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INTRODUCTION the electronic part of the molecular wave functions. For
the processes of excitation and ionization the nuclei
are considered to be kept in fixed positions; our calcula-
tions therefore apply to vertical excitation and ioniza-
tion. The magnetic effects due to the spins and the
orbital motions of the electrons will be neglected
throughout this paper.

q'OR dealing with the problems of molecular quantum
mechanics, two methods of approximation have

been developed which are capable of handling many-
electron systems. The Heitler-London-Pauling-Slater or
valence bond (VB) method' s originated from a chem-
ical point of view. The atoms are considered as the
material from which the molecule is built; accordingly,
the molecular wave function is constructed from the
wave functions of the individual atoms. The Hund-
Mulliken or molecular orbital (MO) method' is an
extension of the Bohr theory of electron configurations
from atoms to molecules. Each electron is assigned to a
one-electron wave function or molecular orbital, which
is the quantum-mechanical analog of an electron orbit.
Each of the two fundamentally so different approaches
has its merits; so that chemical valence finds a more
natural place in the VBmethod, where as the MO method
is simpler in describing the processes of excitation and
ionization. However, when the two methods are carried
through to their ultimately possible refinements, they
lead to the same molecular wave function; from a
mathematical point of view, they di8er only in taking a
different starting point as a first approximation.

It is the purpose of this paper to build a rigorous
mathematical framework for the .3fO method. Much
attention has been devoted to developing an unam-
biguous and consistent notation system, and to keeping
it as simple as possible. We shall be concerned only with
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I. GENERAL CONSIDERATIONS

The basic concept of the MO method is to find
approximate electronic wave functions for a molecule

by assigning to each electron a one-electron wave func-
tion which in general extends over the whole molecule.

The simplest procedure is as follows: give each elec-
tron a wave function depending on the space coordi-
nates of that electron only, called a molecular orbital
(MO):

e '"= ~'(~", y", s"),

where x&, y&, s&, or simply the superscript p, stands for
the coordinates of the pth electron; the subscript i
labels the diGerent MO's.

The total E-electron wave function is now built up
as a product of such MO's; it has, however, to be borne
in mind that the Pauli principle allows each MO to be
occupied by not more than two electrons, that is, a
particular 3fO y, may occur not more than twice in
the product wave function.

The more refined procedure requires that we give
each electron a wave function which in addition to the
space coordinates also contains the spin coordinates of
that electron, and which will be called a molecular
spinorbitat (MSO). Since we shall neglect magnetic
e8ects, each &SO factors into a MO and a spin function:

p„s—P„(sss ys ss ss)
= V'(.)(~", y", s")n.(s")= V (.)"n.", (2)

where the superscript p, again stands for the (in this case
space and spin) coordinates of the trth electron; and
the subscripts ~. and i label the different &SO's and
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3EO's, respectively. Since the same 3fO, when con-
nected with different spin factors, may occur in different
&SO's, the labelings ~ and i can in general not be
identified. The spin factors can„,.usually be taken to be

although occasionally it may be useful to use more
general spin functions of the type

QK CKao +CKpP p

with
CzaCga+Ccpe~p= 1.

The total X-electron wave function is now built up as
an antisyrrtmetrised product of 3ESO's (AI')

where d~ is the volume element of all configuration
space, including the spins; 1P1, 1P2, ~ ~, AN and 1P'1, f'2,

lp'N can be any two sets of MSO's. The proof of
Eq. (8) can be found in most textbooks on quantum
mechanics. '

A wave function of the type (6) has several interesting
properties. We note first that all the &SO's must be
linearly independent, since otherwise the determinant
vanishes identically. In particular, no two 3ESO's can
be the same; or, only two MO's can be the same, namely,
when the corresponding F50's have opposite spins.
Therefore, the Pauli principle in the form given above
is automatically satisfied.

It is often useful to collect the set of &SO's 1P„ in a
row vector Q

2

1P
2 tP22 . . '1PN2

+= Q1 ()Ilail(11P22. . .1PNN] —PP()—k (6)

Let us subject the &SO's P„ to a linear transformation

(10)

p Np N. . .P

The operation of "alternation, '" indicated by [12 cV),
is dered by: take all the permutations of the sequence
1 2 S, give the even ones a plus sign, the odd ones a
minus sign, add them together and divide by their
total number, S

We mention now two important rules which the
operation of "alternation" obeys. The first one states
that for an AP it makes no difference whether the
alternation is carried out over the superscripts, the
subscripts, or both:

1Pl[11P22' ' ' 1PNNj 1P( 11' 2. . . 1P )N P( (lg 2 . . '1PN)N't (7)

The proof of Eq. (7) is elementary, and will be omitted
here. The second rule states that when BR is any operator
which acts symmetrically on the superscripts of an AP
(that is, which acts symmetrically on all the 1V elec-
trons), then

lp'1('lp'2' lp'N"'&$1 "g2' . .lpPdr

f
4'ltp2 '' lpN Al 4'2 '''O'N dr

tel lp2 '''O'N K4'1/2 '''lpN dr, (8)

' M. Goeppert-Mayer and A. L. Sklar, J. Chem. Phys. 6, 645
(1938).' M. Goeppert-Mayer and A. L. Sklar wrote down that part of
the benzene wave function involving the six carbon ~-electrons
only, and antisymmetrized it. In the present paper we consider
antisymmetrized wave functions involving all the electrons of the
molecule.

J. A. Schouten and D. Struik, Einfg'bring in die neNeren
Methoden der Digerentialgeometrie (P. Noordho8, Groningen,
1935), Vol. I, p. 15.

or

where A is a nonsingular 1VXE matrix. If we designate
the AI"s built from lt( and Q' by C and C', respectively,
then

C'= C Det(A).

The proof of Eq. (11) is elementary and will be omitted
here.

From Eq. (11) it is obvious that C' represents the
same physical situation as C. Since the &SO's 1P„are
linearly independent, we can always choose the trans-
formation matrix A such that the transformed &SO's
1P'„ form an orthonormal set (one way of achieving this
is Schmidt's orthogonalization process). "Hence we may
as well assume that our initial %SO's are orthonormal,
that is

lp„p),dr = b„l,

where dr is the one-electron volume element including
spin. We shall ossurle throughout this paper tt2ot Eq. (1Z)
hOlds.

See, for instance, reference 3, p. 144.
9 The reason for writing the set of &SO's in a row vector rather

than a column vector is the following. The wave functions P„are
geometrical objects, which, under transformations, have the same
properties as base vectors; e.g. , the 2px, 2py, 2' functions for an
atom behave like the unit vectors i, j, k. Since it is customary to
write the components v1, v&, v3 of an arbitrary vector v as a column
vector, it follows that i, j, k should be written as a row vector, so
that

~ ~

V=12)+)2~+k22 —(1) k)
i

22 i.
(va

Schmidt's orthogonalization process is usually formulated for
real functions. See for instance R. Courant and D. Hilbert,
3fethoden der methemutischen I'hys7k (1931), Vol. I, p. 41, The
generalization to the case of complex functions causes hardly any
complication.
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CCd~= 1. (13)

Equation (13) is easily proved by use of Eqs. (7) and
(8). The totally symmetrical operator OR of Eq. (8) is
here the identity operator. We have

It follows then that in a given AI' the %SO's are
determined except for a Neitmy transformation among
themselves; for orthonormality of the ISO's is pre-
served under a linear transformation if and only if the
transformation is unitary. The transformation of the
AP, Eq. (11), now reduces to multiplication by a
phase factor, since the determinant of a unitary matrix
is a number of modulus unity. The freedom which here
still remains in the choice of the 3ESO's will be used
later (Secs. II and III).

Equation (12) also has the important implication
that the AP given by (6) is now normalized, that is,

An important concept in molecular orbital theory,
as in the theory of atomic structure, is that of electro'
shells. An electron shell is defined as a set of &SO's,
in which (1) every MO occurs twice, namely, once with
either spin, and (2) if there is degeneracy on account of
the molecular symmetry, the MO's in the shell form a
complete degenerate set. Accordingly, a closed-shell
strlctlre refers to an AI' which is made up of complete
electron shells. Unlike atoms, most molecules in the
MO method have a closed-shell structure in the ground
state, the most notable exception being 02, that is,
there exists an AI' of closed-shell type which is a reason-
ably good approximation to the exact wave function of
the ground state; but only in so far as this approxima-
tion is reasonably good does it make sense to speak of a
closed-shell structure. A more detailed discussion of
electron-shells and closed-shell structure will be given
in Sec. V.

For a closed-shell structure, the 3fSO's are given by

Ai—1= &Pin) Ai= PiP~ (16)

J
4'4'dT=S.

J
1/1 f2 ' 'fN pl f2 ' ' 'fN dT

$1 f2 ' ' ' O'N $[l ]t'2 ' ' ']t'N]

I

In the last expression, only the first permutation,
which leaves all the subscripts unchanged, gives a
contribution; the other terms vanish because of Eq.
(12). The first permutation appears with a factor 1/g!,
so that

6=(~i V2 ~-)

22= (n P),
(17)

so that we may write the row vector Q representing the
set of closed-shell &SO's as the direct product" of
p and 22:

where the BIO's may be grouped in complete degenerate
sets. We introduce for the 3fO's and spin functions also
a matrix notation:

Q= PXn. (16')

4cMT= fP lg ldrl I P 2P 2dT2. . . , P N IPNNdTN —1'

each integral being unity because of Eq. (12).
When an electronic state is represented by the

normalized wave function C, its electronic energy is
given by

E= CKCde. , (14)

where the tota/ Ita2rtitto22ia22 operator X. is defined by

1
ac= P H~+-'e P 2—" (15)

"The summation over p runs from 1 to N; in the double sum-
mation, p, and v run from 1 to iV independently, except for the
restriction p/ v.

"An operator M is linear if

u(c&+"&'}=cu&+c'u&',
where q and y' are any two functions, and c and c' any two con-

H& is the hamiltonian operator for the pth electron
moving in the held of the nuclei alone; this operator is
linear and hermitian;" r&" is the distance between the
p,th and the vth electron.

If we apply Eq. (12) to the MSO's 1t2; and 1]t» (or
p2; 1 and 1t 2j 1), we can integrate over the spin factors,
and obtain

J ij2ipjd" = i1ii~ (18)

so that the MO's which make up a closed shell also form
an orthonormal set.

The 2e-electron AI' for the closed-shell is now given
by

4 =[(222)!]2(gin)"(ylP)' . (q n)'" '(y„P)'"] (19)

Substituting this wave function into the expression for
the energy (14), and using methods similar to those used
for the proof of Eq. (13), we find for the energy of a

stants. The operator M is hermitian if

P3ftv = yMPdv,

for any function cp. This is equivalent to the requirement

P iVydv= qllfq7 dv,

for any two functions p and ~'.
'3 For the definition and properties of the direct product of

matrices, see E. Wigner, Grlppentheorie end ihre Anmendgngen auf
die Atomspektren (Friedrich Vieweg and Sohn, Braunsweig, 1931},
p. 19.
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closed-shell AP

E=2 Q H;+Q (2J,; K—,,)," (20)

II,=H;=
J

p;Hq;dv, (21)

t
p'"pj "p'"pj"

J,;=J,;=J;,=J;;=e
J

dv&",
&itt V

7P'"v» v»"0'
K;; =K,;=K;,=K;;=e'J dv~".

&it4 V

(22)

where the nuclear /el-d orbital energies H, , the coulomb

imtegrals J;;,and the exchaegeietegrals E;,are defined by

the first equality sign holds if and only if p; and q, do
not penetrate each other; the second one if and only if
io,= to, ; the third one if and only if

I io;I =
I p;I.

Equations (20), (21), and (22) will be the starting
point for the theory to be developed in the next two
sections. It is to be noted that the expression for the
total electronic energy in terms of integrals over 3fO's,
Eq. (20), was derived on the basis that the 3EO's form
an orthonormal set. If non-orthonormal MO's were used,
a much more complicated expression for the total
electronic energy would result; and a physical interpre-
tation along the lines of footnote 14 would not apply in
that case.

II. THE HARTREE-FOCK SELF-CONSISTENT
FIELD METHOD FOR A CLOSED-SHELL

GROUND-STATE"

From Eqs. (22) it is clear that

E'=J" (23)

For later purposes it is useful to define the coulomb

operator J; and the exchange operator K; by means of

t' pP'"v"
K,~y"=e'I ~ dv" Ip;s.r" )

(24)

These operators are linear and hermitian. " J; is just
the potential energy operator which would arise from
an electron distributed in space with a density

I p, I',
E;, however, has no classical analog.

The coulomb and exchange integrals J;, and Ei; can
be expressed as one-electron integrals, making use of-

the coulomb and exchange operators J;and Ei, namely:

We consider an AP which represents a closed-shell
ground state; this AP is built up from e MO's each of
which may extend over the whole molecule. When
looking for a good set of MO's, one may of course find
that there are a number among them each of which is
concentrated mainly around a particular atom; such
orbitals form the inner shells of the molecule, and do not
play an essential role in the chemical binding. It is to
be expected that these inner-shell MO's are very nearly
equal to the inner-shell atomic orbitals (AO's) of the
corresponding free atoms. This question will be dis-
cussed in more detail at the end of Sec. III.

We ask now for the best AP, that is, the AP for which
the energy reaches its absolute minimum. We then have
to minimize the expression (20) by varying the MO's
within the limits permitted by the requirement that
they form an orthonormal set, as expressed by Eq. (18).

When each MO y; is varied by an infinitesimal
amount bp, , the variation of the energy becomes

6E=2 Q 8H;+Q (28J,,—8K,,)

E;~= g;E~.p,ds = g ~.Eiy~dv.
J J

(25)
=2 E (&p')H9 *dv+Z (oP')(2J K)p'dv-i

47

+ (8P,)(2J; K„)q, dv +2 P— P,H(oq, )dv

In Appendix I the following useful relation is proved:

0&K;,& J,, &-', (J,,+J,,); . (26)
'4 The summations have to be taken over all the MO's of the

closed-shell ground state, that is, from 1 to n; in the double sum,
the two summations have to be carried out independently. It is
well known that Eq. (20) permits the following physical interpreta-
tion. The first sum represents the energy of all the electrons in the
held of the nuclei alone (each MO is doubly occupied, hence the
factor .2). The second sum represents the electronic interactions.
The repulsion energy which one would expect classically between
the four electrons in q; and q;, with probability densities

~ y;~
and q;~s, is 4J;;+1,;+7;;. This explains all the coulomb in-
tegrals in Eq. (20) except one Jii for every i; but these cancel
against the E; s according to Eq. (23). The remaining exchange
integrals E;; for i&j have no classical analog; they represent
additional interactions between all the pairs of electrons with
parallel spins.

f
+P p;(2J, K,)(8p;)dv-

s7

+ p, (2J, K,)(b p,)dv—
For each of the two expressions in curly brackets, the
second term gives, after complete summation over i
and j, the same result as the first term. If we also make
use of the hermitian property of the operators II, J;, E;,

'~ The treatment of Fock's equations presented in this chapter
is an elaboration of the treatment given by F. Seitz, The Modern
Theory of Solids (McGraw-Hill Book Company, Inc, , New York,
1940), Chapters VI and VII, where also references to original
papers can be found,
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we may write

}

hZ=2 P (hp, ) {H+P (2J;—E,) }q,dv
al

+2 p (8y;) {H+p (2J,—E,) }p,dv. (27)

The 3EO's p; always have to conform to the ortho-
normality conditions (18); the resulting restrictions on
the variations bq, , obtained by varying (18), are as
follows:

The conditions for bE'=0 are now given by

{H+P (2J,—E;)}e;=P y, e;,,

{H+g (2J;—E;)}p,=Q p, e;;.

We show now that the lagrangian multipliers must be
the clem, ents of an hermitian matrix. Taking the com-
plex conjugate of the second one of Eqs. (31), and sub-
tracting it from the first one, we obtain

Q p, (;,—,;)=0;
f

(~p') e Av+ (~~~)p'dv= 0. (28)
since the MO's p, are linearly independent, it follows
that

In order that E may reach its absolute minimum, it is
necessary, although not sufficient, that RE=0 for any
choice of the 8q; s in (27) which is compatible with the
restrictions (28). The standard mathematical technique
to solve this problem is the method of the lagrangian
multipliers:" multiply each Eq. (28) by a factor, to
be determined later, called a lagrangian multiplier, and
add them all to 8E, to give, say, 8E'. The problem of
finding the conditions for bE=O for any choice of the
8q s compatible with (28) now becomes the problem
of 6nding the conditions for bE'=0 for any choice of
the bq, 's without restrictions, and at the same time of
giving suitable values to the lagrangian multipliers.
The conditions for bE'=0 are that in the integrands
the coefficient of each individual bg; and bq, vanishes.

We multiply each Eq. (28) by the lagrangian multi-
plier —2e;; and add the resulting equations together;
we obtain

&it = &~i) (32)

that is, the matrix a of which e,, are the elements is
hermitian. A consequence of this is that the two Eqs.
(31) become equivalent (each others conjugate com-
plex).

We de6ne now the total electron irlteractiorl, operator G
and the Hartree Fock ham-iltonian operator F by

G=Q (2J,—E,), (33)

(34)

Fp~=Q pjeji) (35)

The Eqs. (31) which the best MO's have to satisfy
can now be written

—2 Q c;; (bp;) y,dv 2P e;, —(bq, ) p,dv = 0,
ig.

or, in matrix notation
(35')

which can be written in the form

—2 Q e;, (8p,)y, dv —2 Q e,, (8q;) p,dv =0.
ij

(29)

We now subject the set of MO's p to a transforma-
tion by means of a unitary matrix U to give the new
set P':

(36)
with

This we add now to eF of Eq. (27), and obtain

(sp;)

&&{ {H+2 (2J—E;)}e'—2 v e'7dv

U*U=E"

If we also define the transformed matrix a' by

e'= U*eU,

it follows from Eqs. (35'), (36), (37), and (38) that

(37)

(38)

(39)
+2K "(~e')

i

)&L{H+p (2J,—E;)}p, pp, e;,7dv. (30)—
7

"For the method of lagrangian multipliers in the case of real
functions see reference 10, pp. 140, 190.The generalization to the
case of complex functions is obtained by considering each auxiliary
condition and its conjugate complex as two independent auxiliary
conditions; after their elimination by means of the lagrangian
multipliers, the variation of every function and its conjugate
complex are independent variat;jong,

"We write U for the complex conjugate, Uf for the transpose,
and U* for the hermitian conjugate of the matrix U. The symbol I
js gsed for t;he gnat; matrig.

We note that Eq. (39) does not yet have the exact same
form as Eq. (35'). Namely, the operator F, which is
defined in terms of the MO's qr; (via G), operates in
Eq. (35') on these same MO's; this is not the case in
Eq. (39). However, if we construct the operator F'
which is defined in terms of the MO's q', just like Ii
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was defined in terms of q, , we can show that F'=F.
We have, namely,

from this equality it follows easily that

hence also G'=G and
F' —F (40)

As a result, we may rewrite Eq. (39) as

F/yt yl / (41)

We see thus that if the "best" MO's y, are subjt:cted
to a unitary transformation, then the set of transformed
MO's p'; satisfies a set of equations of exactly the same
form as did the 3fO's y;. This result was to be expected.
For the two sets of MO's both give rise to the same
2e-electron wave function (except for a phase factor);
hence each of these two sets furnishes a set of "best"
MO's.

The explicit transformation of the AI' 4 into C' is
found as follows. From the two sets of MO's P and ql'

we construct the two sets of MSO's g and Q' according
to Eq. (16'):

g = fl Xn, q"= P' Xn;

the transformation matrix for the 3fSO's follows from

&'=(it'U) Xn=(PU) X(nE) =(&Xn)(UXE)=&(UXE).
For the AP follows then according to Eq. (11):

O'=C Det(UXE) =e Det'(U) " (42)

Since the matrix s is hermitian, there exists a unitary
matrix U so that e'=U*eU is a diagonal matrix with
real diagonal elements. It is therefore no loss of gener-
ality if we assume that our set of "best" 3EO's satisfies
the simpler equations

(43)

The set of Eqs. (43) is the most commonly known form
of Fock's equations; they state that the MO's which
give the best AI' are all eigenfunctions of the same
hermitian operator F, which in turn is defined in terms
of these MO's.

I.et us assume for the moment that we know the
solutions of Fock's equations; that is, that we know a
set of e MO's which are eigenfunctions of the operator F
calculated with this set. F being thus known, let us
consider the equation

(44)
' Note that the dimensions of U and E are n and 2, respectively.

If A& ) and B(") are mmmm and e&(e matrices, then Det(A& )
XB&"))=Det"(A( )) Det (B&"));applying this to the present case,
we obtain Det(UX E) =Det'(U) Det"(E) =Det'(U),

Equation (44) is the eigenvalue problem of the hermitian
operator F.

It is well known that the following statements hold
for an hermitian operator:

(1) All the eigenvalues are real.
(2) Eigenfunctions belonging to di6'erent eigenvalues are

mutually orthogonal.
(3) Any eigenfunction belonging to a particular eigenvalue is

expressible as a linear combination of a number, say p, of linearly
independent eigenfunctions; conversely, any linear combinations
of these p functions is an eigenfunction. The number p is called
the degree of degeneracy of the eigenvalue.

(4) The p linearly independent eigenfunctions belonging to a
particular eigenvalue can always be chosen so as to form an ortho-
normal set; this set is determined except for a unitary transforma-
tion of these p functions among themselves (this reduces, in the
case p=1, to multiplication by a phase factor).

(5) After orthonormalization has been carried out for every
eigenvalue, all the eigenfunctions of the operator form together
an orthonormal set.

Among the solutions e, ie of Eq. (44) there will be, of
course, the set e;, q;, i=1, 2, , e, which satisfied Eqs.
(43). The I eigenvalues e, must evidently be the n
lowest eigenvalues of the operator F, for if we did not
take the e lowest eigenvalues, we would actually be
solving Fock's equations for an excited state. This
result is not surprising, for Fock's equations were ob-
tained as necessary, but riot sufhcient, conditions that
the energy may reach its absolute minimum. The e
functions q, we shall call grourld-state orbitals. The
remaining eigenfunctions of F" we shall call excited
orbitals; in order to avoid confusion, we shall label
them with the indices a, b running up from rt+1,
n+2, ; the labels i, j, k, t will be reserved exclusively
for the ground-state orbitals. If we do not want to
specify whether we refer to ground-state orbitals or
excited orbitals, we shall use the labels f, g. The eigen-
values et (that is, e, and e,) we shall call Hartree Fock-
orbitul erlergies.

The general procedure for solving Fock's equations
is one of trial and error. One assumes a set of p s, calcu-
lates the operator G (hence F), solves Eq. (44) for the rt
lowest eigenvalues, and compares the resulting y, 's

with the assumed ones. Guided by this comparison, a
new set of q, 's is chosen and the procedure is repeated,
This process is then repeated until the assumed and

"Whether F has any eigenfunctions aside from the cp s, and
if so, how many, is a question which is open to some doubt.
Namely, if F operates on a function ~;, it represents a 2m —1
electron field; this is due to the fact that the operators J; and E';
become equal when they operate on q;, as can be seen from Eqs.
(24). However, if F operates on any function p which is orthogonal
to all the p s, then F represents approximately a 2N-electron field.
This can be seen by observing that such a function p cannot
penetrate the closed-shell orbitals ~; very much (p has to be
orthogonal to all the q s); hence, the exchange operators E; be-
come in this case small compared with the coulomb operators J;.
The operators 2Z;J; just represent the potential energy arising
from the charge distribution of the closed shell. Such a function q
therefore roughly represents an extra electron moving at the out-
side of the molecule. It is known t'hat negative ions do not exist
for every molecule, and if so, only in a limited number of states.
Therefore, it will depend upon the particular molecule whet;her P
bag any eigenfunc&ions aside from the q s,
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calculated y s agree. This method for solving Pock's
equations is called the Hartree-Fock self co-rtsistent field
(SCF) method.

v'=Z x~C~',
y

where the X„'s are normalized AO's, that is,

XyXyd&= ~ (46)

It is useful to introduce the following matrix notation:

x= (xi x2 " x-),

Cl;

C2,.

III. THE LCAO SELF-CONSISTENT FIELD METHOD
FOR A CLOSED-SHELL GROUND STATE

For atoms, the problem of solving Fock's equations
is greatly simpli6ed by the central symmetry. For
molecules, because of the absence of central symmetry,
the situation is less fortunate; solving Fock's equations
for molecules is such a difficult mathematical problem
that it is at present out of the question except perhaps
for the simplest cases. We therefore have to use ap-
proximations to the best MO's. In most MO treatments,
the inner-shell electrons of the molecule are represented
by free-atom atomic orbitals (AO's); for each of the
valence-shell MO's one takes then a linear combieatioe
of atomic orbitals (LCAO). We generalize this procedure
by representing al/ the electrons of the molecule by
LCAO MO's, as given by

AO's p, q, r, s. As can be seen from (4/), we denote the
total number of 3fO's and AO's by e and m, respec-
tively. Since we have to construct e linearly independent
MO's from m AO's, we must have m~&e.

An AP built from LCAO 3fO's is obviously a less
good approximation to the exact wave function than
the AP built from the Hartree-Fock MO's, since the
latter one is the best possible AI'. In order that an
LCAO AP be not too bad, the LCAO 3fO's should
resemble the Hartree-Fock 3fO's rather well. Whether
this can be achieved depends on the choice of the AO's
from which the MO's are to be built. In the past,
mostly Slater-type AO's have been used; for the screen-
ing constants, usually those values were taken which
give the best results for the isolated atoms. It has been
pointed out by several investigators'" that these
values might not give the best results for the 3EO's.
It is also quite possible that atomic Hartree-Pock
orbitals will give considerably better results than
Slater orbitals. These questions are far from settled,
but will not be pursued any further here.

In the previous section we asked for the best MO's
for a closed-shell ground state. In this section we shall
ask for the best LCAO 3fO's for a closed-shell ground
state, considering the AO's as given functions. Appar-
ently then, our problem is to find that set of coefficients
C„; for which the energy of the corresponding AP
reaches its absolute minimum.

In the mathematical treatment of this problem it is
useful to define for every one-electron operator M the
corresponding matrix elements M„, evaluated with the
set of AO's, and the matrix M which collects all the
matrix elements 3f~,:

3f„q—— X„MP,dv,

.C;.
C11 C12 ''' Cln

C21 C22 ''' C2n

(47) ~ll ~12 ' ' ~1m

~21 ~22 ' ' ~2m

+ml ~m2 ' ' ' +mm&

(48)

.Cl C2 ~ C„..
We may write then for Eq. (45)

and also
w'= xc'

(45")

Equation (45') is useful if we consider a particular MO
y;, and Eq. (45") is useful if we consider the whole set
of MO's q;.

Note that the first index on C„; refers to the AO's
and the second one to the MO's. These two labelings
have to be clearly distinguished. As general indices we
shall use for the 3fO's, as before, i, j, k, l; and for the

If the operator M is hermitian, " then it is easy to
show that the matrix M is also hermitian, that is,
37„,=M,„or M*=M. Corresponding to the (hermi-
tian) operators H, J;, E;, G, and F we shall make use
of the (hermitian) matrices H, J,, K;, G, and F. The
operators J;, E;, G, and Ii were defined in terms of the
MO s y;. In the previous section we assumed implicitly
that they were de6ned in terms of the best 3fO's. Here
we shall assume that they are dered in terms of the
best LCA0 /VO's. There is one more (hermitian)
matrix which will play a role in the following discussion,
namely the matrix S the elements of which are the

20 C. A. Coulson, Trans. Faraday Soc. 33, 1479 (1937); R. S.
Mulliken, J. Chem. Phys. 8, 241 (1940).
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onerlaP ietegrals

~ye= XyXqd&i (49)

obviously, the matrix S corresponds to the identity
operator. Equation (46) states that the diagonal ele-
ments of S are unity.

The usefulness of the matrix notation (48) is obvious
from the following equation:

or

RE=2 P (bc*,)Fc~+2 P (bc),)Fc,. (54)

The restricting conditions for the bc s which result
from the orthonormality of the MO's are obtained by
varying Eq. (51):

(bc*;)Sc,+c*,S(bc,)=0,
or

(bc*,)Sc,+ (bc{',)Sc,=0. (55)
qr;Mrp, d'o= C,Mct. '

J

Equation (50) follows easily by substituting for p; and

q; in the integral the expression (45).
Again we may assume without loss of generality that

the CACAO MO's form an orthonormal set, for if they or
did not, we could subject them to a linear transforma-
tion which would make them orthonormal; after this
transformation, they would still be LCAO MO's. We
shall assume then that the ICAO MO's satisfy Eq. (18);
in view of Eqs. (49) and (50) this leads to

—2 Q (6c*;)Sc;c,,—2 Q (bc);)Se,e;,=0,
'57 'b7

—2 P (Bc*;) Sc, ,e;—2 P (bc {)Sc,;e, = 0. (56)

Adding (56) to the variation of the energy (54), we
obtain

(50)
We multiply the restricting conditions (55) by the
lagrangian multipliers —2e, ; and add them together:

(pe(p~'dv= c gScs= B~r.
J

(51)
oE'=2 p (bc";)(Fc,—p Sc,e;,)

'b

Similarly, we find from Eqs. (21), (25), and (50)

H;= c*;Hc;,

J;,=c*;J,c; =c~;J,c,,

E,,=c*,K,c,=c*,K,c;.

(52)
+2 Q (bc}',)(Fc;—P Sc,e;,). (57)

7

The condition for bE'=0 for any choice of the vectors
(53) bc; and 8c;, or bc', and 5c*;, are given by

In order to determine the best LCAO 3EIO's we carry
out a variational treatment analogous to that of the
previous section. We vary the vectors c, by infinitesimal
amounts bc, (that is, the coefficients C~; are varied by
the amounts 8C~,) and find for the variation of the
energy

RE=2 Q oEI,+Q (261;;—8E;;)

=2 g (8c*,)Hc,+P {(6c*;)(2J,—K;)c;

+(8c*,)(2J;—K,)c,}+2P c*,H(8c,)

Fc,=g Sc,e... '

Fc;=P Sc,e,,
(58)

(58')

Again we may assume without loss of generality that a

is a diagonal matrix with real diagonal elements e, ,
Eq. (58') then reduces to

In the same way as in the previous section it follows
that the e, s are the elements of an hermitian matrix e;
the two equations (58) then become equivalent. We may
write then for Eqs. (58)

FC= SCe.

+P I c*,(2J;—K;)(bc;)+c*,(2J;—K,)(bc,)}.
Fc;=e;Sc;. (59)

this expression we simplify, using methods similar to
those of the previous section, to

8E=2 g (bc*,){H—P (2J,—K;)}c,
'b

+2 + (8c};){H—P (2J;—K;)}c,,

Let us assume for the moment that the Eqs. (59)
have been solved, that is, that we have found a set of e
vectors c; satisfying Eqs. (59), where the matrix F in
turn is calculated from this set.

Now regarding F as a given matrix, that is, assuming
F to be expressed explicitly in terms of the solutions of
Eqs. (59), we consider the equation

"Note that c*; is the row vector (C1,-F2; ~ C;); see also
footnote 17. Fc= eSc, or (F—eS)c=0. (60)
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In Eq. (60), F and S are given matrices, and c and e

are to be found. Equation (60) is a generalization of the
eigenvalue equation for an hermitian matrix; Eq. (60)
becomes identical with the latter if S is replaced by the
unit matrix. It is convenient to use the standard termi-
nology of eigenvalues and eigenvectors for the solutions
of Eq. (60); however, these eigenvalues and eigen-
vectors depend on both matrices F and S.

In Appendix II it is shown that all the important
statements about the eigenvalues and eigenvectors of an
hermitian matrix still hold with slight modihcations for
the eigenvalues and eigenvectors of Eq. (60), namely:

(1) The eigenvalues of Eq. (60) are the roots of the secular
equation

Det(F —eS) =0; (6&)

this equation is always of the mth degree in ~ (F and S are m&(m
matrices), and all its m roots are real.

(2) Eigenvectors belonging to diiferent eigenvalues are mutually
orthogonal. ~

(3) Any eigenvector belonging to a p-fold root of Eq. (61) is
expressible as a linear combination of p linearly independent
eigenvectors; conversely, any linear combination of these p inde-
pendent vectors is an eigenvector. The number p is called the
degree of degeneracy of the eigenvalue.

(4) The p linearly independent eigenvectors belonging to a
p-fold degenerate eigenvalue can always be chosen so as to form an
orthonormal setP this set is determined except for a unitary
transformation of these p vectors among themselves (this reduces,
in the case of p= 1, to multiplication by a phase factor).

(5) After orthonormalisation has been carried out for every
eigenvalue, all the m eigenvectors form together an ortho-'
normal set.

Among the solutions e, c of Eq. (60) there will of
course be the set.e;, c,, i =1, 2, , e, which satisfied
Eqs. (59). The e eigenvectors c, must belong to the I
lowest eigenvalues of Eq. (60), since otherwise we would

be dealing with an excited state. The rI, eigenvectors c;
represent the e ground-state orbitals; the remaining
eigenvectors c~~, , c represent excited orbitals.
As in the Hartree-Fock method, we label the ground-
state orbitals with the indices i, j, k, l= 1, 2, , e; the
excited orbitals with a, b=e+1, rt+2, , m; and
either ground state or excited orbitals with f, g=1, 2,

~ . , m. We shall call the eigenvalues of Eq. (60) LCAO
orbital erIergies.

The general procedure for solving Eqs. (59) is

one of trial and error. One assumes a set of vectors
c;, calculates the matrix G (hence F), solves (60)
and (61) for the m lowest eigenvalues, and compares the
resulting c s with the assumed ones. Guided by this
comparison, a new set of c s is chosen and the outlined
procedure repeated. This process is then continued
until the assumed and calculated c s agree. Because of
the great similarity with the Hartree-Fock self-con-
sistent field method, we shall call this procedure the
LCAO self cortsistent geld met-hod.

~ Ordinarily, orthogonality of the vectors c; and c; is expressed
by c*;c;=0.However, in the present case we de6ne c; and c; to
be orthogonal if c*;Sc;=0.Another way of saying this is that S
is the metric fundamental tensor in the space subtended by the
yectors c;.

The Hartree-Fock and LCAO self-consistent 6eld
methods have been developed above along analogous
lines and yielded analogous results. The most important
diGerence between the two methods from a practical
point of view is'the amount of labor required for carry-
ing out the numerical calculations; the LCAO method
is usually feasible and rather straightforward, whereas
the Hartree-Fock method is a very complicated mathe-
matical problem.

For the set of AO's from which the MO's are to be
constructed, we take all the AO's of the corresponding
free atoms that are occupied in their ground states, and
those unoccupied ones which diBer little in energy from
the occupied ones. This means for the elements in the
erst row of the periodic table the 1s, 2s, and 2p AO's.
The 1s AO's are then commonly called the inkier shell
AO's. We assume that the AO's on the same atom are
orthonormal; this involves no loss of generality, since
they can always erst be orthogonalized.

We now expect that the matrices S and F have ap-
proximately the following block form

'inner sh. 0 0 0
atom u

inner sh.
atom b

0 valence sh.
atom e

interaction
val. sh. u and b

0 0 interaction valence sh.
val. sh. u and b atom b

I

for a diatomic molecule; the generalization to the case
of a polyatomic molecule is obvious. Then the linear
equation (60) and the corresponding secular equation
(61) break down into inner shell equations, one for each
atom, and a valence shell equation involving all the
atoms of the molecule. The inner shell equations should
be nearly identical with the corresponding equations for
the free atoms; then the MO's and orbital energies of the
molecular inner shells are practically identical with those
of the atomic inner shells. There is one exception to this,
namely, when there is degeneracy among the inner shell
AO's of the diferent atoms, which is to be expected in
case the molecule has symmetry. Then the very small
interaction between degenerate AO's which is always
present is sufhcient to make the correct MO's quite
di6erent from single atom AO's although the MO
energies are still practically identical with the AO
energies. So, for instance, in E2, if 1s and 1s' are the two
inner shell AO's of the two nitrogen atoms, the correct
inner shell MO's which can be built from these are
2—&(1s+1s') and 2 &(1s—1s'); and in the more
general case of a polyatomic molecule the inner shell
MO's are obtained by a unitary transformation of the
inner shell AO's. Since in the molecule all the inner
shell MO's will be occupied, we can subject these MO's
to a unitary transformation by which we obtain back
the inner shell AO's; the total AP wave function then
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undergoes a transformation of the type (42), i.e., re-
mains unchanged. Hence it makes no difference in the
total wave function whether the inner shell electrons
are assigned to the 3fO's or AO's.

Frequently, Eqs. (60) and (61) can be reduced to
still smaller blocks by using the molecular symmetry
if present. These matters will be discussed in detail in
Sec. VI.

We finally note that in all important problems of
molecule formation the number of valence AO's always
exceeds the number of I,CAO MO's that is necessary
for the ground state AI" m~& e. This guarantees that
Eqs. (60) and (61) have always more eigenvectors and
eigenvalues than are required for the ground-state AI';
consequently, by solving the ground-state problem we
obtain always a number of "excited orbitals. "

by omitting one (or several) of the MO's from the
ground-state AI'.23

The wave function for the ground state is given by

'4'o=L(2n) lj'*(pt~) "(ptP)' (~-~)'" '(~.P)'"' (19)

We shall use the shorthand notation

'C'o= (9 r~)(prP) (~-~)(9 -P). (62)

The left superscript on C refers to the multiplicity
(that is, degree of spin degeneracy) of the electronic
state; a closed-shell ground state is of course a singlet.
The subscript 0 refers to the ground state,

The energy of the ground' state is given by

(20)

IV. IONIZATION AND EXCITATION ENERGIES

For the calculation of molecular ionization and excita-
tion energies, we have to set up approximate wave func-
tions for the ionized or excited states. In the two
preceding sections, we obtained a fairly simple theo-
retical framework for the following reasons:

(1) We restricted ourselves to a single AP of the closed-shell
type.

(2) In the process of minimizing the energy, the AP was not
subjected to any auxiliary condition (keeping the 3fO s ortho-
normal was no restriction on the AP).

For ionized and excited states, however, matters are
more complicated because:

(1) Most ionized and excited states in which we are interested
do not have a closed-shell structure.

(2) For an excited state, the approximate wave function must
be kept orthogonal to the wave functions of all the states of lower
energy, which is a rather unpleasant auxiliary condition when
minimizing the energy. This difhculty disappears, however, if the
excited state under consideration is the lowest state of its sym-
metry species, since the required orthogonality is then auto-
matically achieved by permitting only functions of the correct
symmetry species in the variational process.

(3) For many excited states a single AP is inadequate, and we
have to use a linear oontbination of AP's (LCAP), or, in the case
of a degenerate state, a set of several LCAP's; this also complicates
the procedure of minimizing the energy in an unpleasant way.

These mathematical complications, aside from mak-
ing a treatment analogous to that of the previous sec-
tions rather cumbersome, necessitate in practically
every type of case a special treatment. We shall there-
fore develop a less accurate but much simpler method,
which can be used as an extension of both the Hartree-
Fock and the JCAO method.

The basic idea of this procedure is that for an ionized
or excited state we do not set up and solve the ap-
propriate variational problem by which all the MO's
have to be determined for that particular state, but we
make use of the MO's which were found from the varia-
tional problem for the ground state.

The wave function of an ionized state is now obtained

Let us consider the singly ionized state obtained by
removing either of the two electrons occupying the MO
y;, and let us erst assume that q; does not belong to a
degenerate set. The wave functions for this ionized
state are in our approximation

'C"= (~t~) (~rP) (~'-r~) (e '-rP)

(~'~)
X (p; )(y; P) (q „)(v„P). (63)

(~'P)

This state is a doublet, the two wave functions (63)
having the energy'4

&('C,)=2 P II,+II,+ P (22,„—Z,„)
2', lt:g i

=E('Co) —II,—P (2J,,—E,,).

&('C")—~('~o) = —II'—Z (2~'s—&'s). (64)

Equation (64) can be written in a more convenient
form. Namely, in the Hartree-Fock method (see Eqs.
(21), (25), (33), and (43)) we have

i i i&p,Fcp,dv= e,
~

g&,p,tk= e;.

23 The procedure of using the ground state 3IIO's gives rather
good approximations for singly ionized states; see reference 25.
For multiple ionization the approximation is expected to become
progressively worse.

'4 This expression can easily be found by an argument analogous
to that of footnote 14.

Hence, in this approximation, the energy required for
removing one of the electrons occupying p; is given by
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Similarly, in the ICAO method (see Eqs. (52), (53),
and (59)) we have

II,+P (2J;, E;,—)= c*,{H+P (2J;—K,)J c;

Hence in both the Hartree-Fock and LCAO method
Eq. (64) reduces to

z('c „)—z('c,) = —~,. (65)

In Eq. (65), if 'Co and 'C; are built from Hartree-
Fock MO's, then e; is the Hartree-Fock orbital energy
of q,', if 'Co and 'C; are built from LCAO 3fO's, then 6;
is the LCAO orbital energy.

If 'Co and 2C; (Hartree-Fock or I.CAO) are reason-
able approximations to the exact wave functions of the
corresponding electronic states, then the —e s should
give reasonable approximations to experimental ioniza-
tion potentials; this justices the name "orbital energy"
for e;.

It is remarkable that the ionization potentials calcu-
lated by means of (65) are in closer agreement with
experiment than those obtained by solving the varia-
tional problems for the energies of the ground state and
the ionized state separately, and subtracting. The
explanation for this was given by Mulliken. "

If in the ground-state AP the orbitals y.. . y;+„~
form a p-fold degenerate set, then we can construct p
pairs of wave functions of the type (63), corresponding
to removal of an electron from any one of the MO's

, y;+~~. These wave functions all have the same
energy. The ionized state therefore has, apart from spin
duplicity, the same degeneracy as the orbitals y;
gs+y —1.

Ionized states obtained by removing two or more
electrons can be treated in a fashion analogous to that
for singly ionized states. The treatment, however, is
more complicated. Since these states are also less im-
portant from an experimental point of view, we shall
not develop the theory for them.

For the lowest excited states, approximate wave
functions are obtained by replacing one &SO of the
ground-state AP by a new &SO, which has to be
orthogonal to al1. the ground-state 3fSO's, in particular
to the one which it replaces. Let us first assume that
an electron is excited from q; to q, and that neither
q, nor y is a member of a degenerate set. Then, corre-
sponding to the different possibilities with respect to
the spin functions, we have to consider simultaneously
the four wave functions

(v'~)(~ ~)

(v *~)(~.t3)
(~i~)(e iP) (~'-~~)(~'-~@'

(v ~P) (~.~)

.(v ~t3)(v.t3).

X (q,+i~) (q;+iP) (y.~) (q.t3)

"R.S. Mulliken, J. chim. phys. 46, 497 (1949).

X—{(q, )(q.P) —(q,P)(y. ))
2

C".=(vi~)" (~'-iP)

X (q;p&a) (y„P),

~ (66)

(~'~) (~.~)
1

X.—{(A~)(v.P)+(p'P)(p. ~)J |
(v'P)(v .t3)

X (q,+i~) (p.P)

The three triplet wave functions have, of course, the
same energy, since we neglect spin-orbit coupling
throughout this paper; the triplet energy ordinarily is
below the singlet energy (Hund's rule; see Eq. (67)).
We note that in (66) the singlet wave function and one
of the triplet wave functions are LCAP's whereas the
two other triplet wave functions are still AP's.

In the case that either q, or cp, is a member of a p-fold
degenerate set, then there are p sets of wave functions
of the type (66); all the singlets have the same energy,
and the same holds for the triplets.

If both q; meed q belong to a degenerate set, then the
wave functions of the type (66) are in general no longer
good approximations to the exact wave functions. In
this case wave functions of the relatively simple type
(66) do not belong to particular symmetry species.
We have then to form suitable linear combinations of
wave functions of the type (66); there will result vari-
ous LCAP's of diferent symmetry species and different
energies. An interesting example of this case is provided
by the lowest excited states of benzene. 5

This last case, where it is impossible to set up wave
functions of correct symmetry of the type (66), is a
special case of the frequently occurring phenomenon of
eonfigmratiortat miring. Namely, if there are two or
more sets of wave functions of the type (66) which
belong to the same symmetry species and whose energies
lie fairly close together, then in general no such single
set is acceptable; but an acceptable wave function can
then be formed as a linear combination from these
various sets. Such an acceptable LCAP consists then of
a mixture of different orbital excitations, that is, a
mixture of different configurations.

We now turn to the question of how an excited MO
is to be determined. If we want to find the best wave

function for the excitation from one particular MO y; to

These four wave functions have to be considered on an
equal footing; hence we should be prepared if necessary
to take four new linear combinations of these four.
Indeed, it is well known that they give rise to a singlet
and a triplet state for which the correct linear combina-
tions are given by

C".= (v i~) (v '-iP)
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an excited MO y, then we have to minimize the aver-
age energy of the singlet and triplet states given by (66).
However, if we want to use the same MO q, to describe
excitations from diferent 3IO's p;, then we have to
minimize the average energy of all the singlets and
triplets which are under consideration. It is obvious
then that we obtain different equations for determin-

ing q, according to what use we want to make of q . In
addition, such equations for q are rather complicated.
It therefore seems hardly worth while to develop the
theory for the most general cases.

However, in the LCAO treatment of molecules of
considerable symmetry the excited MO's are often
uniquely determined by the symmetry and/or the re-
quired orthogonality of the excited 3fO to the ground-
state MO's. In these cases the excited MO's are iden-
tical with the excited MO's which are found from the
linear equations (60); the latter satisfy the requirements
just mentioned of symmetry (see Sec. VI) and orthog-
nality (see Sec. III). It seems likely that in those cases
where the symmetry and orthogonality requirements
do not uniquely determin- the excited MO's, the ex-
cited MO's found from Eqs. (60) may still be acceptable
for describing actual excitation processes.

The energies of the singlet and triplet states given by
the wave functions (66) are"

E("C;,)= 2 Q H, +H,+H + Q (2J,i.—K, i,)

+z (2JV K'9)+z (2JJ.—Ki.)+J.~K'—

where the plus sign holds for the singlet, and the minus

sign for the triplet. This expression reduces to

E("C;.) =Q H,+Q (2J,i,—K,i,)—H;
j jI

—E (2J'i K' )+H.+2—(2J~. Ki.)—
—(J,, E,,)+K;„—

where the summations now are to be taken over all the
ground-state ufo's. Comparing this result with Eq. (20),
we find for the excitation energy

E(' '4;.)—E('Co) =H.+p (2J,.—E,.)
H, Q(2J,, K—,,) —(J, K; )—&K; .—(67)—

If we apply this result now to the LCAO treatment of
a case where q, is obtained from Eqs. (60), we obtain

Z("4 )—E('C ) = e —e,—(J, K,,)&K,. (68)—
It is to be noted that the average excitation energy

of the singlet and triplet is not what one would expect

~'The case where both qi and p are degenerate is here to be
excluded.

oBhand, namely, e —e,. The reason for this is that ei
and e are both eigenvalues of the self-consistent field
LCAO hamiltonian of the ground state; for the excited
state the quantity e can therefore not be expected to
have the same meaning as the orbital energies ei of the
ground-state 3fO's. 27

V. THE USE OF MOLECULAR SYMMETRY IN THE
HARTREE-FOCK TREATMENT OF A
CLOSED-SHELL GROUND STATE2s

When a molecule has symmetry, group theory pro-
vides a powerful means of simplifying the problem of
finding the exact electronic wave functions. From the
fact that the total hamiltonian operator BC is invariant
under any operation of the symmetry group of the
molecule, it follows that the exact wave function(s)
of a particular electronic state belong(s) to an irre-
ducible representation of that symmetry group (or,
in the very improbable case of accidental degeneracy,
that the wave functions can always be chosen in sets
so that each set belongs to an irreducible representa-
tion)."The wave functions of the various states can
then be classified according to the symmetry species
(irreducible representations) to which they belong.

It would be gratifying if it could be shown that for a
molecule the best Hartree-Fock AI' or the best LCAO
AE also necessarily belongs to a particular symmetry
species.

That this is by no means obvious is known from self-
consistent field calculations on atoms. Namely, in the
Hartree-Fock method for many non-closed-shell atoms,
and also in the older Hartree method (orbital product
wave function instead of AI'), the field for the indi-
vidual electrons is not always spherically symmetrical.
As a result, the self-consistent field AO's, and conse-
quently also, the total wave functions, do not belong to
irreducible representations of the group of rotations and
reAections around the center of symmetry. Therefore,
in most applications in the past the Hartree and Har-
tree-Fock methods have been modified so as to give the
best AO's which do belong to irreducible representa-
tions.

In this section we shall prove the following facts for
the Hartree-Pock method of a closed-shell groled state;
these are equally valid for atoms using AO's and for
molecules using MO's:

(1) The AI' built from Hartree-Pock 3M's in the manner
described in Sec. II is a singlet and is totally symmetrical; that is,
it belongs to the identical representation of both the spin and
symmetry groups.

(2) The Hartree-Pock MO's used may be grouped in sets such
that each set belongs to an irreducible representation of the sym-
metry group.

(3) The Hartree-Fock MO's can always be chosen real.

"The e as defined here is called an "unacceptable" e by Mulli-
ken; he defines our e —J; +E;, as the orbital energy —see refer-
ence 25.

2 The methods used in this capter follow closely those of E.
Wigner, reference 13, especially Chapters XI and XII.
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In Sec. I we have made implicit use of some of these
facts; namely, in the definition of electron shells and of
a closed-shell ground state, we assumed that de-
generacy can occur for the MO's, usually as a result of
molecular symmetry. %'e therefore have to give a new
definition of a closed-shell ground state which does not
involve molecular symmetry.

We now define a molecule with a closed-shell ground
state as a molecule for which there exists, aside from an
arbitrary phase factor, only one AP which makes the
energy reach its absolute minimum.

The 6rst conclusion which can be drawn from this
definition is that each MO in the closed-shell AP occurs
twice, once with either spin function. For if this were
not the case, then we could obtain by changing spin
functions one or several other AP's for which the energy
would also reach its absolute minimum. An AP repre-
senting a closed-shell ground state therefore has the
form (19).

Next we show that the AP belongs to a one-dimen-
sional representation of the symmetry group. Let f(r)
be any function of r, the radius vector of the point
(x, y, s). We subject r to the transformation

electrons; then

"C (r)C (r)dr=1, (74)

~
C(r)RC(r)dr=E;, . (73)-

C(6t-ir)C(5t r)dr= 6tC (r)~RC(r)d~,
aJ

E; = C ((R"'r)XC ((R-'r)dr

Now let (R be any operation of the symmetry group
of the molecule; this is expressed by"

(76)

Performing in Eqs. (74) and (75) the operation (R '
under the integral signs on the in/egration euriables ob-
viously does not change the values of these integrals.
Since (R ' eftects an orthogonal transformation on the
coordinates of the electrons, the volume element dv re-
mains unchanged. Hence we find

r—+r'=—Rr, (69)

l 6tC (x)(RRC(r)dr= (RC (r)XRC(x)dr. "where (R is the operator symbolizing the transformation.
The transformed function f'(r), or (Rf(r),ss we define

by means of
We see thus that the transformed wave function (RC is
also normalized and minimizes the energy. Since it mes
usslmed that there is only one AP which minimizes the

energy, (RC can differ from C only by a phase factor:

(70)f'(r') =f(r),

which expresses that the function f'(r), evaluated at the
transformed point r', has the same numerical value as
the function f(r) at the untransformed point x. Using
the operator notation, we can write for Eq. (70)

(RC =CgC, C(RC(R = 1. (77)

For any two successive operations of the group we
have(Rf((Rr) =f(r),

or, if the operator (R has an inverse,

~Rf(r) =f(6t r).

cggC = S(RC = Sc6IC = c@SC= cgcgC = chic(RC,

where the third equality sign holds because of (72).
(71) we now have the result

Equation (71) defines the function 6tf in terms of the
function f.

It is easily established that the operator (R is linear,
that is

(72)61(af+bg) =a(6tf)+ b((Rg),
and that

(fg) = (&f)(6tg), (73)

where f and g are any functions, and a and b any con-
stants. The correctness of Eqs. (72) and (73) is easily
seen by applying the definition (70) to both sides of the
equations.

Let C(x) be the normalized AI' representing the
closed-shell ground state, where r now stands as an
abbreviation for all the space coordinates of the 2n

cgtR = chic(R

so that the numbers cg furnish a one-dimensional
representation of the symmetry group. We shall see
presently that this representation has to be the identical
representation, that is, cg = 1 for every (R.

We show now that the Hartree-Fock MO's furnish a
representation of. the symmetry group. Writing out
Eq. (77) in terms of MO's, and using Eqs. (72) and
(73), we obtain

(@ei~)" "(~-~) "(6ts iP)"+' (iR~-0)'"'

(+ &) [1. . . (+ &)n(+ P) a+I. . . (+ P)2n] (79)

Now the orthonormal set of functions y;, i=i, 2,
~ ~, n can always be supplemented by additional func-

'9 Note that Sf is used as the symbol for a function of r just
ss f is used.

3' Note that3CC is treated as one function symbol like (RC. Then
from (71) and (76) follows KC($ 'r) =(RKC(r}=X(RC(r).
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tions q„a=v+1, jr+2, in such a way that the set
lj j, f=1, 2, , e, m+1, m+2, is a complete ortho-
normal set. Then any one-electron function can be de-
veloped in terms of this set. We develop the function
Ry, '.

where U is an abbreviation for the matrix

U11

(Rp'= Q pf Uf )$='1) 2)
f=l

(80)

where the coeS.cients U~; are to be determined. Inserting
(80) into the left side of Eq. (79), we obtain

Ufl1 ' ' ' Uf„wUf~~i1 , ' ' ' Uf2„n(pflci) l

f1 ~ ~ of2+

We multiply Eq. (83) by U, k, and sum over i; the re-
sult is

O=Det(U) p U;kU„cofactor(U;;)
i, j=l

Equation (81) must be an identity. The left side is seen
to be a sum over AP's, while the right side is a single
AP. The AP's which represent different spin-orbital
configurations are all linearly independent. Hence,
upon expansion of the summation in the left side of
Eq. (81), we can put the coefficient of the ground-state
AP equal to c(R, whereas the coe%cients of all the other
configurations have to vanish. The ground-state AP
occurs whenever fl, , f„, and f„+l, , f2~ are
permutations of 1, . , e. It is easily seen that the co-
efhcients of all these terms add up to

U11 ' ' '
. Uln

=Det(U) p U.;p U;k cofactor(U;;)

n
=Det'(U) g U„bk; Det'——(U) U.k cisU——,k,

j'=1

and since c@QO,

U, =O for i =1, , e, a=m+1, . (84)

Inserting Eq. (84) into Eq. (80), we see that under the
operation R the 3fO's transform among themselves:

or, in matrix notation

(85')

Unl ' ' ' Unn

Similarly, for the configuration

We show now that the matrix U is unitary. The MO's

p, are normalized:

ijp'Kid'D= ~'j

U11 ~ ~ 0 U 1

where a&e, the coefFicient is found to be
The same holds for the transformed MO's (Ry;. Trans-
forming the integration variables r~R 'r we find that
the MO's (Ry, are also orthonormal:

U . U
)~Rp;Ry, dlj= 8;j. (86)

U1 ~ ~ ~ ~ an Inserting (85) into (86), we obtain

~ Unn

U 1 -" Unn

or

UkiUlj gkgida 2 UkiUlj4l 2 UkiUkj ~ijq
kl k

Hence, we find

Det'(U) = cis,

Det(U) P U.; cofactor(U, ;)=0,
j=l

that is, the matrix U is unitary.
The matrices U furnish a representation of the sym-

(83)
metry group. Namely,

NUg(a= &@0=~(NUsl) = (&6)Usi= PUsUsl,
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01'

(88)
From Eq. (82) it follows then that

cg, = Det'(Ust) = 1. (95)

where the matrix U is unitary. Taking the complex
conjugate and the inverse of Eq. (89), we obtain

y= yU, iji= yU*,

hence, U=U*, or
U=Ut, (9O)

that is, the matrix U is, aside from being unitary, also
symmetrical.

In Appendix III it is shown that if a unitary matrix is
also symmetrical, then it can always be written as the
square of another symmetrical unitary matrix. Hence
there exists a matrix V so that

In Sec. II it was shown that the Hartree-Fock opera-
tor Ii is invariant if the MO's are subjected to a unitary
transformation. The Hartree-Fock MO's then have to
be eigenfunctions of a totally symmetrical operator;
therefore, we can apply what was said about exact
wave functions in the 6rst paragraph of this section,
namely, that they can always be grouped in sets, each
set belonging to an irreducible representation.

We show now that the MO's can always be chosen
real. This follows from the fact that K is a real operator.
Namely, if 4 is the closed-shell AP which minimizes
the energy, then the same is true for C; and since it was
assumed that there is only one such AI' aside from an
arbitrary phase factor, C =cC. The operation of taking
the complex conjugate can therefore be considered as
another symmetry operation; it is easily seen that this
operation satisfies Eqs. (72) and (73). Using the same
type of argument as before for the transformed 3fO's,
we 6nd

(89)

It is to be noted that it is not always possible to
choose the 3fO's so that they belong to irreducible
representations and are at the same time real. This is
the case if the symmetry group of the molecule is
C, 5„, C„.y„e&2, or T, T~. These groups have some
irreducible representations which are necessarily com-
plex. In that case we can obtain MO's which are all
real and occur in sets, each set belonging either to a real
irreducible representation or to a reducible representa-
tion which consists of two irreducible conjugate com-
plex representations.

VI. THE USE OF MOLECULAR SYMMETRY
IN THE ICAO PROCEDURE

In the previous section we de6ned a molecule with a
closed-shell ground state as a molecule for which there
exists, aside from a phase factor, only one AI' built
from Hartree-Fock MO's which minimizes the energy.

The LCAO procedure, developed in Sec. III, was
founded on the expectation that it is possible to ap-
proximate the best MO's reasonably well by LCAO
MO's; whether this can be achieved or not depends t'o a
considerable extent upon the choice of the AO's from
which the LCAO MO's are to be built. If the LCAO
method works at all, we expect it to give the same
qualitative features as the Hartree-Pock method. In
particular, if for a particular molecule there is only one
Hartree-Fock AI' which minimizes the energy, we also
expect there to be only one LCAO AI' which minimizes
the energy. Starting from this assumption, we can de-
rive for a molecule with a closed-skell grolmd state the
following statements:

U= V', V*V=E, V= Vt.

Using this result in Eq. (89), we get

and
yV= yV*= (yVj) = (yV);

so that the new set of MO's dered by

is real:

(9&)

(92)

(1) The LCAO AP which minimizes the energy is necessarily a
singlet and is totally symmetrical with respect to the symmetry
group of the molecule.

(2) The best LCAO MO's can be chosen so that they belong in
sets to irreducible representations of the symmetry group of the
molecule.

(3) The best LCA0 MO's can all be chosen real.

(93)

Finally, we show that C is totally symmetrical. We
can choose the MO's all real. Subjecting them to a
molecular symmetry operation, there result again real
orbitals, since the arguments of the MO's have been
subjected to a real orthogonal transformation. There-
fore, the transformation matrices U@ are all real
orthogonal matrices, hence

FIG. 1. The NH3 mole-
cule. The origin is taken at
the N nucleus. The three H
atoms are located in a plane
below and parallel to the
XF-plane.

Det(U&) =+1. (94) Hp, Hg
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equivalent representation B6( given by

B(s= U*A(sU (98)

aX Fn. 2. The symmetry
elements of C3„.

every matrix B@appears as a step matrix:

Bg(i) 0 0

B~(6) . . . 0
(99)

(96)

where A(R is a unitary matrix. Using the same method
which established Eq. (88), we find that the matrices

A@ furnish a representation of the symmetry group,
namely,

Ag(s =AsA(((. (97)

The representation A(R will in general be reducible.
Since it is a unitary representation, it can be reduced

by means of a suitable unitary matrix U. Then in the

The proof is analogous to that for the Hartree-Fock
case discussed in the preceding section.

In a symmetrical molecule, there are in general sets
of equivalent atoms, that is, of atoms which can be
transformed into each other by applying a symmetry
operation. So, for instance, in benzene the six carbon .

atoms form a set of equivalent atoms, and so do the six

hydrogen atoms. The set of AO's from which the
L,C'AO MO's are to be built must contain like AO's on
equivalent atoms. Thus in the NH6 molecule (see
Fig. 1) we use for the three hydrogen atoms three 1s
AO's which are identical analytical functions in the
local coordinate systems centered in the respective
hydrogen atoms. For the nitrogen atom, we use the 1s,
2s, 2ps, 2px, and 2py AO's.

If we perform a group operation 5t on the set of AO's

x„, then the set of transformed AO's Ry„ is a permuta-
tion of the original set x„, followed in general by a
spatial orthogonal transformation on some subsets.
In our example of NH3, for a rotation by 120', the three

hydrogen 1s AO's undergo a cyclic permutation; the
nitrogen 1s, 2s, and 2ps AO's remain unchanged; and

the pair 2px, 2py undergoes a rotation, by 120'. In
general; it is clear that the set (Ry„ is a unitary trans-
formation of the set g'.

.0

C6(Xi X6 X6 X4 X6 X6 X7 X6)

= (xi x6 x4 X6 x6 x6 —2X~+s~x6 —2~~X~—2X6)

= (Xi X& X6 X4 X5 X6 Xl X6)

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 —i ——,'v3

0 0 0 0 0 0 2V3

where the steps B(((('), B(s('), , B()i(0) are square mat-
rices, and furnish irreducible representations. In general,
among these irreducible representations there will occur
equivalent ones; if that is the case, then we can always
choose the matrix U so that the equivalent ones are
identical and appear adjacently; we shall hereafter
assume this to be done.

To illustrate the representations A(s and B(s, let us
again consider NH3. The symmetry group is C3„,
the symmetry elements and their notation are shown in
Fig. 2. The irreducible representations are listed in
Table I. The generating elements of the group C3„are
C3 and ~0;, hence it is sufficient to consider the matrices
A(R and B((( for (R= C6 and (R = io„.

We number the AO's as follows: 1sN= xi, 1sH~= g2,
1sH6 ——X6, 1sH6=X4, 2sN=X6, 2PsN=X, , 2PxN=X„
2PyN= X6. The transformation matrices A()i for S=C6
and IR= ~o; are found as follows:

TABLE I. The irreducible representations of C36).

Cg6

1
1

(1 0)

Cg Cg
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10m(xl X2 X3 X4 X5 X6 X7 X8) (Xl X2 X4 X3 X5 X6 X7 X8)

0 0 0 0 0 0 0'

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

Referring to. Table I, it is seen that the representation
B@consists of four times Al and twice E.

We return now to the general theory. From Eqs.
(96) and (97) it is easily established that the symmetry
orbitals cr~ defined by

0 0 1 0 0 0= (Xl X2 X3 X4 X5 X6 X7 X8)
0 0 0 0 1 0

0 0

0 0 or

~n=Z x6U'6. ,
q

(100)

0 0 0

0 3~ 0 0

0 3 ~ 0 0

0 3 & 0 0

0 0 0
—23—'0 0

—6 I 0 0
—6-~ 00

0 0 0 0 0 1 0 0

0 0 0 0 0 0 —1 0

0 0 0 0 0 0 0

The two matrices are A@3 and Al~„, respectively.
We now wish to completely reduce the representation

A61. This reduction is achieved by means of the follow-

ing transformation matrix:

Re= 57B61. (101)

Since BIR is in completely reduced form, the symmetry
orbitals appear in sets such that each set belongs to an
irreducible representation or symmetry species.

In our example the symmetry orbitals are

(01 62 &3 +4 05 06 07 08) (xl X2 x3 x4 x5 x6 X7 x8)U

=(xl 3 '(x2+x3+x4) x5 x6

X2- (—x3+x4) 6-'(2x2 x3 x4) x7 x8)

(100')

transform under the operations R according to the
representation B61..

0 0 1 0

0 0 0 1

0 0 0 0

.0 0 0 0

for if we use this U in Eqs. (98), we 6nd

Bc3——U*Ac3U

0 0 0

0 0 0

0 1 0

0 0 1.
0) ~Op

Ey

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 -0 0

0 0 0 1 0 0

0 0 0 0 ——,
' ——',V3

0 0 0 0 —,'V3

0 0 0 0 0 0

0 0 0 0 0 0

0

0 0

0 0

0 0

0 0

0 0

lv3 1
2 2

FIG. 3. A set of symmetry orbitals of NH&. The full and open
circles represent's AO's with positive and negative signs, respec-
tively. The dumbbells represent p AO's with axes in the plane of
the paper. The open circle with + sign represents a p AO pointing
upward. The magnitude of the coeKcients of the AO's in the
symmetry orbitals are indicated by the sizes of the circles and
dumbbells.

Bl.„=V*Aj .U=

.0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 —1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 —1 0

where U is as given above. These symmetry orbitals are
drawn schematically in Fig. 3. In such drawings, we
shall use the following symbols:

~ s AO, positive;
o s AO, negative;

c» p AO, with axis in the plane of the paper, positive
part at the right;

e p AO, with axis perpendicular to the plane of the
paper, positive above this plane;

8 P AO, with axis perpendicular to the plane of the
paper, negative above this plane.
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The magnitude of the coeScient with which an AO
enters a symmetry orbital will be indicated by the size
of the symbol.

The choice of the symmetry orbitals is in general
not unique. First, there is freedom in choosing the ex-
plicit forms of the degenerate representations. In C3„we
chose the doubly degenerate representation so as to be
the explicit transformation of the base vectors (i j) along
the X and F axes. Secondly, if the same irreducible
representation occurs more than once in Bpi, then any
linear combination of the symmetry orbitals of that
species is still a symmetry orbital of that species.
Hence, we can replace the set belonging to a particular
species by any linear transformation of that set. In
NH3 we can thus replace the set oj, o-2, o-3, o-4 by any
linear transformation of this set, and similarly the set
o 5 o 7 provided we sub ject o.6, o.8 to the same trans-
formation.

In order to obtain the symmetry orbitals in a nearly
unique manner, we shall use the following procedure.
First, we pick the degenerate representations in a con-
venient manner, preferably in real form. Then we ar-
range the natural AO's (no hybrids) in sets of equiva'-

lent AO's; these are the smallest possible sets which
transform within themselves under the symmetry
operations. Finally, we construct then from each set of
equivalent AO's a set of symmetry orbitals. This pro-
cedure is unique, except for the choice of the explicit
forms of the degenerate representations, and except
for an arbitrary phase factor for each symmetry orbital
(or, in the case of degeneracy, a common phase factor
for all the members of the degenerate set). This method
has been followed in our construction of the symmetry
orbitals of NH3.

Just as we defined the matrix elements

3E„q= x„3fP,dv

corresponding to the operator M, we can now define
the corresponding matrix elements 3f „, evaluated
with the symmetry orbitals:

AO's g or the symmetry orbitals e.'

Pf= QCf= 0'C f. (105)

The linear equations (60) and the secular equation (61)
can now be transformed into

F'c~= eS~c' (106)

0'an «~&Pp) dV 0) unless x= p and a=);

if this is the case, then

&an «~&Pea~&= '

&an @MOP+ IJI,A

(108)

for any a and p.

If we take for 3f the identity operator or the operator
F, then theorem (108) is seen to apply to the elements of
S and F'. Writing out Eqs. (106) and (107) according
to the triple indices, we have

Det(F~ —pS') =0, (107)

where F' and S are defined by means of (102) or (103).
Now let the irreducible representations or sym-

metry species of the symmetry group of the molecule
be F&'), F('), . , F( ) ~ . . The symmetry orbitals
belong in sets to these representations. YVe relabel the
symmetry orbitals accordingly with triple indices:
o- „. The index m indicates that r „„belongs to F~ &.

If there are several sets of symmetry orbitals belonging
to F& &, then we number these sets: 1, 2, , n,
o „ is a member of the nth set of species F& ). Finally,
if P & is a p-fold degenerate representation, then a set
of symmetry orbitals of this species transforms under
group operations like the base vectors of a p-dimensional
vector space: e('), e('), -., e'»; the index'a indicates
that o, behaves like e('"&."

The following statement is a well-known result from
group theory. '" If Jtpf is a totally symmetrical operator,
then

M „,= o-„Ma,dv; (102)

(F uxor, ppx &S amL, ppx)&ppx
Pp&

Det(F' „,p„x—pS «„,p, q) =0;

(106')

(107')

we shall use the symbol M for the matrix the elements
of which are M „,. It is easily seen that the matrices M
and M are connected by

(103)

these equations reduce, because of (108), to

(F ax, pm pS ax, pn)cpwg=0
P

Det(F', p
—pS, p ) =0.

(106")

(107")

c g=U*cf, (104)

so that the MO's q~ can bc cxprcssed either in the

where U is the matrix which forms the symmetry
orbitals from the AO's (see Eq. (100')). Similarly, we
define the vectors c f by means of

"A special case of these triple indices is encountered in the
customary notation for AO's: (n, l, m). Here the quantum number
l indicates the irreducible representation; the quantum number nz

labels the different members in the same irreducible representa-
tion; and the quantum number e is an index to distinguish be-
tween AO's which cannot be distinguished any more by symmetry
characteristics."See reference 13, p. 124.
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There is a set of this type for each symmetry species
I'&~&; if I'& ' is P-fold degenerate, then we get the same
set p times, once for each value of the index x, which

we omitted accordingly.
The multiple indices which we used to formulate these

general results are somewhat cumbersome in practical
cases. In explicit calculations it is usually simpler to
use the simple numbering of the symmetry orbitals.

In our example of NHB the equations (107) and (108)
are a set of 4)&4 for the A~ orbitals, and two identical
sets of 2&2 for the E orbitals.

energy of this charge distribution is given by

j

�de&"=
—~E'dv~&0,

r~" 8~

where p"=p(x", y", s"), divE=4irp; the equal sign
holding if and only if p=0 for all values of x, y, s'.

Now let p=c'(g, q, —g, q;); then

~(P'v' 0;v—;)"(~'v' ~;v;)"
0& e'

&pv

=I,,+J;,—2J,;,
or

APPENDIX If.

If p(x, y, s) is any continuous electrostatic charge
distribution, which may be positive, negative, or par-
tially positive and partially negative, and which
vanishes sufficiently strongly at inhnity, then the total

the equal sign holding if and only if ps+' gjpjp ol
~ q, ~

=
~ p, ~

. This establishes the third relation ex-
pressed in (26).

Next let y, =$+ig, , y, =$,+iq;, where $ and g are
real. Then

y pv

&p, v

mp&"p& p p2 "p2
de~"+

~
dv""~+0,

J ~pv+yv

the equal sign holding if and only if

p~ ——0) p2
——0,

where pi ——e'($, $,+g,q, ), p2 ——e'($,g; q,$,)—. Hence the left- and right-hand side of this equation are func-
tions of diferent arguments, hence equal to a constant,
or y;= conj. Since the MO's y; and q j occur in the same
AI', this linear dependence implies identity, p;=q;.
This establishes the second relation expressed in (26).

APPENDIX II

ol
64+ n'n~ =o,

The necessary and su%.cient condition that there is a
nonvanishing vector c satisfying

Multiplying the second one of these equations by i,
and adding the results to the 6rst one, we obtain

hence for any point in space either p;=0 or pj=0, that
is, q; and yj do not penetrate each other. This estab-
lishes the first relation expressed in (26).

Finally,

&p, v

(F—.S)c=O

is given by the secular equation

Det(F —«S) =0.

This equation is of the mth degree in e, where m is the
dimension of the matrices F and S; the coeKcient of «

is (—1) Det(S). We show first that this coeKcient
cannot vanish. The necessary and su%.cient condition
for Det(S) =0 is a linear dependence of the columns
(or rows) of S:

Q S„,c,=0,

gr P V

the equal sign holding if and only if

q'"q, "=q, "y'", or y'"ly "=y."Iq "'

f The author is indebted to Professor K. F. Herzfeld for valu-
able advice on the proofs in this appendix.

the trivial case c~=c2= ~ ~ =c =0 being excluded.
Such a linear dependence, however, leads to a contradic-
tion; namely, multiply the last equation by c„and sum
over p:

g c„S„c,=0, or (p c„x„)(gc,x,)dv=0
nc y c
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from which we conclude gives upon multiplication by c*,S from the left

which is clearly an impossibility, since the AO s are
linearly independent. Therefore, Det(S)AO, and the
secular equation is always of the mth degree in t.. As a
consequence, the secular equation has always m roots
g~, f= 1, 2, , m, provided we count multiple roots as
often as their multiplicity.

We show now that all the roots ef are real. For a root
~f there exists at least one nonvanishing vector cf so
that

Fcr EfSc—q, c*fF=gqc*fS&

the second equation being the hermitian conjugate of
the erst one. Multiplying the first equation from the
left by c*f and the second one from the right by cf,
there results

c fFcr tfc fScf——gfc fScf.

Now c*~Sc~&0, since otherwise the AO's yg would be
linearly dependent. Hence

Next we show that if ef/ t.„eigenvectors correspond-,

ing to ef and e, are mutually orthogonal in the sense that
S is the metric fundamental tensor: c*gScq= 0. Namely,

Fcr ——&AScr, Fc,= g,Sc,.

Taking the hermitian conjugate of the second one of
these equations, and observing that e, is real, we obtain

g nfc*gScf=g nyBgf = kg=0.
f f

Since there can be at most m m-dimensional vectors in
an orthonormal set, there are exactly m vectors cf,
one for each eigenvalue ef, which are determined except
for an arbitrary phase factor.

Finally, we have to show that if the secular equation
has one or several multiple roots, then for each root
there can be found as many linearly independent eigen-
vectors as the multiplicity of the root, which can. be
chosen so as to form an orthonormal set. The validity
of these statements is easily established in the following
way. If the matrices F and S are such that their eigen-
value problem furnishes multiple eigenvalues, then F
and S can be obtained from matrices F' and S' for which
this is not the case by changing F' and S' continuously.
In this continuous process, eigenvalues and eigenvectors
also change continuously (except for the phase factors
of the latter), and the set of eigenvectors remains ortho-
normal throughout this process. In this way the exist-
ence of an orthonormal set of m eigenvectors has been
established for the degenerate case. This set is not
unique, however; namely, if there are p linearly inde-
pendent eigenvectors belonging to a p-fold eigenvalue,
then any linear combination of these vectors is also an
eigenvector belonging to that eigenvalue. Restricting
these p eigenvectors to be orthonormal, they are there-
fore determined except for a unitary transformation
among themselves.

Fcf cjScr) c*,F= cg*gSg APPENDIX III

Multiplying the first equation from the left by c*, and
the second one from the right by cf, there results

A unitary matrix U can be transformed into a diag-
onal matrix D by means of another unitary matrix W

c*gFcr= grc*gScf= ggc*gScr) W*UW= D.

and since ef/e„we conclude that

c gScf =0.

Assuming now that the eigenvalues ef are all distinct,
it follows that there are at least m eigenvectors cf which
are mutually orthogonal. It is no loss of generality if we
assume the vectors cf to be also normalized; they form
then an orthonormal set, that is,

If the diagonal elements of D are not all distinct, then
we can always choose the matrix W such that equal
diagonal elements appear adjacently; we assume this
to be the case. Then D has the form

'
dgEg 0

d'2E2 ~ ~ ~

c gScy ~gf 0 ~ d,E„,
This relation implies that the vectors cf are linearly
independent, for a relation

Q nrcg=O
f

where d~, dg, ., dg are all distinct, and E~, E2, , E„
are unit matrices of the appropriate dimensions. The
numbers d&, d2, , d„are all of modulus unity, since
they are the eigenvalues of the unitary matrix U.
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'
clE1 0 0

(WDW*) )=WDW*,

WDWt =WDW*.
c,E2or

Now let the unitary matrix U be also symmetrical: now commutes any matrix of the type
Ut'=U. Then

Multiplying this equation from the left by Wt and from
the right by W, there results

0 0 cpEy,

DS=SD, where S=WfW.

We write the matrix S in block form according to the
structure of D:

where c&, c&, ~ ~ ~, c„are arbitrary numbers; in particular,
S commutes with the matrix D'*, defined by

' (di)&El 0

(d2)'E2

0 (d )kE„

S 1 S2 S, ,

We have then from DS= SD:

This matrix is unitary, since (dl)&, (d2)', , (dy)'* are
numbers of modulus unity. From D'S= SD~ follows

D'Wt W= W)WDl.

dlS1 dlS12 ' ' ' dlSly

d2S21 d2S2 ' ' ' d2S2y

dlS1 d2S12 ' ' ' dySly

dlS21 d2S2 ' ' ' dyS2y

Multiplication from the left by W and from the right
by W* gives

WDlWt =WD'W',
ol

, d,S,1 d,S„2 . d„S, , . dlS, 1 d2S„2 d,S„

0 0 S„,
where Sl, S2, , Sy are square matrices which have the
same dimensions as El, E2, , Ey. With the matrix S

hence for n&P: (d —ds)S s=0, and since d &ds,
S I2=0. It follows that S is a step matrix:

'Sl 0 0

0 S2 0

(WD'W*) t'= WD&W*.

Hence the unitary matrix V defined by

V=WD-:W*
is symmetric:

Vt=V,

U= WDW*= WD&D&W*= WD&W'WD&W*= V'.
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