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INTRODUCTION

A N experimental investigation of the interaction of
a plane shock wave in air with a plane rigid wall

reveals that this reQection phenomenon takes at least
the two forms which are illustrated in Fig. 1:(a) regular
reflection in which the original or incident shock is
followed by a reQected shock which joins the incident
shock wave at the wall and (b) Mach reflection in which
the reflected shock meets the incident shock at a triple
point (or line) which is some distance from the wall and
is joined to it by a third shock wave (usually curved)
called the Mach shock. For the case of a shock wave of
any specified (finite) strength, Mach reflection will

always occur if the incidence is suKciently near glancing
and regular reflection will occur if the incidence of the
shock wave on the wall is sufIiciently near head-on.

In an earlier paper' this problem was discussed prin-
cipally from a theoretical viewpoint. A complete mathe-
matical solution to the problem of Mach reflection is
very difFicult because of the nonlinear nature of the
problem and the fact that the location and strengths
of the reQected and Mach shocks which are to be de-
termined by the analysis also specify the boundary
conditions for the Qow. Nevertheless, various assump-
tions can be made which do not aGect the nonlinear
character of the problem but treat the conditions in the
vicinity of the triple point for Mach reflection or, for
regular reflection, the conditions near the intersection
of the incident and reflected shocks. These treatments
are fundamentally local in character and are made in
detail in reference 1.

The problem is essentially a two-dimensional one,
and it is usual to consider the configuration of the inter-
sections of the shock waves with a plane which is
perpendicular to the wall and to the incident shock.
In considering these local problems it is usually con-
venient to choose the origin at the point in question and
reduce it to rest. When this is done, the conditions for
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regular reflection are that the incident shock wave is
stationary in a uniform Qow parallel to the wall and the
reflected shock is stationary and such that the Qow

behind it is parallel to the wall. In this case, the Qow

approaching the incident shock is supersonic and the
Qow between the incident and reflected shocks is super-
sonic, but that behind the reflected shock may be either
supersonic or subsonic, depending on how nearly the
incidence is head-on and how strong the incident shock
wave is. In the case that this Qow is supersonic the
reflected shock is straight and of uniform strength at
least in the neighborhood of the origin, since small
signals originating at the corner or along the wall
between the corner and the origin propagate with sound
velocity relative to the gas; hence, they are unable
to reach the origin. The region between the origin and
the first signal is one of uniform conditions and, of
course, grows as the corner recedes. These signals from
the corner propagate in all directions in the gas and
reach the reflected shock somewhere along its length.
In the region where these signals reach the reflected
shock, it is curved. When the Qow behind the reflected
shock is subsonic, these signals affect the whole length
of the reflected shock and it is curved over its whole
length. A similarity might be pointed out between these
two cases for the reQected shock and those for a nose
shock attached to a finite wedge, where the shoulder of
the wedge serves as the source of signals which render
the nose shock curved.

The application of the uniformity condition and the
above boundary conditions for the shock configuration
leads to a double-valued function which expresses the
location of the reflected shock as a function of the loca-
tion of the incident shock for a given shock strength.
One branch of this function agrees with experiments as
indicated in reference 1.

It is shown further in reference i that for any shock
strength there exists a range of angles of incidence
where no reflected shock can be introduced which will

make the Qow behind it parallel to the wall. This range
includes glancing incidence. Thus, the theory and ex-
periment agree qualitatively in indicating that at least
two types of reflection process occur.

A theoretical treatment of Mach reQection is more
difIicult, since there is an added variable quantity in the
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(b)

Fro. 1.Diagram of the resultant interaction when a plane shock wave (traveling to the right in these diagrams)
strikes an inclined wall, 8'. The point of first impact, C, is usually called the corner of the wall. (a) Regular re-
flection in which the incident shock I and the reflected shock R meet at the wall. (b) Mach reflection in which
the incident shock I and the reflected shock R meet at the triple point T which is joined to the wall by the Mach
shock M. The angles a, co, and x are defined according to these diagrams.

distance of the triple point from the wall. One point of
attack originates with a dimensional argument which
indicates that, when viscosity and heat conductivity
are neglected, there is no intrinsic length in the problem
(differential equations, shock conditions, and boundary
conditions) and the problem may be stated in terms of
the independent variables x/t, y/t alone instead of
x, y, t. In this notation x and y are rectilinear coordinates
in space and t is the time measured from the instant the
incident shock wave struck the corner.

On this basis, the triple point travels along a straight
line through the corner and the shock configuration
grows with the corner (or the triple point) as a center of
similitude. Using this as a basis, Fig. j. shows the con-
6guration with a convenient notation for the angles.
The angle o. is that between the incident shock wave
and the wall, and y is the angle which the (straight)
path of the triple point makes with the wall. The angle
& is between the incident shock. and the path of the
triple point, and the angles locating the other shock
waves are measured from this line. The triple point
moves along its path much as the intersection of the
incident and reQected shocks moves along the wall in
regular reQection, but the conditions on the Qow behind
the reQected shock do not constrain its direction as in
the case of regular reQection.

When, as in the treatment of regular reQection, a
coordinate system is chosen in which the triple point is
at rest, the angle between the incident shock and the
Qow impinging on it is ~. The conditions behind the
reQected shock are now affected by the presence of the
Mach shock; and the reQected and Mach shocks are, in
general, curved. If the curvature of these shocks is
6nite, consideration of a small enough region in the
neighborhood of the triple point should permit them to
be treated as straight segments; and the con6guration
involved is that of Fig. 2. The regions 1, 2, 3, and 4 of
this figure are all considered to be uniform; a more

general problem involves consideration of angular
phenomena centered at the triple point. The conditions
on the location and strength of the reQected and Mach
shocks is that the pressure be the same in regions 3 and
4 and that the Qow velocities in these regions be parallel.
On the basis of these assumptions, the location and
strength of the reQected and Mach shocks may be cal-
culated as a function of the angle co and the strength
of the incident shock.

The analysis' indicates that for any specified initial
shock strength there is a range of values of ~ near 90'
where no three shock con6guration with three non-zero
shocks can satisfy the conditions stipulated above. For
each value of co within this range there is a solution in
which the reQected shock is in6nitesimal and the inci-
dent and Mach shocks lie along the same line. This
solution of the three-shock conditions has been called a
"trivial" three-shock solution' because there is in
reality only one shock present. In the case of the Mach
reQection of a shock at a wall, this in6nitesimal reQected
shock may be considered to be a sound signal originating
at the corner of the wall and traveling with sonic velocity
relative to the Qow behind the incident shock; thus, the
particular value of co for this condition may be cal-
culated.

As explained in reference I, the measurements of
angles in Mach and regular reQection by Smith' and
others show agreement for the case of regular reQection;
but in the case of Mach reQection, especially for weak
shocks, there are measured values of co which lie well
within the forbidden range mentioned above. This is
not a case of experimental inaccuracy, since the incident
shock is straight and its angle with the wall is easily
measured, and the angle x can be determined accurately
as well. The experimental justi6cation for assuming that
the similitude property holds is also apparently quite

~ L. G. Smith, "Photographic investigations of the refIection of
plane shocks in air, "OSRD No. 6271 {'1945).
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firm, Theoretical and experimental investigations indi-
cate that no reasonably placed angular variations of
the Prandtl-Meyer type can resolve this discrepancy.

The mathematical problem in the case of nearly
glancing incidence may be simplified by linearizing
both the diGerentia1. equation and the boundary condi-
tion. This procedure involves assuming a zero-order
solution and determining a first-order one in terms of it.
The only zero-order solution which can be used is a
trivial one in which the reQected wave is assumed to be a
sound signal and hence of zero strength. In the following
we will discuss three diGerent treatments of this prob-
lem made by three diferent workers, and their results
will be compared with experiment.

PSEUDO-STATIONARY FLOW

dS/dt= 0, (3)

where summation over the index i is implied by its
repetition in a term. The symbols 8, p, p represent,
respectively, the specific entropy, pressure, and density
in the gas; the x' are the coordinates in any convenient
cartesian system and the I' are the components of
the velocity field in the fluid. The derivative d/dt is
the material derivative which indicates the variation
on following a particle of the Quid. %hen suitable condi-
tions are prescribed at the boundaries of a region, these
equations may, in principle, be solved to give a complete
description of the properties of the Quid within this
region. The boundaries involved may be walls or similar
physical elements and they may include shock waves or .

other discontinuity surfaces. The conditions at the
boundaries may be given by'the Rankine-Hugoniot
equations which relate the properties across a shock
wave, or they may specify that the normal component
of the diGerence of the velocities of the gas and the wall
be zero at the wall.

A simplification may be achieved for those problems
where the boundaries are given by relations of the form

x"=tf( )'(s', s'),
'

where the subscript (k) indicates the boundary in ques-
tion and the parameters s', s' describe the surface when
t=1. The substitution a'=x'/t leads to the following
form of the differential operators in Eqs. (1) to (3):

dg/dt = (1/t) (u' —a') g„=U*g„/t, (5).
Bg/Bx'= g„/t, . (6)

V. Bargmann and D. Montgomery, "Prandtl-Meyer zones in
Mach reaction, " OSRD No. 5011. See also reference 2.

The motion of a gas when the sects of viscosity and
heat conduction may be neglected is described by the
following set of differential equations:

I

(dp/dt)+ pBu~/Bx'= 0,

pdu'/dt = —BP/Bx' (2)

I'io. 2. Diagram of the idealized conditions in the vicinity of
the triple point in Mach refiection. The three shock waves I, R,
and M are considered to be straight (planar). Under these condi-
tions the gas in region 3 (behind both I and R) is at the same
pressure as that in region 4 (behind M), but their densities and
velocities differ. This gives rise to the slipstream S shown with the
shorter dashes. The other dashed line is the path of the triple
point shown in Fig. 1(b).

U'p, ~+pU„'+2p=0,
pU'+ pU'U, j=—p„.,

U'5 =0

(&)

(8)

(9)

and the boundaries take the form a'= fis&'(s' s'). A flow
which meets these requirements may be called pseudo-
stationary, since the time does not appear explicitly in
the formulation.

An investigation of the conditions at the boundaries
will be made only for the case that all the Qow vectors
are parallel to a plane and that an analysis of conditions
in this plane describe the whole field. This type of two-
dimensional Qow is of importance in the Mach reQection
problem, and a similar investigation of the conditions
for other types of Qow may be made. This restriction
makes only a few changes in the relations written above;
the range of the indexi is nowi=1, 2, and there is only
one parameter s in the relations which specify the
boundaries, .

Consider 6rst the case that the boundary is a shock
wave; the Rankine-Hugoniot equations concern local
conditions at each point of the shock and involve the
orientation of the shock front, the components of the
velocity of the Quid relative to the shock, and the pres-
sure on the two sides of the shock. Let X&s&'(s) be the

where g(x'/t, x'/t, x'/t) is any function into which the
coordinates and time enter in the manner indicated and
the derivative Bg/Ba' has been written g„.The symbol
U' is defined in Eq. (5).

When this substitution is introduced into Eqs. (1)
to (3), the differential equations become
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M.
AP.

a'= 0.
u'= 0(u'+D) .

(23)

(24)

I' T: u = o'~+Sf(n(u ); (25)

TCB: u'= L1+(&f(~&(0)j cosg, (26)

u'= L1+(&f(,I(0)$ sing. (27)

Inside region C the properties of the Qow will be only
slightly di8erent from those in region 8 for sufFiciently
small b. The components of the velocity field in region C
are of the order of 8, and the pressure and density in
this region may be given by

p = (1+~p)/v,

t&
= (1+t(.t&),

(28)

(29)

where Ap and d p are of the order 0.
The differential Eqs. (7), (8), and (9) may be linear-

ized by neglecting orders of 6 higher than the first and
assuming that the derivatives of small quantities are
small; the result is

The relation defining the wall AP is of the form,

x'= 0(x'+Dt); x» Dt—, (21)

where 8 is the tangent of the angle q . The undisturbed
incident shock is given by the relation x' = o-,t and the
perturbed portion TP by a relation of the form,

x =tt o~+l&f((&(x /t)j& (22)

which reduces to that above when 8 =0. The curve BCT
would be a circular arc of unit radius if the perturbation
were infinitesimal, since it would then be the locus of a
sound signal generated in the gas of region 8 by the
corner and spreading with center 0. In the approxima-
tion involved here this curve may be given in polar
coordinates by r= [1+(&f(~&(0)]t. These boundaries are
all of the form required for the pseudo-statioriary formu-
lation to apply.

In pseudo-stationary form the boundaries may be
written

since terms in powers of 8 higher than the erst are to be
neglected. Hence, the boundary conditions are to hold
on the zeroth order boundaries of region C which are
indicated in Fig. 3 as B'A, AQ, QT', and T'C'B'.

The boundary conditions along the wall may be
written down on reference to Eq. (16):

Aloeg the mal/ 8'A:

U2 0 N2 +2 N2 (35)

Along the mall AQ: the components of the normal
vector are

) )

U9, '= 0= —I&(u' —u')+ (u' —u'),

I'= ba.

(36)

Ap =yu'u '=0 (37)

except at the corner where I,~' is not defined. Hy in-
troducing the limiting process,

—D+ )l

lim
a2-+0 ~ g)

Ap, 2du'

yD)e'( —D+») u—'( D —g) $=——y—gD2,

we may represent the quantity Ap, 2 by a delta-function

hp, 2
———0D'yLdelta-function of (—D—u')]. (38)

Alo&tg the reft ected shock TCB:

p = —slug+ bf(2& (()) cosg,

tj,
' =cosg+ gf(2&'(()) sing,

where the prime denotes differentiation with respect to
the argument indicated. The requirement that U~'p'
= Ug'p' gives

The condition on the derivatives of the pressure along
the wall may be determined from those from the ve-
locity by using the equation of motion Eq. (31).

N)q c Ap)~ —0) (30) —u' sing+u' cos0=0, (39)

u(u„'=t& p„/y,
a'5 =0

(31)

(32)

The boundaries of region C have been given in the
form,

u"=u '+Su ' (33)

where the dependence on 6 is shown explicitly and ao'
and a~' depend on a suitable parameter. All of the prop-
erties which characterize the Qow in regions A and 8
are constants, whereas at the boundaries in region C
they may be written in the form,

&P(u') = &t'o+06(u') (34)

where &Po is a constant. Now, we have &P((u') =$1(uo ),

since I,' and I' are first order in 8. This must hold along
the part T'C'8' of the unit circle. Application of the
other Rankine-Hugoniot equations to this boundary
gives

~p= (4v/L7+1 j)f(2&t'&= v~t&, (40)

u' cosg+u' sing = (4/[7+1j)f(~&0 =uo'u'+urdu'. (41)

Along the Mach shock TP: u'=o, +(&f(n(u') and the
quantities U~'= D o, f(0 and U&'—= ——u' —take
the forms indicated. The quantity a-g defined as in

Eq. (13) may be calculated in terms of o, using the re-
sults of Eqs. (17), (18), (19), and (20). The application
of Eqs. (11), (12), (14), and (15) leads to the following
relations which must hold along the zeroth order
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boundary QT':

~p = (4v~./[v+1]) [f&»—ii'f&»']~~

4[2vo P —(v —1)]~a=, [fi» —&'f&u']~
(v+ 1)~.[(v—1)~.'+2]

(42)

(43)

Oe T'Q.'

~=(4-./[v+1])(f(u-~fi ) ), (42)

(3v—1)~'—(v —3)
Q)g ——— (f(u —&'fo)') (44')

v+1- (v —1)~.'+2

(45')D (
(3v —1)~.'—(v —3) —C

1 v —10' 2 Since Q= Q—a'Q Eqs. 40' and 41' may be combined
to determine that along B'C'T'

B'= —D8fiu '.

BARGMAN¹S SOLUTION and

f&» (v+——1)Q/4

(52)

(53)
In 1945, U. Bargmann4 reported a solution of this

linearized problem for the case of weak incident shocks.
It was assumed that regions 8 and C of Fig. 3 were uni-
formly of the same entropy. This approximation is
valid when the reQected signal is weak and the curvature
of the Mach shock is slight.

When this assumption of isentropy is made, Eq. (32)
may be replaced by

hp= vip (46)

and Ap and 0 p may be eliminated from Eqs. (30), (31),
and (46) to give the single relation

I,s' —8 Q 7Q) g' =0)

The quantity (fi—a'fi') may be eliminated between
Eqs. (42') and (44'), and a' may be set equal to 0, along
T'Q to give

(v —1)~/+2
(54)

(3v —1)~.'—(v —3)
or

2(v —1)0,+(v—3)-
=Q, i(0,—1) 1+(1—0,) ; (55)

(3v —1)~.'—(v —3)

for values of 0.. near 1 the boundary condition along
T'Q may be written

(56)

2(0. '—1)
Q —u2Q, =D 1+ (f( i

—a2f(u'), (57)
(v —1)0,2+2

which must be satisfied by the components u'. A velocity
potential may be introduced according to the relation,

I'= —80 (48) To determine fi, Eqs. (44'), (55), and (17) are combined
to give

where the approximation parameter 6 has been intro-
duced explicitly. An integration of the momentum
equations (31) leads to the relation,

~p= v~(Q a' Q„)=v~~—
5p= 5Q) (50)

while 0 satisfies the second-order differential equation,

0 "—a'a~0 =0 (51)

The boundary conditions on 0 and its derivatives
along the zeroth-order boundaries may be written down

by referring to Eqs. (35) to (45):
A/0rsg 8'A:

Oe AQ:

Om 8'O'T':

Q, g=0. (35')

(36')

BQ/80=0 or Q=const,

Q = (4/[v+1])fi»,
rBQ/Br = (—4/[v+1])f(».

(39')

(40')

(41')

4 V. Bargmann, "On nearly glancing reflection of shocks, "AMP
Report 108.2R NDRC (1945).

from which

fo&(&')=Q(0 ~
~')/D (58)

k'= a'/(1+ s), (59)

where (s)'= 1—u'a', which transforms it into the Laplace
equation in these variables. It can be shown that the
Q„and0 are harmonic in these variables. The solution
of the laplace equation may then be obtained by a con-
formal mapping procedure.

A further condition on the types of solution allowed
is that the total kinetic energy in region C be of 6rst or
higher order in 8. This condition is given by requiring
that fJc(Q„'+Q,2')da'da' is finite.

A summary of Sargmann's results for an incident
shock of strength 0, is as follows:

&'=&*/l D=2(1—~.')/(v+1)~. ; ps= 1/v; pa=1;
»,.; p= p.(1+v~~—), ~=~.(1+~~);

Q=Q —g'Q =Q rBQ/Br. —

for sufficiently weak incident shocks.
The diGerential equation may be solved subject to

these boundary conditions by introducing the variables
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The reQected shock is given by

r=1+&f(2&(e)~

f2= —~(y+1)BQ/Br (r= 1).

The velocity potential now includes a second-order
term which may be evaluated using the 6rst-order solu-
tion above. The result of this procedure is that

The Mach shock is given by

a'= &I+&f&»(a') ~

f&
——Q(u„a')/D,

11=(D/~) (f«& —mf(-b&)&

a= (D/n-)[ —(m —1)(s/[1—a'j)
—(D/L)E«& —(mEIM) J'(-b& j~

Q, &= (D/~)[ —(m —1)(s/[1—a'j)

+(1/L)F«& —(m/M)F~ b& j,
0,2 ——(D/~) (G«& —mG( b&),

L'= (1—D'), M'= (1—E'),

E= [(1+o,')D+ 2o,h/[1+ o,'+ 2u, D3,

d=D/(1+L), b=E/(1+M),

m = (1+D)(1+E)/(1—D) (1—E),

s 1 cs )

1 (1+Da') sL—
P(g) — ln

2 (1+Du')+sL

(D+a')s s
6(~) ———tan —' —tan '—,

(1+Da')a' a'

1 (1 Ea') sM— —
F( y) =. —ln

2 (1—Ea')+sM

(E a' )s s—
Q( g)=tan ' — ——tan ~—,

(1—Ea') a' a'

f& &
= s [(u'+D)/L—)E«&+a'G«&

f(-b& = s —L(a' —E)/M3E~-b&+a'G&-b&.

A further interesting point is that a second ap-
proximation may be readily carried out in the
neighborhood of the rejected wave. This is done by
developing the exprt:ssions for F(d) and G(@ above
as a power series in s. The result for f«& becomes
f«&=(1+D)s'/3(1 —a')(1+Du'), and 0 becomes (in
the neighborhood of r= 1, s=0)

D 2(D+o,)(1+Do.) 0.,—a' S0=—
1+o '+2Do. (1—a')(1+Du')(1 —Ea') 3

D s' D D
0=—h(a') —, 0„=—sa'h(a'), Q =—sA(a').3'

which indicates that the reQected shock is actually of
variable strength, although even in this approximation
the strength is zero for a'= a.„atthe triple point.

Contours of constant Q, and hence coristant density,
may be drawn for various incident shock strengths.
These contours are confined to the zeroth-order region,
and some modification must be made to correspond with
experiment where the observed region of variable den-
sity has the actual boundaries of Fig. 3. In a later sec-
tion of this paper a correction will be made to permit
more realistic comparison with experiment.

Figure 4 is an example of the contours resulting from
this computation. In this case the shock strength is
p»'. pg = 1.25; o,=0.910.

LIGHTHILL'S METHOD

I,ighthill' has attacked a similar problem, but his
treatment is sufficiently diferent to warrant summariz-
ing here; the details are readily available in his original
paper. The specific problem discussed is the diffraction
of a shock wave at a convex corner; however, so far as an
approximation including only first-order terms in the
angle is concerned, this should give results comparable
to those of Bargmann if the sign of the angle of the wall
is taken into account. The reAected wave is not treated
as a shock, and the boundary condition used is that the
pressure be continuous at the boundary between the
regions 8 and C of Fig. 3. In other words it is assumed
that the "trivial" three-shock solution holds in the
neighborhood of the triple point.

Lighthill has been able to avoid the assumption of
isentropy in region C by choosing the pressure as the
dependent variable to be isolated. This permits the
relaxation of the restriction that the incident shock wave
be weak. For sufficiently strong incident shocks, the
Bow in region 8 may be supersonic relative to the wall;
i.e., in the coordinate system of Fig. 3 the wall may
move to the left with a velocity which is greater than
that of sound in region 8. This results in the possibility
of an attached shock wave at the corner and the situa-
tion becomes that of Fig. 5 in which the coordinate
system is chosen in the same manner as that in Fig. 3.

Figure 5 illustrates a diffraction at a convex angle
which gives, for the purposes of this treatment, a nega-
ti've value of the angle y and its tangent which has been
called 8. The circular. arc BCT is the locus of a sound
signal which originated at the corner and is propagating
into region 8 with the speed of sound.

~ M. J. Lighthill, Proc. Roy. Soc. (London) A198, 454—470
(j.949).
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that D&1 corresponds to the discontinuous boundary
condition that arises at the corner A when it falls within
the unit circle (see Fig. 3). The location of the point
C is a'= —1/D.

Along BOQ:
d,p,s=0, (66)

A/omg TQ: Equations (42) and (44) may be combined
to give

~P=2v-. 'L(v-1)-.'+27/L(3v —1)-.'-(v-3)7 (67)

I I I I I I

"l.o -0.8 - 0.6 -0.4 -0.2
~

0 0.2
C

I I

0.4 0.6
a l

0.8 l.O

0.9l

FIG. 4. Results of Bargmann's calculation of the density field.
The contours are those of constant density (or pressure). The
numbers associated with the contours are the values of the quan-
tity np/8 or np/v5 in the units used for this treatment. The inci-
dent shock has a pressure ratio Pg. pg=1.25:1, 0.,=0.91.

The linearized pseudo-stationary treatment may be
used, and the thermodynamic property that the density
is a function of the pressure and entropy alone is used to
relate the pressure and density:

and

= (ci /rip). P .+(rl /~~)P~' (60)

va'6 p„=a'Ap„. (62)

Equations (30), (31), and (62) may be combined to
eliminate hp and n,' to give the single relation which AP
must satisfy:

Ap„,=2a'Ap„+a'a&'hp„,. (63)

This equation is identical with that for Q which would
be derived from Eq. (51) and the relation (49) between
0 and Q.

The equation for dp is elliptic within the region
BCTQB, and it is at the boundaries of this region that
the conditions on Ap or its derivatives must be supplied.
These boundary conditions may be written down by
referring to Eqs. (35) to (45).

The region ABC has a pressure which is attained by
the gas passing through the linearized Prandtl-Meyer
wave and is a region of uniform Row; hence, the pressure
along the arc BC of the unit circle is given by

6p = v oD'(D' 1)—& for D) 1. —(64)

The pressure along the arc CT is given by

AP=O.

This discontinuity in pressure at point C for the case

a'p„=(1/c')a'p„+(Bp/ciS)a'S„; (61)

but this last term vanishes according to Eq. (32), and
the c' above may be replaced by c&'=1, since the
term it multiplies is already first order in 8. YVhen

Eq. (61) is applied to region C, it becomes

AP, s
——L4vo, /(v+1)D7a'u, ss

from Eqs. (42) and (45) by differentiation with respect
to a'.

These may be combined with Eqs. (30) and (31) to
give the relation,

o.[o,hp, r+a'Ap, s7

(3v—1)a.'—(v —3)
=Ap, r- a'Ap, s

2 .L(v —1)..'+27

(v+1)D+, ~p s (69)

by differentiating Eq. (67) with respect to a and elimi-
nating u, &' and u, ss from Eq. (30). This single relation
between the derivatives of Ap along TQ may be supple-
mented by an integral relation by observing that at T,
z'=0 and at Q, I'= 8D, according to Eq. (36).Equation
(68) may be integrated from the wall to above T to give
the relation,

(F T

P(v+1)D/4vo, a'7/ip sda'= e ssda'= oD (70)—
Q

hence,

L(v+ 1)/4v .7 &(&p)/a'= —~. (71)'J.,
„

Lighthill then used the transformation used by Barg-
mann )Eq. (59)7 to convert Eq. (63) to the laplace
equation, which was then solved by a conformal trans-
formation procedure. The results are available in Light-
hill's paper referred to above.

Lighthill has calculated the pressure on the wall
and the shape of the Mach shock. One point of special
interest is that the ratio of the curvature of the Mach
shock to 8 has a maximum near the triple point, and this
maximum approaches the triple point and becomes
larger in magnitude as the strength of the incident
shock increases. This indicates a region of rapidly
changing entropy along the boundary of region C. The
pressure along the wall is compared with experiment in
the section on experimental results.

An addition could be made to this treatment which
permits the calculation of the density to the first order.
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The relation between the density and pressure incre-
ments for two points which have the same entropy is
given by

Ap —yAp= const. (72) Region B Region A

The constant may be evaluated by determining the
place at the shock which has the same entropy as at the
point in question. After unit time the point on the shock
which has the same entropy as the particle located at
(a', a') within the body of the fluid has the coordinates
(o „a'o../a'), since the shock configuration grows about
the origin and to the zeroth order the Quid does not
move. The density thus becomes

yAp(a', a') = t],p(a', a')

(1—a') h —1) ( ua, i
Ap) a„).(73)

aPL(y —1)a/+2 j ( a' )
The treatment Bargmann has used, which includes the
assumption of isentropy in region C, requires that the
contours of uniform density (isopycnals) and uniform
pressure (isobars) which pass through any point must
coincide along their whole length. According to Eq.
(73) this not the case in the triangular region with
vertices at OTQ.

THE METHOD OF TING AND LUDLOFF

Ting and LudloB' have outlined a treatment which
they have applied to the Mach reQection problem, but
which they extended to treat the result when any thin
airfoil is struck by a shock wave. The note referred to
above is very brief and the discussion below is our own
interpretation of the reasoning used.

The method used involves linearizing the differential
equations for the Row including the time as an inde-
pendent variable. If one employs the symbols and
notation previously used and adds a subscript t to indi-
cate

differentiation

with respect to the time, the
linearized equations become

hp, i = —yu„',

Ap„=—yu, i',

when Ap has been eliminated according to the relation,

Ap, i= yt] p, i (76)

The equation for Ap may be obtained by eliminating
the derivatives of the I' from these equations; this
results in the wave equation as usual in acoustic theory.
The boundary conditions are complicated by the fact
that the incident shock is a boundary which is moving
with velocity o., (in the coordinate system of Figs. 3
and 5). This moving boundary may be reduced to rest
at the origin if the independent variables are subjected

FIG. 5. The interaction of a strong incident shock I with a con-
cave corner (nearly glancing incidence). The regions are similar
to those of Fig. 3. The dashed curves are part of the zero-order
boundary for Lighthill's calculation.

to a Lorentz transformation:

Lx'7 = (x'—a,t)/(1 —o.,')-'*,

x' =x',

Ltj=(t-*".)/(1 —.')-:,
(77)

since the units have been chosen to make the velocity
of sound unity. The wave equation, of course, is in-
variant under a Lorentz transformation; hence, the
equation to be solved is

App [ii] +p) [tt]l

where the brackets enclosing the subscripts indicate
that the transformed variables are meant.

In the coordinate system of Fig. 3, the airfoil surface
is given by the equation,

x'= f(x'+Dt),

and after the Lorentz transformation this becomes

(79)

f(x'+Dt) =
(x'+ Dt) 5 x') —Dt

0 x'& —Dt
(81)

The condition that the Qow follow the airfoil surface
may be written

u'= Df'(x'+Dt),
(82)

N,p =D'f"(x'+Dt),

from Eq. (75). The condition on the derivative of the
pressure is thus

1+Do, D+ o, .L"j=f,(L"j+LDhl tj), LD1= (»)
l (1—a 2)-'* 1+Da,

In the case of interaction with a wedge, one obtains

' L. Ting and H. F. Ludlof[, J. Aeronaut. Sci. 18, 143 (l95l). Sp, ,= qD'f" (x'+Dt). —(83)
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In the case of the infinite wedge of angle q, this condi-
tion may be written (see Eq. (38))

Ap, 2
———"vyD' [delta-function of (x'+Dt)]. (84)

When this condition is applied to an airfoil, care must
be taken to include a delta-function with suitable multi-
plier at each point that the f' defined above has a dis-
continuity.

The conditions at the shock wave which are expressed
in Eqs. (42) to (45) for the pseudo-stationary case may
be written in the form,

and the derivative a/av is the derivative along the co-
normal to the surface. The volume V is chosen as a
right circular Mach cone with its vertex at the point
[x']=j, [x']= )1, [t]= ~, at which DP is to be evaluated
and having a base at [t]=—2", T)0, from which cer-
tain sections are excluded. In particular, an infinitesimal
cylinder surrounding the axis is excluded, as is an
infinitesimal section surrounding the portion of the
[x']=0 plane which is inside the cone. The function v

is chosen to be

( —[t])+I ( —Lt])'—(4—Lx'])'—(v —fx'])'I '
v= ln—

(86) (9&)

(87)

which must hold at x'=o-, t. By applying the Lorentz
transformation and eliminating carefully by diGerentia-
tion with respect to [x'] and [t], one may obtain the
following condition:

Dfb&) ~p=~p~(»1+2(rat)p~li&l

+(&/~i')~p («1 =0, (88)
where

~i'= f(~—&)~ '+2]/[27 ~'—(7—&)].

This may be written

a a a a
— It), =o, (88')

&afx'] aft]2 4afx'] aft])

a = ~,+ (o.,'—1/3f )2)l,

b= o,—(o,' I/AERY)', . —
which must hold at [x']=0; and D(i, &1(') represents the
second-order differential operator which is defined by
Eq. (88). This equation is equivalent to the conditions
Eqs. (85—87) in view of the equations of motion
Eqs. (74—75).

The solution of the wave equation is carried out by a
modihcation of Volterra's method which has been used,
by several workers in aerodynamics. ' ' This method is
based on applying a form of Green's theorem in the
following way:

(vQAP —Ap v)d V

" fv(amp/av) —Apav/av]dS, (89)

where the symbol represents the operator

(a2/a [xi]2)+(a2/a [x~]2) a2/a[t]2 (90)
~ C. S. Gardner and H. F. Ludloff, J. Aeronaut. Sci. 17, 47—59

(&95O).
I. E. Garrick and S. I. Rubinow, NACA Technical Note No. .

j.383 (1947).

t)p, (1(L*]-o-)= -~p, ( )(f*']-0.) (92)

This corresponds to a layer of "single sources" on
[x2]=o.

The region of physical interest (regions 8 and C of
Fig. 3) now are delimited by the conditions that
)~&0; )1, v ~&0. By considering the portion of the right
circular cone with fx'](0 and the base given above and
applying Eq. (89), one can easily see that

vip, (&1
=Apv, (21 (fx']~0-), (93)

since Dp and its derivatives are zero on the base which
represents conditions at a time before the shock struck
the wedge.

This information along with the postulate Eq. (92)
permits evaluation over the part of the cone with
fx'])0. Since both v and hp are solutions of the wave
equation, the left-hand side of Eq. (89) vanishes. The
integral over the lateral surface of the cone and its
base are zero, since on the former v and av/av are zero,
whereas over the latter tIip and its derivative are zero.
The limit of the surface integral over the in6nitesimal
cylinder is

(94)

and the integral over the surface near [x']=0 is given by

v([*i],O, ft])~p, (21(fxi], O, ft])dfx ]d[t]; (95)
H

which satisfies the equation v=0 within the cone and
v=0 on its surface. Since n is a constant on the surface
of the cone, av/av is zero there because the co-normal
is parallel to the surface. The function v is singular
along the axis of the cone. The quantity hp satisfies the
equation Dp=o everywhere except at the plane
fx']=0. It is further postulated that hp is singular at
this plane by the circumstance that its normal deriva-
tive at fx']=0 is discontinuous:
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thus one obtains

~p(& ~ Et])dLt]

~p, ~,~([x'],0, [t])

The right-hand side of Eq. (101) is a known function
of ['x'] and [t] determined by Eq. (83) and D~i&&&". The
solution of Eq. (101) is

~p, i i(E"],0, Lt])

=~(!t]—a[x'])+~([t]—b[x'])

(r—[t])+{(r—[t])'—(P—Ex'])'—n'f l
Xln— (96)

E(~-E"])'-~']~

1+Do,+~f",(I D]Lt]—L"]), (102)
(1—o 2)'

The area of integration is the hyberbola in the Ex']=0
plane, which is the intersection of the plane [x']=0
with the cone. If this equation is differentiated with
respect to v, taking into account that this variation in
r varies the hyperbola as well, it follows that

where F and G are arbitrary functions of their arguments
and the quantities o and b are defined in Eq. (88'). These
functions are evaluated by the requirement that
Ap, ~g~ and Ap, ~2i~ be continuous across the line [x']=0
in the plane [x']=0. This was assumed in deriving
Eq. (98). It may be verified that

1 t' t' Ap,„,([*'],0, [t])d[*']d[t]
~p($ n r)=—,(97)» E( -Lt])'—(&-Ex'])'-~'1-:

M '+2o,M '[D]+ED]'

Mi2 —2o,M,'[D]+ I
D]'

&(ED]b—1)—(ED]b+ 1)

ED](~—b)

This gives the basis of the method, but it takes no
account of the conditions along the Mach shock which
are conditions on hp at )=0. Ting and Ludloff translate
these into conditions on AP, ~2~ in the plane [x ]=0. It
may be readily shown that D+o,&&X",(Et]—o[x'])

(1—o')'t' ~p [»u([x'] 0 Et])d[x']d[t]
~ptt= ——~,(98)

7r & ~rr [(r—[t])'—(&
—[x'])'- rt']l f~(1—ED]~)+(1+ED]~)

G([t]-b['])=
ED](a-b)by performing the differentiation of the integral, taking

into account the dependence of the limits of integration
on $ and noticing that D+o,Xf' —,(Lt]—b[x']) .

(1—o.')'
(&/&t)L( —Et])'-(l-L"])'-~']-:

= —(8/8[ '])[( —[t])'—(t—[*'])'—']—l. (99) In the case that the obstacle is an infinite wedge and
f(x+Dt) is given by Eq. (81), the results for hp(x, y, t)
may be written

Integration by parts then gives the results of Eq. (98).
' Similar relations hold for hp, t, and Dp„,. The shock

condition then is (t+ n, x')
hp(x', x' t)= Q A; cos '

(n, t+ x')' —(nP —1)(x')'Dg, &'&b,p(0, rt, 7)

1 t' Duhio
' ~P, ~2~([x'], 0, [t])d[x']d[t]

(100) if D&1, or in the event that D&1
I(.—Lt])'—E"]'—~'}'

According to the conditions of the problem,
b p, ~2~([x'], 0, [t]) is defined only for Ex']&0, i.e., be-
hind the incident shock. It is possible to define this
quantity for positive values of [x'] in such a manner
that the shock condition is automatically satisfied.
This is accomplished by requiring that

fD]'i"~p, [ i(E2]x, o, Et])
= —Dt i'"i~ip, ~n( —Lx'], o, I:t]); Lx']&o (1o1)

If Ap, t~~([x'], 0, Et]) satisfies Eq. (101), then the d,p
calculated according to Eq. (97) will satisfy the condi-
tion given by Eq. (88) and hence the conditions
Eqs. (85—87).

t+ n, x'
hp(x', x', t) = Q A t' cosh '—

(n, t+x')' —(n '—1)(x')'

4

+P A, cos '
t+ n, x'

(n, t+ x')' —(n, —1)(x')'

where

Al= yD'8/7r(D' 1)'*, A,=BA„—

ft(ED]b —1)—(ED]b+1)
A 3= —(rbD2)

[D](o—b)
(1—o.')'

X
m (D+ o,) (1 a')'—
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FIG. 6. Results of the calculation of the density field according
to Ting and I udloff. The solid lines are contours of constant den-
sity, the dashed lines indicate where the contours of constant
pressure diBer from the isopycnals. The numbers associated with
the contours are np/S for the isopycnals and ap/yS for the isobars
in the units used for this treatment. The incident shock has a
pressure ratio p~. p~=7.33:1 0.,=0.51.

B(1—
t Dja)+ (1+LD)a)

2,= —(~bD')
I:K(a—b)

(1—o.,s)'*

X—
~(D+o )(1—b')l

yhD'/ (1 D—') *, A '= B—A '

~,=D, ~,= —L2o.yD(1+a, ')]/t2Do, +(1+o, )),
ns ———(1+o.,a)/La+ o,$, cr4= —(1+o,b)/Lb+ o.].

The pressure in the region ABC of Fig. 5 is uniform
and has the value given by

~p= ~&D'(D' —1)—:.

The density may be calculated by a scheme similar
to that of Eq. (73):

yA p(x', x', t) = Ap(x', xs, t)

(1—.')(v —1)
~p~ *i, ~s, —~.

o,st (p —1)a,s+2j E o,)

Figure 6 is a plot of the contours which result when
the above calculation is carried out. The shock strength
in this case is given by pz. pz ——7.33:1.The solid lines
represent contours of constant density; and in the
region where the isopycnals and the isobars do not
coincide, the latter are indicated by dashed lines.

EXPEMMENTAL RESULTS

A program of experimental work has been under-
taken to investigate how closely these approximate
treatments represent the actual interaction of a shock
wave with a finite corner. This experimental program
includes 'making quantitative measurements of the
density field resulting from such interactions. Pre-

liminary investigations' ' had already shown a qualita-
tive resemblance to Bargmann's contours (Fig. 4).

Plane shock waves wrere generated in a shock tube'
and made to pass over both convex and concave corners.
The resultant density field was measured interferometri-
cally. When qualitative results were desired, the inter-
ferometer was adjusted so that the illumination over
the whole field of the interferometer was uniform. With
this adjustment the contours of uniform photographic
density correspond to contours of uniform gas density.

This technique was used in the series of interferograms
in Figs. 7(a) to 7(f). In each of these pictures, the inci-
dent shock wave had a pressure ratio pii. p~ = 1.25 with

p~ ——one atmosphere. The angle n was varied from 45'
in Fig. 7(a) to 85 in Fig. 7(f) in the steps indicated.

Figure 7(a) shows a case of regular reflection; note
that the signal from the corner is lagging behind the
shock intersection, showing that if the shock intersection
is considered at rest, the fIow behind the refIected shock
is supersonic. The conjectures of the Introduction re-
garding the straightness of the refIected shock and the
uniformity of the density field in the neighborhood of
the intersection are apparently verified.

Figure 7(b) shows the resultant field when the angle
between the shock and the wall (cr) is 60'. This is a
typical Mach reflection pattern. Particular attention
should be given to the discontinuity in the field behind
the reflected and Mach shocks. This has been identified
(tentatively) as the slipstream required by the three-
shock theory. The angle ~ corresponding to this picture
falls in the region which is forbidden in the three-shock
theory as presented in the Introduction.

Figures 7(c) and 7(d} show the fields which result
when the angle is 65':hand 70', respectively. This series
is not taken at a constant distance from the corner;
hence, no comparison of the height of the Mach stem
from picture to picture should be made. A measure of
this growth is shown in Table I, which shows the values
of e, x, and co which correspond to these pictures.

Figures 7(e) and 7(f) show the case that n= 75' and
85', respectively. The case of n =80' will be compared in
detail below and is not included in this series. What
should be noticed here is that apparently the slip-
stream has disappeared on increasing n from 70' to 75'.

The value a=80' was chosen for careful study be-
cause it provides a reasonable number- of density con-
tours to compare with theory, but still gives only a
small effect on the fIow. By using an interferogram with
narrow parallel fringes it is possible to evaluate the
actual density at various points in the field. It is found
in this way that the density at the foot of the Mach
stem as measured corresponds to that calculated by
Bargmann's treatmentfor the de:nsity at the point, Q
(Fig. 3). In order to, bring this point into the actual
physical field an arbitrary crowding of the theoretical
field was made. This 'compression involved modifying

Bleakney, Weimer, and Fletcher, Rev, Sci, Instr. 20, 807—815
(1949).





FLETCHER, TAUB, AND BLEAKNE Y

TABLE I.

60'
65'
70'
/5'
80'

1'10'
2'40'
4'50'
6'50'

11'20'

58'50'
62'20'
65'10'
68'10'
68'40'

the calculated density contours as follows: contours of
constant density were calculated for various values of
the density, the compressed field was then obtained by
leaving the rejected shock unaltered and compressing
the distance along an ordinate between any contour
and the reRected shock in the ratio of the distance of the
rejected shock from the x' axis to the distance of the
reQected shock from the reQecting surface. This is in
the nature of a partial second approximation; it cannot
be correct, for it has two Raws —there are still no con-
tours in the region between I" and I', and the density
contours are no longer normal to the wall, which they
must be according to the assumptions made in deriving
the boundary conditions.

Figure 8 shows the actual density 6eld with the Barg-
mann contours which correspond to integral fringe
shifts from the region ahead of the incident shock drawn
in. after having been adjusted according to the above
scheme. It should be noted that a contour of constant
&stegru/ fringe shift is determined in the interferogram
by locating a curve of constant photographic density the
same density as appears ahead of the incident shock.
The dashed lines are the theoretically predicted posi-
tions of the shocks. The agreement of these positions is
good. The fringe shift across the incident shock is
known to be 10.2 fringes from a narrow fringe inter-

Fio. 8. Comparison of the single-fringe interferogram for
a=80' with the predicted contours according to Bargmann's
treatment as corrected for the finite angle q =10'. The incident
shock strength is given by P&.p&=1.25:1. The numbered con-
tours are those calculated to represent the indicated fringe shift
from the region ahead of the incident shock. The calculated posi-
tion of the Mach and reflected shocks is indicated by dashed lines.

ferogram, and from measurement of the angle between
the Mach and incident shock it may be calculated that
the reQected shock is very weak at the triple point. Thus,
the contour of maximum blackness just below the triple
point is 10.5 fringes (from the region ahead of the
incident shock), and the region of least blackness next
below is 11 fringes, corresponding well with the theoreti-
cal fringe number 11 which is drawn there. Once this is
established, the contours progress downward as the
fringe shift increases. As will be shown below, where the
pressures on the wall are compared, the calculated and
measured pressures at the foot of the Mach stem are in
good agreement. Away from the Mach shock the con-
tours agree only in their shape; this may be due in
part to a slight maladjustment of the interferometer,
but is more probably due to the finite angle of the wedge.

There are other points which may be compared with
these theories. The position of the triple point is pre-
dicted; and the value of co which corresponds to this
location of the triple point is ~=68'50', which may be
compared with Table I. The agreement here is good
even for +=80'.

As has been mentioned, Bargmann's second approxi-
mation gives a rejected shock of nonvanishing strength
(away from the triple point). This reflected shock should
have a maximum near the triple point. Figure 9 shows
a n'arrow fringe interferogram of the vicinity of the
triple point. The rejected wave appears to have a rather
broad maximum in fringe shift across it somewhere
near the center of the field shown, but this aspect of the
problem requires further investigation.

The pressure along the wall was compared with
Lighthill's curves for a slightly stronger shock. "In this
case the pressure ratio across the incident shock was
2:1, and the angles used were 0.1 radian both convex
and concave. The results are plotted in Fig. 10. The
ordinate is the reduced pressure excess as used by Light-
hill (modi6ed to accommodate the sign change for 8)
8= (p —pir)/8(pii —p~), and the abscissa is the distance
measured along the wall from the corner with the dis-
tance to the undisturbed incident shock set equal to
unity. The vertical length of the line segments is a
measure of the experimental error in the measurements.
The plain line segment represents y=+0.1 radian (a
concave corner), whereas the crossed line segment repre-
sents a convex corner of the same magnitude. Note that
the case of the concave corner near the abscissa 1 lies
below the theoretical curve. This is the result of the
fact that the foot of the Mach shock has advanced
ahead of the location of the incident shock. This is
qualitatively the same situation as shown on the com-
parison of the"contours, Fig. 8.

There is one further comparison which has been made
by D. R. White. " Figure 11 is a preliminary drawing
that gives the density contours which result when a

'0 Fletcher, Weimer, and Bleakney, Phys. Rev. 78, 634 (1950)."D. R. White, thesis, Princeton University, May, 1951 and
J. Aeronaut. Sci. 1S, 633 (1951).
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strong shock is rejected at a small angle wedge. This is
to be compared with the contours calculated by Ting
and Ludloff, given in Pig. 6. The shock strength has
been chosen to correspond; but the wedge angle used in
the experiment is such. that the shock near the nose is
curved instead of straight, as one would expect for an
infinitesimal angle. By the nature of the experiment the
shape of White's contours is more reliable than the ab-
solute values of the density attached to them. Consider-
ing the departure of the experimental conditions from
the ideal ones of the analysis arid the experimental
uncertainties involved, one cannot say that there is
any conflict here between theory and observation.

SUMMARY

In this section we shall try to compare the three ap-
proximate treatments outlined in the body of this paper.
All three of these dealt with the problem of almost
glancing incidence of a plane shock on an obstacle.

FIG. 9. A narrow fringe interferogram of the region near the
triple point for the same shock conditions as those of Fig. 8. Note
that there is an indication of a maximum in the fringe shift across
the reflected shock and that the fringe shift seems to approach
zero as the triple point is approached.

They used the slope of the obstacle as a parameter
whose square couM be neglected with respect to the
first power and thus linearized the differential equation
and the boundary conditions describing the phe-
nomenon. Any physical quantity Ii was written as
F=Fs+oFi, and only first-order terms in 5 were con-
sidered.

In linearizing the boundary conditions, it was found
that the physical variables could be evaluated along
curves different from the actual shocks and walls.

- These curves will be called the "zero-order boundaries. "
All three authors used as part of the zero-order bound-
aries the "trivial" three shock configuration mentioned
in the Introduction. They either 'assumed initially or
deduced that on the reflected shock Ap= 0. Thus, in the
neighborhood of the triple point these first-order solu-
tions also correspond to the "trivial" three-shock con-
figuration. Bargmann showed in addition that, even
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Fio. 10. Relative pressure excess I'=(p ps)/S(—ps p~) as—a
function of position along the wall. The corner is at the origin and
the position of the incident shock at abscissa 1. The solid curve is
that calculated by Lighthill for pz'. p&=2:1. The experimental
points were measured interferometrically for the angle p=~0.1
radian. The vertical height of the experimental point is an indica-
tion of the experimental error involved. The crossed symbol repre-
sents diffraction at a convex corner and the plain symbol represents
interaction with a concave corner.

including second-order terms in the slope of the wall,
hp =0 at the reflected shock near the triple point.

Bargmann restricted himself to the case of weak
incident shocks and thus was justified in assuming
irrotationality (and isentropy) of the pseudo-stationary
Row he considered. He used as a primary dependent
variable the velocity potential and formulated the
boundary conditions in terms of this variable. He made
use of the weakness of the incident shock to simplify
the resulting equations. He was able to determine the
isobars and the shape of the Mach shock to first ap-
proximation. In addition to showing that Ap=0 even
in the second approximation on the reQected shock
near the triple point he showed that the gradient of Ap
had a singularity in the second approximation in the
vicinity of this point.

Lighthill also considered a pseudo-stationary Qow,
but used the pressure as the primary dependent variable.
He formulated the boundary conditions in terms of this
variable. The differential equation satisfied by the pres-
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FIG. 11. Constant density contours drawn from an inter-
ferometric investigation of the situation calculated by Ting and
Ludlo6. This is to be compared with Fig. 6. The numbers asso-
ciated with the contours represent the quantity Ap js as in Fig. 6.
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sure turns out to be identical with that satisfied by
Bargmann's velocity potential in a suitably chosen
coordinate system. By using the pressure as the primary
variable, Lighthill was able to free himself from the
assumption of weak incident shocks. He paid particular
attention to calculating the pressure on the rejecting
wall and to the curvature of the Mach shock.

Ting and LudloG also used the pressure as a primary
variable. However, they did n'ot restrict themselves to
pseudo-stationary Bows; and as a consequence, they
can treat a sharp obstacle of arbitrary shape. They
have calculated the isobars and isopycnals and have
called attention to the discontinuity in the slope of the
latter. This discontinuity, however, does not correspond
exactly to the slipstream observed experimentally.

Experimental evidence indicates that the observed
slipstreams are in fact discontinuities in the density
itself. Such slipstreams are found experimentally in the

reliection of any shock at suitable angles; these angles
are not in the region of near glancing incidence. For the
case of strong incident shocks, there is agreement be-
tween the observed shock configuration and that re-
quired by the local three shock theory (see Introduc-
tion). That theory requires a discontinuity in density
which is observed. The slipstream in the case of weak
incident shocks where the configuration is in violation of
the local three shock theory (see I'ig. 7(b)) seems experi-
mentally to be a sharp density discontinuity. One can
infer from Lighthill's analysis that a calculation similar
to that of Ting and LudloG, but for weak shocks, would
show a broad region of changing density.

It is evident that although the results of these ap-
proximate treatments are very interesting and deal
with the problem of glancing incidence adequately, the
fundamental problem of Mach reQection of weak shocks
is not yet solved.








