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These problems have been treated by the Boltzman
integro-differential equation for transport processes.
The derivation of this equation requires the assumption
of binary collisions and molecular chaos' (a lack of
correlation between the positions of scatterers). In
addition the treatment is classical in that the wave
nature of the incident particles (or light) is neglected.
Such a "ray" treatment of a wave problem will be valid
for wavelengths small compared to the separation be-
tween scatterers. For larger wavelengths a wave treat-
ment is desirable since the diffraction pattern will con-
tain information concerning the correlation in scatterer
positions.

The purpose of this paper is to develop a general,
systematic treatment of the multiple scattering of
waves. We shall assume that the properties of the indi-
vidual scatterers are known —i.e., that the single
scattering problem has been solved either experimen-
tally or theoretically. We shall assume that the struc-
ture of the scattering system (gas, liquid, or solid) is
given in the form of a many particle density function.
Actually we shall use here only the one and two particle
densities —i.e., the probability of finding a particle at a
certain point, and the probability of finding a pair of
particles at certain positions. Our problem is to relate
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I. INTRODUCTION: PREVIOUS WORK

A. Particle Scattering

'HE multiple scattering of particles by a distribu-
tion of scatterers has been studied extensively. f

Applications have been made to scattering of molecules
in gases, ' neutron diffusion, ' radiative equilibrium in

*Assisted in part by the ONR. Manuscript received by editor
November 9, 1950.

f References to this paper are not intended to be complete nor
to indicate priority, but to serve. directly or indirectly, as a useful
guide to the literature on multiple scattering.

' S. Chapman and T. C. Cowling, Mathematical Theory of Nort
Unform Gases (Cambridge University Press, Teddington, 1939).

~ R. E. Marshak, Revs. Modern Phys. 19, 185 (1947}.O. Hal-
pern and R. K. Luneburg, Phys. Rev. 76, 1811 (1949).Marshak,
Brooks, and Hurwitz, Nucleonics 4, 10, 43 (1949}; 5, 53, 59
{1949).See these papers for references to earlier work.

'E. Hopf, "Problems of radiative equilibrium, " Cambridge
Tract No. 31 (1934). S. Chandrasekhar, Radiative Trarrsfer (Ox-
ford University Press, London, 1950).

4 H. S. Snyder and W. T. Scott, Phys. Rev. 76, 220 (1949).
5 U. Fano, Phys. Rev. 76, 739 (1949).W. R. Faust, Phys. Rev.

77, 227 (1950).
6 B. Rossi and K. Greisen, Revs. Modern Phys. 13, 240 (1941}.

H. S. Snyder, Phys. Rev. 76, 1563 (1949).' E. Conwell and'V. F. Weisskopf, Phys. Rev. 77, 388 (1950).
A. H. Wilson, The Theory of Metals (Cambridge University Press,
Teddington, 1936).

A more general theory of transport processes has been de-
veloped and applied to the theory of the liquid state. J. G. Kirk-
wood, J. Chem. Phys. 14, 180 (1946); 15, 72 (1947). M. Born
and H. S. Green, Proc. Roy. Soc. (London) A188, 10 (1946).
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the density and directionality of the scattered waves
to the properties of the individual scatterers and the
structure of the system. In particular, we shall calculate
the index of refraction and attenuation of the coherent
beam.

B. The Coherent Wave

(k')'= kz+47rrtc(f(a~a)$, (1B2)

where f(a+ a) is the elastic —scattered amplitude in the
forward direction (even if inelastic scattering is also
present). The correction factor c is defined by

c= (effective field)/(coherent field) (1B3)

where the effective field acting on a given scatterer de-
pends on the correlation between scatterer positions. If
the scatterers are distributed completely at random the
constant t." will be essentially unity.

'M. Born, Optik (Verlag. Julius Springer, Berlin, 1933), pp.
313 6.' P. P. Ewald, Ann. Physik 49, 4 (1916). M. Born and M.
Goeppart-Mayer, Handbuch der Phys. 24/2, Chapter 4, Section
57. Reference 9, p. 327 ff.

"M. Von Lane, Rontgenstrahtznterferenzen (Akadennzche Ver-
lagagesellschaft, Leipsig, 1941).

'2 L. L. Foldy, Phys. Rev. 67, 107 (1945).

The multiple scattering problem divides naturally
into a consideration of the coherent and incoherent
radiation. The solution of the coherent problem bridges
the gap between molecular and continuum physics by
proving that a collection of scattering molecules can be
replaced by a medium with an index of refraction. Born'
has calculated the index of refraction for light waves in
an isotropic homogeneous medium consisting of dipole
scatterers. Ewald" has considered the case of dipole
scatterers distributed on a lattice for the x-ray as well

as the optical case. The presence of Bragg refiections in
the x-ray case means that the conventional medium
point of view is not applicable unless the dielectric
constant is treated as a periodic space function. "

Foldy" has treated the multiple scattering of scalar
waves (e.g. , sound) by isotropic, elastic scatterers (e.g. ,
bubbles) that are distributed in a random fashion. He
finds that the propagation constant in the medium k'

differs from its value k when no scatterers are present
according to the relation,

(k')'=k'+4irmf (1B1)

where rt is the density of scatterers and f is the scattering
amplitude, which for his case is independent of direction.

We have followed Foldy's procedure and generalized
it to include the following possibilities: (1) anisotropic
scattering, (2) inelastic scattering, (3) scattering of
quantized waves including photons, (4) creation and
absorption of particles as in cosmic rays, (5) motion of
the scatterers, and (6) scatterers that are randomly,
partially, or completely ordered.

Our result for the index of refraction k'/k is given by

Actually scatterers cannot be distributed completely
at random because they have finite size and are (ap-
proximately) impenetrable. However in the limit as
size becomes small (compared to the separation) c~1.
In the electromagnetic case, however, it is well known
that the field inside a small cavity differs from the
external field regardless of how small the cavity is.
In the limiting case, using certain approximations"
c—&LE+(47r/3)P]/E= (e+2)/3. Thus the equation
analogous to (1B2) for the dielectric constant

c = 1+47rrtca

reduces to the Lorentz-Lorenz law

(e—1)/(e+2) = (47r/3)la,

(1B4)

(1BS)

"H. A. Lorentz, The Theory of Electrons (B. G. Teubner, Leip-
zig, 1916), second edition, p. 137."P. Debye, Polar Molecules (Dover Publications, New York,
1945)."L.Onsager, J. Am. Chem. Soc. 58, 1486 (1936).W. H. Rode-
bush and C. R. Eddy, J. Chem. Phys. 8, 424 (1940).' J. G. Kirkwood, J. Chem. Phys. 7, 911 (1939). See also G.
Oster, J. Am. Chem. Soc. 68, 2036 (1946)."J. Frenkel, Einetic Theory of Liquids (Oxford University
Press, London, 1946), Chapter 5.

a Phys. Rev. (to be published).

where n is the polarizability of the atom.
The Lorentz treatment" of the effective field has been

extensively applied by Debye and others to the problem
of the dielectric constant of liquids. " Onsager" im-
proved the Lorentz treatment for dipolar liquids by
taking explicit account of the reaction field —i.e., the
action of a molecule on itself through the polarization it
induces in the surrounding medium. The Onsager view-
point is frankly phenomenological in that he treats all
but the chosen molecule as a medium. Kirkwood" has
made an explicit attempt to take into account inter-
actions between neighboring molecules, treating more
distant molecules as a medium. Frenkel'~ gives an ex-
cellent summary of the various viewpoints.

The major generalization made by this paper is the
treatment of anisotropic scatterers. The use of the
effective field factor c is no more rigorous than that of
previous authors —except that in this paper it is a
clearly stated approximation relating well-defined sym-
bols. A more detailed discussion will be given in a paper
devoted specifically to the effective field problem. "
We shall anticipate this paper by remarking that the
use of such a constant c (which may be wavelength
dependent) is strictly legitimate for point scatterers:
In the latter case one compares the effective field and
the coherent field at a point. For non-point scatterers
such a comparison must be made over a region compa-
rable to the size of the scatterer (or the range of theinter-
action potential). In short, a detailed calculation of the
spatial distribution of the effective field must be car-
ried out. The way in which the equations of this paper
may be applied to estimating the constant c or the
spatial distribution of the effective field will be discussed
in the "effective field" paper. '"For the present, it seems
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worthwhile to indicate how much progress can be made
in treating anisotropic scatterers without improving on
the effective field approximations of previous authors.

C. Index of Refraction for Neutrons

The diffraction and refraction of neutrons in crystals,
including polarization phenomena, were treated exten-
sively by Halpern" and co-workers Hamermesh, "John-
son," and Holstein. " Using the usual method of de-
termining the phase shift introduced by a thin sheet of
scatterers (see Sec. V) they calculated the index of
refraction for neutrons in nonmagnetic crystals. "The
same technique was also applied to ferromagnetic ma-
terials and a pair of indices of refraction were obtained
corresponding to the two possible neutron spin states. "
The difference between the two indices of refraction
(corresponding to the neutron spin precession) was
found proportional to the magnetization M. They
point out" that their result must be corrected for the
additional precession induced by H and that the cor-
rect result is proportional to the magnetic field B.

H. Ekstein" has objected to the use of the thin sheet
method in the presence of long range magnetic forces
and has treated the ferromagnetic case by a rigorous
method similar to that used by von Laue in the latter's
theory of x-ray diffraction. "Ekstein verifies Halpern's
result that the index of refraction contains a term pro-
portional to B. He shows clearly that the index of
refraction depends on the magnitude of 8 and not on
its orientation relative to the neutron propagation
direction.

The ferromagnetic case is an interesting test of any
general method of calculating indices of refraction be-
cause of an ambiguity that arises in evaluating the
forward scattered amplitude. "The method used in this
paper obtains unambiguous results by adding the con-
tributions of the individual scatterers before passing
to the forward direction. '4 Our result, '4 in agreement
with previous authors, is that the index of refraction
(k'/k) is determined by

(k'/k)'=1 —cLV,„a
~
S„~j/E, (1C1)

where VA„and BA, are the macroscopic average nuclear
potential and magnetic field; E= (Ak)'/(2m) is the neu-
tron energy. Full agreement with the results of previous
authors may be obtained by approximating the effec-
tive field factor c by unity.

Experimental determinations of index of refraction
have been made using critical angle measurements from

"O. Halpern, Phys. Rev. 76, 1130 (1949)."Halpern, Hamermesh, and Johnson, Phys. Rev. 59, 981
(1941).

20 0. Halpern and M. H. Johnson, Phys. Rev. 51, 992 (1937);
52, 52 (1937); 55, 898 (1939).

2' O. Halpern and T. Holstein, Phys. Rev, 55, 601 (1939); 59,
960 (1941).

22 H. Ekstein, Phys. Rev. 78, 731 (1950).
"H. Ekstein, Phys. Rev. 76, 1328 (1949).
"M, Lax, Phys. Rev. SO, 299 (1950).

neutron mirrors. A word of caution about comparison
between theory and experiment: Magnetic fields will
inevitably be present outside as well as inside the
crystal. The relative index of refraction will then be
determined. by the jump in 8 at the boundary —and
the latter will depend on the orientation of B relative
to the boundary. In fact for B normal to the boundary,
there is no discontinuity in index of refraction (aside
from nuclear effects) and hence no double refraction.
For B tangential to the boundary, the discontinuity iii
8 is essentially M. In the latter case, which is feasible
experimentally there are several possible neutron propa-
gation directions. The critical angle, according to the
above theory, should be independent of these propaga-
tion directions.

Ekstein has suggested" that perhaps the correct neu-
tron-electron interaction is of the form bio" (H+4~CM)
rather than pe 8 where C is a constant to be determined
experimentally, and H, B, and M are the magnetic
fields and the magnetization produced by the electrons.
This is certainly a matter that can be settled by index
of refraction measurements. This author personally
favors the customary choice C= 1.

Goldberger and Seitz" have treated the neutron re-
fraction in a crystal in which only nuclear (isotropic)
scattering takes place. The virtue of their treatment is
that they have taken proper account of the effective
field in their formulation and in most of the stages of
their calculation. Near the end, however, they neglect
all terms of higher order than the first in the scattering
amplitude. This approximation is exceedingly good for
any reasonable experimental situation. Unfortunately,
the effective field correction is in this case a sou/l cor-
rection, and a more accurate treatment is necessary.
More accurate results can be obtained directly from
their equations. These results for the crystalline cases
are mentioned briefly in Sec. V and the method used
will be discussed in the "effective field" paper. "

These authors and others dealing with neutron
diGraction (references 48—52) describe the interaction
between neutrons and nuclei by means of the Fermi
pseudo-potential, " e.g. , a square well shallow enough
for low energy neutrons to be treated in Born approxi-
mation. They later replace the square well by a Dirac
delta-function, chosen in such a manner as to preserve
scattering amplitudes. These approximations are valid if

f«a«X, (1C2)

where f is the scattering amplitude, a the well radius,
and X the wavelength. These conditions can be satis-
fied in the desired experimental range. "

In the treatment of anisotropic as well as inelastic
scattering, the introduction of a pseudo-potential is
dificult if not impossible. It is far more convenient to
work directly with the scattering amplitudes f(b~a) or

"M. L. Goldberger and F. Seitz, Phys. Rev. 71, 294 (1947),
2' E. Fermi, Ricerca sci. 7, Part 2, 13 (1936).
"H, Bethe, Revs. Modern Phys. 9, 123 (1937),



290 M ELVI N LAX

with the corresponding transition matrix T~,.""The
transition matrix provides a direct relation between the
incident and scattered state for any sort of collision.
It is closely related to the Heisenberg scattering matrix
and the collision matrix. "

D. Coherence and Incoherence

Before proceeding to discuss the experimental and
theoretical work on incoherent scattering it will be
well to indicate clearly the distinction between coherent
and incoherent scattering. The author begs the reader' s
indulgence at this point for reviewing well known ma-
terial. It will appear later, however, that a comparison
between the multiple scattering and the quantum-
mechanical viewpoint toward incoherent scattering
can be made the basis for understanding the limitations
of a multiple scattering type of calculation.

We wish to discuss a system of scatterers whose
centers are located at r~, r2 -r„.These scatterers need
not be point scatterers, and may have a complex in-
ternal structure. If the initial states of these scatterers
are different it will be convenient to describe this by a
set of parameters s~, s2, s~. The parameter s~ can
be used as a shorthand notation for all the quantum
numbers that describe the state of scatterer 1. If
several types of scatterers are present (as in an alloy
Cu3Au, or an isotopic mixture), it is convenient to
regard them as several states of a single scatterer. In
classical problems the parameter s~ can be continuous:
for example, it may represent the size of the scatterer.
In general we shall have to deal with distributions of
scatterer states as well as distributions in scatterer
locations. Certain averages will have to be performed
over these distributions. It is clear that the procedure
followed in treating the parameter is identical to that
followed in treating the location. Incoherence can be
produced by parameter randomness just as it can by
randomness in particle location. The treatment of
short range order of spins in a paramagnetic crystal is
analogous to the treatment of short range order of
positions io a liquid. We can simplify the following dis-
cussion, therefore, by concentrating our attention on
position.

It is rather obvious that waves scattered inelastically
from two scatterers cannot interfere because of the
different frequencies of the scattered waves. It is less
obvious, but also well known, that incoherence between
the two scattered waves will be produced if either
scatterer changes its internal state, regardless of
whether an energy change is involved. An excellent dis-
cussion of this point is given, for example, by G. Breit."
Whenever, a change in the internal state of a single
scatterer is involved we may therefore describe the
radiation as strictly incoherent. It is then permissible to

Melvin Lax, Phys. Rev. 78, 306 (1950).
B.A. Lippman and J. Schwinger, Phys. Rev. 79, 969 (1950).

'0 G. Breit, Revs. Modern Phys. 5, 91 (1933). See especially
Sec. VII,

add intensities, and there is little difference between the
particle and the wave point of view toward the problem.

Let us restrict our attention, therefore, to that por-
tion of the scattering in which the internal states of the
scatterers are unmodified. A diffraction pattern will
now be produced because of the relative cobe~ence of the
scattered waves providing there is some order to the
space arrangement of the scatterers.

For the purposes of the present paper, it is also useful
to introduce the concept of absolute coherence. Scatter-
ing will be described as absolutely coherent if the scat-
tered beam bears a definite phase relation to, and hence
can be made to interfere with, the primary beam.

The complete solution of the scattering problem
P(r; r~, . r~) is a function of the position of ob-
servation r and an implicit function of the scatterer
locations as well. The total density of radiation can
be computed by squaring the wave function and
averaging over the ensemble of scatterer distributions
&lf(r; r~, r~)l'). If we were to perform an inter-
ference experiment with the incident wave P(r) the
total radiation density would have the form:

&l~()+~(;, '-)I)
=

I 0+&4) I'+(I kl') —
l &4) I' (»I)

This arrangement of terms indicates that g ) interferes
with the main beam P and may be regarded as abso-
lutely coherent.

l &P) l' is the absolute coherent density,
and (l Pl ') —

l g ) l' is the density of radiation that is
not absolutely coherent.

If the scatterers have perfectly definite positions,
e.g. , a crystal at absolute zero, there will be no uncer-
tainty in phase. In this situation it makes no difference
whether we square first and then average, or reverse the
procedure. All of the radiation can be regarded as
absolutely coherent.

In the case of a liquid, the density of scatterers n(r)
can be regarded as a constant. The structure of the
liquid expresses itself in the fact that the correlation
density e(r&, r2) for a pair of particles differs from the
product of the individual densities e(r~)n(r2). For a
liquid (P) turns out to be the attenuating main beam.
The difference (l pl') —l(P)l' contains a term that
corresponds to the addition of intensities, plus a term
proportional to n(r~, r2) —n(r, )n(r, ). The latter term
yields a diGraction pattern which corresponds to the
relative coherence of scattering from a liquid molecule
and its near neighbors. For a completely random distri-
bution of scatterers e(r~r2) —n(r~)e(r2) vanishes and

& l pl') —
l &P) l' contains only an intensity sum similar

to that produced by the strictly incoherent addition
of intensities from the individual scatterers.

E. Multiple Scattering versus the Many
Body Problem

The interaction of a wave with a many particle
quantum-mechanical system can be treated from the
many body viewpoint, i.e., interaction with the system
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as a whole. This viewpoint is always permissible. On
the other hand it is often desirable to use the multiple
scattering viewpoint: the interaction is visualized in
terms of a succession of scattering events. The multiple
scattering viewpoint has the advantage of expressing a
complex problem in terms of the properties of the indi-
vidual scatterers. This important advantage has led to
its use in a variety of problems involving sound, light,
x-rays, and neutrons. The purpose of this section is to
indicate qualitatively the assumptions that restrict
the validity of the multiple scattering viewpoint.

One of the assumptions tacitly made in a multiple
scattering problem is that the properties of the indi-
vidual scatterer are unmodified by the fact that it is
bound in a many particle system. This assumption can
sometimes be removed if the modification in scatterer
properties is properly accounted for. An example in
which such a modification kas been treated is the
scattering of neutrons by a molecule of ortho or pera
hydrogen. "This example is treated from the multiple
scattering viewpoint in that scattering amplitudes are
added from the two protons. The modi6cation in scat-
tering properties of the individual protons due to their
bond is referred to as the chemical bond e8ect.

Another assumption tacitly made in a multiple
scattering problem is that the scatterers move suK-
ciently slowly that their positions may be regarded as
adiabatic parameters, i.e., that the scattered wave

P(r; r& rz) may be computed for a axed set of
scatterer position, and then the result averaged over
the distribution of scatterer positions in time, or in
configuration space. This assumption seems to be valid
if the motion of a scatterer during one period of the
radiation is small compared to the wavelength of the
radiation, i.e., if the velocity of the scatterer is small
compared to the velocity of the wave.

The multiple scattering viewpoint is a kinetic view-

point and does not take into account adequately the
energy-momentum considerations involved in a colli-
sion. To explain this point, it is necessary to make some
comparison between the multiple scattering and the
many-particle quantum-mechanical viewpoints. The
simplest way to do this is to note that the coherent
amplitude (P(r; r~, rs, rs)) involves an average over
the distribution of scatterer positions. This distribution
is, in fact, described by the initial quantum mechanical
state li) of the scattering system. The coherent wave

may therefore be denoted by (i l P l i), and the density of
radiation by &ilf*Pli) On the o.ther hand, from the
many body viewpoint the wave 1t acts as a perturbation
that induces transitions of the scattering system from
its initial to all possible final states

l f). The equality
of the two results:

all f
"See for example, H. Bethe, E/ementury Euclear Theory (John

bailey and Sons, Inc. , New York, 1947), Chapter X,

is a closure theorem that follows directly from the rules
of matrix multiplication.

The disagreement between the multiple scattering
and the many body viewpoint follows from the fact
that the closure theorem (1E1) is valid only if the sum
is carried out over all final states. The many body per-
turbation calculation requires, however, that the sum
be carried only over those final states that conserve
energy.

It is now necessary to understand why the multiple
scattering viewpoint works at all! If the momentum
associated with the incident wave is large compared to
the momentum of the individual. scatterers, then it
will turn out that the transition matrix elements will
have a strong resonance for those final states that ap-
proximately obey energy conservation. Thus the sum
over all final states will not differ appreciably from the
sum over those that conserve energy —and the multiple
scattering viewpoint becomes applicable. In the case of
x-ray scattering by atoms, this approximate resonance
manifests itself in a Compton line that is broadened
by the momentum of the electrons within the atom. "
The integrated intensity of the broadened Compton
line is approximately the same as if it had not been
broadened, i.e., the closure approximation is valid. "
Thus it is permissible to treat the scattering of x-rays
by an atom as a multiple scattering problem, i.e., by
the addition of amplitudes appropriate to the indi-
vidual electrons. "

If the momentum of the incident wave is small com-
pared to the rms momentum of the scatterers, then the
resonance line becomes very broad. So broad, in fact,
that not all of the line is within the energetically per-
mitted region. The decrease in integrated intensity of
the line represents the failure of the closure approxi-
mation. A more detailed discussion of this decrease from
closure is presented in Sec. VII. The condition that the
incident photon momentum h~/c be larger than the
electron momentum (2mB)' for the usual electron
kinetic energies within atoms E, is easily satisfied in the
x-ray region, and completely invalid in the optical
region.

In this section, in which we are discussing the limita-
tions of the multiple scattering viewpoint, the author
has deliberately chosen a system, such as an atom, in
which the individual scatterers, the electrons, overlap
each other considerably. In fact, the author and H.
Feshbach'4 have applied a multiple scattering type of
calculation to the production of mesons in a photo-
nuclear collision —for which closure corrections are
appreciable (see Sec. VII).

It is far more customary, however, to apply multiple

3' I. Wailer, Phil. Mag. 4, 1228 (1927);Z. Physik?9, 370 (1932).
I. Wailer and D. R. Hartree, Proc. Roy. Soc. (London) A124,
119 (1929).

~This has been done, for example, by W. H. Zachariesen,
Theory of X-Buy Digraction in Crystats (John Wiley and Sons,
Inc. , New York, 1944), pp. 91 f7.

~ jVI, Lax and H. Feshhach, Phys. Rev. 81, 189 (1951).
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scattering methods to macroscopic systems (e.g. ,
crystals) in which the individual scatterers are molecules
rather than electrons, or nuclei rather than nucleons.
In this way, a fairly large unit is treated by many body
methods, avoiding closure corrections. And one has the
advantage of dealing with scatterers that do not overlap
greatly —whose properties may not be strongly modified

by binding eGects.
It is of interest to point out that the first term f=i

in the closure sum (1E1) is simply ~(i~f~i) ', the
density of coherent radiation. This con6rms the point
stated in the previous section that the radiation
(i~P*P~i) ~(i~/ i)~' that is not absolutely coherent
involves a change in the final state of the struck system.
Part of this noncoherent radiation is strictly incoherent
in that an individual scatterer has changed its state in
the collision preventing any sort of interference. Such
collisions involve primarily the properties of the indi-
vidual scatterers, and a succession of them may cer-
tainly be treating from the (particle) multiple scattering
point of view. Somewhat more interesting is the portion
of the radiation that is elastic from the point of view
of the individual scatterers but inelastic from the point
of view of the system as a whole. Such collisions exhibit
relative coherence and may display some sort of pattern
depending on the correlation n(ri, r2) —e(ri)e(r2). The
more tightly bound the structure is, the greater correla-
tjon is to be expected. From a dynamic point of view,
one might say that the larger the number of particles
that share in absorbing the recoil momentum of the
incident wave, the sharper will be the diffraction
pattern. An ability of a group of particles (in, e.g. , a
liquid) to share the recoil depends on having some kind
of bound structure. If the individual scatterers are free,
there will be negligible correlation between them, and
inelastic collisions will be strictly incoherent, because
the recoil momentum will be absorbed by a single
scatterer. Absolute coherence is always possible, how-
ever, in the forward direction, because elastic forward
scattering does not require the absorption by the system
of any recoil momentum.

F. Inelastic X-Ray Scattering

The intensity of x-rays scattered by a crystal can be
divided into three categories: (1) the strictly incoherent
scattering due to a Compton collision, in which an
individual atom is modified by the collision, (2) the
Laue-Bragg diffraction in which the internal state of the
crystal is unmodified by the scattering, (3) the tempera-
ture diffuse scattering that is elastic with respect to
the individual atoms but inelastic with respect to
the crystal as a whole (i.e., the relatively coherent
scattering).

In this section we shall review from the multiple
scattering point of view previous work on the inhuence
of lattice vibrations on Laue-Bragg and temperature
disuse scattering.

The infiuence of thermal and zero-point motion on

Laue-Bragg scattering has been shown both experi-
mentally" and theoretically" to be accounted for
simply by the replacement of the ideal atomic form
factor fi, of atom k by fi, exp( —Mi). The Debye-Wailer
factor exp( —3f) has a characteristic angular and tem-
perature dependence that for monatomic cubic crystals
may be approximated by

S

Q(x) = (x/4)+(1/x) " xdxLexp(x) —1] ',
Jo

where 20 is the angle between incident and rejected
x-ray beams, X is their wavelength, h is Planck's con-
stant, ~ is Boltzmann's constant, m is the mass of the
atom, T is the absolute temperature, and 0 is the crystal
Debye temperature. Since Q does not differ appreciably
from unity unless O~/T) 1, we see that M increases ap-
proximately proportionately to the temperature. At
absolute zero, however, M does not vanish because of
the zero point vibrations of the lattice.

If the thermal vibrations were distributed in a random
fashion, the temperature diffuse scattering should have
no maxima. It should be distributed smoothly, increas-
ing at large angles, where the coherent intensity is
reduced. This in fact was the experimental situation
before 1938. Some sort of pattern might be expected,
however, due to relative coherence, if some correlation
exists between the vibrations of the various atoms.
Careful experimental work by Laval, ' in fact, demon-
strated the existence of strong, temperature-dependent
diffuse spots in the neighborhood of the Laue directions.
Detailed investigation by Laval, Preston, " and Lons-
dale" conhrmed the presence of regular patterns of
diffuse spots. (These spots had not been discovered by
previous investigators of disuse radiation because the
latter had avoided the Laue-Bragg directions. )

It was immediately recognized that the disuse spots
could be accounted for by the Faxen"-Wailer" theory
on the inelastic scattering of x-rays by thermally excited
lattice vibrations. The theory has been treated in detail
by Born and Sarginson, 4' Zachariesen, 4' jahn, 44 and
others. An excellent summary is given by Born."
"F. C. Blake, Revs. Modern Phys. 5, 169 (1933).
3' L Wailer, dissertation, Upsala, 1925."J.Laval, Compt. rend. 208, 1512 (1939).
"G.D. Preston, Proc, Roy. Soc. (London) A172, 116 (1939).
39 K. Lonsdale, Rep. Prog. Phys. 9, 256 (1943). Summary and

bibliography of experimental work.
H. Faxen, Z. Physik 17, 266 (1923).

4' I. Wailer, Z. Physik 17, 398 (1923).
4~ M. Born and K. Sarginson, Proc. Roy. Soc. (London) A179,

69 (1941).
"W. H. Zachariesen, Phys. Rev. 59, 766, 860, 909 (1941).See

also the interesting detailed discussion in Chapter X of Zach-
ariesen's book, Theory of X-Ray DQfractioe in Crystals (John
Wiley and Sons, Inc. , New York, 1945).

44 H. A. Jahn, Proc. Roy. Soc. (London) A179, 320 (1942).
4' M. Born, Rep. Prog. Phys. 9, 294 (1943). Summary and bib-

liography of theoretical work.
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In terms of the Born-Von Karman4' normal coordi-
nates, the lattice modes of vibration are elastic plane
waves traveling with difFerent orientations (and polar-
izations) in the crystal. The amplitudes associated with
these waves obey (separated) harmonic oscillator equa-
tions. With the introduction of quantum mechanics,
these waves acquire discrete energies and momenta.
The term phonon is introduced, in analogy with the
electromagnetic case, to describe the basic packet of
energy and momentum carried by an elastic eigenwave.

I aue or Bragg reflection takes place whenever the
change in propagation vector of the x-ray, kb —k„can
be set equal to a vector E of the reciprocal lattice space
(see Eq. (5.26)). In this case, the recoil momentum is
absorbed by the crystal as a whole. Inelastic scattering
corresponds to the absorption or creation of one (or
more) phonons. If a phonon of propagation constant q
is absorbed conservation of momentum yields

kp —k.= K+q. (1F2)

This process leads, then, to a sharp diffraction spot in a
direction differing from the usual Bragg direction by an
amount determined by the phonon momentum. The
incoherent superposition of spots produced by different
phonons lead to the observed diffuse spots. The con-
centration of individual phonon spots in the neighbor-
hood of the Bragg directions is based on the fact that
the small momentum phonons are most effective in
scattering.

The reason for the effectiveness of low energy phonons
may be understood as follows: The intensity for inelastic
scattering is proportional to the mean squared ampli-
tude associated with the lattice wave producing the
scattering:

( )A„——p;W, (il Ii)

W, =exp[ E;/KT])/P, exp[ E—,/'T] (1F4)—
The mean square amplitude for the lattice wave of
momentum kq, treated as a harmonic oscillator varies
inversely with the square of the oscillator frequency co,.
Thus the predominant inelastic scattering involves low

frequency ("acoustic") Debye waves. Furthermore, the
inelasticity is small, almost unmeasurable: 10" sec '
compared to x-ray frequencies of 10"sec '.

It may be worthwhile to present here an abridged
version, in multiple scattering notation, of Born s

"M. Born and V. Karman, Physik. Z. 14, 15, 65 (1913).M.
Blackman, Rep. Prog. Phys. 8, 11 (1941).

(E)A, 1 k&g,

((q)Av +gAMq
a)' exp(k(o'/aT) —1

~~T/a&, ' for keg,«'T. (1F3)

The average is understood to be a mean over all possible
initial states Ii) weighted with the corresponding
Boltzmann factor:

=d«(Ill')A (1F6)

do 0
———',(e'/mc')'(1+cos'28)dQ (1F7)

&=P;f, exp[i(k, —k~) (r,+u,)] (1F8)

where do. is the radiation scattered into solid angle dO

scattered per unit incident intensity, and do-0 is the cor-
responding quantity for Thomson scattering. The
equilibrium lattice position is denoted by r; and the
deviation by u;. For simplicity of notation, we describe
the monatomic case.

To deal with averages of the form

(Ipl')„„=P,, A,A, *(exp[i4k (u;—u;)])A, (1F9)
A, =f; exp[i~k. r,].

Born expresses the u; in terms of the normalized lattice
modes with amplitude f, and polarization e, :

e, =(mÃ) lP,e,$, exp[iq r,]. (1F10)

(Here m is the mass of the atom, and E the number of
atoms in the crystal. ) He then has to deal with averages
of the form:

(exp[i'&, ]) 1——',p'(g)+ (1F11)

(exp[i'(, ])=exp[ ——',((pP,)')]. (1F12)

Equation (1F12), which is suggested by (1F11), since
the mean value of all odd powers of $, vanishes, turns
to be true exactly. "This equation is easily seen to be
valid if p$' is replaced by a linear superposition of
harmonic oscillator amplitudes Pp, g, .Thus the theorem
may be applied directly to (1F9) with the result

(exp[i~k (u, —u, )])=exp[M, ,' —M, —M;] (1F13)

M, =-,'((~k u, )') (1F14)

M;,'=((~k u;)(~k u,')). (1F15)

Replacing exp(M, ;) by 'I+exp(M, , )—1, the total
intensity can be split into two terms:

do'=do'y+d0'2
doy=dool Q'f, ~ exp[i~k r,]l' (1F16)

do2=d«p 'j'rj, ~exp['i~k (r, r,)]-
&&(expM, ,' —1), (1F17)

where f;r=f, exp( —M, ) is simply the atomic form
factor corrected by the Debye-Wailer factor. Thus der&

is simply the coherent scattering using the temperature
modi6ed form factors.

4' H. Ott, Ann. phys. , 23, 169 (1935). For a simpler proof see
references 42 and 45.

treatment of inelastic x-ray scattering —enough, at
least, to see how the calculation produces the main
features of the results. Born sums the transition prob-
abilities over all possible final states and averages over
all initial states. He immediately makes the closure
("multiple scattering") approximation to obtain the
result:

d.=d"Z Z, l(flail')I ~, (1F5)
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Q;+S(a/2s. )')l dq. (1F21)

If we approximate exp3E,; by 1+&,,' and insert
(1F20) into (1F1/) we find that we have a lattice sum
of the usual sort for Bragg reAections with Ak replaced
by 6k+iI thus:

d02=(hk)'(ii/2~)'~ii ' "Dl (.I')d0'i(i-''k+q)]dq. (1F22)

This formula justices the earlier interpretive remarks:
da. i(dk+q) is a sharp diffraction spot in a direction
diGering from the usual Bragg direction because of the
absorbed phonon momentum q. The effectiveness of
this phonon is determined by the mean squared ampli-
tude (I $, I') which, according to (1F3),emphasizes low
frequency phonons. The theory presented here corre-

& These approximations are unnecessary, and made only to
simplify the appearance of the final formulas.

Since
I
Ak

I
=4' sin0/X, the Debye-Wailer factor can

be given a simple interpretation:

M = (Sm' sin'0/X') (u'~), (1F18)

where u~ is the displacement of the atom perpendicular
to the Bragg plane involved in the scattering.

do-2 represents the temperature disuse scattering.
If we were to assume (incorrectly) that there is no
correlation between scatterer displacements: M;; =0,
M;;= 2M; we would obtain

d02=doo+,
I f;I'[1 ex—p( 2M—,)j (1F19)

i.e., the diffuse scattering is strongest at large angles,
where the Bragg intensity is greatly decreased because
of the angular dependence of the Debye-Wailer factor.
It is much more reasonable to assume, however, that
3f;, is a function of j—j' that decreases smoothly
(rather than abruptly) as the scatterer separation in-
creases. /M;y/(M;cV, )'*can for example remain ap-
preciable for scatterers a hundred basic cells apart. In
this case, the lattice sum (1F1/) for d02 is similar to the
lattice sum for Bragg scattering for a crystal of about a
hundred atomic layers. We might therefore expect the
temperature diGuse scattering to exhibit broad maxima
in the Bragg directions because of the small "eA'ective

crystal size. "
An evaluation of M;; may be made by inserting the

normal mode expansion (1F10) into the expression
(1F15) for M, ,'. After neglecting the dependence of cu,

on the polarization direction, $ the result simplifies to:

~,,'=(m/&) '(~k)'Z~(l Pa'I) exp[iq (r;—r,')J. (1F20)

Because of the periodicity condition at the edges of the
crystal the components of q take the value 2n. (integer)/
Ea(Ã) '*$. We have assumed here a cubic crystal, where a
is the lattice of the basic cube. f Thus sums may be
replaced by integrals according to the recipe:

The evaluation of the integrals for M and dr2 involve
the mode frequencies ~, through (1F3). The relation-
ship between or, and q involves the interatomic forces
and is rather dificult to evaluate explicitly. " For-
tunately, the low frequency ("acoustic") modes are
fairly important and these are essentially equivalent
to the vibrations of the crystal regarded as a continuum.
In other words, the relation between frequency co, and
propagation constant g is

m~~Cg (1F24)

where c is the velocity of sound in the crystal, which

may depend on the direction of propagation and the
polarization but is approximately independent of
frequency.

It is also customary in evaluating M to replace the
cube of integration (2n./a)' by a sphere 47rq '/3 of equal
volume. If the Debye temperature 0' is defined by:

x0~ =ha&„=hey, (1F25)

(1F23) reduces to the result (1F1)previously quoted.
More accurate discussions of inelastic x-ray scatter-

ing without the assumptions of a monatomic, cubic
lattice are presented in references 42—45.

6. Inelastic Neutron Scattering

The inelastic scattering of neutrons by lattice vibra-
tions is closely analogous to the corresponding x-ray
case, and therefore shall be discussed briefly. The earliest
contributions to this problem were made by Fermi, "
Wick,"and Pomerantchuk. 9 Seeger and Teller' make
an interesting comparison of the neutron and x-ray
cases assuming that only one phonon is emitted or
absorbed. Weinstock" calculates the inelastic cross sec-
tion treating the crystal as a many-body problem and
taking energetic restrictions into account properly. He
proves that for moderate neutron energies, only elastic
and first-order (i.e. , one phonon) inelastic collisions are
important.

The conclusions of these authors may be summarized
in a way chosen to display the similarities and di6'er-
ences between neutron and x-ray scattering by crystals:

(1) The influence of thermal vibrations on elastic
neutron scattering is accounted for, as in the x-ray case

' G. C. Wick, Physik. Z. 38, 403 (1937)."I. Pomerantchuk, Physik Z. Sowjetunion 13, 65 (1938)."R. J. Seeger and E. Teller, Phys. Rev. 62, 37 (1942)."R. Weinstock, Phys. Rev. 65, 1 (1944).

sponds to the absorption (or emission) of ore phonon
because we have kept only terms linear in M;;. The
term in (M,y)" yields the e phonon processes.

The Debye-Wailer factor can be evaluated by noting
that /lf, = ,'M,;-and converting the sum (1F20) to an
integral:

2M, = (ak)'(a/27r)'m —')"dil(I P, I
'). (1F23)
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(1F16) by the use of a Debye-Wailer correction factor
to the scattering amplitudes.

(2) The ratio of inelastic scattering of order e to
elastic scattering in both neutrons and x-ray cases is
given roughly by (M;; ) where M;, 3E (dk)'(N~')
and N~ is the displacement of the atom perpendicular
to the Bragg plane. Thus for moderate neutron energies
and/or low temperatures, one-phonon processes will be
small compared to elastic processes, and higher order
(many phonon) processes will be small compared to the
one-phonon processes.

(3) For neutron velocities greater than the velocity
of sound in the crystal, inelastic scattering gives rise to
diffuse spots similar to those found with x-rays. (Diffuse
scattering takes place in all directions, but intensities
are largest in the neighborhood of a Bragg direction. )

(4) Energy and momentum conditions play a larger
role in neutron than in electron or x-ray scattering be-
cause of the large neutron mass. For neutron velocities
less than the velocity of sound in the crystal, these
conditions limit the possible directions of inelastic neu-
tron scattering to sharply defined regions in the neigh-
borhood of the I aue-Bragg directions. Seeger and
Teller" give a simple graphical explanation of this
point. Such restrictions may be expected because the
adiabatic condition that the velocity of the scatterers
be small compared to the velocity of the wave is vio-
lated. From another point of view, these energy-
momentum restrictions indicate a failure of the closure
approximation for low neutron velocities. On the other
hand, x-rays of all energies travel with the velocity of
light, and we might therefore expect the closure approxi-
mation to be better justified in the x-ray case.

(5) For suKciently small neutron or x-ray energies,
it is no longer possible to fulfill the Laue-Bragg condi-
tions and the elastic cross section vanishes. The only
reciprocal lattice vector on (or near) the Ewald sphere
will be that corresponding to elastic forward scattering,
which is always permissible. Inelastic scattering will
therefore be possible only near the forward direction.

(6) Phonon emission by a neutron scattered near the
forward direction is only possible if the neutron velocity
is greater than the velocity of sound. (This momentum-
energy condition is similar to the one for emission of
Cerenkov radiation by a fast moving electron in a
dielectric. ) In the x-ray case, energy momentum re-
strictions always permit the emission of a phonon.

(7) At suKciently low temperatures, phonon absorp-
tion is no longer possible in either the x-ray or neutron
cases.

(8) Combining remarks (5), (6), (7), we may con-
clude that for low temperatures and low energy neu-
trons, the total neutron cross section vanishes whereas
the corresponding x-ray cross section does not.

(9) For neutron energies su

anciently

high that
(Ak)'(N~') ))1, inelastic collisions of all orders become
important. The reason for this is that the neutron recoil
momentum tends to be absorbed by a single struck

nucleus —a result that would be expressed in a rather
complicated way in terms of the normal modes of the
crystal. Finkelstein" has therefore treated inelastic
collisions of high energy neutrons using the Einstein
model of a crystal in which the atoms are treated as inde-
pendent harmonic oscillators. This approach provides a
simpler description of large energy transfers, but as
Finkelstein remarks is invalid for nearly elastic scatter-
ing because it predicts isotropic scattering rather than
diGuse spots. The Einstein model can clearly produce
no relatively coherent scattering since the motions of
the scatterers are uncorrelated.

H. F1uctuation Scattering

The Tyndall eGect associated with light scattering
by liquids and solutions was one of the earliest problems
requiring a detailed study of incoherent scattering.
The basic treatment of this problem was made by
Smoluchowski" and Einstein. " Excellent summaries
and comparisons with experiment have been given by
Bhq,gavantum55 and Cabannes. "The recent use of light
scattering as a tool for investigating the structure of
polymers in solution" has provoked new interest in the
subject.

The scattering of light does not require a treatment
formally diferent from that of x-rays or neutrons.
However, the wavelength of light is so much greater
than molecular separations that a simplified phenome-
nological treatment is possible. We may regard a liquid,
for example, as having density fluctuations superim-
posed on a uniform density. The uniform density sup-
plies the necessary scattering to propagate a coherent
wave in the medium. The Quctuations in density cause
incoherent scattering and an attenuation of the co-
herent wave.

In order to understand the assumptions involved in
the Einstein-Smoluchowski treatment of the problem
we shall present a simplified version of their calculation.
Ke start by choosing a volume element V whose di-
mensions are su%ciently small compared to the wave-
length that the scattering from this volume can be
regarded as simple dipole scattering. At the same time,
the volume V must be chosen suKciently large that the
correlation between density Quctuations in neighboring
volume elements can be neglected. (This will permit
the addition of intensities from these volume elements. )
This requirement can usually be satisfied by using
dimensions large compared to the molecular separa-
tions. Near the critical point, however, it may not be

"R.J. Finkelstein, Phys. Rev. 72, 907 (19471.
5' M. Smoluchowski, Ann. phys. 25, 205 (1908).
~4 A. Einstein, Ann. phys. 33, 1275 (1910).
55 S. Bhagavantum, Scattering of Light and the Raman Egect,

(Andhra University, %altair, India; American edition-Chemical
Publishing Company, Brooklyn, New York, 1942).

91 J. Cabannes, La Diglsion MolecNlaire de la LNmiere {Les
Presses Universitaires de France, Paris, 1929).

570uter, Carr, and Zimm, J. Chem. Phys. 18, 830 (1950).
Doty, Zimm, and Mark, J. Chem. Phys. 13, 159 (1945).
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possible to satisfy both of these assumptions simul-
taneously.

The ffuctuation in density De causes a Quctuation in
dielectric constant De. As a result there is induced in
the volume V an electric moment

m= VaP= Va.E/(4x). (1II1)

The power radiated by a dipole a&4nz'/(3c') per unit
incident flux cE'/Sn. is

power/Aux = (Sm /3) (2m /X) '(m/8)',

using a&/c=k=2m/X. The turbidity 7 is de6ned as the
power scattered per unit volume per unit incident
ffux:"

7'=power/(volume)&flux) = (Sm'/3)X 'V((66) ), (1H3)

where ((he)') is the mean square fluctuation of the
dielectric constant in the volume V. Of course, e is the
dielectric constant at the optical frequency used and is
equal to the square of the index of refraction.

The mean square density ffuctuation can be calcu-
lated by the methods of statistical mechanics and is

given by:"
((hyz)') = —(e'~T/ V') (BV/BP) r. (1H4)

The dielectric constant ffuctuation is given by

where Ae is the change in dielectric constant in the vol-
ume V associated with a density change Ae in the same
volume —assuming the remainder of the medium is
unchanged in density. There is some controvery as to
how Ae should be computed. We may analyze the situa-
tion as follows: The additional polarization AP has
two contributions, (1) the increase in the number of
dipoles, assuming the individual moments are un-

modified, (2) the increase in the individual moments due
to an increase in the effective field because the latter is
density dependent.

Einstein assumed that the change in the effective
field is the same as if the entire liquid (not merely the
Quctuation volume) suffered the same density change.
This yields the result

Ae/Ae= Be/Bn WEBJ, (1H6)

because it is equivalent to associating a local dielectric
constant with each density. This procedure is analogous
to the Wentzel Brillo-uin Kram-ers Jeffrie-s approxima-
tion so frequently applied in quantum mechanics. Such
an approximation would be valid, however, only if the
density fluctuations were smooth and small over a dis-

' According to this definition, the power in the primary beam
has an exponential attenuation exp( —rx). For a random distribu-
tion of scatterers r would be equal to the density of the scatters n,
times the cross section 0- of a single scatterer. The original defini-
tion includes the possibility of correlation in scatterer positions or
states.

5' L. Landau and S. Lifschitz, Statistical Physics (Oxford Uni-
versity Press, London, 1938), p. 117. See also references 41-44.

tance of one wavelength —a condition not actually
satis6ed.

Since the ffuctuations are small and localized a closer
approximation to the correct answer may be obtained
by neglecting any change in the eGective field due to
Ae a procedure similar to the first Born approximation.
The dielectric constant change due solely to the increase
in the number of dipoles is

he/Ae= (e—1)/I Born.

If the Clausius-Mosotti relation (1.5) is used

Be/Bg = (e—1)(a+2)/(3e)

(1H7)

(1HS)

so that the Born approximation answer can be obtained
from the W.K.B.J. result by dropping the sometimes
appreciable effective field factor (&+2)/3. This was the
procedure actually used by Bhagavantum" and
Cab annes. "

In any case, the turbidity is given by

Sm'aT( B lnv) ( Ae )'
7' = 'jZ—

3 X4 ( Br ),( ~~i
(1H9)

pending a more accurate estimate of Ae/Dn than (1H7).
Since density ffuctuations are largest in gases, less in

liquids and least in solids, the amount of light scattering
observed per molecule will decrease in the same manner.
To illustrate the order of magnitude of the effect, we
mention that ether vapor is molecule for molecule seven
times as effective as ether liquid in scattering light. "

Einstein in his original paper extended his treatment
of light scattering to binary liquid mixtures. More
recently Kirkwood and Goldberg, " and Stockmayer"
have generalized Einstein's results to multicornponent
systems. Brieffy, we may describe their procedure as
follows: the presence of more than one component
increases the fluctuation ((Ae) ) in the dielectric con-
stant because of concentration ffuctuations. The addi-
tional ffuctuation can be written in the form:

((&e)').. .=P„(he/d c,) (Ae/Ac, ) (Ac,Ac, ) (1.20).
The concentration fluctuations (Ac,hc, }are evaluated

with the help of the grand partition function. Cross
terms of the form (AeAc;) are shown to vanish.

As in the one component case dc/hc; must be evalu-
ated with care. The choice corresponding to Einstein's
is Be/Bc;; Bhagavantum's choice, under Clausius-
Mosotti assumptions, would be 3(Be/Bc;)/(a+2)

The theory discussed here breaks down near a critical
point —the density ffuctuations and the compressibility
became infinite. Smoluchowski at tempted (incorrectly)
to remedy the difficulty by making a more accurate
calculation of the density ffuctuations —taking into
account higher order terms in the expansion of the
energy around its equilibrium value. However, the

"J.G. Kirkwood and R. J. Goldberg, J. Chem. Phys. 18, 54
(1950);

O' W. H. Stockmayer, J. Chem. Phys. 18, 58 (1950).
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basic assumptions underlying (1H3) cannot be satis-
fied. Correlations became more important and extend
over distances comparable to the wavelength. This must
be taken into account in the scattering —and finite
results will be obtained whether or not the density
Auctuations diverge.

The importance of correlation in describing critical
fluctuations was recognized by Ornstein and Zernicke, "
and again more recently by Klein and Tisza." Their
treatments are in the main phenomenological. It is
easiest to develop and understand the effects of correla-
tion on scattering from a molecular point of view. We
shall discuss the nature of critical scattering in more
detail after developing our results from the molecular
point of view (Sec. VI).

In this connection we must mention the important
work of Zimm" in rederiving the Einstein formula from
a molecular viewpoint. Our results are in complete
agreement with Zimm when we specialize them to
dipole scattering. We should mention of course that we
obtain Zimm's results after solving our integral equa-
tion by the Born approximation —i.e., after neglecting
the effects of multiple scattering. Multiple scattering
effects may be important however in the critical region. "

I. Approach to Scattering Problems

A variety of procedures have been devised for treat-
ing multiple scattering problems. The approximations
involved in these procedures are determined primarily
by the relation between the wavelength of the radia-
tion and the average scatterer separation.

For wavelengths very short compared to scatterer
separations (X«a) the particle viewpoint is appropriate.
The treatment is usually based on the Boltzmann in-
tegro-differential equation for transport processes. The
latter is sometimes replaced by the simpler diffusion
equation (see references 1—7). Another treatment is to
calculate the scattering in successive orders: primary,
secondary, tertiary, etc. , taking into account attenua-
tion for each order, but neglecting interference. "

For short wavelengths, the next stage of the approxi-
mation is the geometrical optics viewpoint. Propaga-
tion is considered from the ray viewpoint, diffraction is
neglected but multiple refraction can be taken into
account. ' Huntington" has formulated the problem
from the point of view of phase fluctuations. Bergmann"
has given a consistent treatment of the effect of index of
refraction fluctuations on the phase and intensity of
radiation. His treatment is based on the eikonal equa-

4

' L. Ornstein and F. Zernicke, Proc. Amst. Akad. Sci. 17, 793
(1914); 18, 1520 (1916); 19, 1321 (1.917); Physik. Z. 19, 134
(1918);27, 761 (1926).

3 M. J. Klein and I. Tisza, Phys. Rev. 76, 1861 (1949)."B.H. Zimm, J. Chem. Phys. 13, 144 (1945).' H. A. Cataldi and H. G. Drickamer, J. Chem. Phys. 18, 650
(1950); A. J. Babb and H. G. Drickamer, J. Chem. Phys. 18,
655 (1950).

D. L. Dexter and W. W. Beeman, Phys. Rev. 76, 1782 (1949)."R. von Nardro8, Phys. Rev. 28, 240 (1926).
H. B. Huntington, J. Acoust. Soc. Am. 22, 362 (1950)."P.G. Bergmann, Phys. Rev. 20, 486 (1946).

tion. All of these treatments presuppose that appreciable
index of refraction modifications or fluctuations occur
only over distances large compared to a wavelength.

When the wavelength is large compared to the size
of the scatterer (X))a) simplifications occur: the single
scattering angular distribution takes the simplest pos-
sible form, e.g. , isotropic for neutrons and dipole for
electromagnetic waves. (This is the region of Rayleigh
X ' scattering. ) In addition the fluctuation volumes are
small compared to the wavelength. Thus'correlation
effects can usually be neglected and the scattering due
to these fluctuation volumes will have the same simple
angular distribution as that of the single scatterers
involved. These remarks are exemplified by the Ein-
stein-Smoluchowski treatment of light scattering. The
chief problem is to calculate the amount of the Auctua-
tions.

For wavelengths comparable to the scatterer separa-
tion, correlation effects are important. A diffraction
pattern can then be calculated from the Fourier trans-
form of the correlation density (the "autocorrelation").
This is the usual liquid diffraction pattern for x-rays"
or neutrons. " The same treatment can be applied to
scattering by inhomogeneities provided the correla-
tion between inhomogeneities at different places is
known. "These wave treatments are usually calculated
in Born approximation —i.e., neglecting multiple scat-
tering effects.

A multiple scattering ("dynamical" ) theory of x-ray
diffraction by crystals was devised by Darwin, 7'

Ewald, " and von I.aue."The Darwin treatment con-
siders the Fresnel diffraction of a plane of scatterers.
The effects of a large number of parallel planes are
handled by means of difference equations. The von
Laue treatment is phenomenological, i.e., it makes use
of the macroscopic Maxwell equations. The crystalline
structure is represented by a periodic dielectric constant.
A similar result has been obtained by Ekstein" in the
case of neutron scattering. The most satisfactory
dynamical treatment due to Ewald is based on the
self consistent fiel-d method. We shall describe this treat-
ment in more detail since it is the basis of the approach
used in this paper.

The method of the self-consistent field assumes that a
wave is emitted by each scatterer of an amount and
directionality determined by the radiation incident on
that scatterer (the effective field). The latter is to be
determined by adding to the incident beam the waves
emitted by all other scatterers, and the waves emitted by
those scatterers are in turn influenced by the radiation
emitted by the scatterer in question. Attenuation need
not be explicitly taken into account. It is automatically
included in the forward "shadow" scattering of each
scatterer.

~~ N. S. Gingrich, Revs. Modern Phys. 15, 90 (1943)."O. Chamberlain, Phys. Rev. 77, 305 (1950).
72 C. L. Pek.eris, Phys. Rev. 71, 2681 (1947)."C. G. Darwin, Phil. Mag. 27, 315, 675 (1914).
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The self-consistent procedure is rot an expansion in
primary, secondary, tertiary waves, etc. The field acting
on a given scatterer, or emitted by it includes the
effects of all orders of scattering.

The work presented in this paper generalizes Ewald's
work in two ways: the scattering system need not be a
perfect crystal and the scatterers are not assumed to be
point dipoles.

II. SINGLE SCATTERING

In this section we wish to obtain the linear operator
that relates the radiation emitted by a scatterer to that
exciting it. Before finding an abstract expression for this
linear operator we consider the case of elastic scattering,
since the operators used in this example are well under-

stood.
Scattering by a potential field obeys the differential

equation
LV'+k' —U(r) jP.(r) =0 (2.1)

and (treating the last term as an inhomogeneous term)
the corresponding integral equation

P,(r) = p, (r) — (4irR) ' exp(ikR) U(r') P,(r') d V'

+.=C.+ V+..
E—H

(2 6)

States 4 and 4 q are states of the unperturbed hamilton-
ian H. If creation and destruction of particles isinvolved,
we shouldregard these states as abstract vectors in hilbert
space. State a, for example can represent a photon of a
certain momentum and state b an electron pair with
specified momenta. Equation (2.4) suggests that a
transition amplitude from state to state b, '1&, may be
obtained by introducing a transition operator with the
definition:

Tc =V%.

Tb, =(4i„TC,)=(Cg, V%,).
(2.7)

In fact, it follows from time-dependent perturbation
theory"" that the transition probability from state a
to state b is given by.

Schrodinger equation:

(E H—V—)4=0 (2.5)

and the corresponding integral equation (see (2.2)):

y.(r) =exp(ik. r) E=
~
r—r'~. (2.2)

2~
Wb. ———

~
Tt,.('8(E& E)—

A

(2.8)

f(b~ii)= —(4~) i expL —ikt, ~ r jU(r )PN(ri)dV

j(b ~)= (4~) '(4b, U—4.)
(2.4)

Equation (2.4) is an exact expression for the scatter-
ing amplitude. If the solution f, is replaced by the
incident wave p„(2.4) gives the scattering amplitude
in first Born approximation. In our treatment of
multiple scattering we shall assume that the solution f,
of the single scattering problem is known, so that exact
expressions for the scattering amplitude are available.

The generalized single scattering problem including

inelastic scattering as well as the creation and destruc-
tion of particles can be described in terms of the

The subscript a imples that P, (r) is that solution of (2.1)
associated with an incident wave of propagation vector
k,. This implication is automatically contained in (2.2)
whose first term is the incident wave and whose second
term is the scattered wave. Note that this second term
describes the scattered wave at small as well as great
distances. It will therefore be made the basis of our
treatment of multiple scattering.

At large distances from the scatterer kE~kr —k~ r';
k&=kr/r so that the asymptotic solution takes the

usual form:

P„(r)~p, (r)+f(b+ a)r ' exp(ikr) — (2.3)

where f(b~a) the scattering amplitude from direction
a to direction b is given by:

If the Born approximation 0' ~4 is introduced into
(2.7), Tb, is replaced by Vt„and (2.8) becomes the usual
Born approximation formula for the transition prob-
ability.

With the help of the transition operator, (2.6) may
be rewritten in the form:

(2 9)

Since the last term in (2.9) represents the "scattered
wave" and 4, represents the incident wave, we have
obtained the desired relation:

(scattered wave) = (E H) 'T (incident wa—ve) (2.10).
This relation will be made the basis of our treatment of
the multiple scattering problem.

At large distances from the scatterer, where V may
be neglected, 4' must be a solution of the unperturbed
equation, i.e., a superposition of states Cb for which

E&——E,. This explains why the only observable transi-
tions in (2.8) must conserve energy. On the other hand,
near the scatterer, states with E~4E, are important.
The relation (2.10) between scattered and incident
waves describes the local as well as the asymptotic
behavior of the scattered wave since Tb, has matrix
elements to states b that do not conserve energy.

If the single scattering problem cannot be solved ex-

actly, T&~ may be computed by a variational method. "'9

The relationship between T~, and the scattering ampli-
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tude f(b~a) of Eq. (2.3) is simply:

4+5'
Tb, ——— f(b~a)2'

when the interaction energy V is It'U(r)/(2m).

scatterer. For scatterers of various elements, or various
spins, s; takes on a set of discrete values. For scatterers
of various sizes or velocities, $; takes on a continuous
set of values. In this way we can treat Doppler shift
and scattering by a substance partially ordered in
space, spin, or alloy structure.

0'( )=~( )-F(r, ;). (3.2)

Since iP'(r) is the effective field that excites scatterer j,
the field emitted by scatterer j must be given by:

III. MULTIPLE SCATTERING: BASIC EQUATIONS

We are now in a position to write down the basic
equations describing multiple scattering in accord with
the program stated in the introduction. If p(r) repre-
sents the incident wave, and F(r, r,) the wave scattered
at r, then the toal wave

y(r) = q(r)+ P;F(r, r,) (3.1)

represents the incident wave plus the sum of all scat-
tered waves. "

The wave incident on scatterer j, denoted by iP&'(r),

is given by the incident wave y plus the waves emitted
by all scatterers other than j. Alternatively it may be
written:

IV. STATISTICS OF SCATTERERS

The probability that the set of E scatterers will be
located in the volume elements dr~dr2. dr~ with their
states In thc region dsy 8$~ Is givcii by

p(rir2' ' ' re $1$2 ' '$N)drldr2' ' 'drNZSld$2' ' d$N (4.1)

a quantity whose integral is normalized to unity. The
probability distribution for a single scatterer may be
obtained by integrating over all other scatterers:

X dr2' ' ' dr yd$2 ' ' 'd$g. (4.2)

And the correlation probability for the simultaneous
locations of a pair of scatterers is obtained by integrat-
ing over all but that pair of variables:

F(r, r,) = (F. H) 'T(rj)—P'(r) (3.3)

in accord with (2.10).
The transition amplitude Tb, (r,) differs from the

corresponding amplitude, Tb, (0), for a scatterer located
at the origin, by a phase factor. Using r; as a temporary
origin, we must have

(yb(r —r,), T(r,)y, (r—r,))= (rpb(r), T(0)q.(r)). (3.4)

The unperturbed states are plane waves) quantized
in a volume V:

p(rir2., $,$2) = p(rir, r, . r~, $,$2$, $ii)

Xdr, drbid$, d$g. (4.3)

If the distribution is random, the probabilities asso-
ciated with a single particle are not influenced by in-
formation concerning other particles. In this case, the
complete distribution factors:.

p(rlr2' ' rN $1$2 '$N)

y.(r) = V I exp(ik. .r)

so that (3.4) yields the relationship:

(3 5) =pi(rl $1)p2(r2 $2)'''pN(rN $K) ~ (44)

It is the difference
Tb, (r,) = expL'i(k, —kb) r;]Tb,(0) (3.6).

YVith this information about the phase relationships,
Eqs. (3.1), (3.2), and (3.3) completely describe the
multiple scattering problem. Eliminating F(r, r,), the
total wave is given by:

&()=~()+Z~( — ) ' (~)4'() ( )

in terms of the effective fields. The latter obey the sys-
tem of linear integral equations:

4"(r)= v'(r)+2 .(&—H) 'T(r )4"(r) (3 g)

If there are scatterers of various types present, T(r, )
must be replaced by T(r, , $;) where $; is a parameter
(or set of parameters) describing the state of the

$ The normalization volume U cancels out of observable physical
quantities. Unless otherwise specified, we shall assume the normal-
ization volume is unity.

p(rlr2 $1$2) pl(rl $1)p2(r2, $2)

that is the true measure of correlation or nonrandom-
ness between a pair of particles.

If the distribution is nonrandom it is possible to
introduce a pseudo-factorization with the help of con-
ditional probabilities:

p(r r2 rx, $i$2 Ar)

=pi(ri', $i)p(ri$i
~

ry. ' ' rbt', $2 ' $y) (4.5)

where the last factor represents the distribution for
particles 2, 3, E knowing the values of r~ and s~.
Similarly

p(rir2' ' ' rg $1$g
' ' '$N)

P(rlr2 $1$2)P(1112 $1$2I rb ' ' ' rN $b' ' '$Pj'). (4.6)
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In this notation the average of the total wave over
the ensemble of scatterers is given by:

If the first scatterer is held Axed and all other scatterers
are averaged over, this will be denoted by a subscript:

g(r)) = P(r r, r.;s s )

Xp(risit r2 r~, s2 . st)dr2 dr~ds2 dsx. (4.8)

If two scatterers are held fixed:

g (r))12—— ip(r; r, re~, si sv)

Xp(r, r„sis2~r, r~,. s, s~)

gdx3 dxgds3 dsg. (49)

Probability distributions may be converted to den-
sity distributions or correlations by multiplying by
some power of the number of scatterers:

(4(r))= 0(r; r r:s . s )J ) 1

XP(ri ry, si si2)dri dri2dsi ds2t. (4.7)

{4'(r))=(0(r)). (5 3)

If correlations are present, the simplest approxima-
tion is

(4'(r)) =c(0(r)) {5.4)

where c is a constant depending on the correlation be-
tween pairs of scatterers. This approximation has been
discussed in Sec. IA. A detailed treatment of the
eRective field is reserved for a future paper. '~

Inserting the exciting field approxima. tion (5.4) into
(5.1) and noting that the summation may now be re-
placed by a factor E, we obtain:

Q(r)) = (r)+c(&—&)-'T(k(r)) (5 5)

where
(E—e—cT)(y(r)) =0 (5.6)

The eRective field represents the field incident on a
given scatterer whose position and state are known
averaged over the distribution of all other scatterers
relative to the known scatterer.

The effective field divers from the total field by the
field emitted by one scatterer. If a sufhcient degree of
randomness is present the eRective 6eld is approxi-
mately equal to the coherent field

n(r; s) =cVp(r; s)

n(rir2 sis2) ~ p(rlr2 sls2)

(4.10)

(4.11)
T= n(r; s;)T(r;s;)dr, ds;. (5.7)

n(r; s) is the density of scatterers of type s.

V. THE COHERENT %'AVE

The system of equations (3.8) has a solution p(r; ri
rii, si s&) for any particular choice of the locations
and states of the 2V scatterers. We are in general
interested in an average of this solution over the prob-
able distribution of scatterer locations and states. This
average, (iP(r)), is a function only of the position of
observation x and is considerably simpler than the
original solution p(r; ri r~. , s„.s~). The straight-
forward procedure of solving the system (3.8) for
iP(r; ri r~., si s~) and then averaging, will not
usually be practical. We shall instead take averages
over Eqs. (3.7) and (3.8) in order to find an approxi-
mate equation obeyed by {P(r)).In this way, a system

The significance and usefulness of the coherent wave
equation (5.6) can best be illustrated by evaluating T
for various distributions n(r;s, ). Using (3.6) the space
factors can be shown explicitly:

n(r;s, ) =n(r, )n(s, ) (5.9)

Ti„Jn(r)expLi——(k,—ki) r$dr Jrn(s) Ti„(0,s)ds

{5.10)

Tb.——
J

expLz(k. —ki,) r;(dr;J n(r, s,)Ti,.(0, s,)ds, .

(5.8)

For some problems there is no correlation between the
state of the scatterer and its location:

(ip'(r))1 ——Jr''(r; r, rg s, sg)

Xp(rising rz r~, s2 s~)dr2 driids2 . dsiv (5 2)
(5.11)Ti,. nt'11.. .

cx(s) Ti,.(0, s)d——s.

of equations (3.8) will be replaced by a smgle equation.
7x b f d

'
h h

where subscript j has been dropped. Since zz(r) repre-The average over ~3. ~ may e per orme wit t e
sents the average density of scatterers (regardless of
type) the first factor describes the addition of ampli-
tudes from each of the scatterers with the appropriate

(4(r))= p(r)+(& &) '2 p{r' s—) phases taken into account. For a homogeneous scatterer
n(r) =n =a constant.

The space integration in (5.10) is to be carried over
the (unit) volume of quantization. The orthogonalitywhere the e ective field is defined by:
of the wave functions causes the integral to vanish
unless k =k~.
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The second factor is the appropriately weighted addi-
tion of the scattering amplitude of the various atoms
present. For example, the alloy Cu3Au in the disordered
state satisfies (5.9) and the coherent scattering ampli-
tude is given by f= 3fo -+ ', f& -with a similar relation
among the T's:

n(s)T(0, s)ds= ~3T(0, Cu)+x'T(0, Au). (5.12)

For a homogeneous medium, the operator T, accord-
ing to (5.11), is diagonalized using plane waves as a
base system. The solutions of the coherent wave equa-
tion (5.6) are simply plane waves. The index of refrac-
tion is therefore determined by

cT„=cn n(s) T.,(0, s)ds,

Rek' [k'+47rnRe(cf) j'
2Imk' = [47rnIm(cf) j//(Rek')

(5.15)

(5.16)

correct to order (Imk'/Rek')'. From more elementary
considerations we would expect a power law

Power ~ exp[ no &x], — (5.17)

where'o-& is the total cross section. This expectation is
consistent with (5.16) for c=1 in view of the cross
section theorem relating the total cross section to the
scattering amplitude in the forward direction 2'

o,(k') = (4m-/k')Im[f, (k') ]. (5.18)

In all of the preceding calculation T and f are operators
acting on (P (r)) and thus must be evaluated at the

i.e., by the elastic scattering amplitude in the forward
direction (averaged over the kinds of scatterers) and
by the density of scatterers. The correction factor c
represents the ratio between the effective field and the
coherent wave. In the notation of the elastic scattering
problem (2.1) and (2.3) the coherent wave equation
can be written:

[P+k'+4nncf(a~a)](P. (r))=0. (5.13)

Thus the propagation vector k, ' in the medium of
scatterers has a magnitude determined by:

(k')' =k'+47rnc[f(a~a)j (5.14)

where the forward scattering amplitude f(a~a) is a
weighted mean of the type (5.11) or (5.12).The forwar'd
scattered amplitude f must have a positive imaginary
part. "Thus the modified propagation vector k' will be
complex. In short, our coherent wave is the main beam,
traveling in a medium with an effective index of refrac-
tion (Rek')/k, and a, power attenuation coefficient
2Imk', both of which are determined by the scattering
amplitude in the forward direction (5.14).

As long as the attenuation per wavelength is small
(Imk'«Rek') we have:

modified value k'. In other words, scattering amplitudes
and cross sections must be evaluated for the wavelength
appropriate to the medium.

For electrons or neutrons subject to the Schrodinger
equation the change in index of refraction can be in-
terpreted as a new relation between the energy and
momentum of the wave appropriate to the medium:

(5.19)

using (5.6) with the assumption that H is the hamil-
tonian of a free particle. This sort of relation has been
useful in treating Bloch waves in a crystal. '4

We shall now discuss the coherent field for scatterers
arranged in a perfect lattice. There are X~XX~)&Ã3
unit cells, described by the base vectors a&, a2, a3. Each
unit cell contains scatterers of type s& at position
r~(k=1, 2, v). Thus the atoms are located at

r,"=rA+ j~a~+ j2a2+ jaa3, (5.20)

where j&j2j3 are integers. The scatterers are described
by the density:

~ba IbaFba, (5.22)

Fq, ———Qq exp[i(k, —kq) r~]Tq, (0, s~) (5.23)

I&. ~Q, [exp{i(k,—kp) (j&a&+jpa2+ v3a3) }j. (5.24)

The factor Fb, is a weighted average of the scattering
amplitudes of the various atoms, taking into account
phases. Except for a numerical factor Pb, is what is
usually termed the form factor of the unit cell. The
lattice sum Ib has the value:

sin(X~K a~/2) sin(X~K a2/2) sin(%~K aa/2)
Ib, = ve"

sin(K a~/2) sin(K a2/2) sin(K aa/2)

(5.25)
K=k.—kb

where the phase 0 depends on the precise position of the
crystal relative to the source and is essentially unknown.

Strong resonances of the lattice sum occur when the
conditions for Bragg (or I.aue) reflections are satisfied. :

K=k.—kb=2~(kbg+kbg+/ba) (5.26)

where the triplet of integers, k, k, 1 are the Miller indices
of the reflection plane and the reciprocal vectors b; are
defined by:

b, = (a;Xa~)/(a,"a,Xa~).
'4 J. C. Slater, Phys. Rev. 76, 1592 (1949).

(5.27)

(5.21)

We shall assume our waves are quantized over a volume
V equal to the volume of the crystal. Insert (5.21) into
(5.8) and integrate over the volume of the crystal:
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(1
=eV~ -PiT..(si) i. (5.28)

Ev )
If we note that because of our normalization procedure,T„cotn iansa factor 1/V we see that T„takes the same
value as in the corresponding amorphous case (5.11).
The index of refraction in the two cases—crystalline
and random —will be approximately the same. However,
the attenuation associated with the imaginary part of
T does not apply to the crystalline case: since there is
no scattering (away from the Bragg direction) there is
no attenuation. The explanation of this paradox is that
the correction factor c for the effective field does not
apply to the random case, but there is a correction in
the crystalline case. And the correction is such that
cT, is real. A detailed analysis of the crystalline effec-
tive field will be presented in another paper. '"Q'e shall
show that c contains a small imaginary part with just
the correct phase to cancel the imaginary part of 7

Near a Bragg reflection, when k, touches one of the
Brillouin zones, one oG-diagonal matrix element T~,
will be important. At a Brillouin zone corner, several
matrix elements will be important. The coherent wave
equation (5.6) must then be treated by the methods of
degenerate perturbation theory. The large mixing of
states represents a large reQection from the forward
direction to the allowed Bragg directions. In this way
the effectively large attenuation known as extinction is
produced.

One word of caution should be added in the use of
(5.14) to calculate the index of refraction. This equa-
tion may be rewritten in the form (see (2.11)):

2m
(k')'= k' — c(T).,

A2
(5.29)

By this notation we emphasize that the averaging
process (Q,T(r,)) should be performed before taking the
diagonal matrix element. Usually (T),=(T„)&„i.e.,
the scattering due to the combined potential is usually
equal to the sum of the waves scattered by the indi-
vidual scatterers. In the presence of long range forces,
however, the scattering potential in the neighborhood

The forward direction k =kb always satisfies the Bragg
conditions.

At these resonances the denominators of J~, vanish
and ~Ib,

~
takes the maximum value cV= vÃi1V2%3.

Thus the off-diagonal matrices T& are approximately
as important as the diagonal T if the incident direc-
tion k, is at an appropriate Bragg angle. Away from a
Bragg direction, only the diagonal matrix element F,
is important —no scattering takes place, and the co-
herent wave is a plane wave whose index of refraction
is determined by cT

(1i',= (vXiX2E3)
~

-pi.&..(si) ~

&v

of a given scatterer may be appreciably modified by the
presence of other scatterers and the order of calculation
may be important. '4

The method and results of our calculation of the co-
herent wave and its index of refraction may be com-
pared with that of a more familiar technique. ~' The
most common procedure is to take a thin infinite slab
(of thickness w) and calculate the scattered radiation
at a distance L far from the slab. If f(8) is the scattering
amplitude from a point in the plane to the point (0, 0, L),
the total radiation is given by

exp[ik(p'+L') '*]
e"~+ f(8) ew2m. pdp (5.30)

( '+L')'

where tan8= p/I. . If we integrate by parts and drop
terms that vanish as L—+~, the total radiation is
given by

e'~~[1+2~iewf(a~a)/k& . (5.31)

In physical terms, only the forward scattering ampli-
tude appears because only the first Fresnel zone con-
tributes to the scattered radiation. The introduction of
the slab can now be interpreted as having produced a
small phase change:

phase change = 2m nwf(a& —a)/k. (5.32)

If the propagation constant in the medium is k' it is
customary~' to calculate the phase change according to

phase change= (k' —k)w (5.33)

which leads to the relation

k'= k+ 2~nf(a~a)/k (5.34)

This result is approximately but not precisely in agree-
ment with the one (5.14) obtained in this paper. The
explanation of the discrepancy is that (5.33) is not a
sufficiently precise calculation of the phase change. The
slab should be considered a medium of propagation
constant k' embedded in a medium of constant k. If
rejections are taken into account, the transmission
coefBcient of the slab is found to be

i= 1+iw(k" k')/(2k—)

Comparing with (5.31) we obtain a relation

(5.35)

w(k" —k')/(2k) = 2mnwf(a~a)/k (5.36)

precisely equivalent to (5.14) provided effective 6eld
corrections can be neglected.

Is it legitimate, however, to treat the thin slab as a
medium? The basic objection to the entire thin slab
calculation is that it postulates rather than derives the
existence of a medium. Additional objections have been
raised to the thin slab calculation in the presence of
long range forces."

75 See for example, E. Fermi, Nuclear Physics (University of
Chicago Press, Chicago, 1950), p. 201, revised edition (Notes by
Orear, Rosenfeld, and Schluter). Also reference 19.
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P'(ro) = q '(ro)+PsF*(ro, rs)
~t(r) =

o (r)yP;F(r, r;)
(6 1)

multiply and average over the con6guration of scat-
terers, we obtain:

(|p*(rp)lp(r) &
= op*(rp) oo(r)+ op*(rp) [ &it (r))—y(r) }

+~«(")&-.(")}*.()
+2, (F*( o )F(»')& (62)

On the other hand, we can average Eqs. (6.1) and then
cross-multiply. Only the last term on the right-hand
side of (6.2) is modified by this change in the order of
operations. If the new result is subtracted from (6.2) we
obtain some cancellation

VI. INCOHERENT SCATTERING

The density of incoherent radiation is given by
(I |P(r) I')—

I
&|P(r)& I' and its directionality is determined

by «*(rp)p(r)& —&ip*(rp)&Q'(r)&. The purpose of this
section is to obtain an integral equation for (|p*(rp) |p(r)&.
The coherent wave &|P(r)& is presumed known by the
methods of the preceding section.

From a naive point of view one might expect the
incoherent radiation to be the sum of the incoherent
contributions of each scatterer. This will be true for a
random distribution of scatterers. In general, there will
be an additional contribution if the scatterers exhibit
some partial order. This "correlation contribution" can
be studied to obtain information concerning the struc-
ture of the scattering system. X-rays ' and neutrons '
have been used in this manner to study the structure
of liquids and glasses.

If we start from the basic equations,

XJ
Tp*(rs)T(r& )p(rk, 'r& )drydr's&p" (rp)*ip'(r)&sf. (6.6)

Up to this point our treatment of incoherent scatter-
ing is exact. In order to simplify the problem it is now
necessary to introduce assumptions relating the exciting
field to the total radiation. The assumptions we make
are similar to those introduced in the coherent case:

8 '(r)& =c&4(r)&

«(")*~()&,=I
I «*(")~()&

&a"( )*e'()& =I I'«*( o)&()&

Equation (6.3) can now be simplified to the form:

(6.7)

10 1' — ro 1'

IcI'
[(~+Q)«*(ro)f(r? &

(F. Hp)*(E H—)—
—Tp*T«*(ro)&Q'(r))j (6 g)

T,*=N T,*(r,)p(r, )dr;

A subscript zero has been placed on operators acting
on the variable ro. These operators commute with
operators (containing no subscript) that act on the
variable r. The corresponding average for the oG-
diagonal terms is

1 1
&F*(rp, rs)F(r, r;))=

(E—Hp)* F. H—

«*(")~()&-«*( )&«()&
=Z', s[(F*(«, rs)F(r, r)&

-(F*(,"))(F(, ,))j (6»
If the scatterers are fixed in position (e.g. , a perfect

lattice) then there is no averaging process to perform,
and the right-hand side of (6.3) vanishes. In other
words, for fixed scatterers the operations of multiplica-
tion and averaging commute and there is no incoherent
scattering.

I I

As in the coherent case

(6.9)T,*(r,)T(r;)p(r, )dr;

Q=N(N 1) Tp*(rs)T—(r;)p(rs, r,)drsdr;

After clearing of fractions (6.8) takes the form:

[(Z-Ho)*(Z—H)- I.I
Tp rj

X[«*( )&()&—«*(")&«()&j
=

I
I'(~+Q-T.*T)«*( o)4( )& (6 1o)

Using the coherent wave equation (5.6) to annihilate
the factor &it*(rp)&&it(r)), we obtain a homogeneous
equation

[(Z—H,)*(Z—H)—
I 1(~+e)l«*(")~(r)&=0. (6.11)

Equation (6.10) can also be rewritten as an inhomo-
geneous integral equation:

The first term in (6.3) is a sum that should be broken
into its diagonal (j=k) and off-diagonal terms. In the
diagonal case the average is given by:

1 1

(lp*(rp) p(r)) = «*(rp))&|p(r))+L&it *(ro)|p(r)& (6.12)

(F*(ro r )F(r r ))=
(&—Ho)* F. H—

X To*(r,)T(r,)P(r;)dr, (it '(rp) *|Pr'(r));. (6.5)

[~ Except of course for inelastic scattering by the individual L
a s

—
+

—I I [ +e
scatterers —whose effects are incoherent and whose intensities (&—Ho)*(&—H) —IclsTp*T
are additive. (6.13)
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In this form, we see that the coherent wave is the orig-
inal source of the incoherent radiation. In fact to a first
approximation (neglecting L) the total radiation is all
coherent:

*rp r ~ *rp r (6.14)

(Q—Tb*T)b b =lv
I
T, I'~t expLi(k, —kb). r,b]

XLP(r, , rb) P(r, )P(—rb)]dr;drb (6.17)

where r, A,
= r, —rj, is the separation of a pair of scatterers.

This scattering, as we remarked in the introduction, is
inelastic because recoil energy is absorbed by a group
of scatterers. However, it is elastic with respect to the
individual scatterers, i.e., the internal state of the scat-
terers is not modified since such modification would
destroy all phase relations.

If we introduce relative coordinates r;~ and average
coordinates R= (r,+rb)/2, P(r, rb) can, except for edge
eGects, be regarded as a function only of the separation.
Integrating over dR and combining terms we get:

(M+Q Tb*T)b. b. lVI —Tb, 'I'E+cV——
I Tb, '"I' (6.18)

fE= 1+n expI i(k,—kb) r, bjg(r, b)dr, b

(6.19)

where we have separated the terms elastic and inelastic
with respect to the individual scatterers. Note that
k, and kb are propagation vectors in the medium

The turbidity r of the medium, i.e., the attenuation
constant of the coherent beam, may be obtained by
solving the integral equation (6.12) in Born approxima-
tion (keeping only terms of order

I
Tl'). The result is

The higher approximations may be obtained from an
iterated solution of (6.12):

(4*( o)0( ))=(1+1+1-'+ )(4*( o))8( )) (615)

The operator I. generates only incoherent scattering.
The effects of coherent scattering are already taken into
account in the coherent density Q*(r,))g (r)), in short,
by the introduction of a medium. The successive terms
L, I.' represent radiation that has been incoherently
scattered once, twice

The term M represents the purely incoherent addition
of the intensities of the individual scatterers. To show
this, we take the matrix element describing scattering
from direction k to kb ..

(6.16)

This term includes all processes inelastic (and elastic)
with respect to an individual scatterer. The term

Q —Tb*T represents scattering due to the correlation
p(ri, r2) —p(ri) p(r, ) between scatterer locations:

the same as if the scattering cross section of the indi-
vidual scatterers were replaced by an effective cross
section:

T—SOeff

dc«& ——
I
c

I
'dc'"E+

I
c I'd~'" (6.20)

The differential form is used here because E modifies
the angular distribution of the scattering. The choice
E=1 is equivalent to a particle viewpoint since it
neglects all correlations. E—1 is the usual liquid diGrac-
tion pattern.

Except near the critical point g(r, b) is appreciable only
for distances of the order of the molecular separation.
Thus for wavelengths large compared to the scatterer
spacing, the exponential may be replaced by unity and

E= 1+n g(r)dr (6.21)

1'= (lV') —
I (1V)

I

'= ((AiV)').

A. Light Scattering

(6.23)

It may be of interest to compare these results with
the phenomenological treatment of light scattering.
The total cross section for scattering by a molecule of
polarizability e is:

(2ir) '
t 1+cos'8—dn (6.24)

so that
(2m q

'
t 1+cos'0

0«i ——
I

—
I

(nc)' ~' E—
(X) & 2

(6.25)

The unknown constant. c can be eliminated since it also
determines the index of refraction. Using (184):

nc= (b—1)/4~n. (6.26)

Away from the critical point, E is independent of angle
and may be expressed in terms of the density Quctua-
tions (6.23). Using (6.20) and (6.26) we have

r =Serb/3X L(e—1)/n7'(n/Ã) ((61V)') (6.27)

This is in agreement with the phenomenological answer
(1H3) and (1H5) if the choice Ae/Dn= (b —1)/n is made.
Agreement with the latter choice should be no surprise,
since we have made use of the Born approximation.

Near the critical point, Quctuations, comparable to
the wavelength may occur, and it is necessary to use

no longer modifies the angular distribution.
If we return to our original definitions (6.3) or (6.9) E

can be given a simple interpretation:

&E=(IZ expCi(k. —kb)l r I')
—

I (p; expLi(k. —kb) r;]) I'. (6.22)

In the long wave limit we obtain the result that E is
related to the density fluctuations:
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the original expression (6.19) for E. Although the corre-
lation function g(r) is unknown, its normalization is
known through (6.21) and (6.23). Thus we may write
the turbidity in the form:

w' (&
—1)' p 1+cos'8

'T. = ~ dQ 1+ —1 cosK.b r

cosK„r= "cosK b rg(r)dr
~

g(r)dr
Ji

8
K,b=k, —kb,

~
K„b~=2k sin —.

2
(6.28)

Ornstein and Zernike4' have investigated critical
point Quctuations and concluded that the approximate
form of the correlation function is g(r) r ' exp( —»r)
where 1/» measures the "range" of the correlation. At
the critical point itself »—+0. With this choice of g(r)

distances are usually of the order of intermolecular sepa-
rations 10 ' cm. An increase by a factor 104 is needed
to make them comparable to the wavelength, and an
additional factor of 104 is needed to make them macro-
scopic in size.

The experimental work of Andant, "Battacharya, "
Rousset, ~' and Drickamer" can be summarized briefly
as follows: The frequency dependence of the scattering
at a given angle for most substances changes from k' to
jP as the critical point is approached. However, there are
exceptions. A more detailed check on the angular and
frequency dependence of the scattering under ade-
quately controlled conditions seems advisable. Trans-
mission measurements of the total attenuation may
help to eliminate the effects of multiple scattering
and absorption.

In any case a theory of the dependence of ~ on the
thermodynamic state of the system is still lacking.
Ornstein and Zernike show that ~ can be computed
from:

cosl b
1'=

»2+K p
(6.29) (6.31)

Thus the scattering will have a forward maximum that
becomes sharper and more pronounced as the critical
point is approached. This peak corresponds to scatter-
ing by molecular clusters of size ~ '. At a given angle,
the frequency dependence of the scattering varies from
k', away from the critical point (»))k) to k' near the
critical point (»((k). The total attenuation is given by:

8m' (e—1)' (hA)'-
T= 1+ ——1

3'A4 e X
I

»'+2k'

3 p1+cos'8
I=—

I

8~~ 2
dQ

a —coso

a+1
=-'a, (a'+1) ln——2a

8—1

=L1+A a '+ b a '+ a—1=—.(6.30)
2k"-

This formula diverges at the critical point, I(.=0. How-
ever, the formula is not valid for Quctuation distances
1/» comparable to the size of the macroscopic sample.
In this case, the region of integration over dr is limited
by the sample, and a 6nite attenuation dependent
on the sample size is obtained. This point has been
discussed in detail by Placzek. "However, the tempera-
ture region in which the fluctuation distance 1/» is
macroscopic in size is so close to the critical point as to
be experimentally unrealizable. And, in fact, »/k is
often large compared to unity, even near the critical
point. The explanation for this is simply that fluctuation

'6 G. Placzek, Physik. Z. 31, 1052 {1930).

o'= t r'j(r)dr (6.32)

"A. Andant, J. phys. et radium 5, 193 (1924).» D. K. Battacharya, Proc. Ind. Assoc. Cultiv. Sci. 8, 277
{1923).

"A. Rousset, Ann. phys. 5, 5 (1936).

where P is the compressibility, and 0 has the dimen-
sions of an area. f(r) represents the average fluctuations
in density at r due to a unit fluctuation 8(r) at the
origin, assuming that the density elsewhere is held at its
average value. For comparison, g(r) describes the mean
density fluctuation at r induced by a fluctuation at the
origin permitting the density at intermediate points to
fluctuate. Thus f(r) is a measure of the range at which
molecular forces are directly effective —whereas g(r) is a
measure of the range-at which they can be indirectly
effective by means of "cooperative phenomena. "Thus,
we might expect ~ to depend strongly on the tempera-
ture, and 0 weakly. The experiments of Babb and Drick-
amer, 5' however, show that 0. itself depends fairly
strongly on the temperature —the range of forces, or
"size of molecular clusters" increasing to 1000 molecular
diameters near the critical point. In addition there is a
rapid decrease of scattering in the immediate neighbor-
hood of the critical point that must be explained.

It should be emphasized that all of the results quoted
here and applied to the light scattering situation are
based on a Born approximation solution of the integral
equation (6.12), i.e., these results neglect the effect of
multiple incoherent scattering. We do not intend to
solve this integral equation here, but it may be worth-
while to discuss its implications. Roughly speaking, we
can say that the numerator of L:

~
ct'(clII+Q —Kb*7')

describes the probability of a wave being scattered
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from one state (direction) to another. The denominator
of L then describes the spreading and attenuation that
takes place between the point of scattering and the
point of observation. This last remark can perhaps be
best understood after introducing an approximation
due to Foldy:"

(E Ho) *(—E II) —
I
c

I

'T—p*T
—= (E Ho —cTp)—*(E H —cT)—

+ (&To)*(E 8—cT)'+—(E Ho —&To)—*cT (6.33)

(E—H, )*(E—H) —I. I
sT,*r

(E Hp c—To) *(—E H cT—). —(6.34)

In the space representation:

in the immediate neighborhood ro=r are necessary.
However point dipole scattering involves quantities
of the form (IV/(r) I'& that can be computed from
(P*(rp)i((r)& but not from (I P(r) I') since the latter has
lost all directionality information.

In a future paper we shall show that our integral
equation for (P*(ro)P(r)& can be transformed into an
integral equation:

F(k, r) =Fo(k, r)

+ E(k, k'; r, r')F(k', r')dk'dr' (6.38)

(r'I(E H cT)—'I r—)
exp(ik'I r —r'I)

(6.35)
I
r—r'I

for the density F(k, r) in phase space dkdr. This will
facilitate a more detailed comparison with the particle
point of view.

where k' is the propagation constant in the medium.
The other factor has a similar form:

exp(ik'I ro —ro'I)
(ro'I (E—Ho —cTo)* 'I rp) . (6.36)

ro —ro

The propagation from r to r' may be understood by
setting r= ro, r'= ro' so that the product of these two
factors has the form expL —2Imk'I r —r'I j/(r —r')', i.e.,
an inverse square spreading factor times the appro-
priate exponential attenuation.

For the case of isotropic point scattererstf distributed
at random, we obtain Foldy's integral equation:

(I 4(r) I'&=
I &4(r)& I'

exp(—21mk'I r —r'I )+ Ifl', ——(I f(r') I'&~(r')«' (6.»)
f
r —r'I'

after making the approximation (6.34). This is precisely
the integral equation one would write down from an
intuitive "particle"'point of view. Thus the error in-
volved in Foldy's approximation (6.34) is a measure of
the discrepancy between the wave and particle points
of view. There will, of course, be additional differences
if the scatterers are not distributed at random. These
appear in the term Q

—To*I'. All of these errors should
be small if the wavelength A is small compared to the
average scatterer separation e ', i.e., if eA.'((1.

Point isotropic scatterers represent the only case for
which an integral equation can be obtained for (I it (r) I

')
alone. Usually one must deal with the more general
quantity g*(rp)lf(I)&, i.e., the scattering from a given
region is determined not only by the density but also
the directionality of the given radiation. In general
we must make use of matrix elements of L for which
rp W r. For point scatterers, only the values of g *(rp)il'(r)&

$ Our results can be reduced to the case of isotropic point scat-
terers by choosing the form T(r;) = —2sk'fs(q —r, ) where q is the

m
position operator and f the scattering amplitude, see (2.11).

VII. RELATION TO THE MANY BODY PROBLEM

In this paper we have attempted to describe the inter-
action of a wave with a system containing many par-
ticles using a multiple scattering point of view. In other
words, we assume that the interaction of the wave with
a single particle is known and that the interaction with
the system is a combination of single particle scatter-
ings. This point of view, however, does not provide a
complete description of the possibilities associated with
the many particle system. The purpose of this section
is to indicate the sort of approximations implicit in the
multiple scattering viewpoint in such a manner that
the range of validity of the latter viewpoint can be
understood.

It will be useful to consider first the calculation of
the wave solution assuming the particle motion is
known. Our procedure was to (1) obtain a solution
P(r; ri, rs r~) for a fixed set of particle positions (2)
permit these positions to vary with time, and average
over time (3) replace the time average by an ensemble
average. As far as the wave motion is concerned, the
particle positions have been treated as adiabatic param-
eters. ' This approximation is valid only if the particles
are moving su%.ciently slowly.

The description of the many-particle system enters
only through the probability distribution p(ri, rs rs).
The inRuence of the wave on this distribution has been
neglected. In other words, the many particle system
ls treated in Horn approximation.

If both the wave and the particles are treated in

Horn approximation the complete wave function of
wave plus system can be written in factored form
P(r)%';(rrrs. rs). The Schrodinger equation of the
wave plus system

(E H Q, V(r r,)$P(—r)+,—=0—
can be multiplied by 4;* and integrated over the par-

' W. Pauli, Huedbuch der I'hysik, Vol. 24/1, p. 161.



M ULTI PLE SCATTE RI NG OF WA VES 307

ticle variables to obtain a coherent wave equations'

LE—H —V]|p(r) =0

r

V= V(r—r,)e(r,)dr, .

(7.2)

This is less satisfactory than the adiabatic treatment of
the scattering since index of refraction now depends on
V, rather than on the forward scattered amplitude T,.
The latter result is to be preferred from an intuitive
point of view.

The errors involved in the adiabatic approximation
are perhaps most serious for the incoherent scattering
and it seems advisable to take into account (1) the
momentum distribution of the scatterers and (2) the
dependence of the matrix elements on the momentum
of the scatterers. If the scattering system can be
treated classically this can be done simply by intro-
ducing densities n(r, , y, ) in phase space and matrix
elements Tb, (r, , y,). In other words, the momentum p
is treated as one of the parameters s that describe the
scatterer (see Sec. III).

If the scattering system must be treated quantum
mechanically, however, a unique density in phase space
does not exist. In addition, the recoil momentum ab-
sorbed by the scatterer must be taken into account.
Thus we must use transition matrix elements of the
form Tb,&'&(r;) where p' is the final momentum of the
scatterer.

A closely related limitation of the multiple scattering
approach is that it is based on a closure summation over
all the final states of the scattering system (see Sec. IE).
The closure approximation is valid only if one sums over
all 6nal states. On the other hand, it is only permissible
to sum over those final states that conserve energy.
Again, we see that corrections to the usual multiple
scattering approach must be based on a consideration
of the energetics of the problem.

In order to understand the nature of these corrections
we shall consider a simplified problem: scattering by a
finite system small enough to neglect multiple scattering
effects. First of all, we shall state that for a single
scatterer the exact transition probability per unit time
wb, from direction k, to direction kb is given by:

wb, ——(2s) ' dkbdp IT»
XS(k,+p' —k.—p) S(E,—E;). (7.3)

The integration over kb and p' arises from a summation
over final states. The conservation of momentum condi-
tion arises from the integration over the initial and final
states of the wave and the scatterer —all of which are
represented by plane waves. The conservation of energy
condition is part of the perturbation formula (2.8).

Eg——Eb+ (p"/2M), E,=E.+ (p'/2M). (7.4)

Equation (7.4) indicates the form these energies take

if the scatterer is su%ciently heavy to be treated non-
relativistically. This assumption is unnecessary to our
general procedure. %e have used units in which 8=1
so that k and p both have the dimensions of momentum.

For a scattering system in the initial quantum-
mechanical state 4'; with the possible final states 0'~,
the corresponding transition probability per unit time
is given by:

dkb&r I (+r, ~~T» (r|)+~) I'

Xp&,(p'; y)dy'dp (7.&)

where pr, (p'; p) is the transition momentum density
defined by:

&f (P iP) Z~ +f (P» '''P =P 1 '''P&)

X+,(pi p, =p, . Pb)dpi dy~/dp, . (7.9)

The difficult part of the calculation of the squared
matrix element is the evaluation of a sum of the form:

S—Ql'pf *(y'", p")pr';(p', p) 8 (Ey —E,) . (7.10)

Unless one makes use of the complete closure approxi-
mation (7.6) the sum (7.10) cannot be evaluated with-
out some assumption concerning the nature of the final
state and its energy.

Suppose that the scattering system can be described
in Hartree approximation:

+~(y&' ' 'P&) 4'&(P&) ' ' ' 4'i(yi) ' ' O' N(PN)

+f(y&' ' 'pb') 4'&(P&) ' ' '4'f(PJ) ' ' '4'v(y&).
(7.11)

Equation (7.11) describes a "one-particle" transition
in which particle j changes from state j to state f For.
this case, the transition momentum density is given by:

ur;(p', y) = 4m*(p') 0 (P) (7.12)

X&(Ey—E;). (7.5)

This result can be reduced to the form obtained by
the multiple scattering method, if we neglect energy
restrictions on the sum over 6nal states and apply
closure:

Zsllfl (+r ZjT» (r;)+;) I'= (+', I 2 Tb.(r;) I
'+~) (7.6)

=
~

Tb. )'(%,, (P, expLi(k. —kb) r;gi'0', ). (7.7)

In going from (7.6) to (7.7) we have tacitly neglected
the momentum dependence of the operator T~ i"&, i.e.,
the action of this operator on state 0';,

In order to estimate the error involved in the closure
approximation, we return to the original equation (7.5).
If the states +; and +~ are expressed in momentum
space, the matrix element can be written in the form:

(e„+,T,.(r,)e,) = ~T,.~'S(k,+p' —k.—p)
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and the sum 5 takes the form: described by a plane wave of definite momentum:

~f(p ) ~(p Pf); ~'= (pf /2~) (7.19)
S= g P y, *(p")4,(p)4i*(p')4J(p'")b(Er —E;). (7.13)

8 1lf j=l Using (7.15) and (7.5), we find for the transition
probability

The energy difference can be written

Eg E;=—Eb E+—ei e;— (7 14) w,.=(2m) ')I dkg
~
Tg.»~ p "(p'p)

where E&—E, is the change in field energy and e~ —~; is
the change in system energy associated with the transi-
tion of a particle from state j to state f. The energies e; of
the occupied states of the system will usually have a
small spread compared to the possible final energies ~~.

%e shall therefore make the simplification of regarding
e,—e as being independent of j. In this way, the sum 5
can be made to depend on the initia1 momentum dis-
tribution:

5'=s "(p";p)Zrbr*(p"') 4v(p') ~(E~—E.+~a
—~)

(7.15)

t' P
8(p' —p+kp —k.)bi Ep E.+ ——e idp'dp, (7.20)

2M )
a result similar to (7.17), except that the domain of
integration is limited by the energy conservation delta
function.

In order to compare the transition probability for the
system (7.20) with the corresponding probability for a
single scatterer (7.3) we note that the phase space
density has the normalization:

~"(p";p) =2 4 *(p")0 (p). r
u"(p; p)dp=& (7.21)

The one-particle contribution to the closure cross sec-
tion can be obtained by neglecting all energetic restric-
tions i.e., regarding ei —e' as independent of f and ex-
tending the sum to all Anal states including those that
violate conservation of energy:

Z4 *(p'")0 (p') = ~(p'" —p') (716)

If this result is inserted into the preceding equations,
(7.5) takes the form:

wt„——(2n-)
—' '

dkgb(Eg —E~+e' —e)
~
Ti,.»~'

&& p, ,(p; p)8(p'+kg —p —k,)dp'dp. (7.17)

Equation (7.17) is very suggestive of a simple super-
position of the contributions of scatterers of various
momenta:

and that the choice

~*,(p; p) = ~(p) (7.22)

w&,(sys™)= "w&,(p) p;, (P; P)dP

together with &=0 would reduce (7.20) to the corre-
sponding result (7.3) for a single scatterer. To a first
approximation then, the system cross section will be S
times the single scatterer cross section. Actually, this
6rst approximation is an overestimate because the re-
tion of integration over p does not completely cover the
density function p;;(p; p) because of energy momentum
considerations. To determine the extent of this over-
estimate, we must determine the region of integration
over p and compare it to the region in which p,,(p; p)
is important.

By integrating first over p' and kb, (7.20) can be
written approximately in the form:

~~.(p)u"(p; p)dp. (7.18)
[p+k. [

&d
(7.23)

Equations (7.17) and (7.18) are equivalent, however,
only if ~' —e is set equal to a function of k —kb appro-
priate to the single scattering problem.

Equations (7.17) or (7.18), based on the closure ap-
proximation (7.16), in general, overestimate the correct
answer because they include contributions from final
states that are excluded by energy conservation. In
order to indicate when this overestimate is serious we
shall attempt a calculation not based on the closure
sum (7.16). For this purpose, it will be necessary
to make some explicit assumption concerning the final
state pi(p'). The simplest assumption, valid in a large
number of cases, is that the recoil particIe may be

where wb (p) is the transition probability for a single
scatterer of momentum p. The limits of integration are
determined by the energy conservation condition

(p+k.—kb)'
Et, E,+ ——a=0 (7.24)

lp+k. I
~&d (7.25)

after kt, has been allowed to take the extreme values
permitted to it The most. favorable direction for kb is
parallel to p+k, since there the scattered wave is best
able to absorb the incident momentum. The region of
integration is then
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where d is the maximum with respect to kb of the
expression

d = I /2M(E. —Eb+b))l+kbI . . (7.26)

For simplicity, let us assume that the relation between
Eb and k~ is the nonrelativistic relation between total
energy (kinetic+rest) and momentum:

Eb mbc'+ k p/2mb (7.27)

In this case, the value of d is:

d= $2(M+mb)(E. —E,))*'
(7.28)+g= mbC —6,

where Et can be interpreted as the threshold energy for
the reaction.

The region covered by the momentum space density
can be described by the root-mean-square momen-
tum (Ap):

(7.29)

Ke are now in a position to state the condition under
which the one-particle closure contribution (7.18) is a
good approximation to the correct transition proba-
bility. The condition is that the sphere of integration

~
p+k,

~
~&d of radius d about —k, should enclose the

sphere p &~(Ap) near the origin in which the momentum
density p;;(p; p) is important. This condition will be
satisfied if:

(7.30)

The analysis presented here has been applied to the
production of mesons in a collision of a photon with a
nucleus. '4 For this application k, and E, can be in-

terpreted as momentum and energy of the incident
photon; kb and Eb are the momentum and energy of the
produced meson. The scattering system is a nucleus,
and the individual scatterers are nucleons. For positive
meson production the basic reaction is of the form:

photon+ proton = neutron+ meson.

The cross section for photoproduction by a nucleus is
related to the corresponding cross section for a free
proton by a formula essentially the same as (7.23) ex-

cept that only the density in momentum space of the
protons appears.

The significance of the limitation (7.25) is that only
a certain portion of the proton momentum distribution
is energetically capable of interacting with the photon
to produce a meson. Near threshold only protons moving
with momenta nearly opposite to the photon can par-
ticipate in the collision. In this case, a minimum of
energy is used to satisfy momentum restrictions and a
maximum is available for the reaction itself. At high

photon energies there is energy to waste on momentum
requirements, and the photon can interact even with

protons moving away from it. At sufficiently high ener-

gies, the closure condition (7.30) will be fulfilled when
the photon can interact with the major portion of the
protons (the latter are concentrated in a sphere of ap-
proximate radius Ap).

The closure approximation is then rather successful
at high energies. The dynamical reason for this is that at
high energies the binding of the scatterers into a system
is unimportant —the scatterers can be treated as if they
were free. This treatment will be valid when the recoil
momentum that would be acquired by a single scatterer
is large compared to the rms momentum it had before
the collision —a condition described mathematically by
(7.30). Under these circumstances, the wavelength
k/

~

k —kb
~

associated with the momentum transfer
~k, —kb~ will usually be small compared to the scat-
terer separations, and interference eRects from the vari-
ous scatterers can be neglected. These interference terms
have been neglected in our discussion of the one-particle
transitions (7.11).However, the closure approximation
(1.8) includes contributions from all two-particle and
higher order transitions —i.e., it includes interference
effects.

The success of the closure approximation at high
energies can also be explained from the kinematical
point of view. The closure approximation is equivalent
to the multiple scattering viewpoint adopted in this
paper. The chief assumption inherent in this viewpoint
is the adiabatic treatment of the scatterer positions.
The higher the energy of the incident radiation, the
more permissible is it to regard the scatterer motion as
adiabatic.

(k')'= k'+47rnc[f(a~a)), (8.1)

where e is the density of scatterers and f(a& a) is the-
(complex) elastic scattered amplitude in the forward
direction. The index of refraction of the medium is k'/k.

The total radiation, coherent plus incoherent, is

found to obey an integral equation whose inhomogene-

ous term is the coherent radiation. The rate at which

VIII. SUMMARY

After summarizing previous work on the multiple
scattering of light, x-rays, and neutrons, a general theory
of the multiple scattering of waves is developed. Foldy's
procedure for isotropic, elastic scattering is generalized
to include (1) anisotropic scattering, (2) inelastic scat-
tering, (3) scattering of quantized waves, including
photons, (4) creation and absorption of particles as in
cosmic rays, (5) Doppler shift due to motion of the
scatterers, (6) scatterers that are randomly, partially, or
completely ordered.

The problem of the efFective field is avoided (for the
present) by setting the effective field equal to a wave-

length dependent factor c times the coherent field.
The propagation constant in the medium of scatterers
k' is found to be related to its value k when no scatterers
are present by
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the coherent beam attenuates (due to incoherent scat-
tering) is determined by the Born approximation solu-
tion of this integral equation. The corresponding di6'er-
ential cross section for a medium of volume V is the
cross section for a single scatterer

~
f(b& a)—~'dQ multi-

plied by the average number of scatterers (cV), by a
correction

~

c~' for the effective field, and by a correla-
tion correction

Z= 1ye '

exp[i(k, —ki). (r,—ri,)j

-p(r;, r,)
&( --—1 d(r, —r„) (8.2)

where p(r, , ri,)/p' is the probability of finding two
particles at a separation

~
r, —r&~ normalized to unity

at large separations. For wavelengths comparable to
the particle separation, E describes the liquid type
diffraction pattern produced by the short range order
in particle separations. For long wavelengths E reduces
to the Einstein factor measuring the Ructuation in the
number particles in volume V:

(83)

The question of coherence and incoherence is dis-
cussed in detail. A well-known theorem is verified: that
scattered radiation is coherent only if the internal state
of the scattering system is unmodified by the collision.

Another problem considered is the extent to which a
collision with a many particle system can be treated as
a multiple scattering problem. The equivalence between
the two approaches is shown to be based on a closure
approximation. When the closure approximation is
satisfied the scattering can be described completely

using only a knowledge of the initial (but not the final)
state of the scattering system. In fact, only the one- and
two-particle densities of the initial state need be used.

The error involved in the closure approximation is
shown to depend on the momentum distribution in the
initial state and to become negligible at high energies.

There are a number of problems that require further
consideration and a more detailed treatment than was
possible in this paper. The most important of these is an
evaluation of the relation between the "eGective field"
and the coherent 6eld. The solution of this problem is
fundamental to any prediction of an index of refrac-
tion —and its relation to the structure of the system. The
effective field problem is a chestnut that dates back to
Lorentz. Its solution will not be easy. Under the simplest
assumptions, the relation between the effective and
coherent Qelds will be described by an integral equation.
The present paper makes the most elementary contribu-
tion toward the solution of the effective fie}d problem:
it provides a notation that adequately describes the
problem.

A second problem is the transformation of the space
integral equation (6.12) describing the incoherent radia-
tion into an integral equation in phase space of the
form (6.38). Such a transformation will not simplify
materially the problem of solving the incoherent in-
tegral equation —but it places the solution in a form
both customary and easy to visualize.

A third problem is the comparison of our integral
equation (probably in phase space form) with the
corresponding equation obtained from a particle view-
point, the Boltzmann transport equation. Since most
particles should be described by waves in quantum
mechanics, the solution of the third problem provides
an estimate of the error involved in using a particle —Or
classical —viewpoint in transport problems.


