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The factorization method is an operational procedure which enables us to answer, in a direct manner,
questions about eigenvalue problems which are of importance to physicists. The underlying idea is to con-
sider a pair of Grst-order difterential-difference equations which are equivalent to a given second-order differ-
ential equation with boundary conditions. For a large class of such difFerential equations the method enables
us to 6nd immediately the eigenvalues and a manufacturing process for the normalized eigenfunctions.
These results are obtained merely by consulting a table of the six possible factorization types.

The manufacturing process is also used for the calculation of transition probabilities.
The method is generalized so that it will handle perturbation problems.
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1. Introduction

~ 'HIS report deals with a new technique for solving
eigenvalue problems as they most frequently ap-

pear in wave mechanics and in Maxwell's theory with
imposed boundary conditions. Special attention is given
to quantum theory where the field of applications is
very wide.

To introduce the idea behind the method let us

briefly mention a subject which is often discussed: the
analogy between Maxwell's and Dirac's equations. Both
are linear systems of equations and each of them con-
tains partial derivatives of the first order. Both Max-
well's and Dirac's equations are Lorentz invariant. We
may remark, in passing, that in the case of Maxwell's
equations the linearity may be an over-simplification
which leads to the difBculties with inGnite self-energies.

But, if we consider only regular solutions, as we shall,
we may ignore this difhculty.

Historically, the Maxwell and Dirac equations were
each preceded by a scalar theory. In the case of Dirac's
theory the preceding one was the Schrodinger theory,
which is still applied to a wide range of quantum-
mechanical problems. The scalar theories lead to one
partial diGerential equation of the second-order con-
taining the Laplacian or d'Alembertian. As these names
indicate the study of such scalar equations is an im-
portant chapter in the mathematics of the nineteenth
century. It led to potential theory, to Legendre, La-
guerre, Jacobi, Tchebycheti', and Hermite polynomials
and to Bessel functions, all of which form a part of mathe-
matical physics which was completed by the time scalar
Geld theories were being replaced by vector, tensor, and
spinor theories.

Thus the technique of solving Maxwell's and Dirac's
systems of equations became modeled upon the scalar
theories. This is especially evident in the case of Max-
well's equations. There the usual procedure is to intro-
duce a vector and a scalar potential and then obtain
four equations of the type studied in a scalar theory.
If you think about an application of Maxwell's theory
to a wave guide with rectangular or circular cross
section, or to an antenna, you see how the boundary
conditions Gnally lead us to a set of ordinary diGerential
equations of the second order.

In many respects the situation is even simpler in
wave mechanics. There the boundary conditions are
more intimately connected with the differential equa-
tion itself and they usually mean single-vaiuedness and
quadratic integrability.

Thus, both in electromagnetic theory and in quantum
theory, we are lead to equations of the type

(d'y/dh')+ r(x, m)y+ Xy =0.

Here r(x, m) is a function which characterizes the par-
ticular problem. We shall assume m to be a non-nega-
tive integer

m=o, 1, 2, ~

which is gained through the process of separating
variables; its value is restricted by the boundary condi-
tions. In most cases the boundary conditions require
further that ) have discrete eigenvalues

X Xg A2 X)

Thus the typical eigenvalue problem can be repre-
sented by a lattice of points in the (l, m) plane
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For every line connecting the lattice points and parallel
to the m-axis there exists a X~. For every point on the
lattice there exists a function y& (x) satisfying some
boundary conditions.

All we have done so far is to recapitulate an idea
familiar to every theoretical physicist; it is a corner-
stone of

'

mathematical investigations of- physical
problems.

1.1 Characterisatiol of the factorization method

The classical method consists in, erst 6nding general
solutions of the diBerential equation and then deter-
mining the special values of ) which allow these solu-
tions to satisfy the boundary conditions; thus the func-
tion yp(x) belonging to each point on the lattice is
obtained. This function can then be normalized and
Anally used, for example, to calculate transition
probabilities.

The factorization method outQanks and unites the
historical approach. This new method leads directly
to the eigenvalues and to a manufacturing process for
the normalized eigenfunctions. The manufacturing
process itself can then be used to calculate the transi-
tion probabilities.

The factorization method either treats the original
Grst-order differential equations directly or replaces the
second-order differential equation by an equivalent pair
of 6rst-order equations of the form

~ h(x, m+1) ——Yt" [X—L(m+——1)5&Yp+'
dx

=P —I( )5'Y

constantly increases. It is therefore gratifying to know
that the factorization method can be generalized to
handle perturbation problems. In some cases, as in the
Stark eGect, the method leads us more quickly than any
other to the solution.

The factorization method owes its existence primarily
to a paper by Schrodinger (41).' His ideas have since
been considerably generalized (21, 22, 24, 25, 27, 28, 32,
42, 43, 46). There were, however, earlier indications of
the idea in Weyl's (51, p. 231) treatment of spherical
harmonics with spin and Dirac's (9) treatment of angu-
lar momenta and the harmonic oscillator problem. More
recently an alternative to the factorization method has
been given by Inui (29).

Almost any section of this report can be read once
the basic ideas in Chapter 2 have been understood.

2. Theory of the Factorization Method

In this capter we begin by assuming that an equation
has been factorized and then proceed to demonstrate,
by developing 6ve theorems, the consequences of this
fact. We shall see that the factorizing of an equation
enables us to write down immediately the desired
eigenvalues and the normalized eigenfunctions.

In the next chapter we shall show how to find the
factorization of a given equation. In fact, the problem
of factorizing will be reduced to one of consulting a
table of only six general types. This table, with many
important special cases, is given at the end of the paper.

Thus this chapter and the next contain only the idea
and technique of the factorization method on which the
examples in the remainder of the paper are based.
Almost any subsequent section can be read, without
loss of continuity, immediately after reading Chapter 2.

These equations can be obtained from a table of all
possible factorizations. There are only six possibilities,
and even these six are not independent. Once the proper
factorization is found from the table, the eigenvalues
and the manufacturing process for the eigenfunctions
can be written down immediately.

The table can be used in other ways. For example,
if the eigenvalues are already known, corresponding
possible potential functions can be found from the table.

What is the range of validity of this new method?
Let us concentrate our attention on wave mechanics.
There we find some "pure" problems, by which we
mean those which can be solved rigorously without the
use of any perturbation or numerical procedure. All
these pure problems can be solved quickly and in a
unihed way by the factorization method. Moreover,
each of the iix possible factorization types has a
physical image in Maxwell's theory, or in quantum
theory, or both.

Yet "purity, " though a desirable phenomenon, is a
rare one and as science and its techniques develop, the
number of non-pure cases built around each pure case

(d'y/dx')+r(x, m)y+Xy=0 (2.1.1)

where the parameter m=mo, mo+1, mo+2. ; here we
will take mo= 0 but, as we will see, this assumption does
not acct our Gnal conclusions.

Such a transformation is possible if, in the original
form

d t' dP)—
) p—~+qP+7tP=O,

d84 dg]

the functions p, p are never negative and p/p exists
everywhere. The transformation connecting these
equations is (6, p. 250):

X=(pp)&P, dx=(p/p)&d8. (2.1.2)

~ References given in parentheses are placed at the end of this
article.

Z.1 Standard form

To systematize our procedure we shaB always trans-
form the considered differential equation into the
standard form



L. INFELD AND T. E. HULL

Z.Z Definition and fundamental ulea; Theorem I
We say that Eq. (2.1.1) can be factorized if it can be

replaced by each of the following two equations:

+H~+~ H~+~y(&, m) = P,—L(m+ 1))y(&, m) (2.2.1a)

H +H yP, m) =P—L(m)) y(X, m) . (2.2.1b)

where
+H"=h(x, m)a(d/dx). (2.2.1c)

The dependence of y on x has been suppressed. Just
how the +H and L(m) are found in a given problem
will be considered later (Sec. 3.1).

We should note that (2.2.1a) can be obtained from
(2.2.1b) by interchanging the H operators, and chang-

ing m to m+1 except in the function y(), m).
The fundamental idea of the factorization method

can now be established:
Theorem I. If y(X, m) is a solution of our differential

equation thee

y(X m+1) = Hm+'y(X m) (2.2.2a)

y(X m —1)=+H"y(), m) (2.2.2b)

are also solutions corresponding to the same ) but to the

dQFerent m's suggested by the notation Thus, .—if we have
one solution, we can use our B operators to go up or
down to other solutions; continuing the process we
would obtain a ladder of solutions belonging to a fixed X.

For the proof we multiply (2.2.1a) by H +' and
(2.2.1b) by+H . The results are

H +'+H +'( H™+ly('A m))
=P.—L(m+1))( H~+'yP. m)) (2.2.3a)

+Hm —Hm(+Hmy(g m))
= P.—L(m)) (+Hmy(X m)). (2.2.3b)

Comparison of (2.2.3a) with (2.2.1b) shows that
y(X, m+1) as de6ned above is a solution of our equa-
tion with m replaced by m+1. Similarly y(X, m —1) is a
solution with m replaced by m —1.

We can now interpret Eqs. (2.2.1) as stating: going
one step up the ladder and one step down (or vice versa)
we arrive at the solution from which we started, but
multiplied by X—L(m+1) (or X—L(m)). Of course,
through (2.2.2) we may reach a solution which vanishes
identically; this important situation, which does not
violate Theorem I, will be considered in Theorem IV.

In a restricted sense Eqs. (2.2.2) are equivalent to the
original differential equation (2.1.1) or (2.2.1). The
restriction turns out to be a fortunate one in that, with
the proper interpretation of (2.2.2), it leads us to con-
sider only those solutions of (2.1.1) which are quad-
ratically integrable. And, because of the probability
interpretation of the wave function in quantum me-
chanics, we will look for only those solutions which do
satisfy this condition. (We have not yet, however, dis-
tinguished between those which do and those which do
not; our theorem is true in either case.)

Z.3 Mutual adj ointness of the operators; Theorem II
Theorem II.

y( H"f—)dx= (+H y)fdk

if qf vanishes at the ends of the interval and the integrands
are coetieuous &s the ieterval. —The proof is self-evident.

Our theorem means that the H operators are mutually
adjoint.

Z.4 Boundary coedi6oe; Theorem III
Ke shall be interested in differential equations whose

coeKcients have singularities only at the ends of the
range of the independent variable. In fact, it will be
shown in Sec. 3.1 that the range can be chosen so that
this is the case whenever a factorization is possible.
The quadratic integrability of a solution will therefore
depend entirely on the behavior of the solution near the
end points and so the condition of quadratic integrabil-
ity is essentially a boundary condition. By studying the
behavior of the solution and the corresponding H
operators near an end point we can establish the follow-

ing theorem for each of the six general factorization
types found in Sec. 3.1:

Theorem III. If y(X, m) is quadrati cally integrable over

the entire raege of x aed I (m) is an increasing functi on of
m (0&m), then the H operation (Z.Z.Za) of raising m
produces a fuectioe which is also quadrati cally ietegrable
and which vanishes at the eed points If L(m) .is a de
creasing fuectioe of m (0&m) thee the H operation
(Z.Z.Zb) of lowering m produces a function which is also
quadratica/ly integrable aed which ravishes at the eed
points The th.—eorem is true under weaker but more
complicated conditions but the above result will be
sufhcient for our purposes. It is not true, however, that
an H operator never affects integrability; for example,
in the terminology introduced later for Class I solutions,
a badly behaved y(X, i+1) can be turned into the well-
behaved y(X, l) =+H'+'y(X, l+1).

Theorem III has to be proven for each factorization
type, but the proof is much the same in each case.

Z.S Coeditioes oe X that solutioes exist; Theorem IV

We shall divide our problems into two classes:
Class I will be characterized by the fact that L(m) is

an increasing function of m. We shall see that this situa-
tion usually leads to a finite ladder of solutions belong-
ing to m=0, 1, 2 / for each of a discrete set of values
Xi(i=0, 1, 2 ) of X.

Class II solutions will arise when L(m) is a decreasing
function of m. We will then usually obtain an infinite
ladder of solutions belonging to m=l, l+1, l+2,
for each value X~(i=0, 1, 2 ) of X.

In each class one end, y(X&, l), of the ladder can be
obtained by a simple quadrature and the other solu-
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tions by means of (2.2.2). In those cases where X is not
discrete we still have the recurrence formulas (2.2.2)
but have no corresponding starting function y(X1, l). It
is also possible that L(m) be a constant. In this case we
again have only the recurrence formulas. Bessel's equa-
tion leads to the only important example of this possi-
bility and it is discussed in 5.4.

Theorem IV, which determines ) ~ as a function of l,
will be proven for problems of Class I. The proof for
Class II is essentially the same.

Theorem IU. When L(m) is ae increasing function2 of
the integer m for 0&m&M, aed A&the larger of L(M),
L(M+1), then a eecessary condition for quadratically
integrable solgti ops is that

X= X1=I.(l+1)
+here l is ue zeteger used m= 0, 1, Z, ~ . l.—For the proof
we assume a "good, " that is an integrable, solution

yP, m). Then, because of Theorem III,

y(X, m+1) = Hm+'y(X, m)

is also a "good" solution, or zero, and vanishes at the
end points. We can therefore write

pb
y2('A, m+ 1)dx

~b
Hm+'y(X m) H~+'y(X, m)dx

In this case, because of (2.2.1a) we obtain

X =X1——I.(l+1).
This condition fixes X in terms of l, one of the possible
values of m, the other values of m being less than l.
These are, then, the required eigenvalues for ).

In 2.7 we shall use (2.5.1) along with (2.2.2) to find
the eigenfunctions; so far we know only that (2.5.1)
is a necessary condition for the existence of Class I
eigenfunctions when X& the larger of L(M), L(M+1).

The corresponding theorem for Class II solutions
states that: if L(m) is a decreasing function of the integer
m for 0&m&M and X&L(0), then a necessary condition
for the existence of quadratically integrable solutions i s that

X =),1
——L(l)

where l is ae integer aed m=l, i+I, /+2 .—And
corresponding to (2.5.1), we obtain

+H'y(X, l)
—=0.

Finally, we should note that, if mo of Sec. 2.1 is not
taken to be zero, then Theorem IV obviously will re-
quire ~l—m~ rather than l to be an integer.

Z.d Eormalisatiol; Theorem V

When Theorem III hoMs we can arrange to have our
operators preserve not only the quadratic integrability
but the normalization of the eigenfunctions.

We write, instead of (2.2.1),

Rgb m+1 —+ m+1@ m p' m

—
/Quan +gQm )7m p'm

~b
=P,—L(m+ 1)j y2(X; m)dx

and, instead of (2.2.2),
(by 2.2.1a

pb 'I

y(X, m) +H~+' H~+'y(X, m) dx (Theorem II)

where (a, b) is the entire range for x. Similarly:

y2(X, m+2)dx= 9—L(m+2) j where

P m+1 — m+1@ tn

P' m-l~+~ m P m

(2.6.1a)

(2.6.1b)

yp, L(my1)] y2(y m)dx
-

t L(i+1)—L(m)) &+H" for Class I problems

t L(l) —L(m)$ &+H for Class IIproblems
This argument can be continued and, since L(m) is an
increasing function of m, we will arrive at some value and where the dependence of the solutions on l rather

of m, say l+1, with the contradiction than ) is suggested by the new notation.
Then, proceeding as in Theorem IV, we obtain

unless'

~b

y2(X l+1)dx&0 ~b ~b

(U m+1)2dx — (P' m)2dx

1.e.)

y(X, l+1)—=0

H'+'y(X l) —=0 (2.5.1)
2 Usually M= ~ and L(M) = ~.
3 In case ) &L(3f) and L(M+1) we are not led to a discrete

spectrum for ). This situation usually corresponds to the un-
restricted energy levels of the Kepler problem (see Sec. 7.2 and
Chapter 8).

so that, if F~' is normalized, so are the other Y~ .
Hence:

Theorem U. The 3C oPerators def1—ned above Preserve
the eormalisation of the eigenfunctions, whee these func
kiowas ure mormulisable. —Capital letters will be used from
now on to represent eormalised solutions of our equa-
tions.
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where C is a constant to be determined, if possible, by
the condition

(Y)')'dx= 1.

Oo

FiG. 1. Each dot represents a Class I solution. The "known solu-
tions" are obtained from (2.7.1); the others from (2.7.2).

Z.7 Sotutioes

We are now able to see how to write down the eigen-
values and normalized eigenfunctions of an equation
once that equation has been, factorized —i.e., once the
k(x, m) and L(m) corresponding to the given r(x, m)
are known.

Let us consider in detail the Class I problem. Here
L(m) is an increasing function of m and we are only
interested in the case when A&the larger of L(M),
L(3II+1).

The eigenvalues, from Theorem IV, are

X)=L(i+1), m=0, 1, 2, l

Furthermore, Theorem IU tells us that

We must say if possible since we do not know in advance
that F&' is quadratically integrable —we only know
that, if it is, then (2.7.1) is the correct form. (In most
applications we can normalize (2.7.1), but, to do so in
some cases, we find it is necessary to further restrict
some of the parameters of the problem. )

The other normalized solutions are then given by

P m,—1 + tnP tn

=CL(i+1) L(m)j f k(x m)+ I & (272)
dS

Figure 1 represents, graphically the usual situation. The
solutions of our differential equation (2.1.1) depend on
the two parameters l, m; to each pair of values (l, m)
there correspond two solutions. If a solution is well-
behaved it is represented by a dot in Fig. 1. Only those
for which /~&m can satisfy the boundary condition
since, only then is L(l+ 1)—L(m+1) &~ 0. The solutions
along the line m=3 are given immediately by a simple
quadrature (2.7.1). From each of these a ladder leads
down to the other solutions belonging to the same
X=L(l+1).They are obtained through (2.7.2).

In Class II problems the usual situation is as shown
in Pig. 2. Here l~&m if the solutions are to be well-
behaved. since only then is L(l)—L(m)~)0. (L(m) is
now a decreasing function of m. ) Now

k(x, l+1)——Fi' ——0
dS

(see 2.5.1) I,~=C exp~ — k(x, l)dx (

(
J

(2.7.3)

is a necessary condition for the existence of normalizable
eigenfunctions. Therefore where C is a constant to be determined, if possible, by

the normalization condition

F~' ——(, exp~ k(x, l+1)dx
~) (2.'l.1)

b

(I'i')'dx = 1.

Nl
4

The other normalized solutions are then given by

p en+1 — m+lp m

=LL(l) —L(m+1)j & k(x, m+1) ——I"q . (2.7.4)
dS

FiG. 2. Each dot represents a Class II solution. The "known
sointions" are obtained from (2.7.3);.the others from (2.7.4).

Whether we have a problem of Class I or Class II
depends on whether L(m) is an increasing or decreasing
function of m. Interchanging the roles of l and m in the
factorization will change a Class I problem into a
Class II problem, or vice versa. That is, a factorization
which would provide l-changing recurrence relations
in the scheme of Fig. 1 is obviously equivalent to a
Class II factorization. The distinction between Classes I
and II is therefore not a property of the eigenfunctions,
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but rather of the factorization itself. We will 6nd that
for the spherical harmonics (Sec. 4.1) it is useful to
know both factorizations, while for most other problems
only ore factorization is important, namely, the one
giving the physically correct normalization.

3. Technique of Factorization

We turn now to the problem of ending a factoriza-
tion. We want to know what k(x, m), L(m), if any,
correspond to a given r(x, m).

In the following section we shall answer the question:
"What are all possible types of factorizationP" When
the six types are exhibited, the problem of factorizing
is reduced to that of identifying a given r(x, m) as a
special case of one of these six general types.

Section 3.2 completes the technique of factorization
by introducing "artificial factorization. " This idea
usually enables us to solve a problem even when the
given r(x, .m) differs from one of the possible types in its
dependence' on m.

we will dismiss with only a brief discussion. It is

k(x, m) =f(m), L(m) = —fs(m)

where f(m) is any function of m. The differential equa-
tion (2.1.1) becomes

(d'y/dx')+ Ay= 0.

The general solution of this equation is a linear com-
bination of sink&x and cosh&x and the H operators would
merely generate other linear combinations. Schrodinger
(42) has given a complete discussion of this problem.
He shows how the artificial boundary conditions of a
vibrating string problem can, with some patience, be
handled by the factorization method; but the method is
not suited to such a problem. (The boundary conditions
are "artificial" as opposed to the "natural" one of
integrability used in quantum mechanics. )

For the more useful solutions of (3.1.2) we begin
with the trial solution

k(x, m) =kp+mkr (3.1.3)
3.1 Factorisation types

where ko, k& are functions of x only. Substituting into
If, in our factorized equations (2.2.1), we carry out (3.].2) an(1 letting a prime (') denote differentiation

the indicated oPerations and comPare with the original with respect to g we can obtain finally
equation (2.1.1) we obtain

dk(x, m+1)
k'(x, m+1)+ +L(m+1)

dS

C (m+1, ) (kP+k )r+2( m+1)(kpkr+kp') j—Lm'(kr'+ kr')+ 2m(kpkr+ kp )j=J.(m) —L(m+1) (3.1.4)

of which the most general solution for L(m) is
~ ~

L(m) = —m'(kr'+kr') —2m(kpkr+kp')+1

where 1 is a function of nz and x of period 1 in m. We
are interested only in values of L(m) for integral values
of m so we can take

= —(x, m)

dk(x, m)
+L(m) = —r(x, m)k'(x, m)—

Subtracting we obtain
1=f(x)

dk
k'(x, m+1) —k'(x, m)+—(x) m+1) where f(x) is an arbitrary function of x. But since the

expression for L(m) must hold for all values of m and
L(m) is a function of m alone, the coefficients of powers
of m on the right side must be separately equal to
constants. -We can take f(x) =0 without loss of gener-
ality, and we have

dk
+—(x, m) =L(m) L(m+—1) (3.1.2.)

dS

(3.1.5a)

(3.1.5b)
—caq 1f a/ 0

if a=0

This is obviously a necessary condition to be satisied
by k(x, m) and L(m). It is also sufhcient since any kr'+ kr'= —a'

k(x, m) and L(m) which do satisfy this equation lead
unambiguously through (3.1.1) to a function r(x, m) kp'+kpkr =
and so to an equation whose factorization is known. b,

We want to find all k(x, m) and L(m) which will
satisfy (3.1.2). First, there is one trivial solution which where a, b, c are constants. These give

~ Explicit formulas have been given (24) for k(x, m), 1(m) in
terms of r(x, m). They are

k(x, m) = L2r(x, m —1)-2r(x, m) g
'—Lr(x, m —1)+r(x, m))

I(m) = —Pr(x, m-1)+r(x, m))/2 —k'(x, m)

The criterion that a factorization be possible is of course that I (m)
be independent of x. These formulas, however, do not admit the
possibility of an artificial factorization,

L(m) =
a'm'+ 2ca'm, if a/0

2bPE7 if a=0
(3.1.6)

The solutions of (3.1.5) are (if a/0)

(A) kr ——a cota(x+p),
kp

——ca cota(x+ p)+d/sina(x+ p) (3.1.7a)
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(3) ki ——ia, kp
——cia+I exp( —iax)

or (if a=0)

(C) ki-—1/x, kp bx——/2+0/x

(D) k1=0, kp=bx+d

(3.1.7b)

(3.1.7c)

(3.1.7d)

Multiplying (3.1.9) by m(m+1)' we find the left side
becomes a polynomial in ns plus one other term:

—k g'm.

Therefore (3.1.9) can be satisfied only if

k(x, m) =k,/m+kp+ mk, .

In place of (3.1.4) we obtain

(3.1.8)

—m'(ki'+ki') —2m(kpki+kp') —2kpk —1/m —k 1'/m'
—(the same expression with m+ 1in ptace of m)
+k 1'/m+k 1'/(m+1)=L(m) —L(m+1). (3.1.9)

' When convenient, we have adjusted f(x) or the constants in
the tabIe.

where d, p are any constants. (We could have written
x+p for x in all of these solutions but the generaliza-
tion is trivial except in (A).)

Our four results are not independent: 8, C, D can be
considered limiting forms of A. However, the individual
forms are each important enough to be exhibited
separately.

Each of A to D determines one k(x, m) through
(3.1.3) and one L(m) through (3.1.6) which in turn
determine one r(x, m) through (3.1.1). These results,
along with the other two possible factorizations (which
will be found immediately) and many important special
cases, are given in the table' at the end of this report.
They are then ready for the interpretation of Sec. 2.7.
The special cases are considered in detail in Chapters
4—8.

It can now be shown that higher powers of m in
(3.1.3) lead to nothing new. If we try

k(x, m) =kp+mki+m'ks

we obtain this time, in place of (3.1.4),

m'(4k22)+m2(6k22+6kik2+ 2k2')

+m(2ki'+4k2'+4kpk2+6kik2+2ki'+ 2ks')
+terms not involving m=L(m) —L,(m+1).

There is no need to solve for L(m). The coeKcients of
each power of m on the left side must be constants;

therefore, from the first coeKcient: k~'= constant
therefore k2 = constant
then, from the second coefficient: k~ ——constant, if k2/0
then, from the third coefBcient: ko ——constant.

Thus we see that, if k2/0, the only solution is the trivial
one discussed at the beginning of this section. No new
solutions are obtained through this generalization.

The same argument can be used to show that further
generalizations in this direction also produce no new
solutions. But the argument breaks down if we allow
k(x, m) to have an infinite number of terms in powers
of ss.

We can, however, find a useful generalization in the
other direction. Let us try

k y =g, say,
k i'=0.

We can omit the case ko/0 for otherwise kq would also
have to be a constant and we would obtain the "trigo-
nometric" solution again. Therefore we consider only
k0=0. In this case the only remaining condition we
have is

k12+ kl a2

The constant values of k& satisfying this equation lead
again to the "trigonometric" solution. We are left with
the two new factorization types:

(E) ki ——a cota(x+ p), kp= 0, k 1——
q (3.1.7e)

(F) ki ——1/x, kp
——0, k 1

——q (3.1.7f)

and it turns out that

L(m) = a'm' q'/m—'(a= 0 for F). (3.1.10)

The k(x, m), L(m) and r(x, m) corresponding to types
Eand F are collected with their special cases in the table
and the special cases are discussed in Chapters 7 and 8.

It is a straightforward matter to check that further
generalization leads to no new factorizations provided
we admit only a Qnite number of negative powers of
m in the expansion of k(x, m)

Of course type F can be considered as a limiting form
of type E as a~0. We therefore have altogether six
possible factorization types which are themselves
limiting forms of two basic types; we will see later
(Chapter 14) that even these two basic types are closely
related.

Stevenson (46) was the first to find the above fac-
torization types. He used a diGerent method and found
three other types which can, however, be reduced to
those considered here.

Finally, it should be noted that, in each of A —F,
k(x, m), and r(x, m) do in fact have the properties
needed to prove Theorem III.

3.Z Art@ciat factorization

In what follows we shall occasionally have to resort
to a device known as artificial factorization. This will
be necessary when the given R(x, m) is not quite one
of the six basic types. In each case the diGerence will
be in the way the m appears in R(x, m).

We do not need to consider q=0 since this leads to the
cases already discussed. But then, because kok & must
be a constant,

ko ——constant.
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There are three possibilities which may appear to-
gether but which we will treat separately. For definite-
ness we will consider only a Class I problem.

The first possibility is that the given E(x, m) is

R(x, m)=r(x, m)+f(m)

where r(x, m) is one of the standard types and f(m) is
an arbitrary function of m. To handle such an example
we de6ne

),'= X+f(m)

and then proceed to solve the new equation

(d'y/dx')+-r(x, m)y+ Vy= 0.

For normalizable solutions X'=L(l+1) and we can
move down a ladder to the solution I'~ which belongs
to the eigenvalue X=L(l+1)—f(m). In effect the 'A

(but not X') changes as we go down the ladder.
The second possibility is that we can introduce a new

function r{x,m, p) which is a standard type (if we con-
sider ti just a parameter) but such that

r(x, m, m) =R(x, m).

%e can then solve the equation

(d'y/dx')+r(x, m, p,)y+Xy=0

and obtain a solution Vi (ti) depending on the param-
eter ti as.well as m and X=L(l+1).The required solu-
tion is then merely I'& (m). Part of the dependence of
this solution on m has been provided by the ladder
operators while the remainder of this dependence has
been introduced at the end of the ladder operations by
putting @=m.

The third possibility is that

E(x, m)=R(x)=r(x, m) for m=p

so that the required solution is that of the more general
equation (with r(x, m)) for the special value p of m.

Even if a direct factorization is not possible there may
still be an artificia/ factorization and the finding of this
arti6cial factorization is now an explicit procedure:

the list of types is consulted. for one in which the de-
pendence of r(x, m) on x is the same as that in the given
R(x, m). The dependence on m can then usually be
adjusted by means of the above methods so that a
factorization is achieved and the solutions can be found.

4. Type A Factorizations and General Remarks

Before presenting the 6rst general factorization type
we would like to make a few remarks concerning all
types of factorizations.

Each type includes a number of special cases which
are obtained merely by an appropriate choice of the
parameters appearing in the general type; we will
exhibit those which most frequently occur in physics
and show, in each case, how the solution of the problem
can be obtained readily by the factorization method.

%here necessary we shall give a reference to discus-
sion of the physical interpretation of our results; in
some cases it will be found that the problem was 6rst
solved by the factorization method.

%e want to present our results in the form most
useful to physicists. Consequently our notation will
di6er from that of the general discussion of the previous
sections when we are dealing with familiar problems.
For the same reason we shall arrange that the normaliza-
tion preserved by the hypergeometric function operators
(in 4.8) differs from that of other examples; we have
in rqind applications to the calculation of intensities in a
later section (12.5) for which it seems preferable to use
the usual definition of these functions.

The table at the end of this report collects the r(x, m)
and corresponding k(x, m), L(m) functions. The difii-
culty of solving an eigenvalue problem is then reduced
to that of finding the appropriate r(x, m) in the table
and using the corresponding k(x, m), L(m) to write
down the eigenvalues and normalized eigenfunctions
as shown in Chapter 2. The table also includes references
to the text where these solutions are given for the more
important examples.

From (3.1.1), (3.1.3), (3.1.6), and (3.1.7a) we obtain
the 6rst general factorization type. Corresponding to

a'(m+ c) (m+ c+1)+d'+ 2ad(m+ c+~i) cosa(x+ p)
r(x, m)=—

sin'a(x+p)
(4.0.1)

the factorization is given by

k(x, m) = (m+ c)a cota(x+p)+d/sina(x+p)
1 (4.0.2)

L(m) = a'(m+ c)'
~ ~

where a, c, d, p are constants. For convenience we have
chosen a'c' rather than 0 for the 1=f(x) of Sec. 3.1.

The results of Sec. 2.7 could now be used to write
down the eigenvalues and normalized eigenfunctions of

the corresponding differential equation; but, since these
results depend on. whether L(m) is an increasing or a
decreasing function of m and hence on whether u is real
or pure imaginary, we will give the solutions for special
cases only. At the same time these solutions will appear
in readily usable forms.

Our 6rst example will be treated in somewhat greater
detail than later ones.
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4.I Associated spherical harmonics We shall also need later the m-raising recurrence
relation'

The differential equation satisfied by the associated
spherical harmonics is I'g"+'=

t (i+m+1)(l—m)1-&

1 d ( dPi m2—
)

sin8 —
~

—— P+XP=0
sin8 d8 ( d8 ) sin'8

(4.1.1) (m+-,') cot8 ——I'g . (4.1.4c)
d8

where m=0, 1, 2, and 0&8&x.
We bring this equation to the standard form by

means of the substitution (Sec. 2.1)

I'= sin+OP. (4.1.2)

Thus, I' is the density function belonging to the asso-
ciated spherical harmonic P. Equation (4.1.1) becomes

Of course we did not know in advance that 7g' would
satisfy the boundary conditions. However, once I'~' is
found, we see immediately that all the functions
I'& do satisfy the boundary conditions. If I'&' had not,
then we would know from the general theory that there
were no normalizable eigenfunctions at all.

For negative m it is seen from (4.1.3) that

p' —m ~p' m

O'Y m' —~
I"+(X+~)F=O.

do' sin'8
(4.1.3)

But the potential function here is exactly our type A
(4.0.1) if we put in the latter

A study of the nature of the ladder operations near
m= 0 will reveal that the operators can be used to reach
the eigenfunctions for negative values of m. The result
of going down the ladders to these values of nz turns
out to be

m —( 1) P'

a=1, c= ——', d=O, p=O, x=8

and replace X by X+—„'. Therefore the factorization is
given by

h(8, m) = (m ——',) cot8
L(m) = (m ——',)'.

L(m) is an increasing function of m. We therefore
have a Class I problem and the eigenvalues must be

so that

4.Z Associated spherical harmonics as a Class II problem

If we introduce l(l+1) for X and replace —m' by X,
Eq. (4.1.1) becomes

1 d ( dPq X—
~

sin8 —~+l(l+1)P+ P=O, 1=0, 1, 2 ~ ~ .
sin8 d8 4 d8 ) sin'0

Let us now' consider the possibility of finding a fac-
torization of this equation which will enable us to raise
and lower the / parameter while keeping the new 'A Axed.
The normal form mom is obtained by putting

X= l(l+1) s= log tan(8/2). (4.2.1)

where 1=0, 1, 2 and l&m and the corresponding Let us also write P for I' and reserve the symbol I' for
normalized solutions are given by the properly normalized solutions. Our equation be-

comes
1.3.5 . 2l+1 &

yl sin'+&8
~ 2 0 40 ~ ~ ~

(4.1.4a)
d'P l(l+1)

+ P+XP= 0
s' cosh's

(4.2.2)

and

" '=t:(i+ )(l+1— )3 '

(m ——,') cot8+—t I') . (4.1.4b)
d8l

Equations (4.1.4) define the eigenfunctions of
Legendre's equation. We shall show later that this way
of expressing the result is not only quickly obtained by
the factorization method but is also in a very convenient
form; for one thing, the physically proper normalization
is preserved.

which is type A (4.0.1) again but with a=i, c=0,
p=is/2, d=0, and with x, m replaced s, l The factori-.
zation is therefore given by

h(s, l) = l tanhs
L(l) = P. —

Since L(l) is a decreasing function of l we have a Class
II factorization and the bottom of the ladder is ob-

~ The operators in (4.1.4) are closely related to orbital angular
momentum operators. If I. , I.„are the first turbo components of the
orbital angular momentum, then (37, p. 439):

5L &iL„=Aexp(&tq) & +t cote——
58 5cp
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where
P, P~g, P +2, . P), ~

tained by taking ) such that ) = —P for some value of
l, say, m. Therefore, X= —m' where l—m=o, 1, 2,

The corresponding ladder of normalized solutions
satisfying the boundary condition (quadratic integra-
bility over the interval —~, ~) is

where m is, as before, a non-negative interger and y is
an arbitrary positive parameter. This equation takes
the standard form

d'I' (m+ y) (m+ y —1)I'+ (X+y2) Y =0 (4.3.1)
de' sin'0

through the substitution
~13 5 . 2m —1ql

P ~n
)

cosh- s
~224 2m —1)

(4.2.3a) I'= sin~94.

P~ =[(l m)(l—+m)] 1 l tanhs ——Pi i (4.2. .3b)
Js

Using type A with a= 1, c= p —1, d= p=0 we obtain
the Class I solutions:

Because of (4.2.1) we can write for future reference

—t cose —sm8—P~ ~m

de
= [(l—m) (l+m) ]lP(" (4.2.4a)

dl-—l cos8+ sln8 —'P~
d8I

I'(l+ y+ 1)
sin'+~0

r(l+ &+-', )

'= [(i+m+2' 1)(l m—+—1)] **

(m+7 —1) cot8+—V~, ~
d8

There are important differences between P and F.
P can be written as a function of 0 and then 7, ™+1 when X l(l 2y) )

= [(l—m)(l+m)]lp, ,~. (4.2.4b) where m cannot be & —y —
2 unless y= 2. (The solutions

for negative m can be obtained from

while

F'de= 1 (4.2.5)

which would correspond to

(l'2/sin28) d8= 1.

In the calculation of the spherical harmonic matrix
elements (Sec. 9.1) we shall see how the connection be-
tween these two normalizations is to be found. In
physical applications it is the normalization of I" which
corresponds to the probability interpretation of the
wave functions. Therefore, it is desirable to adjust
the constants in. (4.2.4) so that the I, rather than the
P (or Y), normalization is preserved.

F~sin~OP—=7, say.

The other important diGerence is in the normalization.
Y is normalized so that

The solutions are

r(m+y)

r(m+y ——',)
cosh ~ ~+'z

P(, ,"——[(l—m) (l+m+ 2' —1)]—l

These results reduce to those of Sec. 4.1 for y=~.
For y=1 we obtain the radial functions for a free
particle in a spherical space which is also a special
case of the problem treated in Sec. 7.1.

The Class II problem (see 4.2) is obtained through
the substitutions

X= i(ly2~)
s= log tan(8/2)

Pepsin»|PC
giving

(l+V —2) (l+V+ 2)

cosh's

—[(y——,')'+ 2m'+ m' —m]P =0. (4.3.2)

8 C' dC m'+2m' —m
+2y cot8— C+XC =0

d8' d8 sin'0

4.3 GerIeralised spherical harmonics

The generalized spherical harmonics satisfy

The diGerences between P~, ~ and 7~ ~ are important
and completely analogous to those between P and: I'
of the two preceding sections.
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4.4 Gegenbauer functions If we make the substitution

The Gegenbauer functions can be defined through
the difFerential equation (53, p. 329) we obtain

F= slnt80~

d'U dU
(1—z') —(2m+3)s +AU=0.

ds2

If we put
s= —coso

U= I' sin '0

we obtain the standard form,

d'F' m(m+ 1)
I'+(X+ (m+1)') V=O. (4.4.1)

sin2tII

(M ') (M—+-')+E-' 2M—E cos8
V

sin28

+(o+E'+ ')F=-0 (4.5.1)

which can be, identified with type A if in the latter we

put a=1, c= —2, d= E, P—=O. The factorization is
given by

k(8, M)=(M ——,') cot8-
sino

1.(M) = (M ——',)'.

r(2J+ 2)

Now we have a type 3 equation except that we have The solutions are therefore
to proceed as explained in Sec. 3.2 and introduce the
artificial

lI,
' = X+ (m+ 1)'

the factorization is then given by

k(8, m)=m cot8
I.(m) =m2

and the solutions are defined by

-r(t+2)-:
sin'+'g

r(l+-, )

d
I',™—1 $(i+1 m)(l+ 1+m)]—, m cot8+ V

d8

also l q
"——F'~ ' after putting X'= X+(m —1)'.

We should emphasize the fact that I"~ belongs to the
eigenvalue

V= (l+1)' l—m=O) 1) 2,

that is, to
X= (l m)(l+m+—2)

4.5 Symmetric top

The wave equation for a symmetric top is important
in the study of simple molecules. Following Dennison
(7, p. 310), the wave function is

U= O~(8) exp(iEq) exp(iMf)

.r(J—E+ 1)r(J+E+ 1)
0

Xsin ++s—cps + +'—
2 2

l~q x~ '=[(J+M)(J M+1)] —~

E d~
(M—-', ) cot8 — +—I'J; x~

sin9 d8

corresponding to the eigenvalues

o+E+l=(J+l)', ~—IMI, J—IEI =0, 1, 2,

so that
J(5+1)h' p 1 1 q E'h'

S'=
s~~a Ec w) st

4.6 Weyl's spherical harmonics with spin

Schrodinger's quantum-mechanical theory leads to
one amplitude equation of the second order. Dirac's
theory accounts for the spin and leads instead to pairs
of first-order equations for the spin components of the
eigenfunctions. In this section and in 8.4 we will treat
such a pair of equations directly by the factorization
method. The idea is to transform these equations so
that they are themselves a factorization.

After separating variables Weyl (51, p. 230) obtains
the following equations for. the dependence of the com-
ponents of the wave function on the azimuth angle:

where 8, y, f are Eulerian angles and E, Mare integers.
'

The first part of this function satis6es

d'O~ d O~ (M Ecos8)'—
+cot8 0+o 0=0

d82 d8

g =8g'AW(h' AE'/C, —

df
sin8 mf+ k—(1+cos8)g =0

d8

dg
sin8—+mg —k(1—cos8)f=0

ld8

where m is g, Hive@. integer and k is to be found.

(4.6.1)
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Now it is easy to see that, if we introduce

Pi= g+f
t (4.6.2)

We have considered only positive m but, of course,

P =(—1)"P P (k)=P (—k)

and add and subtract Eqs. (4.6.1) in turn, we obtain F= tan(8/2)f, G= tan(8/2)g (4.6.3)

A second method of solution is obtained by intro-
ducing

k cosg —sing —
I Pi ——(k+ m) P2

dg)

r a)
{

—k cosg+sing —{P2——(k m)Pi-.
dg)

But these are exactly Eqs. (4.2.4) if we identify

so that (4.6.1) becomes

m+-', d——Ii =kG
sin0 d0

m+-,' d
t+—
~
G=kF;

sin0 d0~

(4.6.4)

Pi 2C(k+——m)lPi, i

P2= 2C(k —m) iP„m

where C is a constant which depends on the normaliza-
tion. The required solutions are therefore (see 42)

f=C {(k+ )m&P il"—(k—m) &Pi,"}
g=CI(k+m)&Pg i"+(k—m)'Pi, "}

and k must be an integer not less than m.

then

O'F m(m+ 1)+-,' —(m+-', ) cosg
F+O'F =0 (4.6.5a)

d0'

O'G m(m+ 1)+4+ (m+ 2) cosg
G+ O'G =0. (4.6.5b)

d0' sin'0

But these are type A equations with @=1, c=p=0,
d = W —,'respectively. The solutions for k'= (l+1)' are

Fi'
1

I'(2l+3) sin'+ (8/2) cos'+ (g/2)
)

Gi' I .I'(l+ 1)I'(l+ 2) sin'+a(g/2) cos'+l(8/2) I

P m

= L(l—m+1)(i+m+1) j—l m cotga +-
6 —x 2 sin0 d0 Gg

(4.6.6)

P m P m m

Using (4.6.3) we can obtain f, g; and of course

P„—m Qm —1 Q„—m Pm —1
) k Ic )

which&is type A with a=1, c=p=0, d= —2, and X

replaced by A+ i, so that the eigenvalues are

X=1.(i+1)——',

=l'+2l+-'„ l=0, 1, 2,

where m is an integer and X is to be found. Putting

T= sin'05
we obtain

d'T m(m+1)+ 4
—(m+ ~) cosg

T

+ (X+-',)T=0 (4.7.1)

sin'0d02

4.7 Magnetic pole equation

Dirac (g) first introduced the wave equation for an
electron moving in the held of a fixed magnetic pole.
After separating variables he obtains the following
equation:

1 d' d nz 1 0 1 0—sing —S — +-m sec'—+- tan' —S+XS=O
sin0 d0 d0 sin'0 2 2 4 2

which agrees with the result given by Tamm (48).
The solutions are exactly (4.6.6) for F.

4.8 Poschl Teller potentials-

In. a later section (5.2) we shall consider the potential
function which was suggested by Morse to explain the
observed vibrational energy levels and dissociation
energies of diatomic molecules. There have since been
proposed other potential functions which lead to the
same energy eigenvalues but which involve more than
the two parameters of the Morse potential and which
can therefore be adjusted to 6t more spectroscopic
data. Two of these functions were given by Poschl and
Teller and we shall now show that they are each special
cases of our type A problem so that we shall be able to
write down the solutions immediately. In fact we should
look upon a familiarity with type A (and later type J3)
as enabling us to discover such potential functions.
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The first Poschl-Teller equation is (36)

a'v(v —1) n'ti(ti —1) 8~'M
+ 4+

dr' sin'a(r —rp) cos'n(r —rp) k'

By putting a=2n, c=0, d=2gn, x=r, p= —r the
potential function of type A. becomes

n'(m+ g) (m+ g+1) n'(m —g) (m —g+ 1)
(4.8.1)

sinpn(r —rp) cospu(r —rp)

and we can identify m+g+1, m —g+1 with v, ti re-
spectively so that 2m+2= ti+ v.

The factorization is given by

k(r, m) = (m+g) u cota(r —rp) —(m —g) n tann(r —rp)

L(m) =4upm'

.which is therefore a Class I problem so that the eigen-
values are

X=4n'((+1)' t=m+rt, ii=0) 1) 2,

and we can identify m+ g, m —
g with —v, ti respectively

so that 2m= p —v.
The factorization becomes

This time, for a fixed nz, there are only a 6nite number
of eigenvalues

—0.2h'

(ti —v —2rt)', N=O, 1, 2, &(p—v)/2,
Sx'M

and the solutions are

where

tn
n fn—n

k(r, m) = (m+g)n cothn(r —rp)+(m —g)n tanhn(r —rfl)
I.(m) = —4n'm'

which is a Class II problem so that

4n P / m m) s 0) 1) 2) (m

that is,

F.„= (ti+ v+2')' m=0& 1, 2,
8+'M

2np (I—g+ -', )

r( t g+—,')—I'(2-
Xsinh ' 'n(r —rp) cosll +pn(r —rp)

as given by Poschl and Teller.
m

The normalized eigenfunctions are obtained through

where
provided g(~ —m, i.e., p& —-,',

2nl'(21+ 3) 4.9 Hypergeometric furtctiorts

-I'(t+ +g)I (t+ g)- The differential equation satisfied by the hyper-
X sin'+'+Pu(r —rp) cos'+' Pn(r rp) geo—metric function F(a, b, c, s) is (53, P. 283).

1
p, =—

I (1+2+m)(l—m)] l k(r, m+1)+—lpi"+'
201 dr

provided m+ 2) I g I
~

We have introduced the e because, from the physical
point of view, we consider the m in the potential func-
tion as a given constant and we look for eigenfunctions
belonging to different t (or rt) The eigen. functions
occupy one ro@ in Fig. 1 and are numbered from left to
right by rt= 0, 1, 2, ~ . (We recall that m, t themselves
need not be integers as long as their diGerence e is an
integer. )

The second Poschl- Teller equation is

O'P n'v(v —1) pu( +ti1) 8n'M
lp+ jV|p =0

dr' .sinh'n(r —rp) cosh'a(r —rp) k'

Putting a=2in, c=0, d=2ign, x=r, p= rp we find-
the potential function of type A becomes

n'(m+g) (m+ g+ 1) n'(m g) (m g+—1)-—
(4.8.2)

sinh'n(r —rp) cosh'n(r —rp)

We obtain

z= sin'p
F= sin ~'p cos +' pP.

d'V
V

dp2 sin'p

(a+ b c ,') (a+ b c+—,')—————V+(a—b)'V=O. (4.9.2)
cos p

d F dF
s(1—s) + I c—(a+9+1)s}—abF =0. (4.9.1)

dz dz
I

We whall factorize this equation in four different ways.
However, the results will turn out to be essentially
those of the previous section. We shall therefore use our
factorizations only to develop certain recurrence rela-
tions which we need for the calculation of Dirac matrix
elements in Sec. 12.5.

Equation (4.9.1) can be put into the standard form
by means of the substitution
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If we now introduce We obtain

O'V (m+c —$)(m+c——',)
V

dp sin'p

(m+ a+ b c —', )—(m-+ a+ b c+—-', )
V

cos p

+ (a—b)'V= 0 (4.9.3)

the problem becomes that of Sec. 4.8 with the factoriza-
tion given by

k(p, m) = (m+c —~3) cotp —(m+a+b c —', ) t—an-p

L(m) = (2m+ a+ b —2)'.

O'V (m+c —-', )(m+c ——,')
V

dp sin'p

(m+ c—a—b ', )(m+ c—-a b+ ',—)——
V

cos p

Here raising m by 1 corresponds to raising each of
a, b, cby1.

But we can also introduce

O'U (m+ a+ b —c—-,') (m+ a+ b —c+—,')
U

sinh'y

(m+ a b —', )—(m-+ a b+—',)-
U

cosh'y

—(c—1)'U= 0 (4.9.5)

where m has been introduced as above. Again, as in
Sec. 4.8,

k(y, m) = (m+a+b —c—2~) cothy+(m+a —b —~~) tanhy
L(m) = —(2m+ 2a—c—1)'

and this factorization leads to a-changing recurrence
formulas.

Finally another standard form is obtained if we think
of the (a+b —c)' in the third term of (4.9.2) as being the
) to be held constant. The substitution is

V =cos'pS'
p= sin—' (tanhx)

and the resulting equation (with m inserted) is

O'W (m+ c—-', )(m+ c——',)
W

with the factorization

dx2
+ (a—b)'U= 0 (4.9.4)

sinh'x

(m+a —b ——,') (m+ a—b+-,')
cosh'x

k(p, m) = (m+c ——,') cotp —(m+c —a—b ——',) tanp
L(m) = (2m+ 2c—a—b —2)'

which leads to recurrence formulas for raising and
lowering c by unity. This factorization is equivalent to
Schrodinger's (43).

If we now consider (c—1)2 in the second term of
(4.9.2) as the X-term to be held constant on the ladders,
the standard form will be obtained through

V=sin' pU
p=2 tan ' exp( —y).

—(a+b —c)'W=0 (4.9.6)

and the a- and c-changing factorization is given by

k(x, m) = (m+c —-', ) cothx+(m+a —b ——',) tanhx
L(m) = —(2m+ a+ c—b —2)'.

The a-changing and c-changing operators can be
written in terms of the variables F and s. At the same
time the normalization factor can be adjusted so that
the constant term in the series for F is unity. The
following recurrence formulas are obtained, after
putting m=0:

F(a+1, b, c, s) = 1+——F(a, b, c, s)
a Bs

a/0

bs s(1—s) O

F(a—1, b, c, s) = 1+ — —F(a, b, c, s)
a—c a—c

c a+c
F(a,, b, c+1, s) = a+b c (1—s)—F—(a, —b, c, s)

(b c) (c a)— — ClS 6Q C

(4.9 7)

s d
F(a, b, c—1, s) = 1+ —F(a, b, c, s)

c—1 Gz
c+1



I. . INFELD AND T. E. HULL

X= —(c—1)'/2 —(a+ b c)'/2. —(4.9.8)

However, the problem is type E and so we will leave
its discussion to a later section (7.5).

The resulting connection between the fundamental
types A and E will be taken up in Chapter 14.

There are, of course, other first-order di&erential-
difference relations but the above are basic in that any
others can be constructed from them. This is true
because, as long as the restrictions noted in (4.9.7)
are not violated, we can find a product of operators
which will turn F(a, b, c, s) into F(a+ n, b+ p, c+y, s)
where o., P, y are integers; and this product can be
written as a single first-order operator by expanding,
and using the original Eq. (4.9.1) to convert second
derivative operators, as they appear, into first-order
operators.

Furthermore, it follows that a sum of hypergeometric
functions contiguous to F(a, b, c, s) can, if the restric-
tions are not violated, be written in the form OF(a, b, c,
s) where 0 is a erst-order differential operator; that is,
such a sum is equal to a linear combination of F(a, b,

c, s) and F(a+1, b+1, c+1, s). In Sec. 12.5 we shall

find that matrix elements can equal such a sum and that
s and some of the parameters may be complex. It is
therefore important-in computing to be able to reduce
the number of hypergeometric functions and the above
idea systematizes this reduction.

Such an argument can be applied to any contiguous
solutions of an eigenvalue problem which can be
factorized. It is therefore pertinent to ask "when do
such recurrence relations themselves represent a direct
factorization of the original equationP"

This question can be answered in the following
way. We note that the transformation (2.1.2) of a
di6'erential equation to the standard form is essentially
unique. This means that once X (the parameter to be
held constant on the ladder) has been chosen, the
r(x, m) is uniquely determined. For such a definite

r(x, m) we have at most one factorization. Therefore
we cannot, for example, obtain a factorization of
Legendre's equation which will change m by 2 for fixed
) even though there exist first-order differential opera-
tors connecting I'~ and V~ +'.

The situation is the same in the case of the hyper-
geometric equation: once we had chosen X (in (4.9.3),
X was (a—b)') and inserted m, the factorization was
determined. But with the hypergeometric equation
there is a greater variety of possible choices for A, which
might be of interest. For example we could ask if there
is a factorization which lowers a and raises b each by 1
at the same time; this would correspond perhaps to
taking X= (a+b)' or perhaps simply X=c.

We shall find that there is such a factorization and
that

5.1 Con/lent kypergeometric flnctions

Whittaker and Watson (53) discuss the equation

O'W ( 1 s+-', -' —m')+' —-+ + ~ W=O, 0&.& (5.1.1)
j

where we have written s+ 2i for their k so that this param-
eter will not be confused with the k(x, m) function of
our factorization. For a factorization which provides
s-changing operators we want to treat —m2 as X. The
substitutions

s= expx, W(s) exp(x/2) U(x)

bring (5.1.1) to the desired normal form:

AU
+I —exp(2x)/4+(s+-, ') expxI U —m'U=O,

dx'

(5.1.2)

&x& ~ . (5.1.3)

We recognize this problem as type 8 (5.0.1) with
a=1, c=0, d=2 and with m, P replaced by s, —m'
respectively. Therefore

k (x, s) = (expx)/2 —s
L(s) = —s'

S. Type 8 and C Factorizations

From (3.1.1), (3.1.3), (3.1.6), and (3.1.7b, c) respec-
tively, we obtain the next two general factorization
types:

Type 8 (after writing a in place of ia, a—nd adding—a'c' to L(m))

r(x, m) = —d' exp(2ax)+2ad(m+c+2) exp(ax) (5.0.1)
k(x, m) =d exp(ax) —m —c

L(m) = —a'(m+c)'.

Type C (after writing c for d, and adding b/2 to L(m))

r(x, m) = —(m+ c)(m+ c+1)/x'
b'x'/4+b(m c) —(5.0.2)

k(x, m) = (m+c)/x+bx/2
L(m) = —2bm+ b/2.

We will consider these two types together because
any problem which can be treated as type 8 can also
be treated as type C and vice versa; in each case one
of the two factorizations will, however, be artificial.
Our erst example —the confluent hypergeometric equa-
tion—is treated in detail by each method and, as we
should expect, the two sets of solutions differ only in
their normalizations. Subsequent examples will be
handled only by the method which preserves the physi-
cally proper normalization; it is, fortunately, the more
direct method in each case.

Later, in Chapter 8, we shall find that the conQuent
hypergeometric equation can also be considered as a
type Ii problem.
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L(s) is a decreasing function of s. I.et us consider m
(rather than l of Theorem IV) as the smallest value of
s; our notation is then consistent with (5.1.3).We now
look for quadratically integrable solutions

U' tn U' m+1 U m+2 . . . U' s

I.et us now approach our problem as if s were the
parameter in (5.1.1) to be held constant (as was X

in the general discussion of Chapter 2) and look for a
factorization which provides m-changing operators.

The substitutions

These solutions are
z= y'/4, W(z)-(y/2)'*V{y)

I

introduce the new normal form

(5.1.7)

U = I' l(2m) exp(mx —(expx)/27, m &0 (5.1.4a)
d'V

U„'=L(s—m)(s+m)$ i

X (expx)/2 —s——U ' ' (5.1.4b)
Jx

U ' '=L(s —m)(s+m)j —l

—f(2m ——.') (2m+-,')/y'+ y'/16] V
pe

+ (s+-', )V=0. (5.1.8)

But this equation is almost type C (5.0.2). We can make
use of the idea of artificial factorization and write

O'V

(expx)/2 —s+—U '. (5.]..4c) Dm+IJ z)( +IJ+U/y +y /

d. i
"

where the normalization preserved is

(U ')'dx= i.

+ (m p+ ', )/2—]V+ -s' V= 0 (5.1.9)

where s'=s+3~+(m —p)/2. This modified equation is

(5.1.5) exactly type C with k= ——',, c= p, —z' and it reduces to
(5.1.8) when +=m. The factorization is given by

Writing s= k—~, z= expx and using a bar to indicate
that our normalization is diferent than Whittaker and
Watson's we obtain

U '(x) =z-kg „(z).

Rewriting (5.1.4) in terms of W and z we obtain

W +.„(z)= I' &(2m) z"+& exp( —z/2)

WI„„(z)= L(k—m ——,') (k+m ——',)j—*'

(5.1.6a)

S
X —k+1—z—WA g,„(z) (5.1.6b)

2

W~, , (z) = &(k—m —-', )(k+m —-', )j-&

dl
X —k+z—WI, ,„,(z) (5.1.6c)

are

s'= L(l+1)= l+4

V~'(~) Vi' '(~) Vi"(~) '

where

V, (,)=2-- —:r--:(l+„+1)

V("(p)=D—mj—l .

Xexp( —y'/8) (5.1.10a)

X ( +g+-,')/y —y/4+ —V "'+'(g). (5.1.10b)

k(y, m) = (m+~ —z)/y —y/4
L(m) =m--'

and the only possible quadratically integrable solutions
belonging to a 6xed

where the normalization is
I"inally, for the required solution of (5.1.8) we merely
put p, =m and l=s in Vi (p); thus s must be an in-
teger &m.

Using (5.1.7) we obtain the formulas for the corre-
sponding g functions:

W "~,~;(z)= I' ~(k+ p+ —,')z++~+l'" exp( —z/2) (5.1.11a)

W~1„{z)=
2k —m —p—1 —'*m+p z& d——+z'*—W"k, ~i(z)

2 2z 2 Gs
(5.1.11b)

W",~i(z) =
2k —m —p 1 &m+ p+1 z& — d-

——z&—W&1, „(z)
2 28 2 Qz

(5.1.11c)
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where the normalization preserved is

PV&p (s)$'ds = 1
0

so that we cannot use an equality sign in

Wi, , "(s)~Wi,, (s). (5.1.12)

It would be natural to use the m (or v) changing
recurrence relations (5.1.11) to generate the solutions
since s is a constant. However the s-changing relation
in (5.1.4) preserves the physically correct normaliza-
tion (once we account for the a in dx= —adu). To reach
R ', then, we start with the "solution" R and take
v steps up the s-changing (artificial) ladder to

We cannot put @=m in (5.1.11) since m changes with
each step up or down the ladder while p is held constant
and is only put equal to the Peal value of m as in
(5.1.12).

Finally, we should note that (5.1.9) is also type C
with b= ~, c=p ——, but this choice of b does not lead to
integrable solutions.

5.Z Morse poteetial

Morse (34) has suggested that the radial part of the
nuclear wave function .(multiplied by r) for a diatomic
molecule satisfies

O'R 2M
+ E—D(exp( —2au) —2 exp( —au))

ON

J(J+1)h'
R= 0 (5.2.1)2''

where 3f is the reduced mass of the two atoms, E the
energy, D the "depth" of the potential function and J
the rotational quantum number. The constants a, D are
to be determined by fitting experimental data to the
expression (5.2.3) for the energy levels. The independent
variable is N=r —ro where r is the internuclear distance
and ro is the value of r when the potential is a minimum.
The range for u is ( ro, ~—) but a sufFiciently close ap-
proximation is obtained if we take the range to be

(—~, ~) since, in this case, R will be extremely small
at r=O.

As a 6rst approximation we take J=O and then, if
we put

x= —au+ log[(SMD) '*/(ah) ]
s+-,'= (2MD) ~/(ah)

m'= —2ME/(a%')

(5.2.1) becomes

OR
+ I

—(4) exp(2x)+ (s+ —',) expxI R—m' R= 0 (5.2.2)
Os

which is Eq. (5.1.3) again. Of course s is not an integer
here but it is sufficient that s—m= v=O, 1, 2, ~ ~ which
leads to

R m+v R s

Moreover we need (5.1.4) for the calculation of inten-
sities in Sec. 10.1.

The potential considered above has been applied to
the deuteron problem by Morse, Fisk, and Schiff (35).
However, we cannot use the factorization method to
solve their problem because ro is so small for the deu-
teron that we can no longer assume the range (—~, ~ )
for u. D. ter Haar (20) has investigated the limits to
the validity of the assumption we have made.

5.3 System of ideetical oscillators

Schrodinger (42) introduces the equation for a sys-
tem of s identical (one-dimensional) Planck oscillators.
After splitting oG the spherical harmonics on the
(s—1)-dimensional hypersphere he obtains

d'P s—1 df e(e+ s—2)-+ —— +x' P+XQ=O,
OS s Ox x

e='0, 1, 2, (5.3.1)

for the radial eigenfunction. Here the square of the
radius vector is

x'=Q xi,'
1

where x~ is the coordinate of the kth oscillator.
By means of the substitution

y —x(i—si t2(y

we change (5.3.1) into its standard form:

d4 —[(e+s/2 ——,', ) (e+s/2 ——,')/x'+ x'jC
ds

+X@=0 (5 3 2)

this equation is type C with b= —2, c=s/2 —
2 pro-

vided we introduce the artificial X'= X+2e—s+3. The
factorization leads to the Class I solutions

I i' ——2'F ~(l+s/2)x'+'" ~ exp( —x'/2)

E„=—D+i'ta(p+-,') (2D)&/M l
—(Ita)'(v+ —')'/(2M) (5.2.3)

d
C'i"= 8)D—e3 ' (e+s/2 —4)/x —*+—%"+'

dx
in agreement with. the result given by Morse. We note
that there are only a finite number of energy levels —for belonging to X =4l+3. That is, C &" is the normalized
any given s there are less than s+1 levels. eigenfunction belonging to the eigenvalue X=4l—2e+ s.
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Of course an /- (or X-) changing factorization can be
found in the same manner as was the k-changing factor-
ization of Sec. 5.1. The operators provided by such a
factorization will raise and lower / by one, and hence
) by 4; the result is essentially that given by Schro-
dinger.

d'Z m' —4
Z+XZ=O.

dS x
(5.4.1)

The factorization is given by

h(x, m) = (m —-', )/x
L(m) =0.

Since L(m) is neither increasing nor decreasing as a
function of m we have no key function. We obtain only
the known recurrence formulas:7

Z ~g
——X l (m+-,')/x ——Z

dx

where

Z„=X-' (m+-', )/x+ —Z~~
dS

Z =xV„(X~x)

5.4 Bessel fgectioms

One last example of a type C factorization is im-
portant because of a very special property of the L(m)
function.

The equation for Bessel function densities is

in previous chapters and used with all other examples
leads to an unnecessarily complicated artificial factori-
zation. The reason is that, for the oscillator, r(x, m)
does not depend on m. If m does not appear in the po-
tential function we expect only a single ladder of solu-
tions with each function on the ladder belonging to a
diferent eigenvalue of A. The procedure we have been
using, on the other hand, leads to an infinit mlmber
of ladders, one ladder corresponding to each value of X

and one function on each ladder corresponding to each
value of m; but with the oscillator problem these ladders
turn out to be identical.

To avoid this duplication we will introduce a slight
modification of the factorization procedure in this
chapter. The modified version will be simpler and, as a
matter of fact, the factorization method had its origin
in this treatment of the harmonic oscillator (see, for
example, 9, p. 133).

The field of application of the method, as exhibited
in this case, is wider than we have so far indicated and
embraces many problems which arise during applica-
tions of the so-called second quantization procedure.
We shall show, with a few examples, how the method
can be applied to such problems; but its range of validity
is broader than these examples would indicate. We shall
also find that the method is easily generalized' to handle
problems involving sources as well as fields. This
generalization is carried out in two stages, in Secs.
6.5 and 6.7. Our examples are formulated and inter-
preted more fully in Wentzel's Quantum Theory of
Fields (50).

6.1 Linear oscillator

in the notation of Whittaker and Watson (53). The
recurrence relations also hold for the other solutions
of Bessel's equation given by Whittaker and Watson.

6. Type D Factorizations

The Schrodinger equation for an oscillator is

(6.1.1)

h(x, m)=bx+d

L(m) = —2bm
(6.0.2)

where b, d are constants.
The harmonic oscillator problem can be solved by

means of this factorization. However, in this case, a
straightforward application of the techniques developed

We can; however, obtain explicit expressions for the solutions
when m is a half odd integer. For, obviously,

sin), &x
~= cos),&x

and the other half odd integral Bessel functions can be gained
from these solutions by repeated applications of the recurrence
relations.

From (3.1.1), (3.1.3), (3.1.6), and (3.1.7d) we obtain
the fourth general factorization type. Corresponding to

r(x, m) = —(bx+d)'+b(2m+1) (6.0.1)

the factorization is given by

where-

+H HP= (X+1)f
H+Hf= (X—1)P

(6.1.2a)

(6.1.2b)

(6.1.2c)

Johnson and Lippmann (30, 31) have used another generaliza-
tion (10, p. 136) of Sec. 6.1 to treat the problem of the motion of
a charged particle in a'uniform magnetic field in both relativistic
and nonrelativistic quantum theory.' The idea of raising and lowering ) rather than m persists in
Schrodinger's method (41, 42) even in cases where the m does
appear.

where $=(h/p~)&x, X=2E/h&o in the usual notation.
We shall now outline the modified factorization

theory which is most suited to this problem. The essen-
tial change is that, because 6.1.1 does not depend on m,
we now use a factorization which enables us to raise
and lower X.'

Equation (6.1.1) can be written in either of the two
forms
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X=27+1, X=0, 1, 2,

the key function must satisfy

+Hfp=0

and, properly normalized, it is

0o= -'exp( —8/2).

(6.1.3)

(6.1.4a)

The other solutions can then be obtained from the
6rst of

/~+i ——[21V+2] & Hf~ (6.1.4b)

P~ i ——[2$] &+HP~. (6.1.4c)

All these eigenfunctions are orthogonal and normalized,
that is

$NfN'4 (fNy fN') oNN'

In the next three sections we shall use these results
to treat probleIns arising in the theory of meson fields.
With this in mind, we remark that (6.1.2b), and hence
(6.1.1), can be written

Operating on (6.1.2a) with H and on (6.1.2b) with
+B we deduce the analog of Theorem I:

P(X+2)~ HP(X)
f(X—2) +HP(X)

so that the +H operators raise or lower ) by 2.
Moreover, corresponding to the second part of

Theorem IV, we 6nd that we cannot lower the value of
) inde6nitely. For the ladder to have a "bottom" we
then 6nd that

where

+Ha=4~

It is easily verified that (6.2.2) is satisfMd.
Introducing (6.2.3) into (6.2.1) we obtain

H =P„(»/2) (
—

Hi,+Hi+ 1). (6.2.4)

alld
E~ =Ei »i/2=—»i@i

E'=—Za K'= Z~»a& ~. (6.2.5)

The eigenfunctions can be obtained from (6.1.4).
Thus the problem of a real scalar, or neutral, meson

field is equivalent to that of an oscillator with 3 de-
grees of freedom.

The expression
ip= fNpfNk ~ (6.2.6)

is, symbolically, a solution of the Schrodinger equation

Hp=Ep, E=gi,EI,.

Since the part of the Hamiltonian belonging to each k
depends on a separate variable we can split our prob-
lem into an in6nite number of one-dimensional prob-
lems. The Schrodinger equation belonging to each k
becomes

(»i,/2) ( Hi,+Hi,+1)P= Ei,g.

A comparison with (6.1.5, 3) gives immediately

K=»i (&a+2)

or, subtracting the zero point energy, we obtain

( H+H+1)iP= XP.

Thus all our results follow from this one equation.
(A 4' ) = &&P"i~&I &'a ' ' '

(6.1.5) In (6.2.6) each spiv~ is normalized to unity exactly as in
Sec. 6.1 and it is understood that

H = (k)E~ (pal*pa+ i,'qs*q~) (6.2.1)

where oui ——c(p2+k') &)0 and where k is a vector whose
cartesian components are integral multiples of 27r/l, l
being the length of the edge of a periodicity cube (50,
p. 27). The operators p&, q& must satisfy the relations

q „=q,*, p „=p„* (6.2.2a)

Lqi, qi ]=Lp., p']=0, Lp., q']=(ll/')oI'. (6.2.2b)

Let us now associate with each vector k a one-di-
mensional space with the coordinate $q where
ranges from —~ to +~, and let us introduce the
representation

q~~(&/4~~)'*( Ha++H i)
qg*—+(i'i/4o~i, )&(+Hg+ H i,)
pg-+ —( » i,/4) &(+Hi, H —i,)—

p~*~( »~/4)'( Ha +H a)— —
(6.2.3)

6.Z Real scalar meso' geld

The Hamiltonian for a real scalar meson field in
vacuum is (50, p. 33)

where f, P' are characterized by

&I,
and

gg g yr ~ ~ ~
1

respectively.

6.3 Complex scalar meson geld

The Hamiltonian for a complex scalar meson field is
(50, p. 51)

H=go(ps*pa+o~a'qs*qi, ). (6 3 1)

The difference between this Hamiltonian and that of the
previous section is that p&, qz no longer satisfy (6.2.2a);
they still satisfy (6.2.2b). Physically this means that
the charge is no longer zero so that our solutions will
represent a 6eld of charged mesons.

With every k we must now associate tao space coordi-
nates gi„re, and introduce
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If we now write

qa~(@/4~i) '*( Hi,++Ia)
qi, '~(&/4»)'(+Hi+ I-i)
pi,~ (—»—i/4)'(+H~ —I-i,)

pi*~( »—i/4)'( Ha +L—i), .
(6.3.2)

Therefore

(h /2)( H '+H +1)Q=E 'iP. (6.4.3)

The one-dimensional Schrodinger equation derived
from this problem is

Eq. (6.2.3b) is satisfied and our Hamiltonian (6.3.1)
becomes

H=Zi, (»i/2)( HI+Hi+ L~+I-i+2). (6.3.3)

E=gE—&.=Q h»(X, + ~../2).

6.5 Harmonic oscillator; geeeralisufioe

(6.4.4)

As the partial Hamiltonian belonging to each k
depends on separate variables and $, g are independent,
we can split our problem into one-dimensional problems
with Schrodinger equations of the type

(lrai, /2) ( Hi+Her, +1—)P+= E+i,iP+

(»i,/2)( I-i+I.i +1)4 =E A' .

Again, as in 6.1, we have

E"i =»i(&+i+i)
i=»~(& i+2)

The notation E+~, S A, originates from the fact that
we can consider +H= 5+P+(dldf)

H = $+p*—(d/dp).
(6.5.1)

So far we have dealt with applications of only the
simple factorization (6.1.2). As already stated this
factorization is not very different from the general type
(6.0.2) quoted at the beginning of this chapter. A
glance at the latter suggests that we can generalize
our factorization. If in (6.0.2) we now allow the constant
d to be a non-zero real number we merely shift the origin
and gain nothing new. However, we shall see in the
next section that merely allowing d to be a complex
number P, say, enables us to consider the effect of
sources in the (neutral) meson field.

We proceed, then, to consider the consequences of
redefining

as proportional to the total charge; E i is the number Let us also introduce (and this is an essential step) the
of positively charged mesons with momentum Ak and new operators, complex conjugate to the above:
3l I, is the number of negatively charged mesons with
momentum —hk (50, p. 53). +H*= k+P*+(d/dk)

(6.5.2)H*= $+p —(d/d$).6.4 Many component real theory

As a last application of the formulas in 6.1 we will
sketch the many component theory for which the
Hamiltonian is

B we attempt to construct a factorization with the
erst two of these operators we easily find that they
enable us to write

where

(pa qi "+~a'q~ qa")/2

q—i =qi ', p—i'=pa'

(641) (dV/de) A (P—+P*'—)N'
+(P P*)«~/d-a+~~=0 (6.5.3)

in either of the two forms

Lqi, qi ")=[pi', pa "j=0, /pi, qi "j=-4~ &

+H Hf= (X+1+PP*)iP

H+HiP= ('A —1+PP*)P.
(6.5.4)

We can treat this problem as we did the one in 6.2. The operators (6.5.2) enable us to write

The only difference here is the appearance of the index
o. Thus in analogy to (6.2.3) we introduce

(P P*)(@*/dg)+-X4-*=0 (6 5 5)
qi, —+(h/4' i,)&( Hi ++H i, ) etc.

where

+Ha =4'~
~b'

in either of the two forms

+H* H*$~= (X+1+PP*)|P"

H*+H~f *=(X—1+PP*)f*. (6.5.6)

Then (6.4.1) becomes

Q (»i./2)( —Hi, '+Hi, +b..). Equation (6.5.3) for |P differs from (6.5.5) for P* only
(6.4.2) in the sign of the 6rst derivative term; the coefficients

of all other terms a,re real,
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The principles of the factorization method can now
be applied to (6.5.4) and (6.5.6) but we must treat
these factorizations together. The reason is that +II and
H are no longer mutually adjoint; in fact the analog

of Theorem II is now

v( H*f)dt= t ('«)f«

6.6 Real scalar meson jields and nucleons

The results of the previous section will now be ap-
plied to the problem of a meson field with sources. The
simplest theory of the interaction between a neutral
meson field and nucleons considers only infinitely
heavy nucleons each with the same coupling constant.
The Hamiltonian is

H=HO+H'. (6.6.1)

00 F00

X 2)ye(X 2)d) +HP(X) .+H*p*(h~dg
The coupling parameter g has the dimensions of an
electric charge; V=/' is the volume of the cube and
kx„ is the scalar product of the vector k with the posi-
tion vector of the eth nucleon.

I.et us now introduce into (6.6.2) the operators +H'h,
/

P(X) H*+H*f*(X)dg

for qh, according to (6.2.3). The operator H becomes
= (lI —1+PP*) 4(li)4*(&)df H'=P (lh/4&eh)~gcV l( H' ie xp(ill„)++H' h, exp(ikx„))

jg, n

so that Theorem IV for (unnormalized) Class II Here H' is the Hamiltonian (6.2.1) and H' is (50, p. 41)
solutions makes use of the result

(6.6.2)

It then follows that the eigenvalues are

X=2hV+1 —PP*, iV=0, 1, 2,

and the normalized eigenfunctions are given by

hlo=~ 'exp( (P+P*—)'/8 P/2 P—h)—
IN+i=i 2&+2?' H&N

=Z~(&~a!2)(P~ H'.+Ps*+H'~)
(6.5.7)

where

Ph
=ZPI—

(2/Aa&h) (5/4arI ) &gcV ' exp(ikx„).

Thus the total Hamiltonian, because of (6.2.4), is

hlN h=[2hV7
—l+HPN

(6.5.8)
hl

*=~ ' exp( —(P+P*)'/8 e/2 P*—E)—
PN~h* ——[2K+27 ' H*PN*

hlN i*=[2hV7 '+H*hlN*.

The normalization now means that

pNpN' d$ (4'Ny pN') = oNN"

For use in the next section we note that if the B
operators of 6.1 are now designated by +B' then

(P+P*)W+-(P P*)(e/«) =—P H P*+H---
and thus, using (6.1.1, 5), we can rewrite (6.5.3) as

H = P (h,~~/2) (-H'g+H'a+1
+ Ph H'h+ Ph*+H-oh). (6.6.3)

Parts of the Hamiltonian belonging to diferent k's

depend on separate variables. Therefore the problem is
reduced to that of solving the Schrodinger equation:

(Iia)h, /2) ( Ho„+H0„+1-
+Pi H'i+ Pl *+H'h) P =Egg. (6.6.4)

Comparing with (6.5.9) we can use (6.5.7) to write
down the eigenvat. ues

&a=&~~(hV~+ 2) —Ih~aPaP~*/2.

The last term contains the infinite nucleon self energy
and the "Yukawa potential function" (50, p. 45).

The expression PI,Pi* can be split into two parts:

( H0+H0+1+P —Ha+. P—*+Ho)f .Xhl (6.5.9) and

The factorized form of this equation is (6.5.4). Simi-
larly (6.5.6) is the factorized form of

PhPh*= 2 Ph Ph
nn',

S Ws'

Thus all our results (6.5.7, 8) follow from either of
these last two equations,

The first part does not depend on the positions of the
nucleons. Thus, introducing

Rh'= Rh, &~i/2+&~~P~P~*/—2
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we obtain the Gnite expression

&'=+I &s'

=pa&~~(% P—aPu*/2)

containing only the energy of the mesons and the mu-
tual energy of the nucleons.

The eigenfunctions are of course obtained from
(6.5.8).

tions are

go=xi exp( —P/2 —Py$)

Pe+i=[2&+2j ~ HA

fN 1= [2—Ã]
6*=~*exp(-8/2 P*—v*5)

4m+i*=[2&+2j ~ H*4~*

[2@j-fyHeP

(6.7.4)

6.7 Further generalization of the oscillator problem

We consider now one further (and last) generalization
of the oscillator problem. This time we allow the d in
(6.0.2) to be an operator as well as allowing it to be
complex. In the next section we shall see how this
generalization enables us to consider the eGect of sources
in a charged meson 6eld.

Let us redefine

where A, A~ are normalization factors.
In spite of the analogy with 6.5 there are also some

differences. One is that X and f, as we mentioned before,
are operators. Another is that, in this case, /* cannot be
regarded simply as the complex conjugate of f; yet it
plays a role similar to that played by P~ in 6.5. Indeed,
we can show as before that

J fNylfN+1 d$= (QN+1) %A+1) = (pN) fN) (6.7.5.)

H*= 5+Pv
d$

These expressions will be operators since they are func-
tions of y, y*. But if

(A 4'0)=I
(6.7.1)

then all the integrals (6.7.5) will equal I, and the eigen-
functions can be said to be normalized.

For use in the next section we note that (6.7.2a) is
the factorized form of

( H'+H'+1+ py H'+ p*7*+H')p= Xp (6.7.6)

and (6.7.2b) is the factorized form of

6.$ Charged scalar meson fields aud rtucleons

Here P is as before a complex number. But y, 7* are
operators completelyindependent of the +H' operators. ( H H + +t 7 H +t &

The y's need not be Hermitian but they must commute. so the results (6 7 3 4) fonow from these equations
As in 6.5 we are again able to write down two pairs

of factorized equations. They are

and

+H H4'=(7+1+PP*vv*)4

H+H4 = (& 1+PP'vs*—)4

+H* H*4"=(~+1+PP*vv')4*

H*+H*4 *=(7 1+PP*vv*)4—*

(6.7.2a)

(6.7.2b)

The results of the previous section will now be ap-
plied to the problem of a charged meson field with
sources. Again the simplest interaction theory assumes
stationary nucleons but now, because charge must be
conserved, it is also necessary to allow for changes of
states of the nucleons (50, p. 55).

The eigenfunctions of the proton-neutron states can
be represented by

Because y, y* commute with each other and with
+H' we can proceed exactly as in 6.5. The results will
dier now only in that the eigenvalues and eigenfunc-
tions will be operators (or matrices) since they depend
on y, y*.

The eigenvalues are

0„for the neutron state of the eth nucleon
I„ for the proton state of the nth nucleon.

Let us introduce the operators y„, y„*such that

X= (2N+1)I PP*yy*—(6.7.3) If the unit of charge is the elementary charge then the
charge operator is

where I is the unit operator (or matrix). The eigenfunc- e„y„V
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since

e 0 =0=00
enIn =I„=1I„.

The eigenvalues of en are therefore 0 and 1.
The Hamiltonian -representing the interaction be-

tween the meson field and the nucleons in this case is
(50, p. 57):

H'= cV &p -(gV „cjk exp(ikx„)+ g*V„*qk*exp( —ikx ))
k, n

where g is a complex number. - The interaction between
the mesons and the Coulomb field of the protons is
neglected.

Introducing +H'k, +I:k for gk according to (6.3.2) and
using (6.3.3) for the Hamiltonian without interaction
we obtain, for the total Hamiltonian,

Q (»k/2)( H'k+H'k+ I-'k+I-'k+2
k, n

+Pknvn H k+Pkn Vn H k

+Pk *v * I-'k+Pk. v„+I-'k) (6.8.1)

where Pk =gcV ~(2/»k)(A/4cok)'* exp(ikg„).

ZnPknPk'n Vnvn =PkPk' VV

PknPk'n' Vnvn' =PkPk' VV

m /n'

(6.8.2)

(6.8.3)

If we now assume the first expression is zero, which
means if we ignore the self terms, we cue separate the
diGerent parts of the Hamiltonian. We obtain equations
of the type:

Thus we obtain an eigenvalue problem

HQ= EP.

The P* equation is gained by interchanging in (6.8.1)

+H' with +I'
or

Pkn~ Vn Wltll Pkn ~ Vn

Our new problem diGers essentially from the problem
in 6.6 where the meson field was neutral. Here, since
y„and y„*do not commute when n= e' we are not able
to split our problem into an infinite number of one-
dimensional problems.

We can remove this difhculty as follows. In analogy
with 6.6 let us write

(»k/2)( H'k+H'k+1+K Pk. v H'k+Q. Pk-*v '+H'k)4+ =~kg+

(»k/2)( L'k +I-'k+1+2 Pk v I-'k+2 Pk *v *+I-'k) 4' *=~A *

(»k/2)( H'k+H'k+1+2-P"*V. * H'k+Q. Pk. v. +H'k)4+*=~kg+*

(»k/2)( I'k +I-'k+1+K Pk *v * I-'k+Q Pk. v +I-'k) 4 =~A'

(684)

and

+I.=ok++ Pk *v *+
Rgb

etc.

The partial eigenvalues are therefore

~k =»k(&+k+ 2) »kPkPk*vv*/—2

~k =»k(& k+ 2) »kPkPk*vv*/2—

We have assumed (6.8.2) is zero to reduce our problem
to these equations. But this same assumption also
enables us to solve these equations; indeed, the first
two equations can be identified with (6.7.6) and the
possibility of obtaining the factorization (6.7.2a) of
(6.7.6) depended on Pv commuting with P*v*. The last
two equations can be identified with (6.7.7).

Our assumption thus enables us to use the factoriza-
tions (6.7.2) where we write

Thus the total additional energy introduced by the
. interaction of the nucleons is

(6.8.5)

This additional energy is an operator and can be
represented by a diagonal matrix. For example, with
two nucleons, the coordinate system in which (6.8.5) is
diagonal can be represented by the eigenfunctions

0/02+I]I2,. Oi02 IiI2, OiI2+02Iil —OiI2 OQIQ.

In a similar way we can treat other cases. Both the
separation of the Hamiltonian and then the possibility
of factorizing depend on our assumption of commutabil-
ity, that is on neglecting the self terms. Our procedure
also shows that expressions which do not contain self
terms as defined here can only be of the second order.

The situation is somewhat simpler in Kemmer's
theory (50, p. 64). There we have the Schrodinger
equation:

P (»k/2)( H-k+H-k+8. .
k, n, r

+Pk„r„' H"k+Pk„*r„+H"k)P=Ef (6.8.6)
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where

Again, assuming commutability, we can separate
(6.8.6) into equations which are even simpler than
those considered in 6.7 since they correspond to the
special case p= p~. Indeed we obtain immediately

E&=g Ek&a

—=r, (h~k/2)(2&k —z. Pk pk *r r ")

Perhaps the most striking feature of this type is that
it contains the most flexible of all our L(m) functions.
As we shall see, the corresponding eigenvalues can be
used to represent molecular energy levels; the various
forms of r(x, m) are therefore important as possible
potential functions.

Of the examples considered immediately, we may
note that the erst two originally appeared as examples
of the factorization method.

7.1 Kepler problem in a hypersphere

Schrodinger (42) considered a very interesting prob-
lem, that of a hydrogen-like atom in a spherical space.
He derived the equation:

—m(m+1)S+P sin'xS=O (7.1.1)

our method can be extended in a similar way to 'd ) dSq
other more complicated cases. But its applicability —

~

»n'x —~+2v»» cosxS
rests on the possibility of separating the Hamiltonian
and then being able to factorize each part; each step
is possible only if p commutes with p*.

7. Type E Factorizations

From (3.1.1), (3.1.7e), (3.1.8), and (3.1.10) we ob-
tain the next general factorization type. Correspond-
ing to

r(x, m) = —m(m+1)a'/sin'a(x+ p)—2aq cota(x+ p) (7.0.1)

the factorization is given by

h(x, m) =ma cota(x+ p)+ q/m
L(m) =a'm' —q'/m'.

corresponding to a potential V~cotx. The range for
x(=r/R) is 0, s. and

v =vie'/h2 X= 2tiER'/h'

R being the radius of the hypersphere.
H we put F=sinxS we gain the standard form

O'F f m(m+1) i+
~

» cotx —
~
F+(&+1)F=O (7.1.2)

dx' ( sin'x

which is type E (7.0.1) with a= 1, q= —v, p=O.
The Class I solutions turn out to be

(2l+ 2) !(1—exp( —2vm/(i+ 1)))

V
2- —4

Fi"—' ——X+1 ms+-
m'

V

m cotx——+—Fi~
sz dS

( 2 ) '+'* v(v'+(i+1)'(i+1)')(v'+(i+1)'P) (v'+(l+1)'1') &

sin'+'x exp( —vx/(l+ 1))
E l+1

belonging to the eigenvalues

X=l(i+2) —v2/(l+1)' m&i=0, 1, 2,

or E= l(l+2)h'/2pR' 2'e'ti/2h'(l+—1)'.
Since L(m) has no finite upper limit, all the eigen-

values are discrete.
As R—+ this spectrum approaches that of the Bohr

energy levels. As Z—+0 this spectrum approaches the
very dense, but discrete, spectrum of a free particle in a
spherical space; in 4.3 we referred to the corresponding
results as a special case of generalized spherical har-
monics.

The substitutions

U= sin&xS, s= log tan(x/2)

enable us to treat our problem as an artificial type A

problem which leads to l-changing, or Class II, recur-
rence relations; the result is essentially that given by
Schrodinger (42). However, we will leave such results
to a discussion, in Chapter 14, of the connection be-
tween types A and E.

Although the above problem was first solved by the
factorization method, Stevenson (45) soon showed that,
by making explicit use of the continuity as well as the
boundedness of the solutions, the problem could be
solved by conventional methods.

7 ZKepler pro.

blemish

a space of colstartt Negative curvatlre

It is interesting to compare the above problem with
that in an "open, "or Milne, universe of constant nega-
tive curvature. %e shall find that the corresponding
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) =2v—l(l+2) —v'/(1+1)' where m&i=0, 1, 2, lo

spectrum consists of a fl, rlile number of (mostly nega- belonging to the eigenvalues
tive) energy levels in addition to a continuous spectrum.

The equation is (28)

d f dSq—
~

sinh'x —~+2v sinhx(coshx —sinhx)S
dx ( dx)

where lo is the largest integer such that lo+1&v'. Thus
we obtain the 6nite number of discrete energy levels

corresponding to a potential V~(cothx —1) and where
v, X are as in 7.1. The range for x is now (0, ~).

To obtain the standard form this time we put
F=sinhxS so that

For m) v'* L(m) is a decreasing function of m and so
we might expect to find Class II solutions associated
with the corresponding X. A closer investigation, how-
ever, soon reveals the fact that these "solutions"
cannot satisfy the boundary conditions.

We are left, then, with only a 6nite number of dis-
crete energy levels. This number is 4+I=v'*=(R/u)~
where u is the radius of the 6rst Bohr orbit of the hy-
drogen-like atom. Taking 2=10" cm we find lo is a
large number of order 10".The highest discrete energy
level lies between —3k'/2pR' and 5'/2@R' and thus may
be either positive or negative.

It can also be shown, by standard methods, that
there exists a continuous spectrum for all E)5'/2''.

The corresponding l-changing artificial type
factorization is obtained through U= sinh&xS,
s= log tanh(x/2).

d'F —m(m+1)
— + +2v cothx F

dx' sinh'x

+ (X—1—2v) F=0 (7.2.2)

which is type E with a=i, p=O, q= —v and X replaced
by ) —1—2v. The factorization is therefore given by

k(x, m) =m cothx —v/m
L(m) = —m' —v'/m'.

For m&v&L(m) is an increasing function of m and
so we obtain the Class I solutions

I'(v/(l+1)+l+2)
F' / (2)l+$

(2l+2)!r(v/(ly 1)—l- 1)

Xsinh'+'x exp( —vx/(l+ 1)) 7.3 3/Iarjrli mg Roserl Poteetial-

m—(m+1)5+X sinh'xS=0 (7.2.1) E Zo&/—R k2l(ly2)/2&R2 Z2o4IJ/2'(ly1)2
t=0, 1, 2, "1,.

F~ ' ——P,+m'+v'/m'] ' m cothx v/m+— Fq—
dx

Manning and Rosen (33) have suggested that the
equation"

d'R P(P —1) exp( —2r/p)+ kE
dr

A exp( —r/p)

p (1—exp( —r/p)) p'(1 —exp( —r/p))
R=O, k=87r2MgM2/k'(Mg+M2)

can be used for the study of diatomic molecules in
place of the Morse equation (5.2.1). Their equation
can be written

d'R —P(P—1)a'
+ +2av cothar R

dr' sinh'ar

+(kE 2av)R= 0 (7.—3.1)

where v= [A+P(P—1)]/2p, o,=1/2p. In this form we
recognize the equation as type E with p=O, q= —v,
m=P —1 and o replaced by ai Since.

k(r, m) =ma cothar —r /m
L(m) = —a'm' —v'/m'

we obtain the results as in the previous section. From
) =L(l+1) the eigenvalues become 6nally

1 A —P w(v+2P) '
jV—

kp' 2(P+v) 2(P+v)

as given by Manning and Rosen and where v= l+1—P
=0, 1 2 ' ' ' vp

'
eo &[A+P(P—1)]&—P. The correspond-

ing normalized eigenfunctions can be obtained from

ui'( /(avl+a)+l+2)
R '=2'+5

(2l+2)!I'( v(/al+a) —l—1)

Xsinh'+'ar exp( —vr/(al+o))

Rg"——[X+u'(m+ 1)'+v'/(m+1)'] —
&

d
(m+1)a cothar —v/(m+1)+ —R~ +'

d. l

where we have to put l= v+P 1, m= P—1—after all
operations have been carried out. Since P is a constant
we are interested in only one function for each l-
namely, the function with m= P—1.

The positive energy states belonging to the same potential
were investigated earlier by Eckart (14).
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7.4 Rosen-Morse potential and they satisfy the diBerential equation

In a paper entitled "On the vibrations of polyatomic d2p dp
molecules, " Rosen and Morse (38) have found it con- (1—s') —[n—P+(~+P+2)s)
venient to introduce new exact solutions of the Schro; dS

dinger equation. They consider +n(n+n+P+1)P=O.

+ (1/g'd') l
—E—Zl tanh(x/d)+C sech'(x/d) jr=0

dx
g'= b'/8m Md'.

To obtain a standard form let us write

s= tanhx
P~(1—tanhx) ~1 (1+tanhx) el Q—:P, say.

Now, if in type 8 we put P= —n-/2a and then Then
replace u.by ai, we obtain the following differential
equation: d'Q ( +( +P)/2)( +( +0)/2+ 1)

d2$
+Lm(m+ 1)a~/cosh2ax 2a—q tanhax]f

dx
+'A/=0 (7.4.1)

de cosh2x

~2 P2 - ~2+P2
— tanhx Q— Q= 0 (7.5.2)

2 2

and the corresponding factorization:

k(x, m) =ma tanhax+q/m
L(m) = —a'm' —q'/m'.

To solve the Rosen-Morse equation, then, we require
solutions of this type E problem for only one value of
m: the value such that m(m+1) =C/g'.

There are only Class II solutions belonging to

g = —a2P —qm/i2 P&
l q/a l

.

If m —l=e and since m is 6xed, there are only a Qnite

number of eigenvalues given by

n=O, 1, 2, (m —lq/al&.

In the notation of Rosen and Morse it turns out that

E=—g'd'X = tt (4C—+g') & g(2n+1—)]'/4
+Zl'/l:(4C+g')' —g(2n+1) jm.

The corresponding eigenfunctions are obtained
through

2' "aI'(2l)
cosh—'ax exp( —qx/l),

I'(l+q/al) I'(l—q/al)
l'& lq/al

d
y ~=Ly+a2mmyq2/m j ~ ma tanhax+q/m ——

tfx

by putting m=( g+(g'+—4C) & j/2g, l=m —n, a= 1/d,
q= 8/2g'd.

7.5 Jacobi polynomials

The Jacobi polynomials are (47, p. 61)

(n+ oui
P-"'(s) =

I

n i
XF(—n, n+n+P+1, a+1, (1—s)/2) (7.5.1)

so that the solutions are obtained from those of the
previous section by putting m=n+(a+P)/2, a=1,
q= (n' —P')/4. The fact that X= —(n'+P')/2 merely
means that we are considering only the single ladder
with l= (a+P)/2; this value of l satisfies the restriction
l2&

l q/a l. The parameter m is not fixed as it was in the
previous section so we now have an inhnite set of
eigenfunctions belonging to each 6xed value of / and
denoted by m=0, 1, 2,

The solutions are normalized according to

(1+s)e-'(1—s)™~LP"e(s)l'de= i.
-1

If the hypergeometric function in (7.5.1) is written
F(a, b, c, s') then X becomes

&= —(c—1)'/2 —(a+b —c)'/2. (4.9.8)

In terms of a, b, c, s', the n-changing operators provide
new recurrence formulas for the hypergeometric func-
tions; the n-raising operator would lower a and raise b
at the same time (see Sec. 4.9).

8.Z Kepler problem

The radial equation in the nonrelativistic hydrogen
atom problem is

O'P 2 dP 2 l(l+1)
+——+-4 — f+&f=0 (8.1.1)

t' dt' r2

8. Tyye E Factorizations

From (3.1.1), (3.1.7f), (3.1.8), and (3.1.10) we obtain
the last general factorization type. Corresponding to

r(x, m) =—2q/x —m(m+ 1)/x' (8.0.1)

the factorization is given by

k(x, m) =m/x+q/m
L(m) = —q'/m'.
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where l =0, 1, 2, , the unit of length is lt'/tre'Z, and

X= (2h'/pZ'e4)Z

in an obvious notation.
With the substitution

(8.1.2)

If X=1/ns)0 the expression X—1.(i+1) is always
positive so that there is no top for the ladder of solutions
and e is therefore not restricted to integral values.
The recurrence formulas (8.1.5b, c) are, however, still
valid once we replace n by ie.

The normalization preserved by (8.1.5) is

we introduce the radial function densities and (8.1.1)
becomes

i.e.

(R.')'dr = 1
Jo

d'R 2 l(l+1)
+ — R+XR=O.

dr' r
(8.1.3) (rP„')'dr = 1

0

are

X=—1/n' 1+1(n=1,2, 3, ~ (8.1.4)

R " '= (2/n) "+&$(2n)!1 &r" exp( —r/n) (8.1.5a)

Our equation is type F (8.0.1) with q= —1 and nt re-
placed by /. The Class I solutions belonging to

which is exactly that required by the probability in-
terpretation of the wave functions. Thus the factoriza-
tion is the natural one for the problem.

The Kepler problem is usually solved by first in-
troducing a new independent variable containing the
energy. Putting

s= 2r/n
gl—I g~lgl (8.1.5b) Eq. (8.1.3), with (8.1.4), becomes

d E
+ I

—1/4+ n/s —l(l+ 1)/s'I R=0
Gf

which is the same as (5.1.1) for n=s+rs, l=m sr and-
so the solutions are (5.1.6). These type 8 solutions
correspond to Schrodinger's factorization (41). The
normalization of these solutions is not the most useful;
however, the factorization is important because its
recurrence relations can be treated by Truesdell's
method whereas (8.1.5) cannot (see Chapter 15).

'n

FIG. 3. Each dot represents a solution of the Kepler problem. The
solutions are de6ned by {8.1.3}or, alternatively, by {8.2.1, 2, 3}.

where the operator in this case has the form

1 d
~X„'=nl[(n —l) (n+l))-'* —-m —,

r 3 dr

E.Z Peto recurrence forntulu for Eepler functions

In the diagram of Fig. 3 we are able to move up or
down by means of the X operators of 8.1 or we can move
back and forth across the ladders l= constant by means
of Schrodinger-type operators, properly interpreted.

We shall now develop a new recurrence formula which
enables us to move to the right along the horizontals
/=constant: to do this we introduce a new function,

R„'(s).

1 d= (1/A„') —-a-"t. «r
This function is dined by the same recurrence formula

(8 1 6) (8.1.5b) as the corresponding function R„'. The only
difference is that the key functions are now taken to be

for later reference. We will also need the /-raising re-
currence formula

(8.1.5c)

We have written (8.1.4) instead of X= —1/(n+1)' so
that e will be the total quantum number in the usual
notation. We are then led immediately to the Bohr
formula:

E~= —pZ'e'/2 ' l's. n

R "—'(s) = (2/n) "+'L(2n)!$ &r" exp( —sr). (8.2.1)

Of course the R„'(s) are neither orthogonal nor do they
satisfy our differential equation, but they have the
following important property:

LR-'(s)j.=v-= R-' (8.2.2)

We can now find an operator which enables us to
change R„'(s) into R~r'(s) from which our solutions
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can be got by (8.2.2). In fact the solution R of the equation

where

R„+g'(s) =O~, 'R„'(s)

n+l+1 *' are

d'R 2 (l+ y) (l+y+ 1)
+—R- R—

dr' r r2
R=0 (8.3.1)

(n+V)'

O~+g'=
(n+1) '+'(2n+ 1) n l—

(8.2.3&
R„~,"+& '= (2—/(n+y)) "+&+&I' &(2n+2y+1)r"+&

Xexp( —r/(n+ y)) (8.3.1a)d
X 2n+ 1+(s+1/n)—

r

R '+& = 3C '+&—'R '+&—'
We shaH prove this theorem by induction: from

(8.1.6) and (8.2.3) it is easily seen that where

n+ 1 (n —l) (n+/)
n, +1 +K '

n .(n+1—l)(n+1+l)

(8.3.1b)

(8.3.1c)

and

n+ 1 (n —l) (n+ l)
On+i' '=

n (n+ 1—/) (n+ 1+l)

and

(8.3.1d)

R ~~"+& '(s) =(2/( +ny))"+&+li' &(2n+2y+1)r" &

Using (8.1.5b), (8.2.3) and the above equations
we 6nd

R„~g'—'(s) =+Be~~'R„~,'(s)

Xexp( —sr) (8.3.2a)

(8.3.2b)R„~,+~'+&(s) =0„+~ig'+ R„q ,'+ (s).
where

n+1 (n l) (n+1)—

n (n+1 —/) (n+1+ l)
+X„'O„„g'R„'(s)

e+y+1

(n+V)'+'+'

(n+ y+ 1)'+&+'(2n+ 2y+ 1)

n+/+2y+1 '

O

since the X and 0 operators commute. Therefore if
(8.2.3) is true for the quantum number / it is true for
/ 1. It is a s—traightforward matter to check that (8.2.3)
is true for l= rI,—1; the theorem is then established.

Thus with the help of (8.2.3) we can move to the right
along the ladders L'=constant. This result is the basis
for the calculation of a large class of matrix elements
involving Kepler functions which will be taken up in
Chapter 12. The essential difference between the
0-operator method and the Schrodinger method for
changing the energy parameter is that the 0-operator
commutes with functions of r, differentiation and es-
pecially integration with respect to r.

8.3 Genera/ised Kep/er problem

As 'will be shown in 8.4 the radial part of Dirac's
equations for the electron can be solved in terms of
generalized Kepler functions. We will therefore present
the necessary results ih a convenient form.

The generalization needed is, mathematically, a
trivial one. In the results of 8.1, 8.2 we have considered
e, l to be both integers. However, Theorem IU was based
on the milder restriction that the difference between e
and I be an integer. All our results will therefore con-'

tinue to hold if we replace n by n+ y and l by l+ p where

p is any constant. In particular, the results we need for

1 ld
2n+2y+1+ { +s {

' (8.3.2c)
1 n+p i ds

The above generalization is not entirely trivial for it
is now possible that n=o. Thus the solution R~& '
exists which has no counterpart in the ordinary Kepler
problem. Furthermore the other solutions for l= —1
can be reached by the operators since the operators
(with /=0) are no longer singular.

8.4 Dirac's radial functions
I

The radial functions for the Kepler problem treated
by Dirac's theory are. the solutions of (2, p. 312):

dXi —kyq/r = {(1 E/Ep) pc/A n—Z/r I yp—
dX2

+kxp/r = {(1+E/E p) tJc//t+ nZ/r l x,
dr

where k is the auxiliary quantum number and must be
an integer, positive or negative, but not zero. Eo= pc is
thd rest energy.

If we introduce

y~
——(l'p nZ)&, y—p ——(k+nZ)'*,

e=E/Ep bi= pc/Ii| a =bpnZ
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and
ll'1 (vl+ v2) X1+(vl v2) X2
4'2 (Vl V2)X1+(Vl+V2)X2

Lin (32) has shown that

I~ y-l, y (22k2 v2) 1/12Z2 (8.4.5)

and write ar= x (so that the independent variable con- so that, finally, the normalization factor is

tains the energy parameter), we obtain
C= (ea/2) '*/2v. (8.4.6)

1 dt b/2k

x vdx} u~v )

tv 1 d b(ek—-+—&-=-I —+1 }&1
ix v dx a & v )

(8.4.1)

I in's ingenious method is as follows: first write

l+v 1 d
+H'+&=

x l+v dx

Now put
and

Rl = (2k/v+ 1)&Q„R2= (ek/v 1)&—&2 (8.4.2)

and Eqs. (8.4.1) become exactly (8.3.1b) and (8.3.1c)
for l=O provided we identify

~~yl+y =L(.- 1)(.+1+ 2v)3 1/(I+ v)(l+ v)

L+~&,&+q—, R t+q—iR
0

and
Rg ——R~~~', R2 ——R„+~&

(b/. )("k'/v'-1)'=
I ~(~+2v)3'/(~+v) v.

This last condition leads to the known formula

2=(1+a'Z'/(I+v)') '* 22=0 1 2 (843)

The possibility e=G must be given special considera-
tion since, in this case, 2= v/I kI (since 2)0) and the
substitutions (8.4.2) cannot be used. Going back to
(8.4.1) it is a simple matter to check that, in this case,
the only solutions satisfying the boundary condition are

k)0 $1=$2=0
k(0 $1/0, $2=0.

xl ——Ct (v2+ vl) (ck —v) ~R~yy —'(x)

These results are automatically contained in the final
formulas for the solutions which are

Then it is easily checked that

+1+y —
$ +—l+y 1+ +—Ql+y —1+l. —

where

pl+ yll = (l+v)/(l+v 1), —pl—+lil = 1

«= (l+ v) }1/(l+ v —1)'—1/(l+ 7)'}

so that, making use of Theorem II, we obtain

l+ q—t, l+q

or
=(&i+el)~~y'+~'i~y'+~"+y '+«

Either side must therefore be independent of l and hence
equal to 1/(22+ V)2 since R~y"+y= 0. Therefore—

'" l(l+ )+-il(l+v)'
=~.+y"" 'l~y'+" "+" '/(1+-v 1-)+i/(l+—v 1)'—

+ (v2 —vl) (2k+ v)'R '(x) } (8 4 4a) I, -"=
vl 1/( +v)'-1/v'j/~,

= —Li —v'/(~+ v)'j'.X2
——cI (v2 —v,)(ek —v)&R~, y '(x)

where it remains only to determine the normalization
constant C. The condition to be satisfied is

t

(XP+x2')«=o '
J, (x '+x")d*=1

Jo

+ (v2+v 1)(2k+ v) ~R„+,y(x) } (8.4.4b)
Vsing (8.4.3) for 22+ v we obtain (8.4.5) as required.

The expressions (8.4.4) can also be interpreted as the
solutions for E)pc2 provided we replace 22+ V by ill+i V
where the value of e will now be unrestricted. We will
show in 12.5 that the normalization constant C be-
comes, in this case,

where

(8c2/g) Igk2+(22k2 —v2)&llzl~ y—1 y} ~1

F00

I~ .p~ '~= R~p~ R~p+dx.

Since the R functions are normalized this condition
becomes

C= (u/22) &/2v (8.4.7)

if the modulus squared of the corresponding eigen-
diGerential is proportional to the number of electrons
per unit velocity range. Since there is no key function
corresponding to (8.3.1a) for R;~;y'+y we have yet to
explain how these functions should be normalized.
This is done in Sec. 12.5.
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d'C 2a l(l+1)+a
+—C — C+XC =0

dr2 r r2
(8.S.1)

where a is a given positive parameter.
If we put ar=x and y= —(i+ ,')+(-(l+i2)'+a)& then

(8.S.1) becomes (8.3,1) and so the solutions (normalized
on the range for r) become

e, '= alR„+„'+&(ar)

corresponding to the eigenvalue X= —a/( n+y)' i.e. to

(—1 )'=a/(n-l-l+((l+-:)'+a)'3,
/= —1, 0, 1, 2 &n—1.

8.5 Oscitlafieg rotator

The differential equation for the oscillating rotator
is (44)

We can now rewrite (4.2.4) in terms of I'i

Y~i ——(ai+i /ai")L(l+1 —m)(i+1+m)7-&

X —(l+ i2) cos8—sin8—7'& (9.1.2a)
d0

I'i i"——(ai i"/ai )t'(l m)—(1+m) j-&

—(l+ 2) cos8+sin8 —Yi" (9.1.2b)

and we have only to find the ratio ai~i /ai .

Q. Type A Matrix Elements

In the next four chapters we are going to consider
the problem of calculating certain integrals whose values
depend on the eigenfunctions of the preceding chapters.
These integrals are the transition probabilities of quan-
tum mechanics.

Our aim is'to show how the key function and recur-
rence relations provided by the factorization method
can be used to find quickly the corresponding matrix
elements.

g.l Spherical harmonics

FIG. 4. The solution I &+&
+' can be reached from F& by moving

along either path with the appropriate operators.

|A'e can easily show that this ratio is independent of
the sufFix m. Ke will do this by comparing the results of
moving with our operators along the two paths shown
in Fig. 4. In fact we can write either (from path 1):
Iri~,"+'= (ai+,"+'/ai +') ((l m) (l+ 2—+m) 7

X —(l+ ~) cos8—sin8—I",~+'
d0

(a ma+i/a m+1)[. . .]-)j.. .
I

XL(l—m)(i+m+1)] '* (m+-,') cot8 ——Pp
d01P

cos~0 sinq0FI, Y~ 'd0
"0

(9.1 1) or (from path 2):

Pi+i +'=L(l—m+1)(i+m+2)$ &

To evaluate spherical harmonic matrix elements it is
only necessary to have cos0Y& and sin0I'& expressed
as linear combinations of contiguous solutions. For,
with these expressions and the orthogonal and normal-
ization properties of the solutions, we are able to cal-
culate integrals of the form

where p, q are integers and we must have m —m'= —q,—q+2, q.
Now, the Class I solutions (4.1.4) of the associated

spherical harmonics equation satisfy the physically
proper normalization condition (4.2.5). To find the
expressions required for the calculation of (9.1.1) our
first step is to adjust the constants in (4.2.4) so that
these Class II recurrence relations preserve the same
normalization.

Let us introduce u~ so that

sin—&07'g —=E) —= a& P& .

That is, ag is the correction to the normalization of Pl, .

d
X (m+-', ) cot8 I'i~-,"—

d0

I (ai i"/«-)
X$(l+ 1—m) (t+ 1+m) $-~

X —(l+-', ) cos8 —sin8 —I'i".
d0

Af ter performing the indicated operations we 6nd
that the two right-hand sides above are equal provided

ai+i /ai =ai+i /ai: ai+i/ai, (9.1.3a)

say, which we set out to show.
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(i+m+1)(i+m+2) &

sinoV~ —— P' m+],

(2l+ 1)(2l+3)

d
Y~g' ——L21+2j

'*(l+-,') cot8+—Y)+g'+'
do

By equating the right-hand sides in the two expres- (9.1.5a) we obtain
sions

Yg+x'= (ai+y/a() pl+1] '* —(l+-,') cos8—sin8—Yg'

(l—m —1)(l—m) &

ma+1 (9 1 5b)
(2l+ 1)(2l—1)

(l—m+1)(l—m+2) '
P' m—1l+1(9 1 3b) sin8Yq~ ———a~~/a) —(2l+—3—)&/(2l+ 1)&.

- (2l+1)(2l+3)
It is now a straightforward rnatter to find the

formulas to be used in calculating matrix elements.
With (9.1.3) in (9.1.2) we obtain

(l+m —1)(l+m) &

Yg i" '. (9.1.5c)
(2l+ 1)(2l—1)

an using t e nown expression j . . aj ord
'

th k .4 & 4 ~ f I, , Similarly, by starting with I"& in terms of 7&~—' we

I'~&'+' we can easily Gnd the value
can obtain

(l+ ~~) cos8+ sin8—Fp
d0

(l+1—m)(i+1+m)(2l+1). &

t (l+ ~~) cos8—sin8—YP

Y~g" (9.1.4a)

The formulas (9.1.5) along with

d0= 8))J0

are sufhcient for the calculation of spherical harmonic
matrix elements of the type (9.1.1).

P.Z Generalized spherical harmonics

(l—m)(l+m)(2l+1) &

(9.1.4b)

= ~ —(l+—') cos8+sin8 —YP+'2

+ (m+i+1) cos8Y~™+1

(l—m —1)(i+m+1)(2l+1) i
et+i

2l—1

+ (m+i+1) cos8Y("+'.

Dividing by the radical on the left side and using

Adding these two equations and dividing by 2l+1 we
obtain

(l+1—m)(i+1+m) '
cosoI'~" ——

(21+1)(2l+3)

(l—m)(l+ )
Yg .g (9.1.5a)

(2l+1)(2l—1)

which is the 6rst of the expressions required.
To expand sinoI ~ we write

$(i+m+1) (l—m)]& sin8F("

= sin8 t (m+-') cot8+—Yg"+'
I

2

We can easily adapt the arguments of the preceding
section to the solutions of the generalized spherical
harmonics equation given in Sec. 4.3.

The corresponding results are as follows:

"/, "=—(l+ +1)'/(l+ )'
'(l—m+1) (i+m+2') '*

cos0Y&, , ——

- 4(l+v)(i+v+1)
(l—m)(i+m+2' —1) &

4(l+ v) (l+ v —1)

(l+m+-2~) (i+m+2~+ 1)
m+1

4(l+y) (l+y+1)
(l—m —1)(l—m)

I'~—i, ~"+'
-4(i+7) (i+7 1)-

(l m+1)(l m+—2) '*-
m—I

4(l+ y) (l+ y+ 1)

(i+m+2' 2)(l+m+—2y 1) '*—
4(l+ )(l+ 1)

We now show how the factorization method can be
used to 6nd explicitly the value of

Pt,"'Ft2 2Ytp'd8, mi=m2+m2 (9.3.1).
a

I

9.3 When theintegrand contains three spherical harmon2cs
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This integral (with diBerently normalized functions)
was calculated by Gaunt (17) and similar problems were
considered earlier by Adams (1). In applications such
integrals have occurred, for example, in a paper by
Elsasser (15) on the origin of the earth's magnetic
field.

Because of (4.1.2, 4) and Theorem II
1.3.5 (2li+1)»

P) l],

2.2.4. ~ 2l
sin"0

and hence the integrals will all vanish unless

4&4+4.
From (9.1.5b, c) and since

Pi ~Yiz zYiz d8
0

= L(li —zzzi) (li+zmi+1) $
—»

(zizz+ 1) cot8+—Pi,"'+' Yipz Y,p&dg
0 d6

X (zzzz+-', ) cotg+(zzzz+-', ) cotg ——Yipz Yzp&dg
d8

= &(4—Nzi) (li+zzzi+ 1)]-» L(lz —zizz)(lzyzzzz+1) j»

p) m].+1+') mm+lp') medg

~o

+I (l,-zmz) (lg+ zzzz+1) $»

Pii~&+iYipzYi ~z+idg ~ (9 3 2)

Using this formula altogether I1—m1 times, it is a simple
matter to write down the general term in the resulting
series of integrals. Rearranging only slightly leads to

where the brackets contain only constants. Now, using
the orthogonality property of the F functions, we see
that the integrals in (9.3.3) will all vanish unless

li+ lz+ lz ——even number
4—4& la&4+4.

The selection rules can be summarized by saying the
I's must be equal to the sides of a triangle with even
perimeter.

The selection rules must be satisfied if (9.3.1) is to
be not zero; but the integral may be zero even if the
selection rules are satisfied due to the possibility of
different terms in (9.3.3) cancelling one another. One
such exceptional case found by Bird (3) is

p 2y py ado

It remains to evaluate integrals of the form

4p
sin'&8Yi, Yifdg, li n+P. ——

For this purpose we need two reduction formulas. The
first is obtained from

it is seen that

Pl JiYl fsz+ll tel I—( ) Y i i f88+I

+( )Yi i +&ms+4+. . .+( )Yi i ms+i

pg m1p') mph''l tned'g

(li+zzzi)!(lz —zzzz)!(lz-znz)!

(li—zzzi)!(2li)!(lz+ zm z)!(lz+ zw z)!

sin"8Fi, =L(lz+n+1)(lz —n)$ .

X I (n+-,' —li) cotg+ (d/dg) I sin'~8 Yi,~i

which follows from (4.1.4b). Then, in a manner an-
alogous to that used in finding (9.3.2), we obtain

sin"OY~~ Y~3t'de=—
(i.+~)(i. ~+1)»-
(lz+ m+1) (lz—a)

(iz+4+zzzz zmi )z!(l z—+zm+—zi)!»
X

(lz —li —zzzz+ zzzi+ z)!(lz —zzzz —z)!
X sin"8Fi, +'Fizz-'d8 (9 3 4)

~lp

Using this formula 12—0. times we reduce the problem
Pi,"Fig~" "' 'Fig~'dg (9.3 3) to t.hat o

The superscripts of at least one of the F's in each
product will be greater than the corresponding subscript

sin" +'z+»8Yi," "dg. (9.3.5)
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(n)!!=n(n —2)(n —4) 2 or 1 (0)!!= (—1)!!=1.
A reduction formula for this integral can be obtained where

by f}rst multiplying the differential equation (4.1.3)
by sin"0 and integrating twice by parts. Then

sinai —2g P' tsdg~
Jo

Further

(n+ l+-,') (n —l ——',)
Combining (9.3.8) with (9.3.3) and the expression for

E&," leads finally to

(n+ m ——,') (n —m ——',)

(4+l2 —l1—1) '.L(»1+1)(2iz+1)(2i3+1)3'

(l3+ ll l2) ~ (l2+ l 1 l3) ~ ~ (ll+ l2+ l3+ 1) ~ .

F

PI ~1Ff ~2F! ~3dg

&&jt sin "8FI"dg, n) -,'. (9.3.6)
0

j sin"8F1 dg
0

= L(i+m+1) (l—m) j—&

dl
sin"g (m+2) cotg+ —Ff +'dg

=L(i+m+1) (l—m) )-&

(m n+—', ) cos-g sin"-'8Fz +'dg

(l1+m1)!(l1—m1)!(l2—mz) .(l3—mz) f.

2(l2+m2)! (l3+m3)!

11 —ml (—1)(13-13+11)l2+m3+f(l3+ m3+ z)!(lz+ l1 m—3 z) I—
x Z

(l1 mz i) !(i)!(l3—m3 —i) !(l2—l1+m3+ i) !

(9.3.9)
provided m1 ——m2+mz.

In E}sasser's paper (15) there also appear expressions
of the form

=L(i+m+1) (l m) (—i+m+ 2) (l m —1)j—

)& (m —n+-,') L(m —n+5/2) sin"—'8
"o

+ (n —m ——,') sin"8/F3"+2dg

fQ 7I

yg P) ~1 P) ~2, P) rn3de

~p d8

P m, IP mg P m3dg

d8

so that, using (9.3.6), we obtain

m+-', n(l —m 1—)(l+—m+2) &

sin"tYF~ do=
m+ 2+n (l—m) (l+m+ 1)

m1+m2+m3 ——0 (9.3.10)

which can easily be reduced to the previous problem as
follows: consider

m2 cot8+—Pf '=f(l2 —m2+1)(l2+mz)$'*P&"
dgl

2

Since in (9.3.5)

l—m= l3—l1+l2= even number.

sin I1+12+13+Igd g

d8

(9.3.7) can be applied (l3—l1+l2)/2 times and (9.3.5) Mu}tip}ying these equations on the }eft by mzp(3~3 and
is reduced to the known integral —ns2E&, 2 respectively and adding we obtain an expres-

sion which shows that (9.3.10) can be written in terms
of two integrals of the form

Using (9.3.4), (9.3.7), and the value of the above
integral we obtain, for l1 ——n+P,

Pf "' 'Pfz"3P13"3dg, mz ——m2+m3.

4o
sin"OF~2 Y~st'd9

( 1)(13—13-11)/2+~(2l1) I!(lz+l2—l1—1)!!
(l3+ l1—l2)!!(l,+l1—l3)!!(l,+l,+l,+1)!!

(l3+!3)'(l2+~)! '
X (2l2+1) (2l3+1) (9 3.8)

(l3—P)!(lz—(2) f.

The argument used in (9.3.2) can be used again and,
in fact, we would obtain exactly the same result (9.3.3)
except that m& must be replaced by m& —1 and the
Y's by I"s. Then, because the integrand contains I"s
rather than F's, we require (9.3.8) with l1 replaced by
lJ io

The selection rules now require the l's to be equal to
the sides of a triangle with odd perimeter. Also (9.3.10)
is obviously zero if m2=m3 and l2=la.
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Finally it should be pointed out that the methods of Because of the orthogonality property satisfied by
this section can be used to evaluate any integral of the U ' we can replace s by s—1 inside the brackets. The
form operator will now operate on U ' ' so that

provided

J0
sin OPi, Pi2 P)„d8

Q m' —p+1=0.
i 0

F00

U s—1U,sdx

= [(s—m') (s+m') j—l[(s—m —1)(s+m —1)j&

X U s—2U, e—ldx

10. Type B Matrix Elements

IO.I Morse functions amd diatomic molecules

Our next problem will be to evaluate

xU 'U "dx.

If we apply this argument altogether s—m times we
obtain for the last stage, analogous to (10.1.3),

pQQ

U ' 'U "dx=[constant)

U ' is defined by (5.1.4) so that, according to Sec. 5.2,
the integral is proportional to the probability of a
transition between two vibrational states of a diatomic
molecule. The eGect of the rotation is neglected.

As in 5.2 we can introduce the usual quantum num-
bers v, v' as follows

s—m=v, $—m =vl

expx d
X —m —1+—tU " U "dh

dxi
"

which vanishes because of the orthogonality and the
definition of (5.1.4a). Thus (10.1.2) is proven.

The second part of our proof is to establish and use
another reduction formula. We have

I„,„.=[(s—m)(s+m) j-&
so that our "intensity" integral is

xU 'U "dx. (10.1.1)
X

expx d—s——U ''U "dx
2 dx

Without loss of generality we can take m'&m (or
i & i '). This integral has been evaluated approximately
for the 6rst two bands (i =0, i '= 1, 2) by Dunham (11).

Our calculation of (10.1.1) will fall into four parts and
though the argument inay seem lengthy we will And

the same ideas being used in each part.
The 6rst step is to show that

= [(s—m)(s+m)P&

expx
X U.- —s+—xU "dx

= [(s—m) (s+m) P&

texpx d
ixU ~' —s+—U "dx

i 2 dxl
~0@

U ' 'U "dx=0, m'&m.

Using (5.1.4) and Theorem II we obtain

U 'U "dx

=[(s—m')(s+m')g —
&

t expx d
X U„~'i —s——V .~'dx

12
= [(s—m') (s+m')g —

&

(10.1.2) f'

+[(s—m)(s+m)j & U *—'U "dx.

The last integral vanishes because of (10.1.2) and we
can use (5.1.4c) to obtain the reduction formula:

(s—m') (s+m')- &

Ir& r I.-l, "-l
(s—m)(s+m)

Applying this formula altogether s—m=v times we
obtain

(s—m')!I'(s+ m'+ 1)I'(2m+ 1)

expx d
X —s+—U ~' U .~'dh. (10.1.3)

dx

.(s—m)!(m —m')!F(m+m'+1) I'(s+m+1) .

XIp, „„. (10.1.4)
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X xU
exp' d—m ——U 'dx

2 dS

Furthermore, if we continue as above,

Ip. . .= [(m—m') (m+ m') )—'*

But, because of (5.1.4a),

U„U ™dx=[I'(2m) I'(2m')] &

exp[(m+ m') x—expx$dx

m —m 1n 1n

exp@ d
X x —m+ —U m U m 'dx

dx

~00

+[(m m')—( m+ m)] & -U„"U "-'dx

= [I"(2m) I'(2m'))&I'(m+m'). (10.1./)

Collecting the results (10.1.4—/) we 6nally obtain
the required formula

I

2 (s—m')!I'(s+m'+1)
IV, v' mm

(m —m') (m+m') (s—m)!I'(s+m+1)
= [(m—m') (m+ m') )-l

U m U, m—ldx

If we put m=s —v, m'=s —s' so that the 6nal result is
in terms of the physical constant s (see 5.2) and the

(10.1.5) quantum numbers v, v', we obtain, for v(v',

The erst integral on the right side vanished because of
the definition of (5.1.4a) and the remaining one can be
evaluated by means of just one more recurrence formula.

This formula is obtained as follows:

IV, V

(v' —v) (2s—v —v')

v'!I'(2s —v'+ 1)
X (&—v)(~—v')

v!I'(2s —v+ 1)
(10.1.8)

U mU, sdx

= [(s—m') (s+m') j—
&

11. Type D Matrix Elements

11.1 Harnsoeic oscillator

X) U" expx d—s——U"'dx
2 dS

From the recurrence relations (6.1.4) for the harmonic
oscillator eigenfunctions we obtain immediately

=[(s—m') (s+m') g-&

p" exp@ d
X —s+—U " U ~'dx

2 dS

g N [(X+1)/——2)'*PN+&+ [X/2)&g N i

Since the P's are orthonormal this formula enables us
to calculate the transition probabilities. In fact

[(X+1)/2j& if S'=S+I
=[(s—m') (s+m') 1-l

expx d
)—m+ —U ~ U " 'dx

O'N k4'Ndk='
I &/23' if

otherwise.

F00

+[(s m')(s+m'—)j &(m s) —U„—U ' 'dx.

U U 'dx

I'(2m'+1) &(m —m' —1)!

(s—m')!I'(s+m'+1) (m —s—1)!

U„mU„.m'dx. (10.1.6)

Again the erst integral on the right side is zero because
of the de6nition of (5.1.4a). We can now apply this
reduction formula altogether s—m' times to obtain
(if s(m)

Similarly the momentum matrix elements can be
found from

X+1 '
4 N+1 fN 1-

2 2

The recurrence relations (6.1.4) were used in this
manner to 6nd the matrix elements even before they
were used to generate the solutions themselves (see,
for example, 9, p. 135).

12. Type I' Matrix Elements

For the purpose of discussion we shall consider the
Schrodinger hydrogen intensity integral

~00

0



THE FACTORIZATION METHO D

where R is defined by (8.1.5). The value of this integral
has been calculated many times. Originally Schrodinger
(40, p. 99) calculated it for special cases using the gen-
erating function for Laguerre polynomials. Wheeler
(52) has recently applied this method to the general
case of discrete-discrete transitions. Epstein (16) used
the theory of hypergeometric functions to solve the
same problem while Eckart (13) evaluated the integral
directly. Gordon (19) has treated the discrete-con-
tinuous and continuous-continuous as well as the dis-
crete-discrete transitions.

Ke want to show that each of the X and 0 operator
recurrence formulas of Chapter 8 for the radial functions
leads to a recurrence formula for the integral itself,
provided that at least one of the wave functions repre-
sents a bound electron. The 0-operator method will
then be generalized so that the more complicated Dirac
matrix elements can be calculated.

1Z.1 Algebraic recurrence formulas for intensi ti es

It is not dificult to verify from (8.1.5) and (8.1.6)
that

2/A„'+K„'= (2l+1)A '+'+K '+'

Our derivation (and hence this result) is valid for the
discrete-continuous transitions once one replaces n
by in.

These are algebraic formulas giving a pair of inten-
sities in terms of the next highest pair in the scheme of
Fig. 3.

All intensities can now be calculated once a starting
point is found; an obvious choice is the pair at the top
of the n' ladder:

where

(12.1.3a)

(We shall adopt the convention that n' always refers to
the discrete spectrum. ) The method of calculation of
the other expression is indicated in 12.4. The result is:

n' —1,n' 22n'+2(nn&)n'+2
1

(e+n')!
X — (12.1.3b)

(n —n' —1)!(2n' —1)! (n+n') "+"'+'

or, for the discrete-continuous transition,

+A, l+1 —gg, l ++1cont san/ tr (12.1.1) In'. ln ' = 2. (nn )

2lA ' rR '+~ 'R 'dr

goo
= (21+1)A '+' rR +Rn+'Rn'dr

~0

yA .1+1 " rR1-SC 1+1R.ldr
0

=(2l+1)A '+' I r( X '+'R ')R„'dr

+A, l+1 rR ' K '+'R 'dr

Multiplying (12.1.1) on the left by rR„', on the right by
E ', and integrating gives rr (p+")

X .
(2n' —1)!(exp(2m. )—1)

exp[2n tan —'(e/n') )
(n2+ et 2) n. '+2

(12.1.3c)

From (12.1.3) we can now calculate pairs of intensi-
ties by successive application of (12.1.2)—the important
intensities requiring at most but a few steps.

I„+1,„' ' '(s) =On pi' 'I„,„' ''(s) '——

12.2 Operator recurrence formula for intensities

The results of 8.2 will now be used to Qnd an n'-chang-
ing recurrence relation for the intensities. Indeed, it
follows immediately from (8.2.3) that

because R„', R„' are orthogonal and their product or
vanishes at r =0, ~. We have then:

I +1„' "(s)=O„+1' 'I„.„„'"(s)—
2lA 'I ~

'-' '=(21+1)A '+'I„' '+'

+A, l+1 I, l+1, l

By interchanging n, n' we obtain

l I, l, l—1 g l+1 I, l, l+1

+(2l+1)A '+' I„'+' '

with

nIl+1 e'+l
l—1

(e'+1) '+'(2e'+1) e' —l+1

(12.2.1)

where
A „1= [(n—l) (n+1)j-:/nl.

X 2n'+1+(s+1/n')—
S
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where the intensity fttrtctio72 is defined by

I„,„' "(s)= rR„' '(s)R„tdr.
~0

The starting point needed here is

1 |'4 ) '+' (n+l)!
t l, t-(s)

72 E Nl) (I—t—1)!(2/ —1)!

From (12.1.2):

I2 „''=(1/2AS')3A 'I2 ' '+0 .

= 217/2747/2(722 —1)1/2(72 2) n—2(N+ 2)—n—2

Alterrtatit/ely, we can use (12.2.2a) to get

0,1(s)—24m—0/2(I2 1 )1/2

X(s-1/I)" 2(s+1/St) " '(2s —1).
(s 1/rt) n—l—2

[(&+1) 1j (12 2 2 )
Operating on this expression with

(s+1/I) n+l+2

or

rr (p+")
(4q l+1

I 1-1 1(.)=
(
—

~

I nlrb (2/ —1)!(exp(27477)—1)

exp(272 tan 'ns)
X [(i+1)s—1j. (12.2.2b)

(s'+ 1/'I') '+

The derivation of (12.2.2) is indicated in 12.4. Another
starting point which may be needed is

It+1, tn" '(s)

020 2-2/23 —1 3+(1+s)—
8$

and then putting s= —,
' we get the value above for I2 „' '

which is the same as that given by Condon and Shortley
(5) for the transition 2s —92p.

(3) The above methods can lead to explicit forms of
the intensity integral except in the case of continuous-
continuous transitions. For example, by means of
(12.1.2), (12.1.3), and known relations between con-
tiguous hypergeometric functions the results given by
Gordon (19) can be proven by induction.

IZ.4 Certairt irltegrals a7td the Problem of itormalisatiort
It is slightly more complicated but can be found
easily from the formulas in 12.4. We have yet to show how the starting points given

Using (12.2.1) and (12.2.2a) we can find in 12.1 and 12.2 are found. To this purpose we de6ne

IZ.3 Remarks on JZ.l and 1Z.Z

(1) The set of values of the quantum numbers for
which the intensities are required will determine which
of the above two methods should be used. Being alge-
braic (12.1.2) is simpler whereas (12.2.1) has the special
characteristic that it is applicable to the problem of
calculating more general matrix components:

V(r)R„'R„tdr.

This fact is essential to the treatment of Dirac matrix
elements in a later section.

(2) Example of a calculation:
To find

0,1
goo

F2 E 'dr

which, with (8.2.2), give the intensities. Similarly,
from (12.2.2b) we can find.

l—1,l(s)

I„= r' exp( —sr)R tdr
40

(12.4.1)

After two partial integrations of the erst term we
obtain

dI„
(s' 1/NS) +[2(l+—1)s—2jI„=O.

ds
Therefore

(s—1/I)" '—'
I„=C

(S+1/I) n+l+1

I„ is the Laplace transform of r'8 ' and therefore
(4, p. 170)

R„'=r '[residue of {exp(sr)I„I at s= —1/rtf

The coefficient of the lowest power (1+1)of r turns out
to be

and we must distinguish between two cases:
Case I: Discrete discrete. Fr-om (8.1.—3) and (8.1.4)

00 d'R 2 t(t+1) 1
r'+' exp( —sr) +-R— R Rdr =0. ——

dr' r r2 m2

we can use (12.1.3b) to get immediately

2,1 0
9

1,2 3—I/2219/2929/2(722 1)1/2(72 2)n—7/2(72+2) —n—7/2

C exp( —r /)72(/21+1)!.

But from (8.1.5) we have:

l —+ 5+1 + 3+2. . .++ n—lg n—1

(12.4.2)
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Using (8.1.5a) and (8.1.6) we can easily pick out the
coeKcient of r'+', it is

2"(n —1)! (e+l)!
n'+'(2n —1)!l! (e—l—1)!

XL(2l+3)(2l+5) (2n —1)]exp( —r/e). (12.4.3)

Equating (12.4.2) and (12.4.3) we find C so that

E;„'. This is found by expanding the integrand of
(12.4.6) in descending powers of r on each half of the
contour. The first terms in each expansion are con-
jugate complex and their sum turns out to be

C exp( —nlr/2) e'+'
~in ~

( F(l+1 i—n) (
2'

Xcos(r/e+ e log(2r/n) —(l+ 1)2r/2+ 0 l)

Then

2'+' (e+l)! &(s—1/n)" ' '
I = . (12.4.4)

n'+' (n l —1)—! (s+1/n) "+'+'
where o l is the argument of 1'(l+1—ie).

Using the normalization condition, we obtain the
value of C and finally,

Il „' "(s)= (2/l)'+&t (2l)!] & r'+' exp( —sr)R„'dr

=(2/l)'+'E(2l) j '—
Therefore

(n+l)!(4) l+1—

I l—l, g(s)—
n 4 nl) (e—l—1)!(2l—1)!

ds

II (p )
@=1 exp(2e tan —'ns)

(12.4.7)
exp(2nlr) —1 (s'+ 1/n') '+'

, 2 '+n'
(2~ l+

En&

from which the corresponding starting points are
found to be as in (12.1.3c) and (12.2.2b).

(s—1/n) "-'-'
X L(l+ 1)s—1j. (12.2.2a)

(s+ 1/e) "+'+'

By putting l=e' and s= 1/n', we obtain

n' —l, n' 22n'+2(nn~)n'+2

(n+n')! &(e—e')"-"'—'
X — (12.1.3b)

(e—n' —1).(2e —1). (n+e )-+-'+

Case II: Discrete-contirruols. —In this case I;„ turns
out to be

FIG. 5. Contour in the s-plane for the positive energy
solutions (12.4.6) of the Kepler problem.

I,„=C(s i/e)-'—" ' '(s+i/n)'"

exp(2e tan 'es —nlr)=C, 0(tan 'eS(lr/2 (12.4.5)
(s2+ 1/n2) l+1

and the inverse transform is

Cr' (
R;„'= exp(sr)(s —i/e) '" ' '

2xi ~
X(s +i/)n' n' 'ds (12.4.6)

12.5 GerIeralisatiom to Dirac matrix elements

%e want now to find the formulas which are needed
in the calculation of matrix elements which contain
Dirac radial functions in their integrands. In Sec. 8.4
we found that these functions are linear combinations
of the generalized Kepler functions in 8.3. Dirac matrix
elements are therefore linear combinations of integrals
such as

~ k+8,

lim R;„'
M~ ~0 ~k—Lk

= / ~

There is no contribution to this limit for finite values of
r. %e can therefore substitute the asymptotic form of

I

where the contour can be taken as shown in I'ig. 5.
This is the form in which the positive energy radial
function was originally given by Schrodinger (39). The
normalization condition can be written as (2, p. 291).

V(r)Rn +„'+&'(a'r)R~ '+& (ar) dr (12.5.1a)

V(r)R„+„"+&'(a'r)R~ '+&(ar)dr (12.5.1b)
Jo

where V(r) is the perturbing potential and l, l'=0, —1.
The generalized 0-operator recurrence relation
(8.3.2b, c) enables us to raise e' in these integrals and
does not depend on the form of V(r). Our problem is
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therefore reduced to that of 6nding expressions for the
starting functions corresponding to I„, I;„of the pre-
vious section.

If we consider

V(r) = ri' exp( —qr),

large I, is

I„p,(t, u) =A)2/(un+uv+1)]'+'+'+7

XF(2+t+I+y, 1+(—n, 2+21+27, 2/(un+up+1))

+B)2/(un+up+1)]i+'

where p, q are constants, " all that remains is to find XF(1+t I p—, —n —I 2—y,——2l —2y, 2/(un+up+1)).

(12.5.3)
I-+7(t u)=

Jo
x' exp( —ux)R p, '+&(x)dx,

Taking the inverse transform term by term it is found
that 8=0 if E is to satisfy the boundary condition.
Then comparing coefficients exactly as was done in
12.4, it turns out that A is such that

I;„+;,(t, u) =
)

x' exp( —ux)R;„+,,'+&(x)dx (12.5.2b)
0 (n+y~ ' I'(2+t+I+y)

(t, )=~ ((I+v+1)
2 ) I'(2l+ 2y+3)

and later put t=p+7' or p+y'+1 and u=q/a+su'/a.
The new feature is that the differential equation for 'I'(n+t+2y+1) &

I is no longer of the first order. Instead, proceeding as 2 un+u +1 '+'+'+&

in 12.4 we obtain:
Case I: Discrete-discrete. —

L /( v )]
(n —t—1)!

XF(2+t+I+y, 1+1—n, 2+2t+2y, 2/(un+up+1)).
(12.5.4a)d'I dI

Lu' —1/(n+ y)'] + L(2+t) 2u —2]—
dÃ dg Case II: Discrete-corItirlnols. —It is convenient to

use here the notation and some results given by %hit-
+(1+t t y)(2+—t+—t+p)I=D. taker and Watson (53, Chapter XVI) so that replacing

n+p by in+i& in (12.5.3) (with 8= D) and taking the
The general solution of this equation, convergent for inverse transform term by term we obtain

I

A2'+' exp' (t+1)im'/2]
E.; +,,i+&(x) = ~'-+', + +-:(—2" /( +v))

I'(2+t+I+ y) (n+y) '+'

A 2+' 1(2 +12y+2) expL —(n+y)s/2 i (t+I+y+2)—vr/2]

(n+~)'+'! I'(I+~+ I in i~)
~
I (2—+t+—I+ ~)

X2 cos(x/(n+y)+ (n+y) log(2x/(n+y)) —(I+y+1)m/2 —0)

where o.=arg I'(t+y+1+in+iv). Normalizing as in
12.4 leads to a value of A so that

)n+yq '+'I'( +2t+ +Iy)
I,„+,,(t, u)=

(

2 ) I'(2t+2y+2)

( +~) II ((p+~)'+( +~)')

X
exp(2nn+2y7r) 1. —

exp Li(t+ I+7+2)~/2+ (n+ y) s ]
X

Diun+ iud+ 1)/2]'+'+'+'

XF(2+t+t+y, 1+&+y ~n

2+2l+2y, 2 (/i un+i yu+1)). (12.5.4b)
' This potential is general enough to include all integrals con-

sidered, for example, by Hulme {23}in calculating the relativistic
internal conversion coefBcient for radium C.

k+Ak

+lim a'
ok~0

y2dk 'eh=1

with 4=1/(n+y). We need only the asymptotic ex-
pansions of the wave functions and they can be written

Equations (12.5.4) provide the starting points for the
matrix elements of generalized Kepler functions once
we replace t by p+ y' or p+ y'+1 and u by q/a+su'/a.

Finally we can And the solutions of Dirac's equations
for energies greater than Eo. As stated earlier, this
amounts to replacing n+p by in+i& in (8.4.4) and
showing that (8.4.7) is the proper value of the normal-
ization constant C.

Let us take the normalization condition to be

tH-Ak

d,k-+0
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in terms of the asymptotic forms found in this section to a given order in a small parameter e, with the sub-
for the normalized R s. That is, in terms of stitutions

C= (a/2e) l/2y. (8.4.7)

Thus, to 6nd a Dirac matrix element, we use (8.4.4)
with the appropriate C to express the required integral
as a linear combination of integrals like (12.5.1). These
integrals can be derived from (12.5.2, 4) by means of
the 0-operator (8.3.2b, c) and the definition (8.3.1a).
The result will be a linear combination of hyper-
geometric functions. As explained after Eqs. (4.9.7),
this combination can be reduced finally to at most two"
hypergeometric functions before computations have to
be made.

It is customary to normalize the eigenfunctions with
respect to energy by writing the eigendiGerentials as

&&dZ/k.

This normalization leads (18) to the following physical
interpretation of the wave functions: they represent a
stream of electrons with energy 8 crossing a large
sphere about the center of force and there is one en-
counter per unit time. The transition probabilities would
then be proportional to the number of electrons ob-
served per unit energy range. ONr normalization is
consistent with that given for the ordinary Kepler
problem and is with respect to velocity so that the tran-
sition probabilities are proportional to the number
of electrons observed per unit velocity range. To change
from our normalization to the more usual we merely
multiply the wave functions by

c de'
= L(e+y)k/ep, j'*/cnZe.

k dk

13. Approximation Procedure

We shall now indicate how the methods of Chapters 2
and 3 can be generalized to handle perturbation
problems.

The idea is simply the following: we try to satisfy the
fundamental differential-difference equation (3.1.2) up

~ To obtain series which converge rapidly it may be necessary
to introduce a transformation which doubles this number (see 23).

'.'+'( )-(2/ )' o ( /( +v)
+(+ ~) log(2x/(I+7))+ (i+7+1)~/2 —~).

We obtain

2yC(2(e —1)/x)'* cos(x/(m+ y)
+ (n+ y) log(2x/(n+ y)) —0 i)

2yC(2(a+1)/m) & cos(x/(n+ y)
+(e+y) log(2x/(I+ y)) —0.2)

where 0-~, 0-2, are unimportant phase factors. The
integrals over the cosine terms are as before and the
normalization condition leads finally to the value

k(x, m)=&'&k(x, m)+e &'&k(x m)+e' &"k(x m)+
L(m) = "&L(m)+ e &'&L(m)+ e' &'&L(m)+

When these functions are found they enable us to cal-
culate, through (3.1.1), the corresponding perturbed
potential function.

r(x, m) = &'&r(x, m)+ e &'&r(x m)+ e' &'&r(x, m)+

A table of k, I., and r functions wouM. then enable us to
handle perturbed problems exactly as we handled un-
perturbed problems in earlier chapters.

If the above procedure is carried out the zero-order
approximation will lead to exactly the types A ~ .F.
The 6rst-order'approximation requires further that

2 &'&k(x, m+1) &'&k(x, m+1) —2 &"k(x, m) &'&k(x, m)
+&'&k'(x, m+1)+ "&k'('x, m)

= &'&L(m) —&'&L(m+1) (13.0.1)

where the prime (') denotes differentiation with respect
to x. This equation would now have to be solved for the
("k and &')1. functions belonging to each ("k and |'&L,.
Unlike the equation for the zero-order approximation
however, our new equation is linear in the unknown
functions; we therefore find that there is no restriction
on s in the trial solution

&'&k(x, m) = Q k m' k;=—&'&k;(x). (13.0.2)
i t

Each of the types A .F, then, generates an infinit
elmber of perturbation problems which can be fac-
torized.

The second-order approximation requires that the
following linear equation for &')k (@I.be satished

&'&k'(x, m+1)+ 2 &"k(x, m+ 1) &'&k(x, m+ 1)—&"k'(x m) —2 '"k(x m) &'&k(x m)
+&'&k'(x, m+1)+ &"k'(x, m)

= & &L(m) —&"L(m+1) (13.0.3)

and so on for higher order approximations.
The ideas used in solving these new diGerential-

diGerence equations are the same as those used in
Chapter 3 but it is easily seen that the actual calcula-
tions become much more complex as the order and com-
plexity of the perturbation increases. We must there-
fore consider what circumstances would make the above
procedure preferrable to standard approximation pro-
cedures.

Standard methods lead to expressions for the correc-
tions to the eigenvalues and eigenfunctions in terms of
matrix elements, and the formulas developed in Chap-
ters 9—12 could then be used to evaluate these correc-
tions. The formulas of Chapter 12 are, however, much
more complicated than those of 9-11.We might there-
fore expect to 6nd our new method most suitable for
calculating perturbations to type F problems. This is
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the case, and so we shall work out in detail the Stark
e8ect problem in Sec. 13.2.

The new method has also been checked in detail
with the known results for type A (rotating polar
molecule in an electric Geld) and type C (anharmonic
oscillator) problems; but the factorization method is
the more complicated in these cases, at least up to the
order of approximation (second) which was considered.

Besides the advantage of the new method with type F
problems, there are two other reasons why, in some
cases, it would be preferred even for type A ~ .8 prob-
lems. In the first place, we do not require any knowledge
of the perturbed eigenfunction for one order of approxi-
mation before finding the eigenvalues to the next order;
we simply write down the eigenvalues in terms of
&")L, &oL &'&L . Secondly, our perturbed eigenfunc-
tions are not given in the form of expansions in terms of
the unperturbed eigenfunctions; they can be derived
quickly from a key function which is a closed expression
and which is easily eormalised.

13.1 Type P perturbatioris

We now consider perturbations to type F problems.
That is, we take

& &k(x, m) =m/x+q/m . (13.1.1)

We will purposely And a perturbed factorization
(to the first order) which is much more general than
necessary for the Stark effect problem. This will enable
us to understand better the general features of the
method. We shall then specialize the results for the
second-order calculations and finally, in the next sec-
tion, apply them to the Stark eGect problem.

Using the above expression for io&k(x, m) let us sub-
stitute (13.0.2) into (13.0.1); we want to Gnd what k;
satisfy the resulting equation. We need to merely
sketch the first step in the solution: the left side of our
equation must be a function of m only; therefore, if we
multiply through by (m+1)'+i and consider the left
side arranged in powers of nz, we know that the coef5-
cient of each power must be a constant. Similarly the
left side can be arranged in powers of (m+1) after
multiplying through by m'+' and the resulting coe%-
cients of each power must also be constants. If the
coeKcients of the negative powers in each of these
cases are equated to constants it will easily be seen that

k;=0 for i& —2

and k ~, k ~ must be constants.
This simplification enables us to solve (13.0.1) for

&'&L(m); but we must first Gnd the anti-diB'erence of
8

&"k'(x, m+1)+&'&k'(x, m) =P k L(m+1)'+m'g
i=0

Although a general formula for f;(m) can be found we
need to know only two facts about f;(m). First, f;(m)
is obviously a series of positive powers of m with the
highest power (i+1). Second, the powers are either all
even or all odd; this can be seen by comparing

(m+1) '+m'= f;(m+1)—f;(m)

with the result obtained by replacing (m) by (—m —1)
in this equation; that is, with

(—m)'+( —m —1)'=f;(—m) —f;(—m —1).

We obtain

f,( m 1)——f—;(—m) = (—1)'+'L(m+1)'+m'j
= (—1)'+'I:f'(m+ 1)—f'(m) j.

If we neglect the fact (which anyway is not important
for our discussion) that f,(m) is determined only to
within an arbitrary function of x and m of period one
in m, we can conclude that

f,(—m) = (—1)'+'f;(m).

Thus f,(m) contains only even powers of m if i is odd
and only odd powers if i is even.

From (13.0.1) we now obtain
b

&'&L(m)= —2 &'ik(x, m) &"k(x m) —g k 'f (m)

where the Grst term on the right side is given by (13.1.1)
and (13.0.2). If we now substitute

8+1
&"L(m)= —P n,m' n;= constant

and equate the coeKcients of like powers of m on either
side we are Ied to a system of first-order differential
equations for the k;.

The first three equations are

2gk g=n 3

2/k y= 0!
2qko+2k s/x=n i.

As in Chapter 3 the equation containing 0.0 contributes
nothing and we can take a0=0 without loss of gener-
ality. The remaining equations are of the form

2k;/x+2qk~~+2k /(i+1)+( )k~g'
+( )k~4'+ ~ =n~i, i=0, 1, s

where the brackets contain constants which depend
on the coefEcients in f,(m). The last two equations are
simply

2k. ,/x+ 2k, ,'/s= n.
2k,/x+ 2k, '/(s+1) =n.+i.

Before actually solving a particular system of the
equations we can show that

—=P k 4f;(m+1) f,(m) j, —
i=0

say. That is, we want to Gnd f;(m).
and therefore

k P=k0=kg= ~ ~ ~ =0

cx 3= (x y= 0!].= ' ' ' =0+
(13.1.2)



THE FACTOR IZATION METHOD

This result is not surprising when we note that the k;
with odd i are determined by equations whose number
is the same as the number of such k; whereas the k;
with even i must satisfy one more equation than the
number of such k;. To prove our result let us consider
s to be even. Then, from the last equation,

k, = (s+1)a,+ix/2(s+ 2)+C,+i/x~'

where C; will denote the constant of integration in the
equation containing a;. (If s is odd we inerely solve the
second last equation and proceed as in the following
argument. ) Then, considering the equations containing
A —g Q —3

' '. we can 6nd the form of k, 2, k,~,
in turn. It is not difFicult to And eventually that ko

contains terms only of the form

1/x ' 1/x' 1/x' x x' x'

But-this result cannot be reconciled with the 6rst and
third equations unless (13.1.2) is satisfied.

Let us now find the complete solution for a special
case. Let us take s=3; our differential equations then
become

2qk g ——n 2

2k i/x+ ki'+ 2qke+ k3'/2 =ai
2ke/x+ke'/2= a4.

The general solutions of these equations lead to

&'&k(x, m) =a i/2qm+P(ai/3 a4/15)x-
—qa4x'/5+ C&/x'+ 2qC4/x' —C4/x')m

+ L2 .x/5+C, /X)me
&'&L(m) = —a e/m' —aim' —a4m4

belonging to

&"r(x, m) = —2C4(m —1)m(m+ 1)(m+ 2)/x'
—2qC4(3m(m+ 1)—1)/x4
—2(Cem(m+ 1)+2q'C4)/x' —2qCe/x'
—a,/qx+ (a,/3 —a,/15) m

+(ae/3+ 2a4/15) m'+ 2a4m'/5
+aim'/5 —2qx(3a4m(m+ 1)

+5a&—a4)/15+ 2q'a, x'/5

where C; is the constant of integration in the equation
with 0.; on the right side.

Let us carry out the second-order calculations for the
following special case (which is sufficiently general for
the problem treated in the next section):

&'&k(x, m) = aixm/3
&'&L(m) = aem'—

belonging to

&'&r(x, m) = 2q axi/3—+aim(m+1)/3 (13.1.3).

The coefEcients of powers of m in the expansion of
&'&k(x, m) satisfy equations similar to those satisfied by
the coeflicients in "&k(x, m). Comparing (13.0.3) with
(13.0.1) we see that the difference will be only that con-
tributions from &'&k'(x, m) will have to be added to some
of the equations for &"k;(x) to obtain the equations for
&'&k;(x).

13.Z Stark effect

As an application of the formulas developed in the
preceding section let us consider the differential equa-
tion

f" (2q/x) f —(m(m+—1)/x')f+2exf+Xf= 0 (13.2.1)

where e is a small parameter so that 2exf is a small
term compared to the others in the region where f is
appreciably different from zero.

When &=0 the problem is type F, so that the zero
order eigenvalues are

X= &"L(n)= —q'/n' n m+1= —integer) 0.

The first-order terms in the perturbation are obtained
by comparing (13.1.1) with 2x. We see that we must
take

and write
a,= —3/q

X'= X+em(m+1)/q.

So that we artificially absorb the ea&m(m+1)/3 term
in with X. In this case the correction to the eigenvalues
is obtained from the condition

X'= &'&L(n)+ e &'&L(n).

To the first order, then,

q'/n' em(m+1)/—q+ e3n—'/q

where n —m+1 is an integer) 0.

We require the expansion of &'&k(x, m) up to m'; a
particular solution can be found to be

k(*, m) = L(P,/3 —P,/15+P, /21)*
—'

(P,/5 —P,/7) qx' —(ae2/45 —4q'Pe/35) x')m
+D2P4/5 Pe—/7) x 2q—Pex'/7)m'+ 3Pexm'/7

&"L(m) = —Pem' —P4m' —Pem'

where P; takes the place of a; in the first approximation. ;

p 2 and all the constants of integration have been put
equal to zero so that our solution is not the most general
one. Corresponding to this solution

&'&r(x, m) = (P,/3 —P,/15+ P,/21) m

+ (Pg/3+ 2P4/15 —2Pe/21) m'+ (2P4/5 —P,/7) m'
+ (P4/5+ 2Pe/7) m4+3Pem'/7+ Pem'/7

2qx (PQ/3+ b 3&m+—P&m'/5+ 2Pem'/7+ Pem4/7 )—x'(6q'5+2ym+2ym')+2qyx' (13.1.4)
where

y—=a2e/45 —4q'Pe/35
&&= Pe/21 —P4/15.

We are now free to choose in any manner (artificially
or otherwise) the a;,p; in &'&r and &'&r Thu. s we are able
to identify our perturbed potential function with a
given potential function and from the corresponding
perturbed k and I we can then write down the eigen-
values and normalized eigenfunctions for the given
perturbation.
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The above values of n2, P6, P4, and the artificial P2 could
also be used to 6nd the eigenfunctions to the second
order in e.

The theory of the Stark effect leads to the following .

pair of equations (2, p. 403):

f "+((1+P)/ )f
(m(—m+1) /x') fi+2exfi+ Xf,= 0

f."+((1 P)/*-)f.

—(m(m+1)/x') f,—2exf, +Xfm ——0

(13.2.4)

FIG. 6. Each dot represents a solution of (14.0.1) such
that (14.0.4) exists.

For the eigenfunctions to this approximation we need

k(x, m) = i'&k(x, m)+ e &'&k(x, m)
=m/x+ q/m —emx/q

L(m) = i'&L(m)+ e i'&L(m)
= —q'/m'+3''/q

so that

f n—1 2n( q)n+ln n—
XL —4q'(2n) I+ex'(2n+2) l5 '

Xx"exp(qx/n)$ 2q +e—nx5, q&0 ~ (13.2.2)

f:-'=P.—L(m)5-~ k(*, m)+—f.".
dS

To obtain the second-order terms in the perturbation
we must compare, i2&r(x, m) as given above (13.1.4) with
zero. So that y=b=o, we put

p6 ——7/4q', pg= 5/4q';
then

i2&r(x, m) = (m(m+ 1)—2qx) (P,/3+m'(m+ 1)'/4q')

and, since this is to be zero, we must put

Pg = —3m'(m+ 1)'/4q'

and the problem is to find the eigenv@lues and eigen-
functions when X, p are the same in each equation.

Comparing (13.2.4) with (13.2.1) and using. (13.2.3)
we can obtain the required eigenvalues. We 6rst put
2q= —1—P, n= ni in (13.2.3) and then put 2q= —1+P,
n=n2 in (13.2.3); then, eliminating P between the two
equations so obtained, we find

1/(n—,+n,)' 3~(n—' n')—
6 (ni+ n2)'(7ni +7n2'+ 20nin2 —18m(m+ 1)+5)/4.

The value of P is

P= (ni —n2)/(ni+n2) —e(ni+n2)'(3nin2 —m(m+1))
+~'(ni n2) (—ni+n2)'(nin2 6m(—m+1))/2nin2

With q in terms of P the eigenfunctions can be ob-
tained providing we keep in mind that q depends on P,
and hence on m, only arti6cially. Eigenfunctions to the
6rst order of approximation can be obtained from
(13.2.2).

14. Interrelationship between Types

We have already mentioned several times the con-
nection between type A and type E factorizations. Since
types 8, C, D are limiting forms of type A, and type F
is a limiting form of type E, this connection means that
a11 of our factorizations are interrelated. We now want
to show explicitly the relationship between 3 and E.

For purposes of illustration it is sufFicient to consider
the special case

d'F m(m+ 1)—2q tanhx F+XF=O, q) 0 (14.0.1)
dx' cosh'x

of type E. The factorization is determined byartificially —i.e. we must introduce this value of P2 only
after the ladder operations have been carried out.

To 6nd the eigenvalues we can substitute this value
of P2 immediately. The constant term in i'&r(x, m)
disappears so we can introduce the above ) ' again and
from

k(x, m) =m tanhx+ q/m
L(m) = —m' —q'/m'.

For m'&q, L(m) is an increasing function of m and so
we look for Class I solutions. The key function wouM be

X'= i'&L(n)+ e i'&L(n)+ e' i"L(n)

we obtain 6nally
I'i' cosh'+'x exp(qx/(l+ 1)).

X= —q'/n'+ e(3n' —m(m+1))/q But this function does not satisfy the boundary condi-
—e'(7n'+5n' —3n'm'(m+1)')/4q'. (13.2.3) tions and so there are no solutions for m'&q.
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If m') q, I.(m) is a decreasing function of m and so
we look for Class II solutions with the key function

I'~' cosh 'x exp( —qx/l)

near 2:=0. Therefore, if P ' is to satisfy the boundary
conditions, we must have

)+1 ql) r

belonging to the eigenvalue
or

l& q' —1.
P—q'/—P, m —l=0, 1, 2, ~ . (14.0.2)

This key function does satisfy the boundary condi-
tions when P)q and can therefore be normalized.
Moreover, successive applications of the m-raising
operator will continue to produce functions which satisfy
the boundary conditions. The eigenfunctions can there-
fore be represented by the dots in Fig. 6 where each
ladder extends to infinity.

The same problem can be solved with a type A
factorization. We introduce the value (14.0.2) for X

and look for a factorization which changes /, keeping m
fixed. We use the formulas of Sec. 2.1 to introduce the
new normal form

I"Cx (14.0.4)

exist which, in terms of s, P, would mean that

(F'/sinsz)dz

The eigenfunctions can therefore be represented by the
dots in Fig. 7.

The restriction on l is less severe here than in Fig. 6.
This is because the boundary condition for P is less
severe than that for F. In fact, we required that

g'P PP q'/P —-' —2q cosz

dz' sin's
F+(m+-,')'F=0 must exist. This condition would obviously restrict P

more than the one we actually used which was that

through the substitutions

x= log tan(z/2)
F= sin 'sP.

If we now introduce the artificial parameter q' through
q= q'l our equation becomes

d'F (l—-', ) (/+-', )+q"—2q'/ cosz
P

sin 3

+ (m+-', ) 'F = 0 (14.0.3)

which is type A. Of course l now takes the place of m
in the general discussion of Chapter 2. The factoriza-
tion of (14.0.3) is given by

k(z, l) = (l—rs) cotz —q'/sinz
L(~)=(~ ')'

L(l) is an increasing function of l and so we can expect
Class I solutions belonging to the eigenvalues

X'= L(m+1) = (m+-')'.

(Here we allow m to play the role of / in the general
discussion. ) The key function is

F sin"+* '(z/2) cos"+~s'(z/2).

This function can be normalized on 0&s& m only if

m+-',—q') ——,'.
Moreover it is not dif5.cult to see that if we try to use
the operators to reach P ' by taking m —l steps down
the ladder from P we obtain a function which behaves
like

stn'+~' (z/2)

(14.0.5)

must exist.
Thus we see that, except for the extra row of solu-

tions in Fig. 7 due to the weaker boundary condition
in this case, the two treatments we have given are
simply the Class I and Class II factorizations of the
same problem.

In the same way a relationship can be established
between type 8 and P factorizations; as remarked. at
the end of Sec. 8.1, the Kepler problem was treated by
Schrodinger as type 8 whereas we used the more natural
type P approach. In quantum-mechanical applications
the choice of factorization will depend on which ap-
proach leads to the physi. cally proper normalization.

FIG. 7. Each dot represents a solution of (14.0.3) such than
(14.0.5}exists. The bottom row of solutions has no counterpart it
Fig. 6 because the)boundary condition is weaker in this case.



66 L. INFELD AND T. E. HULL

In Sec. 4.2 we solved the spherical harmonics equa-
tion as a Class II problem; the factorization appeared
there as type A rather than E only because the general
type E factorization includes a special case (when q=0)
which-is also a special case of A.

Truesdell s technique which we will discuss immedi-
ately cannot be applied to type E or F factorizations;
however it can be applied to the corresponding A or 8
factorizations.

15. Truesdell's F-Equation

Truesdell (49, p. 8) has considered the class of special
functions which have the following properties in com-
mon: "(a) they satisfy ordinary linear differential
equations of the second order; (b) they satisfy ordinary
linear difference equations of the second order; (c) with
suitable weight functions they form complete sets of
orthogonal functions over a suitable interval; (d) they
satisfy-linear differential-diGerence relations. "

As we have seen, the factorization method usually
begins by replacing a second-order diGerential equation
with a pair of erst-order diBerential-difference relations—that is, it replaces property (a) with a pair of proper-
ties (d). Once this step is taken we have shown how the
eigenvalues and normalized eigenfunctions can be
written down immediately and how, in some cases, the
corresponding matrix elements can be calculated. The
fundamental characteristic of the factorization method
is that it provides only those results which are of
interest in the common physical problems —it does not
provide general solutions of the original differential
equation.

Truesdell is interested in the more general problem
of providing "a general theory which motivates, dis-
covers and coordinates the seemingly unconnected
relations among the familiar special functions" (49,
p. /). These relations include the known expansions,
nth derivative formulas, generating function repre-
sentations, de6nite and contour integral representations
and the integro-difference relations. He takes as a

starting point the relation in (d) and his 6rst step is to
reduce this relation, through a change of both variables,
to the form

—F(s, n) =P(s, a+1)
8s

which he calls the F-equation.
The condition that a recurrence relation provided by

the factorization method can be reduced to the F-equa-
tion is only that k(x, m) be linear in m. This means that
Truesdell's techniques can be applied to the recurrence
relations belonging to types A, B, C, D factorizations.
But we have seen in the previous section that type E
and Ii factorizations can be treated alternatively as A
and B; therefore all the factorizations discussed in this
report lead to F-equations and thus serve as starting
points for the applications of Truesdell's results.

One special result in this connection has been
thoroughly investigated by Duff (12). He has used the
obvious formula

to obtain eth derivative expressions for all the normal-
ized eigenfunctions considered in this report. The right
side is, of course, determined by the key function.
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17'. Table of Factorizations

A detailed theoretical explanation of the use of the following table is given in Chapter 2 and Sec. 3.2. To solve a given second-order
ordinary differential equation by the factorization method the steps to be taken are briefly as follows: 1.Transform the given equation
to its normal form (2.1.1) by means of (2.1.2). 2. Identify the resulting r(x, m) with one in the table. 3. Look up the reference in the
last column. This reference is usually followed by the desired solutions; if not, the corresponding k(x, m), I (m) must be used to obtain
the eigenvalues and normalized eigenfunctions as outlined in Sec. 2.7. It may be necessary to generalize step 2 by means of an arti-
Bcial factorization as explained in Sec. 3.2.

In the table a, b, c, d, E, P, q, P, p, and v are constants. To conform with customary notations the variable x is sometimes replaced
by r, y, z, 8, p, or ( and the parameter m is sometimes replaced by l, 3f, e, or s.

Type Name

General
type A

Associated spherical
harmonics

m' —-'
4

sin'0 (m —~} cot&

k(x, m)

Pa'(m+c) (m+c+1) +ds (m+c) a cota(x+P)
+2ad(m+c+ ,') cosa(x+p-) j d

sin'a(x+P) sina(x+P}
a'(m+c)'

(m —g)'

Reference
to text

4.0.1

4.1.3

Associated spherical
harmonics

l{l+1)
cosh'z

l tanhz 4.2.2
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17. Table of Factorizations —ColtAzled

Type Name

Generalized spherical
harmonics

(my&)(m+& —1)
sin28

O(s, m)

(m+y —1) cot8 (m+y —1)'

Reference
to text

4.3.1

Generalized spherical (~+7—g) (~+7+5)
harmonics cosh2s

(l+y —j2-) tanhz 4.3.2

A Gegenbauer functions
m(m+1)

sin28
m cot8 4.4.1

Symmetric top
functions

(M—-', )(3l+ -',) +X'—2'X cos8
sin28

E
(2tr —$) cot8—.

sin8
(2d'-k)' 4.5.1,

see also 14.0.3

Harmonics with spin, m(m+1)+x'~(m+2) cos8
magnetic pole sin28

1
m cot8&22 sin8

4.6.5, 4.7.1

Poschl- Teller,
hypergeometric

(m+c —-', ) (m+c —2)
sin'p

(m+~+b —c——,') (m+~+b —c+-', )
cos p

(m+c ——,*) cotp

—(m+a+b c ') tan—p——

(2m+a+b 2)s— 4.8.1, 4.9.3

Poschl- Teller,
hypergeo metric

(m+u+b c ,') (m—+a—+-b c+x)—
sin h'y

(m+u —b ——,') (m+g —b+-,')
cosh'y

+(m+a —b —x) tanhy

—(2m+ 2a —c—1)s 4.8.2, 4.9.5

A Hypergeometric

(m+c ——',) (m+c —~2)

sin p

(m+c —~—b —-,') (m+.c—~—b+-', )
cos p

(m+c s) co'tp—

(m+c —a b —,') t—anp——

(2m+2c —a—b —2)2 4.9.4

A Hypergeometric

(m+c ——',)(m+c ——',)
sinh2x

{m+~—b ——',) (m+~ —b+-', )
cosh'x

(m+c ——,') cothx

+(m+a —b ——,') tanhx

—(2m+ u+c —b —2)' 4.9.6

B General type B —d' exp(2ax)+2ad(m+c+-', ) exp(ax) d exp(ax) m c—— —a'(m+c)' 5.0.1

ConQuent hypergeo-
metric, Morse

c
type C

(——,') exp(2x)+(s+ —',) exp(x)

(m+ c)(m+c+1) b'x s

x' 4

exp(x)/2-s

m+c bxx+2 2bm+b/2—

5.1.3) 5.2.2

5.0.2

ConRuent
hypergeometric

System of identical
oscillators

(2m z~) (2m+ ~|) y
y' 16

( +s/2-l)(rs+ /2-l)
x2

artificial

artificial
(s is a constant here)

5.1.8

5.3.2

C Bessel
m' x

x2
0 (see discussion) 5.4.1

D General type D

Harmonic oscillator,
meson fields

—(bx+d)'+ b(2m+1) —2bm

modified treatment

6.0.1

6.1.1

Neutral meson field
with sources e (P+P)&~-(P -P)—

d$
modified treatment 6.5.3, 6.5.5

Charged meson field
with sources 8 (Pv+P*—v*)k—~(Pv P*v*)—

d$
modified treatment 6.7.2

General
type E

m(m+1) u'
, —2ag cota(x+ p)sin Q(x+P)

ma cota(x+P) +-q 7.0.1
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17'. Tab1e of Factorizations —Coetiel|, d

Name

Kepler problem
in hypersphere

Kepler problem in
space of constant
negative curvature

Manning-Rosen

m(m+1)
sill x

m(m+1)
+2v cothx

slnh x

m(m+1) a'
+2uv cothur

sin h2ur

V
m cotx ——

m

V
m cothx ——

m

V
mu cothur ——

m

V
m2 ——

m2

V2—m2 ——
m2

V—u'm' ——
m2

Reference
to text

7.1.2

7.2.2

7.3.1

m(m+1)u'
Rosen-Morse, Jacobi —2ug tanhux

cosh'ux
mu tanhux+-g

m

g2—um ——
m2

7.4.1, 7.5.2,
see also 14.0.1

General
type F

2q m(m+1)
x x2

m q—+-
x m

(f2

m2
8.0.1

F . Kepler problem

Generalized Kepler
problem

Oscillating
rotator

2 l(l+1)
r r2

{l+~){l+&+1)
r2

l(l+1)+u
r r2

l+
r l+Y

l2

1

(l+v}'

See discussion

8,1.3

8.3.1

8.6.1
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