Table of *ft* Values in Beta-Decay^{*}

ARNOLD M. FEINGOLD[†]

Palmer Physical Laboratory, Princeton University, Princeton, New Jersey

INTRODUCTION

S INCE the publication in 1943 of Konopinski's (K16); review article on beta-decay, a large amount of further information on beta-decay energies and lifetimes has appeared. Djelepov and Kudryavtseva (D7) compiled a table of ft products based on the literature to the end of 1948. This table was analyzed by Djelepov (D8). The table of ft products, or comparative lifetimes which follows is based on the isotope compilation of Seaborg and Perlman (S1) and subsequent literature to June 1, 1950. An analysis of an essentially identical table will be found in the preceding paper by Feenberg and Trigg (F11).

For the definition of f and a general discussion of the significance of the ft product, where t is the partial halflife, the reader is referred to Konopinski's review article. Formulas and extensive charts of f as a function of nuclear charge and decay energy are given by Feenberg and Trigg (F11).

DESCRIPTION OF TABLE I

The first column is self-explanatory. The suffix m indicates that the transition starts from a metastable state. The second column, headed "Class," indicates the reliability of the isotopic identification, and follows the classification used by Seaborg and Perlman: A=isotope certain (mass number and element certain), B=isotope probable, element certain, C=one of a few isotopes, element certain, D=element certain, E=element probable, and F=insufficient evidence.

The third column lists the disintegration modes that are known experimentally to be present for each isotope. The symbols have the following meaning: $\beta^-=$ negative beta-particles, $\beta^+=$ positive beta-particles (positrons), K=K electron capture (or in more general terms, orbital electron capture), $\alpha=$ alpha-particles, and I.T.= isomeric transition (transition from upper to lower isomeric state).

Where several modes of disintegration occur for one isotope, branching ratios, where measured, are indicated in parentheses (in percent of total disintegrations).

The half-lives in the fourth column are total halflives. If the disintegration scheme is complex, the partial half-life for each particle group may be found from the branching ratios given in the third and fifth columns.

In column five the maximum kinetic energy in Mev of the various electron and positron groups is given. In most cases, the most recent or what is considered the most accurate measurement is the one listed; but occasionally, an average value is used. In a few cases where the energies reported in the literature were determined from K-U plots, they have been arbitrarily lowered 100 or 200 kv. For some of the mirror nuclei only the lifetimes are known. For these nuclei the disintegration energy was calculated from the theoretical coulomb energy (W14). Energy values determined in this manner are enclosed in parentheses. For Be7, where only K-capture occurs, the energies listed are the energy differences of the initial and final nuclear levels. Where the disintegration scheme is complex and several groups of like particles are present (i.e., several electron groups or several positron groups), the percentage of decay by each group, when known, is given in parentheses.

The column headed "Final state" gives the nature of the state in the residual nucleus to which the transition goes. The notation is, g = ground state, e = excited state(in a few cases this is an isomeric level), and g' = noconclusive evidence that it is not the ground state. States are labeled g or e when the disintegration scheme is known sufficiently well to make a positive identification of the nature of the level.

The logarithm to the base 10 of the ft product is given in the next column for each positron and electron group and for the two K-capture groups of Be^7 . The f charts used for determining the ft values were prepared by graphically integrating spectrum shapes using the curves given by Bleuler and Zünti (B26). The resultant f charts were later compared with the corresponding charts of Feenberg and Trigg, and were also compared with f tables kindly supplied by Professor John Blatt. The f values are believed to be accurate to within 10 percent over the entire range of nuclear charge and energy and to be accurate to within 5 percent over most of the range. For the positron emitters, when either K-capture or the K-capture branching ratio has not been reported, the theoretical K-capture/ β^+ ratio, as given in Feenberg and Trigg's charts, has been used in determining the partial half-life, t. This will, in some cases, yield ft values that are too low, since more levels in the final nucleus are generally available for K-capture than for positron emission. In a few cases where the theoretical ratio of K-capture to β^+ -emission is much greater than a rough experimental value, the theoretical branching ratio has been used in preference to the experimental one. When this has been done the ft product

^{*} This work was supported in part by the joint program of the ONR and AEC.

[†] Now at Randal Morgan Laboratory of Physics, University of Pennsylvania, Philadelphia, Pennsylvania.

[‡] References given in parentheses will be found in the bibliography at the end of this article.

~	Isotope	01	D	** ** ***	En	lergy	Final	T	
Z	A	Class	Decay	Half-life	(Mev)	(%)	state	Log ft	References
0	n^1 H ³	A	$\beta - \beta - \beta - \beta$	$\sim 15m$ 12 46y	0.780		g	3.06	RI, II, I2, S3I C1 H1 I1 S3 B1 C2
$\hat{2}$	He ⁶	Ä	$\beta -$	0.823s	3.215		g	2.74	$H_{2}, P_{1}, K_{1}, A_{1}$
3	Li ⁸	Α	$\beta -$	0.88s	12.7	(90)	ē	5.60	H3
4	Be ⁷	А	K	52.9d	$\sim_{0.863}$	(10) (89)	e g	5.02 3.36	T3, W1, S4
					0.383	(11)	e	3.56	
۲	Be ¹⁰	A	$\beta - \beta$	$2.7 \times 10^{6} y$	0.555		g,	13.65	F1, H4, W2, F2, H5, B2
5	C10	R	β β	10.0275	13.43		g	3 30	П3 S5
Ŭ	Č11	Ã	$\beta +$	20.5m	0.96		g	3.59	T7
	C14	A	$\beta -$	6000y	0.156		g	9.05	E1, J2, A2, M1, F3
77	C15 N112	B	$\beta - \beta - \beta$	2.4s	8.8		e?	5.27	
'	N13	A	$\beta + \beta +$	10.13m	1.202		g	3.67	H3
	N^{16}	Ä	$\beta -$	7.35s	10.5	(20)	g	6.84	
					4.3	(40)	e	4.72	
	N117	Δ	ß	A 14 c	3.8 3.7	(40)	e	4.48 3.78	A.4
8	O14	B	β β+	76.55	1.8		e	3.52	S5
-,,	O15	Α	$\beta +$	118 <i>s</i>	1.68		g'	3.57	P2
	O19	Α	$\beta -$	29.4s	4.5	(30)	g	5.55	
0	F17	А	8+	665	2.9	(70)	e o'	4.33 3.64	B3
,	\mathbf{F}^{18}	Â	β+ β+	112m	0.635		g	3.57	B4. K1
	\mathbf{F}^{20}	Α	$\beta -$	10.7s	5.03	(89)	e	4.88	S6, J6
10	NT-19			20.2	4.22	(11)	e	5.43	
10	Ne ²³	A	β+ β-	20.38 40.7s	2.20 4.1		g'	5.29 5.01	B3
11	Na ²¹	B	β +	23s	(2.5)		s'	3.58	
	Na ²²	Α	β +	2.60y	1.8	(0.005)	g	13.82	M3, L1, M2
	NLo24	٨	ø	14 00%	0.542	(~ 100)	e	7.40	11/2
	Na ²⁵	B	β	58.2s	3.4		e g	4.82	W 3
12	Mg^{23}	Ā	$\beta +$	11.6s	2.82		g'	3.50	
	Mg^{27}	Α	$\beta -$	9.6m	1.80	(80)	е	4.73	
13	A 125	А	8-	730	(3.1)	(20)	e a'	3.90 3.47	B5
10	Al ²⁶	Ä	β_{+}	6.3s	2.99		g'	3.34	B5
	Al ²⁸	A	$\beta -$	2.30m	3.01	(1	e	4.98	~ ~
	Al ²⁹	Α	β –	6.56 <i>m</i>	2.5	(75)	e	5.21	S7
14	Si ²⁷	А	B+	4.9s	3.54	(23)	e g'	3.55	
	Si ³¹	Α	$\beta -$	170m	1.8		g	5.91	
15	P ²⁹ D30	A	$\beta +$	4.6s	3.63		g'	3.57	
	P80 P32	A	$\beta + \beta - \beta$	2.55m 14.3d	3.0		g	7 90	L2 A5
	$\mathbf{\hat{P}^{34}}$	B	$\tilde{\beta}$ –	12.4s	5.1	(75)	°,	5.11	,
16	C 21			2.0	3.2	(25)	e,	4.68	· · · · · ·
10	535 535	A	β+ β-	3.28 87 1 <i>d</i>	3.83 0.167		g	5.01	G1 L3 C14
	Š ³⁷	B	$\beta -$	5.04m	4.3	(10)	g	7.04	01, 20, 011
	C1100				1.6	(90)	e	4.23	
17	C134	A	$\beta + \beta \pm$	2.85	4.13		g	3.00 5.46	
	Cl ³⁶	Â	β-	$4.4 \times 10^{5} y$	0.713		g	13.49	W4, W5
	Cl ³⁸	Α	$\beta-$	38.5m	4.81	(53)	ğ	7.44	L4
					2.77	(16) (31)	e	6.89	
	Cl ³⁹	Α	B-	55.5m	2.5	(51)	g'	6.06	H7
18	A ³⁵	Α	$\beta +$	1.84s	4.4	(-	g'	3.53	
	A^{41}	Α	$\beta-$	109 <i>m</i>	2.55	(0.7)	g	8.56	B6
19	K ³⁷	F	<i>β</i> +	1.3s	(4.7)	(33.3)	e g'	3.51	
	K ³⁸	Ā	β+	7.5m	2.53		e	· 4.82	
	K40	A	$\beta - (90), K(10)$	$1.1 \times 10^{9} y$	1.36	(75)	g	18.05	F4, S2, A6, F5, B7, F10
	. L	A	ρ-	12.44/	3.38 2.04	(25)	s e	0.02 7.44	
	K ⁴³	В	$\beta -$	22.4h	0.81	(~80)	e	5.60	01
20	Ca ³⁹	F	8+	1.06s	0.24 (4 9)	(~ 20)	e ø'	4.32 3 40	
	Ča ⁴⁵	Ā	$\beta -$	152 <i>d</i>	0.254		g	5.98	M4, M5
	Ca47	F	$\beta -$	5.8d	1.1		ē	6.83	
	Ca⁴ ⁹	A	$\beta -$	2.5h	2.3		Ę	6.39	

TABLE I. ft values.

TABLE I.—Continued.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 3.40 \\ 4.81 \\ > 5.27 \\ > 4.47 \\ 10.22 \\ 6.23 \\ 5.65 \\ 5.26 \\ 5.54 \\ 3.40 \\ 4.51 \\ 4.36 \end{array}$	B8 P3 K2 K2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 4.81 \\ > 5.27 \\ > 4.47 \\ 10.22 \\ 6.23 \\ 5.65 \\ 5.26 \\ 5.54 \\ 3.40 \\ 4.51 \\ 4.36 \end{array}$	B8 P3 K2 K2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	>4.47 10.22 6.23 5.65 5.26 5.54 3.40 4.51 4.36	P3 K2 K2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$10.22 \\ 6.23 \\ 5.65 \\ 5.26 \\ 5.54 \\ 3.40 \\ 4.51 \\ 4.36$	P3 K2 K2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5.65 \\ 5.26 \\ 5.54 \\ 3.40 \\ 4.51 \\ 4.36$	K2 K2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.26 5.54 3.40 4.51 4.36	K2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3.34 \\ 3.40 \\ 4.51 \\ 4.36$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.51 4.36	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.30	K3
23 V_{47}^{47} B $\beta+$ 33.0m 1.65 ? V_{48} A $\beta+(58), K(42)$ 16d 0.72 e V_{52}^{52} A $\beta-$ 3.74m 2.05 e 24 Cr^{49} A $\beta+$ 43m 1.45 e 25 Mn^{51} A $\beta+$ 46m 2.0 g'	6.51	
V^{48} A $\beta+(58), K(42)$ 16d 0.72 e V^{52} A $\beta 3.74m$ 2.05 e 24 Cr^{49} A $\beta+$ $43m$ 1.45 e 25 Mn^{51} A $\beta+$ $46m$ 2.0 σ'	4.64	K2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.16 4.60	
25 Mn ⁵¹ A $\beta + 46m$ 20 σ'	4.50	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.11	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.58	
$\frac{Mn^{54}}{Mn^{54}} = A = \frac{K}{K}, \beta - (<0.1) = \frac{310d}{10} = \frac{1.0}{K}$	>11.47	K4, E2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.19 5.64	
0.75 (20) e	5.24	
26 Fe ⁵² A β + 7.8 <i>h</i> 0.55 g'	4.29	
1000 R 0.40 (50) e 0.26 (50) e	5.86	
27 Co ⁵⁵ A β + 18.2h 1.50 (50) e	6.31	D1
Co ⁵⁶ A $\beta+(25), K(75)$ 72d 1.50 e	5.57 8.49	
C_{0}^{67} A $\beta + , K$ 270d 0.26 ?	6.97	
$C_{0^{68}} = A = \beta + (15), K(85) = 72d = 0.470 = e$	6.57 7.51	W6
Co^{60m} A $\beta - (<10)$, I.T.(>90) 10.7m 1.4? e	>5.44	
Co^{61} A β - 1.75 <i>h</i> 1.3 g	5.30 5.44	P4 P4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.22	M6
Ni ⁶³ B β – ~300y 0.063 g	7.06	W7
M^{100} A β - 2.504 n 2.10 (57) g 1.01 (14) e	5.91	38, MO, 39
0.60 (29) e . 1	4.76	
29 Cu ⁶⁰ A β + 24.6m 3.3 (<5) g 1.8 e	>7.07 4.65	
Cu ⁶¹ A $\beta+(70), K(30)$ 3.4h 1.205 (97) g	4.92	B9, O2, B10, K15, H15,
$0.53 (\sim 3) e$	4.90 5.15	C13, B24 H8 B11
Cu ⁶⁴ A β -(38), β +(19), 12.88 h 0.571(β -) g	5.29	W8, L5, O3, R2, S9, H15
$K(43)$ 0.657(β +) g	4.94	C 0
Cu^{67} B β - 4.54 m 2.0 e	5.44	K15
30 Zn ⁶² A β +(10), K(90) 9.2h 0.665 e	5.08	H8
$Z_{n^{03}}$ A $\beta + (93), K(1)$ $38m$ 2.30 (85) g 1.40 (7) e	5.37	
0.47 (1) e	4.28	
Z_n^{65} A $\beta+(1.3), K(98.7)$ 250d 0.325 e	7.46	M7
$Z_{n}^{r_{1}}$ B β $ 2.2m$ 2.1 g'	4.52	
$Z_n^{n_2}$ A β - $49h$ 1.6 (5) g'	8.47	
31 Ga^{66} A $\beta + 9.4h$ 4.14 (87) e	7.77	M8
1.4 (4.3) e	6.97	
$0.88 (0.9) e \\ 0.40 (1.7) e$	5.05	
Ga^{68} A $\beta + 68m$ 1.9 g'	5.17	
Ga^{70} A β - 20.3m 1.05 g' Ga^{72} A β - 14.3h 3.15 (9.5) e	5.08	
2.52 (8) e	8.55	
1.48 (10.5) e	7.49 6 26	
$0.555 (52) = 0.64 (40) = e^{-1.055}$	5.47	
Ga ⁷³ B $\beta - 5h$ 1.4 g 22 Ge ⁵⁹ B $\beta + (z, 23) K(z, 67)$ 1654 10 z'	5.96	мо
Ge^{75} A β - $82m$ 1.1 g	5.00	M9
Ge ⁷⁷ A β - 12 <i>h</i> 1.74 e	1 40	M10

	Isotope A	Class	Decay	Half-life	Energy (Mev) (%)	Final state	Log ft	References
32	Ge ^{77m}	В	β-	59s	2.8	g'	4.72	
	Ge ⁷⁸	D	$\beta -$	2.1h	~ 0.9	Š	4.85	
33	As ⁷²	В	β +(33), K(67)	26h	3.38	e?	>8.07	M11, M12
					2.480	e	>7.40	
					0.669	e	>4.69	
					0.225	e	>4.20	
	As ⁷⁴	Α	$\beta - (46), \beta + (54), K$	17.5d	$1.1(\beta -)$	<i>g</i> ',	8.16	M11
	A - 76	۸	2	06.07	$0.8(\beta +)$	gʻ	6.64	DF 1/12
	Asw	A	β-	20.8 <i>n</i>	3.1 (00) 2.5 (25)	g	8.30 8.35	P5, M15
					1.3 (15)	e	7.41	
	As77 .	Α	β	40h	0.8	g'	5.96	
	As ⁷⁸	A	$\beta -$	65 <i>m</i>	1.2	e	5.16	
	As'	D	β	90m	4.1 (70) 1.4 (20)	gʻ	7.58	
34	Se73	в	$\beta + (50) K(50)$	716	1.4 (30)	e	5.99	
01	Se ⁸¹	B	$\beta = \beta =$	17 <i>m</i>	1.5	s g	4.88	
	Se ^{83m}	Ã	β	67s	3.4	g'	5.17	
	Se ⁸³	A	$\beta - \beta -$	25m	1.5	g'	5.04	
35	Br ¹⁵ D ⁻⁷⁶	B	$\beta + (18), K(82)$	1.7h	1.0	g,	5.69	
	Br ⁷⁷	B	$\beta + (5) K(95)$	13.1n 57.2h	0.36	g	5 35*	
	Br ⁷⁸	Ă	β (3), Π (30) β +	6.4m	· 2.3	e?	4.47	
	Br ⁸⁰	Ā	$\beta = (89), \beta = (3), K(8)$	18 <i>m</i>	$2.0(\beta-)$	g	5.49	C3, R2
					$0.73(\beta +)$	g'	4.26	
	Br ⁸²	A	β —	36.0h	0.447	е	>5.07	S10, S11, B12, R2
					0.323	6	>4.59	
	Br83	А	8-	140m	1.0	e a	5 13	
	Br ⁸⁴	Â	β-	33m	5.3	s g'	7.53	
	Br ⁸⁵	Α	β-	3.00m	2.5	g	5.06	S32
36	Kr77	B	$\beta + (30), K(70)$	1.1h	1.7	g' .	5.39	
	Kr's	A	$\beta + (2), K(98)$	34h	0.9 (30)	g	7.37	
	K r85	Α	8	4.36h	0.0 (70)	e a'	0.24 4.96	K 5
	Kr ⁸⁵	B	β	9.4v	0.74	s g	9.22	KS
	Kr ⁸⁷	в	$\beta -$	1.30h	3.2	g'	6.95	K5
	Kr ⁸⁸	Α	$\beta-$	2.77h	2.4 (weak)	g'	>6.74	K5
27	TD 1- 81		2 + (-20) K(-70)	5.0%	0.5	e	>4.14	
51	Rb ⁸²	D A	$\beta + (\sim 30), K(\sim 70)$	6.3h	0.9	er e?	5 23	
	Rb ⁸⁶	Ã	$\beta = \beta =$	19.5d	1.822 (80)	g	8.59	M14
			·		0.716 (20)	e	7.63	
	Rb ⁸⁷	A	$\beta -$	$6 \times 10^{10} y$	0.13	g,	16.52	K17
	Rb88	A	β-	17.5m	4.8	g'	7.08	
38	ND** Sr89	A	р <u>—</u> 8—	15m 55d	5.0 1.48	g	0.50 8 50	S12 T.2
00	Sr ⁹⁰	Â	β	25v	0.54	s g	9.20	I3. B13
	Sr ⁹¹	Α	β	9.7 <i>h</i>	3.2 (60)	, g	8.06	
20	3 704			0.71	1.3 (40)	e,	6.63	5.0
39	Y ⁰⁴ V87m	B	$\beta +, K$	5.1n 1Ah	2.0	g'	5.70	R3 D4
	V87	A	$\beta + K$	33d	0.7	8	5.86	R4 R4
	$\mathbf{\hat{Y}}^{88}$	ĉ	β	2.0h	1.65	s g'	5.19	R3
	$\mathbf{Y^{88}}$	Α	$\beta + (0.19), K(99.8)$	105d	0.83	ē	9.56	
	Y ⁹⁰	A	$\beta - \beta$	62h	2.20	g	7.98	J3, B13, L2
	Y 91 V 92	A	β	51d 354	1.55	g,	8.08	Lo, 04, L2, W9, A5
	\mathbf{V}^{93}	Ă	р— 8—	10h	3.1	8 g'	7.83	
	Y ⁹⁴	B	β-	16.5m	5.4	°g'	7.32	B25
40	Zr ⁸⁷	В	$\beta +, K$	2.0h	2.0	ğ'	5.50	R3
	Zr ⁸⁹	A	$\beta + , K$	80.1 <i>h</i>	1.07	g,	6.26	600
	Zr ³⁵ Zr95	B	β <u>-</u>	$\sim 5 \times 10^{\circ} y$	1.000 (1.4)	g	11.48	\$29
	24	л	β	054	0.394 (98.6)	er	9.90 6.62	
	Zr ⁹⁷	в	β-	17.0 <i>h</i>	2.2	g'	7.43	
	Zr	F	$\beta -$	90m	1.5	g'	5.71	
44	Zr	E	$\beta - \tau$	70h	1.1	g'	6.86	W.C
41	IND ³⁰ Nh92	A -	p+, K	15.0 <i>n</i> 10.1 <i>d</i>	1.2	e ~'	5.07	K0
	Nb^{92}	A	β	21.6h	1.2	g'	6.50	
	Nb^{94m}	Â	$\beta - (0.01)$, I.T.	6.6m	1.3	ĝ'	8.34	
	Nb^{95}	Α	β-	35d	0.146	e	4.97	H9

TABLE I.—Continued.

.

ARNOLD M. FEINGOLD

TABLE I.—Continued.

	TABLE I.—Continued.										
	Isotope	~			E	nergy	Final				
Z		Class	Decay	Half-life	(Mev)	(%)	state	Log ft	References		
41	Nb ⁹⁶ Nb ⁹⁷	A A	$\beta - \beta - \beta - \beta$	23.35h 68m	0.67 1.4		e o'	5.61 5.49	K7		
42	Mo^{91m}	Ä	$\ddot{\beta}$ +	15.5m	3.7		s g	5.72	D9		
	Mo^{91}	A	$\beta +$	75s	2.6		Ž ,	3.97	D9		
	Mo^{99}	A	$\beta -$	67 <i>h</i>	1.215	(75)	e	7.15	M38		
	Mo ¹⁰¹	Α	6-	14.6m	~ 2.2	(23) (~ 30)	e	0.22 6.14			
					~1.0	(~70)	e	4.43			
43	Tc^{93m}	B	$\beta + \beta +$	4.5m	4.3		g'	5.47	K8		
	TC ⁹³ Tc ⁹⁴	B	$\beta + (7), K(93)$ $\beta + (76), K(24)$	2.7h	0.83	(-,75)	e	4.98	K8 M37		
	10	\mathbf{n}	p + (10), R(24)	52.5m	0.56	(~ 13)	e	4.58	14157		
	Tc^{95m}	Α	$\beta + (\sim 0.4), K(99.6)$	60 <i>d</i>	0.40	/	g	7.56	M37 .		
	Tc ⁹⁸	F	$\beta - \beta$	2.8d	1.3		g'	7.15	M37		
	1 C ³⁰ Tc ¹⁰⁰	B	β β	5 X 10°Y	23		g'	12.74	K9		
	Tc ¹⁰¹	Ã	$\beta -$	14.0m	1.3		e	4.69			
44	Ru ⁹⁵	Α	$\beta + (\sim 50), K(\sim 50)$	1.65h	1.1	(1.0)	g'	4.72*			
	Ru ¹⁰³	A	$\beta -$	42d	0.680	(10)	g	8.31	H10, M14, M15, S13		
	Ru ¹⁰⁵	В	<i>β</i>	4.4h	1.3	(90)	e g'	5.01			
	Ru ¹⁰⁶	Ā	$\beta -$	1.0y	0.0392		g	4.29	A5		
	Ru ¹⁰⁷	D	$\beta -$	4m	4		<i>g</i> ',	6.18			
45	Rh Rh	E	$\beta + \beta - 2$	32m 54	1.80		g'	4.85	上3 下3		
	Rh ¹⁰⁰	B	β_{+}, β_{-} $\beta_{+}(5), K(95)$	19.4h	3.0		8 g'	4.83	ES		
	Rh ¹⁰⁰	B	$\beta + (25), K(75)$	21h	1.3		e?	6.16	E3		
	Rh ¹⁰²	Α	$\beta - (50), \beta + (50), K$	210d	$1.04(\beta)$	-)	g',	9.37	M16		
	Rh104	Α	8-	44.0	$\frac{1.13(\beta)}{2.6}$	+)	g' g?	8.30 4.67			
	Rh ¹⁰⁵	Ä	$\beta - \beta$	36h	0.78		g'	6.11			
	Rh ¹⁰⁶	Α	$\beta-$	30s	3.55	(82)	g	5.16	J4		
	DL	F	·	01	2.30	(18)	e	5.02			
	Rh ¹⁰⁷	D	β- β-	9n 24m	1.3		g'	0.52 4.84			
16	Dd101	P	R = (10) K(00)	0%	∫ 2.3		g	₹7.29			
40	T U ²⁰⁰	Д	$p_{+}(10), \mathbf{K}(90)$	91	\or 0.53	E	g'	15.08*	E3		
	Pd ¹⁰⁹ Pd ¹¹¹	A	$\beta - \beta - \beta - \beta$	13h 26m	0.950		e? ď	5.98	S14 ,		
	Pd^{112}	Â	β-	20m 21h	0.2		· g	3.89			
47	Ag ¹⁰⁶	Α	$\beta +$	24.5m	2.04		g	4.87			
	Ag ¹⁰⁸	A	β-	2.3m	2.8		g'	5.32	C1 F		
	Ag ¹¹⁰ Ag ¹¹⁰ m	A	β β	24s 270d	2.80	(~38)	L g	4.00 8.26	S15 S15 M6 E4 G2 R5		
			P	2100	0.087	(~58)	e	5.52	510, 110, 11, 01, 10		
	Ag111	A	$\beta -$	7.5d	1.06	• •	g.	7.32	H11		
	Ag ¹¹² A g ¹¹³	A	$\beta - \beta - \beta$	3.2h	3.6		gʻ	7.72	T) 2		
	Ag ¹¹⁵	A	β β	20m	$\sim^{2.1}$		g g	6.39	D_2^2		
48	Cd^{105}	в	β+	57m	1.5		°g'	4.85	G2		
	Cd^{107}	A	$\beta + (0.3), K(99.7)$	6.7 <i>h</i>	0.32	(00)	e	4.84	C4 M17 H12 C5		
	Cum	A	ρ-	2.54	1.15	(~ 80) (~ 20)	e	6.67	C4, M17, H12, C3		
	Cd^{115m}	Α	$\beta-$	43d	1.67	. 20)	g	8.86	H12, S16, C5		
40	Cd ¹¹⁷	A	$\beta - \beta$	2.72h	$\sim^{1.5}$		<i>g</i> ′,	6.09	1410		
49	In ¹⁰⁸	В R	р+ в+	00m 55m	2		g'	4.99 5 22	M18		
	${ m In^{109}}$	B	$\beta + (4), K(96)$	5.2h	2.7		g	7.74	T8		
	In ¹⁰⁹	В	$\beta + (\sim 11), K(\sim 89)$	4.30h	0.75		g'	4.75	M18		
	In ¹¹⁰	A	$\beta+, K$	65 <i>m</i>	2.3	1.5	e	5.49			
	III	Б	$\beta = (10), \Lambda(23), \beta = (59)$	9111	1.43(p - 1.0(B - 1.0	+) ·)	g g	4.40	10		
	In ¹¹⁴	A	$\beta - (96), K(4)$	72s	1.98		g	4.48	B22, M6, M19, M20		
	In ^{115m}	A	$\beta - (10), \text{ I.T.}(90)$	4.5h	0.830		g	6.36	B14		
	In ¹¹⁶ m	A	β- 6-	138 53 93m	2.8	(51)	g	4.33 5.26	S9, S28		
				00.2011	0.87	(28)	e	5.29			
	T., 117		0	4.4.17	0.60	(21)	e	4.85			
	1n ¹¹ Tn ¹¹⁸	A	β- 8-	117m 4 5m	1.73		g,	0.22	D3		
	In119	Â	$\beta - \beta - \beta$	17.5m	2.7		б g	6.17	$\widetilde{\mathbf{D3}}$		
50	Sn ¹¹¹	A	β +(3.7), K(96.3)	35.0m	1.45		g'	5.62	H13		
	Sn ¹²¹ Sn ¹²¹	A	$\beta - \beta$	28h 36m	0.383		g	5.03	L7, D4 N1		
	511	D.	<i>p</i> -	30 <i>m</i>	~2.5		g	0.37	TNT		

7.	Isotope A	Class	Decav	Half-life	Ei (Mey)	nergy (%)	Final	Log ft	References
50	 Sn ¹²³	A	β-	136d	1.42	. (70)	g	9.10	L7. K10
00	Sn ¹²³	Ä	$\tilde{\beta}$ —	39.5m	1.26		e	5.22	D4, L7
	$Sn^{>120}$ $Sn^{>120}$	D	$\beta - \beta$	$\sim 80h$	0.76		g	6.49	
	Sn>120	E	$\beta - \beta - \beta$	17.5 <i>a</i> 7.0 <i>d</i>	1.7		g'	8.34 8.24	
	Sn ¹²⁵	B	$\tilde{\beta}$ –	9.9d	2.33		g	8.84	L7, K10
	Sn ¹²⁵	Α	$\beta -$	9.8m	2.04		e?	>5.44	L7, D5
	~ ~ ~ ~	_			(07)		e	>4.49	
	Sn ¹²⁶	D	$\beta-$	70m	(or 2.8		g	or 6.87	
51	Sb116	A	$\beta +, K$	60m	1.45		g	4.90	T4
	Sb ¹²⁰	A	$\beta + \beta +$	5.5m 17m	3.1 1.5		g,	4.70	
	$\mathrm{Sb^{122}}$	Α	$\beta -$	2.8d	1.94		g	>7.99	
	Sh124	٨	<i>Q</i>	604	1.36	(21)	e	>7.37	
	30	А	ρ	004	1.62	(21)	e	10.09	
					1.00	(9)	e	9.26	
					0.65	(44)	e	7.89	
	Sb^{124m}	Α	β-	1.3m	0.48 3.2	(18)	e	7.84 5.37	
	Sb ¹²⁵	Ā	β-	2.7y	0.616	(18)	e	9.41	K11, S17, M22, J4
					0.299	(49)	e	7.93	
	C1 196	ъ	0	(0)	(2.8	(33)	e,	(6.82	
	SD ¹²⁰	D 	β-	00 <i>m</i>	or 0.7		g	or 4.49	
	Sb ^{>125}	E	$\beta - \beta$	28d	1.86		g',	8.92	
52	Te ¹²⁷	A	β	9.3h	0.76		g	5.61	
	Te ¹²⁹	A	β —	72m	1.8		g'	6.13	
53	Te ¹³² T120	B	β β	77 <i>h</i> 30m	0.36		e?	5.42	N/94
55	I ¹²¹	Ă	β+	1.8h	1.2		g'	5.03	M24 M24
	I ¹²²	В	$\beta+, K$	4 <i>m</i>	2.9	(g'	4.67	M24
	I ¹²⁴	Α	β +(30), K(70)	4.5d	2.20	(51)	е	8.05	M23, M24
					0.67	$(5)^{(11)}$	e	6.75	
	I ¹²⁶	Α	$\beta-$	13.0d	1.268	(27)	g	8.52	M23
	T128	А	B = (95), K(5)	24 99m	0.85	(73) (93)	e	7.40 5.94	R2
	-		μ (>0); == (0)		1.59	(7)		6.65	
	I ¹³⁰	Α	$\beta-$	12.6h	1.03	(60)	e	6.45	
	I ¹³¹	A	β	8.0 <i>d</i>	0.606	(85)	e	6.66	K11, M25, F6, O5
	T100			o 11	0.306	(15)	e	6.42	
	T195	В	β-	2.4 <i>h</i>	2.2		e	>6.79	
	I ¹³³	Α	β	22h	1.4		g'	6.98	
	I^{135}	Α	$\beta -$	6.7h	1.40	(25)	ē	7.07	
					1.00	(40)	e e	0.30 5.22	
	I ¹³⁶	D	β	86s	6.5	(00)	e?	6.81	S18
54	Xe ¹³³	A	β	5.27d	0.315		g',	5.48	M26, T5
	Xe ¹³⁷	B	β-	3.8m	0.93 4		g g'	5.94 6.31	15
55	Cs127	Ā	β+	5.5h	1.2		°g'	5.56	F7
	Cs^{134m}		β -, I.T.	3.15h	2.4	(70)	g	>7.10	N/4
, í	Ca	А	μ—	29	0.00	(30)	e	6.47	141.4
	Cs135	в	$\beta - \beta$	$2.1 \times 10^{6} y$	0.21		g	13.09	S19
	Cs130	A	$\beta - \beta -$	13d 33y	~ 0.3	(5)	e	5.83 12.16	P6 04 1.2 A5
	03	11	P		0.52	(95)	8	9.62	10, 04, 12, 115
= 6	Cs^{138}	A	$\beta - \beta$	33m	2.68		g',	6.53	T5
50	Ba ¹⁴⁰	A	р— 8—	12.8d	1.022	(60)	g.	7.88	M19. B15
			· · · · ·		0.48	(40)	ê	6.91	,
57	La ¹³³ La ¹³⁶	A	$\beta+, K$ $\beta\perp(33) K(67)$	4.0h	1.2		g'	5.48	N2 N2 R6
	La^{140}	A	$\beta - \beta - \beta$	9.3m 40h	2.1	(10)	8 e	9.13	B15, C6
					1.67	(20)	е	8.32	•
	T.a141	Δ	8-	374	1.32	(70)	e	7.36	
	10	43	P -	0.11	2.7		δ	7. J T	

TABLE I.—Continued.

	Isotope A	Class	Decay	Half-life	Er (Mev)	nergy (%)	Final state	Log ft	References
58	Ce ¹⁴¹	Α	β-	33.1d	0.56	(30)	g	7.72	S20, T6, M27, W10
	a			221	0.42	(70)	e	6.93	004
	Ce ¹⁴³	A	β-	33h 2001	1.1		е	0.80	S21
50	Ce ¹⁴⁴	A	$\beta - \kappa(60)$	300 <i>a</i>	2.4		g,	7.51	M 28 W 11
59	Pr ¹⁴⁰ Pr ¹⁴²	A	$\beta + (40), \Lambda(00)$ $\beta -$	1.5m 19.3h	2.4	(80)	g	4.15	M29, 14, R7
			r -	10 5 1	0.66	(20)	e	6.55	
	Pr ¹⁴³	A	$\beta -$	13.74	0.932		g,	7.61	T6, S20, B16, F8, M27
	Pr ¹⁴⁴ D-145	A	β	1/m	2.9		gʻ	0.40	M28
	Pr ¹⁴⁵ D-146	D	β-	4.51	3.4		g,	6.60	
60	Nd141	B	$\beta \perp (2) K(98)$	145m	07		8	5.02	W11
00	Nd147	A	$\beta - \beta - \beta - \beta$	11d	0.78	(67)	e	7.43	M30
			1-		0.17	(33)	e	5.55	
	Nd^{149}	в	$\beta -$	2.0h	1.6	•••	g'	6.30	
	$\mathrm{Nd^{150}}$	\mathbf{E}	$\beta -$	$\sim 5 \times 10^{10}$ y	0.011		g'	13.73	,
61	Pm	E	$\beta -$	2.7h	2		g'	0.83	
	Pm D 147	E	β-	10a	1.7		gʻ	8.70	
	Pm ¹⁴⁸	A	р— 8—	5.79	25		g,	8 80	Lo, AJ, LJ
	Pm149	A	β β	47h	1.1		8	7 07	M31
62	Sm151	A	р 8—	$\sim 500v$	0.076		σ ?	8.27	K12. A5
01	Sm ¹⁵³	Ä	β	47 <i>h</i>	0.80	(33)	8. g	7.09	H16
			•		0.68	(67)	e	6.52	
	Sm^{155}	в	$\beta -$	21 <i>m</i>	1.8		g'.	5.79	
	Sm156	A	$\beta - \mu(10)$	$\sim 10h$	~ 0.8	· ,	g'	5.93	TT14 TT12
63	Eu^{152}	A	$\beta = (82), K(18)$	9.2h	1.88		g,	7.39	H14, H10
	Eu ¹⁵²	A	$\beta = (20), \Lambda(74)$	5.5y 5.4a	0.75		g'	10.23	H14 H14 H16
	Eu ¹⁰²	A	$\beta = (>95), \Lambda(<5)$	5.49 1 7	0.20		g,	7 10	H14, H10 H14
	Eu ²⁰⁰	A	р 8	15.4d	2.5	(40)	g	9.78	
	Lu	21	μ	10.10	0.5	(40)	Š E	7.03	
	Eu ¹⁵⁷	$\mathbf{D}_{\mathbf{n}}$	β-	15.4h	~ 1.8	(~ 25)	g	8.04	
	F12>154	п	<i>R</i>	60m	~ 1.0 ~ 2.5	(~ 75)	. e	6.82	
64	Gd159	B	β	18.0h	0.95	1	8 01	6.48	B17
01	$\mathbf{\tilde{G}}^{\mathrm{d}^{161}}$	$\tilde{\mathbf{B}}$	Б́—	3.6m	1.5		s g'	4.74	B17
65	Tb154	\mathbf{D}	$\beta +, K$	17.2h	2.6		°g'	7.03	
	$\mathrm{Tb^{160}}$	Α	β-	76d	0.860	(43)	e	8.68	B18, C7
					0.521	(41)	е	7.99	
	TL 161	Ē	0	1201	0.390	(16)	e	8.00	
	Th161	B	β	67d	0.23		e a'	6 49	B17
66	Dv^{165}	Ă	в—	145m	1.25	(~ 80)	8 0	6.18	21
	-,				0.88	(~ 10)	e	6.52	
					0.42	(∼10)́	e	5.44	
	Dy^{166}	A	$\beta - \mu$	80h	0.4		g',	5.90	K13, B23
67	HO102, 101	C	$\beta +, \kappa$	4.5 <i>h</i>	2.0		g',	6.22	
	F10 ¹⁰	D	р— 8—	33M 2774	1.84	(00)	g	4.59	C8 K13 A7 C6 S30
	110-00	A.	μ	21.110	0.55	(89)	er	6.88	Co, K15, 117, Go, 550
68	Er ¹⁶⁹	в	β-	9.4d	0.33	(11)	ę	6.10	
	Er ¹⁷¹	в	β-	7.5h	1.49	(6)	g	8.14	
					1.05	(71)	e	6.50	
	17.171	13	0	207	0.67	(22)	e.	6.31	
60	Er171	E. D	$\beta - K(00.5)$	20 <i>n</i>	0.0		g',	5.92	11/10
09	$1 m^{100}$ Tm ¹⁷⁰	Б Л	$\beta + (0.3), \Lambda (99.3)$	1.11	0.070	(00)	g	8.23	C3 F0 A5 S22 C4
	T III	A	ρ-	1270	0.886	(90)	g	9.90	GJ, F9, 115, 522, G4
	Tm^{171}	в	β-	500d	0.10	(10)	g'	6.23	
	Yb ¹⁷⁵	Α	β-	99h	0.50		g	>6.39	
		_ '			0.13		e	>4.52	
71	Yb ¹⁷⁷	B	$\beta - \kappa$	2.4h 2.15d	1.2		g'	6.11	
/1	Lu ²¹⁰ T 11 ¹⁷⁶	Δ 	p_{\pm}, K $B_{\pm}(33) K(67)$	2.15a 2.4×10 ¹⁰ √ {	0.215		8	£ 18.02	
	T 178m	л л	$p = (00), \mathbf{n}(0)$	2.1/10 9	or 0.4		8	\or 18.91	
	Lu ¹⁰	A	р— 8—	5.4n 6.9d	0.405	(65)	g	0.22	D6 C8 A8
		11	P	0.24	0,366	(17)	s e	6.95	20, 00, 110
					0.169	(18)	e	5.86	
72	Hf ¹⁸¹	A	$\beta -$	46d	0.405	• •	е	7.19	C9, M17, B19, C10, J5, L9
77	Ht ¹⁶¹	B	$\beta - \beta$	5.5h	0.45		e	5.04	B19 C11 D20 17
13	18.04	A	ρ	1250	0.53		е	8.01	C11, B20, J7

TABLE I.—Continued.

z	Isotope A	Class	Decay	Half-life	Energy (Mev) (%)	Final state	Log ft	References
74	W ¹⁸⁵	A	β-	73.2	0.428	g	7.50	
	W ¹⁸⁷	А	$\beta -$	24.1h	1.33 (30)	g	7.88	B21
75	Re184	Α	$\beta - K$	50d	0.03 (70)	e a'	>6.35	
15	Re ¹⁸⁶	Ă	$\beta_{\beta-}$	91h	1.073	s e	7.62	L2, G3, B20
	Re187	A	$\beta -$	4×10^{12} y	0.043	g'	17.73	
-	Re ¹⁸⁸	A	$\beta -$	18h	2.10	e?	8.00	B20
70	Os193	A	β β	15a 32h	0.142	e e	5.34 7.29	
77	Ir^{192}	Â	$\beta -$	70d	0.67	e	8.20	e t
	Ir^{194}	Α	$\beta-$	19 <i>h</i>	2.2	g?	8.14	· · · · · · · · · · · · · · · · · · ·
78	Pt ^{197, 199}	C D	β –	82 <i>d</i>	0.54	е	7.96	C12]
	Pt197 D+199	B A	β-	18h 31m	0.7	e a'	6.30	C12
79	Au ¹⁹²	B	$\beta = \beta =$	4.0h	1.9	g'	7.45	W13
••	Au ¹⁹⁴	B	$\beta + (3?), K(97?)$	39.5h	1.8	°g'	7.86	W13, S23
	Au ¹⁹⁶	A	$\beta - (4.5), K(95.5)$	5.6d	0.30	e	7.34	W13, S23
	Au ¹⁹⁸	A	$\beta = (82), K(18)$	2.69d	0.960	е	7.46	S23, S24, L10, L2, S9, D10
	Au ¹³⁵ A ₁₁ 200, 202	D	р— 8—	5.54 48m	2.5	e a'	5.80 7.03	M14, B20
80	Hg^{203}	Ã	$\beta - \beta$	43.5d	0.208	e e	6.40	S25, S26
	Hg^{205}	А	$\beta -$	5.5m	1.62	g	5.39	
81	Tl^{204}	B	β-	2.7 y	0.783	g	9.69	S27
	11 ²⁰⁰	A	β	4.23m	1.7	g,	5.38	
	ThC ^{1/208}	Â	β-	3.1m	1.792	8 e	5.33	M32
	T1209	Ã	β-	2.2m	1.8	g'	5.19	
~ ~	RaC''210	A	$\beta -$	1.32m	1.7	g'	4.87	
82	Pb^{209} D $a D^{210}$	A	$\beta - \beta$	3.32h	0.68	g	5.64	
	AcB^{211}	A	р— 8—	$\frac{22y}{361m}$	1.40 (85)	σ	6.02	
	. ICD		P	00.111	0.5 (15)	e	5.28	
	$\mathrm{Th}\mathrm{B}^{212}$	А	$\beta -$	10.6h	0.569 (12)	g	6.81	M33, G7
	D a B214	- Δ	ß	76.8.	0.331 (88)	e	5.17	
83	Ra E ²¹⁰	A	$\beta = (\sim 100) \alpha(\sim 0)$	20.8m 5.0d	1 17	e: a	8.05	I.2 M34
00	ThC^{212}	Â	$\beta - (66), \alpha(34)$	60.5m	2.251	s g	7.22	M33
	Bi ²¹³	Α	$\beta - (98), \alpha(2)$	47m	1.3	g'	6.03	
07	RaC ²¹⁴	A	$\beta - (\sim 100), \alpha (\sim 0)$	19.7m	3.15	g'	7.12	
87	ACK220	A	β-	21m	$(\sim 0.2$	e	5.05	
88	Ra^{225}	Α	$\beta -$	14.5d	or <0.05	g'	$\int or < 4.24$	
	$\mathrm{MsTh}_{1^{228}}$	Α	$\beta -$	6.7y	0.053?	g'	6.54	L11
89	Ac ²²⁷	A	$\beta - (99), \alpha(1)$	21.7y	< 0.01	g'	< 4.98	T 11
00	MSIn2 ²²⁰ UV231	A	β β	0.13h 25.5h	0.21	e	7.35	LII K14
90	Th ²³³	Ă	β—	23.5m	1.2	, g	5.77	KI T
	$UX_{1^{234}}$	Α	$\beta -$	24.1d	0.205 (80)	g	6.49	
91	Pa ²³⁰	Α	$\beta - (\sim 10), K(\sim 90), \alpha(\sim 0)$	17 <i>d</i>	0.110 (20) 1.1	e g'	6.26 9.68	
	Pa ²³²	Α	β-	1.4d	~ 0.28	е	5.64	
	Pa ²³³	A	β —	27.4d	0.23	e	6.63	
	UZ^{234}	A	$\beta-$	6.7 <i>h</i>	1.2 (10)	g	8.03	
	$\mathrm{UX}_{2^{234m}}$	А	$\beta -$	1.2 <i>m</i>	$\begin{array}{ccc} 0.43 & (90) \\ 2.32 & (95) \\ 1.52 & (5) \end{array}$	e g e	5.59 6.17	
	Pa ²³⁵	A	$\beta -$	23.7m	1.4	g'	6.04	M36
92	U237 T T239	A	$\beta - \beta$	6.63d	0.23	e	6.04	M35
	0	п	р <i>—</i>	23.5m	1.12 (97)	e e	5.72	
93	Np^{236}	А	$\beta -$	22h	0.5	g'	6.28	
	Np^{238}	Α	$\beta -$	2.10d	1.39	e	>8.18	
	Np.239	Δ	R	721	0.22	e	> 5.50	
	TAD	л	μ-	2.54	0.676 (6)	в e	8.33	
					0.403 (42)	e	6.76	
04	D.,241		ø	- 10	0.288 (51)	e ~'	6.20	
94 95	Am ²⁴²	AA	$\beta - \beta - \beta$	$\sim 10y$ 16h	~ 0.015 0.63	g ø'	5.24 6.52	G5
	Am ²⁴²	Ā	$\beta - (\sim 100), \alpha(\sim 0)$	$\sim 400y$	~ 0.5	°g'	11.53	

TABLE I.—Continued.

is followed by an asterisk. For a great number of the nuclei tabulated, the particle spectrum has not been analyzed for complexity, and only the end point of the spectrum has been reported. For these nuclei, therefore, the ft values really represent lower limits to the true values.

The last column in the table contains the references consulted, which have appeared after Seaborg and Perlman's isotope compilation. These references are listed in the bibliography. It is hoped that the bibliography is reasonably complete to June 1, 1950.

ACKNOWLEDGMENTS

I wish to express my appreciation to Professor E. P. Wigner, who suggested the preparation of this table, for his continued interest and kindly encouragement during the course of this work. I am deeply indebted to Professor E. Feenberg and Dr. G. Trigg of Washington University for furnishing me with a copy of their own ft table in addition to a copy of their manuscript, and also for much invaluable advice and criticism. I would also like to thank Professor John Blatt of the University of Illinois for supplying me with a table of *f*-values.

BIBLIOGRAPHY

- A1. Allen, Paneth, and Morrish, Phys. Rev. 75, 570 (1949).
- A2. Angus, Cockroft, and Curran, Phil. Mag. 40, 522 (1949).
- A. W. Alvarez, Phys. Rev. 75, 1815 (1949). A3.
- A. W. Alvarez, Phys. Rev. 75, 1127 (1949). A4.
- H. M. Agnew, Phys. Rev. 77, 655 (1950). A5.
- A6. D. E. Alburger, Phys. Rev. 78, 629 (1950).
- Antonieva, Bashilov, Djelepov, and Zolotavin, Doklady Akad. Nauk S.S.S.R. 70, 397 (1950). A7.
- A8. Antonieva, Bashilov, Djelepov, and Zolotavin, Doklady Akad. Nauk S.S.S.R. 70, 597 (1950).
- Byatt, Rogers, and Waltner, Phys. Rev. 75, 909 (1949). B1.
- P. R. Bell and J. M. Cassidy, Phys. Rev. 77, 301 (1950). B2.
- B3. H. Brown and V. Perez-Mendez, Phys. Rev. 75, 1286(A) (1949).
- B4. Blaser, Boehm, and Marmier, Phys. Rev. 75, 1953 (1949).
- B5. H. Bradner and J. D. Gow, Phys. Rev. 74, 1559(A) (1948).
- H. Brown and V. Perez-Mendez, Phys. Rev. 75, 1276 (1949). B6.
- B7. Bell, Weaver, and Cassidy, Phys. Rev. 77, 399 (1950).
- A. Bruner and M. Langer, Phys. Rev. 79, 236(A) (1950). B8.
- B9. R. Bouchez and G. Kayas, J. phys. radium 10, 110 (1949).
- Boehm, Blaser, Marmier, and Preiswerk, Phys. Rev. 77. B10. 295 (1950).
- B11. R. A. Becker and F. S. Kirn, Phys. Rev. 76, 182(A) (1949).
- B12. E. Berne, Phys. Rev. 77, 568 (1950).
- B13. Braden, Slack, and Shull, Phys. Rev. 75, 1964 (1949).
- B14. Bell, Ketelle, and Cassidy, Phys. Rev. 76, 574 (1949).
- B15. Beach, Peacock, and Wilkinson, Phys. Rev. 76, 1624 (1949).
- Bruner, Langer, and Moffat, Phys. Rev. 77, 747(A) (1950). F. D. S. Butement, Phys. Rev. 75, 1276 (1949). B16.
- B17.
- B18. Buison, Blair, and Saxon, Phys. Rev. 77, 403 (1950).
- B19. S. B. Burson and K. W. Blair, Phys. Rev. 78, 89(A) (1950).
- B20. Beach, Peacock, and Wilkinson, Phys. Rev. 76, 1585 (1949).
- B21. Beach, Peacock, and Wilkinson, Phys. Rev. 75, 211 (1949).
- B22. F. Boehm and P. Preiswerk, Helv. Phys. Acta 22, 331 (1949).
- B23. F. D. S. Butement, Proc. Phys. Soc. (London) A63, 532 (1950)
- B24. Bouchez, de Groot, Nataf, and Tolhoek, Physica 15, 863 (1949).

- B25. L. J. Brown and S. Katcoff, J. Chem. Phys. 17, 497 (1949).
- B26. E. Bleuler and W. Zünti, Helv. Phys. Acta 19, 375 (1946).
- C1.
- Curran, Angus, and Cockroft, Phil. Mag. 40, 53 (1949). C2. Curran, Angus, and Cockroft, Phys. Rev. 76, 853 (1949).
- C3. S. D. Chatterjee and N. K. Saha, Indian J. Phys. 22, 515
- (1948).C4. Cork, Shreffler, and Fowler, Phys. Rev. 74, 1657 (1948).
- Cork, Rutledge, Stoddard, Branyan, and LeBlanc, Phys. C5.
- Rev. 79, 238(A) (1950).
- C6. Cork, Keller, Rutledge, and Stoddard, Phys. Rev. 76, 1886 (1949).
- C7. Cork, Branyan, Rutledge, Stoddard, and LeBlanc, Phys. Rev. 78, 304 (1950).
- Cork, Keller, and Stoddard, Phys. Rev. 76, 986 (1949) C8.
- K. Y. Chu and M. L. Wiedenbeck, Phys. Rev. 75, 226 C9. (1949).
- C10. Cork, Stoddard, Rutledge, Branyan, and LeBlanc, Phys. Rev. 78, 299 (1950).
- C11. Cork, Keller, Sazynski, Rutledge, and Stoddard, Phys. Rev. 75, 1778 (1949).
- C12. Cork, Stoddard, Rutledge, Branyan, and LeBlanc, Phys. Rev. 77, 843 (1950).
- C13. C. S. Cook and G. E. Owen, private communication by E. Feenberg and G. Trigg.
- C14. A. L. Cockroft and G. M. Insch, Phil. Mag. 40, 1014 (1949).
- D1. M. Deutsch and A. Hedgran, Phys. Rev. 75, 1443 (1949).
- R. B. Duffield and J. D. Knight, Phys. Rev. 75, 1613 (1949). D2.
- D3. R. B. Duffield and J. D. Knight, Phys. Rev. 75, 1967 (1949).
- R. B. Duffield and L. M. Langer, Phys. Rev. 76, 1272 D4. (1949).
- D5. R. B. Duffield and L. M. Langer, Phys. Rev. 77, 743(A) (1950).
- D. G. Douglas, Phys. Rev. 75, 1960 (1949). D6.
- D7. B. C. Djelepov and A. V. Kudryavtseva, Zhur. Eksp. i Teoret. Fiz. 19, 761 (1949).
- D8. B. C. Djelepov, Zhur. Eksp. i Teoret. Fiz. 19, 784 (1949).
- D9. R. B. Duffield and J. D. Knight, Phys. Rev. 76, 573 (1949).
- D10. Djelepov, Bashilov, Zolotavin, and Antonieva, Doklady Akad. Nauk S.S.S.R. 64, 803 (1949).
- E1. Engelkemeier, Hamill, Inghram, and Libby, Phys. Rev. 75, 1825 (1949).
- E2. Emmerich, Ballweg, and Kurbatov, Phys. Rev. 76, 1891(A) (1949).
- E3. D. T. Eggen and M. L. Pool, Phys. Rev. 75, 1464(A) (1949).
- E4. W. S. Emmerich and J. D. Kurbatov, Phys. Rev. 75, 1446 (1949).
- H. W. Fulbright and J. C. D. Milton, Phys. Rev. 76, 1271 F1(1949).
- F2. L. Feldman and C. S. Wu, Phys. Rev. 78, 318(A) (1950).
- L. Feldman and C. S. Wu, Phys. Rev. 75, 1286(A) (1949). F3.
- J. J. Floyd and L. B. Borst, Phys. Rev. 75, 1106 (1949). F4.
- F5. L. Feldman and C. S. Wu, Phys. Rev. 76, 697 (1949).
- I. Feister and L. F. Curtis, Phys. Rev. 78, 179 (1950). F6.
- Fink, Reynolds, and Templeton, Phys. Rev. 77, 614 (1950). F7.
- F8. Feldman, Lidofsky, Macklin, and Wu, Phys. Rev. 76, 1888 (1949).
- J. S. Fraser, Phys. Rev. 76, 1540 (1949). F9.
- F10. W. R. Faust, Phys. Rev. 78, 624 (1950).
- F11. E. Feenberg and G. Trigg, Revs. Modern Phys. 22, 399 (1950).
- L. Gross and D. R. Hamilton, Phys. Rev. 78, 318(A) (1950). G1.
- G2. Gum, Thompson, and Pool, Phys. Rev. 76, 184(A) (1949).
- G3. P. J. Grant and R. Richmond, Proc. Phys. Soc. (London) A62, 573 (1949)
- R. L. Graham and G. H. Tomlin, Nature 164, 278 (1949). G4.

- Grundlund, Harvey, Moss, and Yaffe, Phys. Rev. 78, 69 G5. (1950).
- P. J. Grant and J. M. Hill, Nature 163, 524 (1949). G6.
- G7. L. V. Groshev and L. Ya. Shavtvalov, Doklady Akad. Nauk S.S.S.R. 68, 257 (1949).
- G. C. Hanna and B. Pontecorvo, Phys. Rev. 75, 983 (1949). H1.
- J. E. R. Holmes, Proc. Phys. Soc. (London) A62, 293 (1949). H2.
- H3. W. F. Hornyak and T. Lauritsen, Phys. Rev. 77, 160 (1950).
- Hughes, Eggler, and Huddleston, Phys. Rev. 75, 515 (1949). H4.
- Hughes, Eggler, and Alburger, Phys. Rev. 77, 726 (1950). H5.
- H6. Hudspeth, Swann, and Heydenburg, Phys. Rev. 77, 736 (1950).
- H7. Haslam, Katz, Johns, and Moody, Phys. Rev. 76, 704 (1949).
- H8. R. W. Hayward, Phys. Rev. 78, 87(A) (1950).
- H9. J. E. Hudgens, Jr., and W. S. Lyon, Phys. Rev. 75, 206 (1949).
- H10. N. Hole, Arkiv Mat., Astron. Fysik 36A, No. 2 (1948).
- H11. Helmholz, Hayward, and McGinnis, Phys. Rev. 75, 1469(A) (1949).
- H12. R. W. Hayward and A. C. Helmholz, Phys. Rev. 75, 1469(A) (1949).
- H13. R. A. Hinshaw and M. L. Pool, Phys. Rev. 76, 358 (1949).
- H14. Hayden, Reynolds, and Inghram, Phys. Rev. 75, 1500 (1949)
- H15. Huber, Rüetschi, and Scherrer, Helv. Phys. Acta 22, 375 (1949).
- H16. J. M. Hill and L. R. Shepherd, Proc. Phys. Soc. (London) A63, 126 (1950).
- T1. Jenks, Ghormley, and Sweeton, Phys. Rev. 75, 701 (1949).
- T2. W. M. Jones, Phys. Rev. 76, 855 (1949).
- T3. E. N. Jensen and L. S. Laslett, Phys. Rev. 75, 1949 (1949).
- E. T. Journey, Phys. Rev. 76, 290 (1949). J4.
- J5. E. N. Jensen, Phys. Rev. 76, 958 (1949).
- J. V. Jelley, Proc. Phys. Soc. (London) A63, 538 (1950). T6.
- S. Jnanananda, J. Sci. Ind. Research (India) 8B, 147 (1949). 17.
- K1. W. J. Knox, Phys. Rev. 74, 1192 (1948).
- N. L. Krisberg and M. L. Pool, Phys. Rev. 75, 1693 (1949). K2.
- Kubitschek, Longacre, and Goldhaber, Phys. Rev. 77, K3. 742(A) (1950).
- J. D. Kurbatov and D. Gideon, Phys. Rev. 75, 328(A) K4. (1949).
- K5. Koch, Kofoed-Hansen, Kristensen, and Drost-Hansen, Phys. Rev. 76, 279 (1949).
- K6. D. N. Kundu and M. L. Pool, Phys. Rev. 76, 183(A) (1949).
- K7. D. N. Kundu and M. L. Pool, Phys. Rev. 75, 1690 (1949).
- D. N. Kundu and M. L. Pool, Phys. Rev. 74, 1775 (1948). K8.
- B. H. Ketelle and J. W. Ruch, Phys. Rev. 77, 565 (1950). K9.
- K10. Ketelle, Nelson, and Boyd, Phys. Rev. 79, 242(A) (1950).
- K11. Kern, Mitchell, and Zaffarano, Phys. Rev. 76, 94 (1949).
- K12. B. H. Ketelle and G. W. Parker, Phys. Rev. 76, 1416 (1949).
- K13. B. H. Ketelle, Phys. Rev. 76, 1256 (1949).
- K14. G. B. Knight and R. L. Macklin, Phys. Rev. 75, 34 (1949).
- K15. D. N. Kundu and M. L. Pool, Phys. Rev. 78, 488 (1950).
- K16. E. J. Konopinski, Revs. Modern Phys. 15, 209 (1943). K17. M. Kemmerich, Z. Physik 126, 399 (1949).
- L. J. Laslett, Phys. Rev. 76, 858 (1949). L1.
- L. M. Langer and H. C. Price, Jr., Phys. Rev. 76, 641 L2. (1949).
- L3. Langer, Motz, and Price, Phys. Rev. 77, 798 (1950).
- I.4 L. M. Langer, Phys. Rev. 77, 50 (1950).
- L5. Langer, Moffat, and Price, Phys. Rev. 76, 1725 (1949).
- L. M. Langer and H. C. Price, Phys. Rev. 75, 1109 (1949). L6.
- J. C. Lee and M. L. Pool, Phys. Rev. 76, 606 (1949). L7.
- L8. Lidofsky, Macklin, and Wu, Phys. Rev. 76, 1888 (1949).
- L9. A. Lundby, Phys. Rev. 76, 1809 (1949).

- L10. P. W. Levy and E. Greuling, Phys. Rev. 75, 819 (1949).
- L11. Lecoin, Perey, and Teillac, J. phys. radium 10, 37 (1949).
- M1. Miller, Ballentine, Bernstein, Friedman, Nier, and Evans, Phys. Rev. 77, 714 (1950).
- K. H. Morganstern and K. P. W. Wolf, Phys. Rev. 76, 1261 M2. (1949)
- Macklin, Lidofsky, and Wu, Phys. Rev. 78, 318(A) (1950). M3.
- J. L. Meem, Jr., and F. Maienschein, Phys. Rev. 76, 328 M4. (1949).
- M5. Macklin, Feldman, Lidofsky, and Wu, Phys. Rev. 77, 137 (1950).
- F. Maienschein and J. L. Meem, Jr., Phys. Rev. 76, 899 M6. (1949).
- M7. Mann, Rankin, and Daykin, Phys. Rev. 76, 1719 (1949).
- R. D. Moffat and L. M. Langer, Phys. Rev. 79, 237(A) M8. (1950).
- M9. McCowan, Woodward, Pool, Phys. Rev. 74, 1311 (1948).
- M10. Mandeville, Woo, Scherb, Keighton, and Shapiro, Phys. Rev. 75, 1528 (1949).
- M11. McCown, Woodward, Pool, Phys. Rev. 74, 1315 (1948).
- M12. Mei, Mitchell, and Huddleston, Phys. Rev. 79, 237(A) (1950).
- M13. Marty, Labeyrigue, and Langevin, Compt. rend. 228, 1722 (1949).
- M14. C. E. Mandeville and E. Shapiro, Phys. Rev. 77, 439 (1950).
- M15. Mei, Huddleston, and Mitchell, Phys. Rev. 79, 237(A) (1950).
- M16. O. Minakawa, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 42, 139 (1944).
- M17. Mandeville, Scherb, and Keighton, Phys. Rev. 75, 221 (1949)
- M18. E. C. Mallory and M. L. Pool, Phys. Rev. 76, 1454 (1949).
- M19, C. E. Mandeville and E. Shapiro, Phys. Rev. 76, 718 (1949)
- M20. Mei, Mitchell, and Zaffarano, Phys. Rev. 76, 1883 (1949).
- M21. A. C. G. Mitchell, Revs. Modern Phys. 22, 36 (1950).
- M22. C. E. Mandeville and E. Shapiro, Phys. Rev. 75, 897 (1949).
- M23. Mitchell, Mei, Maienschein, and Peacock, Phys. Rev. 76, 1450 (1949).
- M24. L. Marquez and I. Perlman, Phys. Rev. 78, 189 (1950).
- M25. F. Metzger and M. Deutsch, Phys. Rev. 74, 1640 (1948).
- M26. Macnamara, Collins, and Thode, Phys. Rev. 75, 532 (1949).
- M27. C. E. Mandeville and E. Shapiro, Phys. Rev. 75, 1834 (1949).
- M28. C. E. Mandeville and E. Shapiro, Phys. Rev. 79, 243(A) (1950).
- M29. C. E. Mandeville, Phys. Rev. 75, 1017 (1949)
- M30. C. E. Mandeville, Phys. Rev. 78, 319(A) (1950).
- M31. C. E. Mandeville and M. V. Scherb, Phys. Rev. 76, 186(A) (1949).
- M32. Martin, Richardson, and Hsü, Proc. Phys. Soc. (London) 60, 466 (1948).
- M33. D. G. E. Martin and H. O. W. Richardson, Proc. Roy. Soc. (London) A195, 287 (1949).
- M34. R. Morrissey and C. S. Wu, Phys. Rev. 75, 1288 (1949).
- M35. L. Melander and H. Slätis, Arkiv Mat., Astron. Fysik 36A, No. 15 (1949).
- M36. W. W. Meinke and G. T. Seaborg, Phys. Rev. 78, 475 (1950).
- M37. Medicus, Preiswerk, and Scherrer, Helv. Phys. Acta 23, 299 (1950).
- M38. Medicus, Maeder, and Schneider, Helv. Phys. Acta 22, 603 (1949).
- N1. A. Newton, as reported in S16.
- N2. Naumann, Reynolds, and Perlman, Phys. Rev. 77, 398 (1950).
- Overstreet, Jacobson, and Stout, Phys. Rev. 75, 231 (1949). 01.
- G. E. Owen and C. S. Cook, Phys. Rev. 76, 1536 (1949). 02.

- O3. G. E. Owen and C. S. Cook, Phys. Rev. 76, 1726 (1949).
- O4. J. S. Osoba, Phys. Rev. 76, 345 (1949).
- O5. Owen, Moe, and Cook, Phys. Rev. 74, 1879 (1948).
- P1. V. Perez-Mendez and H. Brown, Phys. Rev. 77, 404 (1950).
- P2. V. Perez-Mendez and H. Brown, Phys. Rev. 76, 689 (1949).
- P3. C. L. Peacock and R. G. Wilkinson, Phys. Rev. 74, 297
- (1948). P4. Parmley, Moyer, and Lilly, Phys. Rev. 75, 619 (1949).
- P5. K. Philipp and P. Rehbein, Z. Physik 124, 225 (1948).
- P6. C. L. Peacock and A. C. G. Mitchell, Phys. Rev. 75, 1272
- (1949).
- R1. J. M. Robson, Phys. Rev. 78, 311 (1950).
- R2. J. H. Reynolds, Phys. Rev. 79, 243(A) (1950).
- R3. Robertson, Scott, and Pool, Phys. Rev. 76, 1649 (1949).
- R4. Robertson, Scott, and Pool, Phys. Rev. 78, 318(A) (1950).
 R.5 Rutledge, Stoddard, Branyan, LeBlanc, and Cork, Phys. Rev. 79, 237(A) (1950).
- R6. Robertson, Carss, and Pool, Phys. Rev. 77, 747(A) (1950).
- R7. E. R. Rae, Proc. Phys. Soc. (London) A63, 292 (1950).
- S1. G. T. Seaborg and I. Perlman, Revs. Modern Phys. 20, 585 (1948).
- S2. R. W. Stout, Phys. Rev. 75, 1107 (1949).
- S3. Slack, Owen, and Primakoff, Phys. Rev. 75, 1448 (1949).
- S4. E. Segrè and C. E. Wiegand, Phys. Rev. 75, 43 (1949).
- S5. Sherr, Muether, White, Phys. Rev. 75, 282 (1949).
- S6. S. C. Snowdon, Phys. Rev. 78, 299 (1950).
- S7. Seidlitz, Bleuler, and Tendam, Phys. Rev. 76, 861 (1949).
- K. Siegbahn and A. Ghosh, Arkiv Mat., Astron. Fysik 36A, No. 19 (1949); Phys. Rev. 76, 307 (1949).
- S9. L. M. Silver, Phys. Rev. 76, 589(A) (1949).
- S10. Siegbahn, Hedgran, and Deutsch, Phys. Rev. 76, 1263 (1949).
- S11. K. Siegbahn, as reported in M21.
- S12 Slack, Braden, and Shull, Phys. Rev. 75, 1965 (1949).
- S13. Saur, Axel, Mann, and Ovadia, Phys. Rev. 79, 237(A) (1950).
- S14. Siegbahn, Kondaiah, and Johannsson, Nature 164, 405 (1949).
- S15. K. Siegbahn, Phys. Rev. 77, 233 (1950).
- S16. E. Segrè and A. C. Helmholz, Revs. Modern Phys. 21, 271 (1949).
- S17. K. Siegbahn and W. Forsling, Arkiv. Fysik 1, 505 (1950).
- S18. C. W. Stanley and S. Katcoff, J. Chem. Phys. 17, 653 (1949).
- S19. N. Sugarman, Phys. Rev. 75, 1473 (1949).
- S20. L. R. Shepherd, Research 1, 671 (1948).

- S21. E. Shapiro and C. E. Mandeville, Phys. Rev. 78, 319(A) (1950).
- S22. D. Saxon and J. Richards, Phys. Rev. 76, 186(A) (1949).
- S23. Steffen, Huber, and Humbel, Helv. Phys. Acta 22, 167 (1949).
- S24. D. Saxon and R. Heller, Phys. Rev. 75, 909 (1949)
- S25. H. Slätis and K. Siegbahn, Phys. Rev. 75, 318 (1949).
- S26. H. Slätis and K. Siegbahn, Arkiv Mat., Astron. Fysik 36A, No. 21 (1949).
- S27. D. Saxon and J. Richards, Phys. Rev. 76, 982 (1949).
- S28. Slätis, du Toit, and Siegbahn, Phys. Rev. 78, 498 (1950).
- S29. E. P. Steinberg and L. E. Glendenin, Phys. Rev. 78, 624 (1950).
- S30. K. Siegbahn and H. Slätis, Arkiv. Fysik 1, 559 (1950).
- S31. Snell, Pleasonton, and McCord, Phys. Rev. 78, 310(A)
- (1950). S32. N. Sugarman, J. Chem. Phys. 17, 11 (1949).
- T1. Tollestrup, Jenkins, Fowler, and Lauritsen, Phys. Rev. 75, 1947 (1949).
- T2. Taschek, Argo, Hemmendinger, and Jarvis, Phys. Rev. 76, 325 (1949).
- T3. C. M. Turner, Phys. Rev. 76, 148 (1949).
- T4. G. M. Temmer, Phys. Rev. 76, 424 (1949).
- T5. Thulin, Bergström, and Hedgran, Phys. Rev. 76, 871 (1949).
- T6. Ter-Pogossian, Cook, Goddard, and Robinson, Phys. Rev.
- 76, 909 (1949). T7. Tollestrup, Fowler, and Lauritsen, Phys. Rev. 78, 372 (1950).
- T8. D. J. Tendam, Private communication by E. Feenberg and G. L. Trigg.
- W1. R. M. Williamson and H. T. Richards, Phys. Rev. 76, 614 (1949).
- W2. C. S. Wu and L. Feldman, Phys. Rev. 76, 698 (1949).
- W3. R. Wilson and G. R. Bishop, Proc. Phys. Soc. (London) A62, 457 (1949).
- W4. Wu, Townes, and Feldman, Phys. Rev. 76, 692 (1949).
- W5. C. S. Wu and L. Feldman, Phys. Rev. 76, 693 (1949).
- W6. Waggoner, Moon, and Roberts, Phys. Rev. 79, 236(A) (1950).
- W7. H. W. Wilson and S. C. Curran, Phil. Mag. 40, 631 (1949).
- W8. C. S. Wu and R. D. Albert, Phys. Rev. 75, 315, 1107 (1949).
- W9. C. S. Wu and L. Feldman, Phys. Rev. 76, 696 (1949).
- W10. D. Walker, Proc. Phys. Soc. (London) A62, 799 (1949).
- W11. G. Wilkinson and H. G. Hicks, Phys. Rev. 75, 1687 (1949).
- W12. G. Wilkinson and H. G. Hicks, Phys. Rev. 75, 1370 (1949).
- W13. G. Wilkinson, Phys. Rev. 75, 1019 (1949).
- W14. E. P. Wigner, Phys. Rev. 56, 519 (1939).

20