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'HE object of this paper is to review the absorption
of sound in Quids. We shall be more interested in

basic principles and concepts rather than detailed calcu-
1ations which are both complicated and in many cases
highly tentative. No attempt has been made to include
all the complications in this field; rather we have
tried to lay the foundation for a basic understanding
of the underlying principles governing this field of
physics.

The first two chapters give the basic theory. We have,
here, reviewed the older, as well as the more recent
theories. This is done to show the connection between
the developments of the last century and present day
developments. In doing this, the authors hope to show
the unity of this field. In the later chapters a review of
the data is made. All the data are not listed, but only
those which appear to be reliable. On the whole, we
have limited the data to the simpler phenomena. '

Chapter I. The Equation of State and Its Relation to Acoustic Propagation

l. INTRODUCTION —HYDRODYNAMIC EQUATIONS

Three equations are needed to study the propagation
of an elastic disturbance in a Quid medium. Two of
these, i.e., the equation of motion and the equation of
continuity, are generally accepted in the classical form
given by Euler. The third equation is the equation of
state or the relation between stress and strain in the
medium. It is vital. for the study of the dissipative ab-
sorption of the disturbance. The variations in the
theories of absorption can indeed be traced back to the
equation of state used, though this is not always ap-
parent. The equation of state which we shall talk about
is not the general thermodynamic one but is along a
specific path. Further, time appears in this equation.
We shall call the relation between the excess pressure
and the excess density the acoustical equation of state,
sometimes omitting the word acoustical.

It will therefore be desirable to devote some time to
developing various acoustical equations of state and
examining their consequences. It should be emphasized
at the outset that we must consider more than the static
situation which presents no major diIIIiculties but which
leads to no absorption. The dynamic state equation,
involving first and second time derivatives of the pres-
sure and density, leads to the heart of the problem.
Burgers (B36)' discusses various state equations for
Quids, and we shall base some of our ideas on his de-
velopment. However, his interest is confined to shearing
while we shall introduce more general distortions.
Though the expressions for velocity and absorption
coeKcients deduced by the following analysis are not
for the most part new, we have attempted to present a
more unified treatment.

A general infinitesimal distortion in a material me-
dium, Quid or solid, can be described in terms of six
strain components, which are defined as follows:
(J3; p. 152)

E,= X,+20./3. (1 3)

It should be emphasized that Eq. (1.2) implies static
equilibrium and makes no allowance for the dynamical
features of deformation. For this review we shall be
interested only in those Quids which cannot support a
shear; we therefore have 0,=0, leading finally to

P;,= —p, =E, div q= E,s, —(1.4)

where p, is the excess pressure and s is the condensation.
Joos shows that

s= —div q= —8V/V= 5p/p, (1.5)

where p is the density. We have indeed utilized the
further fact that

P,,= —p, for j=1, 2, 3.'
In what follows p, and p, will always denote excess
pressure and excess density in contrast to the total
pressure p and the total density p. po and po are the
equilibrium pressure and the equilibrium density.

Equation (1.4) is the conventional equation of state
used in acoustics, and the first-order theory of elastic

where q=iq +jq„+irq, is the displacement vector in
the medium. The stress components are P„, P», P„,
P „=P„,P„=P„,P„,=P,„which have their usual
meaning. For isotropic bodies, to which we confine our
attention, the general linear static relations between the
stresses and the strains reduce to

P,,=X, divq+28, e,;, (1.2)P,g ——e,e;I,
where ), and 0, are the usual Lame constants. X, and 0,
depend on the thermodynamic path taken by the e's
The subscript implies that it is isentropic. If volume and
total pressure are denoted by V and p, respectively, the
bulk modulus, —V(8p/BV), =E„is related to ), and 8,
as follows:

Bg„Bg,
eyz =ezy= +

Bs Bp'

Bq„Bq, Bq 8q,ey„=, e„=e„= + —, e„=
Bp 8$ Bs 82'

Throughout this review, considerable use has been made of the compilations of data and references made by L. Bergmann (B15),C.
Kittel (K8), H. O. Kneser (K11), %V. T. Richards (R4), and D. Sette (S5).The authors wish to acknowledge the assistance provided
by these writings in the preparation of the present paper.' See bibliography at end of article.

3 A list of symbols is given in Appendix I.' P;;=—p, follows from the theorem that states (L1;p. 1) "If the stress exerted across any small area situated at a point is wholly
ormal, the pressure is the same in all directions. " The sign appears because in the theory of elasticity a tension is positive while for
uids, a tension is considered as a negative pressure.
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waves in fluids is based on it. However, it cannot ac-
count for the absorption of sound, and modification is
necessary. This can be done in a large variety of ways,
and indeed the successful modification seems to depend
on the type of Quid in question, so that successful
generalization has up to now eluded search.

We shall now consider certain changes that have been
made in Eq. (1.4) to include processes which are affected
by rates of change, i.e., the first and higher derivatives
of the pressure or the volume with respect to time. The
two principal types of modifications of historical in-
terest are due to Maxwell and Stokes, respectively. In
view of the confusion which seems to exist in published
literature it will be worthwhile to review the early work
before passing on to more recent developments.

2. MAXWELL'S EQUATION OF STATE

Maxwell (M5) modified Eq. (1.4) by incorporating a
term depending on the integral JpiP;„dt. If we confine
our attention once more to the case in which I', , re-
duces to —p„his equation takes the form

tion of the spring is x= xi+x, , it follows that the differ-
ential equation for x is

dF dx+—(a/b)F=a
df dt

(2 5)

F=0, r(0
Il =Pp, 0&/'&tg
F=O,

(2.6)

a state of affairs illustrated in Fig. I-1b. We can inte-
grate (2.5) in formal fashion to

t

x=F/a+1/b " Fdt -(2 7)

where xi ——F/a, dxs/dt= F/b. This has the same mathe-
matical form as Maxwell's equation (2.2) and becomes
identical with it if we let F=p, and x= p, /pp. Then a
becomes the bulk modulus E, and y, = a/b

The physical significance of (2.5) becomes apparent
if Ii is a constant force which acts only for a finite time
interval, i.e., if F is a force pmtse Thu. s we assume that

Pe ~ 'Ys—=—p,+— p,dt,
Pp +s +s ~p

(2 1)
iiF

where y, is a constant depending on the medium8
In differential form (2.1) becomes

dP. 1 dp,
+V8P8 +8

dt pp d]
(2 2)

To understand its physical significance let us consider
a special case. If p, is held constant, i.e., constant strain,
the equation reduces to

dp. /dt= —q,p. ,

with a solution in the form

p, =p.p expL —'r, t],

(2.3)

(2.4)

if p, p is the initial excess pressure. If y, is positive, p.
decreases with time and in time 1/y, is reduced to 1/eth
of its initial value. The excess pressure is said to relax
and to have a "relaxation time" of 1/y, . The general
equation (2.2) of which (2.3) is a special case appears in
the paper of Maxwell (M5) in 1867 on the dynamical
theory of gases. It is usually referred to as Maxwell's
relaxation equation. A model whose behavior follows
this equation has been suggested by J. M. Burgers
(B36).It is illustrated in Fig. I-la. The top element is a
perfect spring obeying Hooke's law, whereas the lower
element is a piston in a tank full of viscous liquid. ' The
two elements are here combined in series in the sense
that the same force F acts on both. In the spring it
produces a displacement x& directly proportional to the
force, while in the piston it produces a velocity dx&/dt
directly proportional to the force. Since the total elonga-

' The reader will readily recognize the electrical circuit analog
in which a capacitance C is arranged in parallel with a resistance R
across p, common electromotive force E,
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Fio. 1-1 (a, h). Mechanical model corresponding to Maxwell's
equation (after Burgers).

When Ii =0, x=O. At the instant Ii becomes Ii p, x im-
mediately rises to Fp/a. As t runs from 0 to ti, x in-
creases at the constant rate Fp/b and hence at any time
) between 0 and t~

x=Fp/a+(Fp/b) t. (2 g)

When F is reIpluced to zero at t=ti, the spring at once
contracts to its original length but the piston retains
the displacement it has gained and hence for f& t~

x=(Fp/b) ti

The course of x as a function of 3 is also shown in Fig.
I-ib.

Suppose now we shift our attention to the behavior of
F with the passage of time as x changes in some pre-
supposed fashion. A simple case is when the spring is
initially displaced xp and x is maintained constant at
this value. The solution of Eq. (2.5) is then

F=Fp exp[ —(a/b) t], (2 9)

where Fp is the initial value of Ii, i.e., xpa. We see that
the force relaxes to zero in infinite time. The time it
takes it to decrease to 1/eth of the initial value can be
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described as a relaxation time, b/a. It is important to
note that the relaxation described by Eqs. (2.2) or (2.5)
is one of force (or excess pressure in the acoustical case)
and not one of displacement (or condensation).

It will now be of interest to note the effect of assuming
the Maxwell relaxational equation of state (2.2) on the
propagation of a plane compressional wave in a fluid.
For simplicity we confine our attention to harmonic
propagation in the x direction with frequency pp/2pr and
write the equation of motion and the equation of con-
tinuity respectively in the form

ppttx= clpg/Bx (2.10)

pp(BN. /pox) = —p„ (2.11)

where 0, is the particle velocity in the x direction.
Here we shall use the dot to mean differentiation with
respect to time. For this chapter it is not necessary to
distinguish between the total and the partial time de-
rivatives. The difference leads to higher order terms

0. is the linear amplitude absorption coefFicient of the
wave. Substitution into Eqs. (2.2), (2.10), and (2.11)
yields the relations

P.(1 iy—,/id) K—,R,/p p 0,——

kP, —cupoV =0,

a)R,—kpoV =0.

(2.16)

(2.1/)

(2.18)

In order that these may have a nonvanishing solution,
the determinant of the coefFicients must vanish, yield-
ing the equation

ppP(1 iy—,/pi) = k'K, /pp (2.19)

c= pp/k„= (K,/pp)**,

and for the absorption coefficient

cp =+y,/2c.

(2.20)

(2.21)

In the majority of cases it is satisfactory to assume

~
k;~ ((~ k,

~

. Equation (2.19) then yields at once for the
velocity of propagation

Ql SPLACEMENT

Fo

FORGE $1

Fo
11

Fo
-o t

T'INIE SCAlE (b)

t) TIIHE SCALE

For ordinary fluids under standard conditions the dis-
persion of sound is very small, and hence the dependence
of c on the frequency may probably be ignored in
Eq. (2.21). If y, is a genuine constant of the medium, n
will not depend on frequency. On this basis the sound
absorption coefficient for a fluid resulting from Max-
well's equation is frequency independent. Since this
contradicts experience we are tempted to conclude that
this particular equation does not play a role in sound
absorption in fluids. Actually this conclusion must be
accepted as purely tentative since it is conceivable that
a mechanism may be developed in which p,, may turn
out to be a function of frequency. So far it does not
appear that this has been realized.

FIG. I-2 (a, b). Mechanical model corresponding to Stokes's
equations (after Burgers).

which become important only when second-order effects
are considered. Usually in the equation of state the dot
means total (hydrodynamic) derivatives. Actually, how-
ever, it is not an easy pr'oblem to distinguish between
total and partial time derivatives in this case. In some
sections it will be convenient to use partials and in others
totals. When obtaining expressions for the velocity and
the absorption only the partial time derivative is
needed.

It is now assumed that p„p„and n, are propagated
in accordance with the expressions

p, =P, expLi(ppt —kx)7, (2 12)

N, = U', exp[i(ppt —kx) 7, (2.13)

p.=R, exp(i(ppt —kx)7, (2.14)

where P„U,, R, are respectively complex amplitudes
and k is a complex propagation parameter, i.e.,

k=k„+ik;
(2.15)= kg z(x.

3. STOKES'S VISCOSITY EQUATION

An alternative modification of Eq. (1.4) is obtained
by adding a term proportional to the rate of change of
strain, giving for the linear case

K,
pa= pe + pe ~

po po

(3.1)

Fj = ax and F~=bi, (3.2)

since the displacement is the same for both elements.

The association of f with viscosity of the medium is
rather suggestive (see Sec. 14). We shall examine this
with greater care later.

We have simplified the problem slightly by replacing
a tensor by a scalar. Actually p, is the pressure on a
surface at right angles to the axis of wave propagation.
This is the only pressure which enters into Eq. (2.10).

For the moment let us consider Burgers, (836) model
of this equation, shown in Fig. I-2a. Here the elements
of the system in Fig. I-1 are combined in parallel.
The forces on spring and piston are now respectively
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The resultant force F is the sum of F~ and F2, the equa-
tion for the system becoming

F= (/x+bx, (3 3)

which is identical with (3.1) if x becomes p./po, F be-
comes p„E,=u, and f=b

To contrast (3.3) with (2.5) we consider once more the
square force pulse (2.6). The general solution of (3.3)
satisfying the boundary condition x=xp for 3=0 is
(S12; p. 284)

F(( )/, (a/~))' d/, +xo(, (ay))' — (3 4)
Jp

If for simplicity we set xp=O, the solutions fitting the
square pulse become

1
x= —Fo[1—e ~"'j 0~)!~)!!,

8

The solutions can also be put in the following forms,
(L14)

oP/(d„
k,= f (1+os/(u ')[(1+a)'/cu ') —1j)—'. (3.13)

(2C~.// o) '

/ po ) ' (1+(0/(d„)*—1
a=]

E 2/M~) (1+Cd /(d~ )
(3.14)

The signs are selected so that the original two equations
are satisfied. Since it is desirable that the k s be real,
we select the upper signs. If the lower signs are selected,
k; and k„merely reverse their roles. The phase velocity
in general is given by

~2
C2 (3.12)

) o~. 1+(1+~'/~. ')**

1
g —F [1 g a/b ~ ty—].g—a/b ~ (t—tg)

g

(3.5) All the above expressions are exact. If we are interested
in low frequencies for which cv«~„ the expressions for
velocity and absorption reduce respectively to the fol-
lowing approximations:

The time b/(/ is called the retardation time by Burgers.
It may in fact be considered a kind of relaxation time.
The behavior of x as a function of f is shown graphically
in Fig. I-2b.

We next examine the use of Stokes's equation for
a plane harmonic compressional wave. We again em-

ploy the expressions (2.12), (2.13), and (2.14) and sub-
stitute into (3.1), (2.10), and (2.11),respectively. Equa-
tions (2.17) and (2.18) remain unchanged but (2.16) is
now replaced by

p.= (&./ po) (E.+f~i ) (3.6)

Application of the standard condition on the secular
determinant yields the relation

oF= (0'/po) (E,+i(vi'). (3 7)

We call E,/f the angular frequency ~„and then have

pE, p
-**

c=
~

—
( (1+-,'(g'/(d„'),

4 po)
(3.15)

~2i
().= — (1—g'&v'/(o„'),

2ppcp
(3.16)

where co= (E /po)& and is approximately equal to c. In
this range the absorption coefFicient is very nearly pro-
portional to the square of the frequency, and to the
same approximation the phase velocity is constant and
equal to co. If l =4))/3 Eq. (3.16) takes the usual form
for the viscous absorption. p is the shear viscosity
coefficient.

On the other hand if cv))(d„, the expressions (3.11)and
(3.12) yield

pod 0)v ZÃ
k2= ~

(0„+GP

(3 8)

Util! zing (2.15) and separating into real and imaginary
parts results in

c= co(2(o/(o„)'*,

1 )/'(oar. ) '*
(pp

A= c42) &2l')

(3.17)

(3.18)

po N Guv
2

k„'—k,&=-
&A +~

The solutions are:

pp 6)
2k„k;= ——

~ 2+~2

1 pp a)'
k'= ——— (u„1w~ 1+—(

2 f GO +OP ~ (0

Note that here k,= —k, . Both velocity and absorption
coefFicient vary with the square root of the frequency.

(3 9) Experience indicates that in most Quid media, neither
the Maxwell equation (2.1) nor the Stokes equation
(3.1) is sufhcient by itself to account for acoustic ab-
sorption. A combination of the two might be expected
to be more successful. This has been shown to be true
in the case of water by the theory of L. H. Hall (H1).

(3 10) A derivation of Hall's combined Maxwell-Stokes equa-
tion (assumed by him but not derived) will be pre-
sented in Sec. 7 where a more general viewpoint will be

(3.11) discussed. Moreover, we must not neglect a review of
heat conduction as an origin of sound absorption.
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4. EQUATION OF STATE FOR HEAT CONDUCT&ON This may be rewritten in the form

It was pointed out by Kirchhoff (K3) in 1868 that it
is not proper to consider the effect of viscosity of a Quid
on sound absorption without also accounting for the
comparable eGect of heat conduction. Applying the first
law of thermodynamics we have for the rate at which
heat enters the Quid

BQ BU BU
+P

R Bt
(4.1)

cjp E. Bp Mx PE O'T
)

po ~t po C. 8~2
(43)

where E,=(C„/C„)E=yE. We eliminate T with the
help of (A-S), and obtain,

BP E Bp Afar 1 O'P E Pp-

Bt po Bt po C, 8X poC, 8&

On the right-hand side we have thrown away the non-
linear term involving (Bp/Bx)' since the changes in p
and p involved in the passage of the sound wave are
very small. In Kq. (4.4) we may replace p and p by p,
and p, respectively in order to make comparison with
the earlier Eqs. (2.2) and (3.1).

We now examine the use of (4.4) for a plane wave of
the form (2.12) to (2.14). Equations (2.17) and (2.18)
remain unchanged but (2.16) becomes

( Ml~k'q /ioiK, MxKkoq
)Z, =o. (4.5)

poC ) 4 po poC

Combined with (2.17) and (2.18) this yields

&i~K, Mx Ek'p t M~k'y
)~'=0. (4.6)

po po' C, ) ( poC. )

where U is the total internal energy, Q is the heat, and
V is the molar volume.

In this and the following sections we shall be forced to
use a considerable number of thermodynamic equations.
For the convenience of the reader, we have listed them
in Appendix II. All the relations can be proven in an
elementary manner as shown in many texts of thermo-
dynamics, e.g. , Slater (SS). We shall assume that the
process is quasistatic so that thermodynamics can be
used. For the one-dimensional case, using Eq. (A-10) of
Appendix II, we can write Kq. (4.1) for one mole as

3IIrc O'T C„Bp C„BU—+ (4.2)
po cjx' Kt3 Bt UP Bt

in which E is the isothermal bulk modulus, ~ the coeN-
cient of thermal conductivity, P the coe%cient of volume
expansion at constant pressure, and C„and C, the usual
molar heats. M is the molecular weight. Equation (4.2)
thus serves as an equivalent equation of state or equa-
tion for time rate of change of state under the inhuence
of heat conduction. We may rewrite (4.2) in the form

po C„—i8'k'

E C~—i5'k'
(4.7)

where W=Mo/pocd. This leads to a quadratic for the
complex k'. Fortunately, inspection shows that k„&&k,.
It will be sufficient, therefore, to replace k' in the term
Wk' by k„'= oP/c'. Moreover on the left-hand side of
(4.7) k' becomes to a good approximation k,'+2ik„k, .
This is true as long as we neglect viscosity; when con-
sidering viscosity and heat conduction are combined,
this approximation is questionable. Hence by equating
real and imaginary parts of (4.7) we arrive at

c Cvc
n= —k, =——(y —1)

2co oi 2+~2

for the absorption coefficient. We have here set

C 2p 2c4

Q)
2

C

(4.8a.)

(4 9)

which appears as the square of a kind of relaxation
frequency, itself a function of frequency through c.

For comparison with other mechanisms we write
(4.8a) as

1. cE,'—E,
M

2 co' E "
oooo+(oo

where in the case of heat conduction

(4.8b)

C„
E,'=—E

C,

Similarly to the indicated approximation, the phase
velocity is

c =—2

po (~.'/K. ')+(~'/K. ") (4.10)

qC„(T To), — —

The fundamental difference between this mechanism and
those described in subsequent sections should be clearly
noted, even though the frequency dependence of k„and
n turns out to be approximately the same. The space
gradient appears here while in the later equations of
state only derivatives with respect to time appear.

5. EQUATION OF STATE FOR HEAT RADIATION

For the sake of completeness we present a review of
the effect of heat radiation on sound transmission, fol-
lowing the general method of the preceding sections.
We again use the first law in the form (4.1), but now

A
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where we are following Stokes (S18) in using effectively
Newton's law of cooling for the rate of radiation from
the region traversed by the sound where the tempera-
ture is T to the surrounding Quid at temperature To.

If we put V=M/p, Eq. (4.2) now assumes the form,
after differentiation with respect to the time

At low frequency

co'=Em'/po)

while at high frequency

c '=E,"/po.

(5.10a)

(5.10b)

C. ci2P MC„82p BT
= —qc„

EP BP PVpo2 Bts Bf,

Once more we write, using (A-8)

3f
Pp

EP PVpo'

and find for (5.2) after some reduction

82P BP E, cisp r/E cip

+q—— — —=0.
BP 8$ po BP po Bt

(5 2)

(5.3)

(5.4)

Stokes and Rayleigh made only empirical estimates of the mag-
nitude of q, but it would seem possible to study it independently

by applying radiation theory. One attempt is made here as a
suggestion. Further work in evaluating q is certainly required.
From the Stefan-Boltzmann law applied to a sphere of surface
area A, with the temperature diRerence T—Tp between the sur-
face and the surrounding environment, we have

4A o.Tp'(T —Tp) =qC, (T—Tp), (5.11)

where 0. is the Stefan-Boltzmann constant. Let us apply this to a
sphere of diameter X/2, which we assume to be at the same
temperature. Then

48Tp'0. ,q=
ppc, X

(5.12)

where c, is the speci6c heat capacity per gram. From radiation
measurements

Integrating with respect to the time, setting the con-
stant of integration equal to zero and using excess pres-
sure and density p, and p„respectively, we arrive at

p,, 1 (p, 1
7.+~ I —,P. 1

=0
po E 4 ps E )

(5.5)

( co ioo, q
oo po i

——
i
= k'(co —sro„).

&E,- E,oi
(5.7)

On the presumption that
j k„) &)

[ k, (
we can solve for

k, and k; and get for the absorption coeS.cient

1 c co'o)„E,"—E,'
A= )

2 co' ro2+co„s E,"
(5.8)

while the phase velocity (and associated dispersion
law) is given by

~2+~ 2

(5.9)c =—2—
po (~'/E. ")+(~ '/E ')

where E,"=yE, E,'=E, and ro„=q/y. The E's de-
fined here do not agree with those defined in the last
section. They really denote the bulk moduli for a slow
or a fast process. In the case of radiation, the fast
bulk modulus is adiabatic while in heat conduction, the
fast bulk modulus is isothermal. In the case of thermal
or structural relaxation, we have a fast and a slow
adiabatic bulk modulus, and this is the reason for the
notation of E,' and E,".The model for this acoustical
equation of state will be considered in the next section.

For a plane wave of the form (2.12) to (2.14) we

obtain in place of (2.16) and (4.5)

R, f' ro iro, 'l
(&o i ro,) —

~

——
(
I',=0. (5.6)

po &E." Eo)
The secular equation connecting cu and k now becomes

o = 5.673X 10 ' erg/sec cm' 'A4. (5.13)

An estimate of q may readily be obtained, for example, argon,
where

pp= 1.784' 10 ' g/cm' at Tp=273 A,
c,=0 075 ca.l/g 'A and c=3.08X10' cm/sec.

The result is q=1.34&&10"sec ', at 1 mc. The value of q in (5.12)
is directly proportional to frequency, whereas Rayleigh (referred
to by Rocard (R9)) estimated it would be independent of fre-
quency. At low frequencies the value given by (5.12) is not far
out of line with Rocard s estimate. It is not intended that our
result should be taken seriously, but it does reinforce the conclu-
sion that radiation absorption plays little role in gases, except
possibly at very low pressures or very high temperatures.

6. EQUATION OF STATE FOR THERMAL RELAXATION

A. The Method of Irreversible Thermodynamics

In the analysis of Herzfeld and Rice (H10) sound
absorption in a Quid is attributed to the lag in the ad-
justment between external and internal degrees of free-
dom of the constituent molecules during the passage of
the sound wave. These authors apply thermodynamics
to a nonequilibrium problem. The nonequilibrium
effects are so important that one cannot even approxi-
mate them by equilibrium thermodynamics. In essence,
their treatment is one of the first treatments of irre-
versible thermodynamics. The summarization presented
here is in a form permitting close comparison with the
analysis of the preceding sections.

The total energy U per mole is divided into a part U'
referring to the translational energy of the molecules as
a whole and a part U' characterizing the relative mo-
tions of the constituent parts of the molecules. For
convenience two corresponding temperatures T' and T'
are associated with these energies, respectively. These
temperatures assume partial equilibrium of the internal
and external energies. These postulates undoubtedly
need further investigation. U' is a function of T' only. It
is assumed that the only way in which U' may change is
through a change in the temperature T'. We may ex-
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press the above assumption analytically in the form On substitution back into (6.7) there results

T' = (T' T')—/r.

The quantity 7- plays the role of a relaxation time.
The process by which the energy of the system is

changed is assumed to be adiabatic. Under these condi-
tions the first principle of thermodynamics takes the
form

O'V (K C„'q tt'dv) '
y(c. /pvyT Kp)

EV PVo) (dt)

(6.1) d'p dp (dpi t'dvi
+L(c '+c ')/ KP7—+ I

—
I I

dt' dt Edt) (dt)

d U'+d U'+ pd V= 0, (6 2)
dV

+t (C '+C„')/rPV+T'PK/r j =0. (6.10)
dt

dU'=C 'dT' (6.3)

where we are dealing with fluids in which it is possible
to assign unambiguous meaning to p and V. Now from

the definition of specific heat at constant volume

Writing V= —M/poo. p„etc. and neglecting the non-
linear terms as small compared with the rest, we finally
secure the equation of state in the form (with p= p„as
before)

where C„' is the internal molar heat at constant volume. Op, o C, ' dp, K d'p,
Moreover, from Appendix II (Eq. A-11) we can write Ce' + (Ce'+—T'O'XV)

dt T dt po dt2
at once, so far as the external energy is concerned,

dU'+pdV=C„'dT'+T'KpdV=O. (6.4)

C„'T'+C.'T'+ T'KPV =0. (6.5)

To eliminate T' from (6.5) we transform it to the form

The use of this equation assumes that conventional
thermodynamics holds for the relations among U',
T', V, and p, i.e., for a given U' and T', p and V are

known. Equation (6.2) then becomes, if we apply time

variation,

4p~

~
(C '+ T'P'KV) =0. (6.11—)

(p,r) dt

We have here set C„'=C„'+C„' the total specific heat
at constant volume for a slow process where T'=T'.
Examination of the order of magni. tude of the various
terms in (6.10) for harmonic time dependence with
angular frequency or indicates the validity of the neglect
of the nonlinear terms. We now find it convenient to
make the following definitions:

(O'T' 1 dT'i (O'T' 1 dT'i
c„'I +- ~+c. I

+-
ddt' r dt) (dto r dt)

and
Keo K (1+TeP'KV/C e)

K,"=K(1+T'P'KV/C„').

(6.12)

(6.13)

(O'V 1dvq dT'dV
+T'PEi +— i+PE =0. (6.6)

Kdto r dt) dt dt

By using (6.1) and (6.5), we obtain

A very fast process does not aGect U' and hence C„'
is the net specific heat. Thus (6.13) comes naturally
from the general definition of the adiabatic bulk modu-
lus (A-14)(Z2; p. 229). For a slow process T'= T' and
the net specific heat is C„', hence again (6.12). This
transforms (6.11)

d'T' O2 t/ 1 d T'
C„' +EPT' +—(C„'+C,, ')

dt2 dt 7' dt

pe pe /pe pe+~o/—
po K." & po E,') (6.14)

1
~o=-(C '/C '). (6.15)

To compare this equation of state with those for vis-

cosity, heat conduction, and heat radiation, we must

express it in terms of the changes in p and V. For this

purpose we must use the thermodynamic Eq. (A-8) of

Appendix II and write

A comparison with Eq. (5.5) shows that the acoustical
equation of state for thermal relaxation is identical
in form with the one for heat radiation.

A mechanical model governed by an equation of the
form (6.14) has been suggested by Frenkel (FS; p. 208)
and is shown schematically in Fig. I-3a (compare
Figs. I-1a and I-2a).

Since (6.14) is identical in form with (5.5) the equa-
tions for the velocity and the absorption in this case are

(6.8)T'= p/XP+ V/UP,

O'Te 1 d'p 1 d'V 1 (dv) '
+

Oto KP dto VP dto V'P 0 dt )
(6.9)

+Ep ~t + T,
~

0 (67)
We have also defineddv dT' 1

dt E dt r )
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the same as before, i.e., (5.9) and (5.8) with ois replacing
co„. The meaning of the E's have changed. The equation
for o. is given by

1 c (up E,"—E,'
A= CO

2 cs GP+o7s EB

1 c ohio (C„'—C„')
s

2 c ' oi'+ oi,' ( C 'C ' )

(6.16)

'T. EQUATION OF STATE FOR A GENERAL
INTERNAL LAG

A. The Method of Statistical Thermodynamics

In this section we shall employ a statistical model to
derive an equation of state for a Auid for use in sound
transmission calculations. This method has been used
by Kneser (K11) and others but will be presented here
in somewhat more general form, applicable to both
gases and liquids (M2). We assume that the pressure
changes associated with dilatations of the Auid are con-
nected with changes in the energy states of the consti-
tuent molecules. Transitions between the various states
are governed by finite probabilities, leading to finite
relaxation times and hence to absorption and dispersion
of acoustical radiation as suggested by the earlier parts
of this review.

To make the model more concrete, several cases will

now be examined in detail. First, consider gaseous
hydrogen (F1;p. 84), which is complicated by the fact
that two types exist, ortho and para. We shall, for sim-

plicity, confine our attention to only one type, say para.
A vibrational excitation requires high energy, so that
below several thousand degrees, the average fraction of
molecules in the excited vibrational state is very small.
A useful concept is the characteristic temperature 8, i.e.,
Ae/h', where Ae is the energy difference of the transi-
tion, while k' is Boltzmann's constant. The character-
istic temperature of vibration for hydrogen is about
6100'A.

The rotational levels are therefore the ones of interest
here. The energy levels are given approximately
by (H8).

Bcih(5+1)J,
where 8 is a constant which can be determined optically,
c& is the velocity of light and h is Planck's constant. In
general, J=O, 1, 2, 3. However, for parahydrogen, the
values of J are 0, 2, 4. The statistical weight of the
levels is 2J+1. Since B=61 cm ' for Hs, we find that
the fraction of molecules in state J=O is 0.28, in state
J=2 is 0.58 and in state J=4 is 0.13 for T=600'A.
Therefore, in this case one must consider at least the
three lower states. The two-state model to be developed

To obtain the last form we have used Eqs. (A-12) and
(A-13) as well as the fact that on this model P and E
are independent of frequency.

)gF

(a',

srF

DISPLACEMENT

(
I

l P
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(b)

TlME SCALE

Fio. I-3 (a, h) . Mechanical model corresponding to the relaxational
equation (after Frenkel).

(H8; p. 107). By the proper definition of a vibrational
statistical weight given above, however, we may con-
sider the vibrational molecule as having evenly spaced
energy levels. The characteristic temperatures for vibra-
tion range from about 6100'A for H~ to 310'A for I~
(S8; p. 142). For Is at 620'A, the fraction of molecules
in the ground state, 1st, 2nd, 3rd, and 4th excited
states are 0.39, 0.24, 0.14, 0.09, and 0.05; and we cannot
expect a two-state model to apply in this case. 8„ for
C12 is 810'A so that at 300'A the fractions of states in the
lowest and first excited state are 0.94 and 0.06. This gas
can therefore be approximated by a two-state model.
For vibrational states, Landau and Teller have been
able to work out a model for an n-state gas (L3).

6 For simplicity, we shall not defIne the summation over J.
This depends on the type of molecules considered.

in this section is not completely adequate for H2.
Rhodes (R3) has considered a more elaborate model
which applies here.

In other molecules 0„& is much lower than in hydro-
gen. One may assume that it is possible to assign a
statistical weight to each vibrational level. Using the
above information as to the weight of the rotational
level and the energy distribution, the statistical weight
of a vibrational level' is

P(2J+1) exp[ Bc~h—J(J+1)/O'T j.
8 has only a slight dependence on the vibrational

state. There is no reason to believe that a high rotational
level of a lower vibrational level has less energy than a
lower rotational level of an excited vibrational band.
In general, as a matter of fact, this is not the case
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The lumping of the rotational levels into one is
permissible only as long as there is a rapid readjustment
of these levels. One might expect that as one goes up in
frequency the readjustment in the vibrational levels
will lag and produce an absorption region. Later, at
higher frequency, another region of absorption will

appear due to lags caused by readjustments of the ro-
tational levels. Such e8ects have recently been observed

by Zmuda' in N~ at room temperature.
One may also consider the problem of dissociation of

a diatomic gas for which there exists two states. One
would expect that the general theory to be presented
here can be adapted to this case, though the details have
not been carried through. Another method has been
used by Einstein (E4) and by Luck (L18) to solve this
problem. (See also the paper of Kneser and Gauler
(K10).)

At present we are unable to give as complete a physi-
cal theory of a liquid as of a gas or of a crystalline solid.
For our purposes it will be necessary to distinguish
between a normal liquid and an associated liquid. A
normal liquid is a monomer. The basic unit is the indi-
vidual atom; crudely speaking, the liquid is a dense
imperfect gas. One would expect that the internal
vibrations of normal liquids would be nearly the same
as in the gaseous phase (we ignore the possibility of lower
frequency interlattice modes), and such is the case for
many Quids.

The associated liquid (H9; p. 534) on the other hand,
has a group of molecules which bond together to form
multi-molecular groups, or polymers. Formic acid in
the liquid state shows a vibrational bond at 3080 crn ',
whereas at high temperatures in the gaseous phase, the
characteristic vibration is at 3570 cm due to a vibra-
tion between H and 0 atoms. This has been interpreted
by assuming that at lower temperatures molecular

groups appear, such as

O H e ~ ~

H —C C—H.

0 .H —0
The new bond arises because of links characterized by
H O. Such binding is known as a hydrogen bond be-
cause it usually requires a hydrogen atom. The actual
binding may take the form of rings or chains. It is to be
stressed that the idea of the association is not based on
the simple physical illustration but is required from
basic chemical considerations. Associated liquids appear
when there are hydroxyl (OH) and amino (NH&) units

(W4; p. 46).
A dilatation may cause two effects on the Quid. It

may in the normal Quid cause transitions within the
molecules, or in the associated liquid it may cause
changes in the association. Both Hall (H1) and Ghosh

' A. J. Zmuda, private communication and (Z3).

(G2) assume that part of the absorption in water is
due to the rearrangements of the polymer structure.
In ice, each molecule has four nearest neighbors. In
water, the number of nearest neighbors ranges from
three to two. Hall postulates two states, of which the
lower is more ice-like, while in the upper state the mole-
cules are more random. YVe cannot, at present, make the
picture more specific nor show that there are just two
states, nor define just what the unit, which will be
loosely called a molecule, is. Even the detailed Hall and
Ghosh calculations do not answer these important
questions.

In acetic acid, Lamb and Pinkerton (L2) suggested
that part of the absorption is due to the breaking down
of a dimer to a monomer. A difhculty of the concept is
that there is no independent may of finding out just
what the process is. It takes 16 kcal/mole at 25'C to
dissociate the double molecule in the gaseous phase, but
the acoustical processes suggest a much smaller value.
VVe are, therefore, forced to conclude that here, as in the
case of water, the exact model of what is broken up
remains unclear. Equally uncertain is the model sug-
gested by Liebermann (L12) for the absorption in sea
water. This model is connected with the dissociation of
MgSO4 and will be discussed further in Sec. 30 below.

Liebermann has been able to get a numerical check
of some of the parameters, but his method appears to
be semi-empirical. For instance, Liebermann (L10) pre-
viously had been able to explain the absorption in sea
water ignoring the presence of MgSO4 altogether. This
suggests that a more fundamental investigation of the
problem should be made.

In spite of the many limitations of the tmo-state
model, we shall develop it, since it shows the nature
of the problem and is the most general model (known
to the authors) using statistical thermodynamics, which
would apply to gases and liquids.

For the sake of simplicity we suppose the two states
of each molecule are alike: an unexcited state has an
energy E& (per mole) and an excited state bas an energy
E2 (per mole). It is assumed that the process of excita-
tion alters the intermolecular forces so as to distort the
molecular structure and change the average volume per
molecule. The average volumes per molecule in the un-
excited and excited states are denoted by v& and v2,

respectively, and the corresponding values per mole for
V& and V&. The change in volume V&—V& may be ex-
pected to p/ay a greater role in liquids than in gases.

The instantaneous numbers of molecules per mole in
the unexcited and excited states are E~, and E2, re-
spectively, and cV&+X,=.V, where E is the total
number of molecules per mole. It is assumed that for
equilibrium the distribution is canonical and therefore
at temperature T the average number of molecules in

The association of v1 and eq with states may seem artificial.
Actually we shall only be interested in V2 —V& associated with the
increase or decrease of the population in state 2.
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state 1 is
Nis =Cwi exp[ —Ei/RT$, (7 1)

more convenient expression and obtain for (7.9)'

2&1———AN 1/r —(N/r) (2+A 21'/A 12'+A 12'/A 21') '

N2' ——Ctrl 2 exp[ —E2/RT$. (7.2)

where m» is a weighting factor, C is a constant, and
E=k'E, where k' is Boltzmann's constant. Similarly 8(W) 8(W)

X AP+ ET . (7.10)
c)p BT

We 6nd it convenient to assume m»=m2. Let A»2 be the
transition probability from state 1 to state 2 (i.e., the
average number of transitions per second per mole-
cule) and A» the corresponding probability from state 2
to state 1. The fundamental equation governing transi-
tions between the two states is

Finally it will be convenient to set

Nr=Nrs+22, N2=N20 21, —

so that
N1 ——A, etc. ,

and to write

(7.11)

N1 N2A21 N1A12.

For equilibrium, Ni ——0, and therefore

A 12'/A 21' N2'/N —1—' exp/&E——/RT j,

(7.3) 2+A21'/A12 +A12 /A21'=2(1+coshW). (7.12)

Equation (7.10) can then be given the form of the
differential equation

where ~E=E»—E2.
Now the dilatation. produces a disturbance which

alters Xj, E2, A~», A»2 as well as X». Using ~X», etc. ,
to denote the change in value, by neglecting higher
order terms we have from (7.3)

I

DN1 N2'AA ——21+A 2, 'QN2 Nr'AA —12 A12'll N—], (7.5)

From (7.4) and the fact that EN1 ———EN2, it finally
follows that

if we set

d222 des dp dT
r + =8, +J—3r—,—

dh2 Ch dh dh

S 8$'

2(1+coshW) r)p

2(1+coshW) BT

(7.13)

(7.14)

~1 (A12 +A21')AN1 —N2'A21 hW (7.6)
with

We now set for convenience

It is necessary to introduce thermodynamical con-
siderations, in particular the 6rst law. For an adiabatic

(7 7) process this will now appear in the form

d, U'+AU'+pd V'+phV'=0.

A12'+A»'=1/r,

where ~ has the dimensions of time and indeed will be
referred to as the relaxation time for the particular
mechanism. t/t/' is treated as a function of the inde-
pendent macroscopic variables p and T. We select T
and p as the macroscopic independent variables —T,
because of its unique position in statistics and p because
it seems related to the external forces on a molecule.
This selection is not unique and it might be advisable
to use T and V as has been done by Mandelstam and
Leontovich (M1). Since the process we are dealing
with is irreversible, the selection of independent vari-
ables has an important effect on the detailed develop-
ment of the theory. However, the 6nal results should be
independent of the choice of macroscopic variables. The
existence of macroscopic variables assumes an inter-
molecular equilibrium.

We can now write (7.6) in the form

The total energy of the system is

U= U'+U' (7.16)

and
AV'= (tlr —tl2)22= Atl 22

—(el e2)B=Ae' I
(7.17)

(7.18)

where ci——Ei/N and e2 ——E2/N. Introducing time de-
rivatives and continuing to treat T and p as the inde-
pendent variables, we can express the content of the

where U' is the "external" energy or that associated
with the motion of the molecules as a whole, while U' is
"internal" energy or that associated with intramolecular
energy states, such as those referred to at the beginning
of this section. It is necessary to introduce two types of
volume, V' relating to the macroscopic volume per mole,
and AV' denoting effective change in volume per mole
associated with the transition from state 1 to state 2
or vice versa. Thus

8(W) 8(W)~1—— AN1/r N2'A21' — Ap+— hT . (7.9)
r)p AT

Next we employ (7.4) again to replace N2'A»' with a

' Equation (7.10) follows from (7.9) since

+2 A21 +1 A12 +1 A21

A12 +A21 A12 +A21 A21 +(A21 }/A12

lV1'A 21 +X2 A 21

~ 12 +A 21 +A 21 +(A 21 ) /A 12 2+ (A 21 /A 12 )+(A 12 /~ 21 )
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first law for an adiabatic process in the form

f'BU') (8V')
I aT), ( aT),I +pI

(BU') (8V')
[ +p( ( p+ri(aeypav)=O. (7.19)

( ap ), ( ap ),

write (7.27) in the form

d'T d'p
C„' —TP'V

"dt2 dt'

dTy- [C„+B,~ +eB,p~ vj—
~t

For the sake of simplicity we shall write V'= V in what
follows, since V' enters only through the term in hv.
From the principles of thermodynamics we have

—[Tp'V Bshe—B„ph—vf = 0. (7.28)

(8U'/8 T),+p(B V/8 T),=C„',
We may simplify (7.28) by making the following

(7 20) definitions:

~DU'~
Tp V+pv/E- ,

L. ap) r
(7.22)

the external molar heat capacity at constant pressure.
The usual (reversible) relations are assumed to hold
between U', T, and p. dU' does not include effects due
to changes in population. The use of the second law

Eq. (A-9) yields

dU'= [C '—PVP'gdT —[TVP' PV/E'gdP, —(7.21)

so that

C„'=AeBr+Bz pAv,

p'= —(1/TV) (AeB„+pd, vB„),

1/E' = —(1/V) d,vB,.

(7.29)

(7.3o)

(7.31)

These definitions require justification.
For a slow process, the first two terms of (7.28) will

be very small. If the process is slow enough, we may also
assume that the process is quasistatic. This means
that the right-hand side of (7.3) is always very small.
Such a process can be considered reversible as well as
adiabatic and, therefore, from thermodynamic argu-
ments it follows that

-and from Kq. (A-2), C 'T TP'Vp=o— (7.32)

p(BV/Bp) r pV——/E'. —

In Eqs. (7.22) and P.23) C„'=C,'+C„' (7.33)

(7.23) The superscript refers to the total, or static, values of
C„and P. Definitions (7.29) and ('7.30) assure that

E'= —--
(1/V)(~V/~P) F

(7.24)

Cv'T TP'Vp+ri$he+—pdv j=o (7.26)

For convenience later we differentiate (7.26) with re-
spect to time, neglecting nonlinear terms like pv.' and
pri as small compared with (d'p/dP) T, etc. , multiply by
r and add to (7.26). The somewhat artificial result is

dT d'T dp d'p
C,' +r ' ——TP'V —+r

dt dt2 dt dP

' de d2e
+$Ae+pAv$ —+r =0. (7.27)

dt

which is the external isothermal bulk modulus, and

(7.25)

which is the external coefficient of expansion at constant
pressure.

If we use (7.20), (7.22), and (7.23) we can put (7.19)
in the form

e (7.34)

We see from (7.32), (7.33), and (7.34) that C„' is the
additional molar heat and P' is the additional thermal
coeKcient of expansion. This justifies definitions (7.29)
and (7.30).

Another way to satisfy ourselves about these defini-
tions is to return to (7.10) and consider equilibrium
states, i.e. ,

ri�=.

Then, with the help of (7.10) and
(7.14), we have

ri= B,ap+B,aT, P.35)

where by (7.11) I is the change in population. The
specific heat at constant pressure is defined as

C„=(BU/BT)„+p(8V/BT)„. (7.36)

By P.35) it follows that the shift in the populations per
unit temperature at constant pressure is Bz, hence, the
first term on the right of Eq. (7.29) corresponds to the
first term on the right of Kq. (7.36). Likewise the same
holds for the second term.

We can also justify this by referring to the customary
definition of a complex specific heat. This definition is
(K11, R4, and E6).

This immediately enables us to use (7.13) and hence to C'H =C'/(1+i cur), (7.37)
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(Be/BT) „=Br/(1+i~r) (7.38)

The complex number in (7.37) and (7.38) implies a
phase lag between changes of T and e. The effective
internal specific heat is

C,'"= (~e+p~v)(Bn/BT) „
= I ~eBr+p»Br ]/(1+i~r). (7.39)

Comparison of (7.37) and (7.39) provides justification
of (7.29). Similar justification can be made for (7.30)
and (7.31). The usual theory does not distinguish be-
tween C„'and C„'. Our system is more general, and these
quantities are not equivalent. C„' is the more basic (to
our theory) because our independent variables are p
and T.

An alternative definition of P' is possible. Following
(7.39) we may write that

p«i= (»/V)(&e/&T) „=~vB&/[V (1+i~r)j (7.40)

ol
P'= hvBr/V. (7.41)

One can also obtain (7.41) by arguments similar to
those connected with Eqs. (7.35) and (7.36). Comparing
(7.41) and (7.30), one must conclude that

based on the assumption that the disturbance is har-
monic. C'" is the effective value of the specific heat of
vibration (or rotation) at frequency &o/2~. From (7.13)
it follows that

as usual terms like Vy'/E', etc.)

d'V 1 dV
+

dt2 r dt

V (d'p 1dpi
E'ddt' r dt)

(d'T 1dTi 1 ( dp dTi+V&'I + I+-»I B +B—r I (7 45)
~dt2 r dt) r ( Ch Ch)

in which (7.13) accounts for the last term on the right.
Utilizing (731)and (7.41), and transposing a few terms,
we can rewrite (7.45) as

dT 1dT
P'—+P'-

dt' 7 dt

1 d'p 1 dp 1 (d'V 1dV)
+ —+—

I
+- I, (7.46)

Eedho rE'dt VE dh2 r dh)

where
1/E'= 1/E'+ 1/E'. (7.47)

d'T 1 dT)+-c,'I p —+-p'
dh2 r Ch )

We now differentiate with respect to time, keeping only
first-order terms, and multiply through by P'. We then
multiply (7.43) by P'/r and add the two. The result is:

( d'T 1 d'Tl ( c'p 1 dop)c.'I P' + O' -I TP'vI —P' +
dho r dh2) dho r dt']

Av
Br=— —(heBv+ pd vB„).

V TV
(7.42) TVp'( d'p 1 dp)

I
P' +-P'—

I
=0. (7.48)

dh2 r Ch)
It seems that this requirement must be imposed on this
model if it is to obey reversible thermodynamics at
frequencies far below and far above 1/r

Using the definitions just made, we can simplify (7.28)
to the form

Changing v/v to —p./po and using (7.46), the general
acoustical equation of state is obtained:

C,'d'p. Cv'd'p. 1 C„' C„' dp8
+ + 2T VPePt

E' dt2 po dt2 7' E' E' dt

1 1 dp. 1 C„' 1 p,——(Cv'+Cv') — +——P,——C '—=0'o (7 49)
po dt z' K' g~ po

d'T dp' 1 dT dpIC„' —TP'V +— C ' —TVP' =0. (7.43)—
dt2 dt2 r dt dt I

This is the adiabatic equation of state for our model.
To compare it with the previous equations of state we
must eliminate T. Further, we have four variables-
u„p„p„and T—but only three equations, (2.10),
(2.11), and (7.43). The density is not an independent
variable in the usual sense, and V is not a function of T
and p alone, but also depends on time. To find dV
which will depend on dp and dT as well as on the change
in volume produced by changes in the population, we
use (7.17), (7.24), and (7.25). The result is

dV= —(V/K')d p+ Vp'dT+~v e. (7.44)

If we obtain V and d'V/dt from (7.44), divide the
former by r and add to the latter, we obtain (neglecting

We have used Eq. (A-13) to define C„' and C„'.
Ct —C ' TV(Pl)2Kt

C '=C ' TV(P')2K'—
Further, the definition is made

Ci Ct Qe

(7.50)

(7.51)

(7.52)

We shall not attempt to examine the acoustical be-
havior of this equation of state in this general form.
Three simplifying assumptions will now be made and
discussed. They are:

On integrating, we assume an appropriate constant, so that
p, = p —p0 and p, =P—P0 appear.
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(a) Thermal Relaxation:

Bp/0,
AeQO,

8„=he= 0.

(b) Structural Relaxation:

or
he+Phv =0. (7.57)

Equation P.57) looks like a statement of the first law
for an adiabatic process and may not be an unreasonable
requirement. Since Cv'=0, C„'=Cv'C„. From (7.52) we
know that C„'WO. Equation (7.49) takes the form

but

B„&0,
he&0,

(d 1) C„' p. 1C„' C„p,"
7, C, -'+ —"P-, —" —'=—O. P.58)

t.dt rJ E' pe r E' r po

Cu' C,' C„'
+ 2T~P'P—'= +—,

E E E E
(7.53)

and we may write (7.49) in the following operational
form:

t'd 1) C„' C„' p, C„' p,
+ I 7'+ p C„' ——=—0. P.54)

(dl r) E rE p& r pp

The operator on the left does not equal zero; hence

pe 1 (pe 1
1+~ol —,P 1=0.

E." (p, E', ' ) (?.55)"

Here we have defined ~0 C„'/rC„', which is th——e
relaxation frequency for this process. Since E is fre-
quency independent for this case, E,' and E," are
given (6.12) and (6.13). Equation (7.55) is equivalent
to the acoustical equation of state obtained by the
method of Herzfeld and Rice, i.e., Eq. (6.14).

(h) Structural Relaxaliori

Here, Br 0. Hence Cv'=0 and fr——om (7.41) P'=0.
Now from (7.30) we see that

heBv+PhvB„= 0, (7.56)

"One might assume a relaxation process where Bz WO and
d,@&0, but he=8„=0. Such a model leads to a contradiction be-
cause of (7.30) and (7.41). The same holds if one assumes that
B„AO and Ae/0, but Bz =he=0. These are thermodynamic
limitations on the model.

'2 One may obtain (7.54) more aimp1y by returning to (7.44)
since, for this case, V= V4',p, T).

(c) General Linear Case:

Here the assumption is made that the products of
any of the terms defined by (7.29), (7.30), and (7.31) are
negligible. "

(a) Therma/ Relaxation

This case applies to gases one would expect Ae
to be independent of temperature, and 8' is a function
of T only. Since we neglect Av, P'=-0, and P'=P'.
Further, E'=E'=E. From these relations and (A-13),
it follows that C '—C '= C ' —C '= C '= C ' Conse-,
quently, in Eq. (7.49) the coeKcient of p, becomes

Thus the acoustical equation of state for structural
relaxation is

where

p, 1 p 1 1
Ii+~ol P —

,P—l=0 (759)"
pp E," ~ pp E,' )

E"=E'C /C'

E,'= E'C„/C. '

(7.60)

(7.61)

(7.62)

(c) General Linear Case

We shall make the special assumption that quotients
and products such as (C„'/E") and C„'C„' are small. It
is to be stressed that this is not generally true. Dutta
(D4) has calculated C' (he assumed thermal relaxation,
where C„'=C„') for several liquids. His calculations are
based on Einstein's specific heat equation (S8; p. 142),
the internal vibration of the molecules having been ob-
tained from observed Raman spectra. Under the as-
sumption that (Cv*)', etc. , are small, the third term on

"This equation can also be obtained without a double differen-
tiation by returning to (7.44).

Though Eq. (7.59) is formally similar to (7.55), E,e, E,", '

and coo have different de6nitions.
As far as the authors know, Eqs. (7.55) and (7.59)

first appear in a paper by Frenkel and Obraztsov (F4).
The connection shown here between the equation of
state and the statistical model, as well as the linear case,
is more recent (M2). It was also derived in an inde-
pendent manner by Hoff Lu (H13) (see Sec. 8). Equa-
tion p.59) was used by Hall in his calculation of the
absorption of sound in water. Since, in this case, C„ is
nearly equal to C„and C' is very small, Hall neglected
the adiabatic correction. For many liquids C„—C, is
not small, and consideration of these corrections may
be of value.

From Eq. (7.47) we note that E'(E' and because
of (7.50) and (7.51) C„'(C,', and hence E,')E', ', an

assumption made by Hall. Since Eq. (7.59) is identical
in form with (5.5) the absorption and velocity disper-
sion are given by (5.8) and (5.9) except that the E's
and the coo have diferent meaning.
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e C t

TVpepe
~C ge

C„' C„'
+ TV(pe)2E' E'

the left of (7.49) can be transformed as follows: clear violation of the second law. One must, therefore,
conclude that E,"&~K, from this argument. Ke shall
not examine the definitions of X', C„', and p' to show
this is true, and, as far as we know, it has not been at-
tempted. It could be done but would require some
thermostatistical arguments along the line followed

by Hall.

which gives for the general linear equation of state

C„' O'P, C„' d'p,

E' de po dP

1 (Ce' C.'l dpe 1 dp.+-
( +

~
-(C.+C.')—

(Ee E') dt po dt

C t
p+— p,—C '—=0. (7.64)

7' E' po

The diGerence between this case and the two previous
cases for a harmonic disturbance is in the region
where ~ 1/r. At low frequencies there is a well-
defined set of constants, C.', E', and C„' as there are at
high frequency, C,„', E', and C„',

There is no essential difference in the behavior of an
acoustic wave in this case, however. Equations (2.17)
and (2.18) still apply but (2.16) is replaced by

iq C„' C„' C„' 1 C„'
(

isa+
~

ice P,+ P, ice R.——— R, =0.
r) E' rX' po r pp

(7.65)

To obtain (7.65) we have used (2.12) and (2.14).
Since the expression in the first parenthesis does not
effect the evaluation of k, (7.65) can be replaced by

(iu mo) R,
+ i P, (iv)+ o)0) =0-, —

&E,- E,o) po

(7.66)

where in this case

and

E,"=E'(C„'/C„'),

E '= E'(C '/C ')

ceo=C~'/rC~'

(7.67)

(7.68)

(7.69)

These relations are generalizations of (6.12), (6.13),
and (6.15) as well as (7.60) and (7.62). The absorption
and dispersion are again given by (5.8) and (5.9) with
appropriate interpretations of the constants. An alter-
native expression for 0. is

1 a)'a)0 c ( 1 1 ) C„' C„'—E~ ——~+ —" . (7.70)
2 ~2+~o2 c02 gX& Eej C e C e

B. Section 7' Appendix

One may object to Eq. (7.3) on the grounds that it is
too specialized and that many possible reactions cannot
be characterized that simply. Actually the form of (7.3)
is not a fundamental assumption to the equations de-
rived in this section. Let us examine a more complex
case. Consider the reaction

2 I'1~~I"2. (7.71)

Let us assume that the backward reaction is of first
order with respect to Y2 while the forward reaction is of
second order with respect to V~, i.e.,

+2 ~12+1 ~21+2)

where the e,'s are the numbers of particles per unit
volume. We may rewrite (7.72) in the form

2 —~12+1 ~21+2) (7.73)

where
~ 21 ~21)

Ag2= kg2/V.

(7.74a)

(7.74b)

Here,
F= —RT I lnf—inlV+ 1}. (7.75)

f= the partition function, namely

=P, exp I Z~/RT}. —

The free energy for a mole of associated molecules can
be defined as

F2= —RTI lnfm —inlV+1}, (7.76)

where for f2 the sum extends only over the associated
states. From (7.76) it follows that

S
fn= exp( —F2/R—T).

e
(7.77)

Likewise for a mole of disassociated atoms

V is the volume which contains a mole of atoms some
of which are associated and some of which are disasso-
ciated. V, of course, is a function of the equilibrium
thermodynamic variables.

We introduce the Helmholtz free energy for a system
which obeys classical statistics. It can be defined as
follows (Fi; p. 67)

One cannot but raise the question as to what happens if
E,"pE,'. In this system, energy will be taken from
the body and transformed into mechanical work, a

f~ exp( —P~/RT). ———
e

(7.78)
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and

( i')' 2P =exp(AFo/ET+ 8)

(Ni')', (Ni')'
AA21 —— AA 12+A'12 -AW,

N2' g 0

(7.81)

(7.82)

where AW is the variation of d,F/ET. Since
AN2 ———26N1 (7.80) gives, with the help of (7.81) and

(7.82),

~2 (A 21 +4A12 Ni )~2 A 21 N2 +W
= —(1/r) AN2 A12o(N 1')'hW—, (7.83)

where now
1/r = (A21o+4NioA 12o). (7.84)

Consider two extreme cases. For a substance which is

almost completely dissociated, i.e., S&&)X2,

and

A12 (Nl ) A21 N2 1

A„oX,'«A„'

1/r= A„'

(7.85)

(7.86)

which means that 1/r is independent of concentration.
If, however, Si«S2—the substance is almost com-

pletely associated, then
(7.87)

Here
1/r =4A, 2'N 1'=4k 12ni' (7.88)

That is 1/r is proportional to the concentration of
nonassociated molecules. Equation (7.83) is identical in

form with Eq. (7.6) if we consider (7.8). (7.84) suggests
that 1/r may be a complicated function of the thermo-

dynamic variables and may depend on the concentra-
tion. It would seem that the basic assumption made in

going from (7.3) to (7.6) is that only linear terms are

kept. One would expect, however, that the definition
of r and the coefficients of (BW/Bp) and (BW/AT) in

Eq. (7.14) would depend on (7.3). The general shape of
the absorption curves is independent of the form of

(7.3), but the detailed behavior may depend on it.

8. VARIOUS RELAXATION METHODS

In addition to the methods presented in Sections 6
and 7, many approaches to the relaxation problem,
i.e., (6.14), (7.55), (7.59), and (7.69), are possible and

By standard statistics (F1;p. 158) we know that

N12/N2 f1——2/f2 ex——pI AF/RT+5} (7.79)
where

ELF=F2—2Fj,
e'=N/e, a constant.

Returning to (7.73), we consider a small perturbation
from the equilibrium value

+N2 (A 12 ++A 12) (N1 +~N1)
—(A2]'+AA21)(N2'+AN2). (7.80)

At equilibrium

have been made in the past 50 years. The occurrence
of several distinct approaches to the same problem is,
of course, nothing new. Classical mechanics has several
diGerent formulations —i.e., Newton's second law,
D'Alembert's principle, Hamilton's principle, La-
grange's equations, etc. In such a case the various
methods complement each other and lead to a deeper
understanding of the Geld. The object of this section is
to review brieRy the various approaches that have been
made to the relaxation problem. A complete analysis of
all the theories is clearly beyond the scope of any one
paper. We shall attempt only to classify the various
approaches and, in some cases, describe the basic steps.

It seems useful to classify the various relaxation
theories into four groups according to the methods on
which the theories are based, namely: (a) kinetic theory,
(b) irreversible thermodynamics, (c) statistical thermo-
dynamics, and (d) phenomenological approach. The
equivalence of these various approaches is not always
demonstrated, although many papers assume that the
methods are essentially equivalent. We have seen above,
that for gases a formulation based on statistical
thermodynamics leads to the same acoustical equation
of state as one based on irreversible thermodynamics.
In this section we shall show that the kinetic theory
approach and the phenomenological approach lead to
the same acoustical behavior.

(a) The Method of Kinetic Theory

There are at least three treatments of relaxation
which use kinetic theory. The oldest one is that of
Jeans (J2) who in 1904 considered a gas of rough non-
symmetric molecules. Here it takes time to establish
equilibrium between rotational and translational energy.
From his development it is possible to define a trans-
lational and a rotational temperature, indeed it is
possible to arrive at an equation corresponding to (6.1).
Later, Bourgin developed a general theory of absorption
in gases. Another variation of this method has been
given by Saxton, (S1a). Saxton's treatment includes
heat conduction and viscosity. ' Although Sourgin's
theory (B26 to B32) is applicable to far more com-
plicated cases, a simplified version will be presented
here which applies to the two state gas. In the case of
gases his treatment can be applied to very complicated
systems.

'4 An interesting point appears in Saxton's theory. At low fre-
quency, i.e., below the relaxation maximum the contribution of
viscosity to the amplitude absorption per wavelength is given by

coX=47ra&g/3 poc„'. (8, i)
Here c„' is the square of the velocity at high frequency (beyond
the absorption maximum) which seems surprising since one might
expect c0' to appear as it does in Sec. 11, where we have treated
a similar problem by a di6erent method. For H2 at room tempera-
ture C„' is nearly equal to the gas constant I,'for further details see
Sec. 22). At this temperature the vibration degrees of freedom
do not enter in, and C,' is due entirely to rotation. Hence

c„'/c,'= (C„"/C l(C„o/Coo) 25/21 1 19

This means a decrease of 20 percent in the viscous absorption
term if Saxton's result is correct.
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We start by considering a gas with the internal states
1, 2, 3, Let e; be the number of molecules per unit
volume in state i and n=Q,n;, where n is the total
number per unit volume. The e of this section is not
related to the e of Sec. 7. The equations of continuity
and of motion can be found in Jeans (J1; Eqs. (286),
(290), and (298)). For the one-dimensional case, where
second-order terms have been neglected, these are:

equation of continuity:

an/Bt = am/ax—; (8.2)

e& e—e;

The net change of the number in the ith state, due to
collision, is

«'= E~ {I:n" (f'~ f—'~)+nn'f'~ j-
[n'(f ' f ')+—« f 'j}—(85)

The first terms in the square bracket give the number of
particles that leave the ith state and the second bracket
is for the number of particles that enter the ith state.

One now assumes that e; can be calculated from an

"Equation (8.4) follows from Jeans, Eq. (298), if we assume
that the velocity of a molecule in the x direction is LN, +s(xl],
while the other components are N„and I,.

equation of motion:

mneme/Bt= —Bmn(u')/coax= —(2/3)B(nEi, )/Bx; (8.3)

equation of the conservation of kinetic energy:

8(nEi)/Bt= —(5/3) BnEi,ti/dx+ AEk, (8.4)'"'

where v= the average particle velocity along the x axis,
i.e., the drift velocity (particle velocity); m= the mass
of the molecule; EI,=the kinetic energy of transla-
tion =3/2k'T; (I')= the square of the velocities along
the x axis; and O'= Boltzmann's constant. Kinetic the-
ory shows that (I') equals k'T/m

We require a fourth equation; this will describe the
transition of the molecules from one state to another.
By state we mean an energy grouping within which
there is some kind of an equilibrium, i.e., the time to
establish equilibrium within the state is short relative
to the time to establish equilibrium between the states.
We select an arbitrary particle in state i. The proba-
bility that this particle is transformed in unit time to
state j due to a collision with another particle also in
state i, is

f,,(n; —, 1)=f,,n,

The above expression defines f;; The net . number of
transitions from state i to j due to collisions with mole-
cules in state i is

.2 . .2e;

Similarly we have to consider collisions between mole-
cules in state i and state j. The corresponding expres-
sion is

tin = hn—+P n'tiEi,
n

(8.7)

where n =(dn, /dE&). " Implicitly this equation as-
sumes that the disturbance which makes Ae,.~0 is
harmonic. The first term of (8.7) arises because of a
change in density. The second is caused by a change of
the populations in each of the levels due to changes in
temperature (since Es ——3k'T/2). P, is a complex func-
tion of the frequency implicit in (8.7) and describes
the phase lag between the translational energy and the
energy in the ith state, as well as the fraction of the
translational energy bEA, which a6ects this state.

For a slow process, where equilibrium is approached,
P,~1 and dn,—+0. Substituting (8.7) into (8.6) and
recalling (8.5), we get for a slow process,

8Ei,ng, (n R„,—n R;;)
P,[n,sti(f;, —f;,)+nn;8 f;;—

n,'5(f, ,—f;,) nn—;Sf;;j—, (8.8)
where

R„;=(1/n)[2n„(f, ,—f,,)+nf, ;j. (8.9)

«, can be expressed in terms of &s, tiE&, and tif by
using (8.6). Further, the terms multiplying Sn equal
zero because of (8.5). Eliminating the tif terms with the
help of (8.8) we finally obtain for P,A1,

An;= —n8Eip, {n„'R;;(P,—1) nR;, (P; 1)}—. (8.10)—
Equations (8.2), (8.3), (8.4), and (8.10) are the basic

equations of Bourgin's treatment. We consider the
simplest case where all the P s are equal. That is, all
the internal modes are in phase with each other. Our
next problem is to eliminate DEi, from (8.4); for this
purpose the equation of continuity for the e;th state,

itn~/8t = —(it/Bx) (n, ti)+An;, (8.11)

is used. As previously, we assume that our solutions are
of the form exp{i(o&t—kx) }, where k is complex. Spe-
cifically, for e, we assume the solution

6n,' exp{ i(o)t —kx) }.

be, R' etc. are the amplitudes. Substituting this type

'6 In Bourgin's 1929 paper, P; is introduced only by the word
"evidently, "and we have been unable to find out Bourgin's exact
interpretation of this step but believe that it can be justified as is
done above. More details are given in his later papers.

expansion about the equilibrium value. This results in

«,= —P;{8 n(n f,;—n;f, ~)

+ tin, [2n, (f;; f,;—)+nf;;]
—~n;[2n, (f,,—f;,)ynf;;]
+ [n„:sti(f,; f,—,)+nn, tif,;

n, s—S(f,, f,,)—nn—,Sf,;$}. (8.6)

Bourgin, borrowing a concept from the thermo-
dynamical development, here assumes that a change of
the population in the ith state is given by
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p, =nA ~/(A n+i(u), (8.12)

of solution into (8.2) and (8.11) we express An, in terms
of bn' and bn . Now using (8.7), (8.10), and the
assumption that the P s are equal, we obtain

(8.17) can be transformed into

uP p (1/r)C„'+i C„'ur

k' pp (1/r) C„'+iC„'(u
(8.19)

where
A, = 1/n,'Q, (n,'E,, n,'R—,~). (8.12a)

where the C's are the molar heats and C„'=C,'+C'.
Since K= p for an ideal gas, (8.19) is equivalent to

2 zGVA i'6

3k' nA, +ice

~+i
HEI„

BT

where

A n'c' bEp, (8.14)
3k' (nA;+ipp)

dm&

C =—
gag

fS dT

1(3=—
i

-k' iP, p, n,'.
n&2 )

(8.15)

If we insert (8.14) into (8.4) and recall the type of solu-
tions in which we are interested, we have

i(v[nbEpP+EpbnP)= (5/3)iknEpbvP

2 ( i&p

iA n'c'bEpP. (8.16)
3k' (nA;+jpp)

The higher order terms have been omitted. Using (8.2),
(8.3), and (8.16) the desired relation between k' and
u' is finally obtained:

cu' 2 Ep' 5k'/2+c'+i5k'ppr/2
(8.17)

kP 3 m 3k'/2+c'+i3k'ppr/2

where the relaxation time v is now given by

1/r =A;X. (8.18)

If we make use of the fact that in kinetic theory the
pressure equals 1/3mn(u')=2nE&/3 and employ the
definitions

c„'=5k'/2
c„'=3k'/2

The last term of (8.4) arises because of a redistribu-
tion of the levels which increases or decreases the in-
ternal energy at the expense of the translational energy.
We may evaluate it by erst writing

AEp —Q,p, A——n, , (8.13)

where e; is the energy of the ith state. It follows by
means of (8.10) that

DER ——
IP;e,n(P; 1)Q—;(n,'E„;—n, 'E, ,) I bE p

=
I (P, 1)nA,—Q,',n, 'I bE,

Since p; is independent of the state, A; must be also,
because of (8.12). Further,

ZMA 'I t9Ã'
EEp= — Q, p, bEp

nA +iM BEp

where

and

( pp ippp )
pp ppI

—
i
= k (pp —pppp)

&K,- K, )

K,'= KC„'/C„'= pC~.'/C. ',

K,"=KC„'/C„'= pC„'/C„',

pp p
=C„'/rC„'

(8.20)

(8.21)

(8.22)

(8.23)

Equation (8.20) is equivalent to Eq. (5.7) and this shows
the equivalence of the kinetic method to the other ap-
proaches to the subject.

(b) The 3Eethod of Irreversible Thermodynamics

The usual methods of thermodynamics consider only
equilibrium processes. A treatment of absorption based
on irreversible thermodynamics has been given by De-
Groot (D2a; p. 51). Although the second law usually is
stated as an inequality, use is rarely made of the fact
that it is indeed an inequality. This occurs because we
most often discuss only reversible processes. It is neces-
sary now to go beyond this limitation and include proc-
esses which are irreversible. If we neglect heat conduc-
tion and heat radiation relaxation, then we are dealing
with an adiabatic but a non-isentropic process. This
means that a certain extension of conventional thermo-
dynamics must be made. For an isolated system, a
reversible process can be characterized by the state-
ment AS= 0, where S is the entropy. For an irreversible
process S increases with time, and we require a state-
ment of its rate of increase. In general, however, this
equation need not contain the entropy explicitly. We
shall call this relation, giving the rate of entropy
increase, "the equation of irreversibility. "

As we have already seen the method of Herzfeld and
Rice states this equation in terms of two temperatures,
the internal T' and the external T'—i.e.,

T'= (T' T')/r—
In the literature the equation of irreversibility takes
many forms; only in recent years has it been related
to more basic thermodynamic concepts. Some of the
forms of the equation of irreversibility will be reviewed.

Several years after the paper of Herzfeld and Rice,
Henry (H6) suggested a variation of (8.24). After
making the following definitions: E&=Total equilib-
rium energy, Ep= Total energy without vibration (or
rotation), and E,=Actual energy of system at time t,
he states the equation as

d(E, Ep)/dt= (Er E,)/r. — (8.25)—
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1/r =K'O'F/BP. (8.30)
'7 J. Meixner recently presented a similar theory at the 1951

Ultrasonics Conference in Brussels.
' The use of the letter Ii to denote the Helmholtz free energy

is not universal since students of G. ¹
Lewis' school denote the

Gibbs free energy by P. Since the reaction rate theory has been
developed to a large extent by American chemists, the use of Ii
for the Gibbs function appears in a few papers referred to in this
review. At times, the distinction between the Gibbs and the
Helmholtz function is not made in these papers. We use F for the
Helmholtz free energy, the notation followed by Guggenheim.
(G8).

From (8.25) one may obtain the same results as from
(8.24).

Eucken and Becker (E6) use the concept of the in-
ternal speciGc heat in setting up the equation of ir-
reversibility. If one defines C&' ——the internal specific
heat (vibrational) at instant t, and C'=the internal
specific heat for a static process, then

C '= (C' C')—/r

In liquids, the process is more complicated than in
gases and the above concept must be generalized. One
of the most direct means is that recently presented by
Hoff Lu (H13) in which he used the volume directly.

By letting sp=the static value of —b, V/V, s„=the
value of —AV/V at very high frequencies, and s= the
value of —6V/ V at instant t, Hoff Lu's equation of irre-
versibility becomes:

d(s s„)/dt=—(sp s)/r— (8.27)

Using (8.27) one can obtain the acoustical equation of
state for a single relaxation process. The assumption is
made that the equation holds for liquids and gases.
In general, however, (8.27) depends on the thermo-
dynamic path selected.

The approach of Mandelstam and Leontovich (M1)
shows an advance in that they relate the problem
more closely to thermodynamics. " Thermodynamics
enters in Eqs. (8.24) to (8.27) only explicitly and these
equations do not seem to give a deep insight into
the problem. Mandelstam and Leontovich, on the other
hand, consider a system with three (in the simplest
case considered) independent variables. They select
T, p, and $. $ is not defined precisely. It may be related
to the population of the states or to an internal tempera-
ture. Since T and p are being used, the thermodynamic
function chosen is the Helmholtz free energy F."
F is a function of T, p, and P

—i.e., F(P, p, $). Conven-
tional thermodynamics applies when

BF/8)=0 (8.28)

Since (8.28) does not always hold, our problem is to
find a relation between F and $. The one chosen by
Mandelstam and Leontovich, is

$=K'BF/8$, (8.29)

where E' is a constant. This leads to the usual expres-
sion for absorption and velocity. K' is related to v of
Herzfeld and Rice as follows:

E, —Ep= a(T' —T)+b,
F.r—Tp a(T T)+ b. —— —

(8.33)

(8.34)

The parameters a, b, and T have the following meaning:
T corresponds to some average temperature; b is the
internal (vibrational) energy at T; and a is the rate of
change of the internal energy with temperature. By
substituting into (8.25) we obtain

A T'= a(T' T')/r, —

which is the same as (8.24). An argument such as this

"There is a slight difference between Eckart's development as
contrasted with the others. His theory defines co0=E,'/rE, in-
stead of C„'/rC„. This must be the result of the method used
in proceeding from the equation of irreversibility. The definition
of cop ln the paper of Mandelstam and Leontovich is the same
as that of Herzfeld and Rice in the case of thermal relaxation.
The authors would like to thank Dr. Eckart for the use of his
notes.

The difference between this method and the ones pre-
viously mentioned is that the terms here can be de-
fined with greater care, and, in principle, the de-
velopment is not confined too closely to a particular
problem or a specific experiment.

One would like to connect the equation of irreversi-
bility with the recent developments of irreversible
thermodynamics. At least three such attempts have
been made, namely: Damkohler's (D1), Meixner's
(M6), and Eckart's (E3a). We shall discuss only the
paper of Eckart, which considers a simple case. In
setting up the equation of irreversibility, he uses the
concept of chemical potential (G8; p. 17) or (Z2; p. 322)
(also known as partial potential).

Consider a reaction which can be characterized by the
relation I"~~~I'&. Eckart s equation of irreversibility is

g(Ps Pt) p (8.31)

where g is a constant which can be related to the law of
mass action. The quantity p, & is the chemical potential
due to molecules in state 1, i.e., (BF/81Vt)r, v,xs, and
p2 is the chemical potential corresponding to state 2.
In this theory,

1/r = (g8/BXs) (ps p,)— (8.32)

The importance of Eckart's paper is that Eq. (8.31)
has not been set up ad hoc to explain the absorption of
sound but is part of a more general theory of irreversible
processes (E1). The problem of sound absorption in
Eckart's formulation becomes just one phase of a more
basic Geld—i.e., thermodynamics" as contrasted with
"thermostatics. ""

We have listed some of the equations of irreversi-
bility that have been used in the past. We may deduce
(8.25) from (8.24) by assuming that Ep is in equilibrium
with the macroscopic variables; for a gas this is char-
acterized by T'. The nonvibrational part of E, is Eo.
The vibrational part of E will be characterized by an
internal temperature T'. lt seems logical to expect the
following relations to hold:
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can also be used to show that (8.26) is equivalent to
(8.24).

By equating the $ of Mandelstam and Leontovich
to the E2 of Eckert's development, one may show that
they are equivalent. On the other hand, Mandelstam
and Leontovich have defined an internal temperature
by assuming that a given distribution of level popula-
tion can be characterized by a given value of g. For
this $ and macroscopic temperature T',

ptF{T', p, (}/pt&WO. (8.36)

But an internal temperature T' can be defined such that

Consider Xo, which is given by

&o=A io~'}t'i—Aoi&o

or, at equilibrium, as before,

Ao~ =exp( hvM—/O'T) = e
A io &~o'

(8.41)

(8.42)

Z=Q(V(l, l=0, 1, 2, (8.43)

where h is Planck's constant and x is defined by (8.42).
Ke now dehne

cjF{T' p $}/8)=0 (8 37) and it follows that

Using these equations, Mandelstamm and Leontovich
have shown that

7'"—A p = (1/r) (T'—T'), (8.38)

where A is a complicated thermodynamic function. For
a gas, the pressure is independent of the level popula-
tion and A =0; hence, (8.38) is the equation of Herzfeld
and Rice, with a more precise meaning of T'.

(c) The Method of Statistica/ Thermodynamics

This method has already been given essentially in
Sec. 7, and we shall not elaborate on it here. Two inter-
esting modifications of the theory will be given here-
the development of Landau and Teller (L3) for a many-
state vibrational gas and a means of calculating colli-
sion efficiencies for gases.

Landau and Teller consider a gas with a single non-
degenerate vibrational mode of frequency s~. The
states of the gas can be listed as l=o, 1, 2 . It is
assumed that transitions occur because of binary col-
lisions and that A;, is the transition probability from
the ith to the jth state. One assumes further that the
effectiveness of a collision depends on the translational
energy and not on the vibrational state of the hitting
molecule. The following relations between the A's are
assumed.

P;V~tl, dr, (8.40)

where the f's are the wave fpnctions of the states, and
V„ is the perturbed part of the Hamiltonian. If one as-
sumes that V„ is directly proportional to the normal
vibrational coordinate of the molecule (D3 and R10;
p. 343) then (8.40) results. From (8.40) we see that the
temperature affects Ao& in exactly the same way as it
does A~2, etc.

Aog..Ag). A2) . ——Ago. A2). A)2- ——1:2:3
A;, = 0 if i —j/ &1. (8.39)

These assumptions may be justified by considering
quantum-mechanical definitions of the transition prob-
ability. The A's should depend on the square of the
matrix element

Since at equilibrium Z= 0, we know that

1V—Z'(e' —1)=0,
or

Z= (A pi A ip) DZ+ A piZ'(x—/T) e*hT. (8.46)

Here A o~, A yo, Z, and T are evaluated at the equilibrium
value. If we assume that

then (8.46) gives

DZ t'$M+(Aip Api)]
=A pi(x/T)Z'e*hT'= BAT'. (8.47)

B is defined by (8.47). Returning to (8.43) we see that
hv~hZ is just the change of the oscillator's energy due
to the shift in population caused by the temperature
change AT. Following Landau and Teller, we de6ne

where
C '= C'/(nor+1),

C'=hi~B/(A ip
—Api),

r = 1/(A ip
—Api).

(8.48)

(8.49a)

(8.49b)

It should be noted that for a harmonic disturbance, the
r of (8.49b) is the same as the r of (8.26). Equation
(8.49b) shows that the relaxation frequency for a
vibrating molecule is not proportional to Aip+Api, as
derived in Sec. 7, but to A~o —Ao~. The result obtained
in Sec. 7 holds only if e ((1and, under these conditions,
the difference between the two results is very small.

"For convenience A0( I) is set equal to zero.

QLL(l+ 1)1VlA ii+1 11, VIA l, l+1 le lA l, l i-
+(l—1)tV(Ai, ( i]=Pi{1ViA(, i~i —1ViAi, i i]." (8.44)

Using (8.39) we obtain

7~= Aoigi(l+1)1Vi Aiop—tl1V i

= Aoi1V —(Aio —Aoi)Z=Aoi{1V —Z(e*—1)I. (8.45)

If we expand (8.45) about the equilibrium value and
neglect higher order terms, we get

X
Z= [A„+~Api] 1V—(Zo+ ~Z)

I
'—1——e*»

}
T )
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Equation (8.49), of course, does not apply to rotational
modes or to liquids.

Before leaving this subject we would like to show the
relation between the relaxation time r and the ratio of
collisions which cause transitions to the total number of
collisions. Let us assume that for a gas the A's of
Sec. 7 are due to binary collisions; then we may write

Alp (1/V)klpP 0++1) klp1l 0/V (8 50a)

A oi= (1/V) koi(1Vo+Si) =koilVp/U, (8.50b)

if one assumes that Xp»1@i. Equations (8.50a) and
(8.50b) define the k's. The volume V appears because
iV, is the total number of molecules in state i.The actual
number of collisions between lV~ and Xp can be calcu-
lated from statistical mechanics (F1;p. 491, Eq. (1201,
18)) and is

More complicated vapors, however, may have more
than one distinct relaxation process. One such example
is given in the work of Alexander and Lambert (A1) on
acetaldehyde (CHpCHO). They have demonstrated the
existence of three distinct relaxation times.

(d) The Phenornenologica/ A pproach

Each of the preceding approaches is based on some
kind of molecular model. This is not necessary, as
Stokes's treatment shows. Considering the macroscopic
features, one may write down relations between the
density and the pressure and then explore the acoustical
consequences. An example of this type of approach is
found in a paper of Frenkel and Obraztsov (F4). They
examine two possible acoustical equations of state, vis. ,

ap.+by, +dp,+ep, =0, (8.53)
and

(8.51) dpi' d pg dpe d p8
ap +b +c —+e +f =0.

dt Bt dt'
(8.54)

A lp+1
~lp

Zip 2Dip'$4ir(RT/M)]**
(8.52)

where M is the molar mass. Because the masses in
states 0 and 1 are equal, np= 3f/2' Since Aoi(&. A M, for
X~&&Sp the experimental value of cop eRectively gives
Ayp and one may calculate P&p. Actually, a slight cor-
rection [known as the Sutherland correction (J1;
p. 176)$ should be applied to Eqs. (8.51) and (8.52).

Further modi6cations of the statistical model are
needed for more complex gases such as CO2 or COS.
CO2 is a linear molecule and has four internal degrees of
vibration, one of which is doubly degenerate. The ques-
tion now arises as to whether one can treat the molecules
as ones having a single internal temperature correspond-
ing to a single cop, or several, corresponding to the differ-
ent degrees of freedom. Results seem to show, at least
to 6rst approximation, that one needs only a single
internal temperature. The static value of the specific
heat is due mainly to the three lower vibrational levels.
Since C„/C„enters into the velocity, one may obtain C„
by acoustical means. Measurements of Eucken (E7) and
his co-workers indicate that the various vibrations relax
essentially at a single frequency )for COp and COS).
Schafer (S2) has indicated how the data on COS can
be interpreted in terms of a double relaxation process,
but the evidence does not seem decisive.

Here D,,= the average diameter of the jth and ith
molecule (distance of nearest approach) and np=the
reduced mass rn, rn, /(np;+rn, )

=2 if i and j are the same molecule.
= 1 if they are not the same molecule.

Since A~pX~ is the number of Ap molecules that are
produced by collisions per unit time, the fractional
number of collisions which are eRective is

Their theory is broad enough to describe a medium
which can support a shearing stress. The great advan-
tage of this method is that it is possible to explore many
equations of state without constructing complicated
molecular models. This has great usefulness, as for
example, in treating glass-like substances. The main
disadvantage is that the final equations are usually very
complicated. Frenkel and Obraztsov unfortunately are
able to give only a limited amount of experimental
evidence to support their generalized theory.

9. SUMMARY OF RESULTS

Absorption occurs when the density gets out of phase
with the pressure. This can be caused by two mecha-
nisms. One is a frictional lag which we call viscosity
(Sec. 3). The other is caused by a change in the bulk
modulus which has one value for a slow process and
another for a fast process. The second mechanism we
call a relaxation process (L14). Reserving the term re-
laxation to the second process is not universal, for some
authors speak of a viscous relaxational process. The
change of the bulk modulus with frequency occurs when
one considers heat radiation (Sec. 5), thermal relaxation
(Secs. 6 and 7) structural relaxation (Sec. 7), a combina-
tion of thermal and structural relaxation (Sec. 7), and
heat conduction (Sec. 4). In general, the dispersion and
the absorption are diRerent, depending on the mecha-
nism. In Fig. I-4 we have plotted the sound velocity and
the absorption per wavelength as a function of angular
frequency for the two types of eRects. At high frequency,
where there is a lot of to and fro motion per unit length
one would expect higher linear absorption simply be-
cause of the additional motion; for this reason we take
the absorption per wavelength (nX).

If it is possible to obtain values of the absorption or
velocity over a large range, then one may easily inter-
pret the results and decide which mechanism is the
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underlying cause. 0 we have data only over the range
where co(&oro, then it may be impossible to interpret
the results fully. Nonacoustical information regarding
the medium can, at times, help our interpretation.

The results of Secs. 3 to 8 may be summarized as
follows:

(a) Viscosity Mechanism. (Stokes 1845)

Phase velocity

For (o«or„

11 f ( Scv') 11
cx= Gp

I
1

I
GP

2cp' pp E 8')„) 2cp pp

for co»co„
a=(pppp/2i)& —viscous wave.

Absorption per wavelength:

(9.5)

(9 6)

pp 2+~2 For ru((ar„,
9.1

AX = 27I Clc/CO.

|' pp t' 1(o')

p cpp 0 4 (o ')

(9.7)

(9.8)

/
VISCOSI TY—

/
/

for o)»cu„
o.) =2&.

Setting f=4g/3 we have,

(9.9)

for air
for water

~,=6000 mc at normal pressure
co, =2)(106 mc.

I

R
UJ

UJ

cf

O

O
V)

U
O

O
I
Q.

O
lO

FREQUENCY ~

VISCOSITY

/

RELAXATION

RELAXATION

Absorption coefficient:

where

ceo 6+s

2cp E 4)p +M

Absorption per wavelength,

(b) Relaxati on 3fechamism

Phase velocity

M2+ Q)p2

t p L(~'/E. ")+(~p'/E. ')j (9.10)

(9.11)

FREQUENCY ~
Here

0.X=x GO

(E "E ')'* ppP+(u ' (9.12)

Fn. I-4 (a). Velocity vs frequency for a viscous mechanism and
a relaxational mechanism (b). Amplitude absorption per wave-
length vs frequency for a viscous mechanism and a relaxational
mechanism.

Gltp —Mp /Es /Es q (9.13)

for which nX has its maximum value. At co=co we
obtain

where

For (o«a), )

ppe =Es/I

(9.2)

hE,
O.X=—

2 (E,"E,') l

Types of relaxation
(i) Heat radiation" (Stokes 1851)

(9.14)

for or»co„

c'= 2fpt/pp viscous wav—e.

Absorption coefficient:

(9.3)

(9.15)

(9.16)

For air ~„=0.002 cycle, based on a value of q estimated
21 We have tried to list the names of the authors who developed

the theory. At places several authors are listed when each de-
veloped his own point of view. Several attempts to develop a
generalization of (ii) and (iii) which are in process of being pub-
lished are not listed.
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roughly by Rocard (R9)."He assumes it is independent
of frequency.

(ii) Thermal relaxation (Jeans 1904, Bourgin 1928,
Herzfeld and Rice 1928, Kneser 1931).

co p=C~'/C„'r (9.17)

rop= 1/r. (9.19)

hE, = TVP'E'(C'/C 'C.'). (9.18)

(iii) Structural relaxation (Hall 1948, B. B. Ghosh
1950).

have only a small dependence on the temperature for
the viscous case.

For many liquids, the viscosity coefficient depends
exponentially on the reciprocal of the temperature —i.e.,
f'= Ae~'r. The factor A may have a slight temperature
dependence, which we shall ignore (G2a; p. 477). We
shall ignore the temperature dependence of E and p
since f' depends so critically on T. Hence, for low fre-
quencies one obtains

c=const
n = const e t'~

c=const e' '
o, =const e &~'~.(9.20)coo =C,'/rC„'.

(iy) General case (Mandelstam and Leontovich 1937, and on t e ot er hand at hi h fre
Liebermann 1949, Markham 1950).

The actual expression of AE, in the text for (iii) and
(iv) are not reproduced here.

(v) Thermal conduction. (Kirchhoff 1868).

In this case,
ro, =C~poc'/Ms. (9.21)

ZE, =E,o E,"=(q —1)E —(9.22)

for air or, =6&(10' cycles, while for water or, =10"
cycles. One might classify thermal conduction as a
third mechanism because it is based on a diferent
equation of state: AE, is E,'—E.,"instead of E, —K,'.
Here E,'&E,", and co, is a function of the frequency
through c.

(c) Temperature Depertdertce

(i) Viscosity

For a gas, the viscosity coefficient depends on the
mean velocity; hence, one would expect the coeKcient
to be a function of the square root of the absolute tem-
perature (J1; p. 170)" pp at constant pressure depends
inversely on the temperature, while K is independent
of the temperature. Therefore, at low frequencies, the
velocity is given by

c= const T'

while at high frequencies

E,"—K,'= ae—'~ ~. (9.23)

The form of cop depends on Ares+Aero. Since Es'«Xr',
A~2'&&A2~' and a&0 are proportional to A2~' or the rate
with which the molecules drop from state 2 to state 1,
A2~' and coo should have the same temperature de-
pendence as do the reaction rate constants, namely

Apr coo a exp( —~ /T). (9.24)

For our estimates we shall ignore the temperature de-
pendence of the c's. At low frequencies the temperature
dependence of n should arise through coo and AE, or

a=—(E " E') =exp[ ——(b —b')/T]. (9.25)

n may decrease or increase with temperature depending
on the values of the b's.

At high frequencies a depends on the temperature
through B%~0 or

(ii) Relaxation

We shall limit our remarks to cases (ii), (iii), and (iv)
of (b), and to the special condition where tVs'«Xt .
First, we shall consider the absorption at low frequen-
cies. For these cases E,"—E,' depends on X2', which'
in turn depends on exp[ —(E&—E&)/ET]. We may,
therefore, write

c= const T:.
cr= AEcoo—-exp[ —(b+b')/T]. (9.26)

On the other hand at low frequencies the absorption
is given by

a= constant, independent of temperature,

while at high frequencies,

O.=const T:.
This means that in gases the absorption and velocity

22 Rocard (R9) has calculated a for air. He gets for the radiation
part of a at 6 kc, 1.5 &(10 '. Assuming that ou,«co at this frequency
one obtains a=c„nK&u,/2co'E, , where c„ is the high frequency
sound velocity i.e., the adiabatic value. The above equation gives
co,=2uc„/{y—1).

~ Actually the temperature exponent is not exactly ~~. For He
the viscosity varies as T"'.

24 To justify this statement we return to Eq. (7.10) and show
that

2+A 21 + 12 Nl +2
N P

A j20 A210 N

The last step holds if N1»Ã2 . If we use the equilibrium condi-
tion,

N1 A 12 N2 A21 (N N1 )A21
or

A21' N 10

A 21'+A 120 N

Using this relation, Eq. (7.12) and the footnote after Eq. {7.9) it
follows that

+2 A21 N2 N1
2(1+cosh@") A 12 +A21' N

Hence for N2 «lV 1', B„,and Bz depend on X2' or e~.
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Hence one would expect n to increase with temperature
depending on the sizes of the b's.

The important point is that the temperature de-

pendence does not depend on the type of relaxation, i.e.,
thermal, structural, or general. This is certainly true
if E2'«S~'. If E2' is not much smaller than NI', then
the temperature dependence may be more complicated
and, perhaps a difference between the various relaxa-
tion mechanisms may appear. This argument seems to
indicate that one must be very careful in arriving at
conclusions from the temperature dependence of ab-
sorption.

I-
O
O

O
Z

cn /'

and obtain

P,=I', exP( —a)st) exP)i(cdrt —kx)]. (10.3)

Stokes (S17) in his early study of sound attenuation in
viscous media used (10.3). Here tds gives the coeKcient
which measures attenuation in time. We may call it
the IemPoral absorption coeKcient. It has been used
extensively in studies of the attenuation of sound in
finite solid rods. It is clear, that it applies appropriately
to the temporal decay of a wave train or standing wave
in a medium, whereas a applies more appropriately to a
progressive wave due to a constant source. An interest-
ing point is that the dispersion may be different in the
two cases and indeed, for the case of viscous absorption
the velocity corresponding to (10.1) is always greater
than cs, while that corresponding to (10.3) is always
less than cp.

The temporal absorption due to viscosity alone is
interesting, since in the case of liquids, heat conduction
plays a much smaller role. The relation between co and
k given by (3.7) yields the results,

VISCOSITY

FREQUENCY, w, and

cdt ( 1 k'

k 4 4 ps'cp')

1 k'
Ms=

2 Pp

(10.4)

(10.5)

xI-
Coir
lU

UJ

CL
R
D
O
cn
u
O
z

FREQUENCY, rd

FIG. I-5 (a). Velocity vs frequency for a viscosity mechanism in
the case of temporal absorption. (b). Amplitude absorption per
wavelength vs frequency for a viscosity mechanism in the case
of temporal absorption.

10. TEMPORAL ABSORPTION VERSUS
SPATIAL ABSORPTION

Equation (10.5) gives the temporal absorption coeffi-
cient precisely for a Quid in which viscosity provides the
only attenuating mechanism. It, of course, agrees in
form with Stokes's original calculation, if f is properly
reinterpreted. The dispersion equation (10.4) is in-

teresting because of its prediction of a frequency cuto6.
We have plotted c against cd t in Fig. I-5a. ~s/c should

correspond to n so that in Fig. I-5b, 2n-&vs/kc is plotted
against co~.

To explore temporal absorption in the case of a relaxa-
tion mechanism we return to Eq. (5.7) and use assump-
tion (10.2). We write (5.7) in the form

co 1

ps L(~/E.")'+(~o/E')' j
M Cds ( 1 1

X +—+i(oped
~

— (, (10.6)
I,E.' E.") '

We pause here, to introduce a consideration with
respect to absorption and dispersion of sound not usually
emphasized (L14a). Going back to Eq. (2.13), we note
that if we set k= k„+ik, we get

p, =I', exp(k, x) expLi(rdt —k,x)$.
where cop has replaced co„, since we are interested in the

(10.1) general relaxational case. Assuming that cdr»eds we have

GP= Cdr+ZNs (10.2)

Here 0.= —k, appears as the coefficient measuring
attenuation of the wave in space. We may call it the
spatial absorption coefficient. It is of course the com-
monly used coefficient in ordinary progressive wave
propagation studies. However, it is equally possible
to set

and

tdrs 1 ( e/drE) (+ 't/dE')

ps L(~r/E. ")'+(~o/E. ')'3
(10.7)

GO] M2 1 CO] 6)p 1 1
2 =—

(
——(. (10.8)

k ps [(cot/E, ) +(u / sE) ]EE, E, )
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Several approximations have been made in arriving at
(10.7) and (10.8). They can be justified if &oi&)p~2, a con-
dition which always seems to be true. Solving (10.8)
for co2 we obtain,

tion (10.15) requires

1 C '(C, '—C„')

4 [C„"C„pC„"C„pj-:
(10.17)

Gap Qi 1

2pp $(p~i/E, ")'+(p~p/K, ,')') c' (E," E,')
(10.9)

Cp =2—
Pp

(10.10)

The velocity given by (10.7) is slightly different from
that given by (5.9). However, again at low frequencies,

E,'

For gaseous hydrogen at room temperature where
C„'=R (see Sec. 22) C~P = 7R/2, C„"= SR/2, C„'=SR/2,
and C„"=3R/2, the right-hand side of (10.17) gives
approximately 0.04. Actually in spatial absorption we
assume that k, »k which is certainly true for gases
since the maximum correction is less than 0.1 percent.

We have to proceed slightly differently in the case
of liquids. Let us assume that p~p)&(d and write (5.8) in
the form

(10.18)
and at high frequencies

po

(10.11)

where now 8 is an experimental constant and v is the
frequency, i.e. , pp/2~. Equation (10.16) takes the form

1)&(1/2')Bvc. (10.19)

One would expect that n might equal p~/c. This
actually holds to a good approximation, since we may
obtain from (10.9)

G)2 1 (dg ppi f 1 1
10.12)

c 2pp pP+piP c' (E," E,P)

where
E,~

h)g= Gdp

E,'
(10.13)

If we make a further slight approximation,

1 ~, (Z,"—R', ')
cx — pii ]

2c p) '+(p ' 0 E." )
(10.14)

This means that there is no essential difference in the
expressions for c and o, in the case of temporal and spa-
tial absorption. As we have seen this is not the case when
viscosity is considered. The reason for this difference
seems to be that in the viscous case k; is not always
much smaller than k, ~ Indeed at some frequencies they
are almost equal. However, in the relaxation case
where E," is not much larger than E,', k, is always
much smaller than k, , a fact we have used all along and
will now prove. If

then
k,»k, ,

1&)o.X/27r,

(10.15)

(10.16)

From Sec. 9 Eq. (9.14) we know that the maximum
value of O.X for relaxation is given by

AE,

2 (X,"E.P) '*

By using (6.12), (6.13), (10.16), and (A-13) of Ap-
pendix II we may show that for gases our approxima-

The most absorbing liquid known is CS2 where c=1.2
X10' cm/sec (B15 (1949 p. 279)) and 8 ranges from
6X 10 '4 sec'/cm at 3 mc to 1.4X 10 '4 sec'/cm at 75 mc
(see Sec. 27). Since 8 and c are known we may calculate
the frequency at which the right-hand side of (10.19)
equals 0.1. This frequency is about 100 mc. Our treat-
ment should hold at least to 100 mc in an extreme case.
CS~ however, relaxes above 70 mc so that at higher
frequencies nX/2~ is smaller than the value calculated
here; further it does not increase with frequency. %e
may thus conclude that for CS& our formulas hold and
we should thus expect them to hold for all cases known
at present. Since n= ppp/c and k„=ppi/c the above argu-
ments hold for temporal absorption as well.

For high values of aq the form of the solution, i.e.,
(10.1) and (10.3) affects the value of the absorption and
velocity. Present experimental results seem to 6t
Eq. (10.1).The possibility is, however, that some future
experiment may give results which agree with (10.3).
In this review we have found solutions to a set of equa-
tions but we have rot considered initial or boundary
conditions. These conditions would dictate the form of
the solution and may in some extreme cases influence
the definition of the velocity and the absorption. Com-
binations of (10.1) and (10.3) are quite possible.

11. COMBINED EFFECTS

In any Ruid, the problem of sound propagation is far
more complicated than the treatment given so far, since
one must correct for all the effects acting at the same
time. We therefore, desire an equation which includes
heat radiation, heat conduction, viscosity, and the
various relaxational phenomena. One should even in-
clude e8ects of diffusion of various gases in gas mixtures,
such as air.

During the last century, effects of both viscosity and
thermal conductivity have been considered by Kirch-
hoff (K3) and his work is reproduced in Rayleigh
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BP. E, Bp. 4 g 8'p+-—
Bt po Bt 3 pp Bt'

(11.2)

One's intuition suggests, that one may modify (11.1)
to include viscosity by adding to E,p./pp of the left-
hand side, the term (4rt/3pp)B'p, /hatt and by adding to
Ep,/pp of the right-hand side, the term (4g/3)p, /pp.
This leads to the equation

Bpa Eg Bpe 4 g 8 pe MK 8 pg
+

Bt po Bt 3 po Bt2 poC, (jig~

M~ O' Ep, 4q 9p,+-— . (11.3)
poCv 8$ po 3 po tent „

(We use partial time derivatives here for convenience
(see Sec. 2).) Equation (11.3) is really only one term
of a tensor equation, as is Eq. (3.1), and applies only
to a plane wave in this form. p, is the negative of the
stress at right angles to the wave vector.

We introduce the kinematic viscosity, namely,

n'= n!pp, (11.4)

and the thermometric conductivity which will be de-
fined as

M ~
I

K =
pp C„

(11.5)

(R2; Vol. II, p. 319) and Lamb (L1; p. 648). He con-
sidered the propagation of a plane wave and a wave in a
cylindrical tube. For the plane wave at low frequencies
(a&«cv„or a&,) the absorption due to heat conduction can
simply be added to the absorption due to viscosity.

Herzfeld and Rice have considered the combined
effects of heat conduction, viscosity, and thermal relaxa-
tion. If ~&&~„co„and oro then the net absorption is
the sum of the individual effects. As mentioned in Sec. 8,
Saxton has considered heat conduction, viscosity, and
thermal relaxation. So has Sakadi (S1) in a more recent
paper.

We shall now consider the combined effect of: heat
conduction and viscosity; viscosity and relaxation; and
two relaxation processes.

(a) Heat Conduction and Viscosity
I

The equation of state for the classical problem of
Kirchho8, combined effect of heat conduction and
viscosity, can be obtained most simply by going back
to Eq. (4.4) for heat conduction alone,

E, M» 1 O'P, E cI'p,
7i P.=——— — (111)

po po Cv x~ poCv ~$2

Now the equation of state for viscosity alone is Eq. (3.1).
Since we shall shortly apply this development to a
monatomic gas we set f=4rt/3 This st. ep will be dis-
cussed more fully in Sec. 13. By differentiating the vis-
cosity equation with respect to the time, we get

&o' —k'pp c,'+ipp
I

—&'+
)

/cp 4
+ ik4~ —+i~-&'

i
=0. (11.7)

3 j
Equation (11.7) was first derived by Kirchhoff (K3) by
another method; this justifies, in part, the use of (11.3).

We shall consider spatial absorption only here. For
every value of co there are two independent values of k.
At low frequencies one k will give a very high value of n
and is important, only near the source of sound. We
shall call this solution k' to distinguish it from the usual
acoustical solution. As Dr. H. Grad has pointed out,
in a private communication, 0. increases with frequency
and a' decreases so that in some region the primed
solution may be important.

At present, the most interesting application of this
theory is to rare6ed monatomic gases. The most de-
tailed experimental work has been done in helium by
Greenspan (G3, G4) so that we shall specialize (11.7) to
that gas. This reduces the constants in the equation.

The kinetic theory of transport phenomena in gases
leads to the general relation

cv) (11.8)

where c, is the specific heat per unit mass at constant
volume, and e is a constant. The evaluation of e, which
depends on the assumed intermolecular force, has been
summarized by Loch (L16; p. 240). The most reliable
value is that of Chapman and Enskog who used a re-
pulsive force law of the form Gr " for eBectively mon-
atomic molecules, i.e., those in which the energy is
translational only. Enskog showed that

5 1+(e—5)'/4(m —1)(11'—13)+
C (11.9)

2 1+3(e—5)'/2(n —1)(101m—113)+
For m=5, p=5/2. This is the celebrated result of Max-
well. Actually e varies little with e. Thus for m=2,
&=2.71 and for e—+~, e—+2.52. We therefore, choose the
factor 5/2 for p. Hence,

a'= 5g'/2. (11.10)

A word or two must be said about the limiting ve-
locity, which depends on the adiabatic bulk modulus
K,. The latter in turn comes from the conventional
thermodynamic (as distinct from the acoustical) equa-
tion of state, through the isothermal bulk modulus
(Eq. (A-2) of Appendix II.) U we use the Holborn and

Using solutions (2.12) and (2.14), (11.3) gives

I'.(ipp+ k'a')

4 tcp' 4
E. i—cp'~ ——g'co'+k'p. "~ +m—pprt'

~

=0. (11.6)
3 &y 3 )

Proceeding as usual with (2.17) and (2.18) we obtain
ultimately,
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Otto equation for a real gas (see Zemansky (Z2; p. 94))
we may write

pV =A+Bp+Cp'+Dp'+ (11.11)

7~~-
10cp p Ep)

(11.13)

which holds for monatomic gases since in this develop-
ment they have assumed (11.8) with e= 2.5 and p =5/3.

(tI) Relaxationanci Viscosity,

We shall now consider the combined e6ect of vis-
cosity and relaxation. The equation of state for a simple

where A, 8, C, D, - . are the virial coeKcients, which
are functions of the temperature and the mass of gas.
Using (11.11) we obtain,

K=p/1+(Bp/A)] =p. (11.12)

The term Bp/A is a correction term of the order of
0.05 percent under standard conditions for a gas like
helium. We shall ignore this correction. We have thus
reduced the constants in (11.7).

Instead of changing the frequency the experimeter
usually varies the pressure and obtains curves (velocity
and absorption), as a function of the pressure. The pres-
sure enters into (11.7) through II' and Ic'. Thus the imag-
inary parts of the coe%cients of k' and ik4 are propor-
tional to cp/pp. This suggests plotting the two velocities
(cp/k„and cp/k„') and the two absorptions (cr and cr')

against 1/pp, since 1/pp plays a role similar to cp. This is
done in Fig. I-6."The graph figures indicate that even
at 0.2 mm of Hg the "prime" wave is attenuated much
faster. Some comparison of these curves with experi-
ments will be made in Sec. 21.

General expressions which can be used for various
frequencies and pressures have been developed by
Greenspan (G4) and by Tsien and Schamberg (T4).
For low enough frequencies and high enough pressures
Wang Chang (W2) (see also Wang Chang and Uhlen-
beck (W1)) has developed the following approximate
expression for cx
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relaxation process, Eq. (5.5), (6.14), or (7.59), is

pe 1 (pe 1
1Ir+cppi —— pr i

=0.
pp Kr (pp Kr )

(11.14)

To add viscosity, which will give a term in (1/pp) c)'p/c)ts

at high frequencies, and a term in p,/pp at low fre-
quencies, we write

1 c)p, ( f )c)sp, 1 c)P,+i-
pp c)t KppK,") clt' K," Bt

Pr. ( f ) Cfpr
+cps —+ i i

— — p. =0. (11.15)
pp (ppKr / Bt Kr

This equation is "written down by inspection" as was
(11.2) and is a combination of (11.14) and (3.1). For
simplicity, t is assumed to be independent of frequency.
As we shall show in Sec. 14, one may derive Eq. (11.15)
for a plane wave from Stokes's basic postulates of
viscosity. Using (11.15) one may, by the method used
before, obtain the following relations,

pro. &-6 (a). Velocity vs 1/pressure for helium at room ™
perature. (b). .Amplitude absorption vs t/pressure for helium at
room temperature.

and
( cp/psK, ) P+(cp'/K, ")

s pp~'o I ~p(1/K' —1/K.")+f I (~/K.")'+(~p/K ')'iI

~ 2+~2+2~2~ g/(1/K P) (1/K 00)]+~sip[(~/K ~)2+(cp /K P)2)

~ 2+~2+2~2~ t-L(1/K P) (1/K oo)j+~2(2L(~/K ao)2+(~ /K P)2]
C =—2—

7

pp

(11.16)

(11.17)

To simplify the above expressions we assume that
the dispersion due to viscosity occurs at a frequency

2~ The following constants were used: eo =2~&10', c0= 1.02)& 10
cm/sec, q=1.97&&10 ' poise, y=5/3, and p0=2.35)&10 'p0 I'in

mm of Hg). These values correspond approximately to room
temperature. If these values were extrapolated to exactly the
same temperature, the difference between our curves and the
corrected graphs would not show up in Fig. I-6,

well beyond cup. Below the frequency where one gets
viscous dispersion (we recall that cp„=K,/f', Sec. 3),
the velocity is given by the usual expression

cd ps+ cp2

c2=— for au(4M,
Po (~p'/K ')+(~'/E. ")

and cp p((cp„, (11.18)
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while for the region well beyond cop, the velocity ex-
pression becomes

c'= (E,"/pp) L1+(p2(l/E. ")2] for tpp&&p)&&(p„(11.19)

A simple way to proceed is to expand the treatment
of Herzfeld and Rice. Schafer (S2) has considered two
ways of doing this. We adopt his first treatment to
our method and write

and
tt) p/tt)(((t)/tt)e. C (1)dT +C (2)d T. +C ed Te+ TepKd V' 0 (11 23)

This equation is not identical with Eq. (3.15) because
we have made a different approximation here: namely,
we have set k '=k„'—k,'.

If the absorption is small, so that one can neglect the
terms in f2 and f(1/E.,"—1/E, '), one obtains in place
of Eq. (11.17)

and

T2= (T' —T2). —
72

(11.24)

(11.25)

1 1 4) E E
A= —C Mp

2 co tt)o +tt) E

This set of equations corresponds to Eqs. (6.1), (6.2),
(6.3), and (6.4) of Sec. 6. C (') is related to U") and C "'
is related to U(2). By differentiation and some relatively
simple algebra, we obtain

1 (t) (d ) Ct)o $
+—ppcf' ] ( + ( (

. (11,20) d'T' d'V 1 d'T' d'V
2 p)p2+ td2 4E,") E E,p) C,' +T'pK +—C„2' +T'pK

dt' dt' r~ dt2 dt
This can be simplified still more by assuming that for
the correction in the second term E,'= E, and cp= c, or

1 1
A= cMp

2 cp2 (pp2+

Es +-—i /pp (11.21)
QP E 2C

for cu«cu, and cop«~„ i.e., a simple combination of
(5.8) with (pp in place of (p„and (3.16).

For a frequency well beyond cop, the absorption be-
comes

for (pp«(p&((p„and (pp/(p&«d/(p„. Equation (11.22) makes
the basic assumption that k„))k;. If this is not true
(11.19) and (11.22) are not valid. The method used in
Sec. 3 has to be employed.

Our conclusion is that at most frequencies of interest
in ordinary Ruids one would expect the effects of relaxa-
tion and viscosity to be additive. The dispersive effect
of viscosity can be disregarded below cop. This agrees
with Herzfeld and Rice in the range considered.

(c) Double Relaxation

Let us consider a model with two internal energies
U"' and U(". We postulate no direct interaction be-
tween the two internal parts. This may occur in a Quid
with a complicated molecule, which has two means of
getting excited. If the activation energy for a direct
transition from one type of excitation to another is very
large compared to the activation energy from the un-
excited to the excited levels, we may assume two
separate U"s which do not interact, Other models are
possible,

1
~ =-poc(E.")'(1/E.'—1/E.")

2 (E ")'+(p2f 2

1 GO

+—ppcf (11.22)
(K eo)2+ )2~2

1 O'T' O'U
+—C.1' +T'PE

dt' dt'

&1&2

where we have de6ned

dT' dU
C ' +T'PK =0, (11.26)

dt dt

C„1'——C„'+C„'",

C„2'——C„'+C„(2),

(11.27)

(11.28)

where

1 C„1'd'p,, C„1'd'p,

1 E dt2 pp dt

1 C, ' dp. C„'dp.
+ — — =0, (11.30)

E dt pp dt

C„1'——C 1'+T'Vp2K, etc.

This equation further reduces to

1 d'p 1 d'p, t' 1 d'p, 1 dpp, )+(P21

E," dt' pp dt EE,() dt pp dt2 )
t' 1 d'p, 1 d2p. q+-.I(E (') dt' pp dt')

(11.31)

1 dp, 1 dp, i
+ ~1~2I 1=0 (»»)

(E,P dt pp dt

C t C e+C (1)+C (2) (11.29)

Making use of (A-8) and (A-13) of Appendix lI the
acoustical equation of state becomes

C.' d'p. C,' d'p. 1 C.2' d'p. C„2' d'p.
+E dt pp dt 7'2 E dt
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where
oo 2——C„('/2-) C„',
oo2= Cy2 /2 2C&,

E,'= EC„'/C„',
E,(') =EC,g'/C„(',

E,(2) =EC„'/C„;,
E,"=EC„'/C„'.

(11.33)

(11.34)

(11.35)

(11.36)

(11.37)

(11.38)

To arrive at (11.32) we have assumed that C.") and

C."' are small. We have, therefore, written

C„'C„'=C„g'C„2', (11.39)

which neglects the term C„(»C„(2). Using (2.17), (2.18),
and (11.32), we arrive at the following expression for the
velocity

(o4+(o2((o 2+ (o 2)+(o~2(o221
C =—

p ((o4/E Qo) +(o2[((o 2/E (1))+ ((o 2/E (2) )$+ (o 2(o 2/E 0
(11.40)

while for the absorption

1 CPpCO

2 oo +(o ((os +oo2)+(oP(o2

1 1q (1 1y
I+~'~2l

4E,(» E,") EE "' E "j
1 1 ) ( 1 1

+~~2~21 — I+~22~21 —
I (1141)

EE.' E (')) ) E,' E (2))

We have assumed that C,("and C."' are small compared
to C, '.

For simplicity we shall consider only the case where
co2&)or~. Then we see that there are two dispersive
ranges. Let us 6rst explore the region around co~.

Since in this case ~ approximates co~, we have the further
inequality (o(«o2. Equations (11.40) and (11.41) reduce
to

~2+~ 2

C =—2

po (~'/E. "))+(~i'/E. ')

for co«(v2 and cog«o)2 and

1 l 4o) ( 1 1
n= —cpo(o'I

2 I (o2+(o22 KE,o Eo(2))

1(1 1q
+—

I

(o2 ) E,(2) E,")

(11.42)

(11.43)

1
C =—2

po (~'/E.")+(~2'/E. "))

(4) +(d2

for coy«(g and o)2, and

1 o)2 ( 1 1 )
n = -cpo (o21

2 4o2+(d22 ( E (2) E "l
( 1 1

+(o&l(E(» E")
for coy((co and cog.

(11.44)

(11.45)

for co«cv2 and ~~&&co2. Again, we have assumed that
C,(" and C,(" are small compared to C„'.

The second dispersive regions occur when co is in the
region of co2. Now co)&~~ and the equations reduce to

Equations (11.42) to (11.45) are exactly what one
might expect by simply adding two relaxation effects
together. The method of derivation, of course, has a
serious limitation in that we have made rather restrict-
ing assumptions. If the or, 's are about equal then one
cannot split up the effects and one is required to use
(11.40) and (11.41). In such a case, the simple conclu-
sions arrived at here do not hold.

Schafer has carried out some numerical calculations
on this problem. He has also considered a variation of
Eqs. (11.23), (11.24), and (11.25).

Some authors (Korn (K15), and Alfrey (A1a)) have
suggested summing over a large number of relaxation
effects and even integrating over a range of values of v-.

Their method is slightly different from ours in that they
simply divide the pressure into P&, P2, Po, etc. , the f)rst P
being related to p, /po by a static equation —i.e., Eq.
(1.4)—while the p, (for i/1) are related to p,/po by
means of a Maxwellian equation —i.e. Eq. (2.2). This
second approach has the great advantage of mathe-
matical simplicity. However, it seems to depart a great
deal from the simple physical picture presented here.
It is essentially like a mathematical way of expressing
data which does not give much physical insight into
the problem.

12. CONCLUSION

The summary of the individual e6ects is given in
Sec. 9. Actually the theory presented in this chapter is
rather formal in that it does not attempt to evaluate
some of the basic parameters in the equations. In Sec. 3
we talk about i without attempting to evaluate it.
If Stokes's relation is assumed, q still is not evaluated
because we have to know the shear viscosity which is
usually obtained from experiments. In Sec. 6 we have
two unknowns ~ and C, '. They appear as parameters in
the theory. This is also true of the A's of Eq. (7.3) and
the 8's of Eq. (7.14). The theory also assumes partial
equilibrium without considering the importance and
consequences of this hypothesis. For instance, can one
really write Eq. (7.3) in the form (7.9)? That is, is one
allowed to assume that the A's are functions of the
temperature and the pressure? These assumptions are
certainly a weakness in the theory and offer an oppor-
tunity for further study. Attempts to evaluate 7. of
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Sec. 6 have been made in the past and work is con-
tinuing along this line. The evaluation of f and g is a
problem in kinetic theory of gases and liquids. For
gases, C„' can be calculated from optical data and at-
ternpts to evaluate the 8's of (7.14) are also in progress.
We shall make no attempt to review these problems
here. They are mentioned simply to point out that they
do exist and imply that the theory of sound absorption
is far from complete. One may hope, however, that the
framework of the theory is correct and that the problem
is to discover what combination of the various eGects,
viscosity, heat conduction, and relaxation accounts for

the experimental results. Of course one cannot be sure
of this until all the data have been analyzed and until
better methods of computing the various parameters
have been found.

From Sec. 11 we can conclude that the contribution of
the various mechanisms can usually be added together.
This has been proven, only for relatively simple models
neglecting higher order terms. In many cases the specific
heat need not be small, and higher order terms may well
be considered. Consideration of more elaborate models
than have been made here or by Schafer (S2) would be
useful.

Chapter II. The Effects of Viscosity on Sound Absorption

13. STOKES'S RELATION BETWEEN THE
VISCOSITY COEFFICIENTS

We shall here follow closely the derivation of Stokes's
relation given by Lamb (L1; p. 571). As pointed out in
the erst chapter, a general stress can be characterized
by three stresses along the principal axes of stress, and
a general strain is characterized by three strains along
the principal axes of strain. A definition of an isotropic
body is that the principal axes are in the same direction.
By simple generalization, we replace the six components
of strain (these reduce to three along the principal axes)
by six components of the rate of change of strain.
Analogous to Eq. (1.1) we write:

BQ BQ„BR,
=e =—+—,@z gg/

Bz Bp

Usually, the absorption of sound due to viscosity is
treated very brieQy, since it is generally believed to be
well understood. This idea stems from the acceptance
of Stokes's relation between the viscosity coefficients.
The use of this relation has been questioned recently for
liquids and polyatomic gases by Tisza (T3) as well as
by Iiebermann. Further, experiments of Liebermann
(L11) indicate that Stokes's assumption may be in-
correct for many liquids. If this interpretation is true,
then relaxation (Sec. 6 and Sec. 7) may not play a role
in some liquids.

In view of the renewed interest in viscosity, it seems
advisable to return to the basic assumption made by
Stokes over a century ago and consider the limitation
of his proof, then bring the subject up to date by con-
sidering the special case of gases, the recent suggestions
of Tisza, and discuss some of the problems of second-
order acoustic fields. Some of the developments are
found in standard texts, but we hope that by bringing
all of them together the reader's attention may be
focused on the basic problems in this field.

The u's are the components of velocity along the x, y, and
s, axes. By rotating the axes, one may reduce these
quantities to three —i.e., i&, e2, and e3. Here e& is de-
fined as Oui/Bxi, where ui is the component of velocity
along the 6rst principal axis.

Analogous to the static case, we define an isotropic
viscous body as one in which the principal axes of rate
of strain are in the same direction as the principal axes
of stress. Therefore,

p, = —po+ g'p, e~+2ge, . (13.2)

Here q and g' are the viscosity coefficients, g being the
shear viscosity and p'+ —,p the bulk viscosity. The
reader will recall that in elasticity a tensor is positive,
while pressure is negative. The p's with subscripts are
components of the stress matrix, and the negative sign
appears because of the difference between the ordinary
pressure and tension. In the usual development po is the
static pressure. "Shortly we shall attempt the general-
ization of (13.2) and po will be the nonviscous pressure
which may not equal the static value.

By rotating the axes, one finds that for arbitrary
Cartesian coordinates,

where

p,,= —po+q"7 u+2qe, ;,
p, ,=pe, , for i',

|7 u=e„+e»+e„

(13.3)

(13.4)

If we have a static ft.uid or uniform motion, the e's are
zero and

pi p& p3 po.

Let us now find the relations between p,p;, along the
principal axes and along any arbitrary Cartesian system.
One may show from geometrical arguments that the
pressure along the x axis is related as follows to the
pressure along the principal axes:

eSQ

e„=——

BQ, BN

Bs

BQ~ 8Ny
e,„=e„,=—+

8$ Bx

(13.1)
p*.=pi1P+ p2f2'+ p34', (13 5)

where the l s are the direction cosines. From similar ex-

"In this section, as well as the next, po is not the equilibrium
pressure. In a Quid where both the e s and e s are not zero, po
will not equal the equilibrium value.
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pressions for p» and p„, we obtain the equality

p-+p-+ p-= pi+ p2+ pa.

The x, y, s system is completely arbitrary, and Eq.
(13.6) makes it sensible to define the average pressure,

av) as

pew 3 (pcs+ pgp+ ps') 3 (pl+ p2+ pa) ' ( 3'7)

Wang Chang and Uhlenbeck (W2) (see also Wang
Chang (W1)) recently developed equations for the
absorption and velocity dispersion, using terms (non-
linear) beyond those which were considered by Stokes.
These terms arise from an expansion of the kinetic
theory. Assuming that e of (11.8) equals 2.5, they find
that n of (11.13) for the combined effect of heat con-
duction and viscosity should be replaced by

For the static case, we see that

av pop

7 td M (Mrt)
o.=———it 1—3.68' —

(

10o, p ( pl
(13.12)

3g'+2' =0. (13.10)

General thermodynamic arguments may be presented to
show that the following equality or inequality must
hold.

&'+2&/3 & 0. (13.11)

The proof of this relation may be found in an elegant
paper by J. H. C. Thompson (T2a).

Basset (B3), in his treatment, derives Stokes's rela-
tion for gases by assuming that Eq. (13.9) holds. This
he claims is a third assumption required to obtain
Stokes's viscosity equations, i.e., Eqs. (13.3) and
(13.10). He considers that liquids are incompressible
and that p, =o.

To find a more rigorous proof of Eq. (13.10) we must
turn to models of the Quid used, and the subject sepa-
rates itself into two parts —the gas and the liquid.

(a) Stokes's Relation for a Gas

At present, it seems fair to state that the general
basis of the kinetic theory is accepted for real mon-
atomic gases, (J1). From the rigorous development of
the theory, one may show that Stokes's relationship
holds. The only assumption as to the nature of the gas
is that one has central forces between molecules. A
further assumption is usually made that the process
occurs at constant temperature. This, of course, is not
true, and would lead to a term arising from thermal
diRusion. The eRect of thermal diffusion is a separate
one which one would expect in the Grst-order approxi-
mation to be superimposed on vi.scosity. Polyatomic
gases have additional degrees of freedom which are not
considered in the usual development. Recently Grad
(G2b and G2c) developed a new kinetic theory of gases.
For monatomic gases Stokes's relation is not changed.

while for the dynamic case,

p. = po+ 3—(3q'+2-rt)p, e;;. (13.8)

Equation (13.8) is the core of the lengthy argument
regarding Stokes's viscosity relation. Is p, equal to po,
or are they not equal? Stokes's original proof in 1845
(S17) can hardly be considered rigorous. Stokes him-
self admits this in his original paper.

The original assumption is that

(13.9)

One would expect, therefore, that one is not allowed to
expand Stokes's equation (for a gas) and obtain correc-
tions to the conventional viscosity absorption term,
i.e., Eq. (9.5).

Experimental work by Greenspan (given in Sec. 21
below) indicates, however, that Stokes's approximation
gives better results for He gas than do "corrected"
expressions. For absorption measurements, the agree-
rnent between Stokes's theory and experiment is very
good; for velocity dispersion, both Stokes and higher
approximations are oR, the Stokes's form being slightly
inferior.

One must therefore, conclude that at present our
knowledge is too limited to do eRective work using
terms beyond those derived by Stokes. The work of
Wang Chang and Uhlenbeck indicates that one should
attempt to derive an expression for sound absorption
and dispersion from a generalized transport equation
rather than the cruder methods presented here. For
sound absorption, the transport equation, however,
does not seem to give reliable results at present. Further
experimental and theoretical work in this field is very
necessary. It is to be hoped that Grad's new develop-
ment will give better results than the previous theories.

(b) Stokes's Relationfor a Liquid,

The kinetic theory of liquids is at present being de-
veloped by Born and Green (B24) and by Kirkwood
(K5). A recent paper by Kirkwood, Bu8, and Green
(K6) indicates that the calculation of the viscosity
coefficients is still in a primitive stage. Indeed, they rely
on sound absorption measurements to estimate the
value of the bulk viscosity coefficient. Turning to ex-
perimental data, we find (Sec. 24) an agreement be-
tween theory and experiment for several simple liquids.
This indicates that Stokes's relation holds for some
liquids.

On the basis of this discussion, we must conclude
that Stokes's relation for liquids cannot at present be
established on theoretical grounds. Since the burden of
proof should be on the establishment of the relation, the
Stokes's relation cannot be accepted unconditionally.
As Basset has pointed out, the viscosity relation is a
basic assumption made when setting up the viscosity
equation for fluids. This procedure can be justi6ed
theoretically for real, dilute monatomic gases. Further,
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(Po).=K.~./'~o

and Eq. (13.3), we get

(14.1)

(p~~), = Kp,/po—+q'V' u+2qe;; (14.2)
;;=ge;;.

Equation (14.2) is then the basic acoustical equation of
state for a viscous medium. One should emphasize that
it is a tensor relation and when substituting into the
equation of motion, the term on the right must be re-
placed by terms involving tensors or dyads.

If we are interested in a plane wave traveling along
the x axis, q becomes q, =f(x), and

where

pe ~ pe
p.= ( Pn). =K. —+(2n+n')—

po 8t po

p,/pp ———BN,/Bx

(14.3)

by Eq. (2.11). The use of (2.11) means that a slight
approximation has been made in (14.3); it is the same

type of approximation. made when using (2.10) and
(2.11). This is equivalent to Eq. (3.1). Here p, is the
excess pressure at right angles to the x axis, which does
not equal the pressure in the other directions. By
equating Eq. (14.3) to Eq. (3.1), we have

f=g'+2q

Or, if Stokes's viscosity relation holds,

g'= —2g/3

f =4n/3,

(14.4)

(14.5)

(14.6)

the standard classical expression. "
We should like to combine viscosity and relaxation.

by assuming that (1.4) is not valid and considering ef-
fects within and between molecules. In general, one is not
permitted to make this separation. However, for many
substances, namely, gases, many liquids, and molecular

2 The standard derivations (see Lamb (Li; p. 646); Rayleigh
(R2; Vol. II, p. 315)) proceed in a slightly different manner. They
use Eq. (13.3) and the equation of motion, then in a final step
introduced the static equation of state (1.4). We have proceeded
differently to try to bring out the equation of state for the viscous
process to compare it with other processes.

there is good experimental evidence to support this
assumption in some gases and liquids, and this assump-
tion leads to no contradiction at present.

14. VISCOSITY AND SOUND ABSORPTION

Let us return to Eq. (13.2) and consider its connec-
tion with an acoustical equation of state. First, consider
the case where there is no relaxation. P~, P2, and P8 are
related to the force on an element of volume. These p's
have to be used in the equation of motion (2.10). Also

po has to be related to the condensation by Eq. (1.4)
or an equivalent relation. If the p s were related directly
to the condensation, then the viscous term of Eq. (13.2)
would not play a role. Using Eq. (1.4), i.e.,

solids, such a step may be useful. For substances
made of complex molecules, the phase lag between
pressure and density occurs because of intermolecular
processes and processes within the molecules themselves.
The intermolecular processes can be accounted for by
means of viscosity, while the intramolecular processes
can be accounted for by means of a relation between p,
and po'. When generalizing (14.2), we replaced Po by Po'
where po' includes both the static pressure and. the pres-
sure arising from the relaxa, tion process. (It is necessary
to interpret "within the molecules" quite broadly (Sec.
7).) The above approach is probably only a rough
approximation to the truth, which holds for gases and
probably for some liquids.

It is impossible to justify completely this last para-
graph. Indeed, for some substances, this separation
may be incorrect and useless, but there are some argu-
ments to support this concept.

For Gases:—As mentioned above, the rigorous theory
of real gases requires us to accept Stokes's relation, if
intramolecular effects are ignored. The method of
statistical thermodynamics gives us a model which
associates the internal processes with a relation between
p, and po'. It seems, therefore, completely logical to
make this separation for a gas. The general kinetic
theory of gases is preserved, yet the absorption is ex-
plained. More elaborate kinetic theories may be able to
arrive at a rela, tion between p, and p, .

For Liquids: —Here we know very little at present.
The calculation of Hall (Hl) and the model of a general
relaxation implies this separation, since relaxation is
something that happens within a molecule or a small
cluster of molecules. Further, data taken by I.ieber-
mann on ethyl formate can be easily explained by this
hypothesis (M2a).

We, therefore, assume that po' is related to p, by
means of a relaxation equation (Eq. (6.14)). Here po' is
no longer a static pressure. It is only the static pressure
for processes slow relative to the internal equilibrium.
The acoustic equation for viscosity and relaxation be-
comes

1 Bp, 1 f 8'p, 1 BP,
+

po B~ E8 po ~~2 E&

(n.
+~o] —+ — — P. )

=0. (14.7)
Kpo K pp Pp K )

This is identical to Eq. (11.15) and is the "derivation"
mentioned.

Tisza (T3) has suggested that one should force all the
effects into an equation similar to Eq. (14.3). g is the
ordinary shear viscosity, but 3g'+2g no longer has its
traditional meaning. By making this sum complex and
frequency dependent, one may obtain the experimental
results for gases. In this case, the sum will be dependent
on the type of process, i.e., isothermal or adiabatic. To
evaluate the sum, Tisza uses the conventional theory of
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E,' E,' (E," E,'i p-,,
p+

po MO ( E J po

(14.9)

For low frequencies,

thermal relaxation. This approach, while mathemati-
cally correct, seems less useful than the usual approach.
If one uses Tisza's method and adopts it to other hydro-
dynamical problems, one must keep in mind that his
evaluation of 3g'+2g is for an adiabatic process, and
that it may be zero for an isothermal process.

Frenkel and Obraztsov (F4) have suggested that one

may define a low frequency bulk viscosity by returning
to (6.14), i.e.,

pe 1 (pe
p,+~,

i

—p, i
=0. (14.8)

p, E,"
'

&p, E,,o'&

For a slow process p, =(E.'/p')p. , or we may write
(14.8) in the form

cessively decreasing order of magnitude as in standard
perturbation technique. Thus

P PO+P1+P2+ ' ' '1

P Pa+Pl+ P2+ ' ' '1
u=0 +ui+u2+

(15.1)

0+P&+P& dp
p

p2

pp—)I pdV=bm
dp,

Here p02' and po are the zero-order terms, i.e., equi-
librium pressure and density. Terms like pi, pi, and
u~ are first-order terms, etc. A product like pou~ is as-
sumed to be of first order while p~u~ is of second order,
i.e., in this respect on a par with p2, p2, and u2.

The usual acoustic wave equation is satisfied by terms
of the first order. Let us consider what can be done with
a problem involving second-order terms, such as the
energy density in a sound field (M3). The stored po-
tential energy for compressing a mass of Quid Des is

E.' pE,"—E,'~
Mp 4 E~

(14.10)
t (Po+Pi)= &nz ' dp. (15.2)" (po+pi)'

can be defined as a viscosity coefficient. To extend p"
to higher frequencies it has to be made complex and
frequency dependent. While one can make the mathe-
matical treatment of viscosity and relaxation similar by
using Eq. (14.10), the physical difference shown in
Fig. I-4 remains.

15. SECOND-ORDER EFFECTS

It is well known that the derivation of the standard
acoustical wave equation is based on certain approxi-
mations involving the neglect of terms usually consid-
ered too small to be retained; e.g. , terms like uV. u in
the hydrodynamic equations of motion and u Vp in the
equation of continuity. Such terms must be retained or
accounted for in some way when higher order effects are
considered. It is interesting to note the breakdown of the
analogy between acoustic and electromagnetic radiation
in this respect: no approximations are involved in the
derivation of the electromagnetic wave equation, since
it follows directly from the field equations. It is conse-
quently not permissible to draw conclusions about
second-order quantities in acoustics such as average
energy and radiation pressure, from electromagnetic
analogies.

Though much work on second-order acoustical effects
has been published by Eckart (E3), Bergmann (816),
and Westervelt (W3) among others, the present authors
believe that the field has not yet been sufficiently ex-
plored to justify a thorough review. This section there-
fore will be confined to a few general remarks"

A convenient method of dealing with second-order
effects has been used by Kckart. He expands the density,
pressure and particle velocity in series of terms of suc-

~' Further details will be published elsewhere.

For a nonabsorbing medium we can use the relation
p, = co'pi and obtain for the stored energy

(a) (b) (c) (d)

Am fco' Po)
Po(pi+P2)+I ——Ipi' .

pp (2 p)
(15.3)

In Eq. (15.3), the te'rms have the following meaning:
(a) is a harmonic term, (b) arises because of Eq. (15.1),
(c) is the term which is commonly given. We shall call
it the Rayleigh term, since it dates back to that period.
(d) is a term which, as far as the authors know, has not
been included previously. At least it does not appear in
the "standard" treatments.

For a liquid where c= 10' cm/sec, Po= 10' dynes/cm'
and pa~1, the ratio of (c) to (d) is about 1 to 10 ', and
the omission of (d) is correct. One may likewise show
that one can omit (b) for liquids. For a gas, c 3&&104,

p 10 ', and (d) cannot be omitted. To obtain the
average of (15.3) for a gas one needs more exact solu-
tions than are usually used.

A very complicated problem exists in setting up the
viscosity tensor in the equation of motion for a Quid.
The viscosity coefficients are highly dependent on the
temperature, and, since one is interested in an adiabatic
process, the variation with temperature must be taken
into account. Correcting the viscosity coefficient in the
tensor, i.e., expanding g and g' in Eq. (13.3) in terms of
p~, leads to very complicated equations which have not
been studied fully. Finally, it would seem advisable to
include relaxation in any development of second-order
acoustical effects.

"p0 is the equilibrium pressure and therefore has a different
meaning in this section from p0 of Secs. 13 and 14.
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In conclusion we should like to mention Eckart's
(E3) theory and Liebermann's experiments (L11).
Using these data, one may conclude that Stokes's vis-
cosity relation does not hold, and that its breakdown is
sufhcient to explain the absorption in liquids. While this
theory and experiment are of major importance, they,
by themselves, do not resolve the problem. The reason
for this conclusion is that when one carries out Eckart's
theory a little further, one can show that a relaxation

eGect combined with viscosity in a manner similar to
(14.7) can equally well explain the results (M2a).
The recent work of Nyborg (N2) on acoustic streaming
adds weight to this conclusion. Further, the viscosity
idea alone cannot explain Liebermann's experiment on
ethyl formate, or the work of Lamb and Pinkerton (L2)
on acetic acid. More work is required here, before one
fully understands the phenomenon of streaming and its
relation to absorption.

Chapter III. Experimental Methods of Sound Absorption Measurements

Sound absorption measurements can be classified
roughly into three groups: (1) mechanical, (2) optical,
and (3) electrical. Although some absorption measure-
ments have been made on the basis of thermal effects,
notably by Richardson (RS), their reliability is open
to some question, and they will not be considered
here."We shall give here only a brief outline of the most
frequently used methods, referring the reader to par-
ticular papers for the experimental details. We shall also
endeavor to classify the methods by range of usefulness
and accuracy. In this way we shall be better able to
judge the validity of the experimental measurements.

16. MECHANICAL METHODS

The mechanical method which is most frequently
used is based on radiation pressure. When a rigid wall
confronts a sound beam, there is a difference between
the pressure at the wall and the pressure in the same
medium at rest, behind the wall (i.e., the pressure in the
medium in the absence of the beam). This net pres-
sure is known as the Langevin radiation pressure,
and is approximately equal in magnitude to twice the
energy density of the oncoming sound wave (B18, B34,
H7). This net pressure can be employed to measure a
quantity proportional to the sound intensity in several
ways. For example, if the sound is allowed to rise verti-
cally in a tank of liquid, a cone or plate may be sus-
pended in the sound field, and its apparent weight
measured both in the presence and absence of the sound
beam (C4, H14). In a variation of this method, a hori-
zontal sound beam may be used to displace a plate or
bead, either on the end of a long wire (F3), or mounted
as the vane of a torsion balance (A3). Finally, the mov-
able vane has been made one plate of a condenser, and
the intensity measured by the change in capacitance of
the system (B38).

The successful use of these mechanical methods is
confined almost exclusively to liquids. As a class,
measurements of this type suRer from five general
difficulties:

1. Surface tension or other retarding forces which act
"A refinement of this technique, involving hot-wire inter-

ferometry, has recently been reported by Matta and Richardson
(M4). This instrument is believed by its designers to give very
accurate measurements of the absorption coefficients in gases.

E= Pg /2poc (16.1)

where c is the velocity of propagation and po is the mean
density of the liquid. If the pressure in the medium is
not to fall below zero, the excess pressure should not
exceed the hydrostatic pressure. " If this latter is the
atmospheric value, then for water, E 20 dynes/cm'.
Since the mean intensity I is given by I=Ec, this limits
us to intensities no higher than about 0.3 watt per sq cm.

4. As its frequency is lowered, a sound beam diverges
more and more, so that a detector of fixed size will

"If a dissolved gas is present, the excess pressure should not
exceed pg —p~ where pg and py are the atmospheric and vapor
pressures respectively. This has been pointed out by Hoyle and
Taylor (333).

on the wire or detector may easily be of a magnitude
comparable to that of the forces being measured (which
usually are of the order of 10 dynes). These extraneous
forces can be reduced in magnitude, but are never
entirely eliminated. Their eRect is to cause a "sticking"
of the detector in the vicinity of its balance point, thus
decreasing the accuracy with which the apparent weight
changes can be measured.

2. Specular reflection from the walls of the container,
if it is too narrow, or from the detector, will result in
standing waves, and lead to grossly incorrect results.
This was the case in some of the early work, particularly
that of Sorensen (S11),and Hartmann and Focke (HS).
A rather striking confirmation of this difficulty was
given by Claeys, Errera, and Sack in the article pre-
viously cited (C4). These observers measured the ap-
parent absorption with tanks of diRerent diameters,
and were able to get almost any desired (higher) value
for the absorption coefficient by using a sufficiently
narrow container. As the diameter of the container was
increased, the apparent value of the absorption coeffi-
cient fell off to a constant value.

3. It would seem that the first error mentioned above
could be minimized by increasing the sound intensity.
However, high intensity can cause cavitation, in which
case a larger fraction of the energy of the beam is lost
than in simple propagation. Cavitation can be avoided
if the instantaneous pressure in the medium is not
permitted to fall below zero. The average energy density
E in a plane wave is related to the maximum excess
pressure p, by
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eventually fail to intercept the entire beam. Conse-
quently, the simple formula for plane waves

I ~
—2nx (16 2)

cannot correctly be employed. (Here Io is the sound
intensity at the plane x=0 and I is the intensity at
x= x.)

5. Hydrodynamic flow (a manifestation of quartz
wind) can itself exert a net force on the detector, giving
rise to an incorrect value of the radiation pressure.
This can be reduced by placing a thin Cellophane screen
(H14) directly in front of the detector. This serves to
stop the liquid Row while it allows the sound to pass
through with small loss.

These various difhculties limit the radiation pressure
method to the use of moderate sound intensities at high
frequencies. For most liquids, careful measurements
with the radiation pressure method can be made with a
probable error of &5 or 10 percent at frequencies above
10 megacycles. In the region 3-10 megacycles, the
measurements are less trustworthy, except in liquids of
fairly high absorption. (In liquids of very high vis-
cosity, the detector cannot move with sufhcient freedom,
so that an upper limit of usefulness also exists. ) Few if
any measurements made below 3 megacycles can be
relied upon. "

17. OPTICAL METHODS

Most optical measurements of the absorption coeK-
cient have been carried out by means of a method de-
veloped by Biquard (B20), based on the Debye-Sears
(D2) effect. While the number of measurements made
recently by this method is not large, it is still a useful
method within certain ranges of frequency. "

In the Debye-Sears experiment, Fig. III-1, light from
a narrow slit traverses a beam of sound which is at
right angles to the light. The light is then focused on a
screen. The successive compressions and rarefactions of
the sound beam alter periodically the refractive index
of the liquid. Thus the sound beam acts as a diGraction
grating, and a series of parallel diffraction lines are pro-
duced on the screen. The greater the intensity of the
sound beam, the more the light is diffracted away from
the main beam (i.e., the central maximum). In the ap-
plication of Biquard, the light in the main beam falls on
a photocell, and a current is measured which is propor-
tional to the sound intensity. If the intensity of the
sound at a distance x cm from the crystal is Ioe ' ', then
the loss in intensity of the light beam at this point is

"Strictly speaking, any such classification of results must take
the absorption into account, since as it increases, the errors due to
(2) and (3) become proportionally less signi6cant. As a general
rule, measurements in which the values of the amplitude absorp-
tion coeKcient are larger than 0.05 cm ' are quite reliable when the
tank is at least 10 cm in diameter; values in the range 0.01 cm '
to 0.05 cm ' are less satisfactory, and values below 0.01 cm ' are
usually invalid in a tank of this size.

"Within the past year, however, D. Sette (S6a) has published
a considerable number of measurements obtained by an optical
~et;hog. These results appear to be of high accuracy.

1—(8/8O) =kIoe ' *. (17.2)

In the measurement 0 is measured as a function of x.
If the equation is put in the form

ink1 (8/80)] =1nkIO 2(x» (17 3)

then. a graph of ln/1 —(8/80)) vs x will have a slope of
—2n, so that the absorption coeKcient can be de-
termined.

This measurement suGers from many of the same
limitations as the mechanical method. Thus, it assumes
a plane wave with constant intensity across the wave
front. As the frequency decreases, the divergence of the
beam increases, so that the method is not a practical
one at low frequencies.

SOUND
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SOURCE
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FIG. III-1.Sound absorption measurement by the optical method.

Multiple rejections and high intensity are responsible
for the same type of errors here as in the mechanical
method. In addition, high intensity will cause appreci-
able excitation of higher order images, in which case
some light may be diffracted back into the main beam.
More simply, the loss in light intensity in such a case is
no longer directly proportional to the sound intensity.
Finally, alignment problems are very important. The
light beam must be narrow, and accurately perpendicu-
lar to the sound beam; the medium must be suSciently
transparent so that appreciable light can penetrate it.

More recent observers have made improvements in
the general technique. Burton (B37) employs a mono-
chromatic light source and an electron-multiplier tube
so that much narrower light beams and lower acoustic
intensities can be used.

The frequency range over which optical methods can
be trusted is similar to that for mechanical methods.
Where comparison by method is possible in a given
liquid, good agreement is obtained by most observers
using optical methods in comparison with other
methods. Below 10 megacycles many of the measure-
ments which are available are not in good agreement
with those of other methods. Most of these lower fre-

"P js an experimental constant not related to the previous k's.

proportional to this quantity, and hence if Jo is the
intensity of the transmitted light in the absence of
sound, and J is the intensity in the presence of sound,

1—(I/Jg) =kIoe (17.1)'4

The output 0 of the photocell is directly proportional to
the incident light intensity. Hence
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quency measurements, such as those of Parthasarathy
(P1), are. older works, where the techniques were less
satisfactorily developed. The recent works of Burton
(B37), Willis (W7), and Sette (S6, S6a) indicate that
agreement with accepted values in some liquids exists
at frequencies as low as 4 mc.

Hydrodynamic Qow is also a serious problem with the
optical method, since it leads to a sizeable variation in
the optical properties of the medium. As mentioned
above, a Cellophane screen can be used to decrease the
amount of this Qow.

18. ELECTRICAL METHODS

In this section are grouped all methods in which a
microphone, piezoelectric or otherwise, is used to receive
sound signals. There are four general methods used to
determine the absorption coefficient with such equip-
ment and each of these will be discussed in turn.

(a) Ieterferometric Methods

In the basic interferometric method, a plane quartz
crystal is used as a transducer. A plane reflector is set
accurately parallel to the transducer at a distance which
can be varied. If sound waves emanate from the trans-
ducer, they will be reflected from the reflecting surface.
If the reflected wave returning to the crystal is 180' out
of phase with the signal emanating from the crystal, the
disturbance at the crystal will be reduced essentially to
zero. This will produce a considerable rise in the plate
current of the output stage of the driving oscillator (or
in the plate current in the tube). Since the problem is
essentially one of standing waves, it is clear that a
maximum in the plate current will be produced every
time the reflector is moved a half-wavelength. " The
interferometer is therefore of fundamental importance
in the measurement of the sound velocity.

The instrument has also been used to measure ab-
sorption. The variation in the current reading in the out-
put stage of the driving oscillator was shown by Piele-
meier (P5) to be proportional to the excess pressure in
the sound beam at the face of the crystal. If now the
reQector is moved through a distance x, the path length
is increased by 2x, so that the pressure of the returning
wave wiH be decreased by the factor e ' '. Hence, by
registering the current at two maxima, the absorption
coefficient can then be computed.

The work of Hubbard and his associates (A2, H15,
H16, S14, S16) indicates that the current is a more
complicated function of the absorption coefficient, the
reflection coefficient of the rejecting surface, and the
distance moved by the rejecting plate.

The interferometer has become a standard instru-
ment for absorption measurements in gases. It has also

'5 A more rigorous treatment by Grossmann (66) indicates this
is not strictly true, Because of the curvature of the wave fronts,
the distances between successive maxima near the crystal are
slightly larger than X/2; A correction term has been calculated
by him,

had some use in liquids. Recently, Hunter and Fox
(H18, H19) have developed an interferometer using the
liquid-air interface as the reflecting surface.

The use of an interferometer is limited by the follow-
ing difficulties:

1. Imperfect alignment of the crystal and the reflect-
ing surface.

2. Departure of the sound beam from a plane wave.
Pumper (P9) has shown that a correction can be made
for deviation from plane waves, and that this correction
is essentially a constant, experimentally measurable
term (at a given frequency) which is to be subtracted
from the measured absorption value to give the correct
value.

3. Lack of adequate knowledge concerning the re-
flection coefficient. According to Herzfeld (H11) and
Hubbard (H16) the reflection coefficient is modified by
heat conduction, so that separate measurements must
be made of this quantity.

As a general estimate, interference methods appear to
be capable of measuring absorption coefficients ac-
curately, provided that the values of o; are greater than
about 0.1 cm '. In general, older values are less reliable,
especially in gases, because of deviations of the reRec-
tion coeKcients from theoretical values, and because of
the presence of impurities in the gases under measure-
ment. This latter difficulty will be discussed more fully
later (Sec. 22).

(h) The Direct Method

In the so-called direct method, a microphone is
located on the axis of an ultrasonic beam, and excess
pressure or intensity is measured along the axis. If the
beam approximates a plane wave, the decay law
I=Ioe ' may be used to evaluate the absorption. If,
at the other extreme, the waves are spherical, the law
I= (Ie/r')e ' " can be employed.

While this method has been widely used in both
liquids and gases, there are many difficulties attendant
upon it, and frequently neither of the above formulas
can be employed. For example, if the transducer is
assumed to operate as a piston-like source, one can show
that Fraunhofer diffraction takes place within a dis-
tance a'/X of the crystal (a=radius of transducer,
A= wavelength of sound) while the beam diverges, and
a typical Fresnel pattern is obtained at much larger
distances. King (K2) and H. Born (B23) have obtained
approximate theoretical expressions for the radiation
field and these formulas may be employed to determine
the absorption. Corrections must also be included for
the finite size of the microphone (W6), if the wave-

lengths are not very long compared with the dimensions
of the microphone.

Standing waves are again a problem here (as they
must be for all methods employing continuous waves).
Where the beam is well defined, it is possible to tilt the
microphone so that it is not quite perpendicular to the
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axis of the beam. This wiH reduce standing waves from
the front face of the microphone. To reduce reQection
from walls, various absorbent materials have been used.
The problem here is more serious in gases, where the
reaction coefficients are larger than in liquids.

The frequency range over which successful measure-
ments have been made is not very great, except in water.
The method has been used from 1 mc down to 50 kc in
measurements in water, where a medium of very great
extent is available. In the laboratory, measurements
have been made in the range 1 to 4 mc. Some of these
measurements are rather inaccurate. The absorption is
low and since e is computed as a log of a number which
almost equals unity, it does not take a very large error
of measurement to make the result meaningless.

In gases, the frequency range over which measure-
ments are made is much lower due both to the higher
absorption values in gases and to the shorter wave-
lengths. Measurements are made mainly in the region
20—150 kc.

A variation of this method has been employed by
Knudsen and Fricke (K14). From the measurements of
other observers Le.g., van Itterbeek and Thys (V3)] it
appears that absorption in nitrogen is almost exactly
classical. (See Sec. 22.) The absorption coefFicient of
nitrogen can then be used as a standard. The intensity
of sound is first measured by a microphone with a
nitrogen-filled chamber, and again with the chamber
filled with the test gas. Corrections are made for wall
absorption. While there is a small difference in the
results obtained by Fricke (F6) by this method for COs
and those obtained by Leonard (L5) for the same gas,
it is quite probable that the diRerence is due entirely
to the presence of impurities.

(c) Pulse Methods

Two general objections may be raised against all
methods involving continuous waves. In the first place,
there is always the possibility of the creation of stand-
ing waves, which would then lead to incorrect values for
20.. In the second place, the amount of energy intro-
duced into the medium may change the local tempera-
ture somewhat, leading to refractive effects, since the
temperature in the center of the beam would be higher
than on its edges. In addition, the changed temperature
would also bring it about that measurements would
actually be made at a higher temperature than that
recorded by a thermometer located outside of the beam.
Both of these difficulties are avoided by the use of pulses.
In the arrangement of Pellam and Gait (P2) a quartz
transducer and a polished reRector are set up, parallel
to each other, as in the interferometer method. The
high frequency voltage applied to the transducer is
pulsed, with a repetition rate of the order of 1000 per
second. The width of the pulse in this particular case
was 1 microsecond, with a frequency of 15 mc. Thus the
average power is only 1/1000 that of a continuous
signal of the same amplitude.

The signal is reRected from the polished surface and is
picked up by the quartz, now acting as a receiver. If
the distance between the transducer and the reflector is
appropriately chosen, (relative to the repetition rate),
the reRected signal will arrive while there is no trans-
mitted pulse so that standing waves are entirely
avoided. By the use of suitable electronic equipment,
the initial and the rejected pulse may be compared on
an oscilloscope. The customary technique (P2) is to
pass the initial pulse through a calibrated attenuator.
The attenuation required to reduce the size of the initial
pulse to that of the rejected one measures the power
lost in transmission, plus reQection losses. If the reflector
is now moved through a distance x, parallel to the axis
of the beam, the path length is increased by 2x. A graph
of attenuation es 2x will then permit a calculation of the
absorption coefficient.

The theory of measurement at this point becomes
identical to that of the direct method. Regions of Fraun-
hofer and Fresnel diGraction must be treated differently.
An adequate treatment of this problem is given by
Pinkerton (PS).

One problem raised by the pulse method is that the
use of a narrow pulse increases the spread of frequencies
in the Fourier spectrum of the pulse. A simple calcula-
tion (P3) shows however that for pulses containing at
least 15 cycles (at a frequency of 15 mc), this error is no
greater than 1 part in 250.

Inherently, the pulse method is the most accurate
method of making absorption measurements —pro-
vided that the experimental procedures are sufficiently
refined. While observers using pulse techniques estimate
errors as being below 15 percent, and frequently of the
order of 2—3 percent, large discrepancies have appeared
in certain measurements, even though very similar
apparatus and procedures have been used. "

So far, pulse techniques have been applied mainly
to liquids and solids. In the latter field, they form in
fact the principal method of measurement. The fre-
quency range of pulse measurements extends from
about 1 mc up to 200 mc and even beyond.

(d) Reverberatiom Methods

The methods discussed so far have been strongly
limited in their application to frequencies of the order
of a megacycle and higher in liquids, with a lower
range possible in gases. The use of the reverberation
method in liquids extends greatly the lower limit of
frequencies which can be employed. This method was
first employed by Knudsen (K13) for gases, and has been
extended to liquids by Leonard (L6), Liebermann and
Wilson (L9), Mulders (M10), and Moen (MS).

In principle, the method rests on the measurement of

~ An example of this is given by the values which have been ob-
tained for ethyl alcohol. Measurements by four observers, all
using the pulse technique, include the following values of n/v'X 10"
cm ' sec'. Pellam and Gait (P2)23, Pinkerton (P8)52, Rapuano
(R1)54, Teeter (Tj.)225. v is the frequency.
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TABLF III-I. Range of absorption measurements in liquids.

Method Range of a in cm ~

Corresponding
frequency
range in

water
(in mc)

Mechanical
Optical
Interferometric
Pulse
Reverberation

0.001 (C3) to 1 (817)
0.02 (B22) to 5 (B1)
0.05 (H17) to 4 (H17)
0.05 (P3) to 310 (R1)
10 ' (L7) to 0.003 (M8)

2 to 60
7 to 140

15 to 130
15 to 800
0.15 to 3

the reverberation time in a given enclosure. In the ap-
plication of Liebermann and Wilson, a brass sphere
containing the liquid is excited in a radial mode of
vibration by a crystal attached to the surface of the
sphere. The transmitter is shut off and the same crystal
is used as a detector. During this stage spherical waves
are repeatedly reRected from the walls of the container,
with the energy of the beam gradually being dissipated
by the absorption in the medium and the walls. The
rate at which the intensity falls off is then a function
of these two quantities. If a radial mode is used, and if
the brass sphere has a thickness of an odd number of
quarter wavelengths, the energy transmitted through
the walls is essentially negligible. Under these condi-
tions, the absorption coefficient n will be given by

ct= (1/ct) ln(Ip/I, ), (18.1)

where Io is the initial sound intensity, I& is the intensity
t seconds later, c is the speed of sound. The theoretical
analysis of this problem was given by C. F. Eyring (E9).
This method or a slight variation of it has been success-
fully applied in measurements in the frequency range in
liquids from 24 kc to 200 kc. The frequency limitations
are the following. At very low frequencies, the absorp-
tion coefficients are so small that any error in calculating
wall losses will be significant. At high frequency, reso-
nant modes lie very close together so that it is difficult
to excite a radial mode only. If nonradial modes are
excited, wall transmission will become more compli-
cated and in general its magnitude becomes greater.
In addition, the decay time gets smaller and therefore
more difficult to measure accurately.

The arrangement by Mulders makes possible meas-
urements in liquids in the somewhat higher frequency
range of 500 to 1500 kc. In this arrangement, a fre-
quency modulated source is employed and as many as
104 modes of vibration are excited. Thus the sound
becomes essentially diffuse. Many corrections must be
employed, but the results for water are in substantial
agreement with those of other methods. The method of
Moen also enables an extension of the frequency range

up to 1 megacycle.
The diffuseness of the sound was obtained by Knud-

sen in gases by employing a motor-driven paddle.
In all low frequency measurements, a particular

problem is presented by the formation of bubbles. The

presence of bubbles increases the absorption and also
produces scattering so that the absorption coef6cient
which is measured may be considerably larger than that
of the pure liquid. Since the value of n in water at 50 kc
is of the order of. 0.75&10 neper per centimeter, it
does not take the presence of many bubbles to make the
results wholly meaningless. Elaborate procedures are
required to avoid any dissolved gases in the liquid.
This leads to some uncertainty as to the validity of open
water measurements at these same low frequencies,
since such precautions cannot be taken.

19. SUMMARY OF METHODS

It is clear from the foregoing that no one method will

give satisfactory results over the range of frequencies
experimentally available. The following should serve
as an approximate criterion for measurements.

(a) Gases

In general, it appears that systematic errors in the
various methods employed today are small in compari-
son with the error caused by the presence of minute
amounts of impurities. These will not only change the
magnitude of the total absorption at a given frequency,
but may also have a profound effect on the relaxation
frequencies. Thus the presence of only 0.01 percent of
Hpo in CO2 doNMes the relaxation frequency (K14)
(see Sec. 22). In comparing experimental results by
different observers, greatest credibility can be given in
general to the one obtaining the lowest relaxation fre-
quency. At low frequencies reverberation methods
appear to be most satisfactory. From 20—200 kc, the
direct method has been quite successful, while for
measurements in the highest frequency ranges, inter-
ferometry is employed. It should be pointed out that in
gases, increase in frequency or decrease in pressure are
essentially equivalent. Using an interferometer at low

pressures, Zartman (Z1) has obtained consistent results

up to 85 mc/atmosphere. At atmospheric pressure, the
highest frequency at which measurements have been
made are those of Stewart (S14) in hydrogen (up to
6 mc). Both of these sets of measurements were made by
interferometric methods.

(b) I.t',cImi,ds

Because the absorption in liquids varies more widely,
from one substance to another, it is more convenient to
express ranges of usefulness in terms of measured values
of n, citing the frequency range in water at room tem-
perature which corresponds to these values. This is done
in Table III-I for the principal methods of measure-
ment. It is to be noted that the absorption has not
necessarily been measured in water over these frequen-
cies. The values are listed merely for comparison pur-
poses. In addition the range of frequencies measured in
open water has been omitted, since this constitutes a
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rather special case which obviously cannot be repeated liquid) is the obtaieilg of a value of cr/vs for mater (above1
for any other liquid, It should be pointed out that the megacycle) rohich agrees with the universally accepted
standard criteriors for the accuracy of a given method (im a value.

Chapter IV. Experimental Results in Gases

n 2~' 4 y —1rt+-
v 'yppc 3

K )

Cy

(20.1)

where ps=mean pressure, 7=ratio of specific heats,
p=coeKcient of shear viscosity, K=thermal conduc-
tivity, c„=specific heat at constant pressure, and
v= frequency. Equation (20.1) is a combination of

TABLE IV-I. Ratio ot a heat conduction/a shear viscosity,
computed at 20'C.

20. INTRODUCTION

The absorption coefficient attributed to shear vis-
cosity and heat conduction (the so-called classical ab-
sorption coefFicient) as calculated by Stokes (S17) and
Kirchhoff (K3) may be written

radiation is even less significant at higher frequencies
and may therefore be neglected.

In making absorption measurements in gases, it is
generally more convenient to employ a constant fre-
quency of sound and vary the gas pressure, rather than
vice versa. It is therefore more meaningful to give the
experimental values of np/vs instead of n/v'. In this
case, it is desirable to use v/p as the abscissa of the
graph of the absorption, rather than v. (The reason for
this choice will become clearer later when it is shown
that for a relaxational effect, an increase in pressure
has the same effect as a decrease in the frequency. )

In the case of a monatomic gas, we should expect
o..p/v' to be independent of either p or v, since no relaxa-
tional eRects are present.

21. MONATOMIC GASES

Gas

Argon
Helium
Neon
Hydrogen
Oxygen
Nitrogen
Air
Sulfur dioxide
Ammonia
Carbon dioxide

0.77
0.216
0.75
0.052
0.47
0.39
0.38
0.27
0.110
0.31

1.08
0.309
0.07
0.117
1.14
0.96
0.99
1.10
0.453
1.09

cr/r~)(10» cm 1sec2
heat conduction viscosity crhc/~vis

0.71
0.70
0.70
0.44
0.41
0.41
0.39
0.28
0.25
0.24

A considerable number of measurements have been
made in argon and helium over a wide range of fre-
quencies and pressures. Here as elsewhere in gases, the
presence of impurities, and a lack of accurate knowledge
of the radiation field led to many errors in the results
of the earlier investigators. Among the values which are
quoted, the results of Van Itterbeek and Mariens (V5)
for helium are probably in error due to the departure
of the character of the sound beam from a plane wave.

(a) Helium

Eq. (3.16) and (4.8a) of Chapter I. Use has been made
of the condition that f =4/3rt and that E=p (see
Sec. 11a).

In general, the viscosity term is somewhat larger than
that due to heat conduction. The magnitudes of these
two effects have been computed at atmospheric pres-
sure for several gases from standard physical data
(I1, L4), and the results are shown in Table IV-I.

In addition to viscosity and heat conduction, a
number of other causes of absorption have been dis-
cussed in the past, and may be added to the "classical"
group. Chief among these are the thermal radiation
losses (see Sec. 5, above), and the losses due to diffusion
in a gas mixture (C1, R8). The radiative absorption
coefficient, as calculated by Rayleigh (R2, v. II, p. 24)
and Stokes (S18), is frequency independent. In air the
absorption due to the interdiRusion of the nitrogen
and oxygen molecules must also be considered. The
sizes of these four eRects in air are listed in Table IV-II.

Thus, at a frequency of 6 kc, the absorption resulting
from radiation is only about 0.5 percent of that which
results from shear viscosity. The absorption caused by

(20'C, atmospheric
pressure)

Shear viscosity
Thermal conduction
Diffusion
Radiation

n/r»(10» Cm 1 SeC2

99
38

7.4
0.42 Lat 6 kc (R9, p. 57)j

~~ Copies of the numerical data on which this and other graphs
in this paper are based, can be obtained from the authors.

The results of the various experiments in helium have
been put in the form of Eq. (20.1) and are plotted in
I'ig. IV-1.37 These experimental values are recorded at
temperatures in the ranges 15—25'C. No attempt has
been made to adjust for this variation. The velocity of
sound in helium was taken to be 1.01X10' cm/sec. The
classical value of np/v' is computed from standard
critical (I1) (L4) data at or near 15'C and equals
0.545&10 " cm—' sec' atmosphere.

It can be seen from the graph that the classical ab-
sorption value for helium is substantially verided in the

TABLE IV-II. Values of n/v' for various types of
classical absorption in air.
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C' = internal molar heat capacity, C„=molar heat
capacity at constant volume, E=molar gas constant,
and coo =angular relaxation frequency. We recall the
more rigorous expression (6.16) which can be put in
the form,

I
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(22.4)

Fro. IV-1. aP/v' vs v/P for helium.

range above 2 mc/atmos. The rise in the values of
esp/v' at the lower end of the frequency scale is in all
probability due to experimental errors. "

The falling off of the curve at high values of v/p can
also be explained on the basis of classical behavior
(see Sec. 11). Greenspan has computed the effect of
viscosity and heat conduction when higher order terms
are considered. The solid line at the high values of v/p
represents the numerical solution of the hydrodynamic
equation. The agreement with experiment is thus shown
to be excellent. It should be emphasized that this is
obtained from the classical equations, without altering
the expression for viscosity. It therefore resembles the
behavior found experimentally in highly viscous liquids
(see Sec. 28).

(b) A rgon

The rrp/v' data for argon are plotted in Fig. IV 2.
The computed value of the classical np/v'= 1.88X 10
crn ' sec' atmosphere at 20'C. While there is a con-
siderable spread of values in the 6gure, they Ruc-
tuate about the classical value. The spread is occasioned,
at least partly, by the spread in temperatures at which
the measurements were recorded. The behavior of
crp/v' at large v/p has been computed as in the helium

case, and is plotted on the graph.
On the basis of these measurements one can conclude

that the measured absorption in monatomic gases is
entirely accounted for by the classical theory. "

(22.5)

-C'
~

C„'(C."+8)
(22.6)

nX = s.aor/(1+ oPr') . (22.7)

It has been observed by van Itterbeek and Mariens
(V2) and also by Keller (K1) that the relaxation time

of Sec. 6 is inversely proportional to the pressure. This
result is a consequence of the fact that the reaction rate

s1/r is directly proportional to the number of mo-
lecular collisions which occur per second, and this latter
quantity is in turn directly proportional to the pressure
(see Sec. 8c). We may therefore rewrite Eq. (22.1) in
the form

A '(v/p)

1+8(v/p)'
(22.8)

Hence, both classical (Eq. (20.1)) and relaxational
(Eq. (22.8)) effects can be plotted in a graph of p vs v/p.
The expression for the velocity may be written in a
similar form. We now consider specific cases.

C,' is the low frequency value of C„and C„ is the high
frequency value. %ith the exception of hydrogen, the
value C'= C„v—C„" is quite small, so that r'= r, e«1,
C."=C„and

22. DIATONIC GASES

The absorption per wavelength for a thermal relaxa-
tion may be written approximately (see Secs. 6 and 7):

3-

~ PUMPER (P9)
o KELLER (K I)
+ VAN I T T E REIEEK (V I}
d ZARTMAN ( Z I)—THEORE T ICAL VALUE

where
A = sRC'/C. (R+C„), (22.2)

Is= o X=Arvo~/(~o'+dv'), (22.1)
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"Discussions of these errors may be found in Halpern (H2) and
Pumper (P9).

39 A recent paper by E, Skudrzyk (Si) has advanced the hy-
pothesis that Stokes's assumption (that the dilatational viscosity
is equal to zero} fails even for ideal monatomic gases. On this
basi's he adds 50 percent to the viscosity term in the expression for
the absorption coefficient (changing 4/3v to 2v) . The experimental
evidence collected here appears to be contrary to such a hypothesis.

I Q IQQ
F-REQUENC Y IN MC/A TMOS

IQOQ

FIG. IV-2. ap/v~ vs v/p for argon.
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c„'/cp' ——1.19,
ts = (cr) ) .=0.273. (22.9)

These quantities should be virtually independent of
temperature in the range above O'C, although the re-
laxation frequency itself may be expected to depend
upon the temperature. The principal results are shown
in Fig. IV-3 and Fig. IP-4. In Fig. IP-3 the smooth
curves have been drawn to give a best fit to the ex-
perimental data. The values plotted in Fig. IP-4 are
for the excess absorption per unit wavelength, i.e.,

I.I5-

C'
C 2

I.05-

LOO I 00 ~ I—mc/Gtmps.

I

IOO

Flc. IV-3. Sound velocity in hydrogen.

(a) Hydrogen

The internal speci6c heat of hydrogen is due to the
rotational degrees of freedom. The characteristic tem-
perature for vibration of the hydrogen molecule is
6140 A, which is so high that the vibrational specific
heat is entirely negligible at room temperature. "The
characteristic temperature for rotation on the other
hand is 171'A, so that many energy states are excited
at room temperature. Epstein gives the molar heat
capacity due to rotation as 0.978 at 293'A (A=molar
gas constant). Therefore, using the exact relations
Eq. (22.3) and Eq. (22.4), one should expect

5 IO
MOLECULAR CONCENTRATION —(PARTS PER IOOO )

FIG. IV-5. Effect of impurities on sound absorption oxygen.
(L. and H. Knotzel (K12).)

above the classical value. The results of Zartmann
indicate conclusively that the velocity dispersion takes
place over the frequency range predicted theoretically. "
The temperature dependence is reflected only in the
value of the relaxation frequency which is approxi-
mately 10.0 mc at 25'C Stewart (S14) and Rhodes (R3)
and 13.6 mc at 36.5'C Zartmann. (Z1).

The values for the absorption coefficients shown in
Fig. IV-4 are somewhat high (compared to the theoreti-
cal value) and have a greater spread. Nevertheless,
the results, especially those of Zartmann, indicate a
relaxation frequency of the order of 10—12 megacycles.
Stewart attributes some of her high values to misalign-
ment of the crystal in the interferometer. The data
points are too widely scattered to form a de6nite con-
clusion on the maximum experimental value of p, .

In summation, the results in hydrogen give satis-
factory support to the theory of a relaxation of the
rotational degree of freedom.

(h) Nitrogen, Oxygen

.375

25
v

.I25-

I.O
m&/atmosP

. Zat a. (ZI)
~ Stewart (5 I+)
~ Curve fitting

Zartman's data

IOO

The study of relaxation eGects in diatomic gases is
complicated by the very small values of the internal
molar heat capacity C' and the consequently small
values of p, In addition, the relaxation frequency is
generally a very low one, so low in fact that it might be
well below the frequency range in which sound ab-
sorption can be accurately studied. A useful technique
however has been developed by Kneser and Knudsen
(K9) to bring the maximum values of ts within. the range
of measurement. Their experiments have shown that the
presence of an impurity in the gas increases the relaxa-
tional frequency v mitholt a+ecting the value of ts,„.
The absorption is therefore measured at a number of
di6erent concentrations of the impurity and the curve

Frc. IV-4. n'A ps v/p for hydrogen.

"The texts of Slater (SS) and Epstein (E5) should be consulted
for a more detailed discussion of this topic. The reader should
also recall Sec. 7 of this review.

4' None of the observers measured the velocity at low (disper-
sion free) frequencies. The curve is drawn with an assumed
Vo= 1316m/sec at 25'C and 1341 m/sec at 36.5'C. An error here
could shift the values of the relaxational frequencies somewhat.
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TABLE IV-III.

pm» (thermal)
)&104

Gas T'C Exper. Theoret. vm(exper. ) Observer

that a reasonable agreement has been obtained between
theory and experiment, although more extensive and
more accurate data would be useful here. 4'

23. TRIATOMIC GASES
Nitrogen
Oxygen
Oxygen
Oxygen
Oxygen

20 4
19' 52
20' 54.5
22' 54
55' 98

2.5 Schmidtmuller (S2a)
50+10 cps Knotzel (K12)

51 Kneser and Knudsen (K9)
170 cps Oberst (01)

102 Kneser and Knudsen (K9)

for v is extrapolated to zero concentration of the im-
purity. This method is somewhat inaccurate, since the
relaxation frequency changes rapidly with concentra-
tion, but it does serve to give an upper bound to that
frequency. An illustration of this behavior is shown in
Fig. IV-5 which is taken from the results of H. and I.
Knotzel (K12). Here the relaxation frequency v for
oxygen is plotted as a function of the ratio of molecules
of impurity to the total number of molecules in parts per
mil (h). Both ammonia and water vapor have been used
as impurities. While the value of v has been measured
at k=0, it is somewhat more accurate to obtain a best-
fit curve through the various points and solve for h=0.
This gives v =50&10 cps in good agreement with the
actual experimental values at h=0.

Since p, ,„is not affected by the impurity, this method
can be used to find the value of p, A su%.cient im-

purity is introduced to get v in the most convenient
frequency range, and p, , can then be measured
directly.

Table IV-III summarizes the results. The values of
p,„are computed from Eq. (22.3) and Eq. (22.6),
using the values of C' computed from standard data.

The results in Table IV-III indicate substantial
agreement between theory and experiment. In addition,
the exceedingly low frequencies at which these p,
occur indicate that these gases may safely be used in
the calibration of absorption measuring instruments at
higher frequencies (where n/v~ due to this process may
be entirely neglected. See Sec. 18 above).

Some of the principal results obtained in diatomic
gases at higher frequencies are shown in Table IV-IV.

The experimental values tabulated here are undoubt-
edly not more accurate than within &10 percent, and
are perhaps worse in some cases. One may say therefore

TABLE IV-IV.

Observer
Range of v/p in
mc/atmosphere T'C

nP/v& )(1013 cm
sec' atmosphere
Experi-
mental Classical

Zartmann (Z1)
Keller (K1)
Schmidtmuller (S2a)
Van Itterbeek

and Thys (V3)

Nitrogen

1—38.5
0.35—1.60
0.08—0.115
0.61-1,97

25.6 1.91
18 1.71
20 1.85
20 1.35

1.35
1.35
1.35
1.35

Van Itterbeek
and Thys (V4)

Van Itterbeek
and Thys (V4)

Oxygen

0.60—1.69

0.60-1.55

20

50

1.57 1.61

2.22 1.70

Van Itterbeek
and Thys (V4)

Nitric oxide (NO)
0.60-0.97 16.3 1.58 1.48

duction) curve is seen to be in excellent agreement with
the results of Fricke, van Itterbeek, and Zartmann
over the entire frequency range (8 kc/atmos to 85
mc/atmos).

The chief results in the triatomic gases are sum-
marized in Table IV-V. The data are mainly those of
Fricke. The values of p, , were computed by him from
thermal data.

The relaxation effects in triatomic gases are more
pronounced and the relaxational frequencies are con-
siderably higher than for diatomic gases. Among these
gases, carbon dixode has been thoroughly studied by a
number of investigators. The chief results are plotted in
Fig. IV-6.

H we take the results of Fricke (F6) as the more ac-
curate, " a relaxation frequency of 20 kc is indicated.
The approximate theoretical curves (based on this
relaxation frequency) have been drawn in the figure.
The combined relaxation-classical (viscosity-heat con-

Chapter V. Experimental Results in Liquids

24. MONATOMIC AND DIATOMIC LIQUIDS

It is to be expected that the values of the sound ab-
sorption coeKcient in a monatomic liquid such as
mercury should show good experimental agreement with
the classical values since the usual types of internal
degrees of freedom are lacking. The same should be true
of liquefied monatomic or diatomic gases. In the latter
case, the internal degrees of freedom of such molecules
as O~, N~, and H~ are "frozen" in their liquid state and

therefore should not contribute to any relaxational
process.

The experimental results for mercury are shown in

~ Several experimental investigations (P1a, T1b, Z3) have
recently been reported on the relaxation of rotational degrees of
freedom in both oxygen and nitrogen.

O'Professor Leonard has informed the authors that the CO2
used by I'ricke was probably of somewhat higher purity than that
used in his research. The graph suggests that the CO& used by
Keller was of approximately the same purity as that used by
Leonard.
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Gas T'C
Theoretical

@max

TAaLz IV-V.

vm (exp. )
in kC

O
e'

IO

O
K

oRiecicednn (Q6)
~ Nr (8l )
xR ngo P al(&7)

CO 2

COS
CS2
N20
SOg

23
23
23
23
23

0.115
0.175
0.203
0.148
0.0745

20
28

370
157

1040

classical vatue

Q3-

~ F RI CKE ( F 6)
& LEONARD ( L5)
o KELLER (K I)
+ VAN ITTERBEEK ( V 2)
& ZARTMAN ( Z I )

Q2—

RELAX AT IONAL

O. I

Fig. V-1. The values of Ringo ef al. (R7) are the most
recent and indicate that the observed absorption lies
within about 15 percent of the classical value. This is
probably within the margin of experimental error.
The case of mercury differs from most other liquids in
that heat conduction is the primary source of ultra-
sonic absorption. It is also to be noticed that no fre-
quency dependence of n/v' has been observed in the
range 20—$000 mc.

Pellam and. Squire (P4) have measured the absorp-
tion coefficient in liquid helium, at 15 mc, as a function
of temperature. Their results are reproduced in Fig. P-2,
along with a curve showing the classical value of the
absorption coefficient. From these data, one may con-
clude that ultrasonic absorption in liquid helium is a
classical phenomenon above the X-point (2.19'A) . In
the neighborhood of this point, and below it, there is
no agreement between classical and experimental values.
The fact is not surprising, in view of the complicated
hydrodynamics associated with He II.

Measurements have also been made by Gait (G1) on
liquefied monatomic and diatomic gases. His results are
shown iri Table V-I. All measurements were made at
44.4 mc. The velocity measurements made by Gait have
also been included.

The calculations of the theoretical absorption coeffi-
cients (819) were based on viscosity and density data
by van Itterbeek and van Paemel (V6) and. Rudenko
and L. W. Schubnikov (R11).Experimental values for
the thermal conductivity for liquid oxygen and nitrogen
are taken from Hamman (H3) . Corresponding values
for argon or hydrogen were not available, and an em-
pirical formula of Borovik. (825) (which gives at least
the order of magnitude) was used in these two cases.

IO I 00 IOOO
F REQUENCY IN MCS

Fzo. V-1. n/v~ es frequency for mercury.

In their paper on the viscosity of liquids, Kirkwood,
Buff, and Green (K6) made use of Gait's results to esti-
mate an upper bound of 3 for the ratio of bulk to shear
viscosity in argon. %hen thermal conductivity is in-
cluded, however, it is clear that such a ratio must be
far smaller. The bulk viscosity of argon is essentially
negligible, so far as ultrasonic absorption is concerned.
The general agreement between the experimental and
theoretical values in Table V-I warrants the conclusion
that the absorption processes in monatomic and di-
atomic liquids (with the exception of helium below the
X-point) are well accounted for by classical theory.

I 0-

09 0 (

)t
ae-$&

I

~
/
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03- j;~p
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THEORE TI CAL

0I-
TEMPERATURE ( K)

1,5 2,0 3.0" 4.0

o BEST CONSTANT TEMPERATURE DATA
~ CONSTANT TEMPERATURE DATA
& CONSTANT REFLECTOR DISTANCE DATA

I

5.0'

FIG. V-2 . n es absolute temperature for helium
(after Pellam and Squire (P4})~

25. WATER

Of all liquids water has been the one whose sound
absorption properties have been studied most fre-
quently (85, 810, 812, 821, C4, F2, F3, H14, L7, L10,
M10, P6, R1, S7, S9, V7). The principal results are
shown in Fig. V-3."The temperatures are all in the
vicinity of 20 C, but a variation of several degrees for
operating temperatures among the diferent observers
increases somewhat the spread of values.

The results indicate a constant value of n/v' at fre-
quencies above 1 .0 mc, a value which is about 3~ times
the classical value of Stokes. The spread of values below
1.0 mc (which is understandable because of the ex-
tremely small value of the absorption coefficient n in

QOI

v m%(mos.

FIG. IV-6. nX es v/p for carbon dioxide.

100

44 It is to be noted that the values of Sorensen (S11), Bar tmann
and Focke (H5), and others (B38, 02, R5, R12) are not plotted.
These were early values, and have since been shown to have been
unreliable (see Sec. 16}. In this case, as in all others in this paper,
the authors are attempting to plot only those values which are
at present believed reliable.
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TABLE V-I. Absorption coefficients of liquefied gases.

Liquid

Argon
Oxygen

Nitrogen
Hydrogen

2'(oA)

85.2&0.2
87.0&0.2
70
60 &5
73.9~0.2
17

n/~~+10» cm ' sec'
Velocity Thermal Total
cm/sec' Shear conduc- theo-
)(10 4 viscosity tivty retical

Experi-
ment

8.53 7.9 2.6 10.5 10.1
9.52 5.5 1.8 7.3 8.6

10.94 5.6 1.1 6.7 8.6
11.19 7.3 1.0 8.3 8.6
9.62 6.6 2.9 9.5 10.6

11.87 3.7 2. i. 5,8 5.6

a This is considerably larger than the value computed by Gait. The dis-
crepancy lies in his use of a density of liquid hydrogen, taken from Berg-
mann (B15), of 0.355 g/cm3. The value of 0.075 g/cm3 used here is that
given by van Itterbeek and van Paemel (V6) and also appears in the
Handbook for Chemistry and Physics, thirtieth edition, p. 1703.

this range) makes it dif.(icult to decide whether or not
there exists a low frequency relaxation process, but the
evidence seems against it, at least at frequencies above
100 kc.4' The absorption in water was at erst thought
to be due to a thermal relaxation (Dutta and Ghosh
(D4), Herzfeld (H12)) but inconsistencies made this
impossible. Thus, as Herzfeld pointed out, the constancy
of tr/v' up to 200 mc requires, from the relation

shows no dip at all in the excess absorption when it is
plotted as a function of temperature (see Fig. V-4).

As was observed in Sec. 7, Hall (H1) has attributed
the eGect to a structural rearrangement in the water
molecules: the impact of a sound beam on water first
compresses the groups of molecules (which are assumed
to possess some degree of order in an ice-like state).
Then a structural compression sets in, in which the
molecules break their structural bands and move into
a close packed arrangement. Since there is a time lag,
absorption will appear.

Hall has calculated a theoretical absorption coeffi-
cient on the basis of an instantaneous compressibility
p&". In his theory, this quantity, as well as the relaxa-
tion time for the process and the so-called bN/k viscosity
coeS.cient are evaluated in terms of independently
known parameters. The results are shown in I'ig. V-4
where Hall's theoretical curve for structural absorption
is plotted in the temperature range 0—80'C. The excess
absorption found by various investigators, is also
plotted.

&excess
=15+10 "cm ' sec',

1+co'r'

O
14

+ +
~ s e e ~

x ~~l7' + 'k

l5

OQI
I

O.I

I

IO I 0
FREQUENCY IN MCS

CLASSICAL VALUE

J
IOO

FIQ. V-3. n/2 ss frequency for water.

4s Kneser (K11) has recently (1949) hypothesized the existence
of a thermal relaxation in water with a relaxation frequency of
about 3 megacycles. This hypothesis was made on the basis of the
data obtained by Skudrzyk (S7). The more recent experimental
work of Leonard (L7), Liebermann (L10), Mulders (M10), Moen
(M8), and Verma (V8), however, indicate that this is not the case.

that (27rr)«1/(2X10') or r«SX 10 "second. One may
calculate A from (6.16) from thermal data giving
2=2)(10 ' cm ' sec. This 6gure was obtained from
the value of C' given by Dutta (D3a). The other
parameters were taken from Herzfeld's paper (H12).
The product Ar = 15&&10

—17 cm—1 sec at low frequencies
yields T 7&10 ' sec which contradicts the above.

In addition to this difficulty, there is a second objec-
tion. The thermal term depends on the difference C„—C„
which vanishes in water at 4'C (since C„—C„varies
directly as the thermal expansion coeKcient). However,
the measurement of absorption in the vicinity of 4'C

& RAPUANO (RI) e HSU (H I4)
& VERMA ( V 8) "FOX and ROCK (F Z, F 3)
Q LEONARD (L7) e PINKERTON (p6)
8 SKUDRZYK (S 7) ~ SMITH and BEYER (S 9)
QVAN ITTERBEEK + BAZULIN (B IO)

and SLOOTMAKERS(V&)t BIQUARD (B Pl)
QMULDERS(& IO) sCLAEYS, ERRERA
K3 LIEBERMANN (L IO) and SACK (C 4)
QMOEN (M 8) o BAUMGARDT (B 5)

~ BAR (B I)
'

"v 50
4P

Eo
r

O
N

Pinkerton (p 8)
Fox and Rock (F 3)
Baumgardt (B 5)
Smith and Beyer (S 9)
Theoretical Curve (Hall)

50

Temperature 'C

75 Ioo

FIG. V-4. Temperature dependence of sound
absorption coeQicient in water.

awhile the agreement between Hall's theory and the
experimental results is satisfactory, it must be pointed
out that the constants from which the final theoretical
curve is drawn are known only very approximately.
In addition, the ratio of excess to classical absorption is
(experimentally) very nearly independent of the tem-
perature, so that any theory which deduces an excess
absorption approximately proportional to the shear
viscosity will take on the same temperature dependence
as that shown. Before the theory can be more generally
accepted, it should be applied to other associated liquids.

It should also be pointed out that Sette (S4) has re-
cently reported a calculation for ethyl alcohol, based on
the Hall theory. He found that the relative change in
volume between the two structural arrangements was
much smaller than in water, so that the resulting con-
tribution to the absorption coefficient was inadequate
to account for the excess above the classical value.
Apparently the simple model of a two-state liquid is
inadequate in such a case.

As shown in Chapter II a more macroscopic approach
to this problem has been made by Liebermann (L11) on
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FIG. V-5. a/v vs frequency for ethyl acetate.

water, the ratio of absorption due to bulk viscosity to
that due to shear viscosity was found by him to be
3.3 while the ratio of total absorption to classical
absorption at the same temperature is 2.95.

As will be seen later (Table V-VII), rather satis-
factory agreement exists between Liebermann's results
and data obtained by direct experimental measurement
of the absorption. It must be borne in mind however
that this identification of excess absorption with a bulk
viscosity does not indicate of itself any mechanism by
which the second viscosity coefficient can be calculated.
Thus Hall's treatment might be reconciled with Lieber-
mann's, in which case the bulk viscosity would be at-
tributed to a structural compression. Unfortunately,
Hall and Liebermann have employed somewhat difer-
ent equations of state, so that a direct equivalence is not
immediately possible (see Sec. 15).

the basis of hypotheses set forth by Tisza (T3) and
Eckart (E3). Tisza and others (E3, L17, M1) have
pointed out that the original Stokes equation for sound
propagation contained a term involving a bulk or
dilatational viscosity, which Stokes set equal to zero.
If one does not make this assumption, then the second
viscosity coeKcient can be adjusted so as to fit the ex-
perimental results.

What was needed was an independent determination
of this second viscosity coeKcient. An experimental
method was first suggested by Eckart (E3) who de-
veloped the second-order equation for wave propagation
in this case. This method involves the phenomenon of
streaming of the fluid (quartz wind or hydrodynamic
flow) in which the driving force is dependent on both
viscosity coef)icients (shear and bulk) but in which the
retarding force is dependent only on shear viscosity.
Hence the equilibrium velocity of streaming should
depend on the ratio of the coeScients. Liebermann
has measured the viscosity ratio by this method for
a number of liquids at 5 megacycles. In the case of

TA.sLK V-II. Relaxation frequencies in ethyl acetate.

Curve
vm (relaxation frequency)

in megacycles (a'/v)rnfLx (Cm I SeC)

2.9
70

7.0X10 '
16 X10 '

the existence of relaxational processes whose relaxation
frequencies generally lay within the range of experimen-
tal measurement. This is not the usual case for liquids,
but some exceptions have been found to exist. It is the
study of these exceptions which gives the greatest
promise of progress toward understanding absorption
mechanisms in liquids. The most important of these
liquids are organic compounds containing the acetate
(CHgCOO) and the formate (HCOO) radicals.

(a) Acetates

The experimental values of cr/i for ethyl acetate
(CH3COOCrH~) are plotted in Fig. V-S. Most of the
values appear to lie in the transition region between
two relaxation frequencies. This was first suggested by
Kneser (K11).In line with his hypothesis, the curves I
and II (along with the curve for shear viscosity absorp-
tion) have been fitted to the data. The sum of these
three curves is represented by the dashed line. The con-
stants obtained by the curve fitting are given in
Table V-II.

While some data exist (81, 822, C4, P2) for methyl
acetate (CHSCOOCH„) showing at least one relaxational
eRect, the results are too fragmentary to alIow any
conclusions to be drawn from them.

The data which are now available for acetic acid
(CH3COOH) (Lamb and Pinkerton (L2)), are quite
extensive. It should be pointed out that ultrasonic ab-
sorption in this liquid was first studied by Bazulin
(87, 812) in 1936. He was the first to observe a relaxa-
tion process in a liquid. His data are largely omitted
from what follows only because of the completeness of
the work of Lamb and Pinkerton and because of the
difficulty of making corrections for small temperature
diRerences. Wherever the two sets can be compared,
the experimental agreement is excellent.

Figure V-6 reproduces graphs of tr' = (a)t),„„„usfre-

quency, computed by Lamb and Pinkerton from their
data at 20 C, 35'C, and 50'C, respectively. These re-
sults demonstrate clearly the existence of a relaxational
eRect, the characteristic frequency of which increases
with temperature. The maximum of the absorption per
unit wavelength increases in a similar manner.

The relation between the relaxation time and the
temperature is indicated by Lamb and Pinkerton to be
of the form

26. LIQUIDS WITH PRONOUNCED RELAXATIONAL
EFFECTS p =AT" exp( —AE./RT), (26.1)

The stimulation for the development of a successful
theory for sound absorption in gases was provided by

where v is the relaxation frequency, A is a constant,
z= a number in the range 0 to 1, and AE, is the apparent
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FIG. V-6. Excess absorption per unit wavelength es frequency for
acetic acid (after Lamb and Pinkerton (L2)).
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FIG. V-7. a/~2 es frequency for acetic acid
(after Lamb and Pinkerton (L2)).

energy of the backward reaction involved in the propa-
gation process.

While A is not known, the form of Eq. (26.1) can be
checked against the experimental results. Unfortunately,
the experimental values of Lamb and Pinkerton fit the
expression equally well for m=0 or e= 1. The value of
AE, which is computed is nearly the same in each of
these cases, being 8.86 kcal/mole for rs=0 and 8.46
kcal/mole for ss = 1. It would be very desirable to com-
pute v directly from spectroscopic data, but this is not
possible at the present time.

The plot of n/I' es frequency for acetic acid (see
Fig. V-7) indicates that the high frequency value
(132&&10 '7 sec' cm ') is still far above the classical
viscosity value of 20)&10 ' sec' cm '. Thus it seems
probable that there is yet another relaxational process,
not yet discernible at the highest frequency measured.
Lamb and Pinkerton have advanced the hypothesis
that there are two relaxation phenomena, each one
connected with one of the hydrogen bonds that ordi-
narily hold the acetic acid in a double molecule.

The temperature dependence of the absorption coeffi-
cient can be used to gain considerable information about
relaxational processes, as Kittel (K7) has pointed out.
The absorption coefficient due to shear viscosity has a
negative temperature coefficient. We now consider relax-
ation processes of the form M'=n'/I'=Ar/(1+oIsr').

It follows from Eq. (9.24) that r has a negative tem-
perature coefficient. Then the sign of the temperature
coefficient of M'L = (1/M') cIM'/cI Tjdepends on two fac-
tors: (i) whether &v is greater or less than 1/r (i.e., greater
or less than 27rI ), and (ii) whether the product Ar has a
positive or negative temperature coefficient. Thus, if
Av- has a positive temperature coefficient, i.e., if 2 has
a large positive coefficient, then (1/M')BM'/BT will
always be positive. On the other hand, if A has a smaller
temperature coefiicient than r (be it positive or nega-
tive), then (1/M')ciM'/ciT' will be negative at fre-
quencies below v and positive at frequencies above v .
(See also Sec. 9.)

The process of thermal relaxation may be shown to be
one in which (1/A) cIA/cIT is positive. The temperature
behavior of structural relaxation is not so clear, but
the work of Hall indicates a small negative value of
(1/A) BA/8T for water.

In general it appears that the relaxational frequency
for a structural or bulk viscosity eGect is so high that
the resulting temperature coefficient of absorption will
always be negative over the frequency range available
to investigation. Where this is not the case, one can
perhaps distinguish between bulk viscosity and thermal
relaxation by the temperature dependence of A.

An example of this temperature dependence is given
in Fig. V-7 for acetic acid. At frequencies below the
relaxation range ( 1 mc) the absorption coefftcient
decreases with increasing temperature. At frequencies
above this range, the absorption coeKcient increases
with increasing temperature, at least up to 67.5 mc.
Above this frequency, extrapolation seems to indicate
that the absorption once more decreases with increasing
temperature. However, this is the region in which a
second relaxation eGect appears to enter the picture. In
addition, the relaxation frequency (see Fig. V-6) in-
creases with temperature, while the peak of the (nX). „„
curve (which is proportional to A) also increases.

(b) Forsrsafes

Work on absorption in formate compounds has so
far been limited to some absorption values for formic
acid (HCOOH) obtained by Bazulin (810) and a few
absorption values for ethyl formate (HCOOCsHs) ob-
tained by Parthasarathy (P1).The measurements of the
latter investigator, where they can be compared with
accurate results by other investigators, tend to be high
and also to have large Quctuations, and can be regarded
only as very rough or even qualitative information.

Bazulin s results in formic acid indicate that a relaxa-
tion process exists with a frequency of the order of 5
megacycles. The values have been recorded over a
temperature range of 4'C and for 87 percent concentra-
tion. These two limitations, plus the small number of
points available, prevent any more detailed analysis of
ultrasonic absorption in the liquid.

The main interest in ethyl formate lies in the fact
that its second (or bulk) viscosity coefficient has been
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measured by Liebermann at four diGerent frequencies.
His results are given in Table V-III, together with ratio
of excess to classical absorption obtained by Parthasara-
thy's experimental data.

The results of Liebermann indicate a relaxation
frequency for the bulk viscosity of the order of 2 mega-
cycles, which is at least partially borne out by the direct
absorption measurements. A great deal more experi-
mental data, especially in the range 1—10 megacycles,
is needed to clarify the picture.

(c) Toluene (CsHsCPs)

Recent measurements of Moen (MS) indicate strongly
the presence of a relaxational process in toluene at rela-
tively low frequencies. A relatively large number of ex-
perimental results exist for this liquid, mostly at higher
frequencies. The most reliable of these are listed in
Table V-IV. From these it can be observed that a sub-
stantially constant value of n/v'(= 78&&10 "cm ' sec')
is obtained above 1 megacycle. If this value is subtracted

TABLE V-III.

Observer

Moen (M8)

Biquard (822)

Willard (W5)
Bazulin (810)

Grobe (G7)

Verma (VS)

Classical

Frequency in
megacycles

20
19.5

19.2
19.4
19.6
21.6
21.3
20
20
20
25

0.15
0.20
0.25
0.4
0.6
0.8
1.0
1.2
4.78
7.96

10.34
10.69
13.95
17.23
24.39
37.37
30
43
75
1.00
1.46
2.89
4.00

TABLE V-IV.

a/v2 X1017
cm I secS

276
210
170
111
86
80
79
78
83
83.5
90
83.1
80.7
84.2
84.1
79.5
68
74
72.5
92
91
93
94
7.8

Freq.
mc

2
3
4
5
7

16

"(compute
classical

from viscosity
measurements of

Lieberm ann)

64
24
17
12

(computed
classical
from absorption
measurements of
Parthasarathy)

1.8a
8.2

a In a number of liquids observed by Parthasarathy, the values of the
absorption obtained at 7 megacycles are significantly lower than those at
either 3 or 16 megacycles and are in disagreement with the results of other
observers. This value is therefore open to serious question.

from the low frequency data, and the graph constructed
of (n'/v) vs frequency, (where n'/vs is the excess n/v'
above the high frequency value) the results are those
given in Fig. V-8. The solid curve in the figure has been
6tted to the 6rst four points, since the values at the
higher frequencies are more in doubt, due to the un-
certainty in the value of the subtracted term. The re-
sults indicate a relaxation frequency of about 120 kc
and a value of (n'/v) of about 3&&10 I cm ' sec.
This compares with a calculated value of (n'/v) for
thermal relaxation of 250&&10 ' cm ' sec (K11). This
low frequency effect would therefore appear to be due
to a different phenomenon. On the other hand, the
value of n'/r (above the classical at the highest fre-
quency measured, 75 mc) is 5)&10 s cm ' sec. Appa-
rently the relaxation frequency for the thermal effect
here is of the order of several hundred megacycles.

exceed the classical value far more greatly than do the
results in associated liquids. %le have already dis-
cussed water in the associated group and toluene
among the non-associated liquids. The other more im-
portant results follow.

(a) Berceuse (CsPs)

Benzene has been studied by a very large number of
observers over a frequency range from 150 kc to 165 mc.
A graph of n/v' ss frequency is shown in Fig. V-9.
While these results are taken at various temperatures
in the vicinity of 20'C, the spread of values is greater
than that which could be attributed to the temperature
effect. Moen (M8) points to the possibility that a small

impurity could lower the absorption value appreciably.
The best evidence of this is furnished by Bazulin
(BS, B10) who performed the experiment with benzene
of two grades of purity. For the purest sample he ob-
tained a value of n/v'=874X10 '7 cm ' sec' while for
the less pure he obtained a value of 714)(10—'7 cm—' sec2.

2m)-

E

i50

2'7. DISTINCTION IN BEHAVIOR BETWEEN
ASSOCIATED AND NON-ASSOCIATED LIQUIDS

Both Hall (H1) and Pinkerton (P7) have pointed out
that the absorption results in non-associated liquids

I
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I"ro, V-8. Excess absorption in toluene (data'from Moen 1MS)).
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perature is about 500)&10 '~ cm ' sec'. At the highest
frequency measured, (105 mc (R1)) cr/~=525X10 '
cm ' sec, as compared with a maximum value of
5050)& 10 ' cm ' sec, computed on the basis of a thermal
relaxation (K11). Evidently the maximum occurs at a
much higher frequency.

(d) Ethyl Alcohol (CsHpOH) and
Methyl Alcohol (CHpOH)

The best available data for ethyl and methyl alcohol
are shown in Fig. V-11. No relaxation frequencies are
distinguishable in either set of data.

Fro. V-9. o/v' ps frequency for benzene.

With this in mind, it is reasonable to assume that the
best value of n/v' is about 900X10 'r cm ' sec'.

The temperature coefficient of excess absorption in
benzene is positive in the range 3—15 mc (BS, 65, P2).
Since this frequency range is definitely below the re-
laxation frequency (n/v' is still a constant) it appears
from the discussion of the temperature coefficient that
the excess absorption here is probably due to thermal
relaxation.

(b) Carborr, Bisulfide (Csp)

The absorption values of CS2 are very high. The most
reliable results are shown in Fig. V-10. It is easily seen
that the scattering of the points make it difficult to
calculate any relaxation frequency. In a recent paper
on the theory of sound absorption in unassociated
liquids, Bauer (B4) suggested the presence of three
vibrational relaxation processes. However, he fitted his
calculations to the value of Claeys, Errera, and Sack at
0.87 mc, the value of Willard at 6.57 mc and the values
of Rapuano near 100 mc. Since in general, Bazulin's
results are more accurate in the range 1—10 mc than
those of most other early observers, this selection of
points does not appear too satisfactory. The more
recent values of Moen (MS) and Verma (VS) make the
picture even more uncertain. Because of the very high
values of the absorption, it is possible that the results
are easily affected by small impurities. It appears that
a relaxation frequency exists in the range 8—70 mc, but a
more definite appraisal must wait upon additional data. "

(c) Carboe Tetrachloride (CCl4)

In CC14, there is no observable decrease in n/v' as the
frequency increases. '7 The mean value at room tem-

"Lamb and Andreae {L2a) have recently found this frequency
to be 72 mc at 25'C.

4'The values of Claeys, Krrera, and Sack for CC14 have been
omitted from consideration here. Their values of o./vp are only
about 1/20 of those of other observers. While no experimental
reasons can be given for discarding these values {in general
their other results are only about 20-30 percent above the com-
monly accepted values), the great divergence from the results of
investigators whose other results are reliable, and who agree in
these cases seems to offer sufficient justification. It is quite prob-
able that small amounts of impurities can produce a great effect
in these liquids of high absorption.

3PP 07 COII

k' —n'=
)

4rt &u„'+aP
(28.1)

3po Cd

4'g pp~ +pp

(28.2)

where po
——mean density, co——low frequency value of

sound velocity, p = shear viscosity coefBcient, and
tp„=3ppcp /4tf. From these, one can solve explicitly for
cP and c~ '

3p, ~P~„-p
n'=

i
1+—i

—1,
Sr/ ppg +OP 4 rpg J

(28.3)

Srt rp„'+oP
c2

3pp rp„( rp' ) 1

rpg )

(28.4)

The most interesting measurements in a highly vis-
cous medium are those of Mikhailov and Gurevich (M7)
on rosin. They measured the absorption at four fre-
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a Wl L LAR D (W 5)
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FIG. V-10. cx/v' vs frequency for carbon bisulfide.

28. LIQUIDS OF HIGH VISCOSITY

One might expect in a general way that highly viscous
liquids would come closer to the classical behavior than
other liquids. We first recall the Stokes equations for
absorption due to viscosity (R2, vol. II, p. 316),
which appeared in Sec. 3:
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quencies between 0.5 mc and S mc for various tempera-
tures. The shear viscosity was also measured in the same
range. Their results indicate that at a 6xed frequency
the absorption increases with increasing viscosity only
for low values of the viscosity. At high values of the
viscosity, a maximum absorption coeKcient is reached,
and thereafter the absorption coeKcient decreases as
the viscosity increases. This is precisely the behavior
predicted by Eq. (28.3). A complete check of the theo-
retical (classical) and experimental values is not possible
since the values of the sound velocity in rosin are not
available. However, it is possible to check the behavior
at the highest values of the viscosity when, according
to Eq. (28.3),

I 3Poai 'i '
te))~w

p

E 8& i
(28.5)

i.e., o. is independent of the sound velocity at these
frequencies. At 42'C the value of the viscosity of rosin

IOO-
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is about 10' poise (M'/). Assuming a density of 1.07
g/cm', we obtain the results shown in Table V-V.

This represents surprisingly good agreement when we
recall that p is known only to an order of magnitude.

In the same paper, values of the absorption in methyl-
metacrylate at two di6erent frequencies are also re-
ported. Here again, with q)10" poise, the ratio of
n/v' *is the same at the two frequencies.

Both of these results seem to point to a perfectly
classical behavior for materials of very high viscosity.
Unfortunately the only velocity data which are available
(for methyl-metacrylate in the same frequency range)
show that the velocity is essentially constant over the
range 1 to 6.8 mc, whereas the limiting form of the ve-
locity from Eq. (28.4) is

c= (8rl re/3 pp) '*. (28.6)

IP IOO
FREQUENCY IN MCS

Fro. V-11. a/v' vs frequency for ethyl alcohol and methyl alcohol.

TABLE V-V. Absorption in rosin.

Frequency
mc

~xtheor
cm 1

rxexp (M &)
cm '

0.66
1,52
3.04
4.67

0.13
0.20
0.28
0.40

0.15
0.20
0.31
0.47

o MOEN (M 8)
x HUNTER (H I7)
a WILLARD (W 5)
~ BAZULIN (8 lg)

o 4ppp-

C

O
X

~l~
2000-

long as these are neglected, it is misleading to employ
an "exact" solution of the inexact equation.

Nevertheless it would seem that the excellent agree-
ment between Eq. (28.5) and the experimental results
should be more than merely fortuitous. The agreement
between classical theory and experiment in helium gas
at very low pressures, discussed in Sec. 21 also indicates
that the assumptions involved in the Stokes's equation
of motion remain valid at what is effectively a very high
frequency (i.e., high value of the frequency-pressure
ratio). It may be that further corrections affect the
velocity equation appreciably, but not the absorption
relation.

The results in highly viscous glycerin are also of
considerable interest. The frequency dependence of
n/v' is shown in Fig. V-12, while the temperature
dependence of the ratio &xobserved/crclassical is shown in
Fig. V-12.

The run of measurements at room temperature agree
reasonably well with the classical values. As the ab-
sorption coefficient changes rapidly with temperature,
the small variation in operating temperature among the
various observers makes this quite understandable.

The recent results of Litovitz (L15) shown in Fig.
V-13 indicate the presence of an additional, nonclassical
absorption process. In his case, two runs were made with
slightly different water contents (and hence different
viscosities). In both cases a peak absorption was ob-
tained (—9.2'C, —6.2'C).

These results may be interpreted by assuming that
there exists a compressional viscosity which has a
characteristic frequency of the same order of magnitude
as cv„/2~ in Eq. (28.3). The existence of a maximum ab-
sorption (as a function of viscosity) places glycerin in a
class with rosin, since, in both cases, the absorption

A second objection to this application has been raised

by I)azulin and Leontovich (814), who point out that
some approximations had already been made by Stokes
in setting up his original equation of motion, and that so

LO
FREQUFNCY IN MCS.

I'zG. V-12. o./v' vs frequency for glycerin.
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FIG. U-13. Temperature dependence of absorption in glycerin
(data from Litovitz (L15)).

decreases with increasing viscosity (at sufliciently high
viscosity).

Another highly viscous liquid is castor oil, the chief
experimental results (813, H17) for which are shown
in Fig. P-14.

These results indicate that the experimental value of
n/v' lies below the cia,ssical value at frequencies above
4 mc. In addition, n/v falls off with rising frequency.
This would be in accord with Eq. (28.3) except that the

5 10
FREQUENCY IN MCS.

FIG. V-14. Sound absorption in castor oil.

computed value ~„/2' for castor oil is about 300 mc,
whereas the distribution of points in Fig. V-14 indicates
a value of to„/2~ of about 5 mc.

29. SUMMARY

Pinkerton (P7) has presented a rough classification
of liquids according to values of the absorption coeK-
cients. A modified form of this scheme is reproduced in
Table V-VII. A detailed listing of specific examples is
given in Table V-VIII. The ratio of a as calculated on
the basis of Liebermann's experiments to the classical
value is also given.

Chapter VI. Experimental Results in Solutions

30. SEA WATER

A great many experimental measurements have been
made on the transmission of sound in sea water, es-
pecially at frequencies between 10 kc and 100 kc. Most
of these measurements have been made in the ocean
itself. As an experimental medium, however, the ocean
presents many disadvantages. It is not a medium of
constant velocity, 4S so that the sound rays are bent
away from rectilinear propagation; it is not actually
a medium of infinite extent; both surface and bottom
reQection must be considered. In addition, there are
slight changes in the chemical constitution of sea

water from place to place, and 6nally, air bubbles, sea-
weed, Ash, and similar scattering objects are often
present.

Since there are many applications of underwater
sound which are concerned with the sound transmitted
from point to point, it is well'to distinguish between the
total attenuation, due to absorption, scattering, etc. ,
and true absorption. It is probable that a failure to
distinguish adequately between these quantities ac-
counts for the relatively high "absorption" values some-
times reported at very low frequencies. Fortunately,
the perfection of the reverberation tank method has

TABLE V-VII. Classification of liquids.

Classical

AI
anomalous

AII
anomalous

AIII
anomalous

NI
normal

NII
normal

rxexp/~class

3-1500

1.5-3

5-5000

Temperature coefficient of a

Positive, (n,~p/n. i) varies
with temperature

Negative, (n,»/n. &) virtually
independent of temperature

Depends critically upon
frequency

Positive

Negative, (n, p//n, l) varies
with temperature and may
even become (1

Type of liquid

unassociated,
polyatomic

associated
polyatomic

organic acids
and esters

monatomic,
diatomic

associated
polyatomic

Examples

CS2, C6H6, CCl4

water, alcohols

acetic and formic
acid; ethyl acetate

hehum, mercury,
liquid oxygen

glycerin, castor oil,
highly viscous liquids

8 For a general discussion of this problem, see Physics of Sound in the Sea, Part I. (N1). A brief, elementary survey has been given
by Harnwell (H4).
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TABLE V-VIII.

Class Liquid Formula

a/vmexp
Frequency )&10 ~7

mc cm ~ sec~

~/v'Ci
X10 ~7

cm ~sec2 nl

~total
o'class

(Lieber-
mann)

1dT
cx dA References

Carbon bisulfide

Benzene

Methyl iodide

C6H6

CH3I

AII
methyl alcohol
ethyl alcohol
e-propyl alcohol
m-butyl alcohol
m-amyl alcohol

AIII Acetic acid

CSHSCH3

C2H~C12
CH38r
CHC13
CC14
C6H5C1
CH3(CH, ),CH, Cl
(CH3) 2CO

C,H, (CH,),
CH3(CH&) 5CH3
CH, (CH,),CH,
CH3CH~Br
C6HSNO2
CHBCH2CH2Cl
CH3CH2CH2I
CH3(CH2) 2CH28r
CHgCH2CH28r
CH3CHgI
CH(CH2) 2CHgI
HgO
CH3OH
CH3CH NOH
CH3CHgCH2OH
CH3(CH, ),CH, OH
CH3(CH, ),CH, OH
CH3COOH

Formic acid

Methyl acetate

Ethyl acetate

Ethyl formate

HCOOH

CHgCOOCH3

CH3COOCHgCH3

HCOOCH2CH3

Toluene

Acetylene dichloride
Methyl bromide
Chloroform
Carbon tetrachloride
Chlorobenzene
e-butyl chloride
Acetone

m-xylene
e-heptane
e-hexane
ethyl bromide
nitrobenzene
e-propyl chloride
e-propyl iodide
e-butyl bromide
n-propyl bromide
ethyl iodide
n-butyl iodide
water

20

21.
20-25

25
20

2
27

20-25
25

2
20-25

20
25
2

25
20
25
22
21

2
25

2
2
2
2
2
2

20
20-25
20-25
22-28

25
29
18
18
17.5
20.5
25
22
25
22

23-28
23-28

1—10 6000

1—4
15
15
0.15
1—75
1—10

15
1—10
1-100
1—4

15
1—4
5—70
1—15

1.5
15
15

1—15
15
15
1.5
15
15
15
7-250
1-250
1-220

15-280
1—4

15
0.5

67.5
4.04
9.83
1.00

69
1.00

69
3

16

820
316
247
205
80

420
304
400
500
124
108
70
30
78
80
77
61
80
42
54
49
39
40
48
25
34
54
75

104
106

90000
158

2270
1170
468

34
516

37
138

70

75-105 1400
1-165 900

5
8.7

280
103

10
7.8
7.8
7.7

10
20

8
10

7
7
8.4

10
10
10
14
8

14
13
11
12
17
8.5

14.5
22
36
50
58
17
17
5
5
6.8
6.8
8.3
8.3
7.6
7.6

24.7
26
10.3
55

40
25
15.5
10.8
10
43
9.3
8
7.7
6.1
5.7
5.3
3.86
3.77
3.54
3.25
2.82
2.95
2.35
2.45
2.08
2.02
1.83

5300
10.8

454
234
69

5
62

4.5
18.1
9.2

20
23

5.3
10

3,3
2.5
44

25
13

(at 5 mc)

5 1200 & 150

0.006

0.010

0.013

0.001.

0.005

—0.031—0.010—0.015—0.008

—0.014

—0.010

810, 822,
C4, V8
Ri
87, 88, G7
P7, Qi, VS
VS
P2
P2
MS
810, L17, VS
P7, V8, W5
P2
822, VS, W5
81, P2, Q1, W5
VS
P2
VS
821 822
P7, V8, W5

P2
P2
P2, VS
P2, V8
P2
P2
P2
P2
P2
P2
P6, R1, S9
P2, R1, V8
R1, VS
P2, R1, VS
P2, Ri, VS, W5
P2
L2
L2
810
810
V8
81
VS
81
P1
P1

NI Helium
Argon
Hydrogen
Nitrogen
Oxygen
Mercury

He
A
H2
Ng
02
Hg

T'A
4'A

85'A
17'A
73.9'A
87'A
20-25'C

15
44.4
44.4
44.4
44.4
20-50

231
10.1
5.6

10.6
8.6
6

204
10.5
5.8
9.5
7.3
5.05

1.12
0.97
0.97
1.12
1.18
1.2

0.6

0.0

P4
G1
Gl
G1
Gi
Bi, R6, R7

NII

NII

Castor oil

Olive oil
Linseed oil
Glycerin CgHs03

T'C
21.4
21.5
18.6
21.6
21-25
20.5
20-27
21—23
32.8—18.8

15.72
4.29
3.157
3.95
1—4
3.157
0.15—4
6—21

30
30

2100
4500

10900
8400
1250
1470
2500
1700
1410

12500

7980
7900
9130
7820
1100
1450

590
29100

0.26
0.57
1.20
1.17
1.14
1.01

2.4
0.43

—0.075

—0.038—0.032—0.069—0.056

0.036

813
813
H17
H17
H17, VS
H17
M8, %5
813, H17
H17
H17

8 The value of (]./n)gu/pT in this case depends critica11y on both frequency and temperature. It may be either positive or negative. See Lamb and Pink-
erton, reference L2.
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these values may have been caused by impurities since
their experimental methods used appear to be otherwise
satisfactory.

Recent experiments of Leonard (L7) and others indi-
cate that the excess absorption in sea water can be
explained by the presence of small amounts of MgSO4.
This is present in sea water in a concentration of slightly
more than 0.02 molar. The available results are plotted
in Fig. VI-2. The solid curve represents the best 6t of
sea water data. Thus the absorption in 0.02 molar
MgSO4 more than accounts for the excess absorption.

As was pointed out in Sec. 7 above, Liebermann has
advanced a second theory of sound absorption by elec-
trolytes in which the absorption is attributed to a shift
in the ionization equilibrium by the passage of the sound
wave. He defines a static isothermal partial compressi-
bility

FIG. VI-1. Sound absorption in sea water.

made it possible to compare the open sea results with
those obtained under the controlled conditions of the
laboratory. A plot of available values of the absorption
coefficient in sea water is shown in I'ig. QI-1.

It is clear from the characteristic shape of the curve
drawn through the experimental points that a relaxa-
tional phenomenon exists, with a relaxation frequency
of about 145 kc.

The relaxational effect in sea water was at first at-
tributed by Liebermann (L10) to a shift in the chemical
equilibrium of ionized sodium chloride. The weight of
experimental evidence, however, seems to be against
this point of view (310,338, C3, R12, T2, V7) although
one recent observer (V7) did obtain a large absorption in
sodium chloride solution. " It is quite probable that

IO

1
t eIVq

vl, ap] ~
(30.1)

and a static partial molar heat capacity C', and intro-
duces the dynamic quantities pT'", C'", de6ned by the
relations

effPy'
Py

Jeff
7

1+ZNT 1+A&1
(30.2)

TABLE VI-I. Values of A and 7 for sea water.

Sea water (Liebermann, L10)
0.023I MgSO4 (Leonard. L7)
0.02m MgSO4 {Liebermann)

theory, L10

A T

1.45X10 '0 secjcm 1.1X10 'sec
2.3 X10 "sec/cm 1.3X10 ' sec
6.5 X10 "sec/cm

From these relations, I-iebermann obtained an ap-
proximate expression for the absorption:

1 'C pz'
t

(d7
n =——(C,—C„)+—,

2c C' pp'&1+(u'r'-
(30.3)

IO

IO
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FIG. VI-2. Sound absorption in 0.02 molar magnesium sulfate
solution (data from Leonard (L7}).

4'Professor van Itterbeek has informed the authors that re-
cently repeated measurements with sodium chloride of very high
purity gave no excess absorption over the fresh water value.

c4 TOP—+const co )1+~2~2
(30.4)

the values of A and 7- obtained in sea water and 0.02m
MgSO4 and the value of 3 obtained by I iebermann's
theory are given in Table QI-I.

where C and ps' are the limiting values (at low fre-
quency) of C„and pT respectively.

Iiebermann's evaluation of the constants in Eq.
(30.3) indicated that the thermal effect is very small in
comparison with the compressibility effect. In addition,
it appears that the compressibility term is sufhcient to
account for the absorption present, at least at frequen-
cies below 1 megacycle.

If the total absorption in the solution is written in
the form
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FIG. VI-3. Sound absorption in magnesium sulfate solution as
a function of concentration (data from Smith, Barrett and
Beyer (810)).

From Table QI-I one may draw the following con-
clusions:

(1) The experimentally measured absorption in
MgSO4, as has already been pointed out, is larger than
the total absorption in actual sea water. This indicates
that a more complicated reaction among the various
ions present in sea water must take place, so as to
modify the results which exist for the simpler mag-
nesium sulfate-water solution. "

(2) The theoretical value obtained by Liebermann is
at least of the same order of magnitude as the experi-
mental value. The discrepancy in numerical values is
not surprising in view of the roughness of available data.
Some criticism can be made in regard to the use of data
for evaluating p, &' which were obtained by Bachem at
5 mc, at which frequency this absorption effect is no
longer of consequence. One should also emphasize that
I iebermann's treatment is not necessarily unique. The
application of the method to other solutions or the
direct calculation of the relaxation time of the process
would be highly desirable.

750-

500-
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h[4 250-
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O.IO M
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Fxo. VI-4. Sound absorption in zinc acetate solution
(data from Bazulin (B11)).

4

MgSO4 solution is virtually a constant over the con-
centration range 0.003 to 0.02 molal. Thus there is
still a great need of further experimental and theoretical
developments.

Mention should be made here of an earlier theory for
absorption in strong electrolytes, due to Leontovich
(L8). He has investigated the effect of the sound wave
on the "ionic atmosphere" of the ions, from the point
of view of the Debye theory of electrolytes. While his
estimates of the magnitude of the absorption to be
expected fall far short of what is obtained experimen-
tally, it is of interest to note that the theory predicts
that 0, should be proportional to the square root of the
concentration at low frequencies and proportional to the
square of the concentration at high frequencies, which is
just the dependence shown in Fig. VI-3 (at low concen-
trations). A further study of this approach would be
desirable.

. The sound absorption in magnesium sulfate solutions
has more recently been investigated at higher frequen-
cies (S10), above those at which the process just de-
scribed is signi6cant. These results show that there is an
additional absorption, not attributable to any of the
classical effects or to the compressibility effect of the
chemical reaction. In addition, the temperature de-
pendence of the absorption in such solutions has been
measured in the range 0'—30', and no anomalous effect
exists in the neighborhood of O'C, thus ruling out the
thermal relaxation (which being proportional to C~—C.„
must vanish near O'C).

The variation of absorption with concentration ob-
tained in these experiments is shown in Fig. VI-3.
The results indicate that at lower frequencies, absorp-
tion is proportional to the square root of the concentra-
tion, but that at higher frequencies, there is a more com-
plicated dependence, particularly at low concentrations.
In addition, Wilson a,nd Leonard (W8) have recently
reported that the relaxation frequency of an aqueous

s Tatntn and Kurtze (01a, T1a) have found that the excess
absorption in a solution of MgS04 above the value for water can
be virtually eliminated by the addition of large amounts of NaCl.

500-

450

~ SMITH AND BEYKR {S9)

o BARRETT, McNAMARA

ANO BE YKR{S 2)
MOLAL

O
Lal

Ol

P.OO-
'I

X
Cl

O

o I50-

MOLAL

0.05 MOLAL

IOO-

50

O. OI MOLAL

IO 20 50
FR EQUKNG Y I N MEGACYCLES

Fxc. VI-5. Sound absorption in copper acetate solutions.
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Ter.z VI-II.

Concentration of copper
acetate (molality)

0.005
0.01
0.05
0.10
0.30

Relaxation frequency
in megacycles

(& 5

15
13

~22

It may well be that two or more general types of ab-
sorption processes exist in electrolytic solutions, namely,

(1) that due to increased dissociation on the part of
the solute in the presence of sound (Liebermann theory)
and (2) that due to distortions produced in an ionic
atmosphere of a wholly dissociated solute (Leontovich
theory). Finally, the question may be raised" as to
whether one is justified in assuming a simple additivity
(total absorption=solute absorption+solvent absorp-
tion) for the various processes. The presence of solute
ions in the neighborhood of water molecules certainly
produces some change in the liquid structure, and may

TAsLz VI-III.

Type

1—2

2—2

3—1

3-2

Solute

NaCl
NaNO,
KCl
KNO3
AgNO3
NaBr

NaClo,
NaC104

MgC12

SrC12
Cu(NOI) g

Cd(NO3) 2

Pb(NO3) 2

UO2(NOg) g

(NH. ),SO.
Na2SO4
K2SO4
MgSO4

MnSO4

NiSO4
CuSO4

CdSO4
I,a(NO, ),

Alp(SO4) 3

Mol. wt.

58.5
85.0
74.6

101.1
169.9
102.9

119.0

106.5
122.5

95.2

158.5
187.6

236.4
331.2
394.2

80.1
142.1
174.3
120.4

151.0

154.8
223.2

208.5
324.9

342.12

Observer

Riifer
3azulin
Bazulin
8azulin
Bazulin
Riifer
Riifer
Bazulin
Riifer
Riifer
Riifer
Riifer
Riifer
Riifer
Riifer
Bazulin
3azulin
Riifer
Bazulin
Bazulin
Riifer
Bazulin
Bazulin
3azulin
Bazulin
Riifer
Smith, Beyer
Barrett
Bazulin
Bazulin
Bazulin
Bazulin
Bazulin
Riifer
Bazulin
Bazulin
Bazulin
Bazulin
Bazulin
Bazulin
Bazulin
Bazulin
Bazulin
Bazulin
Bazulin
Bazulin
Bazulin
Bazulin
Bazulin
Bazulin
Bazulin
Bazulin
Bazulin
Bazulin

Ref.

R12
B9
B9
B9
B9
R12

B10
R12

R12
R12

B9
B9
R12
B9
B9
R12
B9
B9
B9
B9
R12

S10
B9

B9
B9
R12
B9
89

B11

Molarity

0.96
1.00
1.00
1.00
0.94
1.63
1.63
1.00
1.95
1.95
2.79
2.06
2.06
1.05
1.05
0.43
0.5
0.47
0.45
0.5
0.32
0.5
0.5
0.5
0.974
0.99

0.99
0.05
0.125
0.250
0.125
0.125
0.56
0.125
0.1
0.1
0.1
0.1
0.1
0.1
0.25
0.25
0.25
0.25
0.25
0.25
0.041
0,084
0.165
0.1
0.1
0.1
0.1

T'C

18
20
24
17

19—20.5
18
18

16-17
18
18
18
18
18
18
18
18

19-20
18

18-19
18—19

18
17.5

17-18
17-17.5

22.5
18

20
21-24
21-23
21-24
19—21
20-22

18
22-23.5

16
16
17
20
20

20-21
17
17
17
17.5
18

17-18
21-24
21-24
21-24

18
17-18
17-18
20-21

Freq. mc

7.45
30.5
20.1
30.5
30.5
7.45
8.55

30.5
7.45
8.55
8.55
7.45
8.55
6.3
8.55

30.5
30.5
7.45

30.5
30.5
8.55

30.5
30.5
30.5
20.64
6.3

35.44
30.5
30.5
30.5
30.5
30.5
6.3

30.5
12.45
15.60
17.35
20.74
30.56
37.12
9.24

10.74
12.40
14
20.64
25.60
30.5
30.5
30.5
15.7
17.35
24
30.5

As/Am

0.98
0.97
0.97
0.97
1.11
1.02
0.93
1.00
1.09
1.00
1.60
2.04
1.85
1.08
1.39
1.11
1.25
1.22
1.32
1.75
1.77
1.43
1.50
1.89
4.48
5.10

4,80
1.39
2.04
2.93
1.75
2.04
4.28
2.46
4.6
4.1
3.9
3.3
2.8
2.4

10.7
12.1
12.0
10.4
99
8.2
2.18
3.14
3.09
4.94
4.87
4.55
3.54

O.'e/nw
corrected

to unit
molarity

0.98
0.97
0.97
0.97
1.17
1.01
0.96
1.00
1.04
1.00
1.22
1.51
1.41
1.07
1.37
1.26
1.50
1.47
1,64
2.50

1.86
2.00
2.78
4.6
5.1

4.8
8.8
9.2
8.7
7.0
9.3
6.9

12.7
37
32
30
24
19
15
40
45
44
39
37
30
30
27
26
40
40
37
26

"This was suggested by Dr. E. B. Yeager. Some recent measurements (B2a) indicate that the presence of a solute may lower the
absorption coefhcient below that of pure water.
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possibly decrease the absorption attributed to structural
relaxation.

31. ACETATE AND FORMATE ELECTROLYTES

The anomalies present in acetate and formate liquids
have prompted some investigation of aqueous solutions
of salts containing these radicals. While the results are
only fragmentary, they show some interesting trends,
which merit further attention.

The most complete data available are for water solu-
tions of zinc acetate (B11).In order to isolate the relaxa-
tion process, the values of o/v for pure water have been
subtracted from the experimentally determined values
for the solution and the results have been plotted in
Fig. VI-4. The corresponding results for solutions of
copper acetate (B2, B17)have been similarly plotted in
Fig. VI-5. (The vertical lines indicate the approximate
uncertainty range in the more recent values. )

For zinc acetate the relaxation frequency at 0.10 and
0.15M has a value of about 8 megacycles. There is not
sufhcient evidence to indicate any relation between the
concentration and the relaxation frequency. Lieber-
mann's treatment of absorption in magnesium sulfate
presumed that this frequency was directly proportional
to the concentration.

Some rough information on the relation of the relaxa-
tion frequency to concentration may be obtained from
the data on copper acetate solutions. The approximate
relaxation frequencies are given as a function of con-
centration in Table VI-II.

It must be remembered that these numbers are based
on only a very small number of points and are therefore
a very rough estimate. Nevertheless they do point
toward an increase in the relaxation frequency with
increasing concentration, although not in a linear
fashion.

32. VARIOUS ELECTROLYTES

The ratios of o.„l ~,, to 0. ~„ for aqueous solutions
of various electrolytes are given in Table VI-III. The
results are classified according to valence combinations.
Molality values have been converted to molarity and a
linear correction has been applied to give n, /cr„ for
unit molarity in each case. Inasmuch as the actual
dependence of n, on concentration is not clearly known
(compare discussion of MgSO4 solutions above), this
may be taken only as a rough guide, especially in those
cases in which the experimental measurements have
been made at very low concentrations.

The following conclusions may be drawn from the
table:

(1) For 1—1 solutes, the excess absorption resulting from the
solute is negligible, except in the cases of NaC103 and NaC104.
In these two cases, there appears to be a small but real excess.

(2) In a general way, the ratio n, /u increases with increase in
valence of either ion.

(3) For a given negative radical, the absorption increases with
the atomic weight of the positive ion. This is most clearly brought

out in the series of nitrate compounds of the (2-1) type and to a
lesser extent in the series of sulfate compounds of the (2-2) type.
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APPENDIX I. LIST OF SYMBOLS

Below are listed the most important symbols:

a—See Eq. (2.5), reciprocal of the compliance in
Burgers's model.

b—See Eq. (2.5), fluid resistance in Burgers's model.
c—Sound velocity at frequency (1/2x)ce.
co—Limiting velocity of sound at low frequencies.
c„—Limiting sound velocity for high frequencies.
f;,—See Eq. (8.5)
k—See Eqs. (2.12) to (2.14).
k„—Real part of k.
k,—Imaginary part of k.
h—Planck's constant.
O'—Boltzmann's constant.
m—Mass of a molecule.
rr—Sec. 7; see Eq. (7.11).
e—Sec. 8, number of molecules per unit volume.
e,—Number of molecules per unit volume in state i.
p—Total pressure.
p,—Excess pressure.

pp
—Equilibrium pressure (except in Sec. 13 and 14).

q—Displacement vector.
f—Time.
u—Particle velocity.
u,—x component of the particle velocity.
v&
—Volume per molecule associated with state 1.

v2—Volume per molecule associated with state 2.
A,—See Eq. (8.12a).
A»—Transition probability from state 1 to state 2.
A»—Transition probability from state 2 to state 1.
3»'—Equilibrium value of the transition probability

from state 1 to state 2.
3»'—Equilibrium value of the transition probability

from state 2 to state i.
8„—See Eq. (7.14).
8&—See Eq. (7.14).
C„—Molar heat at constant volume.
C"'—Dynamic partial molar heat capacity.
C'—Internal molar heat capacity.
C„'=C„"—Molar heat at constant pressure related to

intermolecular processes.
C,'=C„—Molar heat at constant volume for inter-

molecular processes,
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C„'—Molar heat at constant pressure for intramolecular
processes.

C, '—Molar heat at constant volume for intramoIecular
processes.

C„'=C„' =C—„'+C„', see Eq. (7.33).
C„'=C„'—=C„'+C„'.
Ei—Energy of an unexcited state (per mole).
E,—Er.ergy of an excited state (per mole).
E&—See Eqs. (8.2) to (8.4), kinetic energy of transla-

tion.
F—Force in Burgers's model.
E—Isothermal bulk modulus.
E,—Adiabatic bulk modulus.
E'—Isothermal bulk modulus related to intermolecular

effects.
E'= E'—Xet isothermal bulk modulus.
E,'= E,'—Low frequency adiabatic bulk modulus.
E, =E,'—High frequency adiabatic bulk modulus.
M—Molecular weight.
E—Number of rnolecules in given volume usually taken

as a mole.
iV~—Number of rnolecules in state 1.
iV2—Number of molecules in state 2.
X~0—Number of molecules in state 1 at equilibrium.
J"It2'—Number of molecules in state 2 at equilibrium.
E,—See Eq. (2.12), pressure amplitude.

Q—Heat.
E—Gas constant.
R,—See Eq. (2.14), excess density amplitude.
T'—Temperature related to intermolecular equilibrium.
T'—Temperature related to intramolecular equilibrium.
U —See Eq. (2.13), particle velocity amplitude.
U '—Internal intermolecular energy.
U'—Internal intramolecular energy.
V—Molar volume.
n—Amplitude absorption coefficient.
0.,—Amplitude absorption coefficient for solution.
0, —Amplitude absorption coefficient for H20.
cx —Excess o..
P—Volume coeflrcient of thermal expansion.
P'—Volume coefFicient of thermal expansion related to

the intermolecular forces.
P'—See Eq. (7.30).
P'—See Eq. (7.34).
y—Ratio of specific heats.
y,—Parameter, related to Maxwell's equation.
pl =El/iV.
op
———E2/E.

l —See (Eq. (3.1)), viscosity coeKcient.
q—Shear viscosity.
q'—See Eq. (13.2), viscosity coeKcient.
8,—See Eq. (1.2), elastic constant.
a—Coefficient of thermal conductivity.
X—Sound wavelength.
X,—See Eq. (1.2), elastic parameter.
p= cxX—Amplitude absorption coeKcient per wave-

length.
p,—Electrochemical potential.

p'—Excess value of p.
p—Total density.
p,—Excess density.
po—Equilibrium density.
~—See Eq. (6.1), relaxation time.
v—Sound frequency.
v —Relaxation frequency.
cv—Angular frequency.
co,—Angular relaxation frequency for heat conduction.
pi —See Eq. (9.13).
coo—Angular relaxation frequency.
pp„—= q/y, see Eq. (5.5).
pp„.—=C„ppc'/M'i&, see Eq. (4.9).

BV) t'BVi BV
~v

i i ~p+i ) ~T+i )
I pt Pt

will always hold. For a system with energy dissipation,
the second law becomes an inequality, and one is not
allowed to apply the relationships based on the assump-
tion that the law is an equality (Maxwell's thermo-
dynamics relations) without carefully re-examining
them. We shall not attempt this here, but simply note
which equations were derived by taking the second
law as an equality and avoid using them for irreversible
processes. We assume that consistent units are used
throughout. Thus the specific heat will be in ergs per
moles in cgs units.

We list some useful definitions and some equations.
The equations are either found in Slater (S8) or ca,n be
derived simply.

1 t'DV

vLBT)„
(A-1)

1 1 (OVAL

E VEEP) r
(A-2)

1 1 (BV)

E, V BP)s
(A-3)

(BUq

(aT), (A-4)

~hgq
I ~r) „

(A-5)

APPENDIX II. SUMMARY OF SOME
THERMODYNAMIC EQUATIONS

We are interested in irreversible processes, and we
must, therefore, be careful in our use of thermo-
dynamics. In general, we shall assume that there is a
functional relation between the four variables, pressure

p, volume V, temperature T, and the time t. Namely,
the equation
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E
dp= —d—V+PKdT

V

d V = —(V/K)dp+ VpdT

1dV
dT= (1/Kp)dp+ ——

V

(A-6)

(A i)-

(A-8)

C. (C„
dpi'~ -p ~dv

KP &VP

=C„dT+ (TPK p) d V—

(A-10)

(A-11) Using second law

K.=K-
C,

C„=C,+TVP'K

( TVP'Ki
K, =KI 1+ c. j
c„

t
c„

/

—1 [=TVP
PK. (C. j

(A-12) Using second law

(A-13) Using second law

(A-14) Using second law

(A-15) Using second law

A1

A1a

A2
A3
81
82

32a
83

84
85
86
87
88
89
810
311
312

813
314

315

316
817

318
319
820
821
822
823
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