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HE equation in question has been studied by vari-
ous authors, (1)-(8)f inspired mainly by its con-

nection with the deuteron problem. The present work,
which forms a sequel to earlier papers ((4)—(6)) by one of
the authors, was started because it was desirable to ex-
tend the previous calculations for the sake of certain ap-
plications, e.g. , the photo-disintegration of the deuteron
and the capture of neutrons by protons (9). In the course
of the work, however, we took an interest in the mathe-
matical aspect of the problem and accordingly studied
it more closely than was strictly necessary from the
point of view of the physical applications. We hope that
the results may also be of interest to other than theo-
retical physicists occupied with the deuteron problem.

L VARIATIONAL METHOD APPLIED TO
GROUND STATE

Consider the differential equation

following: Search for extremum of the integral

J= I (y"—ay')dx

with the accessory condition

N= v(x)qPdx=const/0 (e.g. =1),
dp

(6)

6J—) W=O,

which is equivalent to Eq. (1), with X for b. For a P
satisfying Eq. (1) we have, multiplying (1) by tt and
integrating,

b =~er.tr em el/N

where p is a continuous function with continuous p',
satisfying conditions (2). Introducing a lagrange multi-
plier ), we obtain

(&)

(d'@/dx')+ ay+ bv(x) y =0

with the boundary conditions

~(0)=e( )=0,

(1)
An alternative formulation of the variational problem

(see, for example, work by Zeilon; reference 10) is to
drop the condition (6) and seek extrernum of J/N.
This gives

the potential function v(x) being continuous, at least
sectionally, and bounded in the whole domain, except
at x=O, where we assume

lim x'v(x)~tIr, 4'~0.

5(J/N) = (1/N) t 8J—(J/N) oN)=0,

which again leads to Eq. (1), provided

b = (&/N)extremes. (10)

Further, we take

v(x)-e0, x—e~. (4)

Now it is well known that Eq. (1) can be regarded as
the Euler equation of a variational problem, e.g., the

* Permanent address: Turku, Finland.
$ Numbered references are at end of article.

The reason why we choose u as the known parameter
and b as the eigenvalue —we might as well have done
the reverse —is a purely practical one. In the application
to problems of the nuclear force type, v(x) is a function
which decreases rather rapidly with increasing x. In
such cases the eigenfunction of a bound state (a(0)
tends asymptotically to expL —(—a)ix) which is a
natural starting point for choosing the trial function in
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TABLE I.

(-a)&

0.05
0.05
0.05

0.10
0.10
0.10

0.15
0.15
0.15

0.20
0.20
0.20

0.25
0.25
0.25

0.30
0.30
0.30

0.35
0.35
0.35

0.40
0.40
0.40

0.45
0.45
0.45

1.679933
1.679853
1.6798195

1.792570
1.792510
1.792481

1.904045
1.904001
1.903977

2.014534
2.014502
2.014480

2.124173
2.124150e
2.1241315

2.233074
2.233059'
2.233043o

2.341331
2.341320g
2.3413062

2.449016
2.4490102
2.4489973

2 556194e
2.5561914
2.556179g

2.6629198
2.6629185
2.6629082

0.679933
0.679853
0.679819s

0.692570
0;692510
0.692481

0.704045
0.704001
0.703977

0.714534
0.714502
0.714480

0.724173
0 724150s
0.7241315

0.733074
0.733059'
0.733043p

0.741331
0.741320g
0.7413062

0.749016
0.7490102
0.7489973

0.756194e
0.7561914
0.756179g

0.7629198
0.7629185
0.7629082

h1/hp

0.53567
0.57807
0.620815

0.54323
0.58169
0.62420

0.55025
0.58479
0.62718

0.55679
0.58746
0.62979

0.56293
0.58975
0.63166

0.56877
0.59175
0.63352

0.57430
0.59356
0.63514

0.57959
0.59514
0.63657

0.58467
0.59654
0.63784

0.58955
0.59779
0.63898

hp/h p

—0.05161—0.17699

—0.04520—0.16555

—0.03930—0.15532

—0.03383—0.14611

—0.02871—0.13661

—0.02393—0.12843

—0.01953—0.12084

—0.01537—0.11379

—0.01146—0.10721

—0.00778—0.10108

hp/hp

0.09816

0.09249

0.08760

0.08336

0.07883

0.07514

0.07181

0.06877

0.06600

0.06347

(«-1) 1oP

—4.14
+4.40—2.28

—3.15
+3.93—2.01

—2.31
+3.52—1.77

—1.59
+3.17—1.58

—0.97
+2.87—1.38

—0.45
+2.60—1.23

0.00
+2.37—1.10

+0.37
+2.17—0.99

+0.72
+1.99—0.89

+1.01
+1.83—0.80

(~„-1) 1O3

—10.05—5.45—2.81

—10.28—5.85—3.03

—10.44—6.24—3.24

—10.51—6.60—3.44

—10.53—6.95—3.66

—10.47—7.28—3.85

—10.37—7.60—4.04

—10.21—7.91—4.22

—10.02—8.20—4.39

—9.78—8.49—4.56

a Rayleigh —Ritz procedure (11).Now this is a simple re-
quirement if u is a known quantity, but if a is the eigen-
value it is not very convenient to work with a trial
function containing a. Of course, it is perfectly possible
to replace expL —(—a)~x] by exp( —px), taking p as
an indeterminate parameter, but this would not be ap-
propriate either. According to general experience it is
in most cases advisable to use a trial function, which is
linear in the indeterminate parameters.

Suppose P is expanded in terms of a complete function

system f„, thus

Retaining a finite number of terms, say, the e first ones,
we have a possible trial function. Inserting in (5) and
minimizing with (6) as accessory condition, we obtain

(BJ/Bc.) X(BN/Bc.) =0, v=1, —
, e, (12)

which is a linear and homogeneous system of equations
for the parameters c„.The smallest value X which makes
the determinant of the system (12) vanish then gives
the minimum value of J/N, i.e., an approximation for b.

Now it is well known that the solution of a determinant
equation often requires an unwieldy precision in the
numerical work, if the roots are wanted with some ac-
curacy, and the case treated below is no exception.
Therefore, we proceeded as follows. Suppose the equa-
tion system (12) has been solved, by using e parameters
c& ~ ~ ~ c„,and the smallest root of the determinant equa-
tion is X'"), which is then an approximation to the lowest
eigenvalue b~ of (1) and (2). This value X&"& is inserted
into (12), with v=2, 3, ~ ~ ~, m+1, which gives a set of
values c~', c2', ~ ~ ~, c„+~' (or rather the ratios C2'/c~',

c~'/c~', ~ ~, c~~'/c~'). We then calculate

X'"'=J(cg ) c2 p
~ ' '

p c~+], )/N(c~'& c2 p
~ ~ ~

) c„yg )) (13)

which is, in general, closer to the eigenvalue b1 than
was X&"&. After inserting X&"&' into (12), we get a new
set of quantities c&", ~ ~, c~&", and )«")" is obtained
from (13). In the cases treated below this procedure
turns out to converge rapidly, giving at the end X("+o-
the smallest root of (12) with (v+1) parameters —and
the corresponding set cq, ~ ~, c„+~. Thus, (12) can be
solved for any number of parameters without resorting
to the determinant equation, except for v=2. (The



APPROXIMATE EIGENSOLUTIONS OF (d'y/dx')+La+b(e ~/x) j&=0

TAsLE 'I.—Cont&sled.

0.50
0.50
0.50

0.75
0.75
0.75

1.0
1.0
1.0

1.5
1.5
1.5

2.0
2.0
2.0

2.5
2.5
2.5

3.0
3.0
3.0

3.5
3.5
3.5

4.0
4.0
4.0

9.0
9.0
9.0

2.769237
2.769237
2.7692279

3.2959254
3.2959232
3.295917s

3.8166322
3.816624p
3.8166207

4.846964g
4.8469457
4.8469443

5.8683085
5.8682844
5.868283g

6.884243 g

6.884217p
6.8842175

7.896638g
7.896614p
7.8966138

8.90657g

8.9065553
8.906554'

9.91473p
9.914717
9.914716g

19.954235
19.954228
19.9542278

bg —a
( =2(-.i~+~)

0.769237
0.769237
0.769227g

0.7959254
0.7959232
0.795917g

0.8166322
0.816624p
0.8166207

0.846964g
0.8469457
0.8469443

0.8683085
0.8682844
0.868283g

0.884243g
0.8842179
0.8842175

0.896638g
0.896614p
0.896613g

0.90657 g

0.9065553
0.9065549

0.91473g

0.914717
0.914716g

0.954235
0.954228
0.9542278

h1/hP

0.59424
0.59891
0.63998

0.61561
0.60305
0.64377

0.63424
0.60558
0.64617

0.66583
0.60808
0.64893

0.69199
0.60884
0.65045

0.71421
0.60874
0.65133

0.73337
0.60819
0.65195

0.7501g
0.60745
0,6518

0.76477
0.60654
0.6489

0.85192
0.5979
0.644

hs/ho

—0.00431—0.09531

0.01053—0.07135

0.02222—0.05319

0.03965—0.02748

0.05219—0.01027

0.06176
0.00216

0.06935
0.01144

0.07553
0.0194

0.08071
0.0289

0.1071
0.061

hs/hp

0.06113

0.05198

0.04564

0.03766

0.03308

0.03018

0.02827

0.0266

0.0240

0.019

(«-. s) so

+1.25
+1.69

0.72

+2.04
+1.17—0.46

+2.38
+0.85—0.30

+2.48
+0.50—0.15

+2.31
+0.32—0.08

+2.07
+0.23—0.05

+1.83
+0.16—0.03

+1.61
+0.13—0.025

+1.44
+0.10—0.02

+0.54
+0.02—0.01

(~„-~) io

—9.52—8.76—4.73

—7.77—10.01—5.47

—5.58—11.08—6.11

—0.59—12.86—7.16

+4.56—14.30—7.97

+9.53
15.52—8.62

+14.18—16.58—9.15

+18.46—17.49—9.69

+22.41
18.31—10.60

+108.6—23.42—13.75

number of electively varied parameters is only n —1,
because one parameter, say, c&, is needed for the normal-
ization of p.)

The equation to be solved here is

choose it here for the same reason. Inserting (17) into
(5) and (6) we obtain

(d'P/dx')+Pa+b(e '/x)]&=0,

with the boundary conditions

4(0)=0, y(c)=0.

(14)
2(~+1)~ (~+1)(p+1)

a+p+ u 1a+Ii+ v —a+Ii+v+ 1

In one of the previous papers (4) it was pointed out that
the solution can be written as follows (see also Sec. III
below):

y(x) =exp[—(—a)Ix) Q a)„(1—e—*)".
1

a= 2(—a)I+1, (18)

N=b Q Q h„h.I(a+p+v, 2)

with (see reference 4)

&to (1 e—z)m

e &*de

Thus, it would be justifMd to use (16) with a finite
number of terms as a trial function. However, any such 1(p ~)
finite sum can be written in the following way Jo

(20)

y(x) = (1—e- ) expL —(—a) &xg P h„e-"*. (17) (mp= g (—1)"+'~
~
ln(P+ p) (m integer) 1).

&p)
This form of the trial function has already been used in
reference 6 because it simplifies the calculations, and we The Eqs. (12) are then easily written down. The results
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bi= (1/r) —r+2r2 (—22/3) r3+ ~ ~ ~,
(27)

hi/hp = 1 4r—+28r'+

%e shall return to the question of the asymptotic
expansions in Sec. III but already wish to point out
here that the bi value in (27) is exact as far as the first
three terms are concerned (the fourth one is wrong by a
factor 44/45 —it ought to be —(15/2) r').

e
4r =b exp[ —(—a)Ix].0 y(x)dh @'(0)

obtained for the lowest eigenvalue b~ with one, two and then gives
three eRective parameters are given in Table I. Some of
the results have been published earlier (6).

A certain check on the accuracy of the eigenfunctions
is furnished by the quantities o-0 and o-„which are
defined in the following way (6)

n+ v+1
=bQ h, ln P h„(21)

~0
II. THE VAMATIONAL METHOD APPLIED

TO HIGHER EIGENVALUES

00

o„=b sinh(( —a) lx) y(x)dx (—a)'
~0 g

b ~ ( 2+v n+v+1)
Q h„l ln —ln

2(—a)I~=o '
E 1+v n+v

(22)

As shown in a previous paper (6), these ratios would

equal 1 if the solutions g(x) were exact. The deviation
from 1 gives an idea of the accuracy of the eigenfunc-
tion, or, more precisely: errors in the region of small x
will preferably aRect o.o, whereas o.„substantially re-
flects the shortcomings of the approximate p(x) at
relatively large x.

For small values of (—a)&, the eigenvalue bi and the
corresponding parameters can be developed in power
series. Using the variational method we obtain with
one eRective parameter,

Returning to Eq. (1) with boundary conditions (2),
we assume that the lowest eigenvalue is b~ and the
corresponding eigenfunction @i. To obtain the next
eigenvalue b~ with its eigenfunction P~, one may then
proceed as follows. Take an arbitrary function p which
satisfies the boundary conditions (2), and calculate J'
according to (5).J is then minimized with the accessory
conditions (6) and

M= ) y(x)v(x)yi(x)dx=0,
0

(28)

8J—X8X—p, bM =0,

or after partial integrations

(29)

which expresses the orthogonality of P and P&.

Introducing lagrange multipliers X and p, , we write
the necessary condition for minimum of J

bi 1.67993——3+2.265775 e—0.276306e'+
hi/he ——0.53567+0.15765e—0.13782e'+

= (—)'= ( —1)/2;

with two parameters,

(23)

00 —d2 p
+a+tv(x) y+—v(x)y, dk=0. (30)

~0 dx' 2

This is valid for all 8p only if

bi= 1.679853+2.266217e—0.277277e'+
hi/ho =0.57807+0.07857 e—0.13320e'+
h2/he ———0.05160+0.13343e—0.11099e'+

(24)

d2

+a+Re(x) P+—v(x) Pi ——0.
dx 2

(31)

A comparison with (1) suggests that p=0, which can be
confirmed in the following way. $ Multiplying (31) by
P, we have after partial integrations, making use of (2),

and with three parameters, f

bi 1.6798195——+2.266313ee—0.2774379 ee

+0.3320124e' —0.518899e4+
hi/he ——0.62082+0.07377e—0.23822 e'+
h2/he ———0.17699+0.23938e—0.18131e'+
h3/he ——0.09816—0.12007e+0.26354e'+.

(25) pl +a&, ldh+X ~, &is(x)gdx
&dx' )

.(x)y,mdh=o,
(4

0
For very large values of (—a)& it proves convenient

to express the eigenvalue and parameters as power
series in terms of 4

r=1/(n+1) = 1/L2( —a)&+2(.

or, since b~ is the eigenvalue connected with the eigen-
function pi,

(26)

YVith one eRective parameter, the variation procedure

f' We are indebted to'Mr. V. Grinvalds for making these calcu-
lations and checking some of the earlier ones.

00 00

e(x)yiedx+ (X b,) I y,e(x—)Pdk = 0,
2 J, J,

$ See, for example, reference 12, p. 258.
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TABLE II.

( —a)&

0.25
0.25

0.5
0.5

6.44849p
6.447715

7.63588
7.633996

8.77351g
8.77057'

23.442 p

23.4396

43.6753
43.6744

b2-2a

4.44849p
4.447715

4.63588
4.633996

4.77351g
4.77057$

, 5.442p
5.4396

5.6753
5.6744

h1/hp

—0.33674—0.47238

—0.03277—0.27719

+0.17073—0.18281

+1.770—0.029

—3.74—0.10

hl/hp

—3.47154—2.99632

—3.14148—2.39865

—2.97602—2.0106g

—3.52'—0.666

—5.30—0.26

hl/hp

—0.36459

—0.50719

—0.5978'

—0.846

—0.91

(~p —1) ~ 103

+15.15
+5.24

+17.41
+3.75

+18.12
+2.72

+8.5—0.5

(~„—1) 1O3

—3.18—11.26

+5.07—14.21

+15.33—17.90

+260—50.5

—5780—76

which gives, considering (6) and (28): (12) the following equations are satisfied:

P,j„.c„&'&—)tt P„n„„c„u&=0,

Q„j„„c„&'& )s Q—„n„„c„"&=0

(32)p, =0.

Equation (31) then becomes identical with (1). Multi-
plying (31) by @ and integrating we obtain

~extrema1/+.

Multiplying the erst equation by c„(2), the second by
(33) c„o&, summing p from 1 to n. and subtracting, we obtain

(34)

with symmetrical coeKcients j„„ande„„.The expression
for M is

M =p„g.n„„c„&s&c,&r&, (35)

where n„„are thy same quantities as in (34), and the
coefficients c„o&, c„"' characterize the functions Pi and

@s, respectively. If each of the two sets of coeKcients
makes J stationary, with E constant, then according to

Equation (32) means that the orthogonality condi-
tion need not eater into the practical calculations. Thus,
the problem of the higher eigenvalues and eigenfunc-
tions can be treated by the formalism already developed
in Sec. I, the lowest eigenvalue but one being approxi-
mated by the second root ) 2 of the equation system
(12).

~~
The approximate eigenfunctions @s and gt are

then automatically orthogonal, as may be directly
proved in the fo11owing way.

Let @ be linear in the parameters c„.J and X are then
homogeneous quadratic functions of the parameters:

(4—)it) P„Q„n„„c„o&c„t'&=0;

thus, either ) ~
——X1, or M=O.

This implies that one of the parameters c,&') is used
up in making @s orthogonal to gi, whence the number
of effective parameters available for approximating 62
and ps is only e—2, against n —1 for bi and Pi. If the
same number of parameters is used, bs and Ps are
always less accurate than bi and pi. This is illustrated
by a comparison between Tables I and II.

It should also be pointed out that the convergence
region is much smaller in the case of higher eigenvalues,
therefore the eigenvalue must already be known with
fair accuracy before the procedure is started.

I

III. THE ASYMPTOTIC EXPANSIONS FOR
LARGE EIGENVALUES

With the variational method we obtained an approxi-
mate asymptotic expansion (2/) for the eigenvalue bi
in terms of the parameter r, defined in (26). The sim-
plicity of the expression for b1 suggests that 7 is an
appropriate parameter, whence we use this parameter 7

'in the following discussion, which is otherwise quite
independent of the variational method.

TABLE III.

0
0.25
0.5

' 14.373
16.2215
17.99

bg —Ba

11.373
11.7215
11.99

hg/hp

—1.204—0.422
+0.16

h2/hp

—13.048—11.988—11.73

lbg/hp

+17m 17g
+14.006
+12.49

(~p —1) 103

+42
+42
+42

(ocr&
—1) ~ 103

+20
+38
+67

r

~~
In treating 'the case v(x) =e */x LEq. (14)j a erst approximation for bs and bs was obtained from ea'rlier results, ' including a

comparison with the exact solutions in the case v(x)=e /(1 —e ). Alternatively, the asymptotic expansion of b2 could be used,
especially for large u (see Sec. III).
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First, we transform Eq. (14) by introducing where the coeKcients I.z are defined by

y(x) =exp[—(—a) lxjce(P)

and obtain the following equation

(36)
g 00

L(x)=- =+ I.gx";
ln(1 —x)

LIO —1
p

Li= —(sLx i+'sLx s+ .+1/(&+1)Ls) **
(45)

d2co dc@

(1—$) — n —b- ee=0,
dP dg ln(1 —g)

n=1+2(—a) & 1

From (44) we obtain, choosing v=vs —1, the indicial
equation (vs —1)vs=0. However, putting v=vs ——0 in
(44), we have: cd.s=0 Thu.s, the only possibility is

with the boundary conditions

(o)=o (1—5)' " (t)~ as:—.1 'lt (38)

~(k)=Z ~.k"
v=1

(46)

lim (b/n) = lim br= m,Q~ cO g~o
(39)

we write (37) as follows:

%e start by studying the extreme limiting case n= ~
or v=0. Putting

This solution satisfies the first of the boundary condi-
tions (38). Inversely, all solutions of (37) vanishing at
/=0 can be expressed in the form of (46).ft

The second boundary condition (38) is too compli-
cated to be directly used for determining the eigen-
values. However, we know that the solution in the limit-
ing case r =0 is given by (41). Using

(d~/dg) y[m/ln(1 g)]~ =—0

The general solution of (40) is

ce=Q($)=Cexp t —re [d(/in(1 —()lt

(40)
li(1—g) =lnt+ Q —tv —g —,

p=1 p @=1 p,

which follows from (45), we can rewrite (41):

(47)

=C exp[mli(1 —$)j. (41)
Q($)=C)" exp~ m g —ts ~.~i tc )

(48)

If the eigenfunctions and eigenvalues of (37) depend

analytically on r, every such eigenfunction must pass
into a function (41), when r +0 Thus, —we s. ee that m

must be a finite number &0; otherwise, (40) would only
have the trivial solution ce(t)=0. Furthermore, the

eigenvalue b can be expressed as a power series in r, say,

b= (P i/r)+Po+Pir+Psr', P i——tN. (42)

The point /=0 is a regular singularity of Eq. (37),
and in the neighborhood. of )=0 we have a regular
integral of the following type G)V ~ Mti XT ~

X

X=O
(49)

When 7 tends to zero, every eigenfunction must pass
into this form. As all eigenfunctions can be represented

by (46), this is only possible if m (defined in (39)) is a
positive integer. Furthermore, when r 4, the qua—ntities
u„must have finite limits, vis. , the coeKcients in the
Maclaurin expansion of (48). This puts a very heavy
restriction on the co,'s. Indeed, assuming that they
depend analytically on v, we can express co, as a power
series without negative powers of r.

v=vp vp+1 ~ ~-

cevP (43) Inserting this in (44)' and using (42), we obtain the

(vs a priori not necessarily an integer). Inserting this in

Eq. (37), we get the recurrence formula

v(v+1)ce,pt ——(v(v+n —1)—b)ce„—b P I.„„ce„, (44)
&p

$ It seems that the last condition can be replaced by co(1) finite,
without changing the results (see reference 4, p. 3, footnote).

**The first L„'s are:

Lp = &, L5 =—3/160
L& = ——',, Ls = —863/2s. 3'.7.10,
L2= —1/12, Lr= —273/2r. 3'.7,
Li= —1/24, L8= —33933/2'. 3' 700
Lc= —19/720, L9= —8183/2'. 3'. 100.

tt The other regular integral of (37) can be written as

x(r)= (~) h~+ ~ x.~". x.~0,
p=0

where ca(g) is given by (46).
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following recurrence formula:

's('s+ 1)G&~yy, p='B(s 2)G&~, ad+Beet|„pyy

(n=1, 2, 3, ~ ~; @=0,1, 2, ~ ~ ).

This makes it possible to calculate all quantities P„and

co,, q in terms of the first non-vanishing coeKcient in co~,

say, ~&, &. Here it is, of course, essential to use the
condition that no negative powers are allowed to appear
in (49). In this way we obtain the m'th eigenvalue b

and its appending eigenfunction.
A more practical way to calculate the solutions is as

follows. The coeKcients co,, o can be directly taken from
the Maclaurin expansion of (41) (m=1, 2, 3, ~ ~ ~ ).
Putting C in (48) = 1, we have:

r, o= &2, o= ' ' =+~—i, o=0

+m, o=1

+~+i, o=

+m+2, o=
m(3m —1)

~3, o=—
m(3m' —3m+2)

16 9

+m+4, o=
m(15m' 30m'+—45m 38)—

2'3'10
(51)

+~s, o=—
m(90m4 —300m'+ 750m' —1340m+ 1296)

2'3' ~ 100

+~+6, o=
m(630m' —3150m4+ 11550ma—32690m'+65212m —69040)

29 34 7 100

7m(45eP —315m4+ 1575m' —6265m'+19348m —41716)+330000
co~y, o= —18'

2'3'49 100

etc.

It is easy to prove that

ca,, ),=0, if v+X(m. (52)

Furthermore, ~~ in (46) includes an inde6nite normaliz-

ing factor, and here it is convenient to choose co~= v

that is,
v= 18 1~

vQm —1.

Putting I= 1 in (50) we thus obtain:

co„,q and p„can now be successively calculated from (50),
starting with those which have v+X=m, then v+g
=m+1, etc. In determining the quantities p„, i.e.,
co2, ~ 2, A&2, ~i, ~ ~, it is important to observe that
ee„,~q cancels out of (50), if we take n= m.

Among those results which are generally valid we
mention

(56)

2&a, p= &Ly+&Lp+i Pp-~ig

which gives, combined with (42) and (53):

Oq vg —1q

(54) Specially for v= m:

( 1)m—1

(57)

2(02, ~2~ v= 1~

2G02, ~y) v= 0~

20)2, v+~ y~ v) Oe

The condition (53), thus, implies that%' must be chosen
=(—1)~'/m! in (48), whence the quantities in (51)
should be multiplied by the same factor.

For ms = 1, 2, and 3, the following results are obtained.



L. HULTHEN AND K. V. LAURIKAINEN

I.omest eigenvalue.

1 15 1001 2783
by= —r+ 2r' —r—'+33r4 —-T4+

T 2 6 3

Third ei geevalue.

3 4929
(58) b4= —+12—27r+222r2 — r4+31887T . ~ ~ . (60)

1 1 15 33 1001
co2 = +——r —r'—+ r'——r4—+

2 2 4 2 12

2783
~ ~ ~

13 27 4929
co.= r——r—'+ r—' 1—11r4+ r'

2 2

31887

1 25 13 1511
C08= T+ T T + T

12 3 24 3 72

911

6

1018

9

5165

16 27

1 1 29 311
Cd 4 = T+ T.

720 80 360 540

31 1 49

~ ~ ~

72 ~ ~ ~

8 27 100 1200 5400

859 1073

16 81 7 100 16 81 7 100
7 ~ ~ ~

1 5 19
M = + T T +4

7'—
72 72 48 16 27

~ ~ ~

4 ~

10 29 595
(u3 + ——r—+ —r2 3—T4 — r4—+1633r4

6 3 4 8

1 41 11 145 4545
404= 7 7 T ~ ~ 0

4 12 8 8 16

1 19 149 1519
Cd4= —+—T- T2+ 7 ~ ~ ~

6 12 80 80

5 27 1843
(o4 —— r+-——T2 ~ ~ ~

72 80 2400

29 43

76. . .

(60a)

8669
Cvs— ~ ~ ~

32 81 49 100
1440 2400

67

7 ~ ~ ~

Second ei gemalue,
—~ ~ ~

14400
2

b2= +4 8r+40—T' 2—90r'+ 2484—T4
71428

1 4 10 29 5453
g = + r r'+ —T'——88—r'+——

2 3 3 2 9

CO1= 7

5
r+4r—' —2—0—T3+ 145r—4 1242v—

2 2
35714

JT6 0 ~ ~

. (59)
We have not been able to prove that these expansions

converge; they are most likely to be semiconvergent.
At any rate, the eigenvalues obtained in this way agree,
for reasonably small values of T, with those calculated
by the variational method, as may be clear from
Table IV.

An alternative method to bring out the asymptotic
expansions by successive approximations should also be
indicated. Introducing r according to (26) in Eq. (37),
we have

1 161 137 14869
C04= r+ T2

18 720 90
~ ~ ~

4 27 10

5 1 25 58 8881
C04 = + T T+ —T- —— —~ ~ ~

24 18 72 9 4 27 (59a)

d CO Ckg bT
r(1—f) ——(1—r)— co= 0.

cgp d$ 1n(1—$)

TAsLE IV.

(61)

13 2083
C06

=— 7 ~ ~ ~

1440 16 27. 10 4 27. 100

287 8609
T ~ ~ ~

bj

Variationai Asymptotic expansion
method Last term

3 param. Eq. (58) omitted

Varia-
tional

method
3 param.

bs
Asymptotic
expansion

Last
Eq. term
(59) omitted

8-27 7 100 8 81 7.100

~ ~ ~

32 81 7 100

0.2
0.125
0.1
0.05

4.847 4.879 4.819
7.8966 7.8981 7.8946
9.9147 9.9151 9.9141 23.44 23.32 23.56

19.954227' 19.954231 19.954217 43.6744 43.671 43.679
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We now take

(62)

and insert this in (61), replacing b by (42). Arrang-
ing according to powers of v and annihilating the
coeKcient of v-", we get the following equation for
f-(&) (~=0 » 2 ".):

This work was started. while the authors were both
still at the Institute of Mechanics and Mathematical
Physics in Lund, and we should like to thank Professor
Torsten Gustafson for his courtesy and hospitality. One
of us (K.V.L.) is indebted to the Swedish Atomic
Energy Committee, the Finnish Culture Fund and
Eemil Aaltonen Foundation for grants and scholarships,
We should also like to thank Miss M. Lundqvist for
typing the dificult manuscript.

with

f '+m/Pln(1 h)3—f„=P„, (63)
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