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1. INTRODUCTION

S a subject becomes older, and better understood,
it is usually possible to present its fundamentals

in a simpler form than at the outset. This is true of the
rotational distortion of molecular spectral terms. When
Hill and I first investigated this problem, ' we were able
to deduce certain rather recalcitrant matrix elements
only by adaptation of the results of a somewhat abstruse
paper of Dirac's on noncommutative algebra. Since
that time, the advent of nuclear spins and quadrupole
moments has added to the complexity of molecular
coupling problems, and the techniques of microwave
spectra reveal hyperfine structures far beyond the
possibility-of detection twenty-five years ago. A paper
by O. Klein, '

amplified in a dissertation by Casimir, '
has shown that the Wang secular determinant for the

asymmetrical top such as is involved in polyatomic
molecules, can be deduced in a simple fashion by means
of quantum-mechanical algebra. With this procedure,
one can avoid introducing explicit wave functions.
Labor is thereby saved, for the use of these functions
usually entails a certain amount of computation even
though they are expressible in terms of jacobi poly-
nomials. However, these articles of Klein and Casimir
did not carry through their method to include the com-
plexities actually found in molecular spectra, notably
the 6ne structures arising from electronic and nuclear
spin. It is the purpose of the present paper to show how
this can be done. By extending Klein's method, we
shall show that to each secular problem arising from
the interaction of angular momentum vectors in mole-
cules, there is a mathematically, though not physically,
identical coupling problem in molecules. Consequently,
the matrices for the molecular secular equations can be
obtained from those given in textbooks, such as that
of Condon and Shortley on atomic spectra, provided
appropriate changes in notation are made. Most
physicists are apt to be somewhat better acquainted
with atomic than with molecular coupling schemes, and
so feel better equipped to handle perturbation problems
involving the interaction of angular momenta in atoms
than in molecules. Klein's method shows that actually
there is no basic difference in complexity in the two
cases.

2. THE ANOMALOUS SIGN OF i IN KLEIN'S MATRICES

Practically everyone knows that the components
of total angular momentum of the molecule relative to
axes X, I", Z fixed in space satisfy commutation rela-
tions of the form

JxJy —JyJg ——iJz, etc.

To avoid constantly writing factors h/27r, we here, and
throughout the paper, suppose angular momentum
measured in multiples of the quantum unit h/2+.

Klein' discovered the rather surprisin~ fact that when
the total angular momentum is referred to axes mounted
on the molecule, which we will denote by x, y, z, the
sign of i in the commutation relations is reversed, i.e.,

" In contributing to this memorial number of Reviews of Modern
I'hysics dedicated to John Torrence Tate, I am particularly
pleased to write on the subject of the coupling of angular momen-
tum vectors in molecules, for this is a topic on which I was col-
laborating with E. L. Hill at Minnesota in 1926—27, during Pro-
fessor Tate's 6rst years at Editor-in-Chief. Although he was not a
specialist in our particular 6eld, his interest in our work, and his
encouragement of it, were a real assistance. I fondly recall the
impromptu ofhce party which J.W. Buchta, then a young instruc-
tor, arranged to celebrate Tate's inaugural role as Editor-in-Chief.
The subsequent years have certainly more than justified our
satisfaction that he accepted this position.' E. Hill and J. H. Van Vleck, Phys. Rev. 32, 250 (1928).

2 O. Klein, Z. Physik SS, 730 {1929).
H. B. G. Casimir, Rotation of u Rigid Body in Quuntum Me

chunics, Dissertation, Leiden, 1931 (published by J. H. Woltjers,
The Hague).

(2)J Jy —J„J= —iJ,.

In this connection, it is to be understood that when we

say angular momentum referred to axes mounted on the
molecule, we mean that it is computed in a reference
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system Axed in space, and then projected on axes
mounted on the molecule, or in other words,

based on the fact that the direction cosines transform
like the components of a vector, and so satisfy commuta-
tion relations of the form4

where ) x, ) Y, etc., are the direction cosines connect-
ing the x, y, s and X, F, Z coordinate systems.

The relation (2) may be established in either one of
two ways. One of these is by means of the correspon-
dence principle. This method is given by both Klein
and Casimir and will not be repeated here. The other
proof, less interesting, but more straightforward, is

XzXJY JYXxX ZXxz (4)

The relations (2) follow from the definition (3) if the
left side of Eq. (2) is computed with the aid of Eqs. (4)
and (I) and if it is remembered that each direction
cosine is equal to its cofactor in the determinant of the
direction cosines. We thus have, for example,

JJ„J„A=(—4xJx+&.rJr+&*zJz)(&yxJx+&„rJr+&„sJz)
—(&yxJx+&yrJr+ &osJz) (4xJx+ &~rJr+4zJz)

(~ rites ltzzltor) (JrJs JsJr) (4x&~z—4z&ox) (JsJx JxJz)—
+(4x&or—&*r&„x)(JxJr JrJx) &—&*x( &~—zJr+ &—~rJz) &&*r(&~zJ—x—&&xJz)

iAgz—( X,r—Jx+X,xJr)+i&,x( 4z—Jr+BrJz)+iX„r(h.zJx—ligx Js)
+»,z( &.rJx+ &*x—Jr)

=&*x(JrJz—JsJr)+&.r(JsJx—JxJz)+X*s(JxJr—JrJx)—2t' AxJx 2ik, rJr 2ih——,zJz
= —ih, ,xJx—i) YJY—iA zJz= —iJ

Substantially, this calculation is mentioned in Casimir's
thesis (p. 44). Another, essentially equivalent explicit
computation verifying Eq. (2) is also given at the end
of Klein's paper, the difference being that eulerian
angles are used rather than direction cosines.

3.SIMULTANEOUS ANGULAR MOMENTUM MATRICES
WITH ANOMALOUS AND NORMAL SIGNS IN

MOLECULAR PROBLEMS

The energy of a molecule whose center of gravity is
at rest is approximately separable into the internal
energy of the electrons relative to "clamped nuclei, "
the energy of molecular vibration, and the rotational
energy of a rigid body whose constants are obtained by
regarding the molecule as built out of an ensemble of
rigidly connected nuclei. This fact seems reasonably
obvious physically, and also can be demonstrated by a
systematic application of perturbation . theory. ' We
are concerned primarily with the energy of rotation,
whose hamiltonian function is, in general, like that of
a symmetrical or asymmetrical top. The angular mo-
mentum involved therein is that arising from the rigid
rotation of the molecular frame. This is not the same,

' See E. U. Condon and G. H. Shortley, The Theory of Atomic
SPectra (Cambridge University Press, London, 1935), p. 59.
Usually, the commutation relations analogous to Eq. (4) are given
for the components of a vector, rather than direction cosines so
that X, F, Z rather than X ~, )~Y, X,z occur in Eq. (4). However,
since the principal axes are determined by nuclear coordinates, the
direction cosines can, except for a normalization factor, be re-
garded as linear functions of the coordinates of the various nuclei.
Since the commutation relations are unaftected by taking linear
combinations, and since the normalization factor is an invariant
which commutes with all components of angular momentum, we
are hence justified in using Eq. (4) for the direction cosines.

5 M. Born and J. R. .Oppenheimer, Ann. Physik S4, 457 (1927).

in general, as the total angular momentum J of the
molecule, since in the problem of "clamped nuclei, "
there may be angular momentum due to electronic
orbital motion, electron spin, and nuclear spin. The
total angular momentum of this character we shall
denote by P. The notation can be remembered by
thinking of the letter P as standing for the "partial"
angular momentum, i.e., the angular momentum ex-
clusive of that of rigid rotation, which is J—P. (We
overlook for the present the possibility of angular
momentum caused by molecular vibration. ) The ro-
tational energy or hamiltonian function is thus

H =A (J, P.)'+B(J„P—„)'+C(J, P,—)'. (5)—
Here, and elsewhere in the paper, the constants A, 8, C
have the signi6cance

A=, 8=, C=
Sx'I~ 8x'I~ 8m'I g

f

in term of the principal moments of inertia I~, I~, Ig of
the molecule. The C term is wanting if the molecule is
diatomic or collinear.

The important thing now to be noted is that P„P„,
P, satisfy commutation relations with the normal sign
of i, so that

P Py —PyP, =iP,.

That the normal sign of i enters in Eq. (6) is a conse-
quence of the fact that the angular momentum P,
unlike J, can be regarded as measured relative to,
rather than referred to, axes mounted on the molecule.
In other words, P can be computed with an origin of
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velocity fixed in the molecular frame rather than in
space.

The essential physical reason why there is no anomaly
in sign in Eq. (6) is that the internal problem of the
motion of electrons and spins is one in which the
nuclei are regarded as 6xed, and no questions connected
with molecular rotation can enter. As far as P is con-
cerned, the normal sign applies for the commutation
relations either in the fixed or moving system. The
mathematical reason for this is that the angular mo-
mentum operators associated with P are functions only
of the "internal" coordinates, i.e., coordinates relative
to the molecular frame, and so these operators commute
with the eulerian angles or direction cosines which are
used to project from the moving coordinate system
x, y, s to that X, F, Z 6xed in space, or vice versa, and
which are nuclear rather than electronic parameters.
It may seem contradictory that in the projection the
anomaly creeps in for the total angular momentum J,
but not the partial angular momentum P. The distinc-
tion arises because the nuclear masses are regarded as
exceedingly large compared with the electron ones.
In principle, of course, all particles shouM be on a par,
and the diversity in behavior owes its origin to the fact
that the perturbation calculation assumes wave func-
tio~ which are products of a factor involving the eu-
lerian angles, and one involving the variables for the
clamped nudei problem. This separation is not a rigor-
ous one, though legitimate as the starting point of a
perturbation calculation, and would be a poor ap-
proximation if nuclei were not heavy.

Let us define the "reversed" internal angular momen-
tum, as a vector of components

Then, because of the presence of the minus sign in the
de6nition, the reversed internal angular momentum
will satisfy commutation relations with an anomalous
sign, so that

P~„—P„P,= iP, . —

VVe will also have occasion to use the reverses of various
constituents of the internal angular momentum, for
example, any sort of spin angular momentum, electronic
orbital angular momentum, etc. The reverse will be
denoted by tildes, and these reversed angular momenta
will all satisfy commutation relations with the anomal-
ous sign.

The point of using the reversed internal angular
momenta is that they satisfy the same commutation
relations, referred to the molecular axes, as does the
total angular momentum. The sign of i is never im-
portant as long as one is consistent in the usage, and a
consistent anomaly is eGectively no anomaly at all.
It would, on the other hand, have been completely in-
correct to use the same sign in Eq. (1) as in Eq. (2). A
consistent behavior in the x, y, s frame, however, is
obtained by using the reverses in connection with the

internal angular momentum. Essentially, this fact has
been noted independently by H. Nielsen, but he did not
follow it through with detailed applications in the way
that we do.

All components of J commute with those of P
(or —P), i.e.,

J~„P„J—=0, etc.

The relation (8) is very important for our purposes, as
it is the basis of our ability to take J and —P as two
independent, i.e., commuting vectors for compounding
purposes, like, for instance, spin and orbital angular
momentum vectors in atomic spectra Fo. rmula (8) is
most easily established simply by noting that it is
possible to choose systems of representations in which
J and P are described by entirely separate quantum
numbers, so that the order of multiplication is imma-
terial. One can also derive Eq. (8) by starting with the
commutation rule PXJ&—J&Px=iPz for a 6xed sys-
tem of axes. One then obtains Eq. (8) by projecting by
means of Eq. (3) (and the analogous formula for P),
and using Eq. (4), together with the fact that P com-
mutes with all the direction cosines ).

4. CORRESPONDENCE OF SUBTRACTION OF
ANGULAR MOMENTUM IN MOLECULES

TO ADDITION IN ATOMS

In the mathematics of atomic quantum theory, the
transformation, with its %igner coeKcients, etc., is a
familiar one from a system of representation in which
two angular momentum vectors 5, 8 are separately
spaced quantized, to a system in which they are collec-
tively spaced quantized and in which (@+8) is di-

agonal. Precisely this transformation can be applied to
take one from a system in which J„I', are each diagonal
to one in which (J,+P,) and [J,+P,j'+[1„+P„]'
+[J,+P,]' are diagonal. However, J,+P is really
J —P, etc., and so the transformation which adds
angular vectors in the atomic case subtracts them in
the molecular applications.

At this stage, it may seem that in this formal parallel-
ism, it is rather artificial that subtraction appears in the
molecular problem rather than addition. Actually,
however, it is subtraction which is significant and has
a physical basis„since the total angular momentum
enters as one of the quantities compounded, and residual
angular momenta are obtained by subtraction. If, for
instance, it is a good approximation in a diatomic
molecule to quantize the molecular angular momentum
exclusive of spin contributions (Hund's case b), then the
quantum number specifying the modulus of the diBer-
ence J—S is a meaningful one.

%e could, of course, have introduced the reversal
operation in connection with the total rather than
internal angular momentum, and then all the vectors
would commute with the normal sign. However, in

applying the usual atomic transformations, we wouM

6H. Nielsen, Revs, Modern Phys. 23, 90 (1951).
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TAax.K I. Notation for quantum numbers associated with
various types of angular momentum in molecular and atomic
spectra. The second entry, i.e., that following the commas, speci-
Ges the component of angular momentum parallel to some given
axis (axis of figure if there is one} in the molecule, and parallel to
some particular spatial axis (for example, that of some external
electric or magnetic 6eld} in the atomic case.

Total angular momentum inclusive of nuclear
spin

Total angular momentum exclusive of nu-
clear spin

Total orbital angular momentum
Electronic orbital angular momentum
Electronic spin angular momentum
Nuclear spin angular momentum

Molecule Atom

P, Qy P, Afar

L, 3EJ.
I, ML,
S, Ms
I, Mr

When F, Qs are identical with I, 0 (no nuclear spin), we use J, Q.
When X is identical with J (no electronic spin), we use J.
In diatomic molecules, h is identical with E, and we use A.
In polyatomic molecules, 0 is identical with IC when there is no

electronic spin, and then we use X.

be subtracting the total from a partial angular momen-
tum, and it is more convenient and physical to think of
subtracting partial from total. For this reason, we have
introduced the reversals in such a way as to make all
the vectors commute with the anomalous sign, which is
electively no anomaly at all. It is to be emphasized
that without arranging things so as to achieve a con-
sistent sign behavior in all the commutation relations,
we would have no right to employ the standaI"d trans-
formations. Our reversal procedure is thus a trick which
enables us to adapt atomic calculations to molecular
problems. In the next sections, we shall show that to
every coupling problem in molecular spectra, there is a
formally equivalent one in atoms, provided allowance
is made for the differences in notation, etc.

S. NOTATION FOR MOLECULAR AND ATOMIC
QUANTUM NUMBERS

Before proceding to specific applications, it is perhaps
well to display the notation which we will use. This we
do in Table I.

All the notation in the atomic case'is standard. Some
comment is required concerning the use of the quantum
number E in molecules. The letter E has commonly
been employed in two contradictory ways by the dia-
tomic and polyatomic spectroscopists, vis'. , to specify
the total orbital angular momentum and the axial
component thereof. An impasse thus arises in attempts
to use a notation which is standard and consistent in a
paper which treats both diatomic and polyatomic
molecules. We have resolved this dilemma, after a
fashion by introducing X for the quantum number for
which diatomic spectroscopists employ E, (The nota-
tion I is sometimes used for this quantum number in
polyatomic molecules, ' but such a usage is apt to be
confusing because the letter 1. is often needed in con-
nection with the matrix elements of purely electronic

~ J. Coon, J. Chem. Phys. 14. 665 {,'1946}.

orbital angular momentum. ) Our procedure is a rather
makeshift one, but informal polling of a number of
molecular spectroscopists failed to produce any happy
suggestions, and our scheme has at least the merit that
one can lapse back fairly consistently to standard
diatomic or polyatomic usages in cases where confusion
from the double role of E does not. arise. Namely, most
polyatomic molecules have no electron spin, and then J
can be used in place of X. In purely diatomic papers,
confusion is unlikely to arise if E is used in place of X,
since there is no nuclear orbital angular momentum
parallel to the axis of figure, and so the letter A denotes
equally well the electronic or total orbital angular
momentum parallel to this axis.

It should be particularly cautioned that in the correla-
tions between atomic and molecular problems estab-
lished in the following sections, atomic and molecular
quantum numbers on the same line of Table I do not
usually play parallel roles. Instead the correlations are
quite diferent, as the resemblance between the atomic
and molecular problems is more a formal mathematical
than a physical one.

6. POLYATOMIC MOLECULES DEVOID OF
INTERNAL ANGULAR MOMENTUM

We now turn to various illustrations of our procedure.
The simplest example is the polyatomic molecule or
asymmetrical top devoid of any internal angular
momentum, so that P=O in Zq. (5). The hamiltonian
is thus

II=A J '+BJ„'+CJ,'. (9)

This is the case treated in Klein's original paper, and
does not have any internal angular momentum to
exhibit the point of our reversal trick. Our only addi-
tion to this paper is a rather trivial one, and consists
in mentioning the mathematically analogous atomic
problem. It is that of a single angular momentum vector
subject to a crystalline potential of rhombic symmetry.
It is imperative that the modulus of this angular mo-
mentum vector be a constant of the motion, or in other
words correspond to a "good quantum number. "Hence,
the angular momentum vector is best chosen as one
arising from spin, since except in rare earth salts the
crystalline Geld usually spoils the goodness of the orbital
quantum number I.. The analogy is thus to an atom in
an 5 state with either electronic or nuclear spin angular
momentum (but not both, to avoid a two-vector prob-
lem). The hamiltonian function of such an atom in a
rhombic crystalline field is

3C= crS,s+PS„s+yS,s or X=crI.s+PI„'+yI.s. (10)

Obviously, Zqs. (9) and (10) are similar in structure.
Physically, the first hamiltonian function listed in
Zq. (10) is encountered in magnetic or microwave
studies of manganous or ferric salts' (with nuclear
spin neglected): the second occurs in the experiments of

' J.H. Van Vleck and W. G. Penney, Phil. Mag. 17, 961 (1934).
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Dehmelt and Kruger and of Pound' on the coupling
of nuclear quadrupole moments to noncubic crystalline
electric fields. Let us choose a system of representation
in which the z compoment of angular momentum is
diagonal; in accordance with Table I, the corresponding
quantum number in the molecular case is E, and MB or
MI in the atomic one. The correlation between the
molecular and atomic problems is thus

J, &~S, M8 or J, K~I, Mr.

The matrix elements of S,S„,S, and hence of J,J„,J,
are found in any elementary text on quantum theory. "
The nonvanishing ones are

(JEl J, l JE&=E,
&JEIJ.+sJ„IE+1&

=(JE+1lJ, iJ„l—E)=j(J, E), (12)
where

f(J, E)=LJ(J+1)—E(E+1)$'*. (13)

The notation (13) will be used throughout the paper in
order to abbreviate a type of expression which occurs
very commonly. In accordance with Eq. (2), we have
reversed the sign of i in Eq. (12) as compared with the
usual formulas; but actually in this connection we need
not wory about the sign of i, since, as mentioned in
Sec. 3, a consistent anomaly is no anomaly at all. By
elementary matrix multiplication, the diagonal matrix
elements of the hamiltonian function (9) (with 8=0)
are found to be

&JEl H
l JE)= —',(A+B)J(J+1)+(C—-,'A —-,'B)E' (14)

and the nonvanishing oG-diagonal elements,

&JEl al JE+2&= ;(A B)y(J, E-)y(J—, E+1). (15)

All the hamiltonian matrices occurring in the present
article are hermitian, and so we do not write down ele-
ments immediately obtainable by transposition. It is
thus to be tacitly understood that

&JEIIJIE+2&=&JE+2IIJIE&*, «c (16)

The secular determinant can immediately be con-
structed for a given value of J. For given J, there are
2J+1 values of E, but the secular determinant is of
degree lower than 2J+1because of factorization. There
is an obvious factorization because of the fact that the
matrix elements are of the form AE= &2, so that even
values of IC are coupled only with even, and odd with
odd. There is also a further factorization by the Wang
transformation, " which utilizes the symmetry as re-
gards reQection in a plane through two of the principal
axes, and which is tantamount to choosing wave func-
tions so that the azimuth angle occurs in a cosine or

'H. G. Dehmelt and H. Kruger, Natureiss. 37, 111 (1950);
R. V. Pound, Phys. Rev. ?9, 685 (1950).' See, for example, Condon and Shortley, reference 4, p. 48;
J. H. Van Vleck, The Theory of Electric and Magnetic SttscePtibili
ties (Oxford University Press, London, 1932), p. ' 168."S. C. Wang, Phys. Rev. 34, 243 (1929), especially, p. 250.

sine rather than an exponential. The form of the secular
determinant after this factorization is readily available
in the literature, and so will not be given explicitly here.
For large values of J, even with the factorization, the
algebraic difhculties are considerable, and a quite exten-
sive literature exists on convenient schemes of approxi-
mation, "as well as numerical tables of roots for diGerent
amounts of asymmetry with moderate values of J.

"I. COUPLING OF ELECTRON SPIN IN DIATOMIC
MOLECULES NOT IN X-STATES

We now turn to a problem where the gist of the re-
versal trick can really be exhibited —viz. , the effect of
molecular rotation on spin multiplets in diatomic
molecules. This is a problem which was treated by Hill
and Uan Vleck' in 1927 by a super6cially quite different
method. We assume that the only force acting on the
spin is that coupling it to the component A. of orbital
electronic angular momentum parallel to the axis of
figure. (The perpendicular component affects the energy
only in higher order approximations to be considered in
Sec. 8.) Since we are neglecting nuclear spin, we can
still use the notation J„J„,J, for the components of
total angular momentum, and we take the z direction
along the molecular axis. The hamiltonian function is
consequently

IJ=BL(J* S*)'+(J—v Sv)'3+K—PS., (17)

where l is the constant of proportionality of the spin-
orbit coupling, and where B has the significance It'/8~'I
in terms of the molecule's moment of inertia I.We now
introduce the reversed spin angular momentum

S = —S„S„=—Sy, S,= —S,
and note that

J,=X—S„ (18)

S(S+1)=S,'+So'+5, ', (19)

where S is the usual spin quantum number. There is no
distinction between the quantum numbers S and S,
since reversal does not aGect the absolute value of a
vector. In virtue of Eqs. (18) and (19), it is easily seen
that Eq. (17) can be written as

H =BLJ(J+1)—A'j+BS(S+1)
—fAS.+2B[J,S +J„S„+J.S,). (20)

The first line of Eq. (20) can be considered as merely
an additive constant, since J, A, and S are good quan-
tum numbers for the problem under consideration. The
secular problem connected with the hamiltonian func-
tion represented by the second line of Eq. (20) is the

~ King, Hainer, and Cross, J. Chem. Phys. 11, 27 (1943); 12,
210 (1944); 17, 826 (1949); G. W. King, J. Chem. Phys. 18, 820
(1947); S. Golden, J. Chem. Phys. 16, 78, 250 (1948); 17, 586
(1949);J.K. Bragg and S. Golden, J. Chem. Phys. 17, 439 (1949);
E. E. Witmer, University of Pennsylvania Thermodynamics Re-
search Laboratory Technical Report "Tabulation of a Function
for Calculating the Rotational Energy Levels of a Rigid Poly-
atomic Molecule" (Navy Contract N6onr-24907) (1950).
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Il

)to

CASE (Q)

CASE (b)

Molecule

FIG. 1.

Atom

(Z
~
H

~
Z) =E2+i AZ —28(A+X)Z,

(x~Hit+1)=Sf(J, A+X)f(S, Z),

(22)

(23)

where f is defined as in Eq. (13), and Eo denotes the first
line of Eq. (20). The result embodied in Eqs. (22)—(23)
is the same as that previously obtained by the writer
by use of explicit wave functions. '4 The quantum num-
ber Z= S,= —S, involved in Eqs. (22) and (23) is that
specifying the component of atomic spin along the
molecular axis, and J,=h.+Z=Q is the total angular
momentum along this axis. Because of the off-diagonal
elements (23), neither Z nor J, is rigorously a good
quantum number. If, however, the spin-orbit coupling

"L. C. Pauling and S. A. Goudsmit, The Stricture of Iirie
Spectra (McGraw-Hill Book Company, Inc. , New York, . j.930),
Chapter XI."J.H. Van Vleck, Phys. Rev. 33, 481 (1929).

same as that for the Zeeman effect of an atom in an 5
state with hyperfine structure conforming to the Lande
rule. " Because of the smallness of nuclear moments,
the magnetic field can be regarded as acting only on the
electronic spin, and so the hamiltonian function for this
atomic problem is

H = 2p@s,+yI S, (21)

where P is the Bohr magneton, @ is the magnetic field,
and 7 is a constant. The formal correlation of Eq. (20)
with Eq. (21) is obtained by taking

—it+-+2pA, y+-+28, S~s, J~I S,~Ms J,++3II,.

It is convenient to set up the secular problem in
either one of two schemes of representation as illus-
trated in Fig. 1. One is that of Hund's case (a), in which
the spin is supposed quantized relative to the molecular
axis, corresponding to separate spatial quantization of
the electronic and nuclear spins, i.e., "complete Paschen-
Backing" in the analogous atomic problem. If we use
the familiar matrix elements, of structure (11—12), for
angular momenta which are individually space-quan-
tized, we see that the diagonal and off-diagonal matrix
elements in the present secular problem are, respec-
tively,

is large compared with rotational distortion, the efFect
of ofF-diagonal elements is comparatively subordinate,
and case (a) quantization is a good approximation.
In any event, A= J,+S, is a constant of the motion
for the problem under consideration. The analog
in the atomic problem is the fact that the component
J,=I,+S, of total angular momentum along the direc-
tion of the field commutes with I S and so is constant.
Note particularly that in the molecular problem the
angular momentum A. which is conserved is that of
purely orbital character, or, in other words, the differ-
ence between the spin and total angular momentum.
On the other hand, in the atomic problem it is the sum
of the angular momenta of the two constituents which
is conserved. It is because of the reversal procedure that
a difference in the molecular problem is able to play the
same role as a sum in the atomic one.

The other system of representation in which it is
often convenient to formulate the secular determinant
is that of case (b). The quantum number X used in this
case has the significance

X(X+1)=PJ,+S,$2+ $J„+S„12
+[J.+s.y=

~

J-s[2.
The corresponding system of representation in the
atomic problem is that which diagonalizes the total
angular momentum

~
I+S~2 of the atom, and our

molecular quantum number X is formally correlated
with the atomic J. The diagonal matrix elements are
readily obtainable by the same elementary projection
procedure as used for obtaining the Lande g factor
when one of the constituents is magnetically inert. The
off-diagonal elements are given by Condon and Short-
ley, "as well as in many other places, and are derivable,
as there explained, by means of noncommutative
algebra. The matrix elements of the hamiltonian func-
tion in the present system of representation are thus
found to be

(Xi Hi X)=Eo+B(X(X+1) J(J+1) S(S+1)j

J(J+1)—X(X+1)—S(S+1)
+1 A2 , (24)

2X(X+1)
(X]H)X+1)

fxf(x+ I+1,s)f(s, x—J)L(x+1)'—&2$
(25)

2(X+1)(2X+1)~(2X+3)~

where f is defined as in Eq. (13) and E2 denotes the first
line of Eq. (20), Equations (24)—(25) were first given by
Hill and Van Vleck. '

The most important case experimentally is that of doublets,
S=-,'. Then the roots of the. secular equation are given by the
simple formula

g —.gjL(j+1)2 +2 ~jig +24(J+1)2+ 2i(At4+)]i

"Condon and Shortley, reference 4, p. 64 ff, For present pur-
poses we identify our J, S, X with their J1, J2, J.
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This formula can be obtained either from Eqs. (22)-(23) or (24)-
(25) by taking 8= r» X=J+&. Actually, it can be obtained even
more simply by the Goudsmit inspection method. Namely, it is
comparatively easy to obtain the diagonal elements in either case
{a) or (b). Also it is clear that the off-diagonal elements are linear
in B in case {a),or linear in f in case (b). Once this fact is granted,
the oB-diagonal elements are uniquely determined when the secu-
lar equation is a quadratic, the doublet case, by the requirement
that the roots of this equation reduce properly both in the limits
corresponding to ideal case (a) and ideal case (b).

II&= 285J,P,+J„P—„3, (26)

where P is the total internal or electronic angular mo-
mentum, both spin and orbital (see Eq. (5) with A =8,
C=O; the term 8(P '+P„') of Eq. (5) is independent
of J and so is an uninteresting constant which we drop).
The matrix elements of Eq. (26) can immediately be
obtained by essentially the same procedure as employed
in the preceding section. The main difference is that P'
is not a constant of the motion, so that explicit numeri-
cal values of the matrix elements of P„P„cannot be
written down. However, because of the axial nature of
the symmetry in diatomic molecules, the matrix ele-
ments of P and P„differ from each other only in being
90' out of phase. Furthermore J,+P, commutes with
the hamiltonian function, and is rigorously a constant
of the motion. The sole eigenvalue of this quantity
which concerns us is zero. This conservation theorem
expresses the physically rather platitudinous fact that
in a diatomic molecule the component of total elec-
tronic angular momentum along the molecular axis is
purely electronic, so that J,+P,=J, P, =O. From the—

8. A.- AND y-TYPE DOUBLING

In the preceding section we neglected the matrix
elements of the electronic orbital angular momentum
which are perpendicular to the molecular axis. Actually,
these elements are present, and destroy the constancy
of L„or in other words prevent A. from being rigorously
a good quantum number. However, they involve
switches in the electronic quantum numbers, and so the
resulting perturbation energy has large frequency
denominators and is consequently small. The most
important effect of these nondiagonal elements is the
phenomenon of A.-type doubling, whereby the degeneracy
associated with the ambiguity in sign of A. is lifted.
Also, these elements are a contributing factor in the
so-called p-type doubling, tripling, in 'Z, 'Z-states, etc.
We shall not attempt to develop the perturbation theory
underlying the explicit formulas responsible for these
doublings and 6ne structures, as it is reasonably intri-
cate, and given in detail elsewhere. However, the method
of the present paper furnishes immediately the oG-

diagonal matrix elements which are the starting point
of the calculation, and thus avoids the need of introduc-
ing explicit wave functions, recursion formulas for
jacobi polynomials, etc.

The oG-diagonal matrix elements which are respon-
sible for the A-doubling are

preceding statements and the commutation relations
(2) and (7) it follows that

(P.lP„lP.~1)= ~f(P, lP. lP,~1). (27)

V(r, s)+&r, S. (30)

In addition, the atom must be in a state M=O of
vanishing total angular momentum about the axis of
the field. The correlation of the molecular with the
atomic problem is as follows:

28~y, I~I., A~Mr„J, & +Me(M= M—r,+Me —0). ——

The phenomenon of A-type doubling in the molecule
corresponds in the atom to the lifting by the non-

' J. H. Van Vleck, Phys. Rev. 33, 467 (1929); the phase con-
vention of Eq. (29) of this reference differs by 90' from that of the
present Eq. (29) in that we now take I', rather than I'„ to be real.

When we use Eq. (27), we see that the matrix elements
of Eq. (26) are

(.JZ.la, l.'J,+18. 1)—
= V(J, J.)(eP*I»*l"P.—». (28)

Here the letter e symbolizes all electronic quantum
numbers other than P„and is included in order to indi-
cate that P is not, in general, diagonal in electronic
quantum numbers. The factor BP is written as
(lBP.l) rather than 8(lP, l) in order to show that
the moment of inertia is not diagonal in the electronic
quantum numbers; i.e., must be kept inside the in-
tegral sign if matrix elements are computed by quadra-
ture from the wave functions.

Since the eigenvalues of J, and I', which are in-
volved are the same, the double index notation in
Eq. (28) is redundant, and so it is customary to write
Eq. (28) in the form"

(eQl H&, l
e'0+1)= —2f(J, Q)(eQ l

BP,
l
e'0+1), (29)

where 0 denotes an eigenvalue of P,=J,= —E,.
In case the molecule is devoid of spin, the matrix

elements of P can be identiled with those of I. .
%hen the molecule is not in a singlet state, the problem
of calculating the matrix elements of P becomes more
complicated, as it is necessary to use an intermediate
system of representation which allows for the perturb-
ing effect of spin-orbit interaction and in which I., and
5, are not separately diagonal. The process of finding
these elements is explained in an earlier paper. "

It remains for us to point out the secular problem
in atomic spectra which is mathematically analogous to
the molecular one which we have been considering in
the present section. Let us first assume that the mole-
cule has no spin. Then the analogous atomic problem
is that of an atom with both spin and orbital angular
momentum in a crystalline field of axial symmetry,
whose effect is large compared with that of the spin-
orbit interaction. The hamiltonian function is then
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diagonal elements of the spin-orbit interaction of the
degeneracy associated with the pair of levels I.z=N~',
S,= —Mr, ' and L,= 3Ir—,', 5,=+M~'(Mr, 'WO). This
degeneracy remains if one retains only the diagonal
part &L,S, of the spin-orbit interaction in Eq. (30),
but is removed when one includes the nondiagonal part,
which plays a role analogous to (28).

In case the molecule has spin as well as orbital angular
momentum, the corresponding -atomic problem is a
three-vector one. There is cosine coup)ing between the
three angular momentum vectors, and in addition a
strong axial Geld acting on one of them.

9. COUPLING OF ELECTRON SPIN IN
POLYATOMIC MOLECULES

We now turn to a subject which, because of its com-

plexity, probably furnishes the best and most interest-
ing illustration of our method. This is the problem of
the coupling of electron spin in polyatomic molecules.
Here we may suppose that the diagonal elements of the
electronic orbital angular momentum are zero in the
"clamped nuclei" problem. Hence, the coupling is only
a higher order eGect resulting from the inQuence of
excited electronic states and molecular rotation. Our

theory applies also to molecules in Z-states, as here
also, only the higher order eGects are responsible for the
spin multiplets. '

The problem consists essentially of two parts: (I)
derivation of the efFective hamiltonian function from
perturbation theory and (II) calculation of the matrix
elements once this function has been obtained. The
extended Klein technique has a bearing only on (II).
In order not to interrupt the continuity of subject
matter, we postpone the presentation of (I) until

Appendix I. Inclusion of this appendix is desirable,
since (I) is a subject which has not been adequately
treated in the literature. "

The effective hamiltonian function can be taken to be

H =AX,'+BX„'+CX,'+ao(X„S,+X„S„+X,S.)
+a[2X,S, X,S. X—„S„)+b—[X,S X„S„j—
+c[X.S„+ X„5.7+d[X,S.+X.S.j
e[xwS*+X*Swl+ (x[2S 2—5 2-5 2j

+P[5,' S„']+y[5,S„+S„S,]-
+b[S,S,+5,5 g+ c[S„S,+S,S„), (31)

where ao, a, b, - -, ~ are constants and where

X,=J,—5,=J,+S„A=h'/8m'Ig, etc.

The notation concerning'the quantum numbers asso-
ciated with angular momentum is that explained in

'~ See, for instance, M. H. Hebb, Phys. Rev. 49, 610 (1936).
The theory of p-type tripling is developed in detail in this reference.

' Calculations somewhat similar to those in our Appendix I
have, however, been made by a different method, and in somewhat
less general form by R. S. Henderson, unpublished except as a
letter to the editor, Phys. Rev. 74, 106 (1948). Henderson finds
that the theoretical formulas give excellent agreement with the
one structure observed by Coon (reference 7) in ClO&.

Sec. 5. We continue to assume no nuclear spin, so that
the molecule's total angular momentum may be de-
noted by J rather than Ii. We have expressed Eq. (31)
in terms of Srather than 5, since X and Ssatisfy similar
commutation relations, of the type given in Eq. (2).
Note particularly that J,2+J'„'+J,2 and 5,'+S„'+S,'
commute with Eq. (31), whereas X,'+X„'+X,2 com-
mutes with only the erst line of Eq. (31);consequently,
J and 5 are good quantum numbers, whereas X is not
rigorously. (In principle, spin-orbit interaction prevents
even S from being strictly a good quantum number,
but this effect in unimportant except in very heavy
molecules and will be neglected. Such breakdown of
Russell-Saunders coupling is less common in molecules
than in atoms, since few molecules have atoms of the
iron group, etc., in unclosed shells. )

In writing Eq. (31), we have arranged the constants
in such a way that each term, other than those on the
first line has essentially the rotational transformation
properties of a second-degree spherical harmonic. "This
greatly facilitates our later writing down of the explicit
formulas for the matrix elements.

The expression (31) does not represent the same
hamiltonian function as that with which one starts, vis'. ,

H =A (J S L)'+B—(J —S„—L„)'—
+C(J, 5, L)' (32—)—

+ spin-orbit and spin-spin interactions.

The orbital angular momentum L and hence the expres-
sion (32) are highly nondiagonal in the electronic quan-
tum numbers. Appendix I gives the proof that Eq. (32)
can be replaced by Eq. (31) after a perturbation calcu-
lation is made to eliminate matrix elements connecting
diGerent electronic states. The hamiltonian function
(31), unlike Eq. (32), has a secular problem involving
only closely spaced states associated with diGerent
orientations of the spin and rotational angular momenta
relative to the molecular frame.

The general procedure for calculating the constants
ao, a, - ., e is given in Appendix I. The terms having
small Roman letters for proportionality factors arise
from the combined effect of rotation and spin-orbit
interaction. Those having Greek letters come from the
second-order eGect of spin-orbit interaction. The orders
of magnitude of the two types of terms are thus

a Bf/hv, u 12/hu, (B h'/8''I),

where f is the conventional spin-orbit parameter and
where hv is the order of magnitude of the energy in-
terval between diGerent electronic states. If the mole-
cule is a symmetrical top or is diatomic, great simpliGca-
tion results, as then out of all the constants ao, a,
only ao, a, and 0. are diGerent from zero.

The secular problem in atomic spectra equivalent to

"To avoid writing radicals, we do not normalize all the har-
monics in the same way; for consistent normalization a factor (&)&

would be necessary in the a and O.-terms.
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Eq. (31) is that of an atom with two spin vectors, say
one electronic, one nuclear, each subject to a second-
order crystalline potential of rhombic structure, such as
prrS, '+ptsS+„+ . , etc. The correlation of the molecu-
lar and atomic quantum numbers is then as follows:

S~S, J~I, X+-+J, K~MJ.

representation. Here, X is approximately, but not
rigorously a good quantum number. On the other hand,
X„described by the quantum number E, is a constant
of the motion if and only if the molecule has axial
symmetry.

Now that a forrnal correlation with atomic spectra
has been established by means of Eq. (33), the matrix
elements of Eq. (31) can be calculated by borrowing
atomic formulas. The elements of the 3, 8, C part of
Eq. (31)are, of course, simply those of the asymmetrical
top, and are given by Eqs. (14)—(15) except for the nota-
tional difference that X now replaces J, inasmuch as
the angular momentum involved in the rotational
kinetic energy of the molecule is that exclusive of spin.
The terms of Eq. (31) containing Greek letters have a
quadrupolar structure of the same type form as would
result if the electron had a quadrupole moment. The
matrix elements of these terms can be obtained by em-

ploying the matrices for S„S„,S, in the essentially
Russell-Saunders system of representation in which S, J
are compounded to a resultant X; the expressions for
S,S„,S S„etc., are then obtained by multiplying to-
gether the matrices for S., S„,S,. The algebra of this
multiplication, though elementary, is rather tedious,
and has already been performed by Rubinowicz. "The
resulting quadrupole amplitudes are given in Condon
and Shortley, " and can be taken over immediately
when appropriate allowance is made for differences in
notation and some investigation is made of how the
normalization factor is to be chosen. (Normalization is
not very clearly discussed by either Rubinowicz or C.
and S.) There are, of course, also the more erudite and
elegant methods of obtaining quadrupole amplitudes

by means of group theory, developed by Brinkman23

and by Racah. ~ The results are, of course, necessarily
the same as- those obtained by the more elementary
procedure when the normalization is properly made,
except for possible differences in the phase conventions.

The matrix elements of the terms in Eq. (31) in-

volving small letters a, , e can be obtained by multi-
plication of the m'atrix elements of the components of
X and S. It is easier to calculate a product of the type
X S„by direct multiplication than one of the form

SQ„, since in the X system of representation the matrix
elements of X, are naturally particularly simple (of
structure (11—12) with X replacing J).

Certain short cuts, however, are available for com-

puting these small letter terms. In the 6rst place,

(33).

' A. Rubinowicz, Z. Physik 61, 338 (1930);65, 662 (1930)."Condon and Shortley, reference 4, pp. 95, 100, and 252-253.
Our S, J, X are. correlated with I., S, J in reference 4. %e are
unable to agree with the rule for finding the phases given on p. 252,
as in taking the square root one should not take the modulus of
the square root of quantities already squared in their table 49;
for example, the —sign given in the third column of the second
row of this table applies when one takes QPR(j) —(j+1)gs

R(j)—(j+1),not )R(j)—(j+1)~.
~ H. C. Brinkman, ZNr Quuwteemechunik der MNltipolstruhling,

thesis, Utrecht, 1932 (published by NoordhoB, Groningen).
s' G. Racah, Phys. Rev. 61, 186; 62, 438 (1942).

We shall not write down the corresponding atomic
hamiltonian function, as it can be obtained by merely
making the replacements (33) in Eq. (31) (for example,
X~S„~JQ„).To bring out the full generality of the
problem, the coupling between the two atomic spin
vectors should be anisotropic, frrSj+f'rsSJ„+.
rather than of the conventional "cosine" type fS I. .
The parallelism established in (33) makes the cross
terms in (31) correspond to coupling between J and S
rather than I and S, but this distinction is immaterial
as regards mathematical structure since J= I+S, and
since there are already quadratic terms in 5.

Indeed, this corresponding atomic problem comes
surprisingly close to being realized in the calculations
of Pryce" and others on the hyperfine structure of
atoms subject to anisotropic powerful crystalline 6elds
which quench the orbital angular momentum. The
coupling between the electronic and nuclear spins then
becomes anisotropic because the dipolar interaction
between the two spins must be averaged over the orbital
wave functions, which usually have less than cubic
symmetry. Actually, the crystalline 6eM does not act
appreciably on the nuclear spin, so that the coe%cients
of the quadratic terms in I in the hamiltonian function
are negligible. However, this fact has no inQuence on
the basic type of complexity of the problem. Of course,
the crystalline electric 6eld does not act directly on even
the electronic spin in atoms, but does give an effective
potential depending on spin alignment because of the
indirect repercussions of spin-orbit interaction.

It would be particularly easy to write down the matrix
elements of Eq. (31) in a scheme of representation cor-
responding to case (a) in diatomic molecules, in which
the spin and total angular momenta are separately
space quantized relative to some axis of reference fixed
in the molecule. This corresponds, of course, to separate
space quantization of the spins in the related atomic
problem. The matrix elements of J would be given by
Eqs. (11) and (12), except that the letter 0 must every-
where replace E, since the notation 0 rather than E
must be used for J, in molecules with spin (see Sec. 5).
The matrix elements of S would be of similar structure
having 5, —Z in place of J, E. However, this scheme
is not a good starting point physically, because the
Coriolis effects of the molecular rotation are far more
important than the second-order effects of spin-orbit
interactions. It is therefore desirable to set up the
matrix elements of Eq. (31) in the X, K system of

~0 M. H. L. Pryce, Nature 164, 11.7 {1949);A. Abraham and.
M. H. L. Pryce, Proc. Phys. Soc. (London) 6M, 410 (1950'); Q,
Keaney, Phys. Rev. 78, 214 (1950).
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TABLE II. Matrix elements of the hamiltonian function (31), with 5, X, J replaced by I, J, F.

(JE I
II

I
JX)= ~ (A +8)[I(1+1) K']—+CE2+xs&0[J (I+1)+I(I+1}—F(F+1)]+[3E'—I(I+1)][ua(J}+na(J) ],

(JEIIIIJX+2)= :f(J,-+X)f(J, +X+1)[r(A ~)+(&+~)s(J)+(P+~v)1 V)]
(JE

~
II~JE&1)= (E+~)f(J, &K)[(d+Ie)8(J)+(8&is)p(J)],

(JX
~
II

~
J 1E)=——'E(J' —E')&[a(p(J)+nx(J)]

(JX
~
II

~

I—1 X&2)=~-'f(J, ~X)g(J—1, ~X)[(&~~)v (I)+(P~&v»(J)]
(JE

~
II~I 1Ea1)—=-', (Ja2K+1)g(J, aE) [(d+ie) q (J)+(8+i~)x(J}],

(JEIII~J 2E)=-,'—g(J, E)g(J, —X)alp{J),
(JE~II

~
J—2 X&2)=-,'g(J, &X)g(J, %X+2)[PW~&]4(I),

(JX
~

H
( J—2 X~1)=~-'(J' —X')&g(J aE+1)[B&ge]P(J),

where
f(g, X) = [(~—S)(*+&+1)]', g(~, y) = [(*-y)(~-y-1)]'

J(J+1)+I(I+1)—F(F+1) 3R(J)[R(J)—1]—4J(J+1)1(I+1}
2J{J+1) ' 2J(J+1)(2J—1)(2J+3)

[F(J)Q(J—1)]l [R(J)—(I+1)]p(J) [F(J—1}F(J)Q(J—2)Q(J—1)]'
J(2J—1)&(2J+1)&' (J—1)(J+1) ' 2J(J—1)(2J—1)(2J+1)&(2J—3)&'

F(J)= (J F+I)(J+—F+I+1), Q(J) = (I+F J)(J+F—I+1), —
R(J)=J(J+1)+I(I+1) F(F+1)=——2I J

unlike the capital letter and Greek terms, they have no
elements of the form AX=&2, inasmuch as X, X„,X,
are diagonal in X, and S„S~,5, have AX=0, &1.
Hence, the small letter terms have

~
DX~ —1. The ele-

ments which are diagonal in X can be obtained by
projecting S along X. Thus, for example, one obtains

x (x S +X„S„+x,S,)x,
XS,=

x(x+1)
x.x.Lx(x+1)+s(sg 1)—J(J+1)j

2x(x+1)

It still remains to compute the matrix elements of the
type AX =&1.The ap term has no elements of this type,
as it is a scalar product diagonal in X. Because of the
similar rotational transformation characteristics of the
corresponding small letter and Greek terms in Eq. (31),
it suKces to compute one of the terms a, , e. The
others will dier only by factors depending solely on

X, E which are precisely the same as for the alpha-
betically corresponding Greek terms, already computed
by using the known results on quadrupoles. The easiest
term to compute is ut 2X,S,—X,S,—X„S„), whose
nondiagonal elements in X are the same as those of
3X,S„ inasmuch as x,S,+X„S„+X,S, is diagonal in
X. Essentially, X,S, has been computed in obtaining
the expression (25), which differs from X,S, only by
having an extra factor —l and in having the notation A

rather than E (compare Eq. (20)).
Instead of giving the matrix elements obtained by

this procedure immediately, we defer writing them down
until Table II of Sec. IO, where they are all given,
however, in notation appropriate to the case that the
spin is nuclear rather than electronic. We do this because
the formulas are most likely to be used in the nuclear

case in view of the interest in nuclear quadrupole
moments and of the comparative rarity of polyatomic
molecules with nonvanishing electronic spin. The formu-

las of Table II, however, apply equally well to the pres-
ent, electronic case, if a simple change in notation is
made, vis. , the replacement of the letters on the right
side of (34) by those on the left.

IO. COUPLING OF NUCLEAR SPIN IN MOLECULES
DEVOID OF ELECTRONIC SPIN

Ke now turn to molecules possessing nuclear spin.
For simplicity, we assume that the molecule has only
one nucleus with spin, and that it has no resultant
electronic spin angular momentum, as is true for the
vast majority of molecules. The mathematical problem
is then precisely the same as that considered in the pre-
ceding section, the only difference being that the spin
has a nuclear rather than electronic origin. Hence, all
the theory and results of Sec. 9 are applicable, provided
only that the following change in notation is made:

S, J, X, E+-+I, P, J, E.
Except for this change in notation, the effective hamil-

tonian is still given by Eq. (31) (see Appendixes I
and II). Since the interaction of nuclear spin with the
molecule is comparatively weak, it is natural to use a
system of representation which diagonalizes the total
angular momentum J of the molecule exclusive of
nuclear spin. By means of the method described in

Sec. 9, it is found that in this system the matrix ele-
ments have the values given in Table II.

Matrix elements in which J increases rather than
decreases have not been written down, but can be ob-
tained by using the hermitian property (see Eq. (12)).
In forming the conjugate, the expressions ~, a, b,
can all be taken as real. The negative sign entering in
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some of the elements of the type AJ = &1 is a matter of
phase convention and is employed to conform to the
usage of Condon and Shortley.

The matrix elements given above are more general
and complete than needed for most purposes. In the
first place, the molecule may have an axis of symmetry
(for example, NHs or a diatomic molecule). Then all
elements nondiagonal in E vanish.

Regardless of whether the molecule has any particu-
lar symmetry, elements nondiagonal in J may be
neglected in the first approximation if the coupling of
the spin to the molecular frame (terms involving the
constants a, b, , e) is small compared with the rota-
tional energy. Since this coupling arises only in virtue
of higher order effects of magnetic interaction, such a
neglect is usually pretty well warranted. However, we
have included the elements nondiagonal in J, since
sometimes high accuracy may be required and since,
furthermore, accidental degeneracies may sometimes
make nondiagonal elements abnormally important.

Ordinarily, it is convenient to start a perturbation
calculation for the effect of spin coupling in a system
of representation which diagonalizes the purely rota-
tional energy. The secular determinant for the asym-
metrical top factors twice: viz. , once according to the
evenness or oddness of E and once again after the
Wang transformation" is made to wave functions which
are either even or odd (and thus noncombining) with
regards to refiection in a principal plane containing the
z axis. The inclusion of the magnetic spin coupling
energies can spoil the rigor of both factorizations, for
the principal axes for the spin quadratic forms in
Eq. (31) are not, in general, the same as principal axes
of inertia. (One can see this, for instance, from the fact
that substitution of an isotope can rotate the axes of
inertia, but does not change the quadrupolar terms
n, . , e.) However, the only elements of this spin
interaction which enter in the first approximation of
perturbation theory are those which are of the form
AJ=O; DE=0, &2 and which connect states of like
Wang symmetry. We omit giving details of the pro-
cedure for transforming the matrix elements from the
E system of representation to the Wang scheme and
6nally to that which diagonalizes the asymmetrical top
part of the energy. This procedure is fairly straight-
forward and has been described in detail many places
in the literature. "

As far as we know, this is the first time that all the
matrix elements have been explicitly listed, inclusive of
both those of quadrupolar ( I s) and dipolar ( J,I,)
structure. It is, however, true that the quadrupolar
elements which are most important for most problems
have been given by Bardeen and Townes" and by
Bragg, "and the dipolar terms which are diagonal in J

25 J. K. Bragg, Phys. Rev. 74, 533 (1948); S. Golden and J. K.
Bragg, Phys. Rev. 75, 735 (1949); G. B. Knight and B.T. Feld,
Phys. Rev. 74, 354 (1948)."J. Bardeen and C. H. Townes, Phys. Rev. 73, 97 (1948).

have been computed in largely unpublished work of
Henderson. ' The methods previously employed to
obtain the matrix elements are different from the one
which we use, which in our opinion is the simplest.
Most writers" compute the matrix elements in a system
of representation in which I and J are separately
space quantized relative to axes fixed in space, and then
pass to the Ii, Mp system by using an argument of
Casimir's" based on the invariance of the diagonal sum
and predictions of group theory concerning the mode of
dependence on P. Our method frees us from the need of
invoking the 3fz, Mz system as an initial step, although
the difference in ultimate labor is small.

There is a vital difference between the nuclear and
electronic cases concerning the significance of the con-
stants a, , e. Nuclei have bona fide quadrupole
moments rather than merely terms of quadrupolar
structure resulting from the second-order effects of the
magnetic dipole moment (called henceforth "pseudo-
quadrupolar terms").

If only the bona fide quadrupole effect is present, the
constants n, ., e have the following values:

( B'V B'V B'V)
a=De 2

Bs' Bx' By' J
'

pB'V B&Vq
P=3D]

0 Bx' By' )
(35)

y=6DBsV/BxBy, 8=6DB'V/BsBx, e=6DB'V/ByBs

with
D = eQ/12I(2I —1).

Here, eQ is the quadrupole moment of the nucleus, as
dehned by Casimir" and by the nuclear physicists at
Columbia. The meaning of this definition, and the
derivation of Eqs. (35), which is elementary, are given
in Appendix II.

Besides the bona fide quadrupole effect, the pseudo-
quadrupolar one is also present. The theory in Ap-
pendix I is developed explicitly for the higher order
effects of electronic spin, but applies equally well to the
nuclear case if the magnetic moment be ascribed to the
nucleus rather than electron. Thus, if the pseudo-
quadrupolar eBect alone is operative, the constants
~, a, b, , e have values which can be calculated by
the procedure given in Appendix I, but with the modifi-
cation (34) in notation, and with g, P interpreted as
nuclear g factors and magnetons (see note 35).

Actually, of course, the bona fide and pseudo-quad-
rupolar effect are simultaneously present, and so the

sr R. S. Henderson, Phys. Rev. 74, 106, 626 (1948).
2' In the calculations which the writer made in 1946, and which

were quoted in a short paper by Dailey, Kyhl, Strandberg, Van
Vleck, and Wilson, Phys. Rev. 70, 984 (1946), the quadrupole
matrix elements were found by squaring out those given in
reference 1 in the case (b) system of representation. The present
paper is essentially a refinement of our earlier work, as it led to the
discovery of how to adapt the Klein procedure.

H. B.G. Casimir, "On the Interaction between Atomic Nuclei
and Electrons, "Prize essay published by Teyler's Tmeede Genoot-
schap (Haarlem, 1936).
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actual values of the constants o., -, e will be the sum
of the values calculated from the two types of eGects
separately. As Foley" and Wick" have emphasized,
care must be exercised that the pseudo contribution is
not important when the quadrupole moment is de-
duced from the observed dependence on quantum
numbers under the assumption that only the bona fide
mechanism is operative. Fortunately, the correction for
the pseudo eGect is usually quite inconsequential if the
electronic states are widely spaced.

Ordinarily, the "dipolar" terms (type as, , e in
Kq. (31)), which arise from interaction of the nuclear
magnetic moment with the molecular rotation, are
relatively unimportant. Evidence for a dipolar contribu-
tion has, however, been found in the microwave spec-
trum of ammonia. '

frequencies cannot enter in the fourier components or
matrix elements of the electric or magnetic moment
relative to axes travelling with the molecule. Mathe-
matically, this truism is expressed by the fact that the
moment p commutes with the total angular momentum
when both are referred to axes mounted on the mole-
cule, as it can be shown that p, satisfies commutation
relations similar to those of Eq (8. ) for the internal
angular momentum P. However, if our method has been
used to solve the secular problem of the energy levels,
the intensities can be computed in a straightforward
manner by the following procedure.

The Z component of dipole moment in a fixed coordi-
nate system is given in terms of the components
p,„y„, p,, measured relative to axes mounted on the
molecule by the relation,

ll. OTHER PROBLEMS AMENABLE TO THE METHOD IJz = &z*u*+ &z,ps+ &z.js., (36)

There are other, more complicated problems which
can be treated by the present method. The advantages
of our procedure probably increase somewhat with the
complexity of the model, but these other problems in-
volve too much detail to be appropriately elaborated
upon here. Most of them are of the type where the
molecule has two (or more generally ts) spin angular
momentum vectors, for example, simultaneous elec-
tronic and nuclear spins, or two nuclei with spins.
Such problems are formally reducible to atomic ones
involving the coupling of three (or more generally
n+1) angular momentum vectors. Because of the di-
pole-dipole form of the interaction between magnetic
moments, and also because the coefficients 2, 8, C in
Kq. (5) are unequal, the coupling will, however, be less
isotropic than the cosine or scalar product type usually
encountered in atomic spectra.

The coupling problems connected with vibrational
angular momentum are also amenable to the present
method. 32

12. INTENSITIES, AND BEHAVIOR IN
EXTERNAL FIELDS

So far, we have discussed only frequencies, but not
intensities, a factor of almost equal significance in the
analysis of many experiments. At first sight, it seems
that our method is inherently incapable of giving in-
formation about intensities in rotational fine structures
(I', Q, R branches, etc.), for its very essence is that it
enables one to work only with axes mounted on the
molecule, without the need of referring to any fixed
in space. Physically, it is obvious that the rotational

30 H. M. Foley, Phys. Rev. 72, 504 (194/)."G. C. Wick, Phys. Rev. 73, 51 (1948).
"In fact, in the papers of W. H. Shafter, H. H. Nielsen, and

L. H. Thomas on the rotation-vibration energies of tetrahedrally
symmetric molecules, the transformations between different
systems of representation are obtained by a procedure which is
implicitly equivalent to our method, although the Klein commuta-
tion rules are not mentioned as such. (Phys. Rev. 56, 895, 1051
(1939).j

where the X's are direction cosines. Suppose that the
starting point of the perturbation or secular calculation
is some given standard system of representation. Then
p, p„, p, are matrices known from the "internal"
characteristics of the molecule and are independent of
how it is oriented in space. For example, the matrix
elements of electric moment involve only the electronic
quantum numbers e. The matrix elements of the direc-
tion cosines can be calculated in this scheme of repre-
sentation by known kinetimatical and quantal prin-
ciples. This can be done without group theory or wave
functions (one of the. aims of our approach); in fact,
essentially the X's were calculated by Dennison" in
one of the early papers based on the purely Born-
Heisenberg formulation of quantum mechanics. By
taking the direct product of matrices, the elements of
Eq. (36) can then be found. The initial system of repre-
sentation is not the appropriate final one, but one can
transform to this and so find the relevant amplitude
SpzS '. The important thing is that solution of the
energy problem gives one the transformation matrix S.
Of course, Eq. (36) gives only the Z component of
intensity, but the total can be found from spectroscopic
stability or standard formulas for the relative intensi-
ties of Zeeman components.

Similarly, the secular problems connected with elec-.
tric and magnetic fields can be formulated even in our
method. Consider, for example, the Stark eGect. The
extra term added to the hamiltonian function is then
proportional to (36), and its matrix elements can be
calculated by the procedure explained above. The
important thing is that the equatorial quantum number
cV~ (M's in nuclear problems) enters the secular prob-
lem only as a parameter, since the hamiltonian function
is diagonal in M~ if the direction of the field is taken as

"D. M. Dennison, Phys. Rev. 28, 318 (1926). For greater de-
tail see Casimir s thesis (reference 3), or his paper in Z. Physik 59,
623 (1930), in which, however, he says there are several algebraic
errors.
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that of space quantization. Oftentimes, it is a sufficient function is then merely Q(p J)Mz/(J'+ J)(Q=8 or O)
approximation to retain only terms diagonal in the total and p, J, being rotationaly invariant, can be calculated
angular momentum. The extra term in the hamiltonian purely from the internal secular problem.

APPENDIX I. THE EFFECTIVE HAMILTONIAN CAUSED BY HIGHER ORDER EFFECTS
OF MAGNETIC INTERACTION

Ke assume that there may be several electrons with spins, but no nuclear spins. The hamiltonian arising from
the interaction of these spins with the electronic and nuclear orbital motions, and with each other is'4"

H= (gP/c)Z&Z, (Z&e)[(r, r&—)X(~v,—vx)] s;+(gP/c)Z»;( e)[(—r, —r&))((~v;—vi)] s;
+g'P'Z~»" r;i,

—'[—3(s; r;—ri)(s~ r,—ri,)+(s; si)r;~']. (37)

Here small and capital subscripts refer respectively to electrons and nuclei. The Lande g factor is 2, and P is the Bohr
magneton he/4m. mc. The velocities v are to be computed relative to a fixed coordinate frame. The first and second
terms arise respectively from the interactions of the spins with nuclear and with inter-electronic fields. The factors
—, come from the Thomas correction. The third term is the dipole-dipole coupling between spins.

We must now distinguish between the parts of Eq. (37) which affect the energy in the first and second approxi-
mations of perturbation theory. These parts we call Hi and H2, respectively. In Hi (but not H2 which is larger
because electrons have higher velocities than nuclei), it is allowable to average over the orbital motions of the
electrons. The terms which contribute to HJ are those having nuclear velocities as factors, and the spin-spin inter-
action. The nuclear velocity vz is sensibly the same as w&&rz, where rz is the radius vector from the center of
gravity, and u is the angular velocity of rigid rotation. If x, y, s denote principal axes, then or, ~„, co, can be re-
placed by X,/I~, X„/Iii, X,/Ic where X„X„,X, are the components of the molecules angular momentum ex-
clusive of spin. (The contributions of the electronic orbital angular momentum to the total angular momentum
can be disregarded in this connection, as this kind of angular momentum is highly oscillatory and makes no con-
tribution in the mean. ) Referred to any set of axes, an expression of the form —3(s;.r;—r&)(sz r;—ri)r;& '+s; s&.
will be a linear combination of the five expressions

2szjsz& ssjss& spjspp~ szjszp spjsf/i& szjs+p+spjsx&& szjsz&+st&szj& spjsz&+szjsp&

We will prove later that, as long as we are interested only in matrix elements entering, in the spin and rotational
fine structure of a given nondegenerate electronic state, the matrix elements of the five quantities (38) are
proportional to those of

2S,'—S,'—S„', S,'—S„', S,S„+S„S, S,S,+S,S„S„S.+S,S„.
From the above it follows that H~ has the structure,

Hi ~q, q'=z, y, z XqSq'+~~i" 5 ~P py

(39)

(40)

where the a«are constants with aqq cq q~ and where we have used T~, . , T5 abbreviations for the Ave ex-
pressions (39).

We must now consider the effect of the remaining or H2 part of (37). In addition, we will include the cross
term in S and L, which we denote by Ha, which arises because the energy of rigid rotation is really A[(X,—L,)'
+B(X„L„)'+C(X, L—,)', rather tha—n AX,'+BX„'+CX,2. The form of H2+H3 is

H2+H3 ——Z; $q*;sz,+qy;sy, +ps, ss;] 2AL„X,—2BL—„X„2CL,X,. — (41)

Here p~, , p», pz, , L, L„, L, are matrices, which are independent of the spin and rotational quantum numbers, and
all of whose elements are nondiagonal in the electronic quantum numbers e. So Eq. (41) has no effect in the first
approximation of perturbation theory. In the second approximation, Eq. (41) gives rise to an "effective hamil-
tonian" for the secular problem associated with the rotational and spin fine structure of the given electronic state
under consideration. It is usually a good approximation to divide the quantum numbers into two categories,
vis. , the "high frequency" quantum numbers, whose effect on the energy is large, and the low frequency ones whose
inhuence upon the energy is relevant only when fine structures are considered. In the problems of the present

"See, for instance, %. Heisenberg, Z. Physik 39, 514 (1926).
35 In the present appendix, we do not explicitly give the calculation for the case when the free spins are nuclear rather than electronic.

However, in broad outline, the present procedure also applies to the nuclear case, and it is not hard to see that the form of dependence
of the final effective hamiltonian on the spin and rotational angular momentum vectors is the same as in the electronic case, except, of
course, for the difference (34) in notation. When dealing with nuclear spins, one should consider the small letters in Eq. (37) as referring
to nuclei, and the capitals to electrons. Of course, the factors —e and Ze are then interchanged; the g factors depend on k and must be
taken inside the summation signs. Also, because of the reversed signi6cance of the letters, one uses the approximation v~= copra, rather
than v~ ——co)& r~.
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paper, i can be identified with the pair of quantum numbers X, Eor Z', E (depending on the system of representa-
tion employed), and / includes not only the electronic orbital quantum numbers 0 but also the quantum number 5
which specifies the total spin of the molecule. In the present article, we are concerned entirely with the secular
problem associated with variable values of the index i but fixed L. General perturbation theory" shows that the
eGective hamiltonian for problem which results from going to the second approximation and eliminating the lead-
ing terms nondiagonal in j, has matrix elements given by

(il [IIs+s [
i"i')(i'V [IIs~o [

i'l)
(42)

Here it is assumed that the effect of the indexi on the frequency denominators can be neglected in comparison with
that of /. In our problems we may assume the Russell-Saunders system of representation to be a good approxima-
tion, as magnetic forces are usually small compared to electrostatic. Then the matrices &~I„~,I.„~~ will involve
only orbital quantum numbers, and the matrices s~I, will involve, besides the quantum number associated with the
index i, the spin quantum number S. The initial and final values of S for any spin vector (regardless of whether it
is the total spin, or that of only one electron) cannot differ by more than uriity. From these observations it is seen
that it is possible to decompose Eq. (42) into spin and orbital factors, but it must be cautioned that, in general, the
dependence of the frequency denominators on S cannot be disregarded. Thus, the part of Eq. (42) involving, say,
the product sz,sz; can be written as

Z; Zs Cs (Si[s;[S'i")(S'i"[s s[Si'),

whe~~ Cs =&o (0[ted*;[0')(0 I ti*&[0)/»o s', os.
The next step is to note that matrix elements of the type

&,'. (2(Si [ s, [S'i")(S'i"[s*s[Si')—(Si [S*;[S'i")(S'i"
[
S* [Si')—(Si [5» [ Si")( SV' S[oi,[Si') I

are (even without summing over 5'), the same as those of

(i [25,'—S,'—5 '[i'),

(43)

(45)

except for a proportionality factor independent of i, i . Those familiar with group theory will recognize this as a
consequence of the transformation properties of second-order spherical harmonics; without using group theory,
the proportionality of (44) and (45) can be verified by explicit multiplication of matrix elements. "A similar pro-
portionality, with the same factor, holds for expressions similar to (44) but having one of the other four structures
listed in Eq. (39). Summation over S establishes the proportionality between Eqs. (38) and (39) utilized in earlier
parts of the proof, but for the present purposes the dependence of Cz on S' requires use of our proportionality
lemma in unsummed form. There is also proportionality, but with a diferent factor, between a scalar product
s*,s*s+s»sio+s~, s.s and the constant S,'+S„'+5,'=5(5+1). In connection with the IC, s type of terms, we use
the fact that the elements of s~„s», sz; diagonal in S are proportional to those of S„S»S,. In consequence there
are analogous proportionality theorems applicable to E, 5 terms of structures corresponding to (44) or (45).os

Thus, the elements of 2X,sz, —X s~;—X„s~;, diagonal in S are, except for a common factor, the same as those of
2X,S,—X S,—XySy.

From Eqs. (42) and (43) it follows that the effective harniltonian resulting from the second-order perturbation
calculation behaves essentially like a quadratic form in the various components of angular momentum s~, , X,.
When the terms in this form are grouped so as to correspond to the five types of structures (45), and the invariant
scalar product (S S) (along with analogous structures in X, S) and when the proportionality theorem of the pre-
ceding paragraph are utilized, it is seen that this hamiltonian does indeed have the form represented by the terms
ao, a, b, , e of Eq. (31). We have not included the invariant term proportional to 5 '+S„'+S,' in Eq (31).
since it is only a trivial additive constant. On the other hand, the ao term of (31) is contributed by the scalar product
(X,5 +X„S„+X,S,). The constants ao, a, , e can all be taken to be real. This follows from the fact that the

"See, for instance, Sec. 48c on what is termed "Van Vleck's method" in E. C. Kemble, Fundamem/a/ Principles of Quartern 3fechanics
(Mcoraw-Hill Book Company, Inc. , New York, 1939). The calculations of the present appendix are in substance the application and
amplification of this method for the case that the original hamiltonian is the direct product of orbital and spin matrices. They thus repre-
sent essentially the same procedure as that which the writer utilized in a paper on relaxation times [Phys. Rev. 57, 440 (1940lg, and
which was independently developed and described more fully by M. H. L. Pryce, Proc. Phys. Soc. (London) 63, -25 (1950).

'7 See, for instance, Condon and Shortley, reference 4, p. 64. It is to be emphasized that the proportionality theorems hold only if one
is careful to decompose the quadratic form properly into the various harmonics. The matrix elements of sz; do not, for instance, have
the same structure as those of S, (take, for example, 5;= —',, S=1 then sz is a constant matrix, but S,' is not). The proportionality has,
except for difference in notation, been essentially verified in Table II of Sec. 10 (after, however, summing over the intermediate states),
for the matrix elements of Table II diagonal in- I have the same dependence on E as though S, and Xwere both replaced by J in (31).' The terms of the E', S type result from the cross product H2. H3 in Eq. (42). Terms of the E' or II/ type merely alter slightly the.
effective rotational constants of the molecule, and are of no particular interest for our purposes,
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orbital functions can all be chosen to be real, and that consequently the orbital matrices g~;, g~~, - . -, I. , -, I.,
involved in (43) can all be taken to be pure imaginaries, because of the factor h/2s-i in momentum operators. From
this type of argument it also follows that the final quadratic form will involve no antisymmetric structures such
as, 5,5„—S„S,etc.

We must not forget that besides the contributions to a, -, e coming from the second-order mechanism dis-
cussed in the preceding paragraph, there are also the contributions of the first-order terms IIi given in Eq. (40),
i.e., the magnetic fields caused by the rotation of the bare nuclei and the spin-spin coupling. It should be cautioned
that the order of the perturbation theory has nothing necessarily to do with the magnitude of the terms. In mole-
cules with loosely bound electrons, (40) is, in fact, apt to be overshadowed by the second-order effect."We do not
give very explicit formulas for the coe%cients ap ' 6 and have contented ourselves with indicating how they
can be worked out. Usually, little can be done with explicit numerical constants, since not enough is known about
electronic wave functions. The factors entering in the proportionality theorems depend on exactly how many
unpaired electrons there are in the atom, the resultant spin, etc. We have developed the theory for a quite compre-
hensive model, in order to show that (31) holds very generally.

APPENDIX II. THE EFFECTIVE HAMILTONIAN
ARISING FROM THE BONA FIDE NUCLEAR

QUADRUPOLE MOMENT

We imagine that the nucleus has a continuous charge
distribution devoid of a dipole moment" and expand
its energy in a electrostatic potential V through terms
of the second order:

V= Us+ (cl'V/f)x")
~

px"dvJaJ
r

+ ', (cl'V/f)z")-pz"dz. (46)J J

Here x', y', s' are coordinates mounted on the nucleus,
with origin at its center, and with the s' direction its
axis of symmetry. Because of this symmetry, the inte-
grals involving x" and y" are equal, and those involving
x'y', y'z', x'z' vanish. (Even if geometrically the nucleus
does not have axial symmetry, the averages come out
as indicated because of the very rapid precession about
the nuclear spin axis, the effective axis of symmetry.
The precession frequency corresponds to matrix ele-
ments nondiagonal in I; and, of course, the excitation
energy required to change the resultant spin of the
nucleus would be enormous. ) If we utilize the fact that
the potential satis6es Poisson's equation, and drop
uninteresting terms which are rotation invariant,
Eq. (46) is the same as

O'V O'V O'V
V= Vp+—2 — — eg

12 Bs2 8$2 By2
with

We must now express the derivatives of the potential
in terms of coordinates fixed in the molecule, by using

"See Wick, reference 31, and Z. Physik 85, 4 (1933); Nuovo
cimento 10, 118 {1933).

4' See E. M. Purcell and N. F. Ramsey, Phys. Rev, 78, 807
(1950);J. H. Smith, thesis, Harvard University.

transformation relations of the type

cl'V/rlz's= Z„,s, „,,X, „'A, ,cl'V/BPclq.

O'V O'V O'V
V= Vp+ —2 — — eO,

gy&
(50)

in a state when the nuclear spin is individually, space
quantized as parallel or antiparallel as possible relative
to a fixed direction of axial symmetry. This procedure is
tantamount to integrating in this state in the unprimed
rather than primed axis system and one obtains eQ
rather than eQ if one replaces x', y', z' by x, y, z iu Eq.
(48). From (35) and the fact that I,'+I„'+I,'= I(I+1)
we see that (50) is indeed the eigenvalue of (49) for
the state I,= +I if the symmetry is such that only n is
nonvanishing.

' For a comparison of the normalization schemes which differ-
ent writers have used to define the quadrupole moment, see B.T.
Feld, Phys. Rev. 72, 1116 (1947). In the 1946 paper of Bailey,
Kyhl, Strandberg, Van Vleck, and Wilson (reference 28) the
quadrupole moment was defined as I(I+1), rather than (2I—1)//
(2I+2) times the integral (48), (giving an extra factor 8 for the
case I= 1 of NH3). This definition, though not standard and hence
now abandoned, correlates quadrupolar energy in the simplest
way with the squares of the angular momentum matrices.

4s The bracketed factor in Eq. (50) is usually written as 3BsV/Sss.
This is allowable if V satisfies Laplace s equation. Actually, it
satisfies Poisson's, and use of the form with 38'V/Bs' is allowable
only if one excludes from V the contribution from the part of the
charge distribution which overlaps the nucleus.

The matrix elements of ),„),.„, ), , differ from
those of I„I„,I, only by a factor 1/(Is+I) l, and so Eq.
(47) becomes

V= Vo+ [».' I.' I—,'j+e—L~' I,'j—
+y[I,I„+I„I,]+5[II,+I.I ]

+,P„I,+I,I„g, (49)

where n, , e have the values given in Eq. (35). The
expression eQ used in Eq. (35) is P(2I—1)/(2I+2)]&/.
We define eQ in this fashion in order to secure agreement
with the standard definition" of the quadrupole mo-
ment, which, is so normalized that the quadrupolar
energy is4'


