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INTRODUCTION

OME questions in scattering theory will be dis-
cussed herein. They arose in the treatment of ex-
perimental material on proton-proton and proton-neu-
tron scattering. Part of the reason for presenting the
material is the mistaken impression produced in the
literature that the variational treatment of the prob-
lem differs in an essential way from the older methods
and that it offers special advantages. The variational
method has advantages in cases for which the solution
can be obtained only approximately or if the exact
solution is very involved. It also has advantages in
supplying approximate analytic forms for functions
which must otherwise be evaluated by numerical
methods. For the two-body central field problem it will
be seen that the variational method as used by Blatt
and Jackson following some work of Schwinger’s may
be considered as not being superior to the direct
solution in the technique of calculation except for being
a valuable guide in indicating the existence of identities.
These identities can be established very simply, how-
ever, by direct methods. The variational method, as
carried out in the literature, will be seen to be more
involved than the direct solution. Some of this material
has been previously pointed out by Peierls and Preston,’
by Bethe? by Chew and Goldberger,® by Hatcher,
Arfken, and Breit,* and somewhat more systematically
by Breit and Hatcher.® The treatment of this phase is
based on some unpublished work done in collaboration
with Mr. M. C. Yovits. It will be seen in this connection
that the function f of Breit, Condon, and Present can
be expanded in powers of the energy by a general and
simple procedure and that simple formulas for the
general coefficient can be given. The expansion can be
made about any energy, and the range of applicability
of the method can be extended, therefore, beyond the
energy at which the series about the energy E=0 stops
converging. Related expansions can be given for the
effect of linear parameters entering the potential energy.
Both types of expansions have a bearing on those in a
paper by Breit, Thaxton, and Eisenbud.

The f function has been first introduced for L=0
by suitably regrouping quantities in the equation con-
necting the phase shift with the energy. Since the
primary object was to establish the behavior of the
phase shift for low energies, the coulomb function

* Assisted by the joint program of the AEC and ONR.
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power series in the energy and distance have been
isolated from terms which contained the energy loga-
rithmically. The result was to obtain a relation between
energy, the logarithmic derivative of the wave function
with respect to distance at the boundary of the poten-
tial well and the phase shift. The function f which con-
tains only the energy and phase shift is expressed in this
relation as a quotient of power series in the energy with
coefficients which are functions of the radius of the
nuclear potential well and of the logarithmic derivative
of the wave function with respect to distance at its
boundary. This function f has the convenient property
of being energy independent if the range of force is
made zero. For small ranges of forces f has a small
positive slope. The same approach is presented in the
present paper for L>0. The first attempt to generalize
fto L>0is found in a paper by Landau and Smorodin-
sky.® Their discussion is not complete because no use
is made of the logarithmic derivative of the wave func-
tion or of any equivalent information. The analogous
treatment given by them for L=0 also has the same
feature; but in this case it agrees with the previously
established results of Breit, Condon, and Present pro-
vided the range of force is made zero. It will be seen
below that for >0 the generalized f function has in
general a nonvanishing energy derivative at zero energy
which may become zero in special cases. As the range of
force becomes zero, this energy derivative will be seen
to approach — o« . The method of the comparison poten-
tial has to be applied in this case without the con-
venience of there being a potential having zero range
and a constant f value. This circumstance is not a
serious drawback because the relations for calculating
coefficients of the energy in the power series for f
apply also if the comparison potential does not have
zero range.

The calculation of phase shifts has a bearing on the
calculation of energy states. In fact, the relatively in-
significant modification of the phase shift problem which
is produced by enclosing the system in a large perfectly
reflecting sphere enables one to deal with discrete
states. The first section of the present paper is con-
cerned with showing how the relations for changes in
energy are connected with those for changes in phase
shifts. It is shown that the Ferretti-Hulthén exact
relation between the change in phase shift and the
initial and final wave functions is closely related to the
relation between the change in energy, the perturbing
potential, and the initial and final wave functions.

6L. Landau and J. Smorodinsky, J. Phys. (U.S.S.R.) 8, 154
(1944).
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The generalization of f to L>0 can be used for the

treatment of nuclear reactions.

The main part of the paper is concerned with con-
siderations concerning the expansion of f in powers of
the energy and in powers of parameters entering the
assumed expressions for the potential energy as well as
with the generalization to L>0. At the end, a brief
discussion is given of the usefulness of f in obtaining
fits to experimental data. It is brought out that the
essential uncertainties cannot be remedied by the em-
ployment of any kind of plot and that the effect of shape
of potential energy wells remain as an eventual limita-
tion on the accuracy of conclusions concerning the
depth and range of the potential wells. The advantages
and disadvantages of the f plots are also considered.

In the last section of the paper the generalization of
the method of the f function to the many-body case is
considered employing the viewpoint of first section as a
starting point.

L. RELATION OF PHASE SHIFTS TO ENERGY

Notation

The notation followed herein is, on the whole, the same as that
used by Yost, Wheeler, and Breit, by Breit, Condon, and Present,
and by Breit. A few minor changes appeared advisable. The func-
tion Fr(kr) is defined in the usual manner as being a solution of
the differential equation for 7 times the radial function with the
requirements of an asymptotic form having unit amplitude at
r= o and of approaching zero at =0 from the side of positive
numbers. The subscript L is dropped occasionally, however, when
this omission causes no ambiguity.

The function §=F cosK+G sinK does not include the factor
exp(K). This function is understoed to be continued into the
nuclear interior as a solution of the appropriate radial equation
with the actual rather than coulombian potential.

Let there be a system for which the hamiltonian
function is H, and let ¥, be the wave function of a
stationary state corresponding to energy E, Then
one has

Ho‘bo:Eolﬁo. (1)

If the hamiltonian and wave function are changed to
H=Ht+H', y=yot{/, (1.1)
the energy is changed to the value E and one has
Hy=(Hot+H')Yy=Ey. @
It follows from Eqgs. (1) and (2) that
(Yo, HY)=E(o, ¥),
(Yo, Hop) = (Hobo, ¥) = Eo($o, ¥),
and hence by subfraction
(Yo, H'Y)=E' (Y0, ¥),

The change in the energy, E’, is thus expressible ex-
actly as

(E'=E—E). (2.1)

E'= (\00) H,tp)/(\bﬂa "l/)y (2'2)
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which may also be expressed as

E'= (@, HYo)/ (¥, ¥o), (2.3)

since H’ is hermitian. The two forms of H’ show the
symmetry of the situation between the unperturbed
state Yo and the perturbed state ¢. If one sets Y=<y,
in Eq. (2), there results the first-order perturbation
theory formula,

E'>~ (o, H'"Y0)/ (Yo, ¥0) 5 (2.2

and from Eq. (2.3) one similarly has on replacing ¢,
by its approximate value ¥ the approximation

E'~(, HY)/ (¥, ¥). (2.3)

If both functions ¥, ¥, are available, one can obtain E
by means of either Eq. (2.2) or Eq. (2.3); but in prac-
tical problems one is concerned with finding ¥ and E
when ¥, and E, are known.

The Rayleigh-Schroedinger perturbation method and
the Ritz variational method give Egs. (2.2), (2.3) in
first approximation, and there is no difference between
any two of these methods at this stage. On the other
hand, Eq. (2.3) suggests that if there is available an
expansion of ¥,

¢=Zn>‘"\pm (2~4)

then one can obtain E by solving the equation which
results from the substitution of Eq. (2.4) into Eq. (2.2).
The parameter A may be taken for example as a factor
multiplying H” which is set equal to unity at the end
of the calculation. Such a determination of E is possible
only if an expansion of the type written in Eq. (2.4) is
available. For the discrete spectrum of an eigenvalue
problem the knowledge of the expansion (2.4) is equiva-
lent to the knowledge of E in any consideration.
Equation (2.2) differs from the Rayleigh-Schroedinger
procedure in representing the energy change as a
quotient of two power series; in this respect it is similar
to the Ritz method.

It is well known that the discussion of problems in the
continuum can be reduced to that of a discrete spectrum.
The artifice consists usually in the introduction of a
periodic boundary condition or of other similar modifi-
cations of the original problem. The relation of E’ to E
which has just been discussed becomes translated into a
relation for the phase shift. A simple example is that of
a spherically symmetric potential energy for which the
wave function may be considered as a sum of terms,
each term being representable as the product of a radial
factor R(r)=F(kr)/(kr) which depends only on the
distance 7 and an angular factor which depends only on
polar angles. The wave number is here denoted by
k/(27). The equation satisfied by F is then

&@F/dr+ Qu/m)[E—V . JF=0, 3)
ith
" Ve=V+LLA1)5/(2ur?), (3.1)

where V(r) is the potential energy, L is the angular
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momentum in units %, and u is the reduced mass, while
k= (2u/W*)E. (3.2)

Here E is the energy of relative motion rather than the
total energy. It is supposed that V(r) vanishes suffi-
ciently rapidly at r=c to make it possible to neglect it
beyond a certain »=»5. This statement implies that all
results concerning phase shifts are obtainable by carry-
ing out the limiting process 6— and taking the limit
for the phase shift. For V=0 the regular solutions of
Eq. (3) have the asymptotic form,

sing, ¢=kr—Lz/2,

which become modified by V' so as to become
F~sin(¢+9).

For a very large value of =R the functions F will now
be required to vanish. The original problem is modified
by doing so. The energy spectrum becomes discrete.
The spacing between successive energies of the spectrum
will be called AE, the corresponding difference in % is

AkR=7/R.

The solutions F, F° will now be considered correspond-
ing, respectively, to energies E, E° for the potential
energies V="V4V’ and V", respectively. The number
of nodes between =0 and =R is here supposed to be
the same for F and F°. The function F may be consid-
ered as arising from F° as the result of an adiabatic
change of V from V° to V°4V’. According to Eq. (2.2),
one has

E—~E'= [fw FI*""I/"drjI/[foo FFOdr]. 4)

On the other hand, E— E, can be related to the phase
shifts 8, 8° which correspond to F and F°. The result of
consideration will be to obtained the relation,

b
sin(6— 8% = — (4/E) f V' FORdr, )

which first appears in the papers of Hulthén and
Ferretti.” This relation is readily derived from the orig-
inal differential equations. The object of the following
discussion is to provide an explicit connection of Eq. (5)
to Eq. (4). The slight difference in the relationship of
F to F?in these two formulas must first be mentioned.
In Eq. (4) the functions F, F° correspond to different
potentials as well as to slightly different energies, while
in Eq. (5) the energy is exactly the same for the two
functions. On account of the equality of phase of F

? B. Ferretti, Nuovo cimento 1, 30 (1943); L. Hulthén, Arkiv
Mat. Astron. Fysik 29A, 14 (1943). Other related material by
Hulthén is referred to in a subsequent footnote. This relation
has been employed for checking purposes by W. H. Ramsey, Proc.
Camb. Phil. Soc. 44, 87 (1947).

(3.3)
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and F? at =R, one obtains by usual means
R
[(FdF°/dr)— F'dF /dr ]smp= (ko*—k?) f FFr, (5.1)
b

where b is a distance such that V’=0 whenever »>b.
Increasing R/b to « subordinates the effect of the en-
ergy difference E—E, on the left side of Eq. (5.1) in
comparison with the effect of ¥’ at a fixed energy. In
fact, for a fixed value of & the effect of E—E, can be
made as small as desired, while the effect of V' ap-
proaches a finite limit. Since for a vanishing value of
E—E, the left side of (5.1) is the invariant wronskian,
it may be evaluated by making & so large that the
asymptotic forms of I and F° apply. There results

f P = (hi— )] sin— ). (5.2)

On the left side, one may replace the lower limit of
integration by O because d<<R. Thus, in the limit of
b/R=0, one has

f FRr[1/2(ko—#)] sin(o—0%),  (5.2))

which approaches . Introducing this value in the
denominator of Eq. (4) one has

f FEOV'dr=—(dE/2dk) sin(6—8%).  (5.3)
0
Since

dE/E=2dk/k, (5.4)
there results

f " ER = — (/) sin(—),  (5.5)

0

which is Eq. (5). It is seen, therefore, that the general
relation for energies of stationary states implies also
the Ferretti-Hulthén form for the phase shift. The sine
of the phase shift difference is seen to enter in the
normalization integral as in Eq. (5.2).

While both of these relations show the symmetry of
the perturbed and unperturbed states and indicate very
clearly the relationship of first-order perturbation
theory results to the exact values, they have not proved
to be of great practical value because the knowledge
of the perturbed wave function is usually not available.

The connection between Eq. (5) and Eq. (2.1) is
seen to be based on the possibility of the simple ap-
proximation made in Eq. (5.2"). It will be noted that
Eq. (2) and its consequence Eq. (2.1) are applicable
also in the many-body problem, suggesting that Eq.
(5) can be generalized so as to apply to the collision
of two nuclei rather than two nucleons. In this case,
quantization of the whole system restricting the dis-
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tance between the centers of mass of the colliding ag-
gregates of particles to lie in the interval 0<r<R
gives results which are analogous to Egs. (5.2), (5.2).
There results then a generalization of the formula of
Hulthén to the many-body problem.

II. THE PROPERTIES OF THE f FUNCTION FOR L=0

In the discussion of the scattering of protons by
protons and of neutrons by protons, it has proved to be
useful to deal with a function of the phase shift which
will be denoted here by f in the notation of Breit,
Condon, and Present.® This function has been invented
because some of the preliminary experiments of Tuve,
Heydenburg, and Hafstad® were in disagreement with
the expected decrease of the logarithmic derivative of
the wave function with energy and indicated in a sense
a negative range of force. It was important, therefore,
to arrange calculations in such a way as to see clearly
the influence of the assumed range of force. Since the
logarithmic derivative of the function usually denoted
by F can be expanded as a power series in the energy
at the boundary of the nuclear potential energy well,
the expression for this logarithmic derivative in terms
of the phase shift was arranged in terms of power series
in the energy, which also contained the range of force
as a parameter. This relation is

[Fo) O amarmnl -

(6)

where ®,, ®*, ¥,, X, are power series in the energy
which arise in the evaluation of coulomb functions and
their derivatives. The quantity « is the Bohr collision
length

a=h*/ue? 6.1)

and

f=(Ce*/n) cotKo—2 Inn+qo/n, (6.2)

where

qo/2n=2y—1+4+R.P.[T'(in)/T (in) ],

v=0.5772- - - =Euler’s constant, (6.3)
so that
9o 1 kil 7
D (6.3)
27 I+ 2 s(s®+?)
and
Co¥/n=27/(e¢""—1), (6.4)
while

n=e/hy, 1/1?=40.01Ep1er. (6.5)

The series for @y, $*, Xo, ¥9 may be found in the
original papers. For purposes of orientation a few terms

8 Breit, Condon, and Present, Phys. Rev. 50, 825 (1936).
® Tuve, Heydenberg and Hafstad, Phys. Rev. 50, 806 (1936).
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are listed below :
Xo=2— A+ (/a)—4(r/a)+- -,
@o=1+4(r/a)+[(1/3)— (1/67)](r/a)*+- - -, 66)

®o*=1+2(r/a)+[1—(1/20) 1(/a)*+ - -,
Wo=1—[3+(1/20)1(r/a)*+- - -.

The arrangement of terms in Eq. (6) is such as to re-
move the logarithmic term in energy and distance from
everything but the combination f+42 In(2r/a). Since
the solution of Eq. (6) for fis obviously a power series
in the energy and since for a potential of zero range the
limiting form of Eq. (6) expresses f entirely in terms of
constants, one has

f=const (b=0). (6.7)

In this case Eq. (7.9) of Breit, Condon, and Present is
applicable; and it becomes, on clearing fractions,

=5 ’,
where f’is the value of f evaluated at a standard energy
for which K, has a preassigned value. The discussion

just referred to applies to potential energy curves of any
shape. It gives!?

7 X()— (d/?’) Y\I/Q
[f+2 ln(Z;) T Td— by L,,= o 0

where

V=rd/dr. (7

As long as ¥ may be expanded in powers of the energy,
this relation gives for f an expression which is the ratio
of two power series. The quantities Xy, ¥,, @y, $o* have
their origin in hypergeometric functions; and the series
converge for all energies.

The convenience of dealing with the function f has
been brought out later again by Landau and Smorodin-
sky.® The lack of agreement with zero range of force
which is discussed by them was to be expected from
Eq. (7.5) of BCP; and a linear variation of f was, in
fact, to be expected as a consequence of the entrance
of 1/9* in X,, ®, together with 7/a. The subject has
been reopened by Schwinger in lectures at Harvard, a
hectographed form of which has been circulated. This
treatment is said to form a justification for expecting a
linear variation of f with energy, and a natural delight
has been taken by some in the employment of the
variational method. It is nevertheless unlikely that one
can produce anything but a complication by solving a
problem by approximate methods if the problem
admits of a simple exact solution. It is to be expected,
however, that the existence of a variational equation
can serve as a valuable guide in indicating the existence
of relations (identities) which can produce essential
simplifications in otherwise complicated formulas. The
main logical point involved here is that, if a function of

10 G. Breit and W. G. Bouricius, Phys. Rev. 75, 1029 (1948).
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the phase shift is “stationary” for the correct wave
function, then an error in the wave function produces an
error in the phase shift of a higher order. Therefore, if
one has an expansion of the wave function in powers of
a parameter, then one may be sure of the existence of
identities involving the functions which multiply the
different powers, for otherwise the calculation of the
wave function would have to be carried out to the same
order as that of the phase shift. The way in which this
situation works out will be illustrated presently in some
applications, but even without a concrete working out
- of the scheme one sees that such simplifications de-
pend on the existence of a variational equation rather
than on its form.

The slightly critical remarks concerning the applica-
tion of variational techniques to the solution of one-
dimensional problems are not meant to include such
obviously useful matters as the construction of con-
venient analytic approximations to wave functions
for one-dimensional problems or the application of the
variational phase shift methods to the solution of prob-
lems involving more than one dimension. That some
special results obtained for the two-body problem by the
variational method can be obtained by other means
has been pointed out by H. A. Bethe,? by Peierls and
Preston,! by Chew and Goldberger,® and by the writer.®
The presentation of the more general situation which is
given below is based on work done in collaboration
with Mr. M. C. Yovits which is being prepared for
publication.

The considerations are concerned with properties of
the function frequently called #, which may be de-
fined by

M=C0[G0+F0 COtK0]=C0%0/SinK0. (8)
It satisfies the differential equation

(@u/dr)+[k+ i)+ - - - Ju=0,
k=2uE/ =, (8.2)

while Ay, A, are parameters multiplying various parts of
expressions tried for the potential energy. Here E
represents again the energy of relative motion. One has
in general®

(8.1)
where

COtKozl:l/(F02A):]—‘Go/Fo, (83)
A= (dFo/Fokdr)— dFo/Fokdr, (8.3")

the evaluation of all quantities being made for any
r=b. Equation (8.3) is a direct consequence of require-
ments of continuity of the wave function and its de-
rivative. At a fixed energy one can obtain the same K,
by employing a large variety of potentials. For all of

1 1,. Hulthén, Dixietme Congres des Mathématiciens Scandi-
naves, Copenhagen, 1946, p. 201. L. Hulthén, Kgl. Fysiograf.
Séllskap. Lund Forh. 14, 8 (1944); 14, 21 (1944); 15, 22 (1945).
L. Hulthén, Arkiv Mat. Astron. Fysik 35a, 1 (1948). C. E.
Froberg, Arkiv Mat. Astron. Fysik 34a, 1 (1947); 35a, 1 (1948);
36a, 1 (1948). I. Hansson, Kgl. Fysiograf. Sillskab. Lund Forh. 18,
1 (1948).

G. BREIT

them A is the same. The rate of change of A with x may
be different, however, for two potentials chosen at
random; and comparison of Eq. (8.3) with a similar
relation for another potential gives

(8/9K)[cotKo—cotKy']
=(1/F®)(9/0x)[(1/4)—1/A"],

the relation being applicable only at the energy for
which

(8.4)

K0= Ko/. (85)

The right side of Eq. (8.4) simplifies, on account of
A=A, to the form,

Fo2A2(9/3x) [ (0 / kFdr) — OF '/ k' dr]
L1/ (kA )] f (W —1)dr. (3.6)

On the other hand, one obtains
1/A=F02[(G0/F0)+COtK0]= MF()/C(),
and hence, by means of Eq. (8.6),

b
(6/6K)[cotKo—cotK0’]=(1/kCo2)f (w2—u?)dr, (8.7)

which may® also be written as
b
@/o0¢==a [ @r—wir.  ©
0

This equation may be applied at any energy. Its em-
ployment is convenient not only as a means of de-
termining the slope of the f curve, but also as a way of
obtaining the coefficients of the power series expansion
around any . It has been first made known in sub-
stantially the form of Eq. (9) for E=0 by Schwinger
and has been used by Bethe, by Peierls and Preston, by
Chew and Goldberger, and by Hatcher, Arfken, and
Breit also at £=0. The discussion in the paper by Breit
and Hatcher® makes explicit use of the applicability
of the equation at any energy ; and a method of working
out coefficients of f in its power series expansion in E
has been described in this paper, making use of the
applicability of Eq. (9) at any energy. This method has
proved to be somewhat laborious, however; and the
relations in it are less transparent than those sketched
subsequently.

The procedure to be described is somewhat related to
some of the calculations of Jackson and Blatt,? es-
pecially in the explicit employment power series ex-
pansion of # in the energy. As a consequence of not
employing the variational procedure except as a guide,
the general term in the expansion can be written down
in a compact form and the expansion can be seen to be

2], D. Jackson and J. M. Blatt, Revs. Modern Phys. 22, 77
(1950).
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applicable around any value of the energy. This fact
is somewhat trivial from the mathematical point of
view because the subdivision of k+Aig1+Aepet---
into parts k, A1y, « - - is arbitrary and a change in « by
a constant can be compensated by a change of the other
terms in this expression. The differential equation for u
will be written therefore as

(@Pu/dr)+[k—ko+- - - Ju=0, 9.1)
so that

k— ko=k2—ko?;

and it will be supposed that it is possible to expand

(9.2)

w=3" (k= o)"thn. 9.3)

Denoting the operator on the left side of Eq. (9.1) by £,
one has a chain of equations

Ltz 1=0, (9.4)

where it is understood that #_;=0. On the oth'er hand,
substitution of Eq. (9.3) into Eq. (9) yields

a2 n(k—K0)"D itjmn f (wi'u;’ —wuj)dr
=2 an(k— ko)L f — f' ],

where it supposed that the power series expansions of f
and f’ are

=k k)@, f'=2a(k=ko)"f ™. (9.5)

When coefficients of equal powers of k—«o are identi-
fied, there results

b
W= )= aE i [ (il —uasidr. 9.0
0

This relation enables one to determine the coefficients
f™ in terms of the known /'™ and the functions u;,
u;/. On the right side of this relation there occur in-
conveniently high values of j and 7. The variational
principle indicates, however, that if the function # is
known to within the term (x— kg)"'%,_1, that is, if the
error in the function is of the order (k— k)", then the
error in f is no greater than of order (k—ko)?*, so that
f@» is just determinable. The knowledge of #, alone
thus suffices for the determination of f@, that of u; for
f®, that of u, for f®, etc. These facts have been well
realized by Schwinger,”® by Blatt,* and by Jackson and
Blatt’? and have also been made use of to some degree
by direct substitution into the variational form for f.
In Eq. (9.6) one has to have u, in order to determine

f®; uy to determine f®, u, to determine f®, etc.

From f® on, Eq. (9.6) appears to require the knowledge
of many more #; than the existence of the variational
principle indicates as necessary. There must exist,

18 J. Schwinger, Phys. Rev. 72, 724 (1947).
4 T M. Blatt, Phys. Rev. 74, 92 (1948).
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therefore, identities between the integrals on the right
side of Eq. (9.6). This is, in fact, the case as may be seen
from the following consideration. The chain of differen-
tial equation (9.4) gives the identity

b
f (o1 Lus+ms g, 1)dr=0, 9.7
0

which becomes on partial integration

[ut+1(dus/ dr) —usdug1/dr o
b
+f [us£uz+1+ut+1us—1]di’= 0, (9.7
0

and since Lu#.11+u,=0, one has

Uotsy1(doss/dr) — msdasgy 1/ dr Jg?
b
+ f E—‘ usut+uz+1us_.1]d1’= 0. (98)
0

There is a similar equation for the functions of the com-
parison potential. Since Eq. (9.6) has been derived by
differentiating Eq. (9), the comparison potential must
be varied with energy so as to give the same K, and
hence the same #,(5). The values of the square bracket
outside the integral sign in Eq. (9.8) are therefore the
same for the primed and unprimed u; All the un-
primed #; vanish at =0, and the same is the case for a
nonsingular comparison potential of finite range. For a
comparison potential of zero range the function #,’ is
finite and nonvanishing at »=0, while #,’=u,'=- .- =0
at 7=0. The function #," is not needed, however, for
us—1'=u¢’ under the integral call for #,” in the square
bracket. The values of the square bracket are, therefore,
the same for the two potentials. There results the
identity

(S‘—' 1) t+1)=(s7 l)r (10>
where

(s, 0)= f (us'w —wsn,)dr. (10.1)

Returning to Eq. (9.6), one sees that the sum on the
right consists of a number of equal terms. Each term
occurs as many times as there are ways of partitioning
the integer »—1 into two integers, counting zero as an’
integer, and considering i+ as distinct from j-i if
154 7. This number of partitions is the number of terms

in the sequence 0, 1, - --, n—1 and is therefore #. One
has thus
f— frm=q(s, 5), (n=2s+1), (10.2)
f®—=fM=a(s—1,s), (n=2s). (10.3)

These coefficients in the power series expansion are
seen to be of very simple form when expressed in terms
of the u,, u,’.
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In a similar way one can expand f in terms of the
parameters Ay, Ag, - - - which enter Eq. (8.1). In order to
simplify the notation the subscripts ¢ will be omitted in
the \; and ¢;. Differentiating Eq. (8.3) with respect to
a A and employing Eq. (8), one finds

(0/0N [k cotKe]=— f (F/sin?K) odr, (1)

which is equivalent to
b

af/a)\=—af ou’dr. (11.1)
0
The functions #, f will now be expanded as
u=uo+ M+ N+ - -, (11.2)
f=foFN o+ ot (11.3)
There are the relations
Luirnt oupn=0, (11.4)

which are similar to Eq. (9.4). One has, similarly to
Eq. (9.8), .

[un(dusn/dr) —usdun/dr Jo

b
+f [—#—mntbantuats—nyr]edr=0. (11.5)
0

The square brakets outside the integral are zero. This
fact may be seen as follows. According to Eq. (8), one
may obtain # at »=»5 in terms of Fy and Go and K,.
Expressing K, in terms of f, one has

w(r)=A()+B@0)f (r=b),

where A(7), B(r) are functions whose precise form does
not matter for the present discussion. The only essen-
tial fact is that K, does not enter A(r) and B(7). From
Eq. (11.6) it follows that

(11.6)

un(dun/dr)—undun/dr=0 (r=>0). (11.7)
An exception to this argument is found for ¢ or s having
the value zero. This case does not arise, however, in the
needed applications of Eq. (11.5), since it corresponds
to s—1 or {—1 having the value —1. At =0 one has
u#=0 according to the boundary condition and hence all

#:2(0) =0. There results from Eq. (11.5)

)

Introducing

b b
M(g_l))\ug)\gad7’= f %;)\M(S_U)\(pd?'. (12)
0

b
[s, t:]>\=f Us\Uer @7, (12.1)
0
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one has on account of Eq. (11.1)

f <P%2d7’=§;: A" oimnl Sy £
=—(1/a)Zn\""fu,
%fn)\ = (ZZ s+t=n—1|:s; t])\'

According to Eq. (12), there are just # equal terms on
the right side of Eq. (12.3) and hence

fom—dls, sy, (e=25+1),
far=—als—1,5]h, (1=2s).

The coefficients of powers of A in Eq. (11.3) are thus
obtainable by Eqs. (12.4), (12.5) with the abbreviation
of Eq. (12.1). The solution presupposes that one has
available the #,, but the number of these that is re-
quired is about half the number of the fn.

The expansions of Eq. (9.5) may be rewritten in a
form in which less care has to be used regarding the
units in which the parameter « is expressed:

Lf=fO=(f'=f™)]
La(x—xo)]

(12.2)
so that

(12.3)

(12.4)
(12.5)

w b
=3 f [v.2—v 2 ]dr
0 vy

w b
+;f [vs" 0541’ —vsvs1 Jdr, (12.6)
0

where

0 0
U=D Vo, Vo=to, W= 9, v'=uy, (12.7)
0 0

it being understood that the successive terms in the
expansions of # in Eq. (12.7) are the same as in Eq.
(9.3). For a zero range potential, f'—f'® drops out
and the formula gives f— f© directly. In this form the
successive terms in the expansion of f contain integrals
which are expressed directly in terms of the successive
terms in the expansion of #. The denominator on the
left side of Eq. (12.6) is

a(k—ko) = (2E/e)[1— (xo/x) ],

E=energy of relative motion.

(12.8)

If one wishes to express 7 in units ¢ in the integrals of
Eq. (12.6), the factor 2E/¢?* becomes replaced by 1/4%
Similar convenience regarding units can be obtained in
the expansions with respect to a general linear param-
eter by introducing A", in one combination. They were
kept separate as a matter of convenience in the pre-
sentation.

The power series described here can be expanded to
cases of simultaneous entrance of several parameters
without bringing in essentially new elements. They are
somewhat more readily adaptable to systematic treat-
ment than the method of expanding the logarithmic
derivative of a function in powers of parameters. This
method has been used by Breit, Thaxton, and Eisen-



TOPICS IN SCATTERING THEORY

bud.’® It could be used to construct the functions
%, %) Of the present paper in terms of iterated integrals.
Circumspection has to be used, however, when one
goes through a node of the wave function as described
by Bloch, Hull, Broyles, Bouricius, Freeman, and
Breit.!® The difference between the method used by
BTE and that employed here is primarily one of ar-
rangement  of calculation, aside from expressing the
results in terms of the f function rather than the phase
shift. :
III. GENERALIZATION TO L>0

- The following formulas of Yost, Wheeler, and Breit
and of subsequent papers!”815:10.16 are useful for the
present purpose:

FL=CLpL+1<I>L, GL=DLP—L®L, (2L+1)CLD1,= 1, (13)
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In addition to these formulas giving the coulomb
functions, use will be made also of power series repre-
sentations of the derivatives

dF1/dp=Crpl®¥,
dGr/dp=Drp P [ W *+p* i (pr, In2p+q1)BL*
+ 5, (13.6)

and of the wronskian relation on the &, ®.* ¥, ¥ *:

(RLA1)[(G1dF1/dp)—F 1dG1/dp]
=(I>L*‘I’L—\I/L*(I>L—p2L+IPL<pL2=2L+1. (137)

It is desirable to note the relations

Op*=p " (d/dp)(p""'®L),  Wi*=p"*(d/dp)(p~ VL),

22L
Ci2= {42 [(L—1)*472] and the facts that the series for ®;, ¥y, start with 1
[@L+1)!P and that the series for ®.* starts with L+1, while the
ol o 27 series for ¥ * starts with —L. Both ¥ and ¥;* are
<[] (@m1—1) » (131) " defined so as to have a vanishing coefficient of p?X*! in
their contribution to @, @1*. The symbol §z will be
Or=Vr+ """ (pr In2p+q1) 21, (13.2)  used in the sense of a real function with phase shift
22 2L so that
—=—————[ 4] =Fy, cosK 4Gy sinK b 14
217 (2L>'(2L+1)' %L I COS. L+ LSIAL; (7’> ) ( )
XLL—=1)2 442 - -[124+7*], (13.3) The logarithmic derivative has a deficiency R
gim pL[i S A= (0F 1/ F19p)— 01/ 19p,
2 2
s vs V(i) in terms of which one obtains from the wronskian of
+2y+R.P. )]—I—q"L, (13.4) Fr, §1 the relation
T'(in
L (2L  p-L(jp—T) cotKr=[1/(F1*A1)]—G.r/Fy. (14.1)
ir,=1P.(— )kt [ ‘ : :
q o)l 2r+1 ' 1121) By means of this formula one obtains
2sH=L(jy— [)(in— L~+1) - - - (a9— L+5) roF L - o/F1? o *
(S—I— 1) '(2L—S) %Laf (GL/FL)+COtKL q)L
Liin—1L)---(; - :
cot 2n—1)- (it L—1) (13.5) and by means of Eq. (13.6) this relation can be re-
@eon arranged to read '
rOFL (YL ®L)+y T pry 4 (IS /@) fr+ pon P In2y] (143)
ror (Or/ @)+ frtprn2 In2y] ’ '
where and
y=r/a, (14.4) Fr=[QL+1)C12 cotK ,— pr, Inn+qr]/n?EH.  (14.5)

15 Breit, Thaxton, and Eisenbud, Phys. Rev. 55, 1018 (1939);
the unnumbered equation y(0)=1 on p. 1046 of this paper was
meant to be xy(0)=1. )

16 Bloch, Hull, Broyles, Bouricius, Freeman, and Breit, Phys.
Rev. 80, 553 (1950).

17 Yost, Wheeler and Breit, Phys. Rev. 49, 174 (1936);
G. Breit and M. H. Hull, Jr., Phys. Rev. 80, 392 (1950); 80, 561
(1950).

A formula related to the above expression for f7, ap-
pears in a paper by Landau and Smorodinsky.® There
are some differences, however; and since the paper just
referred to does not arrive at correct results even for
L=0, it is difficult to discuss these differences. Equa-
tion (14.3) shows that fr is expressible in terms of
r0% /T o7 and the quantities ¥y, &z, ¥*, &.* which
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may be arranged as power series in the energy. Disregarding questions of convergence, one may express fi,

therefore, as a power series in 1/9? by expanding

fL+?Ln~2L—1 ln2y - y—2Ir—l

It will be noted that, according to Eq. (13.3), the quan-
tity pry?%1is a polynomial in 1/7? and that the quan-
tities &z, ®.%, ¥, ¥* have been introduced by means
of Egs. (13) through Eq. (13.6) in such a way that they
are power series in 1/9% For E=0 the quantities
pr/nPEH, &p, &p* Wp, ¥ * and 70FL/FLor approach
finite limits. For a finite y, therefore, the right side of
Eq. (14.6) is finite. While the convergence of the series
expressing these quantities as power series in p is a
standard result of the theory of hypergeometric func-
tions, the convergence of the series rearranged as
power series in 1/%? does not appear to be covered by
standard treatments. In addition, the quantity 7%/
&zd7 cannot be expressed as a power series converging
at all energies because 79%1/Fzd7 becomes infinite
when z=0. When this is the case, the right side of
Eq. (14.6) approaches —y 2L~ /®;; and this quan-
tity has poles at the roots of ®z. At most, therefore, one
can expect a finite radius of convergence for the right
side of Eq. (14.6); and simple examples verify this
expectation. The logarithmic terms in % enter only in
fr. For large 9, i.e., low energies, the asymptotic expan-
sion of I(in)/T(in) which enters ¢z, cancels the term
—prIny in accordance with Eq. (13.4) and Stirling’s
series:

R.P. [T"(in)/T(in) ]
=Iny+(n7%/12)+(7~*/120)+ - - -.
The removal of Iny occurs asymptotically only.
A generalization of Eq. (9) to L>0 is also possible.
For this purpose it is convenient to introduce the func-
tion

(14.7)

uL=CL%L/SiI’lKL, (15)

which will be used in conjunction with a function %/
similarly defined for a comparison potential which is
adjusted so as to reproduce K 1, at some specified energy.
Quantities referring to the comparison potential will be
primed below. It follows from Eq. (14.1) that

[8/0(k2) ][ cotK ,—cotK ]

- =Fr7[o/0(R)JL(1/AL)—1/AL] (15.1)
and at the comparison energy
[a/0()I[(1/AL)—1/AL]

=Ar?[9/9(k) JL(6F1/Fdp)—0F'/F'9p]. (15.2)

One also obtains, in the standard manner, from the
differential equation satisfied by %y, the formula

ur8/8(k) (68 1/F1on)| 4+ f uz?dr=0. (15-.3)

W p* 2 It 2Ll — 1 (1O 1/ 1.O7)

(14.6)
‘I’L(f’a%L/%Lar) b (I?‘L*

This formula cannot be applied to the treatment of a
potential having zero range because for L>0 the in-
tegral becomes infinite if the lower limit is made to
approach zero. For a nonsingular potential, which,
therefore, has a non-zero range, #y, is regular at r=0.
For two such potentials, one has for the corresponding
functions, adjusted so as to have #.(0)=1u.'(d):

L9/9(k*) JL(0F /T rdr) — 9 1// /97 ]
= ML_Z(I)) f (ML’2—"ML2)d7’; (154)

and hence, combining Eq. (15.4) with Egs. (15), (15.1),
(15.2), one obtains

La/a(k) I(fr—fL)
=(2L+1)an““'f (ur*—ur)dr. (15.5)

This relation is analogous to Eq. (9), which applies to
L=0. For L>0 one cannot use Eq. (15.5) with a com-
parison potential having zero range because #z’ be-
haves as »~2L. It may be possible to replace fo*u.'%dr by

—ur()[8/0C) IO /G NorT+ f widr (15.6)

in this case and then go to the limit of »=0 with a
suitable consideration of the behavior of 9/d(k?) oc-
curring in Eq. (15.6). The writer does not know of the
existence of an investigation of this point. It appears
unlikely that one can make use of a zero range potential,
because one could apply Eq. (15.4) in this case with the
understanding that the potential has a finite range which
is being made very small and that # starts out regularly
at =0 within the potential well. The contribution to
Jobur/%dr arising from the interior of the potential well
is then positive, and it cannot cancel the infinite con-
tribution arising from values of 7 outside the potential
well of the comparison potential. The right side of Eq.
(15.5) becomes plus infinity, which means that df.'/dE
is minus infinity.

The difference between L=0 and L>0 may also be
seen from Eq. (14.3). The coefficients of p» in ¥p*
vanish for =L and n=2L+41. If L=0, the first non-
vanishing power of p in ¥ * is p? and the numerator of
right side of Eq. (14.3) vanishes for »—0. The effect of a
finite f is to produce a finite effect on dFo/Todr just
outside the very narrow potential well before one passes
to the limit of zero range. But for L>0 the dominant
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term in the numerator is ¥*/®y, and a finite f; has a
vanishing effect on 0F./Grdr at the boundary of the
narrow potential well. The value of fr is thus very
sensitive to 0F./Fror, as is also apparent from Eq.
(14.6). Here one sees that for L=0 the term —¥,(rdFo/
Bod7) is dominant in the numerator and that energy
rate of change of this term is then proportional to
ruy~2 Jouo’dr; i.e., to 7% The effect on f is then pro-
portional to 7. For L>0 there is a direct energy de-
pendence of ¥ * Besides the effect of the potential
well is to produce an energy rate of change of f, caused
by — V(0§ /G L) proportional to 72/ LHl=y1—2L,

It will be seen presently that #1/n” approaches a
finite limit as E—0; and it will therefore be apparent
that Eq. (15.5) gives, in general, a finite difference in
the slopes of the fr, versus E curves at E=0. One may
use Eq. (15.5), therefore, for the calculation of such
differences. The expansions of f which have been carried
out for L=0 are applicable in the case L>0 as well.
It will be noted that the comparison potential has been
left arbitrary in these expansions and that no specializa-

-
L1
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tion to potentials of zero range has been made. It fol-
lows from Eqs. (13), (14), (15) that

ur/n"={0OL/L2L+1)(r/a)"]}

+Cr2 " (r/a)iHPy, cotK .  (16)

In this formula the quantity C;2/7*E*! approaches zero
as 7—o0 and E—0, but cotK, approaches «. Substitu-
tion of the value of cotKy, in terms of fz, gives

ur/n*={01/[2L+1)(r/a)"]}
+(r/a) B[ 14 (pr Inn—qr)/n?EH]/ (2L+1). (16.1)

Since (pr Inn—qz)/m?%* and f1, approach finite limits
as E—0, this form of #./7* may be used at any energy.
For sufficiently low energies one may use the asymp-
totic forms of ®; and Oy in terms of bessel functions
of argument 7x with

ezt 3 G)

Ut 50+ 1200+1) 2

7—5v
+[——
60(v+1)

where y=2L+1,
EL= QLA1) 1(x/2) 2L U o144 (), (16.4)

and 7,(x) is the usual function of the first kind of order
v of imaginary argument 4x, for the bessel equation.
The function ©, may be obtained!® from the formula
for &1, as

[Or)eymb=—4(2L+1)(C12/CR) 72~
X(r/a) [®r ]k (16.5)

with the understanding that the last factor in Eq. (16.5)
is obtained by replacing the 7,(x) by the corresponding
K,(x). The K,(x) are bessel functions of imaginary
argument of the second kind defined in the manner of
Whittaker and Watson!® rather than that of Watson.20
The advantage of this definition is that the recurrence
formulas for the K, have the form of those for the 7,
and that the simple substitution indicated in Eq. (16.5)

JoH1)+2) 12(+1)

1 [[ (/2)* (v+2)(v+3)(7—5V)(f)“__(v+2)(v+3)(7—5V)(V—1)(f)4J

x=(87/a)t=(8pn)%. (16.2)
These expansions give
(/2 _ }
EL
ErLs1
240 2/ Jep+1)(+2)
2\ (—1)0+3)(T—5v) sx\* .

(E) C 24001) (5) ]“L]+' v (163)
is possibie. One finds in this manner
ur/n*=L(r/a)"*/(2L+1)]

XA®r[ fr+ (pr Inn—qr)/n*+1]
=2(pr/FN)[®L ]k}, (16.6)

All of the forms of #7/7% from Eq. (16) on are applicable
only for values of 7 greater than the largest  at which
the potential is non-coulombian.

It is seen that the method of the f function is ap-
plicable to L>0 and that the expansions of f in powers
of the energy and of parameters entering linearly in the
expression for the potential energy are also applicable.
The method can thus be applied to the calculation of
phase shifts. Since the value of 1. at the nuclear bound-
ary is related to K by Eq. (15), it appears desirable to
consider also the relationship of §z to fz. One finds by a
straightforward calculation that

LRLA1)/7ILQLAD)C 2/ J(ur/n"™)?

|F?=

18 Sixth reference of footnote 17.

[fot(pr Ing—gr) /PP AL QLA1)C 2/ e n

7

19 E. T. Whittaker and G. N. Watson, Modern Analysis (Cambridge University Press, London, 1920), third edition, Chapter XVII.
20 G. N. Watson, Theory of Bessel Functions (Cambridge University Press, London, 1922), first edition Chapter III.
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where the quantities entering the formula have been
grouped in such a way as to give a simple behavior at
low energies which is as follows:

(2L+ 1)CL2/1’2L+1N 22L+1(2L+ 1)71'6—2’”’/[(21:—|- 1) !]2,
Sfr+(pr Inn—qr)/n***+~const,
ur/nF~ const.

The function |{.|? thus behaves as ve 2™ at low ener-
gies. Aisde from factors varying slowly with the energy,
this dependence is independent of L, in agreement with
the fact that at low energies the collision cross section
for a reaction is expected® to vary as

7)-2 e—-—2 T

independently of the value of L. It is seen from Eq. (17)
that the factor exp(—2) enters not only the numera-
tor but also one of the two terms in the denominator in
the formula for |Fz|2 The value of || may be ex-
pected, therefore, to increase somewhat more slowly
with the energy than one would expect from the
numerator alone. '

IV. COMPARISON OF THE METHOD OF THE f
FUNCTION WITH OTHER METHODS

It has been pointed out by Schwinger in some lectures
at Harvard that a plot of experimental values of f can
be valuable in determining the range and depth param-
eters of potential wells which are commonly used as
models for nucleon interactions in nuclear physics.
This method has been made use of by Blatt and Jack-
son’? for the presentation of experimental material and
for the determination of nuclear interaction parameters
from scattering experiments. In the earlier work only
part of the simplification produced by f function
has been made use of. This consisted in plotting
(n/C¢?) tanK,, a quantity which is the reciprocal of the
phase shift dependent part of f, against energy as has
been done by Breit, Thaxton, and Eisenbud. These
plots showed that the differences between the expected
behavior of the phase shift for different assumed poten-
tials- of different shapes were minor. The families of
curves for potentials of different shapes are the same to
a good approximation. The advantage of plotting
(n/C¢?) tanK, rather than K is that this feature is more
obvious and also that the theoretically expected differ-
ences show up more clearly at low energies. The same
advantages are present in a more pronounced manner in
the plots of f against E.

In the earlier publications®®® the determination of
nuclear parameters was presented by direct comparison
of experimental phase shift with the theoretical curves
and by comparing scattering yield for different models
with experiment. The latter method is the most
laborious of all. It has the advantage, however, of deal-
ing as directly as possible with the experimental ma-

2 Ostrofsky, Breit, and Johnson, Phys. Rev. 49, 22 (1936).
2 Hoisington, Share, and Breit, Phys. Rev. 56, 884 (1939).
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“terial and of bringing out the possible influence of

systematic sources of errors on the interpretation. This
procedure is capable of suggesting the importance of
systematic errors which could be overlooked. The
method of fitting data to a nuclear potential well by
means of f function plots has advantages of relative
ease and simplicity as well as of ease of presentation in
publication. Its simplicity is perhaps more apparent
than real. The following considerations matter.

(a) In the region of 300-400 kev the experimental
errors appear very large on the f plots. Visual judgment
concerning the goodness of one or another straight-line
fit becomes difficult for this reason. In this respect the
situation would be changed if the accuracy of observa-
tions in the 200- to 400-kev energy region were improved
by a large factor. It is believed that a visual fit of a
straight line to data is impaired if the statistical errors
are much larger for one set of data than for another.
One’s eye compares the deviations of the straight line
from the statistical limits of error with each other. It
gives little information if some statistical errors exceed
a certain limit in comparison with others and discounts
information from such observations almost altogether.
In this respect there are individual differences between
people; and it is not desired, therefore, to stress this
point too strongly. The fact is, however, that a (Ko, E)
plot shows up the errors more nearly in proportion to
the actual errors of observation; and an inspection of a
plot of observation against theory does not produce a
bias for considering some of the measurements as value-
less and does not make one discard completely informa-
tion contained in them.

(b) The visual fit is made less definite by the presence
of a curvature in the theoretically expected curves. This
curvature differs for different shapes of nuclear poten-
tial wells. One’s eye has the task of having to determine
the best fit to a set of points by an imaginary ruler with
a curvature which is allowed to vary within certain
limits. This is more difficult than trying for the best
straight-line fit. Since the data on proton-proton scatter-
ing at energies of from about 800 kev to 4 Mev are more
valuable for the determination of nuclear well param-
eters than data at lower energies, a visual straight-line
fit has to do mainly with drawing a secant to the de-
sired curve. Some indefiniteness is introduced by this
circumstance. It is not quite so small as indicated by a
casual inspection of fits to experiment. This circum-
stance may be seen by means of a simple argument
brought out by Hatcher, Arfken, and Breit,* some of
which appears to be worth repeating in a slightly differ-
ent form. If two potentials such as the Yukawa and
square well types are fitted to experimental material
so as to agree with each other at two energies Er, Ey,
then the expansion coefficients are readily found to
satisfy the relations

frO@—fsO=[fy®— fs®]EEyy,
fr®—fs®=—[fr®—fs®NEr+Er1).



TOPICS IN SCATTERING THEORY

The intercepts f@ and slopes f@ are, therefore, differ-
ent for the two fits. The quantity f® determines almost
directly and to a good approximation the range param-
eter of a potential well, being approximately proportional
to it. The effect of fy®—fs® on it is not negligible.
Thus, for the Yukawa and square well potentials,
employing Mev as the unit of energy, the approximate
values are fy®=—0.0054, fs®=0.0061. A fit at 0.8
and 3.2 Mev corresponds to fy®— fy® of ~0.00115
X4=0.046, which corresponds to a 4.6 percent differ-
ence in error of judgment concerning the range param-
eter. It is thus seen that with an undecided preference
for fitting data by a potential of one or another shape,
there exists a non-negligible effect on the certainty of
knowledge of the parameters which are primarily de-
termined by the proton-proton scattering data. It can
hardly be said that in this matter the approximately
linear appearance of the (f, E) plots is a substantial
advantage over other ways of plotting the data. The
main problems of making a fit are not essentially sim-
plified as long as the line which has to be used has an
unknown curvature. The advantages are rather in
having less interleaving of graphs and in there being
somewhat fewer points required in the plotting of
theoretical graphs.

(c) There appears to be a difference of opinion regard-
ing the possibility of drawing conclusions concerning
the shape of potential wells from experimental material.
The fact that no obvious preference is visible in the
(f, E) graphs is used by Jackson and Blatt as an argu-
ment for considering previous considerations® of this
problem as being inapplicable. Regarding this matter,
there appears to be some misunderstanding. It is clear
that there can be no real difference between conclusions
arrived at by different but mathematically equivalent
methods. One of the main objects of the papers of
Hoisington, Share, and Breit and of Breit, Broyles, and
Hull was to point out that the effects of changes in the
shape of potential energy curves were sufficiently large
that their determination could be attempted, provided
an accuracy of about one percent in the absolute scatter-
ing yield could be secured. The differences in shape
which were meant here were mainly those having to do
with small additions to the potential energy at one dis-
tance accompanied with compensating subtractions at
other distances. Of the potentials commonly used, only
the Yukawa potential has a theoretical justification;
and even in this case one can have serious doubts con-
cerning the applicability of theory to the calculation of
the shape. The two papers on sensitivity to changes in
the shape of the potential energy curves have been
written, therefore, from the point of view of arbitrary
changes obtained by addition and compensating sub-
traction of potential energy at different distances. This
view admits freely one’s ignorance concerning a theo-
retically expected shape. A possible direct usefulness is

2 Hoisington, Share, and Breit, reference 23; Breit, Broyles,
and Hull, Phys. Rev. 73, 69 (1948),
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in connection with trying modifications of potentials
produced by the action of some additional type of
meson with a different mass or in trying out effects of
the incompleteness of meson-theoretic views. Blatt and
Jackson justly point out on page 101 of their paper on
proton-proton scattering that some of the changes in
potential energy considered by Breit, Broyles, and Hull
are larger than the whole potential for the same dis-
tance for the Yukawa potential. There is no reason,
however, why one should be interested only in poten-
tials of types that have become customary largely
through habit. :

In view of the objections made by Jackson and Blatt
to the discussion of Breit, Broyles, and Hull in terms of
shielding of the nuclear potential by the coulomb barrier
at 200 kev and their insistence on page 102 of their
paper on the absence of any effect but the interference
minimum at 400 kev, it appears necessary to disagree
with them on account of the definitely positive slope
of 4 at r=€2/mc? at 200-kev bombarding energy. It is
not true that the interference effect is the only one
present. At this energy the function # increases by a
factor ~1.5 from r=e?/mc® to r=23e*/mc. About 10
percent of this effect disappears if the coulomb field
is removed in the calculations. A factor 1.5 in # corre-
sponds to a factor 2 in sensitivity to potential lumps.
At r=4¢*/mc® these effects are still more pronounced,
and here the coulomb barrier is responsible for a factor
~1.5. On the other hand, it must be said that it would
have been clearer not to put the matter in terms of the
coulomb barrier, since effects of the barrier cannot be
clearly differentiated from effects of shortening of wave-
length which set in strongly at ~3 Mev for r~3¢?/mc>.
For such energies the coulomb field can produce both
an increase and a decrease of sensitivity at r=¢?/mc? as
compared with the sensitivity between rmc?/e?=3 and 5.
For this reason one could object to stating the situation
in terms of the coulomb barrier, inasmuch as the differ-
ential effect at different energies can have either direc-
tion, depending on how the coulomb barrier effect
combines with the shortening of wavelength effect.
At 200 kev these complications are practically absent;
and the statement by Breit, Broyles, and Hull was
therefore made for this energy. The fact remains that
there exist strong effects in addition to those caused by
the interference minimum and that these effects are
partly associated with the action of the coulomb barrier.
It should also be mentioned that BBH have brought
out the fact that at 400 kev the coulomb barrier effects
are relatively unimportant; this statement must have
been overlooked by Jackson and Blatt, since on page
102 of their article they take issue with a supposedly
opposite point of view. The slight preference for a
Yukawa-shaped well over the exponential well which
has been expressed by Hoisington, Share, and Breit
was meant for the two wells tried in that paper rather
than for the best Yukawa well as compared with the
best exponential well. In this respect the clarification of
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an obscurely made statement of HSB which is found in
the paper of Jackson and Blatt is very welcome, es-
pecially since HSB have not used the word ‘‘shape” in a
consistent manner. The explanation of the difference in
results for the particular Yukawa, and exponential
wells which has been given by HSB is nevertheless
applicable.

(d) If a fit to experiment is made in terms of the f
function, the most objective method is that of weighted
least squares first brought out at a public meeting by
Jackson and Blatt* and simultaneously carried out by
Hatcher, Arfken, and the writer.* Such a fit would be
capable of determining the potential well parameters
very fairly if one had a definite knowledge of the shape
of the well. Since this is unavailable, the circumstances
discussed in connection with the influence of fyr®— fs®
on fr@—fs©® and on fy®—fs® in relation to the
visual fits are relevant. A least-squares fit to data gives,
therefore, different /@, f® depending on the assumed
shapes of potential energy curves. Still different values
can result from a least squares determination of f®.
It is obviously impractical to try to determine too many
coefficients [ by least squares, since by doing so with
experimental material of necessarily limited accuracy
one can spoil the accuracy of f and f®. The problems
of fitting data are thus helped only partially by the
employment of approximately linear plots. That no
great help can be expected along such lines is clear from
the fact that for any kind of plot one can use the curves
for one potential system as a reference set of curves and
that the adjustment of potential well parameters for
potentials of different shapes to give the same phase
shifts at two energies can be readily accomplished as is
explained in the paper by Breit, Thaxton, and Eisenbud.
The essential uncertainties are caused by the unknown
magnitude of possible systematic experimental errors
as well as the probable inadequacy of the potential
energy point of view.

V. GENERALIZATION TO THE TWO-AGGREGATE
MANY-BODY CASE

The connection of the method of the f function with
the Ferretti-Hulthén equation may now be briefly
discussed, together with generalizations to problems in
which at least one of the colliding particles has a com-
posite structure. A generalization of this type has been
made by Verde? in the special case of neutrons scattered
by deuterons. Following Verde’s procedure, J. L.
McHale? has obtained corresponding results for the
scattering of deuterons by deuterons. These calculations
are performed by an application of Green’s theorem
employing the unperturbed and the perturbed functions.

27J. D. Jackson and J. M. Blatt, Phys. Rev. 75, 1296(A)
(1949). This paper was read at the New York meeting of the
American Physical Society in January, 1949.

25 M. Verde, Helv. Phys. Acta 22, 339 (1949). This generaliza-
tion is concerned only with a formula for sin(§— §9).

2% J. L. McHale, dissertation, Indiana University (1951).
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These generalizations of Eq. (5) can be understood also
by the method already employed for its presentation.
The advantage of doing so is the direct relationship to
the hamiltonian through Eq. (2.2) and a consequent
directly assured symmetry of the answer. The difference
in presentation is to some degree trivial, since Green’s
theorem considerations have to be used in establishing
the hermitian character of the hamiltonian. It is satis-
fying, however, to have two problems stated in the same
form. It has been brought out with reference to the one-
body problem that the direct employment of Eq. (5) is
prevented by the lack of knowledge of the wave func-
tion and that the infinitesimal form of this relation can
in this case be used to advantage in making estimates of
first-order phase shift changes, the situation being
similar to that encountered in the calculation of first
order energy changes. A consideration of Eq. (11) and
its consequence Eq. (11.1) shows that they follow from
the infinitesimal form of Eq. (5). The remaining work
leading to the values of the coefficients of A™ in the
expansion of f depend only on the possibility of per-
forming partial integrations as in Egs. (11.6), (11.7)
which result in Eqgs. (12.4), (12.5). It is possible, there-
fore, to generalize the method of the f function to the
many-body case in close analogy to the method already
sketched. The generalization will be described for elastic
scattering only.

The coordinates of the center of mass are separated
first in the usual way. The process of separation can be
arranged so as to leave one with internal coordinates of
the two aggregates, and with the relative coordinates
of the center of mass of one fragment with respect to
the center of mass of the other. If the masses of indi-
vidual particles are M; and their cartesian coordinates
(s, 4, 23), the employment of the variables ;=M #(x,,
¥:, %;) makes the transformation to relative and abso-
lute coordinates of any pair appear as an orthogonal
transformation, provided one employs the combinations
(M1+M2)%(x1+x2), MlMQ/(Ml‘*-Mg)%(xg—xl) as the
new variables in dealing with particles having masses
M, and M. The coordinates thus introduced make the
original kinetic energy operator of the whole collection
expressible as —h%Y_ . (8%/9E2)+(8%/dnd)+0%/a¢d],
and for the two fragments there results the usual ex-
pression containing the reduced mass. Since the jacobian
of the orthogonal transformations is unity, the original
volume element of the problem is equal to the product
of the volume element of the internal coordinates of
the two fragments and the volume element in the space
of relative coordinates of the fragments with respect to
each other.

On account of the requirements of antisymmetry of
the particles and the symmetry of the hamiltonian with
respect to rotations in spin and isotopic spin space, the
wave equation can often be separated, giving rise to a
set of coupled equations between functions containing
space coordinates alone, each function corresponding to
a special symmetry regarding permutations. These
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equations have then the form,
2l (T=E)dut+ V=0, (18)

as in the paper by Verde. The separation of the two
fragments to an infinite distance by elastic scattering
corresponds to the survival of one of these functions.
The operator 7" arises from the kinetic energy; and ac-
cording to the orthogonal transformation argument, it
can be arranged to be symmetric in all variables. For
the case of pure elastic scattering there may be in
general several ¢; which satisfy conservation of energy
for large internuclear distances. These y; will be de-
noted by ¥, with s taking on the values s’, s”/, etc. The
energy change E— E° which is produced by a change
V' in the Vi assumes the form,

E—EO'—*[ZM f %*Vik"ﬁlcod”df] /
[Z,;fl//,;*]vijlpjoﬂd?’d’r] (181)

where the volume element of the internal coordinates
is d= and the angular integrations as well as spin sums
are supposed to have been performed. The ¢, are sup-
posed to have the asymptotic form,

Yty (Ein) O ) /7, f WA (rm)dr=1. (18.2)

Here each of the @ is supposed to have a different
phase shift §, in the general case. The asymptotic form
of Eq. (18.2) is supposed to apply for a large value of
the interfragment separation. The distance » should
really be denoted by a different symbol for each s,
and the internal coordinates must be different also.
Since the same form of the equation results on relabel-

ing the particles the different symbols have not been

introduced, in order to complicate the notation. The
system will be quantized in a big sphere of radius R em-
ploying the same value of R for each ¢,. Introducing

B:=(R/2)}a (18.3)

and copying in other respects the two-particle treat-
ment, one obtains

szf 0¥V ei’r’drdr
=—(E/R)2 s, s BsBs sin(65r—8,°), (18.4)
S e 5N orgrBerBsrr cOs(8y—80r) =1, (18.5)

where the ¢; satisfy the same equation as the y; but are
normalized so that

SasNBsu(rint)%(s) (k?’)/i’. (186)
The infinitesimal form of Eq. (18.4) does not give the
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change in phase shifts in the general case written here.
If, however, the changes in the phase shifts are equal,
then Egs. (18.4), (18.5) give

o— 5(0)%— (k/E)Z% & @i*Vik,¢k72drdT' (18-7)

The equality of the phase change changes corresponds to
to the usual situation of there being only one phase shift,
so that the state for elastic scattering is obtainable by
linearly combining some of the ¢;. In the subsequent dis-
cussion it is supposed that this is the case and that the
remaining functions ¢; appear in the normalization in-
tegral with the coefficient 1. This can be accomplished
by a suitable change of normalization. The possibility of
obtaining the simple expansion (12.6) for the function f
of the two-body problem depends on Eq. (11) which
is a direct consequence of the H. M. Taylor formula for
the first-order change in phase shift. In addition, it is
essential to be able to carry through the partial inte-
grations of Eq. (11.5) so as to lower the order of the
derivatives of #. These steps can be generalized to the
many-body, two-aggregate, elastic scattering problem.
The phase shift denoted by 6 will be called Ky, in the
coulombian case. The function f, will be understood to
be given by Eq. (14.5). The phase shift K;, depends in
general not only on L but also on the vector arrangement
of L with the spin and other factors. This circumstance
will be understood without taking explicit account of it
in the notation. One obtains with this understanding

8fs/oN=(2L+1)(2/e)
% f S/ ) OV ) ON) s/ P, (19)

where

ui=CL<p,-/sinKL. (191)

Here )\’ is a parameter entering the V. The factor 2/e?
occurs in place of the factor —a of Eq. (11.1) because the
factor —2u/h* has been absorbed in the ¢(r) of Eq.
(8.1). The particular function %, which corresponds to
the channel?” of elastic scattering is now given by
Egs. (16), (16.1) in the region of configuration space in
which the aggregates have definitely separated and in
which only the coulomb force acts between them. It
should be remarked that Eq. (11) applies only to the
special case L=0 and that its generalization to L>0 is
obtained through the inclusion of the factor (2L+1)/7*L
as in Eq. (15.5). '

If the parameter enters the V linearly, one obtains
a chain of equations similar to Egs. (11.4), viz.,

Zk&k(%L, s+1) k+>\(— 2,u/h2)ZkVik(") (“L, s)k= 0,

where

(19.2)

UL, =2 N (%1, &)k
21 G. Breit, Phys. Rev. 58, 1068 (1940).

(19.3)
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and AV ;™ is the part of ¥y containing A. Here u is the
reduced mass of the two aggregates. It follows that

f 2 (uy, t—;) IV a®(ur, o) widrdr

= f S (ur, ) ¥V (wr, s—1)wr’drdr, (19.4)

it being understood that the summations are over ¢ and
k. In order that Eq. (19.4) be a consequence of Eq.
(19.2), it is necessary to require

ik {(ur, ) *Lan (v, )x
r<b

—(uz, o)i*Ca(ur, )i} r2drdr=0, (19.5)

with the understanding that the last integration is ex-
tended over all of the configuration space with the excep-
tion of the part of the scattering channel >, within
which the aggregates are definitely free of each other.
This step is similar to that of Eq. (11.5), where the
expression in square brackets vanishes. An application
of the Green’s theorem transformation to the left side
of Eq. (19.5) employing the orthogonal transformation
described at the beginning of this section shows that
it is zero for regular real functions and in some other
cases. Under these conditions, one has for the expansion
of fin terms of a parameter Eq. (11.3) with values of the
coefficients given by Egs. (12.4), (12.5), the symbol in
square brackets being generalized to mean

s, th= sz Wz, o) [ — Qu/B) V™) (ur, ) wrdrdr.

(19.6)

It is helpful to observe that expansions in terms of

energy are not essentially different from expansions in
terms of parameters and that one can derive Eq. (9)
from Eq. (11.1). To do so it suffices to consider first not
an energy change but a change in the potential energy
by the constant amount (—AE) everywhere except in
the remote part »>b of the elastic scattering channel.
The join between the inner region and the remote part
of the channel is made by rounding off the curve for
AE. The change in the potential energy produced in this
manner will be called AV. The change in phase shift
produced, is, of course, still a change for the original
energy E. One introduces next a comparison potential
and adjusts it so that the two potentials give the same
phase shift before AV is applied. The application of AV
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gives different changes in phase shifts for the two poten-
tials. It is useful to consider the double difference be-
tween the four phase shifts, i.e., the difference in the
phase shift differences for the two potentials which is
produced by AV in the limit of a very smooth join and
in the additional limit of a very small AV. In these two
limits the joining region, i.e., the region within which
the original AE is rounded off, produces the same effect
on both phase shift differences, because the wave func-
tions in the two cases approach either. The double
difference is thus correctly given by the difference of two
expressions like that in Eq. (11.1). If one now raises the
energy to E+AE everywhere by a gradual distortion of
the AV curve, there appears an additional change in
phase which is the same for the two cases. Equation (9)
is thus a direct consequence of Eq. (11.1). The whole
argument can be transferred directly to the many-
particle case by employing (AE)é; as the change in
V. One may apply Eq. (9), therefore, to the more
general case by changing (s, £) to

(s, )= W_ZLfZi[(uL, )i ¥, )i~ (ur, o) (ur, )i Jridrdr

(20)
in the expansion -

(fr—f1))/QLA+1)= 3" (k= ko) fL™

with fr(™ being obtainable by means of Egs. (10.2),
(10.3). Specialization to the case of a vanishing cou-
lomb field is obtained by observing that for n=0,
Cr2=[25(L")/(2L+1) ! P=const and that (cotK)/n
=ak cotK. The factor a is seen to disappear, since it is
present on the right side of Eqgs. (10.2), (10.3), (11.1);
and one has then relations for Z cotK. After this manu-
script was nearly completed, there arrived a second
paper by Verde? which contains some of the results of
the present section.

(20.1)

ACKNOWLEDGMENTS

In addition to the writer’s indebtedness to Mr. M. C.
Yovits in connection with Sec. II, he would like to
express his appreciation to Messrs. M. H. Hull, Jr.,
J. L. Johnson, H. M. Jones, and M. C. Yovits for their
helpful criticism of the manuscript, valuable comments,
and help in collecting references.

28 A. Troesch and M. Verde, Helv. Phys. Acta 24, 39 (1951).
In this paper formulas are given for the calculation of the linear
term in the expansion of % cotd for the d—#n scattering problem,
and approximate calculations are made for the expected scatter-
ing. The more general case discussed here does not seem to have
been considered.



