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The factorization method is an operational procedure which enables us to answer, in a direct manner,
questions about eigenvalue problems which are of importance to physicists. The underlying idea is to con-
sider a padr of first-order differential-difference equations which are equivalent to a given second-order differ-
ential equation with boundary conditions. For a large class of such differential equations the method enables
us to find immediately the eigenvalues and a manufacturing process for the normalized eigenfunctions.
These results are obtained merely by consulting a table of the six possible factorization types.

The manufacturing process is also used for the calculation of transition probabilities.

The method is generalized so that it will handle perturbation problems.
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1. Introduction

HIS report deals with a new technique for solving

eigenvalue problems as they most frequently ap-

pear in wave mechanics and in Maxwell’s theory with

imposed boundary conditions. Special attention is given

to quantum theory where the field of applications is
very wide.

To introduce the idea behind the method let us
briefly mention a subject which is often discussed: the
analogy between Maxwell’s and Dirac’s equations. Both
are linear systems of equations and each of them con-
tains partial derivatives of the first order. Both Max-
well’s and Dirac’s equations are Lorentz invariant. We
may remark, in passing, that in the case of Maxwell’s
equations the linearity may be an over-simplification
which leads to the difficulties with infinite self-energies.
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But, if we consider only regular solutions, as we shall,
we may ignore this difficulty.

Historically, the Maxwell and Dirac equations were
each preceded by a scalar theory. In the case of Dirac’s
theory the preceding one was the Schrodinger theory,
which is still applied to a wide range of quantum-
mechanical problems. The scalar theories lead to one
partial differential equation of the second-order con-
taining the Laplacian or d’Alembertian. As these names
indicate the study of such scalar equations is an im-
portant chapter in the mathematics of the nineteenth
century. It led to potential theory, to Legendre, La-
guerre, Jacobi, Tchebycheff, and Hermite polynomials
and to Bessel functions, all of which form a part of mathe-
matical physics which was completed by the time scalar
field theories were being replaced by vector, tensor, and
spinor theories.

Thus the technique of solving Maxwell’s and Dirac’s
systems of equations became modeled upon the scalar
theories. This is especially evident in the case of Max-
well’s equations. There the usual procedure is to intro-
duce a vector and a scalar potential and then obtain
four equations of the type studied in a scalar theory.
If you think about an application of Maxwell’s theory
to a wave guide with rectangular or circular cross
section, or to an antenna, you see how the boundary
conditions finally lead us to a set of ordinary differential
equations of the second order.

In many respects the situation is even simpler in
wave mechanics. There the boundary conditions are
more intimately connected with the differential equa-
tion itself and they usually mean single-valuedness and
quadratic integrability.

Thus, both in electromagnetic theory and in quantum
theory, we are lead to equations of the type

(@y/da®)+r(x, m)y+Ay=0.

Here 7(x, m) is a function which characterizes the par-
ticular problem. We shall assume 7 to be a non-nega-
tive integer

m=0,1,2, -+

which is gained through the process of separating
variables; its value is restricted by the boundary condi-
tions. In most cases the boundary conditions require
further that N have discrete eigenvalues

)\0’ )\1, )\2, ERRD YR

Thus the typical eigenvalue problem can be repre-
sented by a lattice of points in the (/, m) plane

m
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For every line connecting the lattice points and parallel
to the m-axis there exists a A;. For every point on the
lattice there exists a function y;”(x) satisfying some
boundary conditions.

All we have done so far is to recapitulate an idea
familiar to every theoretical physicist; it is a corner-
stone of mathematical investigations of - physical
problems.

1.1 Characterization of the factorization method

The classical method consists in first finding general
solutions of the differential equation and then deter-
mining the special values of A which allow these solu-
tions to satisfy the boundary conditions; thus the func-
tion y,”(x) belonging to each point on the lattice is
obtained. This function can then be normalized and
finally used, for example, to calculate transition
probabilities.

The factorization method outflanks and unifies the
historical approach. This new method leads directly
to the eigenvalues and to a manufacturing process for
the normalized eigenfunctions. The manufacturing
process itself can then be used to calculate the transi-
tion probabilities.

The factorization method either treats the original
first-order differential equations directly or replaces the
second-order differential equation by an equivalent pair
of first-order equations of the form

d
{ k(x, m+1) ———} Ym=[A— L(m+1) Y=+
dx :

{ k(x, m)+i } Yym=[A— L(m) ]}Y L
dx

These equations can be obtained from a table of all
possible factorizations. There are only six possibilities,
and even these six are not independent. Once the proper
factorization is found from the table, the eigenvalues
and the manufacturing process for the eigenfunctions
can be written down immediately.

The table can be used in other ways. For example,
if the eigenvalues are already known, corresponding
possible potential functions can be found from the table.

What is the range of validity of this new method?
Let us concentrate our attention on wave mechanics.
There we find some “pure” problems, by which we
mean those which can be solved rigorously without the
use of any perturbation or numerical procedure. All
these pure problems can be solved quickly and in a
unified way by the factorization method. Moreover,
each of the six possible factorization types has a
physical image in Maxwell’s theory, or in quantum
theory, or both.

Yet “purity,” though a desirable phenomenon, is a
rare one and as science and its techniques develop, the
number of non-pure cases built around each pure case

constantly increases. It is therefore gratifying to know
that the factorization method can be generalized to
handle perturbation problems. In some cases, as in the
Stark effect, the method leads us more quickly than any
other to the solution.

The factorization method owes its existence primarily
to a paper by Schrodinger (41).! His ideas have since
been considerably generalized (21, 22, 24, 25, 27, 28, 32,
42, 43, 46). There were, however, earlier indications of
the idea in Weyl’s (51, p. 231) treatment of spherical
harmonics with spin and Dirac’s (9) treatment of angu-
lar momenta and the harmonic oscillator problem. More
recently an alternative to the factorization method has
been given by Inui (29).

Almost any section of this report can be read once
the basic ideas in Chapter 2 have been understood.

2. Theory of the Factorization Method

In this capter we begin by assuming that an equation
has been factorized and then proceed to demonstrate,
by developing five theorems, the consequences of this
fact. We shall see that the factorizing of an equation
enables us to write down immediately the desired
eigenvalues and the normalized eigenfunctions.

In the next chapter we shall show how to find the
factorization of a given equation. In fact, the problem
of factorizing will be reduced to one of consulting a
table of only six general types. This table, with many
important special cases, is given at the end of the paper.

Thus this chapter and the next contain only the idea
and fechnique of the factorization method on which the
examples in the remainder of the paper are based.
Almost any subsequent section can be read, without
loss of continuity, immediately after reading Chapter 2.

2.1 Standard form

To systematize our procedure we shall always trans-
form the considered differential equation into the
standard form

(@y/dx®)+7(x, m)y+Ay= 0.

where the parameter m=my, mo+1, mo42- - - ; here we
will take m,=0 but, as we will see, this assumption does
not affect our final conclusions.

Such a transformation is possible if, in the original
form

(2.1.1)

d s/ dP
— p—)+qP+xpP=0,
do\ do

the functions p, p are never negative and p/p exists
everywhere. The transformation connecting these
equations is (6, p. 250):

y=(pp)*P, dx=(p/p)'do. (2.1.2)

1 References given in parentheses are placed at the end of this
article.
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2.2 Definition and fundamental idea; Theorem I

We say that Eq. (2.1.1) can be factorized if it can be
replaced by each of the following two equations:

THmH —[rtly(\ m)=[A—L(m+1)Jy(\, m) (2.2.1a)
—Hm™ tH™ y(\, m)=[A—L(m)]y(\, m) (2.2.1b)

where
TH™=k(x, m)=+(d/dx). (2.2.1¢)

The dependence of y on x has been suppressed. Just
how the £H™ and L(m) are found in a given problem
will be considered later (Sec. 3.1).

We should note that (2.2.1a) can be obtained from
(2.2.1b) by interchanging the H operators, and chang-
ing m to m—+1 except in the function y(A, m).

The fundamental idea of the factorization method
can now be established:

Theorem 1. If y(\, m) is a solution of our differential
equation then

y(\, m4-1) =—Hm+y(, m) (2.2.20)
y(\, m—1)=1H"y(\, m) (2.2.2b)

are also solutions corresponding to the same N but fo the
different m’s suggested by the notation.—Thus, if we have
one solution, we can use our H operators to go up or
down to other solutions; continuing the process we
would obtain a ladder of solutions belonging to a fixed A.

For the proof we multiply (2.2.1a) by “H™ and
(2.2.1b) by *H™. The results are

—HmH A (~Hmy (N, m)
=[\—Lim+1)JCH™y(\, m)) (2.2.32)

+Hm -—Hm(+Hmy()\’ m))
=[N—Lm)](tH™y(\, m)). (2.2.3b)

Comparison of (2.2.3a) with (2.2.1b) shows that
y(\, m~+1) as defined above s a solution of our equa-
tion with m replaced by m-1. Similarly y(\, m—1) isa
solution with  replaced by m—1.

We can now interpret Egs. (2.2.1) as stating: going
one step up the ladder and one step down (or vice versa)
we arrive at the solution from which we started, but
multiplied by A—L(m+1) (or N—L(m)). Of course,
through (2.2.2) we may reach a solution which vanishes
identically; this important situation, which does not
violate Theorem I, will be considered in Theorem IV,

In a restricted sense Egs. (2.2.2) are equivalent to the
original differential equation (2.1.1) or (2.2.1). The
restriction turns out to be a fortunate one in that, with
the proper interpretation of (2.2.2), it leads us to con-
sider only those solutions of (2.1.1) which are quad-
ratically integrable. And, because of the probability
interpretation of the wave function in quantum me-
chanics, we will look for only those solutions which do
satisfy this condition. (We have not yet, however, dis-
tinguished between those which do and those which do
not; our theorem is true in either case.)
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2.3 Mutual adjointness of the operators; Theorem I
Theorem I1.

1] " o(Hf)dam f " () fin

a

if of vanishes af the ends of the interval and the integrands
are continuous in the interval.—The proof is self-evident.

Our theorem means that the H operators are mutually
adjoint.

2.4 Boundary condition; Theorem 111

We shall be interested in differential equations whose
coefficients have singularities only at the ends of the
range of the independent variable. In fact, it will be
shown in Sec. 3.1 that the range can be chosen so that
this is the case whenever a factorization is possible.
The quadratic integrability of a solution will therefore
depend entirely on the behavior of the solution near the
end points and so the condition of quadratic integrabil-
ity is essentially a boundary condition. By studying the
behavior of the solution and the corresponding H
operators near an end point we can establish the follow-
ing theorem for each of the six general factorization
types found in Sec. 3.1:

Theorem ITI. If y(\, m) is quadratically integrable over
the entire range of x and L(m) is an increasing function of
m (0<m), then the H operation (2.2.2a) of raising m
produces a function which is also quadratically integrable
and which vanishes at the end points. If L(m) is a de-
creasing function of m(0<m) then the H operation
(2.2.2b) of lowering m produces a function which is also
quadratically integrable and which vanishes at the end
points.—The theorem is true under weaker but more
complicated conditions but the above result will be
sufficient for our purposes. It is nof true, however, that
an H operator never affects integrability ; for example,
in the terminology introduced later for Class I solutions,
a badly behaved y(A, /4-1) can be turned into the well-
behaved y(\, I)=+tH"™y(\, I+1).

Theorem III has to be proven for each factorization
type, but the proof is much the same in each case.

2.5 Conditions on \ that solutions exist; Theorem IV

We shall divide our problems into two classes:

Class I will be characterized by the fact that L(m) is
an increasing function of #. We shall see that this situa-
tion usually leads to a finite ladder of solutions belong-
ing to m=0, 1, 2- - -1 for each of a discrete set of values
MN(l=0,1,2---) of \.

Class II solutions will arise when L () is a decreasing
function of m. We will then usually obtain an infinite
ladder of solutions belonging to m=1, I4-1, I4-2, ---
for each value A\;(/=0,1,2---) of A.

In each class one end, y(Ay !), of the ladder can be
obtained by a simple quadrature and the other solu-
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tions by means of (2.2.2). In those cases where A is not
discrete we still have the recurrence formulas (2.2.2)
but have no corresponding starting function y(A;, 7). It
is also possible that L(m) be a constant. In this case we
again have only the recurrence formulas. Bessel’s equa-
tion leads to the only important example of this possi-
bility and it is discussed in 5.4.

Theorem IV, which determines \; as a function of /,
will be proven for problems of Class I. The proof for
Class IT is essentially the same.

Theorem IV. When L(m) is an increasing function® of
the integer m for 0<m<M, and N<the larger of L(M),
L(M+1), then a necessary condition for quadratically
integrable solutions is that -

A=N=L(+1)

where 1 is an integer and m=0, 1, 2, - - - l.—For the proof
we assume a ‘“‘good,” that is an integrable, solution
y(\, m). Then, because of Theorem IIT,

y(\, m+1)=—"H™y(\, m)

is also a “good” solution, or zero, and vanishes at the
end points. We can therefore write

b
f ¥\, m+1)dx

b
- f ~HmHy(n, m)—Hy(\, m)dx

a

b :
= f y(\, m) - TH» 1 —HmHy(\, m)dx (Theorem II)

a

b
=[A—L(m+1)] f (N, m)dx (by 2.2.1a)

where (a, ) is the entire range for x. Similarly:
b
f ¥\, m~+2)dx=[N— L(m+2)]
X[A—L(m+1)] f y2(\, m)dx.

This argument can be continued and, since L(m) is an
increasing function of m, we will arrive at some value
of m, say I4+1, with the contradiction

)

a

5 .
¥\, 1H-1)dx<0

unless?
y(\, IH+1)=0
—H*y(\, 1)=0.

2 Usually M= w and L(M)= .

3In case A>L(M) and L(M+1) we are not led to a discrete
spectrum for A. This situation usually corresponds to the un-
restricted energy levels of the Kepler problem (see Sec. 7.2 and
Chapter 8).

ie., (2.5.1)

In this case, because of (2.2.1a) we obtain
A=N=L(+1).

This condition fixes A in terms of /, one of the possible
values of m, the other values of m being less than /.
These are, then, the required eigenvalues for .

In 2.7 we shall use (2.5.1) along with (2.2.2) to find
the eigenfunctions; so far we know only that (2.5.1)
is a necessary condition for the existence of Class I
eigenfunctions when A< the larger of L(M), L(M+1).

The corresponding theorem for Class IT solutions
states that: if L(m) is a decreasing function of the integer
m for 0Sm<M and NS L(0), then a necessary condition
for the existence of quadratically integrable solutions is that

A=N=L()

where 1 is an integer and m=1, I4+1, I42--- —And,
corresponding to (2.5.1), we obtain

+Hy(\, )=0.

Finally, we should note that, if m, of Sec. 2.1 is not
taken to be zero, then Theorem IV obviously will re-
quire |/—m| rather than [ to be an integer.

2.6 Normalization; Theorem V

When Theorem ITT holds we can arrange to have our
operators preserve not only the quadratic integrability
but the normalization of the eigenfunctions.

We write, instead of (2.2.1),

13em =gem Y =Y ™
STty Yir=Yor
and, instead of (2.2.2), |
Y mH==ge,m 1y m

Y,

(2.6.1a)

Y ml=+3em (2.6.1b)

where
. { [L@+1)—L(m) Tt £H™ for Class I problems

[LO)—L(m) T r+H™ for Class IT problems
and where the dependence of the solutions on / rather
than A is suggested by the new notation.

Then, proceeding as in Theorem IV, we obtain

b b
f (Ylm+1)2dx=f (Ylm)de

so that, if ¥;' is normalized, so are the other V™.
Hence:

Theorem V.—The 3C operators defined above preserve
the normalization of the eigenfunctions, when these func-
tions are normalizable.—Capital letters will be used from
now on to represent normalized solutions of our equa-
tions.
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F16. 1. Each dot represents a Class I solution. The “known solu-
tions” are obtained from (2.7.1); the others from (2.7.2).

2.7 Solutions

We are now able to see how to write down the eigen-
values and normalized eigenfunctions of an equation
once that equation has been factorized—i.e., once the
k(x, m) and L(m) corresponding to the given 7(x, m)
are known.

Let us consider in detail the Class I problem. Here
L(m) is an increasing function of 7 and we are only
interested in the case when A<the larger of L(M),
L(M+1).

The eigenvalues, from Theorem IV, are

N=L(+1), m=0,1,2, ---L

Furthermore, Theorem IV tells us that

d
lk(x, I+ 1)———}Y;’=0 (see 2.5.1)
dx

is a necessary condition for the existence of normalizable
eigenfunctions. Therefore

Vi=C exp(fk(x, I+ l)dx)

(2.7.1)

m
4
3 3
)
NO

0§ SOLUTIONS
‘ &
O 1 1 1 L
0 | > 5 4 %

F16. 2. Each dot represents a Class II solution. The “known
solutions” are obtained from (2.7.3) ;_the_others from (2.7.4).
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where C is a constant to be determined, if possible, by
the condition
b
f (Yi)2dx=1.
a

We must say f possible since we do not know in advance
that ¥;! is quadratically integrable—we only know
that, if it és, then (2.7.1) is the correct form. (In most
applications we can normalize (2.7.1), but, to do so in
some cases, we find it is necessary to further restrict
some of the parameters of the problem.)

The other normalized solutions are then given by

Ylm—l=+5clmylm
d
=[L{+1)— L(m)]“%l k(x, m)+— } Yo (2.7.2)
dx

Figure 1 represents.graphically the usual situation. The
solutions of our differential equation (2.1.1) depend on
the two parameters /, m; to each pair of values (I, m)
there correspond two solutions. If a solution is well-
behaved it is represented by a dot in Fig. 1. Only those
for which I>m can satisfy the boundary condition
since, only then is L(I4+1)— L(m+1)2>0. The solutions
along the line m=1 are given immediately by a simple
quadrature (2.7.1). From each of these a ladder leads
down to the other solutions belonging to the same
A=L(l+41). They are obtained through (2.7.2).

In Class IT problems the usual situation is as shown
in Fig. 2. Here I<m if the solutions are to be well-
behaved since only then is L(J)—L(m)>0. (L(m) is
now a decreasing function of m.) Now

Vi=C exp(—fk(x, l)dx)

where C is a constant to be determined, if possible, by
the normalization condition

b
f (Y;l)zdx= 1.

The other normalized solutions are then given by

(2.7.3)

Ylm+1 =_3sz+l Ylm

d
= [L(z)-L(m+1)]—%{ k(x, m—l—l)—;;]yz”‘. (2.7.4)

Whether we have a problem of Class I or Class II
depends on whether L(m) is an increasing or decreasing
function of m. Interchanging the roles of  and m in the
factorization will change a Class I problem into a
Class IT problem, or vice versa. That is, a factorization
which would provide /-changing recurrence relations
in the scheme of Fig. 1 is obviously equivalent to a
Class II factorization. The distinction between Classes I
and II is therefore not a property of the eigenfunctions,
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but rather of the factorization itself. We will find that
for the spherical harmonics (Sec. 4.1) it is useful to
know both factorizations, while for most other problems
only one factorization is important, namely, the one
giving the physically correct normalization.

3. Technique of Factorization

We turn now to the problem of finding a factoriza-

tion. We want to know what k(x, m), L(m), if any,
correspond to a given r(x, m).
. In the following section we shall answer the question:
“What are all possible types of factorization?”” When
the six types are exhibited, the problem of factorizing
is reduced to that of identifying a given 7(x, m) as a
special case of one of these six general types.

Section 3.2 completes the technique of factorization
by introducing ‘artificial factorization.” This idea
usually enables us to solve a problem even when the
given 7(x, m) differs from one of the possible types in its
dependence* on .

3.1 Factorization types

If, in our factorized equations (2.2.1), we carry out
the indicated operations and compare with the original
equation (2.1.1) we obtain

dk(x, m+1) A
k(x, m+1)+—————+L(m+1)
dx
=—r(x,m);. (3.1.1)
dk(x, m)
k2(x, m)— + L(m)=—r(x, m)
% )

Subtracting we obtain

dk
R(x, m+-1)—k2(x, m)—l—d—(x, m+1)
x

dk
+—(, m)=Lm)~L(m+1). (31.2)
X

This is obviously a necessary condition to be satisfied
by k(x,m) and L(m). It is also sufficient since any
k(x,m) and L(m) which do satisfy this equation lead
unambiguously through (3.1.1) to a function 7(x, m)
and so to an equation whose factorization is known.
We want to find all k(x, ) and L(m) which will
satisfy (3.1.2). First, there is one trivial solution which

4 Explicit formulas have been given (24) for k(x, m), L(m) in
terms of #(x, m). They are

Cr, m) =[2r(x, m—1) =2 (e, m) T, m—1)+r(z, m)]

L(m)=—[r(x, m—1)+r(x, m)J/2— K (x, m).

The criterion that a factorization be possible is of course that L(m)
be independent of x. These formulas, however, do not admit the
possibility of an artificial factorization.

we will dismiss with only a brief discussion. It is
k(x, m)=f(m), L(m)=— f*(m)

where f(m) is any function of 7. The differential equa-
tion (2.1.1) becomes

(@%y/dx®)+Ny=0.

The general solution of this equation is a linear com-
bination of sinA}x and cosA\x and the H operators would
merely generate other linear combinations. Schrédinger
(42) has given a complete discussion of this problem.
He shows how the artificial boundary conditions of a
vibrating string problem can, with some patience, be
handled by the factorization method ; but the method is
not suited to such a problem. (The boundary conditions
are “artificial” as opposed to the “natural” one of
integrability used in quantum mechanics.)

For the more useful solutions of (3.1.2) we begin
with the trial solution

k(x, m)=kot+mk; (3.1.3)

where ko, %, are functions of « only. Substituting into
(3.1.2) and letting a prime (') denote differentiation
with respect to # we can obtain finally

Lo+ 1) (R +R) + 2(m+-1) (Rokst- ko) ]
—_ [mz(k12+ k1')+ 2m(k0k1-|— ko’)]
=L(m)—L(m+1) (3.1.4)

of which the most general solution for L(m) is
L(m) = —m*(k2+ k') — 2m(koky+ ko) +1

where 1 is a function of m and x of period 1 in m. We
are interested only in values of L(m) for integral values
of m so we can take

I=f()

where f(x) is an arbitrary function of x. But since the
expression for L(m) must hold for all values of m and
L(m) is a function of m alone, the coefficients of powers
of m on the right side must be separately equal to
constants. We can take f(x)=0 without loss of gener-
ality, and we have

kf’—{f k/=—a% (3.1.5a)
—ca, if a0
kol+k0k1= { } (31.5b)
b, if e=0
where @, b, ¢ are constants. These give
a*m?+2ca®m, if a0
L(m)= [ } - (3.1.6)
—2bm, if a=0

The solutions of (3.1.5) are (if a%0)

(A) ki=a cota(z+p),
ko=ca cota(x+p)+d/sina(x+p) (3.1.7a)
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(B) ki=ie, ko=cia+d exp(—iax) (3.1.7b)  Multiplying (3.1.9) by m(m—+1)? we find thé left side
or (if =0) becomes a polynomial in # plus one other term:

(C) kbi=1/x, ko=0bx/2+d/x (3.1.7¢) —k_2/m.

(D) k=0, ko=bx+d (3.1.7d)  Therefore (3.1.9) can be satisfied only if

where d, p are any constants. (We could have written k_1 =g, say,

x+p for x in all of these solutions but the generaliza- k_y'=0.

tion is trivial except in (4).)

Our four results are not independent: B, C, D can be
considered limiting forms of 4. However, the individual
forms are each important enough to be exhibited
separately.

Each of 4 to D determines one k(x,m) through
(3.1.3) and one L(m) through (3.1.6) which in turn
determine one 7(x, m) through (3.1.1). These results,
along with the other two possible factorizations (which
will be found immediately) and many important special
cases, are given in the table® at the end of this report.
They are then ready for the interpretation of Sec. 2.7.
The special cases are considered in detail in Chapters
4-8.

It can now be shown that higher powers of # in
(3.1.3) lead to nothing new. If we try

k(x, m)=kot+mki+m2k,
we obtain this time, in place of (3.1.4),

m3(4k22)—|— m2(6k22+ 6k1k2+ Zkz,)
+m(2k 2+ 4k 4kokot- Ok1kot 2Ry 2k,)
~+terms not involving m= L(m)— L(m-+1).

There is no need to solve for L(m). The coefficients of
each power of m on the left side must be constants;

therefore, from thefirst coefficient : k2= constant
therefore ks = constant
then, from the second coefficient: k; = constant, if £35%0
then, from the third coefficient: %, =constant.

Thus we see that, if 22720, the only solution is the trivial
one discussed at the beginning of this section. No new
solutions are obtained through this generalization.

The same argument can be used to show that further
generalizations in this direction also produce no new
solutions. But the argument breaks down if we allow
k(x, m) to have an infinite number of terms in powers
of m.

We can, however, find a useful generalization in the
other direction. Let us try

k(x, m) = k_l/m-l— k0+mk1.
In place of (3.1.4) we obtain

— 2 (k2 by) — 2m(Fokrt ') — 2kok_/m— k_i2/m?
— (the same expression with m-1 in place of m)
b St bt/ (m+1)= L(m) — L(m=+1). (3.1.9)

5 When convenient, we have adjusted f(x) or the constants in
the table.

(3.1.8)

We do not need to consider ¢=0 since this leads to the
cases already discussed. But then, because kok_1 must
be a constant,

ko=constant.

We can omit the case k70 for otherwise k; would also
have to be a constant and we would obtain the “trigo-
nometric” solution again. Therefore we consider only
ko=0. In this case the only remaining condition we
have is

k12+k1,= —a’.

The constant values of %; satisfying this equation lead
again to the “trigonometric” solution. We are left with
the two new factorization types:

(E) ki=acota(x+p), k=0, k_1=q (3.1.7¢)
F) ki=1/x, k=0, k_1=¢ (3.1.71)

and it turns out that
L(m)=a*m*—¢/m*(a=0 for F).  (3.1.10)

The &(x, m), L(m) and r(x, m) corresponding to types
Eand F are collected with their special cases in the table
and the special cases are discussed in Chapters 7 and 8.

It is a straightforward matter to check that further
generalization leads to no new factorizations provided
we admit only a finite number of negative powers of
m in the expansion of k(x, m).

Of course type F can be considered as a limiting form
of type E as a—0. We therefore have altogether six
possible factorization types which are themselves
limiting forms of two basic types; we will see later
(Chapter 14) that even these two basic types are closely
related.

Stevenson (46) was the first to find the above fac-
torization types. He used a different method and found
three other types which can, however, be reduced to
those considered here. ,

Finally, it should be noted that, in each of 4—F,
k(x,m), and r(x,m) do in fact have the properties
needed to prove Theorem III.

3.2 Artificial factorization

In what follows we shall occasionally have to resort
to a device known as artificial factorization. This will
be necessary when the given R(x, 7) is not quite one
of the six basic types. In each case the difference will
be in the way the m appears in R(x, m).
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There are three possibilities which may appear to-
gether but which we will treat separately. For definite-
ness we will consider only a Class I problem.

The first possibility is that the given R(x, m) is

R(x, m)=r(x, m)+ f(m)

where 7(x, m) is one of the standard types and f(m) is
an arbitrary function of m. To handle such an example
we define

N'=X\+ f(m)
and then proceed to solve the new equation
(@y/da)+r(, m)y+N'y=0.

For normalizable solutions M'=L(l41) and we can
move down a ladder to the solution ¥;” which belongs
to the eigenvalue A=L(I+1)— f(m). In effect the A\
(but not \’) changes as we go down the ladder.

The second possibility is that we can introduce a new
function 7(x, m, u) which is a standard type (if we con-
sider u just a parameter) but such that

7(x, m, m)=R(x, m).
We can then solve the equation
(@y/da?)+1(x, m, w)y+Ny=0

and obtain a solution ¥;”(u) depending on the param-
eter pu as.well as m and A=L(l41). The required solu-
tion is then merely ¥,”(m). Part of the dependence of
this solution on m has been provided by the ladder
operators while the remainder of this dependence has
been introduced at the end of the ladder operations by
putting u=m.
The third possibility is that

R(x, m)=R(x)=r(x, m) for m=p

so that the required solution is that of the more general
equation (with #(x, m)) for the special value p of m.
Even if a direct factorization is not possible there may
still be an artificial factorization and the finding of this
artificial factorization is now an explicit procedure:

the list of types is consulted for one in which the de-
pendence of 7(x, ) on x is the same as that in the given
R(x, m). The dependence on m can then wusually be
adjusted by means of the above methods so that a
factorization is achieved and the solutions can be found.

4. Type A Factorizations and General Remarks

Before presenting the first general factorization type
we would like to make a few remarks concerning all
types of factorizations.

Each type includes a number of special cases which
are obtained merely by an appropriate choice of the
parameters appearing in the general type; we will
exhibit those which most frequently occur in physics
and show, in each case, how the solution of the problem
can be obtained readily by the factorization method.

Where necessary we shall give a reference to discus-
sion of the physical interpretation of our results; in
some cases it will be found that the problem was first
solved by the factorization method.

We want to present our results in the form most
useful to physicists. Consequently our notation will
differ from that of the general discussion of the previous
sections when we are dealing with familiar problems.
For the same reason we shall arrange that the normaliza-
tion preserved by the hypergeometric function operators
(in 4.8) differs from that of other examples; we have
in mind applications to the calculation of intensities in a
later section (12.5) for which it seems preferable to use
the usual definition of these functions.

The table at the end of this report collects the 7(x, m)
and corresponding k(x, m), L(m) functions. The diffi-
culty of solving an eigenvalue problem is then reduced
to that of finding the appropriate 7(x, m) in the table
and using the corresponding k(x, m), L(m) to write
down the eigenvalues and normalized eigenfunctions
as shown in Chapter 2. The table also includes references
to the text where these solutions are given for the more
important examples.

From (3.1.1), (3.1.3), (3.1.6), and (3.1.7a) we obtain
the first general factorization type. Corresponding to

a?(m+-c) (m~+c+ 1)+ 24 2ad(m—~+c+%) cosa(x+p)

r(x, m)=—

the factorization is given by
k(x, m)= (m+c)a cota(x+ p)+d/sina(x+ p)
Lm)= (40 (4.0.2)
where ¢, ¢, d, p are constants. For convenience we have
chosen a%c? rather than 0 for the 1= f(x) of Sec. 3.1.

The results of Sec. 2.7 could now be used to write
down the eigenvalues and normalized eigenfunctions of

sin%a(x+ p)

(4.0.1)

the corresponding differential equation ; but, since these
results depend on whether L(m) is an increasing or a
decreasing function of 7 and hence on whether a is real
or pure imaginary, we will give the solutions for special
cases only. At the same time these solutions will appear
in readily usable forms.

Our first example will be treated in somewhat greater
detail than later ones.
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4.1 Associated spherical harmonics

The differential equatlon satlsﬁed by the associated
spherical harmonics is

(smﬁ—
sm0 do

where m=0, 1, 2, --- and 0<6< 7.~
We bring this equation to the standard form by
means of the substitution (Sec. 2.1)

4.1.1)

sin?f

Y =sinP. (4.1.2)

Thus, Y is the density function belonging to the asso-
ciated spherical harmonic P. Equation (4.1.1) becomes

&Y mi—1

de?  sin20

Y+ +1)Y=0. (4.1.3)

But the potential function here is exactly our type 4
(4.0.1) if we put in the latter.

a=1, ¢=—%, d=0, p=0, x=0
and replace N by A+3%. Therefore the factorization is
given by
k(0, m)= (m—13) cotd
L(m)=(m—3).

L(m) is an increasing function of m. We therefore
have a Class I problem and the eigenvalues must be

AMi=L(+1)
so that
A=I(+1)

where /=0, 1, 2--- and />m and the corresponding
normalized solutions are given by

1-3-5+ -« 21417}
2.2 4. «.. 9]
and

Yyi=[(Hm)(+1—m) ]

(4.1.42)

d
X { (m—1%) cot0+%l Yy (4.1.4D)

Equations (4.1.4) define the eigenfunctions of
Legendre’s equation. We shall show later that this way
of expressing the result is not only quickly obtained by
the factorization method but is also in a very convenient
form ; for one thing, the physically proper normalization
is preserved.
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We shall also need later the m-raising recurrence
relation®

Y=+ m+1)(—m)]H

d
X [ (m‘f‘%) COto—;i—o Y. (4:14C)

Of course we did not know in advance that ¥;' would
satisfy the boundary conditions. However, once Y, is
found, we see immediately that all the functions
Y™ do satisfy the boundary conditions. If ¥;! had not,
then we would know from the general theory that there
were no normalizable eigenfunctions at all.

For negative m it is seen from (4.1.3) that

Yir=xVm

A study of the nature of the ladder operations near
m=0 will reveal that the operators can be used to reach
the eigenfunctions for negative values of 7. The result
of going down the ladders to these values of # turns

out to be
Yim= (—- l)mylm.

4.2 Associated spherical harmonics as a Class 11 problem

If we introduce I(J+41) for X and replace —m? by A,
Eq. (4.1.1) becomes

(smﬁ—)—l—l(l—l—l)P—l———P 0, !=0,1,2--
sm0 dé

Let us now consider the possibility of finding a fac-
torization of this equation which will enable us to raise
and lower the / parameter while keeping the new X fixed.
The normal form #ow is obtained by putting

z=log tan(4/2). "(4.2.1)

Let us also write P for P and reserve the symbol P for
the properly normalized solutions. Our equation be-
comes ~
@P 10+1) _
P4+2AP=0
dz2 cosh?z

(4.2.2)

which is type 4 (4.0.1) again but with e=1i, ¢=0,
p=1in/2, d=0, and with x, m replaced z, I. The factori-
zation is therefore given by

k(z, ))=1tanhz
Ll)=—2.

Since L(}) is a decreasing function of / we have a Class
IT factorization and the bottom of the ladder is ob-

8 The operators in (4.1.4) are closely related to orbital angular
momentum operators. If L, L, are the first two components of the
orbital angular momentum, then (37, p. 439):

Ly+iLl,=h exp(:l:w)(i +3 c0t0 8 )
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tained by taking N such that A= —2 for some value of
l, say, m. Therefore, \= —m? where [—m=0, 1, 2, - - -

The corresponding ladder of normalized solutions
satisfying the boundary condition (quadratic integra-
bility over the interval — o, ©) is

Pmm7 PrrH-lmy Pm+2m, o 'le’ :
where
~ 1:35- <+ 2m—1\}
1)mm=( ) cosh—g (4.2.3a)
2.2:4 ov Om—1

).
=[({—m) (H—m)]—%{l tanhz—é—lP;_l'". (4.2.3b)
3
Because of (4.2.1) we can write for future reference
a] .
[ —1 cosf— sinﬂ—}Pl_l"'
do

=[(—m)(+m) P

a)_
{ —1 cosf+sinf— l Py
do

(4.2.4a)

=[(—m)(I+m) P,y (4.2.4b)

_ There are important differences between P and V.
P can be written as a function of 6 and then

Y~sinigP=7,

The other important difference is in the normalization.
Y is normalized so that

f Y2do=1
0

-]
f Prdz=1

—o0

say.

(4.2.5)

while

which would correspond to
f (V2/sin20)do=1.
0

In the calculation of the spherical harmonic matrix
elements (Sec. 9.1) we shall see how the connection be-
tween these two normalizations is to be found. In
physical applications it is the normalization of ¥ which
corresponds to the probability interpretation of the
wave functions. Therefore, it is desirable to adjust
the constants in (4.2.4) so that the ¥, rather than the
P (or Y), normalization is preserved.

4.3 Generalized spherical harmonics
The generalized spherical harmonics satisfy

2d )
—-+ 24 cotd
de :

m22my—m
P+ AP=0
do sin%6

where m is, as before, a non-negative interger and v is
an arbitrary positive parameter. This equation takes
the standard form

@Y (m4vy)(m+vy—1)

dae? sin%6

Y+ +H7=0 (43.1)
through the substitution
Y =sin"6®.

Using type 4 with a=1, c=vy—1, d=p=0 we obtain
the Class I solutions:

A=1(+27)
T+~v+1D7 .
Vi, =7r‘3[————-——] sint+7g
P+v+3)

Vi t=[(+m+2y—1)(—m+1) ]

d
X { (’WL“}—’Y—" 1) COta—{—g—o' Yl, 4™

where m cannot be < —vy—12 unless y=1%. (The solutions
for negative m can be obtained from
Vi, =Y, when A=I(—2v).)

These results reduce to those of Sec. 4.1 for y=3.
For y=1 we obtain the radial functions for a free
particle in a spherical space which is also a special
case of the problem treated in Sec. 7.1.

The Class IT problem (see 4.2) is obtained through
the substitutions

A=1(+27)
z=1log tan(6/2)
P~sinr9®
- giving
PP (y—D0rH) |
dz? cosh?z

—[(v=2)42my+m2—m]P=0. (4.3.2)

The solutions are
T(m+7)
T(m+v—%)
Pyym=[(—m)(+m+2y—1T*

b, = r—*[ ] cosh—m—71+3g

)
X { (l+’)""%) tanhz——;— Pl._l, ym.
4

The differences between P;, ,”and ¥, ,™ are important
and completely analogous to those between P and ¥
of the two preceding sections.
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4.4 Gegenbauer functions

The Gegenbauer functions can be defined through
the differential equation (53, p. 329)

aaU

au
(1—2)——(2m—+3)z—+AU=0.
dz? dz

If we put

2= —cosf
U=Y sin—™19

we obtain the standard form,

@Y m(m+1)
Y+ (\+(m+1)) Y =0.

(4.4.1)
e sin%

Now we have a type 4 equation except that we have
to proceed as explained in Sec. 3.2 and introduce the
artificial

N =+ (m+1)2
the factorization is then given by

k(0, m)=m cotf
L(im)=m?

and the solutions are defined by
r(+2)

1= r‘i[
INGS)

3
] sint1g

d
Y mt=[(+1—m)(+ 1+ m)]-%{ m cot0+é5} v

also Y=Y after putting N'=\4 (m—1)%
We should emphasize the fact that ¥;™ belongs to the
eigenvalue
N=(0+1)? I—m=0,1,2,---
that is, to :
' A= (I—m)(+m+2).

4.5 Symmetric top

The wave equation for a symmetric top is important
in the study of simple molecules. Following Dennison
(7, p. 310), the wave function is

U= 0(0) exp(iK p) exp(iMy)

where 6, ¢, ¢ are Eulerian angles and K, M are integers.
The first part of this function satisfies

a0 d® (M—K cosf)?
-+ coté 0+
de? do sin%

d®=0

and
o=8n?AW/h*— AK?/C,
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If we make the substitution

Y =sini0®
we obtain

&Y [(M——%)(M+%)+K2—2MK cosa]y
an

sin%f
+(¢o+K+HY=0 (4.5.1)

which can be identified with type 4 if in the latter we
put e=1, ¢c=—3%, d=—K, p=0. The factorization is
given by

K
kO, M)=(M—%) cotd——
sinf

L(M)=(M—3)
The solutions are therefore
I'(2742) i
o] |
r'(J—K+1)T'(J+K+1)

X sind—E+i— cog/+E+i—

VM =[(J+M)T-M+1)T?

K d
STPESVIL ] P
sind df
corresponding to the eigenvalues
so that
JT+1)r? 1 1\K*?
oo (L
824 C Al 8=?

4.6 Weyl’s spherical harmonics with spin

Schrédinger’s quantum-mechanical theory leads to
one amplitude equation of the second order. Dirac’s
theory accounts for the spin and leads instead to pairs
of first-order equations for the spin components of the
eigenfunctions. In this section and in 8.4 we will treat
such a pair of equations directly by the factorization
method. The idea is to transform these equations so
that they are themselves a factorization.

After separating variables Weyl (51, p. 230) obtains
the following equations for.the dependence of the com-
ponents of the wave function on the azimuth angle:

d
sinozi-—g— mf+k(14cosf)g=0
(4.6.1)
dg
sin—+mg—k(1—cosf) f=0
(do

where m is a given integer and % is to be found.
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Now it is easy to see that, if we introduce
Py=g+f }
Py=g—f

and add and subtract Egs. (4.6.1) in turn, we obtain

(4.6.2)

d
( —k cosf— sinB(;—)P1= (k+m) Py
9

d
(— k cosf+ sinad—)P2 = (k—m)P;.
6

But these are exactly Eqgs. (4.2.4) if we identify
1=2C(k+m)*Py_1™
P2=2C(k-—m)%Pkm

where C is a constant which depends on the normaliza-
tion. The required solutions are therefore (see 42)

f=C{(k+m)%Pk_1'"—~ (k—m)%l-ikm}
g=C{ (k—l—m)%Pk_{”—{— (k—m)%l_’k"‘}

and % must be an integer not less than .

We have considered only positive m but, of course,
Pyr=(—1)mPym, Py(k)=Py(—k).

A second method of solution is obtained by intro-
ducing

F=tan(6/2)f, G=tan(6/2)g (4.6.3)
so that (4.6.1) becomes
m+i d
{ - }F =kG
sinf  df
(4.6.4)
m+3 d
{ +— }G =kF,
sinf  df
then
@*F m@m+1)+ 51— (m+3) cosh
— F+RBF=0 (4.6.52)
ae? sin%
@G m(m+1)4+3+ (m+3) cosd
— G+kG=0. (4.6.5b)
ae? sin%@

But these are type A equations with a=1, ¢=p=0,
d="7% respectively. The solutions for k2= (4-1)? are

T(Q2l+3) ]%{ sint#(0/2) cost+#(6/2) }

Fy

Gl’] N [r(z+1)r(z+2)
i
G

Using (4.6.3) we can obtain f, g; and of course
Fk—m=ka—l,
F_ym=Fym,

—M o —1
Gk M= — 7, m ,

G_im=—G™.

4.7 Magnetic pole equation

Dirac (8) first introduced the wave equation for an
electron moving in the field of a fixed magnetic pole.
After separating variables he obtains the following
equation:

1 d d m 1 9 1 8
—_— -—[sinH—S]— [ +—m sec*—+— tan2—]5 +AS=0
sinf d6 a sin?f 2 2 4 2

where m is an integer and X is to be found. Putting

T =sin4S
we obtain
aT [m(m—i— 1)+1—(m+d) cosBJT
de? sin%f

+\+HT=0 47.1)

1 dy(Fr
}=[(l—m+1)(l+m+1)]—%{m cotéF +_H .
2sinf df

sint*+3(8/2) cos*t#(6/2)

(4.6.6)

G™

which;is type A with a=1, ¢c=p=0, d=—3%, and A
replaced by A3 so that the eigenvalues are
N=L(+1)~}
=P42+3,
which agrees with the result given by Tamm (48).
The solutions are exactly (4.6.6) for F.

1=0,1,2, -

4.8 Pischl-Teller potentials

In a later section (5.2) we shall consider the potential
function which was suggested by Morse to explain the
observed vibrational energy levels and dissociation
energies of diatomic molecules. There have since been
proposed other potential functions which lead to the
same energy eigenvalues but which involve more than
the two parameters of the Morse potential and which
can therefore be adjusted to fit more spectroscopic
data. Two of these functions were given by Poschl and
Teller and we shall now show that they are each special
cases of our type 4 problem so that we shall be able to
write down the solutions immediately. In fact we should
look upon a familiarity with type 4 (and later type B)
as enabling us to discover such potential functions.
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The first Poschl-Teller equation is (36)
&y [ a?v(v—1) ' 2u(u—1) ] 8w M
ar? n

Ey=0.

sinfa(r—ry) cos?a(r—r)

By putting e=2a, ¢=0, d=2ga, x=r, p=—r, the
potential function of type A becomes

_@mtg)mtgt+1) oPm—g)(m—g+1)

cos?a(r—ro)

(4.8.1)

sin®a(r—#)

and we can identify m+4g+1, m—g+1 with », u re-

spectively so that 2m-2= p-+».
The factorization is given by

k(r, m)= (m+g)a cota(r—rs) — (m— g)a tana(r—ry)
L(m)=4c>m?

“which is therefore a Class T problem so that the eigen-
values are

A=4a2(141)?,
that is,

l=m+n, n=0,1,2,---

o?h?

(ut+v+2n)2, n=0,1,2,---
8mM

E,=

as given by P6schl and Teller.
The normalized eigenfunctions are obtained through

Yn={min™

where

W[ 2aT(2143) ]
Tl itgreri-g

Xsin" g (r—r,) cosHl0a(r—r,)

1 d
b= L 2 (=) T RO, 1)y
o '

provided m+3>|g|.

We have introduced the # because, from the physical
point of view, we consider the # in the potential func-
tion as a given constant and we look for eigenfunctions
belonging to different ! (or 7). The eigenfunctions
occupy one row in Fig. 1 and are numbered from left to
right by =0, 1, 2, - - -. (We recall that m, I themselves
need not be integers as long as their difference # is an

integer.)
The second Poschl-Teller equation is
&y a?v(v—1) u(ut1) 8= M
[ ] Ey=0.
dr* Lsinh?a(r—r,) cosh?a(r—r) h?

Putting ¢=2ia, ¢=0, d=2iga, x=7r, p=—r, we find
the potential function of type A becomes

_ [a2(m+g) (m+g+1)  o*(m—g)(m—g+1)

cosh?a(r—r)

] (4.8.2)

sinh?a(r—7,)
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and we can identify m+-g, m— g with —», u respectively
so that 2m=pu—y».
The factorization becomes

k(r, m)= (m~+g)a cotha(r—ro)+ (m—g)a tanha(r—r,)
L(m)=—4a®m?
which is a Class IT problem so that
A=—4a,

lI=m—mn, n=0,1,2,  ---<m.

This time, for a fixed m, there are only a finite number
of eigenvalues

— o
8m*M

E,= (,U,—V—Z’}’L>2, n=0, 11 27 < (I/«—V)/Zy

and the solutions are

‘pn: "l/m—nm

where

i

_[ 20l'(—g+3)
" lr(—i— gy

Xsinh=¢a(r—r,) cosh=9a(r—7y)

d
k(ry m)—— rym1
dr

1
Yir=—L(m+0)(m—1)1*
2a
provided g<}—m, i.e., v>—%.

4.9 Hypergeomelric functions
The differential equation satisfied by the hyper-
geometric function F(a, b, ¢, 2) is (53, p. 283).

a’F

aF
2(1—2z)—-+ {c— (a+b+1)z} ——abF=0.
dz? dz

(4.9.1)

We whall factorize this equation in four different ways.
However, the results will turn out to be essentially
those of the previous section. We shall therefore use our
factorizations only to develop certain recurrence rela-
tions which we need for the calculation of Dirac matrix
elements in Sec. 12.5.

Equation (4.9.1) can be put into the standard form
by means of the substitution

z=sin%p
F=sin—tip cogotte=ip],

We obtain
eV (c—3)(c—3%
2 2) V
dp? sin%p
(a-+b—c—P(a+d—ct+})

V+ (a—b)2V=0. ‘(4.9.2)

cos?p
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If we now introduce
&V (mtc—3§)(m+c—3)
14

dp?

sin%p

(m+a+b—c—%)(m+a+b—c+%)v

cos?p
+(@—02V=0 (4.9.3)

the problem becomes that of Sec. 4.8 with the factoriza-
tion given by

k(p, m)= (m+c—%) cotp— (m+a+b—c—3%) tanp
L(m)= 2m~+a+b—2)2

Here raising m by 1 corresponds to raising each of

a, b, cby 1.
But we can also introduce

@V (m+c—3)(m+c—3)
14

dp?

sin%p

(mt-c—a—b—3) (m+c—a—b+1)
— 14

cos?p
+(a—0)*V=0 (4.9.4)
with the factorization

k(p, m)= (m~+c—3%) cotp— (m~+c—a—>b—3%) tanp
L(m)=(2m~+2c—a—b—2)*

which leads to recurrence formulas for raising and
lowering ¢ by unity. This factorization is equivalent to
Schrédinger’s (43).

If we now consider (¢c—1)? in the second term of
(4.9.2) as the A-term to be held constant on the ladders,
the standard form will be obtained through

V=sint pU
p=2tan™! exp(—y).
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We obtain
&*U (m+a+b—c—%)(m+a+b—c+%)U
dy?

sinh?y
(m+a—b—3)(m+a—0+3)
+ U
cosh?y

—(c—1)U=0 (4.9.5)

where 7 has been introduced as above. Again, as in
Sec. 4.8,

k(y, m)= (m~+a+b—c—3%) cothy+ (m+a—b—3%) tanhy
L(im)=— (2m+2a—c—1)?

and this factorization leads to a-changing recurrence
formulas.

Finally another standard form is obtained if we think
of the (a-+b—c¢)?in the third term of (4.9.2) as being the
X to be held constant. The substitution is

V =costpW
p=sin? (tanhx)

and the resulting equation (with m inserted) is
EW  (mtc—3)(m+c—3)

w
da?

sinh2x
(m+a—b—Hnt+a—b+3)
+ w
cosh?x
—(a+b—c)W=0 (4.9.6)

and the a- and ¢-changing factorization is given by

k(x, m)= (m~+c—3%) cothx+ (m+a—b—3%) tanhw
L(m)=—(2m~+a+c—b—2)2

The a-changing and c¢-changing operators can be
written in terms of the variables F and z. At the same
time the normalization factor can be adjusted so that
the constant term in the series for F is unity. The
following recurrence formulas are obtained, after
putting m=0:

zd
F(a+1; by Gy Z)= l1+__}F(a7 b7 Gy Z) a0
adz
bz z(1—z) d
F(a—1,0, ¢, z)=l1+———- —}F(a, b, ¢, 3) a#c
a—c¢ a—c dz
" (4.9.7)
c d a#*c
F(a, b, c+1, z)=—————{a+b——c— (1—z)~]F(a, b, ¢, 2)
(b—c)(c—a) dz b#c¢
z d
F(a) br 6—17 z)={1—|———«—}F(a, b, Gy Z) c#1
c—1dz J
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There are, of course, other first-order differential-
difference relations but the above are basic in that any
others can be constructed from them. This is true
because, as long as the restrictions noted in (4.9.7)
are not violated, we can find a product of operators
which will turn F(a, b, ¢, 2) into F(a+a, b+8, ¢+, 2)
where «, B8, v are integers; and this product can be
written as a single first-order operator by expanding,
and using the original Eq. (4.9.1) to convert second
derivative operators, as they appear, into first-order
operators.

Furthermore, it follows that a sum of hypergeometric
functions contiguous to F(a, b, ¢, %) can, if the restric-
tions are not violated, be written in the form 0F(a, b, c,
z) where 0 is a first-order differential operator; that is,
such a sum is equal to a linear combination of F(g, b,
¢,2) and F(a+1, b+1, c+1, 2). In Sec. 12.5 we shall
find that matrix elements can equal such a sum and that
z and some of the parameters may be complex. It is
therefore important in computing to be able to reduce
the number of hypergeometric functions and the above
idea systematizes this reduction.

Such an argument can be applied to any contiguous
solutions of an eigenvalue problem which can be
factorized. It is therefore pertinent to ask “when do
such recurrence relations themselves represent a direct
factorization of the original equation?”

This question can be answered in the following
way. We note that the transformation (2.1.2) of a
differential equation to the standard form is essentially
unique. This means that once X (the parameter to be
held constant on the ladder) has been chosen, the
r(x, m) is uniquely determined. For such a definite
r(x, m) we have at most one factorization. Therefore
we cannot, for example, obtain a factorization of
Legendre’s equation which will change m by 2 for fixed
X even though there exist first-order differential opera-
tors connecting ¥ ;™ and ¥ ;2.

The situation is the same in the case of the hyper-
geometric equation: once we had chosen A (in (4.9.3),
A was (e—0b)?) and inserted m, the factorization was
determined. But with the hypergeometric equation
there is a greater variety of possible choices for A which
might be of interest. For example we could ask if there
is a factorization which lowers ¢ and raises b each by 1
at the same time; this would correspond perhaps to
taking A= (a+5)? or perhaps simply A=c.

We shall find that there is such a factorization and
that

A=—(c—1)2/2— (a+b—c)*/2. (4.9.8)
However, the problem is type E and so we will leave
its discussion to a later section (7.5).

The resulting connection between the fundamental

types 4 and E will be taken up in Chapter 14.
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5. Type B and C Factorizations

From (3.1.1), (3.1.3), (3.1.6), and (3.1.7b, c) respec-
tively, we obtain the next two general factorization

types:

Type B (after writing ¢ in place of —ia, and adding
—a%?® to L(m))

(%, m)=—d? exp(2ax)+2ad(m~+c+3%) explax) (5.0.1)
k(x, m)=d exp(ax)—m—c
L(m)= —a*(m+c).

Type C (after writing ¢ for d, and adding 4/2 to L(m))
r(x, m)=— (m~+c)(m+c+1)/2>

—b0%?/4+b(m—c) (5.0.2)
k(x, m)= (m-+c)/x+bx/2
L(m)=—2bm-+b/2.

We will consider these two types together because
any problem which can be treated as type B can also
be treated as type C and vice versa; in each case one
of the two factorizations will, however, be artificial.
Our first example—the confluent hypergeometric equa-
tion—is treated in detail by each method and, as we
should expect, the two sets of solutions differ only in
their normalizations. Subsequent examples will be
handled only by the method which preserves the physi-
cally proper normalization; it is, fortunately, the more
direct method in each case.

Later, in Chapter 8, we shall find that the confluent
hypergeometric equation can also be considered as a
type F problem.

5.1 Confluent hypergeometric functions
Whittaker and Watson (53) discuss the equation
aw 1 s+3% %

+

l_m2

W=0, 0<z<x (5.1.1)
dz? 4 2 22

where we have written s+-3 for their £ so that this param-
eter will not be confused with the k(x, ) function of
our factorization. For a factorization which provides
s-changing operators we want to treat —m? as A. The
substitutions

z=expx, W(z)~exp(x/2)U(x) (5.1.2)
bring (5.1.1) to the desired normal form:
d2
:l—x;_l- {—exp(2x)/4+ (s+3) expe} U—m*U=0,
—oo<g<o, (5.1.3)

We recognize this problem as type B (5.0.1) with
a=1, ¢=0, d=% and with m, \ replaced by s, —m?
respectively. Therefore

k(x, s)=(expx)/2—s
L(s)=—s
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L(s) is a decreasing function of s. Let us consider m
(rather than / of Theorem IV) as the smallest value of
s; our notation is then consistent with (5.1.3). We now
look for quadratically integrable solutions

‘ Umm, Umm-i-l, Umm+2’ e Ums, e,
These solutions are
n™=T"%(2m) exp[mx— (expx)/2], m>0

m®=[(s—m)(s+m) ]

(5.1.4a)

d
><{(m<px)/2—s———]Um*“1 (5.1.4b)
dx

U= (s—m)(s+m)T*

1 d
X { (expx)/2— s+—~’ Uns. (5.14c¢)
dx
where the normalization preserved is
f (Un®)2dz=1. (5.1.5)

Writing s=%—%, z=expx and using a bar to indicate
that our normalization is different than Whittaker and
Watson’s we obtain

Un®* () =2"W 1, m(2).
Rewriting (5.1.4) in terms of W and z we obtain
W i s,m(2) = T3 (2m)zm+* exp(—z/2) (5.1.6a)
Wim(z)=[(k—m—3)(k+m—13) 1

P9 d
X {“‘_‘k+ 1_z~}Wk——l,m(z) (5.1.6b)
2 dz
Wiam(@)=[(k—m—3)(k+m—3) T
2 d) _
X {—— k22— } Win(z) (5.1.6c)
2 dz
where the normalization is

fw (W i m2/80)dz=1.

Weg, 1—3(2) = T=3(k+ pt-3) 2t w9 2 exp(—3/2)

Let us now approach our problem as if s were the
parameter in (5.1.1) to be held constant (as was A
in the general discussion of Chapter 2) and look for a
factorization which provides m-changing operators.

The substitutions '

z=y"/4, W@~0/2WV () (5.1.7)
introduce the new normal form
av
P L@m—3%)(2m+5)/y*+y*/16]V
+(+35)V=0. (5.1.8)

But this equation is almost type C (5.0.2). We can make
use of the idea of artificial factorization and write

&V
d—;*[(m+n~%)(m+u+%)/y2+y2/16
y

+(m—p+3)/2]V+sV=0 (5.1.9)

where s'=s4-%+4(m—p)/2. This modified equation is
exactly type C with b=—1%, c=p—3% and it reduces to
(5.1.8) when p=m. The factorization is given by

k(y, m)= (m+u—3)/y—y/4
Lim)=m—3%

and the only possible quadratically integrable solutions
belonging to a fixed

S=L(+1)=1+32

Vit (w), e Vir(w): -

are

V l ! (l"') )
where

V() = 2"+ 304 (14 ut- 1) yttett
Xexp(—y?/8) (5.1.10a)
Vim(p)=[l—m]

d
X (m+n+%)/y-—y/4+—d— Vi (w). (5.1.10b)
- y

Finally, for the required solution of (5.1.8) we merely
put p=m and I=s in V;™(u); thus s must be an in-
teger >m.

Using (5.1.7) we obtain the formulas for the corre-
sponding W functions:

Wehmle)= [ 2

2k—m—p— 1]“5{

W, mia(3) = [ .

2k—m—u— 1]—*{

(5.1.11a)
m+pu d
2 ?-i— z*{;z- } Wrt, my1(2) (5.1.11b)
el f-— z*—d—}W“k,m(z) (5.1.11¢)
2} 2 dsz
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where the normalization preserved is
f [k, n() Pdz=1
0

so that we cannot use an equality sign in
W, m’”(z)NWk, n(2).

We cannot put p= in (5.1.11) since m changes with
each step up or down the ladder while p is held constant
and is only put equal to the final value of m as in
(5.1.12).

Finally, we should note that (5.1.9) is also type C
with b=1%, c=u—3% but this choice of & does not lead to
integrable solutions.

(5.1.12)

5.2 Morse potential

Morse (34) has suggested that the radial part of the
nuclear wave function (multiplied by 7) for a diatomic
molecule satisfies

d*R ZME N D)2 expl S
Eu—?—'— h2[ —D(exp(—2au exp(—au
JJT+D)A2
__(_L)_]R=o (5.2.1)
2Mr*

where M is the reduced mass of the two atoms, E the
energy, D the “depth” of the potential function and J
the rotational quantum number. The constants @, D are
to be determined by fitting experimental data to the
expression (5.2.3) for the energy levels. The independent
variable is #=7—ry where 7 is the internuclear distance
and 7o is the value of » when the potential is a minimum.
The range for % is (—7,, ) but a sufficiently close ap-
proximation is obtained if we take the range to be
(— o, ) since, in this case, R will be extremely small
at r=0.

As a first approximation we take J=0 and then, if
we put

x=—au+log[ (8M D)¥/(ah)]
s+3=(2MD)*/(ah)
m2=—2ME/(a*h?)

5.2 i) becomes

d’R

—5 (=@ exp@)+ (+D) expa] R-mR=0 (522)
x2

which is Eq. (5.1.3) again. Of course s is not an integer
here but it is sufficient that s—m=»=0, 1, 2, - - - which
leads to

E,=—D+ha(v+3)(2D)Y/ M? ‘
— (ha)(v+3)°/(2M) (5.2.3)
in agreement with.the result given by Morse. We note

that there are only a finite number of energy levels—for
any given s there are less than s+1 levels.
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It would be natural to use the m (or ») changing
recurrence relations (5.1.11) to generate the solutions
since s is a constant. However the s-changing relation
in (5.1.4) preserves the physically correct normaliza-
tion (once we account for the @ in dx= —adu). To reach
R,.*, then, we start with the “solution” R,™ and take
v steps up the s-changing (artificial) ladder to

Rmm+v= Rms.

Moreover we need (5.1.4) for the calculation of inten-
sities in Sec. 10.1.

The potential considered above has been applied to
the deuteron problem by Morse, Fisk, and Schiff (35).
However, we cannot use the factorization method to
solve their problem because 7 is so small for the deu-
teron that we can no longer assume the range (— w0, ©)
for #. D. ter Haar (20) has investigated the limits to
the validity of the assumption we have made.

5.3 System of identical oscillators

Schrodinger (42) introduces the equation for a sys-
tem of s identical (one-dimensional) Planck oscillators.
After splitting off the spherical harmonics on the
(s—1)-dimensional hypersphere he obtains -

&y s—1dy [nlnt+s—2)
— [———-i— x2]1//+ A =0,
dx2 2

x dx x

n=0,1,2,--- (5.3.1)

for the radial eigenfunction. Here the square of the
radius vector is

wr=3 &2
1

where %, is the coordinate of the kth oscillator.
By means of the substitution

v= 2 1—8) /12
we change (5.3.1) into its standard form:

P

P [(nts/2—5)(n+5/2—3) /2> ]®
X

+2xP=0; (5.3.2)

this equation is type C with b=—2, ¢=5/2—% pro-

~ vided we introduce the artificial N’= A+ 21— s+3. The

factorization leads to the Class I solutions

B 1= 2T H(14-5/2)+ 24 exp(—a2/2)
d

n=(H0—n]? (n+8/2—%)/x—x+§— P+
X

belonging to N'=4I+3. That is, ®;» is the normalized
eigenfunction belonging to the eigenvalue A=47— 2x+-s.
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Of course an I- (or \-) changing factorization can be
found in the same manner as was the k-changing factor-
ization of Sec. 5.1. The operators provided by such a
factorization will raise and lower / by one, and hence
A by 4; the result is essentially that given by Schro-
dinger.

5.4 Bessel functions

One last example of a type C factorization is im-
portant because of a very special property of the L(m)
function.

The equation for Bessel function densities is

27z m—1i
Z+NZ=0.

dx? x?

(54.1)

The factorization is given by
k(x, m)=(m—3)/x
L(m)=0.

Since L(m) is neither increasing nor decreasing as a
function of 7 we have no key function. We obtain only
the known recurrence formulas:’

d
Zomp1= 7\‘%[ (m—l—%)/x——lZm
dx
d
zm=x-*{<m+%>/x+—}zw
dx

where
Zm=2}T (A1)

in the notation of Whittaker and Watson (53). The
recurrence relations also hold for the other solutions
of Bessel’s equation given by Whittaker and Watson.

6. Type D Factorizations

From (3.1.1), (3.1.3), (3.1.6), and (3.1.7d) we obtain
the fourth general factorization type. Corresponding to

r(x, m)= — (bx+d)>+b(2m-+1) (6.0.1)
the factorization is given by
k(x, m)=bx-+d
( (6.0.2)
- L(m)=—2bm

where b, d are constants.

The harmonic oscillator problem can be solved by
means of this factorization. However, in this case, a
straightforward application of the techniques developed

7 We can, however, obtain explicit expressions for the solutions
when 7 is a half odd integer. For, obviously,
_ [sin\ix
Zy= {cos)dx
and the other half odd integral Bessel functions can be gained
from these solutions by repeated applications of the recurrence
relations.

in previous chapters and used with all other examples
leads to an unnecessarily complicated artificial factori-
zation. The reason is that, for the oscillator, 7(x, )
does not depend on . If m does not appear in the po-
tential function we expect only a single ladder of solu-
tions with each function on the ladder belonging to a
different eigenvalue of A. The procedure we have been
using, on the other hand, leads to an infinite number
of ladders, one ladder corresponding to each value of A
and one function on each ladder corresponding to each
value of m; but with the oscillator problem these ladders
turn out to be identical.

To avoid this duplication we will introduce a slight
modification of the factorization procedure in this
chapter. The modified version will be simpler and, as a
matter of fact, the factorization method had its origin
in this treatment of the harmonic oscillator (see, for
example, 9, p. 133).

The field of application of the method, as exhibited
in this case, is wider than we have so far indicated and
embraces many problems which arise during applica-
tions of the so-called second quantization procedure.
We shall show, with a few examples, how the method
can be applied to such problems; but its range of validity
is broader than these examples would indicate. We shall
also find that the method is easily generalized® to handle
problems involving sources as well as fields. This
generalization is -carried out in two stages, in Secs.
6.5 and 6.7. Our examples are formulated and inter-
preted more fully in Wentzel’s Quantum Theory of
Fields (50).

6.1 Linear oscillator

The Schrodinger equation for an oscillator is

ay
——EY+M=0 (6.1.1)
ag
where £= (%/uw)*, A\=2E/hw in the usual notation.
We shall now outline the modified factorization
theory which is most suited to this problem. The essen-
tial change is that, because 6.1.1 does not depend on #,
we now use a factorization which enables us to raise
and lower A.°
Equation (6.1.1) can be written in either of the two
forms

+H~Hy=\+1)¢ (6.1.2a)
—H+tHy=\—1)¢ (6.1.2b)

where p
tH=f4—- (6.1.2¢c)

d

8 Johnson and Lippmann (30, 31) have used another generaliza-
tion (10, p. 136) of Sec. 6.1 to treat the problem of the motion of
a charged particle in a uniform magnetic field in both relativistic
and nonrelativistic quantum theory.

9 The idea of raising and lowering X\ rather than # persists in
Schrodinger’s method (41, 42) even in cases where the m does
appear.
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Operating on (6.1.2a) with “H and on (6.1.2b) with
*+H we deduce the analog of Theorem I:

YA+2)~"Hy(N)
Y(A=2)~+HY(N)

so that the =H operators raise or lower A by 2.

Moreover, corresponding to the second part of
Theorem IV, we find that we cannot lower the value of
M indefinitely. For the ladder to have a “bottom’ we
then find that

A=2N+1, N=0,1,2, - (6.1.3)
the key function must satisfy
THyy=0
and, properly normalized, it is
Yo=m"% exp(—£2/2). (6.1.4a)

The other solutions can then be obtained from the
first of
(6.1.4b)

(6.1.4c)

Yvp=[2N+2]%"Hyy
Yy_1=[2N |} +Hyy.

All these eigenfunctions are orthogonal and normalized,
that is

f Ynyndt= (Yn, Yn)=2dnn-.

In the next three sections we shall use these results
to treat problems arising in the theory of meson fields.
With this in mind, we remark that (6.1.2b), and hence
(6.1.1), can be written

(H+H+1)y=\. (6.1.5)

Thus all our results follow from this one equation.

0.2 Real scalar meson field

The Hamiltonian for a real scalar meson field in
vacuum is (50, p. 33)

H= 32k @ prt wiqi™qr) (6.2.1)

where wi=c(u>+%2)*>0 and where % is a vector whose
cartesian components are integral multiples of 2x/I, !
being the length of the edge of a periodicity cube (50,
p- 27). The operators pr, gx must satisfy the relations

: g-k=qi*, p-r="pi* (6.2.2a)
Lk, e J=[pr, P 1=0, [pr, qxr]= (4/1)b1s. (6.2.2b)

Let us now associate with each vector £ a one-di-
mensional space with the coordinate £, where &
ranges from —oo to 4o, and let us introduce the
representation

Q> (h/4wr)*CHi++H_1)
@i =/ 40r) ("Hrt+—H_s)
P (—hwk/4)%(+Hk—~H_k)
o= (—hwr/4)}CHr—"H_)

(6.2.3)
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where
)
= Ept—o-
ok

It is easily verified that (6.2.2) is satisfied.
Introducing (6.2.3) into (6.2.1) we obtain

H=33(hw/2) CHFH+1). (6.2.4)

Since the part of the Hamiltonian belonging to each %
depends on a separate variable we can split our prob-
lem into an infinite number of one-dimensional prob-
lems. The Schrodinger equation belonging to each %
becomes

(hwr/2) CHtHy+- 1)Y= Ex.

A comparison with (6.1.5, 3) gives immediately
Ek=ﬁwk(Nk+%)
or, subtracting the zero point energy, we obtain

Ek'EEk——ﬁwk/2=ﬁwka
and
E= ZkEk,= Zkﬁwka.

The eigenfunctions can be obtained from (6.1.4).

Thus the problem of a real scalar, or neutral, meson
field is equivalent to that of an oscillator with 3 de-
grees of freedom.

The expression

(6.2.5)

V=yn ¥y - (6.2.6)
is, symbolically, a solution of the Schrédinger equation
Hy=Ey, E=3}E..

In (6.2.6) each ¢, is normalized to unity exactly as in
Sec. 6.1 and it is understood that

W, ¥)=dmN NN -
where ¥, ¥/ are characterized by

ZV);, Nk’ e
and

sz’, N,k" .
respectively.

6.3 Complex scalar meson field

The Hamiltonian for a complex scalar meson field is
(50, p. 51)
H=31(pr*prt 0’ ). (6.3.1)

The difference between this Hamiltonian and that of the
previous section is that p, gx no longer satisfy (6.2.2a);
they still satisfy (6.2.2b). Physically this means that
the charge is no longer zero so that our solutions will
represent a field of charged mesons.

With every & we must now associate fwo space coordi-
nates &, 7 and introduce

*H = Ex(8/08r)
L= ni==(8/0n1).
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If we now write
g/ 4wr) (CH++Ly)
Q¥ =/ 4wr) (T Hy L)
pr—>— (—howr/4) (FHy—"La)
pi*—(—hwi/4}CHi—*Ly),
Eq. (6.2.3b) is satisfied and our Hamiltonian (6.3.1)
becomes

(6.3.2)

(6.3.3)

As the partial Hamiltonian belonging to each %
depends on separate variables and &,  are independent,
we can split our problem into one-dimensional problems
with Schrodinger equations of the type

(hoor/2) CHy Hy 1)y = E+ ot
(ﬁwk/Z) (_Lk+Lk + 1)\0_= E—k\b—

Again, as in 6.1, we have

Ety=Tlw (N +3)
E-p=Tliwp(N=3+3).

The notation N*t;, N7 originates from the fact that
we can consider

N+'—N—'=Zk(N+k—N—k)

as proportional to the total charge; Nt is the number
of positively charged mesons with momentum %% and
N7 is the number of negatively charged mesons with
momentum —#%k (50, p. 53).

0.4 Many component real theory

As a last application of the formulas in 6.1 we will
sketch the many component theory for which the
Hamiltonian is

H=3 (px°qi" "+ wiqrqx")/2 (6.4.1)
k,o

where . .
q-+"=qr° Pp-r"=pr’

h
Lgxe, g’ J=[px" p""1=0, [$+, qu"" ]1=-8k1'850".
7

We can treat this problem as we did the one in 6.2.
The only difference here is the appearance of the index
o. Thus in analogy to (6.2.3) we introduce

"=/ 4wr) (CH++H_y°) etc.

where
o

0&x”

TH =&+

Then (6.4.1) becomes

kZ (hr/2)CHy *Hyo+800).  (6.4.2)

The one-dimensional Schrédinger equation derived

from this problem is
(fiwr/2) (CHy? TH+ 1)Y= Ey. (6.4.3)

Therefore

E=3Y Ey=Y hor(Ni'+0,0/2). (6.4.4)
k, o ko

6.5 Harmonic oscillator; generalization

So far we have dealt with applications of only the
simple factorization (6.1.2). As already stated this
factorization is not very different from the general type
(6.0.2) quoted at the beginning of this chapter. A
glance at the latter suggests that we can generalize
our factorization. If in (6.0.2) we now allow the constant
d to be a non-zero real number we merely shift the origin
and gain nothing new. However, we shall see in the
next section that merely allowing d to be a complex
number B, say, enables us to consider the effect of
sources in the (neutral) meson field.

We proceed, then, to consider the consequences of
redefining '

R
H=£t+p+(d/d§) } 6.5.1)

~H=£+p*—(d/df).

Let us also introduce (and this is an essential step) the
new operators, complex conjugate to the above:

+H*=E+B*+(d/d£)}
“H*=¢+8—(d/d§).

If we attempt to construct a factorization with the
first two of these operators we easily find that they
enable us to write

(Y/d&)— e&y— (848" &y
+(B—B*)(d¥/de)+Ny=0 (6.5.3)

in either of the two forms
tH ~Hy=(\+1+6%)Y
~H *Hy=(\—1+B6*)¥.
The operators (6.5.2) enable us to write
(@*/dg) — &> — (B+B*)E*
—(B—B*)(@Y*/dE)+M*=0 (6.5.5)
in either of the two forms
TH* ~H**= (N 1+4BB*)y*
~H* Y= (\— 1+ 66%)9*,

. Equation (6.5.3) for y differs from (6.5.5) for ¥* only
in the sign of the first derivative term; the coefficients
of all other terms are real,

(6.5.2)

(6.5.4)

(6.5.6)
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The principles of the factorization method can now
be applied to (6.5.4) and (6.5.6) but we must treat
these factorizations fogether. The reason is that *H and
—H are no longer mutually adjoint; in fact the analog
of Theorem II is now

f_ w o(H*)dt= f_ : (Ho) i

so that Theorem IV for (unnormalized) Class II
solutions makes use of the result

f PO—2P*(—2)de= f SHYON) IO dE
- f " YO —EF RO

= (\—1+68%) f YOO NE.

It then follows that the eigenvalues are
A=2N+1-88%* N=0,1,2,--- (6.5.7)
and the normalized eigenfunctions are given by
Yo=n"* exp(— (B+B*)*/8—&/2—B¢E) )
Ywr=[2N+2]" "Hyw
Yya=[2N] THYy

L (6.5.8)
Yo* ="t exp(—(84B%)2/8—£/2—B*E)
Yy ¥=[2N+ 2] —H*Yn*
Uy_i*=[2N T TH*yy*. )

The normalization now means that
f Yy FdE= (Yn, Yur) =bnnr.

For use in the next section we note that if the H
operators of 6.1 are now designated by £H° then

- (B—I-‘ﬂ*)flﬁ‘i- (B—B*)(dy/dt)=—B~H°—p*tH°
and thus, using (6.1.1, 5), we can rewrite (6.5.3) as
(CHe tHo4- 148 —Ho+B* tHO)Yy=\y. (6.5.9)

The factorized form of this equation is (6.5.4). Simi-
larly (6.5.6) is the factorized form of

(CHe tHo+-14-8* —He+B tHO)Y*=M*.  (6.5.10)

Thus all our results (6.5.7, 8) follow from either of
these last two equations,

INFELD AND T. E. HULL

0.6 Real scalar meson fields and nucleons

The results of the previous section will now be ap-
plied to the problem of a meson field with sources. The
simplest theory of the interaction between a neutral
meson field and nucleons considers only infinitely
heavy nucleons each with the same coupling constant.
The Hamiltonian is

H=H4H'. (6.6.1)
Here H° is the Hamiltonian (6.2.1) and A’ is (50, p. 41)
H'=gcV-33 qi exp(ikxy). (6.6.2)

k,n

The coupling parameter g has the dimensions of an
electric charge; V=10 is the volume of the cube and
kx, is the scalar product of the vector & with the posi-
tion vector of the n#th nucleon.

Let us now introduce into (6.6.2) the operators £H%
for g according to (6.2.3). The operator H' becomes

H= kz (h/Awi) gc VA (—Hey exp(ikx,)+TH_ exp(ikx,,))

=2k (hwr/2)(Br —Hor+Bi* THy)

where

=3, (2/lwy) B/ 4wr) gc V4 exp(ikx,).

Thus the total Hamiltonian, because of (6.2.4), is
H=Y (hox/2) CHoHHOAT
+Br ~H x4 Bx* TH).

Parts of the Hamiltonian belonging to different &’s
depend on separate variables. Therefore the problem is
reduced to that of solving the Schrédinger equation:

(howr/2)CH THo 1
+ Bk “Ho B THor) Y= Ey.

Comparing with (6.5.9) we can use (6.5.7) to write
down the eigenvalues

Ey=hop(Ni+%)—hwrBrBr*/2.

The last term contains the infinite nucleon self energy
and the “Yukawa potential function” (50, p. 45).
The expression Bx8:* can be split into two parts:

6k§k*= Zn ﬁknﬂkn*

(6.6.3)

(6.6.4)

and
BiBi*= 2_ BunBin™.
# n,n'
n#n’
The first part does not depend on the positions of the
nucleons. Thus, introducing

Ey' = Ep—hoy/ 2+hwkﬁkﬁk*/ 2
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we obtain the finite expression
El= ZkEk,
=2 rhwr(Ny— B/ﬁk?"/z)

containing only the energy of the mesons and the mu-
tual energy of the nucleons.

The eigenfunctions are of course obtained from
(6.5.8).

6.7 Further generalization of the oscillator problem

We consider now one further (and last) generalization
of the oscillator problem. This time we allow the d in
(6.0.2) to be an operator as well as allowing it to be
complex. In the next section we shall see how this
generalization enables us to consider the effect of sources
in a charged meson field.

Let us redefine

d
H =+ Br+—
a

d
“H =§+p*y*——
3
- (6.7.1)

d
YH* = fry*+—
dt

d
TH*= 4By ——
¢

Here 8 is as before a complex number. But v, v* are
operators completely independent of the £H? operators.
The +’s need not be Hermitian but they must commute.

As in 6.5 we are again able to write down two pairs
of factorized equations. They are

*H ~Hy= (\-14-88*yv*)¢¥

} (6.7.2a)
~H *Hy=\—1+B8*yy*)¥

and
TH* —H**= A1+ B*yy*)¢*

} (6.7.2b)
TH*tH™)*= (\—1+B8*yy*)¥*.

Because v, v* commute with each other and with
+H° we can proceed exactly as in 6.5. The results will
differ now only in that the eigenvalues-and eigenfunc-
tions will be operators (or matrices) since they depend
on v, v*

The eigenvalues are

A= (2N+1)I—pBp*yv*

where 7 is the unit operator (or matrix). The eigenfunc-

(6.7.3)

tions are
Yo=4 exp(—§/2—6v£)
Yyp=[2N+2T*—Hyn
Yna=[2N T +Hyy
> (6.7.4)
Yo*=A* exp(— £/2—B*y*§)

Yu*=[2N+2] —H*yYy*
Yna*=[2N ] TH*Yy* J

where 4, A* are normalization factors.

In spite of the analogy with 6.5 there are also some
differences. One is that X and ¢, as we mentioned before,
are operators. Another is that, in this case, ¢* cannot be
regarded simply as the complex conjugate of ¢; yet it
plays a role similar to that played by ¥* in 6.5. Indeed,
we can show as before that )

f Ui t*dE= Wss, Vs = (W, ¥a).  (6.7.5)

These expressions will be operators since they are func-
tions of v, v*. But if

(Yo, Yo)=1

then all the integrals (6.7.5) will equal I, and the eigen-
functions can be said to be normalized.

For use in the next section we note that (6.7.2a) is
the factorized form of

CHetHo+ 148y ~Ho+B*y* tHo)y=N (6.7.6)
and (6.7.2b) is the factorized form of
(CHeYHA-14-B*y* —H+ By THOWY* = *  (6.7.7)
so the results (6.7.3, 4) follow from these equations.

0.8 Charged scalar meson fields and nucleons

The results of the previous section will now be ap-
plied to the problem of a charged meson field with
sources. Again the simplest interaction theory assumes

- stationary nucleons but now, because charge must be

conserved, it is also necessary to allow for changes of
states of the nucleons (50, p. 55).

The eigenfunctions of the proton-neutron states can
be represented by

O,, for the neutron state of the #th nucleon
I, for the proton state of the »th nucleon.

Let us introduce the operators v, v.* such that

7n0n=In 'Yn*ons 0
'Yn,In =0 'Yn*In =On-
If the unit of charge is the elementary charge then the

charge operator is
€n= 'Yn'Yn*
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since
€,.0,=0=00,
e, =I,=11I,.

The eigenvalues of e, are therefore 0 and 1.
The Hamiltonian representing the interaction be-

tween the meson field and the nucleons in this case is
(50, p. 57):

H'=cV4 3 (g7nqr exp(ikan)+g*va¥qi* exp(—ikitn))
k,n
where g is a complex number. The interaction between

the mesons and the Coulomb field of the protons is
neglected.

Introducing *H°, £L° for ¢ according to (6.3.2) and

using (6.3.3) for the Hamiltonian without interaction
we obtain, for the total Hamiltonian,

H=3 (ho/2)("H% THo%~+"L% TL°+2
k,n

+}8kn'Yn _Hak‘{‘ .Bkn*')’n* +Ifak
FBrn*yn* "L+ Bravs TL%)  (6.8.1)
where Brn=gcVH(2/hwy)(B/4wy)t exp(ikxy).
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Thus we obtain an eigenvalue problem

Hy=Ey.
The ¥* equation is gained by interchanging in (6.8.1)
*He with =Le
or
,Bkn, Yn Wlth ﬁkn*, 'Yn*o

Our new problem differs essentially from the problem
in 6.6 where the meson field was neutral. Here, since
v and v,-* do not commute when #=#’ we are not able
to split our problem into an infinite number of one-
dimensional problems.

We can remove this difficulty as follows. In analogy
with 6.6 let us write

2 BrenBin Y nyn* = BB Fyy* (6.8.2)
Z ﬂknﬁk'n’*'Yn'Yn’*:,Bkﬂk’*'y'y*. (6.8.3)
nn;‘:;z’ =

If we now assume the first expression is zero, which
means if we ignore the self terms, we can separate the
different parts of the Hamiltonian. We obtain equations
of the type:

(hoor/2) CHO YHOA- 1420 Bin Yo ~Hout 2 nBrn™ya™ THoO )Y = Bt
(hor/2) CLo% YL +14+20Bkn ¥n ~Lo%k + 2 nBrn®ya™ TLok) y*=E—pp*

(hor/2) CH% THoA 1420 Ben™va® “Hou+ D nBin vn THOR) Y= Etppt*

(6.8.4)

(haor/2) Lok FLox +142 00 Brn™vn* ~Lo%k 4+ 2 nBrn ¥ tLo) Y =E .

We have assumed (6.8.2) is zero to reduce our problem
to these equations. But this same assumption also
enables us to solve these equations; indeed, the first
two equations can be identified with (6.7.6) and the
possibility of obtaining the factorization (6.7.2a) of
(6.7.6) depended on By commuting with 8*y*. The last
two equations can be identified with (6.7.7).

Our assumption thus enables us to use the factoriza-
tions (6.7.2) where we write

é

+H= £k+2nﬁkn7n+_—
(337

)
+L= 7lk+Zn,3kn*7n*+_ etc.
0Nk

BB yy*=BrBr*yy*.
=~

and

The partial eigenvalues are therefore
Ety=hor(Nte+3) “hwkﬁlﬁk*’)”)’*/z

E_k=hwk(N_k+%)—}lwkﬁkﬁk*')"y*/z'

Thus the total additional energy introduced by the

.interaction of the nucleons is

AE= _Zkhwkﬁkﬁk*')/'y*- (6.8.5)

This additional energy is an operator and can be
represented by a diagonal matrix. For example, with
two nucleons, the coordinate system in which (6.8.5) is
diagonal can be represented by the eigenfunctions

O010s+11I5; 0:0:—1I0y; Oudx40:I1; O:—O0.14.

In a similar way we can treat other cases. Both the
separation of the Hamiltonian and then the possibility
of factorizing depend on our assumption of commutabil-
ity, that is on neglecting the self terms. Our procedure
also shows that expressions which do not contain self
terms as defined here can only be of the second order.

The situation is somewhat simpler in Kemmer’s
theory (50, p. 64). There we have the Schrodinger
equation:

Z (h‘wk/z) (—Huo‘k +Hoak+ 61«
k,n,o
FBinTa” TH kA Brn®12" THo )W =Ey (6.8.6)
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where

Tnl=7n+7n*

T =1(Yn—Yn")

7ot =[¥n*, Yl
Again, assuming commutability, we can separate
(6.8.6) into equations which are even simpler than

those considered in 6.7 since they correspond to the
special case y=~*. Indeed we obtain immediately

EIEZ Eklu-
k,o

EZ (hwk/Z)(2Nk”— Z’Bkﬂﬁknl*’r””ﬂn'”). (687)

k,o nn;é’:z'
Our method can be extended in a similar way to
other more complicated cases. But its applicability
rests on the possibility of separating the Hamiltonian

and then being able to factorize each part; each step
is possible only if ¥ commutes with v*.

7. Type E Factorizations

From (3.1.1), (3.1.7¢), (3.1.8), and (3.1.10) we ob-
tain the next general factorization type. Correspond-
ing to

(%, m) = —m(m-+1)a?/sin%a(x+ p)
—2aq cota(x+p) (7.0.1)

the factorization is given by

k(x, m)=ma cota(x+p)+q/m
L(m)=a*m*— ¢*/m?2.

45

Perhaps the most striking feature of this type is that
it contains the most flexible of all our L(m) functions.
As we shall see, the corresponding eigenvalues can be
used to represent molecular energy levels; the various
forms of r(x,m) are therefore important as possible
potential functions.

Of the examples considered immediately, we may
note that the first two originally appeared as examples
of the factorization method.

7.1 Kepler problem in a hypersphere

Schrodinger (42) considered a very interesting prob-
lem, that of a hydrogen-like atom in a spherical space.
He derived the equation: ‘

d as
— ( sin%c——) —+ 2» sinx cosxS
dx dx

—m(m~+1)S+ A sineS=0 (7.1.1)

corresponding to a potential V~cotx. The range for
2(=7/R) is 0, v and
v=uRZe/i?, \=2uER*/F?,

R being the radius of the hypersphere.

If we put ¥'=sinaS we gain the standard form

3% m(m+-1)

—t (Zv cotx—-———————) Y+ +1)Y=0 (7.1.2)

dx? sin’x

which is type E (7.0.1) with a=1, ¢g=—v», p=0.
The Class I solutions turn out to be

m( )l+%[v<u2+<Z+1>2<Z+1>2><v2+(z+1>2z2>---<v2+<z+1>212>
"\ (242) (1 —exp(—2va/(14+1)))

e v d
ymi= [)\—I— 1—m?+ ] { m cotx——+— } Y-
"

2 m dx

belonging to the eigenvalues
A=I0+2)—»¥/(+1)?, m<I=0,1,2,---

or E=I(+2)12/2uR?— Z%*u/ 2R (14-1)2.

Since L(m) has no finite upper limit, all the eigen-
values are discrete.

As R—oo this spectrum approaches that of the Bohr
energy levels. As Z—0 this spectrum approaches the
very dense, but discrete, spectrum of a free particle in a
spherical space; in 4.3 we referred to the corresponding
results as a special case of generalized spherical har-
monics.

The substitutions

U=sinxS,

enable us to treat our problem as an artificial type 4

z=log tan(x/2)

3
] sintx exp(—px/(I41))

problem which leads to /-changing, or Class II, recur-
rence relations; the result is essentially that given by
Schridinger (42). However, we will leave such results
to a discussion, in Chapter 14, of the connection be-
tween types 4 and E.

Although the above problem was first solved by the
factorization method, Stevenson (45) soon showed that,
by making explicit use of the continuity as well as the
boundedness of the solutions, the problem could be
solved by conventional methods.

7.2 Kepler problem in a space of constant negative curvature

It is interesting to compare the above problem with
that in an “open,” or Milne, universe of constant nega-
tive curvature. We shall find that the corresponding
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spectrum consists of a finife number of (mostly nega-
tive) energy levels in addition to a continuous spectrum.
The equation is (28)

d as
— (sinh”x——) +2» sinhx(coshx— sinhx).S
dx dx

—m(m—+1)S+ N sinh2S=0 (7.2.1)

corresponding to a potential V~(cothx—1) and where
v, X are as in 7.1. The range for x is now (0, «).

To obtain the standard form this time we put
Y =sinhaS so that

28 [—m(m+1)

+
ax?

2v cothx]Y

sinh?x
+A—-1-2»)Y=0 (7.2.2)

which is type E with a=4, p=0, ¢g=—» and X replaced
by A—1—2». The factorization is therefore given by

k(x, m)=m cothx—v/m
L(m)=—m>—v?/m?.

For m<»* L(m) is an increasing function of m and
so we obtain the Class I solutions

I(v/(+1)+1+2) ]%

@4+2)'T(v/@+1)—1—1)
X sinh™y exp(—vx/(I+1))

V= (2)t+%[

d
Vi i=[Atm2+ 2/ m“’]*l m cothx—v/ m+é— } v,
%

_BB—1) exp(=2r/p)

A exp(—7/p)
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belonging to the eigenvalues
A=2v—1(42)—»*/(+1)* where m<I=0,1,2, -l

where J, is the largest integer such that Jo+1<»% Thus
we obtain the finite number of discrete energy levels

E=_Ze&/R—121(1+2)/2uRe— Z2e'u/ 22 (14 1),
1=0,1,2, -l

For m>* L(m) is a decreasing function of m and so
we might expect to find Class II solutions associated
with the corresponding A. A closer investigation, how-
ever, soon reveals the fact that these “solutions”
cannot satisfy the boundary conditions.

We are left, then, with only a finite number of dis-
crete energy levels. This number is ly+1=vt=(R/a)?
where a is the radius of the first Bohr orbit of the hy-
drogen-like atom. Taking R=10% cm we find /, is a
large number of order 10'8. The highest discrete energy
level lies between —3%2/2uR? and #2/2uR? and thus may
be either positive or negative.

It can also be shown, by standard methods, that
there exists a continuous spectrum for all E>#2/2uR2.

The corresponding /-changing artificial type A4
factorization is obtained through U=sinhxS,
z=log tanh(x/2).

7.3 Manning-Rosen potential

Manning and Rosen (33) have suggested that the
equation'®

d’R
—+t [kE
dr?

can be used for the study of diatomic molecules in
place of the Morse equation (5.2.1). Their equation
can be written

d’R | [—ﬁ(ﬁ— 1)a?
dr2T

}-2av cothar]R

sinhZar
+(kE—2a»)R=0 (1.3.1)
where v=A+B(8—1)1/2p, a=1/2p. In this form we

recognize the equation as type E with p=0, ¢=—v,
m=3—1 and a replaced by ai. Since

k(r, m)=ma cothar—v/m
L(m)=— a®>m?—v2/m?

we obtain the results as in the previous section. From
A=L(l41) the eigenvalues become finally

1 [ A—B v(v+26)]2

T k2610 2(8+0)

P(1—exp(—7/p))®  p*(1—exp(—7/p))

]R=0, k=8m* M Ms/*(M1+M,)

as given by Manning and Rosen and where v=141—3
=0,1, 2 -2; 9%<[A+B(8—1)]*—B. The correspond-
ing normalized eigenfunctions can be obtained from

al(v/(al+a)+1+2) 3
@4+2)'1(v/(al+a)—1— 1)]

Xsinh™lar exp(—vr/(al+a))
Rin= [\t )49/ (17T

Rll___zl—!-%[

d
X [ (m~+1)a cothar—yv/(m+ 1)+d—-]Rz"‘+1
r

where we have to put I=v4p8—1, m=p8—1 after all
operations have been carried out. Since 8 is a constant
we are interested in only one function for each I—
namely, the function with m=8—1.

10.The positive energy states belonging to the same potential
were investigated earlier by Eckart (14).
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7.4 Rosen-Morse potential

In a paper entitled “On the vibrations of polyatomic
molecules,” Rosen and Morse (38) have found it con-
venient to introduce new exact solutions of the Schro-
dinger equation. They consider

ay
E—;—I— (1/g2d®)[— E— B tanh(x/d)+C sech?(x/d) ¢ =0
% )
&= 1/8m M.
Now, if in type E we put p=—=/2¢ and then

replace @ by ai, we obtain the following differential
equation:

—Z—II:—}- [m(m+1)a?/cosh?ax— 2aq tanhax |y
o +Ap=0 (7.4.1)
and the corresponding factorization:
E(x, m)=ma tanhax+q/m
L(m)=—a®m?— ¢®/m?.

To solve the Rosen-Morse equation, then, we require
solutions of this type E problem for only one value of
m: the value such that m(m+1)=C/g

There are only Class II solutions belonging to

A= —aB—g/B, B>|¢/al.

If m—I=n and since m is fixed, there are only a finite
number of eigenvalues given by

n=0,1,2, ---<m—|q/a|t
In the notation of Rosen and Morse it turns out that

—E=—gd\=[(4C+ gt —g(2n+1)T/4
+BY/[(4C+g)t—g(2n+1) .

The corresponding eigenfunctions are obtained
through

z 22lgT(21)
s —[r<z+q/az>r<l—q/az>

3
] cosh~lax exp(—qx/1),
P>|q/a

d
yim=[\+a?m2+4g2/m¥ Tt l ma tanhex+q/m— d_ 2
%

by putting m=[—g+ (g?+4C)¥]/2g, l=m—n, a=1/d,
g=B/2¢d.

7.5 Jacobi polynomials
The Jacobi polynomials are (47, p. 61)

ot ()

XF(—”, nta+p+1, at1, (1_2)/2) (7'5°1)

and they satisfy the differential equation

2P

dpP
(1—2%) {a—B+ (a+B+2)z}—

d
dz? dz
+n(n+o+p+1)P=0.

To obtain a standard form let us write

z=tanhx _
P~ (1—tanhx)~*/2(1+4tanhx)~#/2Q= P, say.

Then
Q. [(n+(a+ﬁ)/2)(n+ (e+8)/2+1)
dx? l

cosh?x
a2_ 62

o+
tanhx]Q——E—Q= 0 (7.5.2)

so that the solutions are obtained from those of the
previous section by putting m=n4(a+8)/2, a=1,
g=(a?—p?)/4. The fact that A=—(a?+5?)/2 merely
means that we are considering only the single ladder
with /= (a+8)/2; this value of [ satisfies the restriction
2> |q/a|. The parameter m is not fixed as it was in the
previous section so we now have an infinite set of
eigenfunctions belonging to each fixed value of / and
denoted by =0, 1, 2, - - -.
The solutions are normalized according to

f (142)4(1— ) [ P=8(s) Pds=1.

If the hypergeometric function in (7.5.1) is written
F(a, b, ¢, 2’) then A becomes

A=—(c—1)¥/2—(a+b—c)/2. (4.9.8)
In terms of a, b, ¢, 7/, the n-changing operators provide
new recurrence formulas for the hypergeometric func-
tions; the #-raising operator would lower e and raise b
at the same time (see Sec. 4.9).
8. Type F Factorizations

From (3.1.1), (3.1.7f), (3.1.8), and (3.1.10) we obtain
the last general factorization type. Corresponding to

r(x, m)=—2q/x—m(m-+1)/2? (8.0.1)
the factorization is given by

k(x, m)=m/x+q/m
L(m)=—g*/m?.

8.1 Kepler problem

The radial equation in the nonrelativistic hydrogen
atom problem is

&y 2dp 2 U041

T
art rdr r r2

Fag=0  (8.1.1)
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where I=0, 1, 2, - - -, the unit of length is #2/ue?Z, and
A= (2h%/ uZ?E

in an obvious notation.
With the substitution
R=ry (8.1.2)

we introduce the radial function densities and (8.1.1)
becomes

d*R
dr?

(8.1.3)

2 I0+1)
[ ]R-{—)\R:O.

7 72

Our equation is type F (8.0.1) with ¢g=—1 and m re-
placed by /. The Class I solutions belonging to

A=—1/m2, 41<n=1,2,3,--- (8.1.4)
are
R, 1= (2/n)"H (2n)! T exp(—r/n) (8.1.52)
Ry-1=+3C, IR, (8.1.5b)
2

NO $(0
SOLUTIONS 0/\\0

L [ ] L]
O OPERATOR —m8M8M8 ——————>

n

Fic. 3. Each dot represents a solution of the Kepler problem. The
solutions are defined by (8.1.5) or, alternatively, by (8.2.1, 2, 3).

where the operator in this case has the form

! 1 4d
*5(2,}= ’ﬂl[(ﬂ—l) (n-l— l)]—§l ;—Z:l:(; } ’

— (/4 nZ)[l__fi;} (8.1.6)

r 1 dr
for later reference. We will also need the l-raising re-
currence formula

R.'==3C, 'R, (8.1.5¢)

We have written (8.1.4) instead of A=—1/(n-+1)2 so
that » will be the total quantum number in the usual
notation. We are then led immediately to the Bohr

formula:
E,= —uZ%*/2hn2.

INFELD AND T.

E. HULL

If A=1/#*>0 the expression N\—L(l+1) is always
positive so that there is no top for the ladder of solutions
and » is therefore not restricted to integral values.
The recurrence formulas (8.1.5b, ¢) are, however, still
valid once we replace # by n.

The normalization preserved by (8.1.5) is

f (RaW2dr =1
0

[ " rwatydr=1

le.

which is exactly that required by the probability in-
terpretation of the wave functions. Thus the factoriza-
tion is the natural one for the problem.

The Kepler problem is usually solved by first in-
troducing a new independent variable containing the
energy. Putting

2=2r/n
Eq. (8.1.3), with (8.1.4), becomes
&R
ﬁ+ {—1/4+n/2—10+1)/2}R=0
7

which is the same as (5.1.1) for n=s+%, I=m—% and
so the solutions are (5.1.6). These type B solutions
correspond to Schrédinger’s factorization (41). The
normalization of these solutions is not the most useful;
however, the factorization is important because its
recurrence relations can be treated by Truesdell’s
method whereas (8.1.5) cannot (see Chapter 15).

8.2 New recurrence formula for Kepler functions

In the diagram of Fig. 3 we are able to move up or
down by means of the JC operators of 8.1 or we can move
back and forth across the ladders /= constant by means
of Schrodinger-type operators, properly interpreted.

We shall now develop a new recurrence formula which
enables us to move to the right along the horizontals
/= constant: to do this we introduce a new function,

R(s).

This function is defined by the same recurrence formula
(8.1.5b) as the corresponding function R,!. The only
difference is that the key functions are now taken to be

R, (s)= (2/n)" [ (2n) ' T ¥ exp(—sr). (8.2.1)

Of course the R,!(s) are neither orthogonal nor do they
satisfy our differential equation, but they have the
following important property: '

[Rnl(s)]s=1/n = Rnl-

We can now find an operator which enables us to
change R,!(s) into R,+1!(s) from which our solutions

(8.2.2)
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can be got by (8.2.2). In fact
Rini1'(5)=Onia'Ri(s)
where

nlt2
11

Ot y(8.2.3)

3 |’n—}—l+1 H
e )L i ]

d
X {2n+1+(s+1/n)—}'
ds
We shall prove this theorem by induction: from
(8.1.6) and (8.2.3) it is easily seen that
n+1f (n—0)n+10) ]f . ”’“l
w Lo 1=D@m+1+0]

+$cn+ll =

and

nt+1f  (n—0)(n+l) 3
On+ll_1= ] O,H.ll.
n L(nt+1—-0(n+1+0)

Using (8.1.5b), (8.2.3) and the above equations
we find

Ruid1(5) ="0Cr11'Rpta'(s)
Lwtlp (=Dt
o L 1=+
=01 R, (s)

1
] +3C,.ZO,L+1’Rnl(S)

since the 3¢ and O operators commute. Therefore if
(8.2.3) is true for the quantum number !/ it is true for
I—1. It is a straightforward matter to check that (8.2.3)
is true for /=n—1; the theorem is then established.

Thus with the help of (8.2.3) we can move to the right
along the ladders /=constant. This result is the basis
for the calculation of a large class of matrix elements
involving Kepler functions which will be taken up in
Chapter 12. The essential difference between the
O-operator method and the Schrodinger method for
changing the energy parameter is that the O-operator
commutes with functions of 7, differentiation and es-
pecially integration with respect to 7.

8.3 Generalized Kepler problem

As 'will be shown in 8.4 the radial part of Dirac’s
equations for the electron can be solved in terms of
generalized Kepler functions. We will therefore present
the necessary results ih a convenient form.

The generalization needed is, mathematically, a
trivial one. In the results of 8.1, 8.2 we have considered
n, I to be both integers. However, Theorem IV was based
on the milder restriction that the difference between 7
and / be an integer. All our results will therefore con-
tinue to hold if we replace # by n++ and ! by I+~ where
v is any constant. In particular, the results we need for

the solution R of the equation

@R 2 (H+v)(+v+1)
+-R— R—
art r r?

R=0 (8.3.1)

(n+7)?

are
Ruy™ 1= 2/ (n44)) D42 2y 1)ty
Xexp(—r/(n+7)) (8.3.12)

Rn+11+7—l =+5Cn+11+7Rn+'yl+7 (83.1b)
Ru /Y ="3npy T IRy 8.3.10)
where ‘
E5npy 7= (1t 7) (1) (n— 1) (n4-14-27)
H+~y 1 d
% ._._____i—l (8.3.1d)
r I+vy dr
and

Ry 77Y(s) = 2/ (n+)) T2 20+ 2+ )7ty
Xexp(—sr) (8.3.2a)

Ryt 17(5) = Oy R i1 (s) (8.3.2b)
where
(nty)Htrt? [rA-it2v+17
- Onyypittr= ]
(nby+ 1)t 2y + )L n—l

1 d
+s)——] - (8.3.2¢)
nt+vy s

The above generalization is not entirely trivial for it
is now possible that #=0. Thus the solution R,
exists which has no counterpart in the ordinary Kepler
problem. Furthermore the other solutions for I=—1
can be reached by the operators since the operators
(with I=0) are no longer singular.

X { 2n+27+1+(

8.4 Dirac’s radial functions

The radial functions for the Kepler problem treated
by Dirac’s theory are. the solutions of (2, p. 312):

dx1
‘d——kxl/7’= {(1—E/Eg)uc/h—aZ/r} xs

s

dxz

7+k){2/1’= { (1+E/E0)ﬂ6/h«+ OLZ/?’}xl
¥

where k is the auxiliary quantum number and must be
an integer, positive or negative, but not zero. Ey= uc is
thé rest energy.

If we introduce

'Yl=(k—‘az)%; ’)/2=(k+aZ)%,
y=7v1vs, €=E/E, b=uc/k, a=beaZ



50 L.

and

¥i=(vit+ve) xit (v1—
Yo= (‘Yl—

and write ar=x (so that the independent variable con-
tains the energy parameter), we obtain

vy 1 d byek
(ot
x v dx
w(Ee)on
Now put

Ri=(ek/v+ 1)W1, Ro=(ek/y—1)}. (8.4.2)

and Egs. (8.4.1) become exactly (8.3.1b) and (8.3.1c)
for /=0 provided we identify

—_ 1
Rl_ Rﬂr+’77— 3

72)X2
yo)xit+ (vitv2) xz

{———+
x v dx

R‘A’=Rn+'r7
and
(®/a)(er*/v*—1)i=[n(n+2v) ]/ (nt7)y.
This last condition leads to the known formula
€= (1+a2Z2/(n+’y)2)—%, n=0: 1; 2) cte

The possibility #=0 must be given special considera-
tion since, in this case, e=v/|%| (since ¢>0) and the
substitutions (8.4.2) cannot be used. Going back to
(8.4.1) it is a simple matter to check that, in this case,
the only solutions satisfying the boundary condition are

k>0 Y1=¢,=0
k<0 ¢15%20, y¢2=0.

(8.4.3)

These results are automatically contained in the final
formulas for the solutions which are

x1=C{(vat71) (eb—7)IRpny " (%)

+(v2—v1)(k+7) Rnr,"(x)}  (8.4.4a)
xe=C{(v2=71) (k= V) Ru1y"(2)
+(votv1) (k+7) Rnpy (%)} (8.4.4D)

where it remains only to determine the normalization
constant C. The condition to be satisfied is

f ’(X12+ x)dr=a"1 f (x4 xD)dx=1.
0 0

Since the R functions are normalized this condition
becomes

(8C/a) {ebo-+ (e —12) o2l iy 7} =1
where

00
In—&-77_1'7= f Rn+~,7_1Rn+»,7dx.
0
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Lin (32) has shown that

Ty 7= — (k2 — )4/ ale (8.4.5)
so that, finally, the normalization factor is
C={(ea/2)¥/2~. (8.4.6)

Lin’s ingenious method is as follows: first write

l 1 d
;l:HL+7___ {i—l__iﬂ}
x  I+vy dx
Ayt =[ (0= (n+14+27) I/ (n+v) (I+7)

and

00
[ it btr= f Ryt 1R, Y,
0

Then it is easily checked that
~HWr= gy ~H g VL
where
Etm=(0+7)/0+v—1), —&+m=1
=0+ (+y—1)—1/0+7)%
so that, making use of Theorem II, we obtain

Hy—1,+y

l+'y[n+7 7
= (Bt ) A pyy U 2 1)

Aniy

or

Ay LT Q)+ 1/ ()
= Ay T Ly BT (g = 1)1/ (o — 1),

Either side must therefore be independent of / and hence
equal to 1/(n-+1v)? since R,;,"t7=0. Therefore

Ly Y=4[1/(n47)2—1/v*]/ A niy"
=—[1—7¥/(n+v)*]

Using (8.4.3) for n++v we obtain (8.4.5) as required.

The expressions (8.4.4) can also be interpreted as the
solutions for E> uc? provided we replace n+ v by in-+ivy
where the value of # will now be unrestricted. We will
show in 12.5 that the normalization constant C be-
comes, in this case,

C=(a/2¢)}/2v

if the modulus squared of the corresponding eigen-
differential is proportional to the number of electrons
per unit velocity range. Since there is no key function
corresponding to (8.3.1a) for R;niiv't* we have yet to
explain how these functions should be normalized.
This is done in Sec. 12.5.

(8.4.7)
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8.5 Oscillating rotator

The differential equation for the oscillating rotator
is (44) :
a® 2a
|

I(+1)+a
+—&—

arr 7 72

PHNE=0  (8.5.1)

where ¢ is a given positive parameter.

If we put ar=2x and y=— (+3)+ ((+3)*+a)? then
(8.5.1) becomes (8.3.1) and so the solutions (normalized
on the range for 7) become

o)l= a%RfH-va(a")
corresponding to the eigenvalue A= —a?/(n+v)? i.e. to

(=Ni=a/[n—1—3+((+3)+a)t],
1=—1,0,1,2, - - - <n—1.

9. Type 4 Matrix Elements

In the next four chapters we are going to consider
the problem of calculating certain integrals whose values
depend on the eigenfunctions of the preceding chapters.
These integrals are the transition probabilities of quan-
tum mechanics.

Our aim is'to show how the key function and recur-
rence relations provided by the factorization method
can be used to find quickly the corresponding matrix
elements.

9.1 Spherical harmonics

To evaluate spherical harmonic matrix elements it is
only necessary to have cosfY ;™ and sinfY ;™ expressed
as linear combinations of contiguous solutions. For,

with these expressions and the orthogonal and normal-

ization properties of the solutions, we are able to cal-
culate integrals of the form

f cos?f sin?@Y ;Y ™'do (9.1.1)
0

where p, ¢ are integers and we must have m—m’'= —g¢,
—q+2, g ‘

Now, the Class I solutions (4.1.4) of the associated
spherical harmonics equation satisfy the physically
proper normalization condition (4.2.5). To find the
expressions required for the calculation of (9.1.1) our
first step is to adjust the constants in (4.2.4) so that
these Class II recurrence relations preserve the same
normalization.

Let us introduce a;™ so that

sin—3V jn= P =g Py,

That is, @, is the correction to the normalization of P;m.

We can now rewrite (4.2.4) in terms of ¥ ;™

V™= (a1™/am)[(+1—m) (4 14-m) T
d
X { — (1) cosf—sinf— } Y™ (9.1.2a)
* de
Yiam=(ara"/arm)[(—m)(I+m) ]}
d
X l —(I4+3) cost+ sin0—~] Y™ (9.1.2b)
de

and we have only to find the ratio a;.1™/a;™.

m

F16. 4. The solution ¥7,1™*! can be reached from ¥;™ by moving
along either path with the appropriate operators.

We can easily show that this ratio is independent of
the suffix 7. We will do this by comparing the results of
moving with our operators along the two paths shown
in Fig. 4. In fact we can write either (from path 1):

Vi (@ ) G m) (4 24 m) T
d
X { — (%) cosf—sinfg— } ) Sian
do

— (al+1m+1/alm+l)':. . .]—%{ ce }
d
XCA=m) 4 m4 0T one) cotd—— | 7,
or (from path 2):
Vi =[(—m+1)(+m+2)]*
d
X { (m+%) COto—'(}E } Y™

=[N a™/am)
XL+ 1—m)(+14-m) T

d
X { —(I43%) cosf—sinf— } Y

de
After performing the indicated operations we find
that the two right-hand sides above are equal provided
aH_l"H'l/a;m“H = dl+1m/(llmE dH_l/dz, (913&)

say, which we set out to show.
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By equating the right-hand sides in the two expres-
sions

d
Vit =[2+ 2]**{ (+3%) cot0+(}5} Vit

d
Y1+1l= (az+1/dl)[2l+ 1]_%[ - (l—}-%) cosf— sin0£ } v

and using the known expression (4.1.4a) for Y},
Y117 we can easily find the value

tr/ar=—Q1+3)}/(2+1)L  (9.1.3b)

It is now a straightforward matter to find the
formulas to be used in calculating matrix elements.
With (9.1.3) in (9.1.2) we obtain

d
' (+%) cosb+ sinﬂég ] v

B [(l+1—m) (4 14-m)(21+1)

Y™ (9.1.4a)
20+3 ] i

d
{ (I+3%) cosf— sin()égl v

— 3
=[(l m)(l+m)(2l+1)] Yis™ (9.1.4b)
A1

Adding these two equations and dividing by 2/4-1 we
obtain

(H1—m)(H-14+m)7} .
(204-1)(204-3) ] "
(I—m)(+m)
[(zz+1)(2z—1)

which is the first of the expressions required.
To expand sinf¥Y ;™ we write

[+ m~+1)(—m) ] sing¥Vy™

cosfY "= [

] Y™ (9.1.52)

d
= sine[ (m+31) cotﬁ—l—;{; l Yyt

d
= { — (I+%) cosb+ sinot—i; } Yyt

+ (m—+141) cosfY 1
(—m—1)(+m+1)(204-1)7? '
= —[ ] Yl—lm-H
21—1
+ (m—+1+1) cosoY 1,

Dividing by the radical on the left side and using
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(9.1.5a) we obtain
(+m~+-1) (+m+2) 7 -
QU+1)(21+3) ] i
_[(l—-m—— 1)(—m)
QI+1)(21—1)

Similarly, by starting with ¥;” in terms of ¥, we
can obtain

sinfY ;= [

;
] Y™, (9.1.5b)

sindY ;= —

(—m+1)(—m+2)7}
[ Q1-+1)(2143) ] S
[(H—m— 1) (@+m)
(2I+1)(21—1)
The formulas (9.1.5) along with

E
] YL (9.1.50)

f Y Y, mdo= 6,
0

are sufficient for the calculation of spherical harmonic
matrix elements of the type (9.1.1).
9.2 Generalized spherical harmonics

We can easily adapt the arguments of the preceding
section to the solutions of the generalized spherical
harmonics equation given in Sec. 4.3.

The corresponding results are as follows:

a1, "/ @y = — v+ DY ()}
(—m+1) (l+m+27)T N
SOy 1T
[(l—-M)(l-!—m-l—Z'y—l)r
M) v 17
(Hm4-2v) (Hm+2v+ l)ir it
4(0+v)(+y+1) A
(l—m—1)(0—m) *
_[___—_] Yl—-l, 7m+1
4(+y)(Hv—1)
B [(l—~m+1)(l——m+2)]’*‘ .
T Lty 1
[(l+m+27—2)(l+m+27— 1)]* o
40+ 1) +y—1) o

cosfY, .,'"=[

sinfY; ;"= [

9.3 When the integrand contains three spherical harmonics

We now show how the factorization method can be
used to find explicitly the value of

f Pym™Y,mYimedd, mi=me+ms  (9.3.1)
0
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This integral (with differently normalized functions)
was calculated by Gaunt (17) and similar problems were
considered earlier by Adams (1). In applications such
integrals have occurred, for example, in a paper by
Elsasser (15) on the origin of the earth’s magnetic
field.

Because of (4.1.2, 4) and Theorem II

f Pllmlylzmzyl3m3d0
0
=[(l—m)(htm+1)]?
B d
X f {(mrl— 1) cote—}—-—] Pyt YymY  madg
0 do
= [(h— m1) (t+m+ 1)]—% f Pymitt
0
d
X { (m2+ %‘) cotf+ (’WL3+ —%) COtﬁ—gé ] Ylg'MYls"”’d@
=[C1—m1) (rt-mi+- 1)]_5{ L@a—ma) Cot-mat+1) 1

Xf PILM1+1Yl2m2+1Yl3m3d0
0
+[(ls—ms) (Ist+ms+1) ]
X f Pll"”““lez"‘zYz;"s“dB}- 9.3.2)
0

Using this formula altogether I;—m; times, it is a simple
matter to write down the general term in the resulting
series of integrals. Rearranging only slightly leads to

f PymiY 1,V mdh
0

_ [ . (l1+7n1) '(lz— 711«2) '(ls—‘ m:;) ! ]’}
- (l]_"—ml) ‘(211) '(lz—i—?’ﬂz) '(ls+ﬂ13) !

h—mifly—my
<5 (7))
=0 1
[(l2+l1+ Mr—ml—'l) '(l3+ ms-l—z) ']%
(e—li—mot-my+3) (ls—mz—1)!

X f Py Y mettimm—iy, metidg.  (9.3.3)
0

The superscripts of at least one of the ¥’s in each
product will be greater than the corresponding subscript

f sint9Y 1,2V 1,Pd0 = —-[
0

and hence the integrals will all vanish unless
h<ltls.
From (9.1.5b, ¢) and since

1.3.5--- QL4117
pllu=[_~____] sinlig
2.2.4---20

it is seen that
Pllllylzmz’i'll—ml—i=( )ylz_llm.ﬁ-i

F ()Y +2mstid- - () Vigppymsti

where the brackets contain only constants. Now, using
the orthogonality property of the ¥ functions, we see
that the integrals in (9.3.3) will all vanish unless

li+1+13=even number
To— 1 <Il3<ls+1s.

The selection rules can be summarized by saying the
I’s must be equal to the sides of a triangle with even
perimeter.

The selection rules must be satisfied if (9.3.1) is to
be not zero; but the integral may be zero even if the
selection rules are satisfied due to the possibility of
different terms in (9.3.3) cancelling one another. One
such exceptional case found by Bird (3) is

f P2V 0V 32d0=0.
0
It remains to evaluate integrals of the form
f sinh0V 1,2V 1,5d0, I1=oa+p.
0

For this purpose we need two reduction formulas. The
first is obtained from

sinY 2= (lot a+1)(lo—a) T}
X {(a+3—1) cotf+(d/d6)} sinhgy =+

which follows from (4.1.4b). Then, in a manner an-
alogous to that used in finding (9.3.2), we obtain

(Us+B)(ls— B+ 1)]}
(et at-1)(l—a)

X f Sint0Y 1,51V 1 f-1de.  (9.3.4)
0

Using this formula /;— « times we reduce the problem
to that of finding

f sinti+sHg Y li-adp, (9.3.5)
0
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A reduction formula for this integral can be obtained
by first multiplying the differential equation (4.1.3)
by sin” and integrating twice by parts. Then

(D) (=1}

(n+m—3%)(n—m—3)

f sin®20Y ;df =
0

Xf sin”0¥,;»df, n>%. (9.3.6)
0

Further

f” Sin"ﬁyl"‘dﬁ
" [Umt D —m) T

T d
X f Sin"f’{ (m+3) cot0+——}mm+lde
0 do
=[(+m+1)(—m)]?
X f (m—mn-+3%) cosh sin*19Y 40
0
- =[O+mt+D)=m)+m+2) (—m—1)T

Xt [ Cm—nt/2) sinv-2
' + (n—m—3) sin"0 ]V "*+2d0
so that, using (9.3.6), we obtain
mt3—nr (—m—1)(+m+2)7
mA3tal (—m)(+mt-1) ]

f sin”0Y ;"df=
(]

X f sin®Vm+2dg. (9.3.7)
0

Since in (9.3.5)
l—m=13—1+ls=even number.’

(9.3.7) can be applied (l3—!1+12)/2 times and (9.3.5)
is reduced to the known integral

™
f sinlrtiztistggg,
0

Using (9.3.4), (9.3.7), and the value of the above
integral we obtain, for l;=a+8,
f " SOy Y 0
Y (= 1) G e () Wl — la— 1)1
T (ol I (sl I Mt T Iyt 1)1
(ls+8) (et a)!
(s—B)(la—a)!

3
X[(212+1)(213+1) ] 9.3.8)
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L
where

m=nm—2)(n—4)---20r1, O)!=(—1)!l=1.
Combining (9.3.8) with (9.3.3) and the expression for
Pyt leads finally to
f Pllmlylzmzylamsdg
¢

(st l—h= DULCLF DA D) 2 D]
(st b= 1) Wl l— I Nl I 1) 1
(it ma) Wl —mo) VP —mo) [(Is—m3) | E
[ 2(lytme) (ls+ms3)! ]
u-m (—1)Ue—letlD (2mati(fo - ypat-3) (gl — ms—1) |
S0 (i ma—i) 1) = ms— 1) la— Lyt mgt+-3)!
(9.3.9)

provided my=mo-+ms.
In Elsasser’s paper (15) there also appear expressions
of the form

- d
m Pym—pP 72 Prmsdl
31“ 1 20 2 3

™ d
— My f PymPpyme—Prm3dh,
0 ao

which can easily be reduced to the previous problem as
follows: consider

d
{ Mo cot0+;i; }Pzz"‘2= [(a—mat1) (Got-meo) ]2 P11

d
[ ms cot0+(—i-; ] Pyms=[ (Is—ms+1)(ls+ms) P g™,

Multiplying these equations on the left by m3Pi;™s and
—mqoP1,™ respectively and adding we obtain an expres-
sion which shows that (9.3.10) can be written in terms
of two integrals of the form

ko
f Pym=1PypmPrmsdl,  my=met-ms.
0

The argument used in (9.3.2) can be used again and,
in fact, we would obtain exactly the same result (9.3.3)
except that m; must be replaced by m;—1 and the
Y’s by P’s. Then, because the integrand contains P’s
rather than Y’s, we require (9.3.8) with /; replaced by
h—1.

The selection rules now require the /s to be equal to
the sides of a triangle with odd perimeter. Also (9.3.10)
is obviously zero if ms=m3 and lo=1;.
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Finally it should be pointed out that the methods of
this section can be used to evaluate any integral of the
form

f SinPOPy™Py,m- - - Py mndf
0

provided
n

> mi—pt+1=0.

=0

10. Type B Matrix Elements
10.1 Morse functions and diatomic molecules

Our next problem will be to evaluate

00

f XU nUn®ds.

—0

U.*® is defined by (5.1.4) so that, according to Sec. 5.2,
the integral is proportional to the probability of a
transition between two vibrational states of a diatomic
molecule. The effect of the rotation is neglected.

As in 5.2 we can introduce the usual quantum num-
bers », v’ as follows

s—m=y, s—m'=y

so that our “intensity” integral is

0

Iv, v'=fi xUm’Um:’dx.

—o0

(10.1.1)

Without loss of generality we can take m'<m (or
v<¥'). This integral has been evaluated approximately
for the first two bands (=0, »'=1, 2) by Dunham (11).
Our calculation of (10.1.1) will fall into four parts and
though the argument may seem lengthy we will find
the same ideas being used in each part.
The first step is to show that

f Unt U pr?d2=0, m'<m. (10.1.2)
Using (5.1.4) and Theorem II we obtain
f U0 p%dx
=[(s—m")(s+m") ]
* expx d
T L
— 2 dx
=[(s—m')(s+m") ]
® [ expx d
Xf { ~s+—l Un*1-Um*dx, (10.1.3)
ol 2 dx

Because of the orthogonality property satisfied by
Un® we can replace s by s—1 inside the brackets. The
operator will now operate on Un*! so that

f Un U ptdx
—o0

=L(s—m)(s+m) I (s—m—D(s+m—1) ]

X f Un® U dx.

If we apply this argument altogether s—m times we
obtain for the last stage, analogous to (10.1.3),

f Un*~1U w®dx=constant ]
—

® (expx d
Xf {——Z——m— 1+d—} U, Up™dax

—» X

which vanishes because of the orthogonality and the
definition of (5.1.4a). Thus (10.1.2) is proven.

The second part of our proof is to establish and use
another reduction formula. We have

Ly =[(s—m)(s+m)J*

=[(s—m)(s+m) I

° expx d
Xf U,,,"‘l[ —s+——}xUm,’dx
o 2 “dx

=[(s—m)(s+m) 1

® expx d
Xf xU,,.’“‘[ -—s—i——lU,,.r‘dx
o 2 dx

+[(s—m)(s+m)]? f i U~ U por®d.

—

The last integral vanishes because of (10.1.2) and we
can use (5.1.4c) to obtain the reduction formula:

=[(s—m’)(s+m’)]*
L= omy 1T

Applying this formula altogether s—m=v times we
obtain

I _[ (s—m )T (s+m'+1)T(2m+1) ]*
" Ls—m) lm—m") [T (m4-m'+1)T (s+m-+1)

XIoy (10.1.4)
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Furthermore, if we continue as above,

To vy =[(m—m')(m~+m") I

® expx d
X f x‘Um"‘[ —m—— } U™ ldx
o 2 dx

=[(m—m")(m+m") I

Xf l———m-l— }U,,.’”-Um/"”—ldx
dx

+L(m—m")(m+m") I f ) UnUnmr™'d2

-—00

=[(m—m")(m+-m') ]

Xf UpU ™ dx.  (10.1.5)

The first integral on the right side vanished because of

the definition of (5.1.4a) and the remaining one can be

evaluated by means of just one more recurrence formula.
This formula is obtained as follows:

f UnUpdx

T =Lle=m)(sHm) T

© expx d
Xf Um"“ -—-s——-} U ldx
—® 2 dx

=L(s—m")(s+m)]?
X f m{e—’fp—x—ﬂ--—} U Upr*~ds

=[(s—m")(s+m) ]

X
[T

—0

s=1dx

+[(s—m")(s+m') ¥ (m—s) f UU p*~ .

Again the first integral on the right side is zero because
of the definition of (5.1.4a). We can now apply this
reduction formula altogether s—m’ times to obtain
(if s<m)

f Un™Uptdx

_[ TQ2m'+1) ]*(m——m’-—l)!
Ls—m) 0 (st +1)] (m—s—1)!

<J

U,»Un™dx.  (10.1.6)

INFELD AND T. E. HULL

But, because of (5.1.4a),
f Un™Um™de=[T(2m)T(2m’) ]
X f expl (m+m")x—expx]dx

=[T(2m)T2m") PT(m+m'). (10.1.7)

Collecting the results (10.1.4-7) we finally obtain
the required formula

2 I‘&s—m’)!I‘(s—}—m’—l— l)mm’]%
(m—m") (mtm)L (s—m) D(stmt+1)

IV,V'=

If we put m=s—v», m'=s—»' so that the final result is
in terms of the physical constant s (see 5.2) and the
quantum numbers », ¥, we obtain, for »<v’,

2
V' —v)2s—v—7")
VII(2s—v'+1)
[ Y10 (25— 1)

I,,=

3
(s— ) (s— V')] . (10.1.8)

11. Type D Matrix Elements
11.1 Harmonic oscillator

From the recurrence relations (6.1.4) for the harmonic
oscillator eigenfunctions we obtain immediately

= [(N + 1)/ 2]’5¢’N+1+ [N / 2]*‘1’1\!—1-

Since the ¥’s are orthonormal this formula enables us
to calculate the transition probabilities. In fact

w [(V+1)/2] if N'=N+1
f Ywbndi={[N/2D i N'=N—1
- 0 otherwise.

Similarly the momentum matrix elements can be
found from

i . [N+t Ny
_‘bN:_[T] W“[ ]%H

The recurrence relations (6.1.4) were used in this
manner to find the matrix elements even before they
were used to generate the solutions themselves (see,
for example, 9, p. 135).

12. Type F Matrix Elements

For the purpose of discussion we shall consider the
Schrédinger hydrogen intensity integral

-]

I, nz—1,1=f 7R, IR,dr
0
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where R is defined by (8.1.5). The value of this integral
has been calculated many times. Originally Schrodinger
(40, p. 99) calculated it for special cases using the gen-
erating function for Laguerre polynomials. Wheeler
(52) has recently applied this method to the general
case of discrete-discrete transitions. Epstein (16) used
the theory of hypergeometric functions to solve the
same problem while Eckart (13) evaluated the integral
directly. Gordon (19) has treated the discrete-con-
tinuous and continuous-continuous as well as the dis-
crete-discrete transitions.

We want to show that each of the 3C and O operator
recurrence formulas of Chapter 8 for the radial functions
leads to a recurrence formula for the integral itself,
provided that at least one of the wave functions repre-
sents a bound electron. The O-operator method will
then be generalized so that the more complicated Dirac
matrix elements can be calculated.

12.1 Algebraic recurrence formulas for intensities

It is not difficult to verify from (8.1.5) and (8.1.6)
that

At +3C, = (214 1) A, +50, 11

4+ A, 150, 1 4-constant /7.  (12.1.1)

Multiplying (12.1.1) on the left by 7R,}, on the right by
R.Y, and integrating gives

00

24,71 f 7R 13, R Y dr
0
= (2+1)4,H f ) 7Ry T3C IR Wy
0
+ A4, fw R, —3C, "R, dr
0

=(2+1)4,M f ) r(CICHRD R,y

0

+ A4 f 7R ~3Cn R o W
0

because R,!, R.' are orthogonal and their product
vanishes at r=0, . We have then:

A Ty, 0= 2I41) A, 1, b0
A L
By interchanging #, #’ we obtain

AN T 1= A, T, Lk
4 (24-1)A T HE

L (12.1.2)

where

Ad=L=Do+DT/nl. |

Our derivation (and hence this result) is valid for the
discrete-continuous transitions once one replaces #
by in.

These are algebraic formulas giving a pair of inten-
sities in terms of the next highest pair in the scheme of
Fig. 3.

All intensities can now be calculated once a starting
point is found; an obvious choice is the pair at the top
of the »' ladder:

I”I'nn'.n'—l and In,.nn’—l.n’

where

.
In', "n’.n’—l___o.

(12.1.3a)

(We shall adopt the convention that #’ always refers to
the discrete spectrum.) The method of calculation of
the other expression is indicated in 12.4. The result is:

In’ "n’—l,n'= 22"’+2(1’l/ﬂ,)"/+2

(n+n')! Y m’)n—n'=2 .
g ] 215
(n—n'—1)120"— 1)) (n+-n)+n'+2

or, for the discrete-continuous transition,
I'n.'. in",_l'n' — 22n’+2(nn’) n'42
n* 11 (p*+n?)
=1
X
(2n'—1) ! (exp(2nw)—1)
exp[2n tan—t(n/%’)]

(n2+n’2)n’+2

(12.1.3¢)

From (12.1.3) we can now calculate pairs of intensi-
ties by successive application of (12.1.2)—the important
intensities requiring at most but a few steps.

12.2 Operator recurrence formula for intensities

The results of 8.2 will now be used to find an #’-chang-
ing recurrence relation for the intensities. Indeed, it
follows immediately from (8.2.3) that

In'+1, nl—l’l(s) = On'+ll~1In’. nl—l'l(s) 1

or
T, in1U(8) = Opr U o, wnI(s)
with .
Lo(12.2.1)
P as! w1 1k
Ouar-im _ [ ]
'+ 1)+ D' — 141

d
X{Zn’-i—l—l—(s-l—l/n’)d—-}
)
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where the intensity function is defined by
Lo, 44(s) = f rR o 1(s)Roldr.
0
The starting point needed here is

1/74\H (n+1)! ¥
-1, =—y —
I, o7 1(s) n(nl) [(n—l— 1)1(21—1)!]

(s—1/m)»+2

WEUH)s—l] (12.2.22)
or %
n H (p?4n?)
-1,
Il in (S) (nl) (21— 1) !(exp(znﬂ_) 1)
exp(2n tan—lus)
Traaqnng —1]. (12.2.2b
(s241/n2)r+ [@+1)s—1]. (12.2.2b)

The derivation of (12.2.2) is indicated in 12.4. Another
starting point which may be needed is

IH—I. ;nl'l_l(s).

It is slightly more complicated but can be found
easily from the formulas in 12.4.
Using (12.2.1) and (12.2.2a) we can find

Il+1, nl_l'l(s); T In'. nl_l'l(s)

which, with (8.2.2), give the intensities. Sumla,rly,
from (12 2.2b) we can find

ty In’. inl——l’l(s)-

12.3 Remarks on 12.1 and 12.2

(1) The set of values of the quantum numbers for
which the intensities are required will determine which
of the above two methods should be used. Being alge-
braic (12.1.2) is simpler whereas (12.2.1) has the special
characteristic that it is applicable to the problem of
calculating more general matrix components:

f V(r)R.V R, dr.
0

This fact is essential to the treatment of Dirac matrix
elements in a later section.

(2) Example of a calculation:
To find

I2,n0'1=f 7R.°R 1dr
0

we can use (12.1.3b) to get immediately
I, ,.21=0

IZ 'nl'2= 3—1/2219/2n9/2(n2_ 1)1/2(11— 2)"—7/2(%"‘2)._”—7/2.

INFELD AND T. E. HULL

From (12.1.2):
Iy 0= (1/24.1)34 25 2240 .
S L e
Alternatively, we can use (12.2.2a) to get
I4.04(5) = 25122

X (s—1/n)"3(s+1/n)""3(2s—1).

1)1/2

Operating on this expression with
d
02°=2—3/23‘1{3+ (1+s)——}
ds

and then putting s=3 we get the value above for I, ,%!
which is the same as that given by Condon and Shortley
(5) for the transition 2s—#np.

(3) The above methods can lead to explicit forms of
the intensity integral except in the case of continuous-
continuous transitions. For example, by means of
(12.1.2), (12.1.3), and known relations between con-
tiguous hypergeometric functions the results given by
Gordon (19) can be proven by induction.

12.4 Certain integrals and the problem of normalization

We have yet to show how the starting points given
in 12.1 and 12.2 are found. To this purpose we define

I,,=f 7t exp(—s7) R ldr (12.4.1)
0

and we must distinguish between two cases:
Case I: Discrete-discrete.—From (8.1.3) and (8.1.4)

© d*R 2 I(+1) 1
f r“’lexp(—sr){———l——R— R——R dr=0.
0

ar* r L 72 n?

After two partial integrations of the first term we
obtain

al,
(s?— l/nZ)E———I— [2(4-1)s—2]I,=0.
s

Therefore ( P
s—1/n)"1
=C

(5+ 1/%) n+l+1

I, is the Laplace transform of 7'R,! and therefore
(4, p. 170)

R,!'=rresidue of {exp(sr)I,} at s=—1/n].

The coefficient of the lowest power (/4-1) of » turns out
to be

C exp(—r/n)/(214+1)!. (124.2)

But from (8.1.5) we have:

R, =30, +50, 2. . +50, 1R n1,
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Using (8.1.5a) and (8.1.6) we can easily pick out the
coefficient of r*1; it is

2m=1! [ D! P
w2 (2n— 1) L (n—1—1) 1]
XLIH+3)(204S5)- - - 2n—1)] exp(—r/n). (12.4.3)
Equating (12.4.2) and (12.4.3) we find C so that
281 (n4-0)! P(s—1/m)ntt
"=F[(n—l— 1) !] (s+1/m)mHiH

(12.4.4)
Then
I, 71 (s)= 2/ (201 ] f 7 exp(—s7) R, dr

ar,
- emren | -="]

Therefore
174\ (n+1)! 3
I ”l-—l.l =—f —
L) n(nl) [(n—l—l)!(Zl—l)!]
' (s—1/m)nt-2

e Ds= 1] (122.20)

By putting /=7’ and s=1/#', we obtain
T ¥ —hn = 220742 () Y /42
[ (n—l—n')! jr(n—-n’)n—n'—-z
X .
(n—n'—1)12n' = 1)1 (n4-n")"tn"+2

(12.1.3b)

Case II: Discrete-continuous.—In this case I;, turns
out to be

Iin=C(s—i/n)=in=+1(s4i/n)in—t-1
exp(2n tan~ns—nm)
=C : , 0<tan ns<w/2 (12.4.5)
(s241/n?)H1

and the inverse transform is

exp(sr)(s—i/ ) —in—i1

X (s+1/n)i"1ds

(12.4.6)

where the contour can be taken as shown in Fig. S.
This is the form in which the positive energy radial

function was originally given by Schriodinger (39). The

normalization condition can be written as (2, p. 291).

0 k+Ak

lim R,-,,’: f Rin’dk}dr= 1, k=1/n.
AR—0 V) k—Ak

There is no contribution to this limit for finite values of
r. We can therefore substitute the asymptotic form of

R;,'. This is found by expanding the integrand of
(12.4.6) in descending powers of 7 on each half of the
contour. The first terms in each expansion are con-
jugate complex and their sum turns out to be

C exp(—nw/2)n*!
| T(@41—14nm)| 2}
-Xcos(r/n+n log(2r/n)— (+1)7/24¢)

where ¢, is the argument of T'(l41—1n).
Using the normalization condition, we obtain the
value of C and finally,

1 3
1211 (p*+n?)
=1

3 exp(2n tan—lus)

(s241/n?)H1

(12.4.7)
n exp(2nr)—1

from which the corresponding starting points are
found to be as in (12.1.3c) and (12.2.2b).

~
L/

S

Hie:

N |
|/

Fic. 5. Contour in the s-plane for the positive energy
solutions (12.4.6) of the Kepler problem.

12.5 Generalization to Dirac matrix elements

We want now to find the formulas which are needed
in the calculation of matrix elements which contain
Dirac radial functions in their integrands. In Sec. 8.4
we found that these functions are linear combinations
of the generalized Kepler functions in 8.3. Dirac matrix
elements are therefore linear combinations of integrals
such as

f V(")Ruriy V't (@'7) Ruyy ¥ (ar)dr  (12.5.12)
0

f V() Rurs vVt (@' 7)Ringin T (ar)dr (12.5.1b)
0

where V(r) is the perturbing potential and /, /=0, —1.
The generalized O-operator recurrence relation
(8.3.2b, ¢) enables us to raise »’ in these integrals and
does not depend on the form of V(r). Our problem is
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therefore reduced to that of finding expressions for the
starting functions corresponding to I,, I;n of the pre-
vious section.

If we consider

V(r)=r? exp(—gr),

where p, ¢ are constants,"! all that remains is to find

Loty )= [t exp(=un)Rus(3)d,
0

(12.5.2a)

xXx=ar

00

Iintin(t, u)=f %t exp(— #x)Rintiy T7(®)dx  (12.5.2b)

0

and later put ¢{=p++" or p++'+1 and u=g/a+sda’/a.
The new feature is that the differential equation for
T is no longer of the first order. Instead, proceeding as
in 12.4 we obtain:
Case I: Discrete-discrete.—

&l dI
[w*—1/(n+7)F—+[2+)2u—21—
du? du

+(1+t—I—v)2+i+I+7)I=0.

The general solution of this equation, convergent for

A2 exp[— (t4-1)i/2]
T+ (7)™

Rinyiy't7(x)=

INFELD AND T. E.

HULL

large u, is

Ly (8, )= A[ 2/ (un—tuy~+1) JrHetty

XEQ+it+1+y, 14+1—n, 242142y, 2/(untuy+1))
+ B2/ (untuy+1) et

XE(+i—i—ry, —n—I1—2v, —21—2v, 2/ (un+uy+1)).
(12.5.3)

Taking the invérse transform term by term it is found
that B=0 if R is to satisfy the boundary condition.
Then comparing coefficients exactly as was done in
12.4, it turns out that 4 is such that

Lousll, )= ( )( F(2+t+l+7)

I‘(21+27+3)
H2y4-1)78
[M] [2/(un+u'y+1):|2+‘+’+7
(n—I1—1)!

XFQ+t+14, 14+1—n, 242142y, 2/(untuy-+1)).
(12.5.42)

Case II: Discrete-continuous.—It is convenient to
use here the notation and some results given by Whit-
taker and Watson (53, Chapter XVT) so that replacing
n+v by in-+1y in (12.5.3) (with B=0) and taking the
inverse transform term by term we obtain

Miniin z+7+l<—2¢x'/<n+ 7))

A2‘+1F(2H-27+ 2) exp[ — (n+)7/ 2~1(t+l+'y+2)7r/ 2]

(7)Y T v+ 1—in—iy) | T2+ t+1+7)
X2 cos(x/ (n4v) 4+ (n+7) log(2x/ (n+7)) — (+v+1)w/2—0)

where o=arg T'(/+vy-+14n-+iy). Normalizing as in
12.4 leads to a value of 4 so that

n—l—y) T (24-14-14-7)
2 T(2+2v+2)

Lintiy(t, u)= (

(1) Illl((?+v)2+(n+v)2) i

exp(2nr+2ym)—1
expli(t+i+vy+2)7/24 (n+v)7]
[Gun—+iuy+1)/2]p+tt0
XFQ4t+i+y, 1+i+v—in—iy,
242042y, 2/(iuntiuy+1)). (12.5.4b)

11 This potential is general enough to include all integrals con-
sidered, for example, by Hulme (23) in calculating the relativistic
internal conversion coefficient for radium C.

Equations (12.5.4) provide the starting points for the
matrix elements of generalized Kepler functions once
we replace ¢ by p+v’ or p++'+1 and » by ¢/a+sa’/a.

Finally we can find the solutions of Dirac’s equations
for energies greater than E,. As stated earlier, this
amounts to replacing #+vy by 44y in (8.4.4) and
showing that (8.4.7) is the proper value of the normal-
ization constant C.

Let us take the normalization condition to be

k+Ak

1 f Xx[f
0 k—Ak
00 k+Ak
+ lim o f Xz[ f xgdk]dx=1
Ak—0 0 k—Ak

with k=1/(n++). We need only the asymptotic ex-
pansions of the wave functions and they can be written

lim @~
Ak—0

dek]dx
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in terms of the asymptotic forms found in this section
for the normalized R’s. That is, in terms of

Rinyiy™7(x)~(2/m)} cos(x/ (n+)
+ (n+v) log(2x/ (n4v))+ (+~v+1)7/2—0).

We _obta.in

x1~2vC(2(e—1)/m)* cos(w/ (n+)

+ (n+1) log(2x/ (n+))—01)
x2~2vC(2(e+1)/m)* cos(x/ (1)

+(n+7) log(2x/ (n+))—02)

where o3, o2, are unimportant phase factors. The
integrals over the cosine terms are as before and the
normalization condition leads finally to the value

C=(a/2¢)}/2y. (8.4.7)

Thus, to find a Dirac matrix element, we use (8.4.4)
with the appropriate C to express the required integral
as a linear combination of integrals like (12.5.1). These
integrals can be derived from (12.5.2, 4) by means of
the O-operator (8.3.2b, c¢) and the definition (8.3.1a).
The result will be a linear combination of hyper-
geometric functions. As explained after Egs. (4.9.7),
this combination can be reduced finally to at most two!?
hypergeometric functions before computations have to
be made.

It is customary to normalize the eigenfunctions with
respect to energy by writing the eigendifferentials as

E+AE
f XGE/h.
E

This normalization leads (18) to the following physical
interpretation of the wave functions: they represent a
stream of electrons with energy E crossing a large
sphere about the center of force and there is one en-
counter per unit time. The transition probabilities would
then be proportional to the number of electrons ob-
served per unit energy range. Our normalization is
consistent with that given for the ordinary Kepler
problem and is with respect to velocity so that the tran-
sition probabilities are proportional to the number
of electrons observed per unit velocity range. Te change
from our normalization to the more usual we merely
multiply the wave functions by

uc? de1? S VeaZ
[72}‘3] =[(n+v)h/eunlt/ cale.

13. Approximation Procedure

We shall now indicate how the methods of Chapters 2
and 3 can be generalized to handle perturbation
problems.

The idea is simply the following: we try to satisfy the
fundamental differential-difference equation (3.1.2) up

2 To obtain series which converge rapidly it may be necessary
to introduce a transformation which doubles this number (see 23).

to a given order in a small parameter ¢, with the sub-
stitutions

k(, m) = Ok(x, m)+e Ok, m)-+ & Oh(z, m)+ -
L(m)=OL(m)+e OL(m)+e OL(m)+ - -.

When these functions are found they enable us to cal-
culate, through (3.1.1), the corresponding perturbed
potential function.

7 (2, m) = Or(x, m)+e Or(x, m)+ e Or(x, m)+ - - -.

A table of %, L, and 7 functions would then enable us to
handle perturbed problems exactly as we handled un-
perturbed problems in earlier chapters.

If the above procedure is carried out the zero-order
approximation will lead to exactly the types A---F.
The first-order’approximation requires further that

2 Ok(x, m—+1) Vk(x, m~+1)—2 Ok(x, m) Ok(x, m)
+ Ok (x, m~+1)+ Dk (x, m)
=MLm)—VL(m+1) (13.0.1)

where the prime (') denotes differentiation with respect
to x. This equation would now have to be solved for the
Mk and WL functions belonging to each ©k and ©L,
Unlike the equation for the zero-order approximation
however, our new equation is /inear in the unknown
functions; we therefore find that there is no restriction
on s in the trial solution

Wh(z, m)= 3 ki, k=Ok(x). (13.0.2)
=t

Each of the types 4---F, then, generates an infinite
number of perturbation problems which can be fac-
torized.

The second-order approximation requires that the
following linear equation for @k, L be satisfied

OR2(x, m+1)+2 Ok(x, m+1) Pk(x, m+1)
— k2%, m)—2 Ok(x, m) Dk(x, m)
+ Ok (x, m+1)+ Dk (x, m)
—OLm)—DL(mt1) (13.0.3)

and so on for higher order approximations.

The ideas used in solving these new differential-
difference equations are the same as those used in
Chapter 3 but it is easily seen that the actual calcula-
tions become much more complex as the order and com-
plexity of the perturbation increases. We must there-
fore consider what circumstances would make the above
procedure preferrable to standard approximation pro-
cedures.

Standard methods lead to expressions for the correc-
tions to the eigenvalues and eigenfunctions in terms of
matrix elements, and the formulas developed in Chap-
ters 9-12 could then be used to evaluate these correc-
tions. The formulas of Chapter 12 are, however, much
more complicated than those of 9-11. We might there-
fore expect to find our new method most suitable for
calculating perturbations to type F problems. This is
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the case, and so we shall work out in detail the Stark
effect problem in Sec. 13.2.

The new method has also been checked in detail
with the known results for type A4 (rotating polar
molecule in an electric field) and type C (anharmonic
oscillator) problems; but the factorization method is
the more complicated in these cases, at least up to the
order of approximation (second) which was considered.

Besides the advantage of the new method with type F
problems, there are two other reasons why, in some
cases, it would be preferred even for type 4 - - - E prob-
lems. In the first place, we do not require any knowledge
of the perturbed eigenfunction for one order of approxi-

" mation before finding the eigenvalues to the next order;
we simply write down the eigenvalues in terms of
OL, WL, AL, ... Secondly, our perturbed eigenfunc-
tions are not given in the form of expansions in terms of
the unperturbed eigenfunctions; they can be derived
quickly from a key function which is a closed expression
and which is easily normalized.

13.1 Type F perturbations

We now consider perturbations to type F problems.
That is, we take

Ok (x, m)=m/x+q/m. (13.1.1)

We will purposely find a perturbed factorization
(to the first order) which is much more general than
necessary for the Stark effect problem. This will enable
us to understand better the general features of the
method. We shall then specialize the results for the
second-order calculations and finally, in the next sec-
tion, apply them to the Stark effect problem.

Using the above expression for ©@k(x, m) let us sub-

stitute (13.0.2) into (13.0.1); we want to find what &;

satisfy the resulting equation. We need to merely
sketch the first step in the solution: the left side of our
equation must be a function of m only; therefore, if we
multiply through by (m+1)"! and consider the left
side arranged in powers of m, we know that the coeffi-
cient of each power must be a constant. Similarly the
left side can be arranged in powers of (m--1) after
multiplying through by m*! and the resulting coeffi-
cients of each power must also be constants. If the
coefficients of the negative powers in each of these
cases are equated to constants it will easily be seen that

ki=0 for i<-—2

and %_,, k_; must be constants.
This simplification enables us to solve (13.0.1) for
(O L(m); but we must first find the anti-difference of

O (x, meA 1)+ OF (3, m)= 3 B/ (m+1)i+mi]

= Eo R/ fi(mA-1)—fi(m)],

say. That is, we want to find fi(m).
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Although a general formula for f;(m) can be found we
need to know only two facts about fi(m). First, fi(m)
is obviously a series of positive powers of 7 with the
highest power (4+1). Second, the powers are either all
even or all odd; this can be seen by comparing

(mA4-1)+mé= fi(m+-1)— fi(m)

with the result obtained by replacing (m) by (—m—1)
in this equation; that is, with

(—m)it (—m—1)i= fi(—m)— f(—m—1).
We obtain

Fl=m= 1= fi(=m)= (=)L mt i m]
= (= D*Lfilm 1)~ film)]

If we neglect the fact (which anyway is not important
for our discussion) that fi(#) is determined only to
within an arbitrary function of # and m of period one
in m, we can conclude that

Ji(=m)=(=1)*f(m).
Thus fi(m) contains only even powers of  if ¢ is odd

and only odd powers if 7 is even.
From (13.0.1) we now obtain

O L(m)=—2 Ok(x, m) Dk(x, m)—Zs ki fi(m)

where the first term on the right side is given by (13.1.1)
and (13.0.2). If we now substitute

s+1
OL(m)=— > am’ «;=constant
—3

and equate the coefficients of like powers of  on either
side we are led to a system of first-order differential
equations for the ;.

The first three equations are

2qk_2= o3
2qk__1= a2
quo-l—- 2k_2/x= a_j.

As in Chapter 3 the equation containing o contributes
nothing and we can take ao=0 without loss of gener-
ality. The remaining equations are of the form

+(Okad+- - =y,
where the brackets contain constants which depend

on the coefficients in f;(#). The last two equations are
simply

i=0,1,---s

2os/ 5+ 2k0s /5=,
2ky/5+ 2k /(s+1) = doyr.

Before actually solving a particﬁlar system of the
equations we can show that

k_2=ko=k2= cee=0
and therefore (13.1.2)

og=ag=a;= =0,
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This result is not surprising when we note that the &;
with odd ¢ are determined by equations whose number
is the same as the number of such k; whereas the k;
with even ¢ must satisfy one more equation than the
number of such %;. To prove our result let us consider
s to be even. Then, from the last equation,

k= (S+ 1)a8+1x/2(s+ 2)'{'Cs+l/xs+1

where C; will denote the constant of integration in the
equation containing a;. (If s is odd we merely solve the
second last equation and proceed as in the following
argument.) Then, considering the equations containing
01, Qs—3, -+ we can find the form of ks—s, ks, - -
in turn. It is not difficult to find eventually that ko
contains terms only of the form ’

/%%, 1/a2,

But this result cannot be reconciled with the first and
third equations unless (13.1.2) is satisfied.

Let us now find the complete solution for a special
case. Let us take s=3; our differential equations then
become

nn-l/x2, x, x2’ xs, LI

2qk_1= a_g
Zkl/x+k1’+ 2qk3+k3’/2= [s7}
2k3/30+k3’/2= 4.

The general solutions of these equations lead to

Wk (x, m)= a_s/2qm~+[ (az/3— as/15)x
—qaux?/ 5+ Co/ 32+ 2qCs/ %3 — Co/x* Im
+ [2(1490/5-*— C4/x4]m3

(I)L(m) =— 0[..2/"’!2“’ ozgm2— C!4m4
belonging to

DOy (x, m)=—2Cs(m— )m(m—+1)(m—+2) /%
—2¢CyQBm(m—+1)—1)/x*
—2(Com(m—+1)+2¢2Cy) /23— 2gC5/ x*

- a_g/qx-{- (a2/3— a4/15)m
+ (es/3+24/15)m2+ 2cgm3/5
+ am?/5—2qx(3cgm(m+1)
+50£2'— 014)/15+ 2q2a4x2/5

where C; is the constant of integration in the equation
with a; on the right side.

Let us carry out the second-order calculations for the
following special case (which is sufficiently general for
the problem treated in the next section):

Wk (x, m)= azxm/3
‘ O L(m)= — aym?
belonging to
WOy (x, m) = — 2qasx/3+ asm(m+1)/3. (13.1.3)

The coefficients of powers of m in the expansion of
@p(x, m) satisfy equations similar to those satisfied by
the coefficients in ®k(x, m). Comparing (13.0.3) with
(13.0.1) we see that the difference will be only that con-
tributions from ®k2(x, m) will have to be added to some
of the equations for Vk,(x) to obtain the equations for
@k(x).

We require the expansion of @k(x, m) up to m°; a
particular solution can be found to be

Ok(w, m)=[(Bs/3— Bs/ 15+ Be/21)x
— (Ba/5— Bs/ T)q*— (0e2?/45—4¢Bs/35) % Jm
+[(2Bs/5— Bs/ T)x— 2qBsx*/ T Im3+- 3Bsxm®/ T

O L(m) = — Bom®— Bym*— Bem®

where $; takes the place of «; in the first approximation;
B2 and all the constants of integration have been put
equal to zero so that our solution is not the most general
one. Corresponding to this solution

Or(x, m)= (Bo/3— Bs/15+Bs/21)m
+ (B2/34-284/15— 285/ 21)m>+- (28s/5— Bs/ T)*
+ (64/ 5+ 256/ Tym*4-38em®/ T+ Bsm“/ 7
— 2qx(Bs/3+ 6— 30m~+ Bum?/ S+ 2Bsm3/ T+ Bem*/T)
— x2(6¢%0+ 2ym—+2ym?)+2¢qyx®  (13.1.4)

Y= 0‘22/45'—49266/35

We are now free to choose in any manner (artificially
or otherwise) the a;,8; in M7 and @7, Thus we are able
to identify our perturbed potential function with a
given potential function and from the corresponding
perturbed % and L we can then write down the eigen-
values and normalized eigenfunctions for the given
perturbation.

where

13.2 Stark effect

As an application of the formulas developed in the
preceding section let us consider the differential equa-
tion

f'—=Q2q/%)f— (m(m+-1)/5%) [+ 2exf+Nf=0 (13.2.1)

where € is a small parameter so that 2exf is a small
term compared to the others in the region where f is
appreciably different from zero.

When e=0 the problem is type F so that the zero
order eigenvalues are

A=OL(n)=—q*/n?, n—m+1=integer>0.

The first-order terms in the perturbation are obtained
by comparing (13.1.1) with 2x. We see that we must
take

ar=—3/q
and write

N=Nem(m+1)/q.

So that we artificially absorb the eazm(m-+1)/3 term
in with . In this case the correction to the eigenvalues
is obtained from the condition

N=OL(n)+e DL(n).
To the first order, then,
A= —¢g*/n?—em(m+1)/q+€3n?/q

where n—m+-1 is an integer>0.
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2

1&
F1c. 6. Each dot represents a solution of (14.0.1) such
that (14.0.4) exists.

For the eigenfunctions to this approximation we need

k(x, m) = Ok(x, m)+e Vk(x, m)
=m/x+q/m— emx/q
L(m)=OL(m)+e VL(m)
= —¢*/m*+3em*/q
so that
fnn—l - 2n(_ q) n+1n—n—s}

X[ —4g*(2n) Hen®(2n4-2) 1T

Xxm exp(gx/n)[—2q+enx?], ¢<0r (13.2.2)

d
fum1=[A—=L(m) { k(x, m)+— }f a"
dx

/

To obtain the second-order terms in the perturbation
we must compare @r(x, m) as given above (13.1.4) with
zero. So that y=6=0, we put

Bs=T7/4¢", Bs=5/4¢";
then

@r(x, m)= (m(m+1)—2qx) (Bs/3+m*(m~+1)*/4¢")
and, since this is to be zero, we must put
Bo= —3m?*(m+1)%/4¢*

artificially—i.e. we must introduce this value of 85 only
after the ladder operations have been carried out.

To find the eigenvalues we can substitute this value
of B, immediately. The constant term in Pr(x, m)
disappears so we can introduce the above N again and
from

N=OL(n)+e PL(n)+e ®L(n)

we obtain finally

=— qz/n2+ e(Bn?—m(m+1))/q

— (TnS+-5nt—3n?m2(m+1)?) /4¢*.  (13.2.3)
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The above values of as, B, 84, and the artificial B, could
also be used to find the eigenfunctions to the second
order in e. '

The theory of the Stark effect leads to the following
pair of equations (2, p. 403):

HHA+B)/w)fr

— (m(m+1)/5%) fr2exfi+N1=0
f"H((1—=B)/%)f

— (m(m1)/20) fa— 2exfat-No=0

and the problem is to find the eigenvalues and eigen-

functions when A, 8 are the same in each equation.
Comparing (13.2.4) with (13.2.1) and using .(13.2.3)

we can obtain the required eigenvalues. We first put

(13.2.4)

' 2¢=—1—8, n=mn, in (13.2.3) and then put 2¢=—1+4,

n=ns in (13.2.3); then, eliminating B between the two
equations so obtained, we find

A=— 1/(n1+n2)2——35(n12—n22)
— &(n1+n2)4(Tn®+ Tn2+ 20n1m.— 18m(m-+1)+5) /4.

The value of 3 is

B= (n1—n2)/ (n1+n2)— e(n1+n2)2Bnms—m(m+1))
~+ e2(n1—ng) (n1+n2)5(mma— 6m(m~1)) /2n1n..

With ¢ in terms of 8 the eigenfunctions can be ob-
tained providing we keep in mind that ¢ depends on B,
and hence on m, only artificially. Eigenfunctions to the

first order of approximation can be obtained from
(13.2.2).

14. Interrelationship between Types

We have already mentioned several times the con-
nection between type A and type E factorizations. Since
types B, C, D are limiting forms of type 4, and type F
is a limiting form of type E, this connection means that
all of our factorizations are interrelated. We now want
to show explicitly the relationship between 4 and E.

For purposes of illustration it is sufficient to consider
the special case

a2y ' m(m+1)
dsz[

2qtanhx]l’+)\l’=0, ¢>0 (14.0.1)
cosh?x

of type E. The factorization is determined by

k(x, m)=m tanhx+q/m
L(m)=—m>—q®/m?.

For m?<q, L(m) is an increasing function of 7 and so
we look for Class I solutions. The key function would be

Yii~cosh™x exp(gv/(I+1)).

But this function does not satisfy the boundary condi-
tions and so there are no solutions for m?<gq.



THE FACTORIZATION METHOD 65

If m*>q, L(m) is a decreasing function of m and so
we look for Class II solutions with the key function

Y '~cosh~'x exp(—gx/1)
belonging to the eigenvalue

A=—P—@/B, m—1=0,1,2,---. (14.0.2)

This key function does satisfy the boundary condi-
tions when 2>¢ and can therefore be normalized.
Moreover, successive applications of the m-raising
operator will continue to produce functions which satisfy
the boundary conditions. The eigenfunctions can there-

fore be represented by the dots in Fig. 6 where each

ladder extends to infinity.

The same problem can be solved with a type A4
factorization. We introduce the value (14.0.2) for A
and look for a factorization which changes /, keeping m
fixed. We use the formulas of Sec. 2.1 to introduce the
new normal form

d*F [l2+q2/ 12—%1—2q cosz
dz?

[0

sin%
through the substitutions

x=log tan(z/2)
YV =sin"#zF.

If we now introduce the artificial parameter ¢’ through
g={¢'l our equation becomes

d’F [(l— HU+3)+q2—2q' COSZ] .
dz?

sin’s
+(m+3)*F=0 (14.0.3)
_which is type 4. Of course ! now takes the place of m

in the general discussion of Chapter 2. The factoriza-
tion of (14.0.3) is given by

k(z,1)=(I—%) cotz—¢q'/sinz
L@)= (-3

L(1) is an increasing function of / and so we can expect
Class I solutions belonging to the eigenvalues

N =L(m+1)= (m+3)
(Here we allow m to play the role of / in the general
discussion.) The key function is
Fom~sinmti=a'(3/2) cosmtitd'(z/2).
This function can be normalized on 0<z< 7 only if
m+3—q>—%.
Moreover it is not difficult to see that if we try to use
the operators to reach F,! by taking m—1 steps down
the ladder from F,,™ we obtain a function which behaves
like
sint4-9'(z/2)

near z=0. Therefore, if F,.! is to satisfy the boundary
conditions, we must have
H3-¢>—}
or
I>q¢—1.

The eigenfunctions can therefore be represented by the
dots in Fig. 7.

The restriction on ! is less severe here than in Fig. 6.
This is because the boundary condition for F is less
severe than that for Y. In fact, we required that

f Yidx

exist which, in terms of z, F, would mean that

(14.0.4)

f " (F?*/sin%)dz

must exist. This condition would obviously restrict F
more than the one we actually used which was that

kg
f F%dz
A 0
must exist.

Thus we see that, except for the extra row of solu-
tions in Fig. 7 due to the weaker boundary condition
in this case, the two treatments we have given are
simply the Class I and Class II factorizations of the
same problem.

In the same way a relationship can be established
between type B and F factorizations; as remarked at
the end of Sec. 8.1, the Kepler problem was treated by
Schrédinger as type B whereas we used the more natural
type F approach. In quantum-mechanical applications
the choice of factorization will depend on which ap-
proach leads to the physically proper normalization.

2

(14.0.5)

m

Fic. 7. Each dot represents a solution of (14.0.3) such than
(14.0.5) exists. The bottom row of solutions has no counterpart it
Fig. 6 because thejboundary condition is weaker in this case.
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In Sec. 4.2 we solved the spherical harmonics equa-
tion as a Class IT problem; the factorization appeared
there as type 4 rather than E only because the general
type E factorization includes a special case (when g=0)
which is also a special case of 4.

Truesdell’s technique which we will discuss immedi-
ately cannot be applied to type E or F factorizations;
however it can be applied to the corresponding 4 or B
factorizations.

15. Truesdell’s F-Equation

Truesdell (49, p. 8) has considered the class of special
functions which have the following properties in com-
mon: ‘“(a) they satisfy ordinary linear differential
equations of the second order; (b) they satisfy ordinary
linear difference equations of the second order; (c) with
suitable weight functions they form complete sets of
orthogonal functions over a suitable interval; (d) they
satisfy-linear differential-difference relations.” '

As we have seen, the factorization method usually
begins by replacing a second-order differential equation
with a pair of first-order differential-difference relations
—that is, it replaces property (a) with a pair of proper-
ties (d). Once this step is taken we have shown how the
eigenvalues and normalized eigenfunctions can be
written down immediately and how, in some cases, the
corresponding matrix elements can be calculated. The
fundamental characteristic of the factorization method
is that it provides only those results which are of
interest in the common physical problems— it does not
provide general solutions of the original differential
equation.

Truesdell is interested in the more general problem

“of providing “a general theory which motivates, dis-
covers and coordinates the seemingly unconnected
relations among the familiar special functions” (49,
p- 7). These relations include the known expansions,
nth derivative formulas, generating function repre-
sentations, definite and contour integral representations
and the integro-difference relations. He takes as a
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starting point the relation in (d) and his first step is to
reduce this relation, through a change of both variables,
to the form

6 -
—F(z, 0)=F(z, a+1)
8z

which he calls the F-equation.

The condition that a recurrence relation provided by
the factorization method can be reduced to the F-equa-
tion is only that k(x, m) be linear in m. This means that
Truesdell’s techniques can be applied to the recurrence
relations belonging to types 4, B, C, D factorizations.
But we have seen in the previous section that type E
and F factorizations can be treated alternatively as 4
and Bj; therefore all the factorizations discussed in this
report lead to F-equations and thus serve as starting
points for the applications of Truesdell’s results.

One special result in this connection has been
thoroughly investigated by Duff (12). He has used the
obvious formula

F(z, at+n)=08"/62"F(z, )

to obtain nth derivative expressions for all the normal-
ized eigenfunctions considered in this report. The right
side is, of course, determined by the key function.
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17. Table of Factorizations

A detailed theoretical explanation of the use of the following table is given in Chapter 2 and Sec. 3.2. To solve a given second-order
ordinary differential equation by the factorization method the steps to be taken are briefly as follows: 1. Transform the given equation
to its normal form (2.1.1) by means of (2.1.2). 2. Identify the resulting 7(x, m) with one in the table. 3. Look up the reference in the
last column. This reference is usually followed by the desired solutions; if not, the cortesponding k(x, #), L(m) must be used to obtain
the eigenvalues and normalized eigenfunctions as outlined in Sec. 2.7. It may be necessary to generalize step 2 by means of an arti-

ficial factorization as explained in Sec. 3.2.

In the table q, b, ¢, ¢, K, p, g, B, 7, and » are constants. To conform with customary notations the variable x is sometimes replaced
by 7, ¥, 3, 0, p, or £ and the parameter m is sometimes replaced by I, M, », or s.

Type Name r(x, m) k(x, m) L(m) Rl:ege{:;tc ¢
4 General La%(om +—|c—)2(;z_(+;:—i—+—_c1—)}-}%—ﬁzosa(x+ 2] e CO;“ G+
type 4 - perm Py, } eGP a(m+-c)? 4.0.1
4 fmcd el i) - -
4 Associated spherical  1(+1) ! tanhz _r 422

harmonics cosh?




THE FACTORIZATION METHOD

17. Table of Factorizations—Continued

67

Reference
Type Name r(x, m) k(x, m) L(m) to text
Generalized spherical (m+v)(m+v—1)
4 peneratze ey (m+v—1) coth (mty—1)2 43.1
Generalized spherical ~ ((+v—3(+v+3)
4 o onics N (+v—%) tanhz —(+v—3)2 432
A Gegenbauer functions _Zn%%}l—) m cotd m? 44.1
Symmetric top (M- M+3)+K*—2MK cosf _ K 451
4 finctions ey (M —3%) cotd— pey (M—3)2 see also 14.0.3
Harmonics with spin, m(m—+1) 41 (m+3) cosb 1
A magnetic pole — <in%0 m cotf== Y] m? 4.6.5,4.7.1
_3 1
_g’ii'”_sil(z’_;’m (m-+c—3) cotp
4 ﬁ;;‘f;}g‘;ﬁn“gﬁc 2m+-a-tb—2) 481,493
-1 —
_(m-l—a—l—b c 2)(zm—l—a+b c+3) — (m+a+b—c—3) tanp
cos?p
-1 ol
) _(mtatb—c sfglgz;l;+a+b ct+d) (m+a+b—c—13) cothy
4 Poschl-Teller, —O@m42a—c—1)* 482,495
hypergeometric | (m+a—b—(m+a—b+3d) B N
} coshEy +(m+a—b—1%) tanhy
_3 1
_@jc_lr).gﬁic_i) (m+c—32) cotp
sinZp
A Hypergeometric X X (2m—+2c—a—b—2)* 494
_(m+6—'d—b—i)(:"+5_d_b+7) — (m+c—a—b—13) tanp
cos?p
(m+c—3$)(m+c—3) s
B v (m—+c—3%) cothx
A Hypergeometric ( B 5 —(2m+a+c—b—2)2 49.6
m+a—b—3)(m+a—b+3 N )
+ coshix +(m+a—b—1) tanhx
B General type B —d? exp(2ax)+2ad(m+-c+3) exp(ax) d exp(ax)—m—c —a¥(m-+-c)? 5.0.1
B Sopfluent bDereeo (=} exp(2)+(s-+)) exp(a) exp(®)/2—s - 513,522
General _(mA-c)(mtc+1) a2 m+tc , bx _
C type C Y "1 o +—2— ‘me+b/2 5.0.2
Confluent (2m—3)(2m+3)  »* o
C hypergeometric T R T artificial 5.1.8
¢ System of identical _(nts/2—P(n+s/2—% artificial 532
oscillators «2 (s is a constant here) ~
mi—% m—3% . .
C Bessel - p 0 (see discussion) 5.4.1
D General type D — (bx+d)2+b(2m—+1) bx+d - —2bm 6.0.1
D ;I::gjogg dosscﬂlator, —8 modified treatment 6.1.1
d .
D §§lﬁt;zluzgzon field —g2—(B+B*)Ex (;3-— 8% I modified treatment 6.5.3, 6.5.5
d .
D ‘(’Iv?tfg(e)ﬂrrcneesson field - 2—(By+B*y*) e (By—B*v) b modified treatment 6.7.2
General _m(m+1a? q 2t L
E type E %) 2aq cota(x+p) ma cota(x+p) +m emr == 7.0.1
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17. Table of Factorizations—Continued

Reference
Type Name r(x, m) k(x, m) L(m) to text
Kepler problem m(m-+1) » 22
E in hypersphere __smT+2p cotx m cotx—;”— mz—ﬁz 7.1.2
Kepler problem in 2
E  space of constant —ﬂ(.ﬂ_l;—l)-l—b cothx m cothx—— ——mz—l2 7.2.2
negative curvature sinhx " "
2
E Manning-Rosen -—M-I-Zau cothar ma cothar — 2 —a?m——, 7.3.1
sinh?ar m
2 2
E Rosen-Morse, Jacobi % —2aq tanhax ma tanhax+% —azmh—-i-z- Zgé' 1151'51'2.’0.1
General 2 m(m+1) m, 49 _z
F type F P e L 8.0.1
2 10+1) 1
F  Kepler problem T —— ~n 8.1.3
p Generalized Kepler 2_ 4+ 0@+v+1) Hy_ 1 1 8.3.1
problem ) r Ity (+7)? o
p Oscillating Ze_W4Dta See discussion 8.6.1

rotator 7 72
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