Nuclear Shell Structure and Beta-Decay. II. Even A Nuclei

L. W. Nordheim*

Duke University, Durham, North Carolina

A systematics of the β -transitions of even A nuclei is given. An interpretation of the character of the transitions in terms of nuclear shell structure is achieved on the hypothesis that the odd nucleon groups have the same structure as in odd A nuclei, together with a simple coupling rule between the neutron and proton groups in odd-odd nuclei.

A. THE COUPLING OF ODD PROTON AND NEUTRON GROUPS

I N the preceding paper¹ the β -decay properties of nuclei with odd mass number were discussed on the basis of our present knowledge of nuclear shell structure. In the present paper the discussion is extended to cover nuclei with even A. The general background, arguments, and references are the same as in I and need not be repeated here.

The situation is somewhat more complex than for odd A nuclei. A β -transition for an even A nucleus demands at one end point an even-even nucleus, which, in so far as we know, has zero spin. The other end point, mostly the initial nucleus, is of odd-odd type, in which there will be a coupling of neutron and proton groups, each of which will contribute to the resultant spin. Unfortunately only a very few spins of odd-odd nuclei have been measured so far; among these are several very high ones (Be¹⁰, Na²², K⁴⁰, Lu¹⁷⁶). The frequent occurrence of highly complex β -spectra with series γ -rays is also an indication that the spins of odd-odd nuclei are often quite large.

Of course, not much can be said *a priori* about the coupling between the proton and neutron groups. The persistence of the islands of isomerism (I, reference 1), leads to the suspicion that their configurations are largely independent of each other, and that their structure must in the main be preserved. More definite information can be obtained from the study of those β -transitions which connect the ground states of the initial and final nucleon.

The resultant pattern, which will be discussed in greater detail later, resembles closely the pattern of the odd A nuclei. Of particular interest are the groups of allowed transitions with neutron and proton numbers below 50 and of the first-forbidden transitions with $\Delta I = 2$, which can be recognized by a value of $\log(W_0^2 - 1)$ ft of about 10 and by the shape of their spectra, if observed. These transitions can be interpreted in an entirely unforced manner by assuming that the respective

odd proton and neutron groups have the same Schmidt orbitals as occur for the same nucleon numbers in odd Anuclei and that the spins of the neutron and proton groups are antiparallel, that is, couple to a minimum resultant. An inspection of the orbitals involved reveals further that they belong in these cases always to opposite Schmidt groups. Conversely, in light nuclei for which the expected orbitals for the neutron and proton groups are identical, the indications are always for a high resultant spin. We are thus led to the following hypotheses:²

(1) The individual configurations of neutrons and protons in odd-odd nuclei are the same as in odd A nuclei with the same number of nucleons in the odd particle group.

(2) If the odd neutron and proton groups belong to different Schmidt groups, then their resultant spins will subtract.

(3) If the odd neutron and proton groups belong to the same Schmidt group, their spins will couple to a larger than minimum resultant.

In terms of the notation for orbitals (2) and (3) can be expressed as follows: If the spins of the odd particle groups are $j_1=l_1\pm\frac{1}{2}$ and $j_2=l_2\mp\frac{1}{2}$, then the resultant spin is $I=|j_1-j_2|$. If $j_1=l_1\pm\frac{1}{2}$, $j_2=l_2\pm\frac{1}{2}$, then $I>|j_1-j_2|$.

The magnitude of the resultant spins in case (3) will be discussed later. In many, but not all, cases they seem to be near the possible maximum j_1+j_2 .

The subsequent discussion is based on the above rules. They restrict greatly the choice of possible assignments, and the fact that it is possible to carry through the scheme on this basis gives strong support for its validity.

B. DISCUSSION

The complete material on even A nuclei is collected in Table II, Sec. C. Here we discuss as in I the transitions which go to the ground state ordered accordingly to type. They are given in Table I. It is to be noted that the nucleon numbers refer to the odd-odd nucleons involved in these transitions, and that the assignments

^{*} At present on leave at the Los Alamos Scientific Laboratory, Los Alamos, New Mexico. ¹ Mayer, Moszkowski, and Nordheim, Revs. Modern Phys. 23,

¹ Mayer, Moszkowski, and Nordheim, Revs. Modern Phys. 23, 315 (1952), quoted henceforth as I.

² L. W. Nordheim, Phys. Rev. 78, 294 (1950).

refer to the neutron and proton configurations in this same nucleus. The even-even nuclei are assumed throughout to have spin zero and even parity.

The composition rules introduced in Sec. A exclude the occurrence of allowed transitions with spin change 0 and of first-forbidden transitions with spin change 1.

A very numerous group in the allowed class is formed by nuclei with Z=45 to 49 and N from 59 to 69. There is no analog to this group among the odd A nuclei. The only possibility to account for the absence of parity change in the shell scheme is with the help of the $g_{9/2}$ orbitals for Z < 50. This demands the assignment of the orbital $g_{7/2}$ to the neutrons, which is not observed in this range in odd A nuclei. However the situation is here somewhat different. In odd A nuclei there is a definite discrimination against high spins for odd neutron numbers above 50. The assignment $g_{9/2}-g_{7/2}$ proposed for the group under discussion gives a total spin of only 1, so that a mechanism working against high spins may not be operative here, and a small coupling energy between the neutron and proton groups may produce a change in the preference of orbitals.

The presence of a first-forbidden group with $\Delta I = 2$, of course, does not in itself prove rule (2) since a resultant spin 1 in place of 0 would not show up in the *ft* values. The latter fall within the same limits as given in I for odd A nuclei. Feenberg and Trigg³ have remarked that, for even A, *ft* values for allowed transitions are somewhat lower and for first-forbidden transitions with $\Delta I = 2$ somewhat higher than for odd A nuclei, and such a tendency is indeed reflected in the figures given here. The *ft* values for first-forbidden transitions with $\Delta I = 2$ are, however, strictly comparable in the two cases.

The conclusion of I of the smallness of the matrix elements for second forbidden transitions is borne out by the high $\log ft$ values for $\mathrm{Be^{10}}$, $\mathrm{Na^{22}}$, and $\mathrm{Cl^{36}}$, which lie all in the neighborhood of 14.

A special discussion is required for the cases where the orbital assignments lead to a change of the Schmidt angular momentum by 2 units, that is, no change in parity, while the spin change is 1. According to the formal selection rules such transitions should be allowed. In case the orbital angular momentum were a good quantum number, these transitions would be second forbidden. Among the cases for odd A nuclei (I, I)Table II) O¹⁹, Si³¹, and Ge⁶⁹ show log ft values, respectively, of 5.5, 5.9, 6.0, which are somewhat high for allowed transitions but fall just within the limits of the group. Zn⁶⁵ with log ft = 7.4 falls definitely out of line, while no first forbidden interpretation is compatible with the shell model. Pd¹⁰⁹ with 6.2 is again a borderline case. The evidence from this transition is, however, not conclusive since it goes to the *metastate* of Ag¹⁰⁹, whose spin and parity are subject to doubt.

For even A there is the puzzling case of C¹⁴, where the spin change is measured to be 1 while log ft=9. The

TABLE I. Classification of β -decays to ground state of even A nuclei according to changes in spin (ΔI) and parity (no, yes). Column 1: Initial isotope Z-Element-A. Column 2: Sign of emitted charge, and maximum energy in Mev. Column 3: Initial and final nucleon number in this order. Column 4: Assignment of orbitals to the proton and neutron groups in the odd-odd nucleus. Column 5: Log ft. Column 6: Log $(W_0^2 - 1) ft$ for $\Delta I = 2$, yes. $W_0 =$ energy of β -transition in units mc^2 . Column 7: Observed spin of odd-odd nucleus.

(a) $\Delta I = 1$. No (allowed)									
<u> </u>	2	3	4	5	6	7			
5 B 12	-13.4	5-7	$p_{3/2} - p_{1/2}$	4.2					
7 N 12	+16.6	7-5	$p_{1/2} - p_{3/2}$	4.1					
15 P 30 15 P 34	+ 3.3 - 51	15-15	$s_{1/2} - s_{1/2}$	5.0 4 7					
31 Ga 70	- 1.65	31-39	$p_{3/2} - p_{1/2}$	5.0					
35 Br 78	+ 2.3	35-43	p3/2-p1/2	4.4 +					
35 Br 80	+ 0.7	35-45	$p_{3/2} - p_{1/2}$	4.3 +					
11 D 11 106	-2.0	45-61	<i>a.</i>	5.4+					
45 Rh 104	-2.6	45-59	g9/2-g7/2	4.7+					
45 Rh 106	- 3.55	45-61	g9/2-g7/2	5.2					
46 Pd 112	-0.2	47-65	g9/2-g7/2	4.0					
47 Ag 106 47 Ag 108	+ 2.04	47-59	g _{9/2} -g _{7/2}	$\frac{4.7+}{5.2}$					
47 Ag 108	-2.8	47-63	g9/2-g7/2	4.7+					
49 In 110	+ 1.6	49-61	g9/2-g7/2	4.7+					
49 In 114	- 1.98	49-65	g _{9/2} -g _{7/2}	4.4					
49 In 116	- 2.8	49-67	g9/2-g7/2	4.4					
53 I 128	-2.02	53-75	g9/2-g7/2 d5/2-d2/2	5.7					
57 La 136	+ 2.1	57-79	$d_{5/2} - d_{3/2}$	4.8					
59 Pr 140	+ 2.4	59-81	$d_{5/2} - d_{3/2}$	4.2 +					
	(b) Δ <i>I</i>	=0, Yes (fi	rst forbidden)					
7 N 16	-10.3	7-9	\$1/2-\$1/2	6.9					
36 Kr 88	- 2.4	37-51	$f_{5/2} - d_{5/2}$	6.8					
37 Rb 88	- 4.6	37-51	$f_{5/2} - d_{5/2}$	7.0					
54 Xe 138 58 Ce 144	-2.08 -0.30	55-83 50-85	g7/2-J7/2	0.5					
59 Pr 142	-2.22	59-83	g7/2-J7/2 g7/2-f7/2	7.8					
81 RaE" 206	- 1.70	81-125	$s_{1/2} - p_{1/2}$	5.5					
	(c) Δ <i>I</i>	=2, Yes (fi	rst forbidden))					
17 Cl 38	- 4.81	17-21	$d_{3/2} - f_{7/2}$	7.4	9.6				
19 K 42	- 3.58	19-23	$d_{3/2} - f_{7/2}$	8.0	9.8				
33 As 76	-3.04	33-43	f5/2-g9/2	8.3	10.0				
38 Sr 90	- 1.62 - 0.53	39-51	J 5/2-89/2	0.3 9.2	9.3				
39 Y 90	- 2.18	39-51	$p_{1/2} - d_{5/2}$	8.0	9.5				
39 Y 92	- 3.5	39-53	$p_{1/2} - d_{5/2}$	7.9+	9.7				
41 Nb 94m	-1.3	41-53	$p_{1/2} - d_{5/2}$	7.4	8.5				
45 KII 102	-1.13	43-37	$p_{1/2} - a_{5/2}$	8.7+	0.0 9.6				
59 Pr 142	- 2.22	59-83	g7/2-f7/2	7.8	8.1				
69 Tm 170	- 0.97	69-101	$s_{1/2} - f_{5/2}$	8.9	9.8				
81 TI 204	-0.78	81-123	$s_{1/2} - p_{3/2}$	9.6	10.4				
65 Kal 210	- 1.17	00-127	$n_{9/2} - a_{5/2}$	0.0	9.0				
6 C 14	- 0.156	7-7	$p_{1/2} = p_{1/2}$	9.0		1			
15 P 32	- 1.71	15-17	$s_{1/2} - d_{3/2}$	7.9					
29 Cu 60	+ 3.3	29-31	$p_{3/2} - f_{5/2}$	7.1+					
29 Cu 64	-0.66	29-35	$p_{3/2} - f_{5/2}$	5.0					
31 Ga 68	+ 1.9	31-37	$p_{3/2} - f_{5/2}$	5.1					
51 Sb 122	- 1.94	51-71	$d_{5/2} - g_{7/2}$	7.9 +					
53 I 126	- 1.27	53-73	$d_{5/2} - g_{7/2}$	7.6					
(e) Δ <i>I</i>	=2; No, or	$\Delta I > 2$ (seco	ond and highe	er forbidde	n)				
4 Be 10	- 0.56	5-5	p3/2-p3/2	13.7		3			
11 Na 22 17 Cl 36	+ 1.80 - 0.71	11-11 17-10	$D_{3/2} - D_{3/2}$	14.0 13 5		3			
19 K 40	- 1.36	19-21	$d_{3/2} - d_{3/2} - d_{3/2} - d_{3/2} - f_{7/2}$	17.6		$\frac{2}{4}$			

³ E. Feenberg and G. Trigg, Revs. Modern Phys. 22, 399 (1950).

next case is P^{32} with 7.9. No first-forbidden interpretation (i.e., change in parity) is possible for this nucleus, while a spin change of 2 with no parity change would lead to the expectation of a much higher ft value. An experimental determination of the spin of P^{32} would thus be particularly interesting. Cu^{60} , Sb^{122} , and I^{126} have ft values compatible with first-forbidden transitions but with neutron and proton configuration in the same shell, which should exclude a change in parity. Cu^{64} and Ga^{68} have ft values which classify their decays as allowed. However, it cannot be ruled out that their configuration is $p_{3/2}-p_{3/2}$ with violation of rule (3).

The data on these nuclei, in which the transition occurs within the same shell, suggest strongly that they form a distinct group which is neither allowed nor second forbidden. An appropriate name for this class may be "L-forbidden." The log ft values of these nuclei fluctuate widely from seemingly allowed values in the neighborhood of 5 to 9 for C¹⁴. It seems thus that a remnant of our selection rule is operative and that it is very much a matter of chance how far it is violated. We are thus inclined to consider the long lifetime of C¹⁴ as an accident.

The nuclei with series γ -rays find in most cases an unforced interpretation by rule (3). An outstanding group of this type is that with Z between 21 and 27 which have the interpretation $f_{7/2}-f_{7/2}$ or $f_{7/2}-p_{3/2}$ and which go without exception to excited states. It is unfortunately not possible to obtain reliable information about the actual spins of nuclei which fall under rule (3). In B¹⁰, N¹⁴, Na²² the spins of the neutron and proton groups are known to be parallel. For Cl³⁶ a spin of 2 has been reported.⁴ The evidence seems, however, not to be absolutely forcing, and the shape of the β -spectrum^{5, 6} is in doubt.

For many other nuclei the decay schemes indicate high values of the spin in view of the presence of more

than one γ -ray in series. Examples are Na²⁴, Sc⁴⁸, Ti⁴⁸, Mn⁵², Co⁶⁰, Br⁸², I¹³⁰, Cs¹³⁴. We believe, therefore, that in general the spins in this group are quite high and may result from a parallel coupling of neutron and proton spins, though this is probably not true in all cases.

There are some exceptions or difficulties to the scheme, which require special mention.

Li⁶ has the observed spin 1, while a parallel coupling would lead to spin 3 as in B^{10} . This is not a direct contradiction to rule (3), but it seems that so low a spin in such a case is rather an exception.

Al²⁶: The decay of this nucleus belongs to Wigner's family of super-allowed transitions⁷ with even A which is characterized by an odd-odd nucleus which could be composed by α -particles plus a deuteron. There is evidence⁸ that the mass difference to Mg²⁶ is higher than corresponding to the energy of the observed β -ray, so that there should be a series γ -ray. Otherwise it would have to be assumed that the two $d_{5/2}$ configurations couple to an abnormally low total spin of 1 or 0.

 K^{40} : This nucleus constitutes the one definite exception to rule (2). The assignment of orbitals $d_{3/2}-f_{7/2}$ in this case is particularly free from ambiguity, and the magnetic moment fits well with it. Rule (2) would lead to a spin 2, while 4 is observed.

Cu⁶⁴ and Ga⁶⁸ have already been mentioned as possible exceptions to rule (3). There are further a number of problems arising from an incomplete knowledge of the facts. These cases are pointed out in the notes of Table II, Sec. C.

Summing up, one may say that the rules (1) to (3) seem to hold for the great majority of cases, but not without exception. This is not surprising in view of the great complexity of the situation. Nevertheless, they provide apparently an excellent key to the understanding of the β -transitions of even A nuclei.

⁴ C. H. Townes and L. G. Aamodt, Phys. Rev. **76**, 691 (1949). ⁵ C. S. Wu and L. Feldman, Phys. Rev. **76**, 693 (1949). ⁶ H. W. Fulbright and J. C. D. Milton, Phys. Rev. **82**, 274

⁶ H. W. Fulbright and J. C. D. Milton, Phys. Rev. 82, 274 (1951).

⁷ The other members of this group are He⁶, F¹⁸, which go to the ground state, and C¹⁰ and O¹⁴, which go to excited states of the daughter nuclei.

⁸ K. Way (private communication).

C. TABLES FOR β -DECAY SYSTEMATICS: EVEN A (TABLE II)

TABLE II. Beta-decay data and orbital assignments for even-A nuclei.

Column 1: Class of transition: A. isotope certain; B. isotope probable; C. isotope doubtful. Class C. nuclei are only included if the β -decay data contribute to the identification. a. decay data well established; b. decay data probably correct; c. decay data uncertain and possibly incorrect; α . configuration assignment well established; β . configuration assignment probable; γ . configuration assignment uncertain and possibly incorrect. Column 2: Initial isotope: Z-Element-A. The *m* denotes a *metastable* state. Column 3: Sign of emitted charge, maximum energy in Mev of the most energetic observed β -ray. The energy is given in brackets, if the transition is believed to go to an excited state. Column 4: Half-life. Column 5: g, e, m, mean, respectively, transition is believed to go to the ground, an excited, or a *metastable* state of the final nucleus. The figure following gives the branching percentage to the specified state when known. The 100 means that there is a branching, but of unknown percentage. Omission of a figure means that most of the transitions go to the specified state. Column 7: Assignment of orbitals to the odd proton and the odd neutron in the odd-odd nucleus. Column 8: Predicted spin for the odd-odd nucleus. *h* means that the spin is higher than the difference between proton and neutron spins. Asterisk signifies that the spin has been measured. Column 9: Log *ft* value calculated with the *f* functions for allowed transitions. The values are given in brackets if the transition goes to an excited state. A plus sign is added if branching of unknown percentage is known to occur. Column 10: Reference to bibliography. No authors are quoted if all references tre given in the compilations by Seaborg (S1), Mitchell (M1), or Nat. Bur. Stand. (N1). Column 11: Reference

	Sign		Half-life		Numbers					Foot
Class	Z-Element-A	Energy	Fi	nal state	6	Configuration 7	Spin	Log ft	Ref.	notes
	Ζ	3		3	0		8ª	9	10	
$Aa\gamma$	2-He-6	- 3.22	0.82 sec	g	3-3	\$3/2-\$3/2	1*	2.8	P1	
Aaα	3-Li-8	-(13)	0.89 sec	e < 100	3-5	\$\$3/2-\$\$3/2	h	(5.6+)	H1	b
Aaα	4-Be-10	- 0.56	$2.7 \times 10^{6} \text{ yr}$	g	5-5	p _{3/2} -p _{3/2}	- 3*	13.7	H2	
Aaα	5-B-12	-13.4	0.027 sec	g	5 - 7	$p_{3/2} - p_{1/2}$	1	4.2	H1	
$Ab\alpha$	6-C-10	+(2.2)	19.1 sec	e	5-5	\$\$3/2-\$3/2	3*	3.3	S1	с
$Aa\beta$	6-C-14	- 0.156	5720 yr	g	7-7	$p_{1/2} - p_{1/2}$	1*	9.0	E1	d
Bbα	7-N-12	+16.6	0.0125 sec	g	7-5	\$1/2 ⁻	1	4.1	Al	
Aaα	7-N-16	-10.3	7.35 sec	g18	7-9	$p_{1/2} - s_{1/2}$	0	6.9	B1	
$Ba\beta$	8-0-14	+(1.8)	76 sec	e	7-7	$p_{1/2} - p_{1/2}$	1*	(3.5)	S1	с
$Ab\alpha$	9-F-18	+0.63	$112 \min$	g < 100	9-9	S1/2-S1/2	1	3.6+	B2	e
$Ab\beta$	9-F-20	-(5.01)	12 sec	e	9-11	$s_{1/2} - D_{3/2}$	1	(4.9)	SI	t
$Ab\beta$	11-Na-22	+1.80	30 yr	g0.005	11-11	$D_{3/2} - D_{3/2}$	3*	14.0	M2	t .
Aaß	11-Na-24	-(1.39)	14.9 hr	e	11-13	$d_{5/2} - d_{5/2}$	n	(0.1)	MI	g
$Ac\gamma$	13-Al-20	-(2.99)	0.3 sec	e	13-13	$d_{5/2} - d_{5/2}$	n	(3.3)	SI	h
Aap	13-Al-28	-(3.01)	2.3 min	e	13-15	$a_{5/2} - s_{1/2}$	n 1	(5.0)		
AD α	15-P-30	+ 3.3	2.55 min	g	15-15	$s_{1/2} - s_{1/2}$	1	5.0	51	1
Aap DLo	15-P-52	- 1.71	14.1 days	g _7 r	15-17	$S_{1/2} - a_{3/2}$	1	1.9	51	1
Бор	15-P-54 17 CL 24	5.1	12.4 sec	g15	17 17	$a_{5/2} - a_{3/2}$	1	4.7	51	1
Ασα	17-CI-34 17 Cl 36	+(3.1)	33 mm	<i>e</i> 80	17-17	$a_{3/2} - a_{3/2}$	n 2*	(7.0)]
Aaa	17-CI-30 17-CI-38	-0.71	4.4 × 10° yr	g 252	17-19	$a_{3/2} - a_{3/2}$	2	13.3		ĸ
Aaa	10 7 28	-4.01	50 mm	g55	10 10	$u_{3/2} - j_{7/2}$	2	(1.4	51 51	
Ana	19 - K - 30 10 - K - 40	$\pm (2.33)$	1.5 mm	e	19-19	$a_{3/2} - a_{3/2}$	n 1*	17.6	12 02	1
Ang	19 - K - 40 10 - K - 42	- 3.58	$\frac{4}{10^4}$ yr	8 75	10-23	$a_{3/2} - f_{7/2}$	2	8.0	M1	1
Ace	21-Sc-44	$\pm (1.33)$	302 hr	g13	21_23	$u_{3/2} - f_{7/2}$	2 h	(5,5)	H4	
AaB	21 Sc - 46	-(1.00)	85 days	02 00	21-25	J7/2 J7/2	h	(10.2)	M1	m
Aba	21 - 5c - 48	-(0.64)	44 hr	02	21 23 21 - 27	$\int \frac{1}{2} \int \frac{1}{2}$	h	(10.2)	M1	111
Abg	23-V-48	+(0.72)	16 days	e58	23-25	f 1/2 J 1/2	h	(6.2)	M1	m
Abg	23 - V - 52	-(2.05)	30 min	e< 100	23-29	frie-their	h	(4.4)	M1	m
Aaß	25-Mn-52	+(0.58)	$6.5 \mathrm{days}$	e50	25-27	f7/0-f7/0	h	(5.1)	M1	m
Aaß	25-Mn-56	-(2.81)	2.5 hr	e50	25-31	fr12 - Dava	ĥ	(7.1)	MI	m
Aca	26-Fe-52	+(0.55)	7.8 hr	e<100	25 - 27	f7/2-f7/2	ĥ	(3.7+)	S1	n
Aba	27-Co-56	+(1.48)	80 days	e < 100	27-29	f7/2-D2/2	h	(8.1+)	M1	
$Ab\alpha$	27-Co-58	+(0.47)	72 days	e15	27 - 31	f7/2-D3/2	h	(6.6)	M1	
Aaα	27-Co-60	-(0.31)	5.3 vr	e	27 - 33	f7/2-D3/2	h	(7.5)	M1	
$\mathrm{Bb}\beta$	27-Co-62	-(2.3)'	13.9 min	e	27 - 35	$f_{7/2} - p_{3/2}$	h	(5.4)	P2	
$Ab\alpha$	29-Cu-60	+3.3	24.6 min	g5	29-31	$p_{3/2} - f_{5/2}$	1	7.1	S1	0
$Ac\beta$	29–Cu–62	+(2.83)	10.1 min	ĕ	29-33	p3/2-p3/2	h	(5.1)	B5	
$Aa\gamma$	29-Cu-64	- 0.66	13 hr	g18	29-35	$p_{3/2} - f_{5/2}$	1	5.0	B6	р
		+ 0.57		g35				5.4		
$Ab\beta$	29-Cu-66	-(2.58)	5 min	e	29-37	$p_{3/2} - f_{5/2}$	1	(5.2)	N1	
$Ab\beta$	30-Zn-62	+(0.665)	9.2 hr	e10	29-33	\$3/2-\$3/2	h	(5.1)	H5	
$Ac\beta$	30-Zn-72	-(1.6)	49 hr	e5	31 - 41	\$3/2-g9/2	h	(8.5)	S1	q
$Ab\beta$	31-Ga-66	+(4.14)	9.4 hr	e29	31 - 35	\$3/2-\$3/2	h	(8.0)	M3	
$Ab\gamma$	31–Ga–68	+ 1.9	68 min	g < 100	31-37	\$\$12-f5/2	1	5.1+	SI	r
Abα	31-Ga-70	-1.05	$20 \min$	g	31-39	P3/2-P1/2	1	5.0	SI	
$Aa\alpha$	31-Ga-12	-(3.17)	14.5 days	e8	22 20	P3/2-g9/2	n	(9.0)	IVI I M 4	~
выя	33-AS-12	+(2.18)	20 nr	ess ~60	33-39	$J_{5/2} p_{1/2}$	n	(1.3)	IVI4 M1	S
Aaa	35-AS-10 25-Br-78	- 3.04 ± 2.3	20.0 nr	g00 a~100	35-43	J 5/2-g9/2	2 1	0.3	S1	ι
Acp	35-DI-18 35-Br-80	± 0.7	0.4 min	g < 100	35-43	$p_{3/2} - p_{1/2}$	1 1	4.4+	51 N1	u
πυα	00-11-00	-20	10 mm	8 \ J	55-45	$p_{3/2} p_{1/2}$	T .	54	N1	
Abe	35-Br-82	-(0.447)	36 hr	e < 100	35-47	the so- Take	h	(5.1)	M1	
Aba	36-Kr-88	- 24	2.8 hr	g 100	37-51	1512 5912	ő	6.8	K1	
Aaa	37-Rb-86	-1.82	19.5 days	e 80	37-49	f5/9-9010	ž	8.3	M1	
1 1444		1.04	17.0 augo	800	0. 17	1012 8812	-	0.0	+	

TABLE II-Continued.

Class	Sig Z-Element-A	n Energy	Half-life	Final state	Numbers	, Configuration	Spin	Log ft	Ref.	Foot- notes
1	2	3	4	5	6	7	8ª	9	10	11
$Ab\alpha$	37–Rb–88	- 4.6	17.5 min	g	37-51	$f_{5/2} - d_{5/2}$	0	7.0	S1	
Aaα	38-Sr-90	- 0.53	25 yr	g	39-51	$p_{1/2} - d_{5/2}$	2	9.2	J1	
Aaβ	39-Y-88	+(0.83)	105 days	e0.2	39-49	$\hat{p}_{1/2} - g_{9/2}$	4	(9.6)	M1	
Aaa	39Y-90	- 2.18	65 hr	g	39-51	$\hat{p}_{1/2} - d_{5/2}$	2	8.0	L2	
Acα	39-Y-92	- 3.5	3.5 hr	g < 100	39-53	$p_{1/2} - d_{5/2}$	2	7.9+	S1	v
$Ab\beta$	41-Nb-92	-(1.38)	$10.1 \mathrm{~days}$	ē	41-51	$g_{9/2}-d_{5/2}$	h	(7.7)	S1	w
$Ab\beta$	$41 - Nb^{m} - 94$	- 1.3	6.6 min	g0.1	41-53	$\bar{p}_{1/2} - d_{5/2}$	2	7.4	S1	
$Bb\beta$	41-Nb-96	-(0.67)	23.3 hr	ē	41–55	$g_{9/2} - d_{5/2}$	h	(5.6)	K2	х
$Ab\alpha$	44-Ru-106	- 0.039	1.0 yr	g	45-61	g9/2-g7/2	1	4.3	A3	
$Ab\alpha$	45–Rh–102	+ 1.13	210 days	g < 100	45–57	$p_{1/2} - d_{5/2}$	2	7.7 +	S1	
		- 1.04		g < 100				8.7+	S1	
Abβ	45–Rh–104	- 2.6	44 sec	g < 100	45-59	g9/2-g7/2	1	4.7 +	N1	У
Aaα	45–Rh–106	- 3.55	30 sec	g82	45-61	g9/2-g7/2	1	5.2	M1	
Aaα	46-Pd-112	-0.2	21 hr	g	47-65	g9/2-g7/2	1	4.0	S1	Z
Ααα	47-Ag-106	+ 2.04	24.5 min	g < 100	47-59	g9/2-g7/2	1	4.7+	S1	
Abα	47–Ag–108	-2.8	$2.3 \min$	g	47-61	g9/2-g7/2	1	5.3	S1	
Aaa	47-Ag-110	-2.86	24 sec	g<100	47-63	g9/2-g7/2	1	4.7+	S2	
Aap	47-Ag ^m -110	-(0.53)	225 days	e <100	47-03	$p_{1/2} - g_{7/2}$	n	(7.6)	S2	
Abα	49–In–110	+ 1.0	05 min	g < 100	49-01	g9/2-g7/2	1	4.7+	SI	
Aaa	49 - 1n - 114	-1.98	12 sec	g90	49-05	g9/2-g7/2	1	4.4	M5	
Aaa	49 - 1n - 110	-2.8	13 sec	g	49-07	g9/2-g7/2	1	(4.4)	51	•
AD/3	$59 - 10^{-110}$	(0.85)	54 min	e . . < 100	49-07	P1/2-g7/2	n 1	(4.7+)	51	
BDD	49-10-118	- 1.5	4.5 min	g < 100	49-09	g9/2-g7/2	1	$\frac{4.7+}{7.0+}$	DI M1	aa LL
ADB	51-50-122 51 Sh 124	-1.94	2.0 days	g<100	51-71	a 5/2-g7/2	1 2	(10.2)	M1	DD
Aap Dhe	51-50-124 52-To-132	-(2.37)	77 hr	e21	53-70	$g_{7/2} - s_{1/2}$	5	(10.3)	S1	dd
	52-10-152 53_T_124	$\pm (2.20)$	1 dove	e 50	53-79	$g_{7/2} - u_{3/2}$	n h	(7.4)	M1	uu
Aab Aab	53-I-124 53-I-126	+(2.20) - 1.27	13 days	a27	53-71	$d_{5/2} = 3_{1/2}$	1	(7.0+)	M1	ff
Aap	53-I-120	-2.02	25 min	g27 g03	53-75	dr/2-g7/2	1	57	M1	11
AaB	53_T_120	-(1.03)	12.6 hr	e60	53-77	$a_{5/2} a_{3/2}$	1 h	(6.4)	M1	
BhB	54-Xe-138	-2.68	$30 \min$	σ	55-83	g1/2 03/2	ő	65	T1	
Aaß	55-Cs-134	-(0.66)	2.3 vr	e75	55-79	8112 J112	ĥ	(8.9)	M 1	
Abß	55-Cs-136	-(0.28)	13 days	e	55-81	87/2-d.2/2	ĥ	(5.8)	SI	
Acv	56-Ba-140	- 1.02	$12.8 \mathrm{days}$	ø60?	57-83	d 5/2- f7/2	h	7.9	м1	gg
Aba	57-La-136	+2.1	9.5 min	g33	57-79	$d_{5/2} - d_{3/2}$	1	4.8	N2	66
Aaß	57-La-140	-(2.26)	40 hr	e10	57-83	$d_{5/2} - f_{7/2}$	h	(9.1)	M1	gg
Aaß	58-Ce-144	- 0.30	275 days	g	59-85	g _{7/2} -g _{7/2}	0	7.2	S1	88
$Ab\gamma$	59-Pr-140	+ 2.4	3.5 min	g < 100	59-81	$d_{5/2} - d_{3/2}$	1	4.2 +	S1	
$Ab\gamma$	59-Pr-142	- 2.22	19.3 hr	g98	59-83	g7/2-f7/2	0	7.8	M6	hh
Aaγ	65–Tb–160	-(0.86)	71 days	e42	65–95	$d_{5/2} - f_{7/2}$	h	(8.6)	B7	ii
$Ab\gamma$	69–Tm–170	- 0.97	127 days	g90	69–101	$s_{1/2} - f_{5/2}$	2	8.9	M1	
$Ab\beta$	71–Lu–176	-(0.4)	2.4×1010 yr	e33	71–105	$g_{7/2} - h_{9/2}$	$>7^{*}$	(18.9)	S1	jj
$Ab\gamma$	73–Ta–182	-(0.53)	113 days	e	73-109	g7/2-\$23/2	2	(8.0)	$\mathbf{B4}$	kk
$- Ab\gamma$	75–Re–186	-(1.07)	90 hr	e	75-111	$d_{3/2} - p_{1/2}$	h	(7.5)	M1	٥
$Ab\gamma$	79–Au–192	+(1.9)	$4.0 \ hr$	e1	79–113	$d_{3/2} - p_{1/2}$	2	(7.4)	W2	kk
$\operatorname{Bb}_{\boldsymbol{\gamma}}$	79–Au–194	+(1.8)	39.5 hr	e3	79-115	$d_{3/2} - p_{1/2}$	2	(7.9)	W2	kk
Ααγ	79–Au–196	-(0.30)	5.6 days	e5	79-117	$d_{3/2} - p_{1/2}$	2	(7.3)	<u>S3</u>	kk
Aaγ	79-Au-198	-(0.97)	2.8 days	e	79-119	$d_{3/2} - p_{1/2}$	2	(7.3)	M1	
Ααβ	81-11-204	-0.78	3 yr	g	81-123	$s_{1/2} - p_{3/2}$	2	9.6	54	11
$Aa\beta$	81-RaE''-206	-1.70	4.25 min	g	81-125	$s_{1/2} - p_{1/2}$	Ų,	5.5	F1	mm
$Ab\gamma$	81-1nC"-208	-(1.79)	3.1 min	e55	81-127	\$1/2-g9/2	n	(5.8)	1°1 124	
$Ab\gamma$	81-KaC -210	-(1.88)	1.32 min	e	81-129	S1/2-89/2	n	(3.1)		
$AD\gamma$	02-RaD-210 82 DoF 210	-(0.029)	22 yr 50 dewr	e	03-127	$n_{9/2} - a_{5/2}$	2	(0.1)		
лаγ	05-Kal-210	- 1.17	5.0 days	g	05-127	n9/2-05/2	4	0.0	-91	

^a Asterisk signifies that the spin has been measured.
^b The transition goes preferentially to an excited state of Be⁸ which decays directly into two He⁴ nuclei.
^c Superallowed into an excited state.
^d Ct⁴ represents an extreme *l*-forbidden case. O¹⁴, which goes into the same product nucleus N¹⁴ has a superallowed transition via an excited state.
^f It cannot be decided whether the configurations for 11 nucleons are Decay of data.

f It cannot be decided whether the configurations for 11 nucleons are $f_{3/2}$ or $d_{3/2}$. * This transition is certainly high forbidden since there are two γ -rays in cascade. It cannot be decided whether in this case a $D_{3/2}$ configuration for the 11 protons couples with the $d_{3/2}$ neutrons to a high spin, or whether the protons also have a $d_{3/2}$ configuration. ^b The empirical data for Al²⁶ suggests a series γ -ray and thus a super-allowed transition to an excited state. ⁱ The three P isotopes furnish an instructive example for the working of the shell scheme. All three must be assumed to have spin 1. P²⁸ is *l*-forbidden. The orbital for the 15 protons in P²⁴ has to be assumed to be $d_{3/2}$ to explain the allowed character of its decay. An alternative interpretation is $s_{1/2}-s_{1/2}$. ⁱ The shell scheme suggests strongly a series γ -ray for this transition, which is by no means excluded by the experimental evidence. The coupling rule in its narrower form demads, of course, only that the spin is 0. * Lifetime and shape of spectrum both suggests a spin 3 for Cl³⁶, while the reported evidence for spin 2 does not seem to be forcing.

¹ K⁴⁰ constitutes the most notable exception to the spin rule, which would predict a spin of 2 in place of the observed 4. The alternative possible configuration syl=fr/2 would give a spin 4, but would make it difficult to explain the observed magnetic moment.
 ^m It cannot be decided whether the configurations of 25 nucleons are F_{5/2} or fr/2. They couple with fr/2 and p_{3/2} opposites always to a high resultant spin.
 ⁿ Insufficient experimental evidence.
 ^o Experimental evidence insufficient. However, f_{3/2} orbits for the odd neutrons seem to occur in other Ni isotopes.
 ^p Cu⁴⁴ presents a definite difficulty for the shell scheme. The interpretation of the table (*p*_{3/2}-f_{3/2}) makes its transition -16rbidden with an abnormally low ft value. The natural *p*_{3/2}-*p*_{3/2} combination should lead to a high resultant spin according to the composition rule.
 ^a This transition should be highly forbidden since this is also the case for the odd-odd product nucleus Ga⁷².
 ^r This not too well-investigated isotope poses a difficulty. The transition either shows an abnormally low ft value for its *l*-forbidden character or would involve the anomalous occurrence of a *p*_{1/2} orbit in place of f_{5/2}. A series γ-ray is reported for this transition, which is thus empirically high forbidden. The f_{3/2} orbit for the 33 protons is somewhat uncomfortable, but so would be the alternative *p*_{3/2}=gy_{3/2}.
 ^t This assignment is strongly supported by the shape of the β-spectrum. (Footnotes continued on next page.)

(Footnotes continued on next page.)

^u Evidence not sufficient to decide whether the γ -rays of this transition are in parallel or in series. The interpretation in the latter case would be $p_{2l2-f_{2l}2}$ with probable spin 3. ^v γ -ray probably not in series. ^w $p_{1l2-f_{2l}2}$ is an alternative, which would also be possible if the γ -ray should not be in series as assumed. ^x $p_{1l2-f_{2l}2}$ is an alternative, which would also be possible if the γ -ray should not be in series as assumed. ^x $p_{1l2-f_{2l}2}$ is an other possible assignment. ^y This interpretation assumes the γ -rays to be in parallel. Several alter-natives are possible if they are in series. ^a The $g_{2l}-g_{2l}/2$ configurations show particularly low ft values. In the case of Pd¹¹² the energy is not too accurately known. ^{aa} Insufficient evidence about the occurring γ -radiation. ^b The more natural $d_{2l}-s_{2l}/2$ combination would give a too highly for-bidden transition. A possible alternative is $g_{1l2-flul2}$ with spin 2. ^{co} The assignment of the ground state of Sb¹¹²⁴ is made on basis of spin 7/2 for Sb¹²⁸ and spin 1/2 for Te¹²⁹. An attempt to interpret the complex situation presented by the two metastable states of Sb¹²⁴ would seem to be premature. ^d d The interpretation would be $d_{cu}-d_{cu}$ if the γ -ray is not in series.

situation presented by the two metastable states of Sb¹³⁴ would seem to be premature. ^{4d} The interpretation would be $d_{4/2}-d_{3/2}$ if the γ -ray is not in series. ^{en} In place of $d_{5/2}$ also $g_{7/2}$ is possible. ^{if} The $g_{7/2}$ configuration for 73 neutrons is somewhat unusual but not too strange since 73 protons in Ta¹⁸⁴ show a spin 7/2. ^{ex} In the chain Ba¹⁴⁰-La-Ce the odd-odd nucleus is the middle one. The transition of La is certainly highly forbidden, indicating a high spin. It is then very difficult to understand why Ba¹⁴⁰ is much less strongly forbidden, unless its spin is different from zero. The other alternative is that the 1.02-Mev β -ray does not go to the ground state. ^{hh} According to a recent private communication by E. Jensen, Pr¹⁴² shows the form of the β -spectrum typical for transition with change of partity suggested by Jensen is $d_{6/2}-h_{9/2}$. However, this means a change of orbital momentum by 3, which one would expect to lead to considerably higher ft values.

momentum by 3, which one would capter to the values. ⁱⁱ Most interpretations from here on are very tentative, owing to the absence of spin data for high neutron numbers. ⁱⁱ The combination given is the only one which gives a high enough spin. The f value for this β -decay, although very large, is considerably less than expected for the transition to the H1¹⁶ ground state involving a spin change of 7. ^{ik} The γ -rays in these transitions are all assumed to be in series. ⁱⁱ Alternatives are $d_{3/2}-b_{1/2}$ and $s_{1/2}-f_{5/2}$.

^{k*} The γ -rays in these tails and $s_{1/2}$ - $f_{1/2}$ and $s_{1/2}$ - $f_{2/2}$. ^{mm} The low *ft* value for a first-forbidden transition may be explained on the basis of the high Z value; compare Konopinski, Revs. Modern Phys. the basis of the 15, 209 (1943).

Bibliography to Table II

- A1 L. W. Alvarez, Phys. Rev. 75, 1815 (1949).
- A2 D. E. Alburger, Phys. Rev. 75, 1442 (1949).
- A3 H. M. Agnew, Phys. Rev. 77, 655 (1950).
- B1 Bleuler, Scherrer, Walter, and Zunti, Helv. Phys. Acta 20, 96 (1947).
- B2 Blaser, Boehm, and Marmier, Phys. Rev. 75, 1953 (1949).
- **B**3 Bell, Weaver, and Cassidy, Phys. Rev. 77, 399 (1950).
- B4 Beach, Peacock, and Wilkinson, Phys. Rev. 76, 1585 (1949).
- B5 Becker, Kirn, and Buck, Phys. Rev. 76, 1406 (1949).

- B6 R. Bouchez and G. Kayas, J. phys. et radium (Ser. 8) 10, 110 (1949)
- S. B. Burson, and K. W. Blair, and D. Saxon, Phys. Rev. 77, B7 403 (1950).
- C1 L. Cranberg, Phys. Rev. 77, 155 (1950).
- R. B. Duffield and J. D. Knight, Phys. Rev. 75, 1967 (1949). D1
- E1Engelkemeir, Hamill, Inghram, and Libby, Phys. Rev. 75, 1825 (1949).
- N. Feather, Nucleonics 5 (No. 1), 22 (1949). F1
- W. F. Hornyak and T. Lauritsen, Phys. Rev. 77, 160 (1950). H1
- H2 Hughes, Eggler, and Alburger, Phys. Rev. 77, 726 (1950).
- H3 Zah-Wei Ho, Phys. Rev. 70, 782 (1946).
- H4 Hibdon, Pool, and Kurbatov, Phys. Rev. 67, 289 (1945).
- H5 R. W. Hayward, Phys. Rev. 78, 87 (1950).
- T1 E. N. Jensen and L. J. Laslett, Phys. Rev. 75, 1949 (1949). Koch, Kofoed-Hansen, Kristensen, and Drost-Hansen, Phys. K1
- Rev. 76, 279 (1949).
- К2 D. N. Kundu and M. L. Pool, Phys. Rev. 75, 1690 (1949).
- L. M. Langer, Phys. Rev. 77, 50 (1950). T.1
- L2 L. M. Langer and H. C. Price, Phys. Rev. 76, 641 (1949).
- M1 A. C. G. Mitchell, Revs. Modern Phys. 22, 36 (1950).
- M2 K. H. Morganstern and K. P. W. Wolf, Phys. Rev. 76, 1261 (1949).
- M3 R. D. Moffat and L. M. Langer, Phys. Rev. 79, 237 (1950).
- M4 Mitchell, Jurney, and Ramsey, Phys. Rev. 71, 825 (1947).
- M5 Mei, Mitchell, and Zaffarano, Phys. Rev. 76, 1883 (1949).
- M6 C. E. Mandeville, Phys. Rev. 75, 1017 (1949).
- N1 Natl. Bur. Standards Circular 499, Nuclear Data, 1950.
- N2 Naumann, Reynolds, and Perlman, Phys. Rev. 77, 398 (1950).
- **P1** B. Perez-Mendez and H. Brown, Phys. Rev. 77, 404 (1950).
- P2 Parmley, Moyer, and Lilly, Phys. Rev. 75, 619 (1949)
- **S**1 G. T. Seaborg and I. Perlman, Revs. Modern Phys. 20, 585 (1948)
- S2 K. Siegbahn, Phys. Rev. 77, 233 (1950).
- **S**3 Steffens, Huber, and Humbel, Helv. Phys. Acta 22, 167 (1949).
- **S4** D. Saxon and J. Richards, Phys. Rev. 76, 982 (1949).
- T1 Thulin, Bergstrom, and Hedgran, Phys. Rev. 76, 871 (1949).
- W1 C. S. Wu and L. Feldman, Phys. Rev. 76, 693 (1949).
 - W2 G. Wilkinson, Phys. Rev. 75, 1019 (1949).