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I. INTRODUCTION

HE isotope effect, discovered independently by
E. Maxwell! of the National Bureau of Standards
and by Reynolds, Serin, Wright, and Nesbitt? of Rutgers
University, indicates that superconductivity arises from
interactions between electrons and vibrations of the
crystal lattice. Using separated isotopes, both groups
found that the temperature, T, of the transition be-
tween the normal and superconducting phases of mer-
cury depends markedly on the isotopic mass, M. The
Rutgers group® showed that 7', varies approximately as
M~* and this result has since been confirmed from
measurements on separated isotopes of tin* and thalium?®.
These later measurements showed that the critical field,
H., varies in the same way with M as T.. Plots of H,
versus T for different isotopes can be superimposed if
both field and temperatures are multiplied by a factor
proportional to M,

The vibrational frequencies and, thus, the mean
square amplitude of zero-point motion of the lattice also
varies as M*. Prior to his knowledge of the isotope effect,
Frohlich® developed a theory of superconductivity
based on the self-energy of the electrons arising from
interactions with the phonon field. He found an effective
interaction between electrons, called the S-interaction,
which comes from application of the exclusion principle.
This interaction is repulsive for small distances in
k-space and attractive for larger distances. If the inter-
action is sufficiently strong, there is a state of lower free
energy at low temperatures which is formed by dis-
placing a shell of electrons with energies near the Fermi
surface outward a small distance in k-space. This modi-
fied distribution is identified by Frohlich with the
superconducting phase. It is lower in energy than the
normal phase at 7’=0°K by an amount which is in-
versely proportional to M. Since this energy difference is
equal to H2/8w, for unit volume it follows that H,,
and presumably also T, varies as M—%, in agreement
with the isotope effect.
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Independently, the writer” has also proposed a theory
of superconductivity based on interactions between
electrons and lattice vibrations. We have used a model
based on energies of the individual electrons as affected
by interactions with the vibrations. It was proposed
that in the superconducting phase electrons with ener-
gies within ~«7T. of the Fermi surface are lowered in
energy by an amount also ~«T.. This energy decrease,
summed over all of the electrons, is of the order of

(1.1)

where 27 is the concentration of conduction electrons
(n of each spin) and Ep is the Fermi energy. This ex-
pression gives values of the correct. order of magnitude.

The calculations which we have made so far have
been very crude and have served mainly to estimate
orders of magnitude. The problem is complicated by
the fact that most of the electron-vibration interaction
energy occurs in the normal phase; only a small addi-
tional amount is involved in the transition to the super-
conducting phase. In the normal phase, there is a small
decrease in energy of the electrons which does not de-
pend strongly on the wave vector k nor on the distribu-
tion of electrons in k-space. The additional decrease in
the transition to the superconducting phase presumably
involves only those electrons with energies near the
Fermi surface and depends markedly on the distribu- -
tion of electrons in k-space. This dependence on distri-
bution is equivalent to an effective interaction between
electrons in k-space, as in Fréhlich’s theory.

Both theories are subject to mathematical difficulties.
Frohlich uses an expression based on second-order per-
turbation theory in a range where its validity is un-
certain. In our theory, we have not distinguished suffi-
ciently well between interactions which occur in the
normal state and those which are peculiar to super-
conductivity.

In view of these difficulties, a discussion of various
approximate methods of calculation of the interaction
energy appears to be warranted, even though none of
them has as yet been carried out in a satisfactory way.
The problem is introduced in Sec. II. The sections which
follow are concerned with Fréhlich’s method, with an
extension of the adiabatic method used by the author,
with an application of Tomonaga’s one-dimensional
theory of plasma oscillations, which has been discussed

7 J. Bardeen, (a) Phys. Rev. 79, 167 (1950); (b) 80, 567 (1950);
(c) 81, 829 (1951); (d) 82, 978 (1951).
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by Wentzel8 and by Dresden,? and finally with the use of
a canonical transformation of the type used by Bloch
and Nordsieck to eliminate the interaction terms in
radiation theory.

We shall be concerned solely with the calculation of
the interaction energy and shall not discuss how the
typical superconducting properties—infinite conduc-
tivity and a perfect diamagnetism—ifollow from the
model. It is believed that the explanation is to be found
along the lines suggested by F. London:° A magnetic
field will not penetrate if the wave functions of the
electrons are only slightly modified by the field. We
have attempted to explain the superconducting proper-
ties in terms of a small effective mass for the super-
conducting electrons which have energies near the Fermi
surface.” When the effective mass is very small, the mag-
netic field is confined to a thin surface layer correspond-
ing to the penetration depth of the London theory and
this field is insufficient to provide bound quantum states
corresponding to either the classical circular orbits of a
free electron in the interior or to the boundary orbits.
The conditions for the London theory are thus satisfied.

II. THE HAMILTONIAN AND
METHODS OF SOLUTION

The complete hamiltonian! for the system of elec-
trons plus lattice vibrations may be expressed in the
form:

H=H +H,+H;, 2.1)

where H, is that for the electrons with the ions in their
equilibrium positions, Hy is that for the lattice vibra-
tions, and H; represents the interaction between them.
These terms are not completely independent. For ex-
ample, the frequencies of the lattice vibrations are de-
termined in part by energies which come from the inter-
action terms. Furthermore, to determine the interaction
terms one must consider the coulomb energy between
electrons which occurs in H,.

The hamiltonian H. includes the kinetic energy of the
electrons, the coulomb interaction between electrons
the interaction between electrons and ions, and the,
interaction terms, including the long-range coulomb
interactions, between the ions in their equilibrium posi-
tions. We need not give an explicit expression as we
shall be concerned mainly with the Bloch approxima-
tion in which correlation effects are neglected and it is
assumed that each electron moves in the periodic field
of the ions and the average space charge of the valence
electrons. Then we may take

He‘_‘ZiHei 'L=1) 2; 2”; (22)
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where

H o= #/2m) A+ U (x;). (2.3)

The wave functions of the individual electrons are the
Bloch functions, ¥x(x:), with energy Ex, specified by
the wave vector £.

The hamiltonian for the lattice, Hz, can be expressed
in the form,

Hy=3[—(#/21)(9°/ 095+ 3K :q5"],

where u is proportional to the mass of the atoms. The
exact value of u depends on how the displacement
coordinate, ¢, is defined. The sum is over the various
normal modes which may be specified by the wave
vector s and a polarization. The allowed values of s lie
on one side of a plane through the origin so that if s
is included —s-is not. It is the longitudinal modes which
interact most strongly with the electrons.

The interaction terms are linear in the displacements
and may be taken to be of the form,

Hr=3; Vi(x:)gs, (2.5)

the interaction potential V,g, has matrix elements con-
necting two states k and k’ only if

+s=k—k'+K,

(2.9)

(2.6)

where Kis a lattice vector of the reciprocal lattice space.
As in reference 3, we shall denote the matrix element
which connects the states k and k’ by

(2.7

where gxi- is the amplitude of the vibration which con-
nects the states k and k’ and

M =Nrr qrrr,

mkk'=f¢k'*ka/¢kd’r. (28)

It is the interaction terms which determine the effect
of the conduction electrons on the motion of the ions
and vice versa. A longitudinal wave, for example, gives
a varying electrostatic potential. In a region of com-
pression, where the ions are closer together than normal,
the potential is more positive, giving a lower than
normal energy for the electrons. Where they are farther
apart, the potential is higher. There is a compensating
shift in the density of conduction electrons. The inter-
action potential acting on an electron is the sum of the
changes in the potential of the ions and the self-con-
sistent field of the electrons resulting from the lattice
vibrations. The second part tends to cancel the first,
particularly for waves of long wavelength, and must be
taken into consideration. In a discussion of the theory
of conductivity of monovalent metals,* we have de-
termined the matrix elements of the interaction poten-
tial by such a self-consistent field method.

12 T, Bardeen, Phys. Rev. 52, 688 (1937).
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The shift in density of the electrons must also be
taken into account in calculating the frequencies of the
normal modes. Such frequencies are usually determined
in the adiabatic approximation in which it is assumed
that the motion of the electrons is sufficiently rapid to
follow the motion of the ions. One first supposes that
the ions are in fixed positions and calculates the wave
function and energy of the electrons. The coordinates
of the ions, which we shall take to be those of the normal
modes, are treated as parameters.

(HetHi)o(x, ) =E(g) ¢(x, 9). (2.9)

Here «x stands for the coordinates of all of the electrons
and ¢ for the coordinates of all of the normal modes.
The frequencies of the normal modes are then obtained

by solving
(H+E()Qg =WQ(g). (2.10)

The wave function for the complete system is of the

form:
®(x, 9) = o(x, )Q(9)- (2.11)

In general, the energy E(g) depends so strongly on ¢
that it is not sufficiently accurate to determine the nor-
mal modes from H, alone and then average over E(q)
by use of first-order perturbation theory.®

By far the largest part of the interaction energy occurs
in the normal phase, only a small additional amount
occurs in the transition to the superconducting phase.
To determine the latter, it should usually be sufficiently
accurate to determine the normal modes for the normal
state as above and then average the superconducting
energy over these. Similar considerations apply to the
calculation of the matrix elements of the interaction
potential. The shift in charge density associated with

the superconducting transition should generally have

a negligible effect on the self-consistent field. This point
is discussed at greater length in Sec. IV.

While the adiabatic procedure previously outlined
should be satisfactory for most of the interaction energy
occurring in the normal phase, one must go beyond it in
the discussion of superconductivity. There are several
approximate methods that can be used:

(a) Frohlich uses an expression for the interaction
energy, Wr, based on second-order perturbation theory :*

AW=2 % [ Pt = 1)
k&’ Ek—Ek'—hwkk'

The factor of two accounts for the two possible values
of electron spin. Here f3 represents the probability that
the state k is occupied. The normal state at T=0°K is
that for which fr=1 for Ex<Ey and f;=0 for E;,> Er.
He finds that if the interaction is sufficiently strong
(and this is the criterion for superconductivity) there is
a state of lower energy for which fi=1 for Ex<Er—e;
and fOI' EF<Ek<EF+ €1 and fk= 0 fOI‘ EF— €1<Ek<EF

13 Tn molecular theory, Hy, includes the terms from E(g) and so

takes into account the displacement of the electrons with the
motion of the jons.

(2.12)
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Fi16. 1. Schematic diagram showing the occupied states in k-space
according to Frohlich’s theory. In the normal phase, electrons
occupy regions 1 and 2 within the Fermi sphere of energy Ep.
In the superconducting phase, as a result of electron vibration
interactions, a lower energy at T'=0°K is obtained by filling re-
gions 1 and 3, leaving 2 and 4 vacant. The thickness of the “shell,”
region 3, is greatly exaggerated.

and E>Er+e, where e~ (fwrw)w. This “shell”
distribution (see Fig. 1) is identified with the super-
conducting phase.

(b) We have used a wave function of the form (2.11)
in which ¢(x, ¢) is approximated by determinental wave
functions of the Slater-Fock type. In the calculation of
the kinetic energy corresponding to the normal modes,
it is necessary to take into account derivatives of
o(x, g) with respect to the ¢ which do not appear in the
strict adiabatic approximation already given. The
application of this method to the calculation of the
interaction energy in an approximation corresponding
to second-order perturbation theory will be discussed in
Sec. IIL

(c) Wentzel® and Dresden® have suggested using an
approach based on use of collective coordinates for the
electrons corresponding to “plasma oscillations.” Both
have used the method of Tomonaga which is restricted
to the one-dimensional case. If an approximate expres-
sion can be used for the kinetic energy operator, an
exact solution can be obtained and it is even possible
to take into account the coulomb interactions between
electrons if so desired. Bohm and Pines have devel-
oped a theory of plasma oscillations for conduction
electrons in metals which can be used for the three-
dimensional case, at least for oscillations of sufficiently
long wavelengths, and have suggested that the theory
could be applied to superconductivity. We shall discuss
the Tomonaga theory in Sec. V.

(d) It has been suggested to the author in private
communications by Fierz and by Drell!* that a trans-

14§, D. Drell, Phys. Rev. 83, 838 (1951). The author does not
agree with Drell’s conclusions in regard to a lack of a critical de-

pendence of interaction energy on the distribution of electrons in
k-space.
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formation such as that used by Bloch and Nordsieck!® in
radiation theory might be useful. In this method one
attempts to find a canonical transformation involving
coordinates of both the electrons and normal modes in
such a way as to eliminate the interaction terms. In
effect, one uses in place of (2.11) a wave function of the
form:

®(x, ¢)=¢(x)Q(g, »), (2.13)

in which the coordinates of the electrons appear in the
wave function for the normal modes. We have been
successful in applying this method in the limiting case
in which the wavelengths of the lattice vibrations are
long compared with the electron waves, but the general
case appears to be difficult. We shall discuss this method
in Sec. VI and show how it is related to the other
methods.

III. FROHLICH’S THEORY

We shall give here a simplified account of Frohlich’s
theory in order to show the conditions under which one
may expect the shell distribution (identified with the
superconducting state) to have lower energy than the
normal distribution. The shell distribution is shown
schematically in Fig. 1. Regions 1 and 3 are occupied;
2 and 4 are unoccupied. In the normal.distribution, 1
and 2 are occupied, 3 and 4 are unoccupied. The differ-
ence in interaction energy for the two distributions is

Ws=War=232'-23 2. (3.1)

143 2+4 1+2 3+4

The sums are overexpressions of the form (2.12); the
prime indicates the sum over the unoccupied states.
We shall assume that the interaction energy for the
configurations in which the inner regions are occupied,
the rest unoccupied, is approximately the same as that
for the normal distribution:

2% 2y 32y Y

L,2,3 4 1+2 3+4 1 2+3+4

3.2)

If (3.2) is used to simplify the summation in (3.1), we
find after expanding out the sums and canceling the
common terms that

Ws—Wa)r=2 g Z3’+2 23: zq:’. 3.3)

This is very nearly the same as Frohlich’s expression
for the energy difference. It should be noted that the
only interactions which occur are those between the
inner and outer shells.

If we now introduce the summand (2.12) into (3.3),
we find

hoorwr | M|

Ws—Wa)r=4 2. (34

Ein2 ¥ in38 (e —€pr) — (hwkk'y'

15 F, Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).
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The contribution to the interaction energy is negative if

(er— err) <Twppr. 3.5)

Accordingly, we shall assume that energy difference, ¢;,
between the inner sphere and the shell is of the order of

e1=(ex— ex) v~ (B ) av- (3.6)
The number of states in the shell is ¢,V (¢), where N (e€)
is the density of states in energy at the Fermi surface.
The number of possible interactions is the square of this,
so that the net difference in interaction energies is of
the order of :

(W s—W o) 12— 4(N (€)*(heorrr )| M | a0 (3.7)
The difference in energies of the initial Bloch states
for the two distributions is of the order of ‘

(W o= W ) e=2N (&) ex(er— ex)n~2N (€) (hwore)nl.  (3.8)

The shell distribution will have a net lower energy if
4N (€))*(herrrr) | My | w2> 2N (€) rworrr)n?, (3.9)

or if

N(&) | Murr | 2> 5 (hoorrr) . (3.10)

Except for a numerical factor which depends in part-on
the particular assumptions made regarding the model,
this condition is the same as Froéhlich’s criterion for
superconductivity. The criterion is identical with the
one given in reference 7a.

The energy difference calculated in this way, of the
order of

Ws—Wn~n(ﬁwkk:)Av2/Ep, (311)
is too large. Equation (3.11) is similar to Eq. (1.1) ex-
cept that (Zwki)a replaces xT; and the former is gen-
erally considerably larger than the latter.

There is considerable doubt as to the validity of these
calculations because the criterion (3.10) for supercon-
ductivity is essentially the same as the condition that
the second-order perturbation theory break down. Thus
(2.12) is used in a region where it is not expected to be
valid.

It is not believed, however, that the specific objections of
Wentzel® and of Kohn and Vachaspati®® to Frohlich’s theory are
valid. Wentzel calculates the self-energy of a phonon from inter-
action with the electrons, with use of second-order perturbation
theory, and finds a value which may be written

—3K,@¢. (3.12)
The total potential energy of the lattice vibration is then
%(KafKa(Z))qz; (3.13)

where K, comes from other terms. As Wentzel points out, the
criterion (3.10) is essentially equivalent to

K®> ﬂa2waz.

16 W. Kohn and Vachaspati, Phys. Rev. 83, 462 (1951).

(3.14)
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Thus if K, is calculated from the observed frequency, and is set
equal to plw?, Eq. (3.13) indicates that the lattice becomes
unstable when the interaction is so large as to satisfy the criterion
for superconductivity. The objection of Kohn and Vachaspati is
similar, although reached from a somewhat different point of view.
According to the argument given in Sec. II it is K,—K,®
rather than K, which is related to the observed frequency:

plwl=K,—K,®, (3.15)

Since K,® involves w,, Eq. (3.15) is to be regarded as an implicit
equation for w,. Actually, K,® does not depend strongly on ws.
Rather than (3.14), the condition that the lattice be unstable is

K.®>K,. 3.16)

If K, is sufficiently large, the lattice is stable regardless of the
strength of the interaction. Second-order perturbation theory
might be satisfactory for the calculation of E(g) in Eq. (2.0) and
thus of K, even when the term has a large effect on the vibra-
tional frequency. It is not surprising that it may be necessary to

take the displacement of the electrons into account in a calculation

of the frequencies of the vibrational modes.
It is correct to take the interaction energy as

—3KD (@),

where the average is calculated for the observed frequency, and
one should not worry if this energy correction is comparable to
hws. The energy involved in the transition from the normal to the
superconducting phase is only a small part of the total interaction
energy and should generally have only a small effect on the vibra-
tional frequencies.

From a discussion of an application of a method due to Tomo-
naga to the corresponding one-dimentional problem, Wentzel con-
cludes that the hamiltonian (2.1) requires modification when there
is strong coupling between electrons and lattice vibrations. For
reasons given in Sec. V, where Tomonaga’s method is treated in
detail, we do not agree with this conclusion.

IV. DETERMINENTAL WAVE FUNCTIONS

We shall discuss here wave functions of the form
(2.11) in which the wave function for the electrons
o(x, ¢) is approximated by Slater-Fock determinants
of one-electron functions. Since interaction with the
lattice does not change the spin, we may consider each
spin system separately. Let x;---x, represent the
coordinates of the half of the 2% electrons which have
parallel spins. We want to find the best determinental
wave function of the form,

| Wiy, @)V
o = i e )

Here ¢ represents the coordinates of all the normal
modes with wave function Q(g). It is supposed that the
electronic wave functions are normal and orthogonal
for all values of the ¢’s:

1 l(xm q)

(9). (4.1)
a(%ny @) e

f W, ), q)da=bs; (4.2)

We shall omit correlation effects which arise from the
coulomb terms and take H, to be of the form (2.2). The
total energy corresponding to the wave function (4.1)
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is then

W=y f f |Q|2WH ¥ dxdg

3. f f |02 X(0) Vo(x)q, Ws(w)dadg

+z.fo Z( o
+2is f f [Q‘2\I'i*(-£ aZ;)\I/idxdq
Ziis;’% f f f [ Q2L *(x) ¥, * ()

(")‘I’,‘(x,:) v (x )
— U * ()W *(x) ] — 2 dgdwida;.

+3iK sqﬁ)qu

4.3
PY 4.3)

The sums over 7 and j are over all occupied states.

The last two terms come from the derivatives of the
determinant with respect to the ¢’s; the last is the ex-
change term. These terms can be simplified by using the
orthogonality relations if is assumed that if ¥; is in
the determinant so is ¥;*. This will certainly be true
for the lowest state. The terms which come from the
derivatives of ¢(x, ¢) with respect to the ¢’s, then be-
come

zof fior-

dx,dq

h? o
-‘ZiJ'stQP“ f\I”L*
2p, 9qs

The expression for the energy is similar to that used by
Wigner and Seitz and by Wigner!” in a calculation of the
correlation energy of an electron gas.

The two terms in (4.4) tend to cancel for the normally
occupied states. Let us consider a complete orthonormal
set of ¥;(i=1,2, ---») of which # occur in the de-
terminant. One may expand 0¥;| d¢; in terms of the ¥;:

dg. (4.4)

o
Z aijs\IIi)

=1

aV./dq,= 4.5)

in which the a;;; are functions of the ¢’s. On introducing
(4.5) into (4.4), we get

£[£ 2 floklout
~% 5= [0 o]

-y ¥ 2~—f|@| |ain|tdg. (46)

=l j=n+l & Zp,s

17 E. Wigner and F. Seitz, Phys. Rev. 46, 509 (1933), E. Wigner,
Phys. Rev. 46, 1002 (1934)
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The sum is over the a,;; which connect occupied with
unoccupied states. '

Although it is not difficult to write out the equations
for the ¥;, the solution for the general case appears to
be difficult and has not been obtained. A solution can
be found for the limiting case for which the interaction
is small. The various states can be specified by the wave
vector k, and one need consider only the terms linear
in the ¢’s:

V=t 2 wber qradet- - - 4.7).
Orthogonality requires that
b= —bprs. (4.8)
Inserting (4.7) into (4.5), we find
arrrs=brrr  for qs=qrx’
=0 otherwise. 4.9)
This gives for (4.6) the energy
ﬁ2
> — b (4.10)

k occ. & unocc. Zfdg

This expression may be interpreted as follows. If
(gru®)w represents an average over zero-point vibra-
tions, we have '

#/21) (grr®) ne="TFrwrr (qrerr?) vy (4.11)
so that (4.10) may be written
> X how | b |2(qee)a (4.12)

k occ. ¥’ unocc.

This means that an energy 7w, (representing an ex-
cited phonon) is to be added to the energy associated
with the wave function gy only if the state k' is
normally unoccupied. If both k and k’ are occupied
there is no energy associated with the virtual phonon.
The reason for this is as follows. One may take linear
combinations of any of the functions included in the
determinant without changing its value, and this is
true even if the coefficients depend on the gxr. The de-
terminant itself is independent of the coefficients, and
thus of the gz which connect occupied states. There
can thus be no additional energy from derivatives with
respect to the gur.

Let us now determine the value of the b which
give a minimum free energy for a Fermi distribution
for which the probability that a state k is occupied is
the Fermi function:

fi=1/(1+exp((ex— Ez)/xT)). (4.13)

We shall impose the condition (4.8) and write out the
total energy associated with by and bzrx. From H, an
the energy (4.12) we have ‘

[ O ‘ 2qkk'2(fk(€k’_ 5k)+flc(1_fk')ﬁwkk' ‘
+fk’(€k_fk’)‘*‘fk'(l—fk)hwkk/). (4.14)
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The interaction terms which come from the states
¥ and ¥y are

fk(bkk'fmk'k—l— bkk'*fmkk')Qkk'Z
+ fror (ke 6+ b ¥ Mo 1) Qo
= (fi— fr') Orrr M+ Drr*Merr ) .
We want to choose bxi in such a way as to make the

total energy, the sum of (4.14) and (4.15), a minimum.
This gives

(4.15)

(e for) M
(fs— fo) (er—er) = horw (fitfrr—2 fufrr)

If now we use (4.13) for f5, which is legitimate as long
as the interactions are not so large as to affect the
energies very much, we find after some reduction that

bkk'=

. (4.16)

Ny
b= . (@17
Ek—ék'+hwkkf COth((ék—‘Ek/)/ZKT)

The change in energy of an electron in the state k
resulting from the interaction is®®

| M | 2qr?
ex—ex b coth((ex—ep)/2«T)

AW =Y (4.18)

and the total energy change, including electrons of both
spins, is

AW =23 f1 AW . (4.19)

The sum (4.18) is over-all K, including occupied as well
as unoccupied states. The denominator is odd for inter-
change of k and k’ and has a minimum value of Zws
when e;~¢;» and, 7—0. The energy change does not de-
pend markedly on the state k, and does not change
rapidly as one approaches the Fermi surface. In fact,
the Fermi level Er does not appear in (4.18). This
means that the density of states in energy, and thus the
entropy terms are not affected very much by the inter-
action. Thus the change in free energy is very nearly
equal to the energy change (4.19).

The expressions (4.18) and (4.19) reduce to Frohlichs’
in the limit 7’=0 but give a lower free energy at higher
temperatures. Not only is AW lower, but the entropy
is higher since our expression gives a smaller spread in
energy for states near the Fermi level.

The aforementioned approximations break down
when the matrix elements of the interaction are so
large that

2| b [2> ~ 1. (4.20)

The large terms come for ez=Zey. The denominator is
small only if the temperature is low; otherwise the
hyperbolic cotangent term is large. At T=0°K, condi-
tion (4.20) is equivalent to the criterion (3.10) of
Frohlich’s theory.

We have attempted” to extend the theory to cover

18 This result was given without proof in reference 7(d).
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large interactions by introducing a normalization factor
in (4.7):
V= Ni(q) @rt b qrada). (4.21)

The energy (4.18) is reduced by a factor (Vi2)a. The
normalization factor is larger and the energy lower if the
sum over %’ runs only over the unoccupied states rather
than over all states as in (4.18). This makes the energy
reduction depend markedly on k and gives a small
effective mass for electrons near the Fermi surface.
However, the normalization factor includes only a part
of the higher order terms, and it is not clear under what
conditions a small effective mass will be obtained if all
higher order terms are included.

Presumably most of the interaction energy is of the
sort given by (4.18) which is characteristic of the normal
phase. The terms responsible for superconductivity are
those for which e,~2e;» and for which the matrix ele-
ments are large. We have previously assumed that inter-
actions for which |ei—ex| <AE, where AE is the
energy reduction per electron at the Fermi surface,
occur only in the superconducting phase, not in the
normal phase. This assumption is too drastic. The
calculated energy difference is too large, and further-
more, the dynamic nature of the interaction, which is
undoubtedly important, does not play a role. Thus the
theory in this form is not satisfactory.

V. APPLICATION OF TOMONAGA’S THEORY

Tomonaga® has recently given a theory of a one-
dimensional Fermi-Dirac gas which takes into account
interactions between the particles provided they are of
sufficiently long range and provided that the excitations
are not too large. The coordinates used are those of
plasma oscillations of the gas rather than those of the
individual particles. A less rigorous theory which can
be applied to an actual three-dimensional gas has been
developed by Bohm and Pines.?

Wentzel® and Dresden® have independently applied
the Tomonaga theory to the problem of superconduc-
tivity. The hamiltonian reduces to that of a system of
coupled oscillators so that the problem can be solved
exactly. Let dE/dn represent the spacing of the levels
of the individual electrons in the vicinity of the Fermi
level. Let a,* and a,, represent creation and destruction
operators for electron-hole pairs which are separated
by an % levels corresponding to an energy #(dE/dn).1
The hamiltonian for the electrons alone is then

H,=(dE/dn)Y_ mar*an. (5.1)

Let w, be the vibrational frequency for the lattice
vibration which connects levels separated by #». We may
take

Hp=3 3"+ wa’g’)
HI = Znn*Qn(mnan'{"mn*an*) )

19 S, Tomonaga, Prog. Theor. Phys. 5, 544 (1950).
20 D. Bohm and D. Pines, Phys. Rev. 82, 625 (1951).

(5.2)
(5.3)
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where 911, is the matrix element for an individual
interaction as defined by (2.8).

For simplicity and without loss of any generality,
we shall suppose that 91, is real. Let

Q,=n(dE/dn) (5.4)
and let
an*=(28)7H(Qa}Qn+ Q.1 P,), (5.5a)
= (28)"H (10, —1Q.IP,). (5.5b)
Then,
H=3,[5(P2+Q2Q.?)
— 315 (Pr2+ 0n2¢?)+CngnQnl, (5.6)
where
Ci2=(2nQ,/B)M2= (4n/ I M 2 Quwsn. (5.7
The latter follows from
M 2 =90*(gn®) = (1) 262) M2, (5.8)

To transform to principal form, we need the roots of
W= (N —w2)=C% (5.9

The solution is
=24 (@ 02 [( @2 w0, 2PH4C2T)Y,  (5.10)

as first obtained by Wentzel. One root becomes im-

aginary when the interaction is sufficiently large. The

condition for this is

Ca> Q20,2
or
(M 2/ 5Q0) > Fiwn/4. (5.11)
This equation may be written
N(E)M 2> tiw,/4. (5.12)

Except for a factor of two, this condition is the same as
the criterion for superconductivity given previously
(see Eq. (3.10)).

The lattice becomes unstable in this approximation if
wn<Qn, as it is the root which is lowest to start with
which is pushed down by the interaction. On the other
hand, the electrons become unstable? if Q,<w,. This
latter corresponds to the condition (3.5) of Frohlich’s
theory. The interactions important for superconduc-
tivity are those for which the differences in energies of
the electron states are less than the phonon energy.
Presumably, this instability of the electrons is asso-
ciated with the onset of superconductivity, but without
going beyond the description in terms of plasma oscilla-
tions one cannot tell what will actually occur.

The Tomonaga theory is restricted to the case of one
dimension. It may be supposed, however, that the ac-

2 Wentzel (reference 8) did not take this possibility into ac-
count; he presumed that it is always the lattice which becomes
unstable. An instability of the electrons does not imply that the

initial hamiltonian (2.1) is inadequate, but that the excitations
are so large that (5.1) is not a good approximation.
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tual three-dimensional case would be similar. The
formulation of Bohm and Pines is valid for long wave-
lengths which may be the important ones for super-
conductivity. One would expect, however, that in any
case the three-dimensional model would behave qualita-
tively in the same way as the one-dimensional model of
Tomonaga.

The description in terms of plasma oscillations has
the advantage that one can include the coulomb inter-
action between electrons. However, some care must be
taken to include all of the coulomb interactions. One
must consider also the self-energy of the charge dis-
tribution of the positive ions, py, and the interaction
between the electrons and ions. These two distributions
tend to compensate, particularly for waves of long
wavelength :

p—+p4=0.

In this case the energies also tend to compensate; the
negative interaction energy is almost equal in magni-
tude to the sum of the self-energies of the negative and
positive charge distributions. In the formulation given,
Qn, wa, and C, would be large but nearly equal for waves
of long length. One root of (5.10) would be small and
would describe a lattice oscillation in which the dis-
placement of the ions is compensated by motion of the
electrons. While this method would presumably give the
correct frequency for the lattice vibrations, it would not
describe the excitations of the electrons.

Instead of following this procedure, we believe that
for a discussion of superconductivity it is better to
avoid an explicit introduction of the coulomb interac-
tions and to calculate the matrix elements for the normal
state by a self-consistent field procedure. The transition
to the superconducting phase involves such a small
number of electrons that it has a negligible effect on the
self-consistent field and thus on the matrix elements.

VI. BLOCH-NORDSIECK TRANSFORMATION

Bloch and Nordsieck!® have shown that it is possible
to eliminate the interaction terms between electrons
and the radiation field by a suitable canonical trans-
formation. The approximation made is essentially the
neglect of electron recoil during radiation. It is then
possible to replace the kinetic energy operator, p?/2m,
by v-p, where v is the average velocity of the electron.
The transformation requires that the kinetic energy
operator be linear in the momentum. It has been sug-
gested to the author in private communications from
. M. Fierz and from S. D. Drell'* that a transformation
of the Bloch-Nordsieck type might be useful for calcu-
lating the interaction energy of electrons and lattice
vibrations.

The approximation of neglecting electron recoil is
not a good one for our problem because interaction with
the lattice can cause real or virtual transitions in which
there are large changes in both the magnitude and
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direction of the momentum or wave vector. It is satis-
factory only for lattice waves of such long wavelength
that their wave vectors are small compared with those .
of the electrons. This will be true, for example, in the
one-dimensional case if the excitations are small com-
pared with the Fermi energy. Let V represent the ve-
locity vector for an electron with energy near the Fermi
surface and consider the interaction of a group of elec-
trons with velocities near V. One may measure the
momentum relative to mV and take

P=p—mV

6.1
K.E.=3mV*+V-P. 6.1)

We neglect the term in P2 ,
With this approximation, the hamiltonian may be
expressed in the form:
H=3V-PrA-3; (O™ =91 ¥ei5 )
+25(pStwiled).  (6.2)

The canonical transformation which eliminates the
interaction terms is obtained as follows. Let

foi= M el Xif-9N Fis xi, (6.3)
Introduce the new coordinates,
QSl = qé‘+2'ia8f8'fy
(6.4)

’
X; =X,

and take the wave function for the system in the form,

(I)<xy Q) = exp[is(xla q’)/ﬁ]q)l(xl) ql) (65)
The operators p, and P; acting on ® give
ps@=exp(iS/h)[(3S/9q, )+ p, ¥ ; (6.6)
P.®=exp(iS/h)
XA :[(85/9¢ )+ p/ IV ig/+V:S+P/ @5 (6.7)
viqs, = asvifsi~
We take S in the form,
S= _ZisQS,as(V'vi)fsiy (69)
so that
35/3qs = =3 ias(V- Vi) foi
and
Z'i(v' Vz)S:" _Zs7aSQSl(V' vi)2fsi
=3 .a;(V-8)2q/Y ifsi. (6.10)

The coefficient a,, chosen in such a way as to eliminate
the interaction terms, is

as=1/(w2—(V-8)?). (6.11)
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The transformed hamiltonian operating on &' is

H'=3V-P—33uilal(V-Vifs)) (V- Vifs)
+ (20(.;—‘ ws2a32)fsifaj]

An interaction between electrons replaces the inter-
action between electrons and lattice vibrations. With
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use of (6.3) for f,;, the second summation reduces to

the sum of two terms, one of which depends on x;—x;:

| 9N, |2 coss- (x;—x;)

812

The first of these interaction terms, (6.13), contributes
to the energy in the first order, the second (6.14), only
in higher orders.

The wave function for the system is of the form,

280t wd(e)?] (6.12) Ui®)=—2 i ,  (6.13)
wi—(V-s)? :
and the other on x;-+x;:
33(V-8)*— WA {9* exp[is- (xi+x;) J+90,* exp[ —is- (xi+x;) ]} (6.14)
(w2—(V-s))? ' '
the matrix elements is
| Mwr | 2= | Merr | 2(qrnr ) ad = | Mt | 2(/ 200807).  (6.20)
Furthermore,
ev— e =hV-(k—k). (6.21)

®(x, ) =exp(iS/h) ¢(x)Q(gst L siatefei).  (6.15)

It should be noted that in (2.11) the vibrational coordi-
nates appear in the electron wave function while here

the electron coordinates appear in the vibrational wave -

function.

One may calculate the interaction energy in the first
order by using a determinental wave function for ¢(x)
in (6.15). The terms with 1=7 in (6.13) give

o, |

5 B Jort, |2
i w2—(V-8)?

s ws(ws—(V-8))

—_ = —1
- 2

(6.16)

The sum on the left includes s values of only one sign
(lying in one hemisphere) while the sum on the right is
over both positive and negative values.

Tt is only the exchange terms which contribute when
17 j; the direct terms average to zero. The exchange
terms give

|91, |2 coss- (X1—X3)
w2—(V-s)?
Wi (1) Vs (w2)drdxs.

Soen [ [vrwte)
6.17)

The sum is over occupied states. The integral is equal to
3|2/ ws—(V-9)7] (6.18)

k'=k-+s

and is equal to zero otherwise.

Suppose that the state k=k; is occupied. If K’ =k;+s
is also occupied, there are two terms in the sum over
k and k’ which give (6.18) and the sum of these two just
cancels the corresponding terms in (6.16). If k;+s is not
occupied, the exchange terms vanish and the terms
remain in (6.16).

The expression for the interaction energy is identical
with Eq. (2.12) used by Frohlich and obtained from
second-order perturbation theory. The relation between

if
(6.19)

With k’=k+s, the right-hand side of (6.16) is there-
fore equivalent to

s L

€€’ — ﬁwk;c/

(6.22)

The exchange terms may be expressed in the form,
Sufur| My | 22Rokar
(ﬁwkk')z— (ek—ek')2

=—2 k2w

SO
Sufur| My |2
Gk"‘fk'—ﬁwkk"

The sum of (6.23) and (6.22) is just (2.12).

This procedure thus gives some justification for use
of Frohlich’s expression beyond the limits set by second-
order perturbation theory. We have an explicit wave
function which gives (2.12) regardless of how large the
interaction may be. However, it is undoubtedly a poor
approximation when the interaction is so large as to give
superconductivity.

Unfortunately the proof as given is limited to inter-
actions with lattice waves of long wavelength. While the
situation is by no means certain, present theoretical
indications are that it is short rather than the long
wavelengths which predominate in giving the super-
conducting transitions. However, present theories give
energies for the transition which are much too large,
and it may be that the longer waves are actually the
important ones. Attempts to carry through the theory
without the restriction to long wavelengths have not
been successful.

(6.23)

VII. CONCLUSIONS

The dependence of specific heat and conductivity of
the normal phase on temperature is given correctly by
the one-electron or Bloch model in which it is assumed
that the energies of the electrons are not greatly de-
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pendent on the distribution of electrons in k-space.
There must be some sort of a one-to-one correspondence
between the wave functions for the metal formed from
Bloch functions and the true many-particle wave func-
tions. Interactions between electrons and lattice vibra-
tions characteristic of the normal phase are included in
these functions. ‘

There remains a degeneracy corresponding to elec-
trons of the same or nearly the same energy moving in
different directions. Transitions between these states
via the lattice vibrations are possible. Presumably the
onset of superconductivity is associated with a resolu-
tion of this degeneracy. Condition (3.5) suggests that
the interactions responsible are such that |ez—ew|
< wrrr. Superconductivity occurs in metals for which
the matrix elements of the interaction are so large that
the criterion (3.10) is satisfied. This criterion does in
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fact distinguish pretty well between superconductors
and non-superconductors.® 72

It is not as yet clear how best to characterize super-
conductivity. The various approaches we have de-
scribed indicate a marked change in the wave functions
and energies of the electrons when the criterion (3.10)
is satisfied. A really good description of superconduc-
tivity undoubtedly requires the use of many-electron
wave functions. Unfortunately coordinates representing
plasma oscillations of the electron gas are not suitable.
It is uncertain whether the best “one-electron’ approxi-
mation is a shell distribution as Frohlich suggests or
gives simply a reduction in energy and small effective
mass of electrons in states near the Fermi surface.
The best wave functions of the form (4.1) may yield a
lower energy than (6.15) provided that ¢(x) in the latter
is approximated by determinental wave functions.



