIL10)
where

a=FV,=Vy=1,V=0)—F(V,=Vy=V=0)
and
B=F(V=Vy=0,Ve=1)—F(V=Vy=V,=0),

if A is assumed to be large compared with « and 8. One
sees from this result that not only do the vibration
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levels assume anomalous positions because of the reso-
nance, but when they do so, the corresponding rota-
tional constants become mixtures of the rotational con-
stants in the two unperturbed states.

Second-Order Anharmonic Resonance Interactions

The evaluation of the second-order corrections to the
vibration-rotation energy requires the calculation only
of the diagonal terms in the second-order transformed
hamiltonian, the nondiagonal elements contributing, in
general, first to a still higher approximation. Exceptions
to this may arise when resonance between two vibration
frequencies sets in. When one examines H®’, including
Hy*, one sees that in addition to the diagonal elements
it will also have the following elements nondiagonal in
the quantum numbers V,and Vo (Vs, Vo, Vo | V1,
Votl, Vi), (Ve Ve, Ve[ Va1, Vekl, Veid2),
(Vo Vary Varr | Ve 2, Ve 2, Vi), (Vs, Vigry Vi | V23,
Va1, V), etc. These elements would enter in
quadratically, multiplied in each case by a coefficient
containing the denominator E(V,, Vy, Vi )—E(V/,
V', V'), if the energies were to be estimated to an
approximation higher than the second. The following
of the above matrix components, (Vo, Vi, V| V1,
VoTF1, V), (Vs Ve, Vorr|Ve£2, VF2, Vi), and
(Ve Var, Vorr| V=3, Vo1, V), serve as examples of
elements which might become troublesome, since these
would have denominators (ws—ws), (2ws—2w,), and
(3ws— wsr), respectively, associated with them. These
denominators will approach zero respectively if w, is
nearly equal to w,, or 3w, and w, are nearly alike so
that the corresponding terms in the energy may become
indefinitely large. It is necessary then, as in similar
earlier instances, to consider the frequencies as degener-
ate and to use the degenerate form of the perturbation
theory and include in the submatrix of the energies of
these states also the elements which are nondiagonal in
V,and V. The matrix will be diagonal in all the vibra-
tion quantum numbers except V, and V. to this ap-
proximation. These elements will be grouped about the
principal diagonal as in the case of the Fermi resonance
and will form a submatrix. It requires, therefore, only
to diagonalize each submatrix independently to make
the matrix completely diagonal.

Only one of the resonances just referred to has defi-
nitely been observed experimentally although many
others are believed to be on record. This particular reso-
nance is commonly referred to as the Darling-Dennison*
resonance, and the matrix components which here are
important are the (V, Vi, Vo |Vi2, VoF2, Vo)
elements. They are important only when resonance be-
tween the overtone frequencies 2w, and 2w,/ occurs and
will have no influence upon the positions of the funda-
mental bands. The Darling-Dennison resonance is the
only example of a second-order anharmonic resonance
interaction for which results will be explicitly stated
here. The matrix elements involved are readily calcu-
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lated and are given below. We obtain for them
(Vey Vi, Varr |[H® [h | V=2, V-2, V1)
=[(Rosssr/4) = (WCkoosr®/ No¥) = (wCksr o/ No?)
+ (wCkssskssror/ 2N E)+ (ks Borarsr/ 20512
+ (wcksssrrksrarar ) 20gr E) (Norr/ (AN g— Ngrr))
A (WCRossr Borersrn/ 20 B Nyro/ (AN g = Ngr1))
— (wckswr o/ ANerB) (Nore/ (ANs—Ns7)) ]
XLV(Ve=D)(Vo+1)(Vot-2)T8  (VIL1D)

The work of Darling and Dennison was carried out
with reference to the water vapor molecule, where the
two vibration frequencies w; and w; are nearly alike.
The results stated in Eq. (VII.11) are easily reduced to
theirs. We have seen (Sec. VI) that the nonvanishing
anharmonic constants in the potential energy are the
fOHOWiIng k1133, k133, k111, and k233. When these con-
stants are inserted into Eq. (VIL.11), we obtain

Vi, Vi, Vo | HO' [he| V1i—2, V3+2, V)

=(/2[V1i(Vi—D)(Vst+1)(Vs+2) ], (VIL1L)

where

Y= (kuss/z) - (27I'Ck3312/)\3§)+ (7I'Ck111k133/7\1%)
+ (Tckazzkul/)\z%) ()\2/(4)\3— )\2)) .

When one considers that Ni*~ 23}, it will be seen to be
equivalent to the value derived by Darling and Denni-
son. It is, moreover, readily verified from an inspection
of H®' that the (V1, Vs, Va| Vi1, V51, Vs) elements
which would influence the positions of the fundamental
bands w; and w; will be equal to zero.

An inspection of H®’ including the terms Hy* will
further show that terms also exist there which might
allow resonance to occur, in much the same manner as
the Darling-Dennison instance, between w, and wy+; 3w,
and wy; wstwsr and 2w, ws and wy+2wer; w, and
ws'— 2w,y and between w, and the various combina-
tion frequencies of w,/, ws and wyr. As indicated in
Sec. IV, such resonances have not thus far been ob-
served with great certainty; and for this reason the
matrix elements involved are not reproduced here.

First-Order Rotational Resonance Interaction

The perturbation to be investigated here arises when
two resonant vibrations interact with the rotational
motion of the molecule through the Coriolis operator:

Zav’ E()\s’/)\s)%stps'a’ .
=N/ Ne) o poo] e (Fosr @ PafI2al?). (VIL12)

The quantities {;.-(® are the Coriolis coupling coeffi-
cients which depend in an involved manner upon the
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nature of the normal coordinates (see Sec. II, Eq.
I1.43) associated with the frequencies w, and w,s. The
term (VIL.12) may be removed from the first-order
hamiltonian by a contact transformation, which, how-
ever, introduces a second-order term with the denomi-
nator (A;#—2A,?). When A} is nearly equal to A\, we
have much the same difficulty as in preceding para-
graphs. Here, however, it is the (Vi Vo |Veotl,
V1) matrix elements which present difficulties. It
is possible to show® that if, instead of the usual trans-
formation function® the function S* is used to trans-
form H, where '

S*= %[()\s’%_ xs%)/xs%xs’§()\s%+ xs’%)][q.saq:z'a’
—psapsrar/B¥] e (§oor' P PofTaa’?),

the transformed first-order hamiltonian becomes

HY' =53 00 [(N3 Do ?)/ (NtN o) T gaoporar
_q::'a'Psa:l Za (g‘ss’(a)Pa/Iaa(e))-

Equation (VIL.14) has the same (Vi Vo] Visotl,
Vs oF1) matrix elements as Eq. (VIL.12), all others
being equal to zero.

We may now proceed as before. Consider the fre-
quencies w; and wy to be single frequencies. Taking
A% to be equal to A28, where § is small, one obtains
for the zero-order energy (E°/hc)= (V4 Vy~+1)w,. The
first-order hamiltonian will be

HO= 0/ (pu*/ 1)+ o T+ HO,

which has the following matrix components:

(VIL13)

(VIL14)

(Vg Voo - K|HO" [hg| -V, V- - - K)
= (Vit12)(8/2m0),
(Ve Voo - K|HV" /|
o Vet1, Ve—1, - K)
== Vet1, Vo—1,
< K[HY [he| Vo V- K)
=it @B KL A/ ()]
XLVADVLT,
(++ Vs Ve K|H®/hc| - - - V1, Vo—1,
o KED)=— (- V41, Ve—1
< K|HO"/he| -V Ve - - K1)
=3 (e PB W 440 @B, T (J+1)
— K(E£)TLOMNA/ )]

X[(VA+1)V ] (VIL15)
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The transformed second-order hamiltonian will, of
course, also be altered, but only in so far as the coeffi-
cients of the operators P,? are concerned which are
multiplied by ({:s‘?)% To second order of approxima-
tion H®’ will contribute only to the diagonal elements
of the matrix H, and these will be exactly the second-
order corrections to the reciprocals of inertia stated in
Sec. IV, except that the terms A,/ (A;—\,), which occur
in the rotational constants b,,{*®, will be absent and in
their place will be found

(£00r@)2B (/2 aa NN )
XLAE=Nerd)/ A2 D .

The energy values themselves are obtained by solving
for the roots of the secular determinant of the matrix
which has the elements (VIIL.15). All the terms are
diagonal in the vibration quantum numbers except V,
and V. to second order of approximation. The zero-
order energies are degenerate in w, and w,, since they
depend not upon ¥V, and V, independently but upon
VstV The degree of the degeneracy depends upon
the number of ways V,+V, can be made to add up to
the same number. The elements associated with the
resonating components form a submatrix of H. This
submatrix will contain as many rows and columns as
the degree of the degeneracy, its elements being grouped
about the principal diagonal of the matrix in a little box.
Diagonalization is accomplished by diagonalizing these
submatrices by themselves. Once the roots of the secular
determinant are known, the stabilized wave functions
are immediately available, since they are linear com-
binations of the zero-order wave functions of the com-
ponent levels, the coefficients of these being the normal-
ized cofactors of the secular determinant.

Coriolis-type resonance was first identified in the two
fundamental bands w; and ws in the infrared spectrum
of formaldehyde vapor® which originate with oscilla-
tions in the plane and out of the plane of the model,
respectively, and both normal to the axis of symmetry.
The example of the two frequencies ws and ws lying in
the body-fixed xy plane of the ZXV, molecular model
was examined by Silver.® The Coriolis coupling factors
$owr® and .o will here be zero, so that the (V,,
VK| Vi1, VF1, K+1) matrix elements will vanish,
We shall set up the secular determinant of the submatrix
for the fundamental frequencies ws and ws (i.e., Vs=1,
Ve=0 and V=0, Ve=1) for the value of /=1, which
is the specific case studied by Silver. If as basic wave
functions [ W(K=1)£¥(K=—1)] and ¥(K=0) are
used, instead of W(K=1), ¥(K=—1), and ¥(K=0),
this factors into the two subdeterminants:

% E. S. Ebers and H. H. Nielsen, J. Chem. Phys. 5, 822 (1937).
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Vs=1, V=0

AN+ (-]

131
Vs‘—‘- O, Vs-—— 1
WVI)YHD+¥(-1)]

1 ;
E[‘p(l)"l"‘l’("‘ D] he[Ry+Ro+ R —1A;
2(R4+2R 8/4mc |—
Vi1, Vom0 +2(R4+2R5)+6/4mc]— e 2
1 =0
S O+H¥(=1)] Ay he[Ry'+Ry/'+ Ry’
2 +2(R4/+ 2R5’)+35/41!‘C]—€
V5= 0, V3= 1
V5= 1, V(;:O V5=0, V5=1
/N2y —¢(—1)] A/N2) YD) —y(—1)]
1
‘/—2[‘/’(1) -‘l’(‘ 1)] ]’LC[R0+R2+R3 ' —ily
—2(Ry+2R5)+8/4mwc]—e 2
V5= 1, V6= 0 :
1 ~ =0,
ZO—¥(=1] s he[Ry'+Ry'+ Ry
2 —2(Ry42R5")+38/4wc]—e (VIL.16)
V=0, Ve=1

and the roots e=hcR, and hcR,’, where the R; are the
values of R; (Sec. IV) where Vs=1 and V=0, and the
R/ are the values of R; when Vz=0and Vs=1 and where
A; is set equal to 2B.2¢,e @[ (N3N d)/(NENE) ]
The roots of Eq. (VII.16) will be seen to be those given
by Silver for the state J=1.

It is of interest to note what the effect will be on the
spectrum when the molecule makes a transition from
the normal vibration state to one of the component
states for which the energies are given by the roots of
the determinant (VII.16). Two of the moments of
inertia, 7,,® and I,,?, in the formaldehyde molecule
are nearly alike and are much larger than the third It is
adequate for our purpose here to consider such a mole-
cule a symmetric rotator so that the (K| K=4=2) elements
may be neglected. Assuming the effective moments of
inertia to remain the same in both the vibration states,
the secular determinant leads to the following energy
values when the rotational quantum numbers are J
and K:

E(2=)/he= (w5t we) = { (Ao/2)*+K*(A1/2)*} 420"
X (@) 2)+T (J4-1) B@ K> (B — B@=), (VIL17)

where A, is taken to mean ws—ws. The vibrations ws
and ws are “perpendicular” vibrations where the selec-
tion rules are AK=4-1, AJ=0and AK==41, AJ==1.
Only the first set of these are of interest here, since the
lines due to the other set cannot be resolved spectro-
scopically. Subtracting the energies of the molecule in
its normal state from those given by Eq. (VIL.17) and

observing the above selection rules, one obtains the
following relations for the line positions in the two
bands:

w(=)=[(ws+ws)/2]— (B2 — B=2)
=+ { (A0/2)2+K2(A1/2)2} %:{:ZK(B(ZZ)_B(Q:z)),

where K takes the values 0, 1, 2, ---. It may be seen
from this relation that when A, is large compared with
KA,, the spacing between two rotation lines approach
the normal value 2(B¢?—B®»), As K increases, the
spacings approach 2(B*?—B@=)+(A,/2), the upper
sign to be taken with the lines in the high frequency side
of the higher frequency band and with the lines in the
low frequency side of the lower frequency band and vice
versa. The wave functions ¥(%)(J, K, M) associated
with the states (E(Z)/kc) are readily shown to be the
following linear combinations of the unperturbed wave
functions:

Y(+)=[(A—A40)/(2A) Y (Vs=1, Vs=0)
+i[(A+A0)Y/(24) Y (V5=0, Ve=1)

and

Y(—)=i[(A+A40)}/ (28) Y (Vs=1, Vs=0)

~[(A—A))Y/ QA W (Vs=0, Ve=1)
where
A= (AP KAY).

When A, is large enough so that KA; may be neglected,
it will be seen that these degenerate to the wave func-
tions of two independent linear oscillators. When, on
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the other hand, A, is small compared with KA, the
above functions become the wave functions of the two-
dimensionally isotropic oscillator. In the first instance,
the intensities would therefore be those for a perpen-
dicular band. The intensities in the second limiting case
are again those for a perpendicular band, but subject
to the selection rule of Teller and Tiza, which states
that transitions from K=K’'—1 in the normal state to
K=K’ in the upper component state E(+)/kc and
from K=K’'+1 in the normal state to K=K’ in the
lower component state E(—)/hc are forbidden. The
result for the intermediate case may be stated somewhat
as follows. As the molecule executes an oscillational
transition from the ground state to the state E(+)/kc,
the probability of the rotational*transition K=K'+1
in the lower state to K=K’ in the upper increases at
the expense of the transition K=K'—1 to K=K’ as K
increases. Similarly, when the molecule makes a transi-
tion from the ground state to the oscillational state
E(—)/he, the transition K=K’—1 in the initial state
to the state K=K’ in the final state will increase in
intensity with K at the expense of the transition
K=K'4+1to K=K'.

Coriolis resonance has been observed in the axially
symmetric allene molecule between two perpendicular
vibrations each of which is twofold degenerate. Here
again, the (o and {,+® are zero, and the resonance
may still be treated using the matrix elements (VIL.15),
since it will be the x component of the frequency w;
which interacts with the y components of the frequency
ws and vice versa. It is, nevertheless, more convenient
to treat the problem by replacing ¢;, and ¢.»» and their
conjugate momenta by their equivalents in 7;, x, and
751, Xs- The work is straight forward and the matrix
components may readily be obtained with the aid of the
relations (II1.12) taking account also of the fact that
Coasra= — {s25r1 [ s€€ Eq. (11.43)7]. They are the following
where A\ 3=A}4-4:

(Viy Ly Viry L | HO [ 16| Vg, Ly Voo, L)
= (Vet+1)8/2m,
(Ve=1, 021, Vo, L |[HO [lie| Vo) by Vi —1, 1)
=V by Vor—1, Ly =1 | HO" /he| V—1,
L1, Vo, L) =LA\ D) /(N ) ]

X[§:e KB /2] [(VFL)(Verkle) ] (VIL18)

When the secular determinant of the matrix whose
components are Eq. (VIL.18) is solved for the energies
of the perturbed states, V,=Il=1; Vy=Ily=0 and
Ve=1,=0, Vy¢=1Is=1 relations similar to Eq. (VIL.17)
are obtained. It is readily shown also that the perturbed
wave functions ¢(=)¢(JKM) associated with the states
(E(=)/hc) are the following linear combinations of the
unperturbed wave functions:

Y(H)=[(A—A0)¥/2A) W (V.=l==1, Vo=1,=0)
+[(A+A0)Y/ A W(V,=1,=0, Vy=Iy==1),

HARALD H. NIELSEN

and

Y(=)=LA+A)Y/ AV W(V.=l==%1, Vo=1,=0)
~[@—2)Y Q)WY =1=0, Ve=l=%1),

where Ag=(8/27¢)+2K ({ss—{srsr) Bo*? and as before

A1= Zg‘as’Be(zz)[(st*‘ )‘s’%)/}\a*)\s'}]
and
A2= (A02+K2A12).

It becomes evident from these that for each perpen-
dicular vibration individually the Teller-Tiza selection
rule still must hold, but that the intensity distribution
throughout the bands will again be modified, as in the
preceding case, by the perturbation. The positions of
the Q lines in the two bands will be given by the follow-
ing relation which is similar to the one obtained in the
preceding example:

w(i) = [("-’s+ wS')/Z:]_' (Be(”) "Be(xx))
£{(A/2)*+(KA1/2)*}}
H2K{[1— (st $orer)/2]Boled — B =2},

A further example of Coriolis interaction has been
observed in the axially symmetric molecules AsH;3% and
PH;,% where a parallel vibration w, resonates with a
two-dimensionally isotropic oscillation ;. Here it is the
Coriolis coupling factor {,;+¢@ which vanishes and the
factors {4 and (¥ which are different from zero.
The resonance may again be treated by using the matrix
elements (VIL.15), since w, will interact with each com-
ponent of the frequency w, separately. It is, however,
again convenient here to replace the coordinates g,
and ¢:» and their conjugate momenta by their equiva-
lents in 7; and x;. There will be two Coriolis factors
coupling w, to w;, namely, {42 and {419, where
$o0,29= =00 1@P={, 9. It may be shown that the
factors ¢, 4,19 ={,, ¢ 2 =0. Proceeding much as before,
we have the matrix components expressed in terms of
Vs, Vi, I where A=A 45:

(Vo Vi LK|HO [ie| Vo) Vi, LK) = (V+1)5/27c,

(Vo=1, Vo LE|HO" 1| V,, Vi—1, L1, K1)
=—(Vy, Vi—1, L1, K1,
|HO"/he| V=1, Vi Ly K)

)\s%+ >\s'* hcg‘xt(ﬁ)Be(ﬂ?)
[ 5
At 2

X[V (VFIL) PLIFK)(JEK+1) T

(VIL.19)

The secular determinant for the energies of the two

#V. M. McConaghxe and H. H. Nielsen, Proc. Natl. Acad. Sci.
U. S 34, 9 (1948).
5L, W. Fung and E. F. Barker, Phys. Rev. 45, 238 (1934).
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perturbing fundamental states V,=1, V,=[;=0 and
V.=0, V=1, l,==+1 will have 3(2/+41) rows and
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columns, but breaks up into subdeterminants. The
general subdeterminant will be of the following form:

Vt= 1, lz= 1, Vs=0, Vt=lt=0, V8= 1, V¢= 1, lg=—1, Vs=0,

K=K+1 K=K K=K-1
Vei=1,1;=1,V,=0.

—K—1—¢ RJ—-K)(J+EK+1) T 0
K=K+1
V;=l;=0, Vx=1
Kk BU-KBU+E+)Ta A ~GU+HE)~K+1)Ja |=0,
Vg= 1, l¢= - 1, V3=0'

0 —[AU+K)(J—K+1)Ta K—1—c¢
K=K-1
(VIL.20)

where

A= (_3/27"6)‘*‘ (Be(”)—Be‘(”)); a= {[()\8§+ >\3’§)/)‘8*)‘8’*]§‘at(z) (Be(">/2)}/[(1-;Mz))Be(")—-Be(w)],

and

e= — (F(V)+J T+ DB+ (K2 1) (B9 — B, =)} /AL (1= £?) B9 — B,

The value of K—1 may not exceed J; neither may K--1
be less than —J. Evidently then, there will be two iden-
tical single roots obtained by setting K+4-1=—J and
K—1=J in Eq. (VIL.20); two identical subdetermi-

nants of two rows and columns obtained by setting

K+1=—J+1and K—1 equal to J—1 in Eq. (VIL.20)
and (27—1) other subdeterminants of three rows and
columns each. J—1 of the latter are repeated twice, and
one (i.e., where K+1=1) is unique. This last instance
of the above subdeterminant is of particular interest
because it removes the degeneracy of the levels K=1/=1
and K=I=—1. The splitting is entirely similar to the
type of splitting discussed earlier as I-type doubling.
The essential difference is that here the perturbing fre-
quencies are close enough together so that resonance

exists. The doubling is, for this reason, a first-order

effect.

The above subdeterminant may be expanded alge-
braically as cubic equations in general. They are, never-
theless, awkward to deal with and the theory has been
applied in only one case, namely, to the low frequency
fundamental bands (i.e., v, and »,) in the spectrum of
AsH;.% It is of interest to note in passing that when
8/2mc is set equal to zero, B@® = B2 and {9 ={ P,
so that the oscillator is isotropic in three dimensions
(i.e., threefold degenerate) and the rotator is spherical,
the subdeterminant (VII.20) degenerates to Eq. (IV.9')
as is to be expected. :

66 H, H, Nielsen, Trans. Faraday Soc. 46 (1950).

One cannot conclude a discussion of Coriolis reso-
nance interaction without reference to the work of Jahn
and Childs and Jahn,! in which they have accounted for
the details of the rotational structure of the methane
fundamental band ws. The theory of this perturbation,
which is between the triply degenerate oscillation wq
and the doubly degenerate frequency ws, is too compli-
cated for inclusion in this review, but represents a
fascinating example of this type of resonance.

Second-Order Rotational Resonance Interaction

The terms in H®’ which are proportional to P,Pg
contain, as coefficients, a constant quantity involving
the Agee0¢?P) a5,P] etc., multiplied by ¢s.qssr and
PsoPsror/H2. The contributions to the energy from these
terms have already been taken into account in the
second-order corrections and in the Il-type doubling
when s=s’. When s is different from s/, these terms will
not contribute to this approximation unless the fre-
quency ws~wy. The same is true concerning the ex-
pression (IV.5) designated as Hg*, which at first glance
one might also expect to contribute to the I-type doub-
ling if s were equal to s’. One may quickly reassure one-
self, however, that symmetry requirements will prevent
the term Hg* from adding to the I-type doubling.

When resonance sets in between two frequencies w,
and w,, one must proceed by setting wy = w,~+8/2wc
and develop the result by means of the degenerate per-
turbation theory in much the same manner as in the
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Darling-Dennison example. The matrix elements which
are important are the following: (Vs, Ve, K|V,=1,
V,F1, K’), where K’ may in general take the values K,
K41, K42,

When the contributions from H®’ and Hg* are
gathered together, we may write them as

(V' Vo, K| H®he| Vo1, Vo1, K)
=—3 2ap BLP (/155 ON)H{ (/T 55 ) [ A 5P
3 (@.Vag /T, O) = e ((Bassr/3)
+ 20 Rorarr) (((a:4P)?/T55'?)/No)
X o Bagrarr ((@arrar @)/ T5pt®)
XA/ (ANs—Ner) ]}

X{(VA+1)V 1 H(K|PoPs/R|K')}, (VIL21)

so long as w, and w, are both nondegenerate frequencies.
The dependence of (P.Pg/h?) in Eq. (VIL.21) can, of
course, readily be arrived at from the poisson bracket
relations in Sec. IV. The elements in the energy matrix
associated with V, and V, will then form a submatrix
which may, as in previous examples discussed, be
diagonalized independently.

No instances of this type of resonance are on record;
and this effect upon the spectrum, which would be of
the order of magnitude of the quantity 4,,, may not be
easy to observe.

VIIL. CONCLUSION
Interactions of Higher Order than the Second

The preceding sections review the status of the theory
of the vibration-rotation energies of polyatomic mole-
cules. The energies have been arrived at by an approxi-
mation method because the wave equation (H—E)¥=0
is one which does not lend itself to an exact solution.
The method used has the inherent weakness that it
assumes that the atomic nuclei never depart far from
their positions of equilibrium, so that the actual hamil-
tonian may be replaced by its expansion in terms of the
coordinates about their equilibrium values. The energy
values are then obtained by solving the approximate
hamiltonian successively to higher and higher orders of
approximation. The relations obtained are evaluated to
second order and are adequate to explain most of the ob-
served phenomena so long as the quantum numbers V,,
J, and K do not become too large. The vibration energy
is, for example, adequately expressed by Eq. (IV.19) so

HARALD H. NIELSEN

long as the quantities %5 (V+gs/ 2)(V3/+g3:/ 2) are
small compared with w,(V,+g./2). Similarly, the rota-
tional energy is satisfactorily described by Eq. (IV.16)
as long as the centrifugal distortion terms remain small
compared with the energy of the rigid rotator. When
this no longer is true, deviations between the relations
stated in Sec. IV and the experimentally observed facts
may begin to become apparent, so that approximations
to orders higher than the second are needed.

It seems hardly practicable to attempt to do this in
general. The formulation given here may nevertheless
serve as a convenient starting place for work of higher
order. An example of this is the work of Benedict,® in
which he evaluates the centrifugal stretching terms
which depend upon J and K in the sixth and eighth
power. Another example is that of the splitting of the
K =3 levels in the normal state of NH; as calculated by
Nielsen and Dennison®” by means of a fourth-order
perturbation calculation.

It has been pointed out, moreover, that when two
frequencies fall close together, resonance may result,
in which case the relations in Sec. IV are again inade-
quate to describe the observed facts. As we have seen,
we must then resort to special methods. Resonances
may, of course, occur also in orders of magnitude higher
than the second; and it is of interest to inquire how
great their effects may be upon the spectrum. We shall
designate by M™WH™ a perturbing term of order of
magnitude 7 which is capable of producing resonance
between two frequencies. The resonance interaction
energy arising from such a term would, according to
ordinary perturbation theory, be of an order of magni-
tude higher than # and would contain a resonance de-
nominator if the perturbing frequencies are not too close
together. If, on-the other hand, actual resonance be-
tween frequencies does exist, so that the resonance
denominator becomes vanishingly small, the techniques
of the degenerate perturbation theory must be em-
ployed. The elements of A H which are nondiagonal
in the quantum numbers may now be of #nth order
importance.

The off-diagonal elements associated with such reso-
nating states will form a submatrix which can be
diagonalized by itself. The magnitude of the contribu-
tion to the energy may be illustrated by a submatrix of
two rows and columns. We should then have

6 H. H. Nielsen and D. M. Dennison, Phys. Rev. 72, 1101
(1947).
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Vs, st, Va”' o Vs,, Vs", Vs”" .
—_— (Vs, Vx’, Va""'
Vx, Va; Ve EO € X')\(n)H(n)!Va’, Vs,l’ Va”"")
=0, (VIIL1)

V:?’) Vs’,, V,u'- .. (V87 Vs’, Vsn- ..

where A would be the difference in energy between the
resonating states. The effect of the perturbation is
greatest when complete resonance is achieved, i.e.,
when A=0. The roots will be e=Eo(V,, Vi, Virre -
X|ANWH®| VS V' Vel -+) in this case. This is
equivalent to stating that no matter how close the
resonating levels approach each other, the contribution
to the energy due to a perturbing term A™H® can
never be greater than of the order #. This is consistent
with experiment. The first-order Fermi-type resonance
is small compared with. the zero-order vibrational
energy; the second-order Darling-Dennison-type reso-
nance is of a smaller order of magnitude than the Fermi
resonance, and so on. We may, therefore, conclude that
the second order of approximation to the vibration-
rotation energies is one which is sufficiently good in
many instances and certainly is a convenient point to
take stock of what means must be employed to arrive
at results more consistent with experiment.
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discussions of the problems discussed in this review. He
is also indebted to Dr. Joseph de Heer for verifying
many of the relations occurring in the text. The author
wishes finally to make acknowledgment to the Guggen-
heim Memorial Foundation for a fellowship which per-
mitted him to concentrate on the preparation of the
manuscript.

SYMBOLS AND NOTATION USED

X, Y,z space-fixed coordinate system.

Xo, Yo, Zo  coordinates of center of mass in space-
fixed coordinate system.

X Yi, Z;  coordinates of nuclei relative to center of
mass in space-fixed coordinate system.

X, Y, % body-fixed coordinate system.

a(B, v) symbol to denote x, y, or 2.

oy af coordinates of nuclei and electrons, respec-
tively, relative to center of mass in body-
fixed system.

oy O M;;a¢'= (279 m*aj'= aj, M,‘, and m _being,

respectively, the masses of the ith nu-
cleus and of an electron.

EytA—e
X l}\(n)H(n)l Vs’, Va’,; Voo .)
a equilibrium value of a.
oo moment of inertia about a-axis.
I.g ~ product of inertia.
I effective moment of inertia about « axis.

See Eq. (11.20).
I effective product of inertia. See (II.20).
Wa angular velocity about a-axis.
Qsay 5o normal coordinates. Qo= (%%/X;)1¢ss;
. A= 2mcw,)2.
ws normal vibration frequency in cm™1.

Liso transformation coefficients relating éa; to
normal coordinates Qs,.

Pso linear momentum conjugate to gs..

74, Xty Ft polar coordinates used to describe de-

generate vibrations.
momenta conjugate to 7y, x¢ and ¢

Pre, Pxiy Do

p=, pu, pz  linear momenta conjugate to coordinates
of center of mass E= (3_; M+Nm)*X,,
etc.

Pa component of internal angular momentum
of nuclei directed along e-axis.

Ta component of angular momentum of elec-
trons directed along a-axis.

I, Ha = 7ra+Pa-

sx, Sy, sz  components of spin angular momentum
directed along space fixed X, ¥, Z axes.

Szy Syy Sz components of spin angular momentum
directed along body-fized «, y, % axes.

Sa=D_jSj« component of total spin angular momen-
tum directed along the a-axis.

M, M,=1,+8. total internal angular mo-.

mentum directed along the a-axis.
P, component of total angular momentum
directed along the a-axis.

Sma distance between two atomic nuclei m
and #.
Sma® equilibrium value of Smn(Smn—Smn®=08Smn).

Aess®P), a,,P etc., see definitions (I1.42).

$aosrar @ Coriolis coupling factor. See definition
(I1.43).

Ve total vibration quantum number for a
harmonic oscillator.

I quantum number of total vibrational

angular momentum associated with a
two- or threefold degenerate vibration.
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component of vibrational angular mo-

mentum associated with a threefold de- .

generate oscillator directed along an axis
fixed in the molecule.

_ quantum number of angular momentum

of a molecule exclusive of spin.
quantum number of angular momentum
of a molecule inclusive of spin.
quantum number associated with the com-
ponent of J directed along the z-axis.
the magnetic quantum number of rotation
of a molecule.
quantum number of electronic angular
momentum directed along z axis of a
linear molecule.

z quantum number of spin angular momen-
tum directed along z axis of a molecule.

L angular momentum of the molecular
framework directed along the z axis (not
quantized).

gs weight factor assuming the values 1, 2, or

3, respectively, as w, is one-, two-, or
threefold degenerate.
Xy Xlsls, €tC.  anharmonic constants (corresponding to
wex. in diatomic molecules).
Dy, Dk, etc. centrifugal stretching coefficients. See
definitions (IV.18) and (IV.27).
Ble® reciprocal of inertia (/87 4o(9¢).
By(a® effective reciprocal of inertia or reciprocal
product of inertia.



