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I. INTRODUCTION

~ 'HE scattering of protons by protons is one of the
important sources of quantitative information

about nuclear forces. It gives the best (until quite re-
cently the only) estimate of the range of the forces
between two nucleons. The accuracy of the experiment, s
is comparatively high, due to the fact that the energy
control and the detection of charged particles is easier
than for neutral particles (such as the neutron in
neutron-proton scattering).

The theoretical interpretation of proton-proton scat-
tering experiments has been given in the classic papers
of Breit and collaborators' which not only constitute the

*Assisted by the Joint Program of the ONR and the AEC.
t Based on a Ph.D. thesis submitted by one of us (J.D.J.} to

M.I.T. The thesis mas issued as Technical Report No. 29, Labora-
tory for Nuclear Science and Engineering, M.I.T., Cambridge,
Massachusetts (July 15, 1949).

f. Present address: Department of Mathematics, McGill Uni-
versity, Montreal, Canada.

$ Present address: Department of Physics, University of Illi-
nois, Urbana, Illinois.

'Breit, Condon, and Present, Phys. Rev. 50, 825 (1936), re-
ferred to as BCP; Breit, Thaxton, and Eisenbud, Phys. Rev. 55,
1018 (1939),referred to as BTE. Other works in this series mill be
cited in context.

pioneer work in this 6eld, but also contain an exhaustive
treatment of the subject. For both neutron-proton and
proton-proton scattering at low energies (below 4 Mev)
the de Broglie wave-length of the nuclear motion is large
compared to the range of nuclear forces. Hence the
nuclear interaction is e8ective only in the S-states (zero-
orbital angular momentum) of the two-particle system.
(Experimentally, the observed scattering can be at-
tributed almost entirely to S-wave scattering up to
appreciably higher energies, of the order of 10 Mev. )
The protons are identical particles which obey the Pauli
exclusion principle. The exclusion principle limits the
possible states of the proton-proton system. Two protons
in an S-state, in particular, have to have antiparallel
spins (be in the singlet spin state). The triplet spin state
is forbidden. The S-wave proton-proton scattering thus
involves only one nuclear "phase shift, " the one for the
'S-state. In contrast to this, neutron-proton S-wave
scattering involves two phase shifts, for the 'S- and
'S-states respectively.

%hile the analysis of proton-proton scattering is thus
simpler in principle, it is complicated somewhat by the
Coulomb scattering which is present in addition to the
nuclear eGects. The Coulomb scattering is coherent with
the nuclear scattering, so that interference terms be-
tween the two eGects appear in the cross section. Since
the nuclear forces are attractive while the Coulomb
forces are repulsive, the interference will be mostly de-
structive, leading to characteristic minima in the
differential cross section at certain angles. In spite of the
complicated appearance of the differential cross section
as a function of angle, one should nevertheless be able
to 6t it completely at any one energy E with only one
adj ustable parameter, the nuclear phase shift bo(E) for the
nuclear scattering in the 'S-state.

The work of Breit and his collaborators has shown
that this is indeed the case. In particular, the excellent
data of Herb et al. ' give very good agreement (well
within the claimed experimental error) with a unique
zS-wave phase shift bo(E) at every energy E.

Having obtained the nuclear phase shift from the ex-
periments, one wants to draw conclusions regarding the
nuclear forces between two protons in the 'S-state. One
way, the one followed by Breit et al. , is to make certain
very explicit assumptions about the nuclear interaction
(e.g., that it be a square well potential of a definite range
and depth) and compute the theoretically expectecl

2 Herb, Kerst, Parkinson, and Plain, Phys. Rev. 55, 247 (1939),
referred to as HKPP.
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phase shifts 8v(E) at the same energies at which the ex-
periments were performed. These values are then com-
pared with the phase shifts found from the experiments.
If,'the experimental and theoretical phase shifts agree
within the experimental errors, the assumed potential
provides an acceptable representation of the proton-
proton force, at least as far as these experiments are
concerned. If the theoretical phase shifts differ ap-
preciably from the experimental ones, one has to try
again with a different choice of theoretical potential.
This new choice can be difFerent in various ways: The
potential shape (e.g. , square well) may be retained, but
new values used for the potential parameters (range and
depth of the well); or else a new well shape may be tried
(e.g., the Yukawa well shape); or else one may assume
that the nuclear forces are "velocity-dependent" and
cannot be represented by a static potential.

It has been conventional to restrict the number of
possible potential well shapes to four the square well

(potential hole), Gaussian well, exponential well, and
Yukawa well. It was found that any one of these shapes
wouM give satisfactory agreement with the data, pro-
vided only that the range and depth of the well were
suitably chosen. Thus the data do not delimit the
potential shape to any great extent. In efFect, only two
parameters (such as a range and a depth) of the po-
tential are determined with reasonable accuracy.

There has long been a feeling, therefore, that the low

energy data really do not merit such a detailed ap-
proach. This feeling was expressed by Landau and
Smorodinsky, ' among others. They pointed out that
under the assumption of an interaction of zero range, a
certain function (which we shall call K) of the nuclear

phase shift and the velocity e of the protons should be
independent of energy. This function, closely analogous
to the quantity f of BCP (reference 1), is defined as
follows:

Ã cotlo
K= +h(s),

exp(2v g) —1

where ho=phase shift for the '5-wave nuclear scattering
(the Eo of BCP); =ye' /h=v0158( 60) E& (E in Mev),
and h(rl)=a slowly varying function, defined in Sec-
tion VII.

The insuKciency of the zero-range approximation
(equivalent to K=constant) had already been pointed
out previously. ' In agreement with this, Landau and
Smorodinsky found that a plot of the experimental
values of K es. energy did not yield a constant value of

K, but rather showed a systematic increase of K with

energy. To a very good approximation, the points could
be fitted by a straight line. The fact that K is not con-
stant was correctly interpreted as a range correction, the
slope of the straight line being related to a kind of
"efFective range" of the proton-proton force. One should

'L. Landau and J. Smorodinsky, J. Phys. U.S.S.R. 8, 154
1944).

note that the approximate linearity of K as a function of
energy is implicit in Eqs. (7.5), (7.6) and (7.7) of BCP.
The work of Landau and Smorodinsky served to focus
attention on the use of K, (1.1), as the basic quantity in
an analysis of the scattering data.

In this paper we shall base the analysis of the proton-
proton scattering data upon the use of this function K,
rather than upon a direct comparison of phase shifts.

The general variational approach to scattering prob-
lems developed by Schwinger' was used by him to give
a formal mathematical derivation of a power series for
K in powers of the energy E=2k'h'/3E (%=proton
mass, k= wave number of relative motion, E=energy in
the laboratory system, h'=1.20(5)E where h' is in 10'4

cm ' and E is in Mev) including explicit expressions for
the coefIicients of the series in terms of the wave func-
tion of the system at zero energy.

K=R( a'+ ', ro—h' Pr-03h'+—Qrv'h' ). —(l.2)

Here R=h'/Me'= 2.88(15)&(10 "cm is a characteristic
length for proton-proton scattering (R is the Bohr
radius of a proton bound to a fixed unit charge) and

a, ro, P, Q, are constants which are related to the
range, depth and detailed shape of the nuclear potential
responsible for the deviations from pure Mott scattering.

The Schwinger expansion (1.2) shows immediately
why the plot of K vs. energy (or vs. h') should be a
straight line at low energies. One can also give an
interpretation for the coefFicients a and ro. u is the
proton-proton analog of the scattering length of
Fermi and Marshalls evaluated at zero energy, while ro

is an "effective range" of the nuclear interaction be-

tween the two protons, The fact that Landau and
Smorodinsky found a very good straight line fit to their
plot of K vs. energy can be interpreted to mean that the
higher terms in (1.2) have sufficiently small coefficients
so that they are negligible in the energy range in ques-
tion (below 2.5 Mev). The data then determine closely
only two constants related to the nuclear potential,
namely a and rv, put (rather wide) limits on P, and leave
the higher coefficients in (1.2) completely open.

Given any well shape (square well, Yukawa well, etc.)
one has two adjustable constants at one's disposal: the
well depth and the width (range) of the well. One can
therefore adjust a well of any shape to fit the experi-
mental values of the two variational parameters u and

ro, provided only that the "shape-parameter" P of this
well is within the bounds prescribed by experiment (a
rather weak requirement at the present time).

The quantity K and the series (1.2) are closely related
to a similar expansion for low energy neutron-proton
scattering' (also due to Schwinger) which can be used to
simplify the analysis of the low energy data on the
neutron-proton system. 7 Indeed, in the limit of very

' J. Schvringer, "Hectographed notes on nuclear physics, "
Harvard (1947); Phys. Rev. 72, 742A (194/).' E. Fermi and L. Marshall, Phys. Rev. 71, 66 (1947).' J. M. Blatt and J. D. Jackson, Phys. 76, 18 (1949).

' J. M. Blatt, Phys. Rev. 74, 92 (1948).
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high energies (rl very small compared to unity) the first
term in the definition of K, (1.1), approaches Ek cot(b);
if the second term, k(q) were absent, we would get
directly the neutron-proton expansion:

k cot(6) = a'—+,'r, k'-Pr—o'k4+ . (1.3)

However, k(g) does not vanish as g approaches zero,
rather it behaves like log(g '). This failure of the
proton-proton expansion (1.2) to reduce completely to
the neutron-proton expansion (1.3) even at high energies
is related to the fact that the Coulomb force has an
"infinite range, " i.e., the wave function does not ap-
proach a plane wave plus a spherical scattered wave
even at very large distances from the scattering center.
Nevertheless, recent works has shown that the proton-
proton coeKcients ro, I', Q, etc., are very closely equal to
the corresponding coefficients of (1.3) in the absence of
Coulomb forces, provided. the same nuclear potential is
assumed to act in both cases. The scattering length u

changes appreciably when the Coulomb field is switched
off, but one can give good estimates for the amount of
this change (see reference 8 and Section VIII of this
paper).

Before proceeding with the discussion of the analysis
based on (1.1) and (1.2) we should mention a slightly
different approach recently discussed by Breit and
Bouricius. ' They have shown that the data can also be
fitted quite well by a "boundary condition" on the
logarithmic derivative of the wave function at a definite
(small) distance. They point out that this is closely
related to the possibility of getting an adequate fit to
the data using only the first two terms of the series (1.2).
%e shall not use the boundary condition approach here.

The analysis of proton-proton scattering data by the
variational method involves four steps, the first two
being common to all methods of analyzing the data:

(1) The experimental measurements must be reduced
to differential cross sections in the center-of-mass sys-
tem. This involves intricate corrections for various
geometrical eGects, multiple scattering of the beam,
etc. None of these corrections will be discussed here;
f.hey are treated in detail in BTE.

(2) The differential cross section at any one energy
as a function of scattering angle is then used to deter-
mine the phase shifts bo, bj., b~ ~ of the S-wave, P-wave,
D-wave nuclear contributions to the scattering. At
low energies the 5-wave contribution is by far the most
important. Section IV of this paper is devoted to a
simplified method (based upon the work of BTE) for
nnding the S-wave phase shifts from the data (including
their probable errors); in Section V we give a straight-
forward method for determining the higher phase shifts
8&, 82 etc., under the assumption that they constitute
small corrections to the observed scattering. %bile these
simplified procedures are based directly upon the work

'G. F. Chew and M. L. Goldberger, Phys. Rev. 75, 1637
,''1949); H. A. Bethe, Phys. Rev. 76, 38 (1949).' G. Breit and %'. G. Bouricius, Phys. Rev. 75, 1029 (1949}.

of BTK and BCP, we feel that they lead to a sufficient
saving in labor of computation to merit separate dis-
cussion. In particular, it is now a matter of perhaps an
hour's work to determine whether an experimental run
is consistent with pure S-wave scattering, whether the
5-wave phase shift is consistent with previous data, and,
if contributions of higher angular momenta are indi-
cated, to find a good estimate for these higher phase
shifts. Section V also includes a discussion of the experi-
mental accuracies necessary to determine the presence
of higher phase shifts, and to distinguish between
P-wave and D-wave contributions to the deviation from
pure S-wave scattering. A complete discussion of all the
experimental data to date is contained in Appendix II
and Section VI.

(3) The next step in the analysis is peculiar to the
variational method: the experimental 5-wave phase
shifts ao at the various energies are used to compute K,
(1.1), at those energies, and a plot of K es. k' is made.
This plot is used to find the experimental values of the
scattering length u and the effective range ro and to
delimit the possible values of P. Because of the fact that
there are no accurate data near zero energy, the best
values of u and ro will depend somewhat upon the choice
of P. Section VII of the paper is devoted to this part of
the analysis, giving the best values implied by all the
available data. %e should perhaps emphasize once more
that we are restricting ourselves here to plotting the
data for the S-wave nuclear scattering only (even
though higher phase shifts are estimated for some of the
data in Section VI). At higher energies, waves of higher
angular momentum will in general enter the observed
scattering to an appreciable extent. The phase shifts for
those waves must be evaluated and put on different
plots. A curvature of the plot of K es. k' discussed here
has nothing to do with the presence or absence of higher
phase shifts in the scattering; rather it is related to the
detailed shape of the nuclear potential in the '5-state of
the proton-proton system.

(4) The final step in this analysis is the fitting of
theoretical potential wells to the observed values of the
variational parameters. In general, the more the varia-
tional parameters are determined accurately or delimited
appreciably by experiment, the better will one be able to
narrow down the possible theoretical well shapes which
can be used to give agreement with experiment. Section
IX of this paper contains a derivation of the expressions
for the variational parameters a, ro, I', Q, in terms of the
wave function of the proton-proton system at and near
zero energy;" Section X is devoted to the effect of small

'0 This derivation is based upon a variational principle due to
Schwinger (see reference 4}.A much simpler derivation using the
basic properties of the di6'erential equation involved has been
given recently by Chew and Goldberger and Bethe (see reference 8)
as well as F. C. Barker and R. E. Peierls (Phys. Rev. 75, 312
(1949). On the basis of simplicity, the non-variational method
should appear in Section IX. However, it does not; rather, it is
presented in Appendix IV. The reasons for the retention of the
somewhat more involved Schwinger formulation in the text are
several: The variational principle has certain useful properties
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changes in the potential on the variational parameters;
finally, Section XI gives the numerical results obtained
for the four conventional well shapes (square well,
Gaussian well, exponential well, and Yuitawa well) in a
form appropriate for direct comparison with the data
summarized in Section VI. The present best values for
the "intrinsic range" and "well depth parameter'" for
each of those four wells are also stated, with their
probable errors. They are in substantial agreement with
the values found by BTE.

%e are restricting ourselves throughout this paper to
experiments below about 10 Mev. The obvious reason is
that no higher energy experiments of adequate accuracy
are available at present. However, we feel that even
when experiments at higher energies do become avail-
able, it will be very hard to interpret them intelligently
without a rather accurate knowledge of the implications
of the lower energy work. In the course of this analysis,
we have come to the conclusion that four dhfferent types
Of experiments are highly desirable in the lotv energy region:

(1) An accurate determination of the cross section at
90' (45' in the laboratory system) near 400 kev. The
same recommendation has been made, on slightly difFer-
ent grounds, by Breit, Broyles, and Hull. "This experi-
ment and the difFerences between our approach and that
of reference 11 are discussed in Section VII (these
difFerences have no inhuence upon the ultimate recom-
mendation to experimenters, however. )

(2) A repetition, with comparable accuracy, of the
work of Dearnley, Oxley, and Perry" with cyclotron
sources at 7 Mev. This point seems to be rather out of
line at present, and an independent determination is
highly desirable, in view of the radical implications if it
should be confirmed: we show in Sections VII and XI
that tsone of the conventional well shapes can give an
adequate fit to the data if the DOP point is included,
indeed that no reasonable potential well can do so;
rather the DOP point mould probably demand the
introduction of "velocity-dependent" forces."Ke hesi-
tate to take such a step without further experimental
conhrmation.

(3) A careful determination of relative cross sections
(as a function of scattering angle) with moderate abso-

(just because it is a variational principle}; the precedent had been
established in the authors' earlier paper on neutron-proton scatter-
ing (see reference 6}, the extension to proton-proton scattering is
simple. However, the main reason is that the present paper was
originally written as a research report, rather than a review paper.
In the process of revision into its present form, the authors found
that the viewpoint and results of the variational principle were
sufliciently woven into the text that it would have been a prohibi-
tive amount of work in the time available to make the necessary
changes concomitant with the reversing of the roles of Section IX
and Appendix IV. The indulgence of the reader is asked on this
point. It is suggested that one read Section VIII (the Landau-
Smorodinsky result), Appendix IV, then Section IX for the clear-
est understanding of the theoretical formulation of the expansion
(1-2).

"Breit, Broyles, and Hull, Phys. Rev. 73, 869 (1948}.~ Dearnley, Oxley, and Perry, Phys. Rev. 73, 1290 (1948},
referred to as BOP.

'3 J. A. Wheeler, Phys. Rev. 50, 643 (1936).

lute accuracy in the 5-10-Mev region, for scattering
angles in the "central region" around 90' in the center-of-
mass system. %e show in Section V that such measure-
ments which we believe are feasible with cyclotrons can
determine the presence or absence of appreciable con-
tributions of other than 5-waves to the nuclear scat-
tering. The measurements cannot distinguish whether
these deviations from pure 5-wave scattering, if found,
are due to P-wave efFects or D-wave e6ects or to a mix-
ture of both. The angular region over which such rela-
tive measurements are useful is discussed in Section V.
As an aid to planning such experiments, theoretical
estimates of the higher phase shifts are given in Section
XII over this energy range, for the four conventional
well shapes.

(4) If the cyclotron relative cross-section measure-
ments should prove the existence of higher phase shifts
at energies below 10 Mev, absolute cross-section meas-
urements over a somewhat wider range of scattering
angles would then discriminate between P-wave and
D-wave contributions to the scattering. Van de GraafF
generators with good voltage control should be used for
this work. Reasons are given in section V why it pays to
set a much higher standard of accuracy for the beam
energy determination than for the determination of the
absolute yield.

The results obtained here are in essential agreement
with earlier results of Breit and collaborators wherever a
comparison can be made; also, some of the recom-
mendations for future experiments have been made
before. '

II. THE DIFFERENTIAL CROSS SECTION FOR
PROTON-PROTON SCATTERING—

FORMAL WO~
The pure, unscreened Coulomb field has an in6nite

range; that is, the wave function cannot be written as a
superposition of a plane wave exp(ikz) and a scattered
spherical wave f(8) exp(ikr)/r, even at very large dis-
tances from the scattering center. VVe shall assume that
the electrostatic potential is screened out at some dis-
tance p, of the order of the Bohr radius of an atom. The
asymptotic wave function for the Coulomb scattering of
two nor-identical particles can then be written in the
center of gravity system as:

exp(ikz)+ fo,„~(8)exp(ikr)/r, (2.1)

where 8 is the angle between the direction of the incident
beam and the direction in which the scattered particles
are observed. The pure Coulomb scattering amplitude
fc, &(8) is, for angles 8 suKciently large so that the im-

pact parameters in the scattering are smaller than the
screening radius (Bohr radius), '4

fo»~(8) = —(e'/2mv') cosec'(8/2)
&(expL —2irt log sin(8/2)+2io 05** (2.2)"¹F. Mott and H. S. W. Massey, Theory of Atomic Collisions

{Oxford University Press, New York, 1933).
**This equation diGers in one respect from Eq. (16), Chap-

ter III of Mott and Massey. We have written the radial de-
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lerit:p/& (2.4)

where p is the screening radius and X is the de Broglie
wave-length of the relative motion, divided by 2m. For
proton-proton scattering around 1 Mev, this value of t

(beyond which (2.3) breaks down) is of order 10'. The
critical angle 8„;t,below which the screening becomes
important, and (2.2) is no longer valid, is given by
(for rl((1):

8„;t—X/p. (2.5)

For proton-proton scattering around 1 Mev, this angle
is of order 10 4 radians. For angles larger than that,
formulas (2.2) and (2.3) are applicable.

Equations (2.2) and (2.3) must still be corrected for
the fact that protons are identical particles which have
spin 2 and obey the Pauli exclusion principle. The wave
function (2.1) is not in agreement with the exclusion
principle. Rather, the correct space wave function must
be symmetric under the interchange of the particles
(s—+—s, 8—+tr —8) for two protons in the singlet spin
state, while it must be antisymmetric under this ex-
change if the two protons are in the triplet spin state.
Thus (2.1) has to be replaced by

[exp(t'its) aexp( iks)]-
++Geol(8)~fcooi(n' —8)] exp(iver)/r, (2.6)

where the upper (plus) sign refers to protons in the
singlet spin state, the lower (minus) sign to protons in
the triplet spin state.

where m=reduced mass=(g)(Mp„t„),v=relative ve-

locity of the two particles, 8= angle of scattering in the
center of gravity system, rl =e'/hv, and exp(2t tie)
= (in) '/( —in) .

This Coulomb scattering amplitude can be written
also as a sum over contributions of the separate orbital
angular momenta:

fc,„(8)=(2ik) '

)&P (2l+ 1)Lexp(2t'trt) —1]Pt(cos8) (2.3)
1=0

where exp(2tot) =(l+ig)!/(1—t'rl)!, and Pt(cos8)=Le-
gendre polynomial of order l, not normalized.

Equations (2.2) and (2.3) are not quite correct for a
screened Coulomb 6eld, for two reasons: The joining of
the screened to the unscreened region will produce a
common phase factor in all the relevant terms of the sum
(2.3), which has no influence on the result. Second, the
screening will produce important changes in the terms
of (2.3) corresponding to very high orbital angular
momenta l. This in turn means that (2.2) is incorrect for
very small angles. The critical value of I is given by the
condition

The identity of the colliding particles makes the two
collisions pictured in Fig. 1 indistinguishable from each
other. Classically, one would add up the cross sections
for the two collisions, in order to get at the cross section
for a collision in which either one of the particles is
found moving at an angle 8 to the direction of the inci-
dent beam, after the collision. This classical differential
cross section is therefore

d&,t, . i= (I fco i(8) I'+ Ifco i(tr —8) I')tl& (2.")

Formula (2.6) shows that the quantum mechanical
treatment gives additional, interference, terms between
the two scattered waves. These interference terms are
different for scattering in the singlet and triplet states.
The quantum mechanical differential cross sections are
therefore given by

d~.-- =t(lf(8) I'+If(~ 8) I'—
+[f"(8)f(m.—8)+f(8)f (tr —8)])dQ, (2.8)

where the upper and lower sign again refers to scattering
in the singlet and triplet spin states, respectively. For
pure Coulomb scattering, the Coulomb scattering ampli-
tude fc,„i,(2.2), has to be substituted into (2.8).

The experiments so far have been conducted with
unpolarized beams of protons scattered from unpolarized
targets. We must average the cross sections (2.8) over
the relative spin orientations in a random assembly of
protons. The singlet state will occur one-quarter of the
time, the triplet state, three-quarters of the time. The
observed cross section is therefore the following function
of the scattering amplitude f(8):

(g)tltreioglet+ (g)tl&triplet

=(If(8)I'+ If(~—8) I'
—(l)U*(8)f( —8)+f(8)f'( —8)])dt's. (2.9)

pendence of the outgoing wave in the unscreened region as
S'= r ' exp(iver —ig log2kr) rather than the S of Mott and Massey.
The compensating change in f(e) produces log sin'(8/2) in the
exponential phase factor. A study of the Coulomb wave functions
shows that S', rather than S, is the quantity which is analogous to
the exp(ikr)/r of (2.1).

(b)

FIG. 1. Two seemingly different identical particle collisions that
are experimentally indistinguishable.
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This result is due to Mott. "If one substitutes in (2.9)
the amphtude for pure Coulomb scattering, (2.2), one
gets the Mott cross sect~on for proton-proton scattering
without nuclear efIects:

da M «——(e'/2m'"-) '{cosec.'(8/2)+ sec'(8/2)—
—cosec. '(8/2) sec'(8/2)

Xcos[2g log tan(8/2)]]dQ. (2.10)

It is apparent from (2.9) or (2.10) that the scattering
cross section is the same for the angles 8 and ~—8. This
is merely an expression of the indistinguishability of the
two collisions pictured in Fig. 1.

We now consider the modifications introduced into
this cross section by the nuclear forces between two
protons. The radial wave function for pure Coulomb
scattering with orbital angular momentum / has the
following behavior for values of r&&lX but still r«p, the
screening radius:

Fi(r) sin(kr —lir/2 —log(2kr)+ 0 i) (2.11)

where 0~ is the pure Coulomb phase shift defined in con-
nection with Eq. (2.3). The nuclear forcestf will lead to
a change in this phase shift. It is customary to write this
modified phase shift as a sum of two terms, i.e., the
asymptotic behavior of the radial function Ni(r) for
lX«r«p is written as

Ni(r) sin(kr —ia/2 —log(2kr)+ o i+ bi). (2.12)

The quantity bi (called Ei in the papers by Breit et al.)
is commonly referred to as the "nuclear phase shift. "
One should point out that b~ is by no means equal to the
phase shift which would be obtained if the Coulomb
field between the protons were suddenly switched oG.
Rather, the combined phase shift ai+bi is due to the
action of the nuclear forces and the Coulomb force both,
and the separation into 0~ and b~ is merely a matter of
convenience.

The modified scattering amplitude f(8) in the presence
of nuclear and Coulomb forces is given by

f(8)= (2ik)-' Q (21+1)
l=o

X LexpL2i(0 i+bi)]—1]Pi(cos8). (2.13)

The expansion (2.13) is completely analogous to the
expansion (2.3) for the scattering amplitude due to the
Coulomb field alone. We have merely replaced the
Coulomb phase shift 0.

& by the modified phase shift
~g+ b~ throughout.

'6 N. F. Mott, Proc. Roy. Soc. A126, 259 (1930).
ff We shall assume throughout this paper that the nuclear

forces are central forces. This is certainly true in singlet states,
hence in particular in the '5-state which is the only important
state for low energy proton proton scattering. The modifications
introduced by tensor forces into the analysis of triplet state scat-
tering (in particular, scattering in the P-states) have been dis-
cussed by Breit, Kittel, and Thaxton (see reference 16}. At
present, there is so little conclusive evidence of any P-wave
scattering whatsoever that we do not feel it is worth while to
complicate the exposition given here by the inclusion of tensor
forces.

Equation (2.13) will converge extremely slowly. For
values of l sufficiently high so that the combined
Coulomb and angular momentum "barrier" keeps the
protons apart beyond the range of the nuclear forces, the
modifications in the pure Coulomb scattering will be
negligible, i.e., BE will become very small as / increases. It
is convenient, therefore, to write the scattering ampli-
tude f(8), (2.13), as a sum of two terms: the amplitude
fc, i(8) for pure Coulomb scattering, and an additional
term which we shall call f„,(8):

Comparison of (2.3) and (2.13) shows that f„,(8) is
given by the sum

f,„,(8)= (2ik) 'Q—(21+1)
E=o

Xexp(2ia. i) { exp(2ibi) —1]Pi(cos8). (2.15)

Since b~ is in practice negligible compared to unity
already for I= 1, the series (2.15) converges very rapidly
indeed. We shall refer to f„,(8) as the "nuclear scat-
tering amplitude. " The same caution applies to this,
however, as to the phase shift 8~. If the Coulomb field
did not exist, the scattering amplitude due to the sole
action of the nuclear forces would be quite diGerent
from (2.15). Indeed, this difference is a great compli-
cating factor in the comparison of neutron-proton and
proton-proton scattering.

The cross section for proton-proton scattering is ob-
tained by combining Eqs. (2.9), (2.14), (2.15), and (2.2).
The result has been written down explicitly for the case
where only the 6rst three terms of (2.15) are significant,
by Breit, Condon, and Present. The formulas are fairly
lengthy and will not be given here. We will content
ourselves with writing down the complete formula for
the case in which only the S-wave phase shift 80 ls
appreciable. This formula for the diBerential scattering
cross section in the center-of-mass system is:

0 (8)= (e'/2m'') '( {cosec4(8/2)+ sec 4(8/2)
—cosecs(8/2) secs(8/2) cos(2g ln tan8/2) I—(2/il) sinbp {cosec'(8/2)
Xcos(ho+2' ln sin8/2)
+sec'(8/2) cos(bo+2g ln cos8/2) I

+(4/g') sin'80]. (2.16)

The 6rst term of (2.16) is just the Coulomb scattering
given by the Mott formula (2.10); the second term is the
interference term between the S-wave nuclear inter-
action and the Coulomb force; the third is the spe-
cifically nuclear scattering (although, as is mentioned,
it is not the same as neutron-proton scattering). The
only unknown in (2.16) is the nuclear phase shift bo.

The formula (2.16) for the scattering cross section is given in
the center-of-mass coordinates. In practice one observes the scat-
tering in the laboratory, corrects the data for various effects (see
BTE), and then transforms to the center-of-mass system. If 0 is
the scattering angle in the laboratory, then for particles of equal
mass 8=8/2, 8 being the center-of-mass angle. The cross sections
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are related through:

r l,b(0}=4 cos(e)o(20}. (2.17}

emote

that because of the recoil of the struck proton no scattering is
observed at laboratory angles greater than 90 degrees.

While formula (2.9) is perfectly adequate, it some-
what obscures the detailed influence of the Pauli ex-
clusion principle. Let us split the scattering amplitude
f(8) into two parts, even and odd under the exchange of
the space coordinates of the two particles:

f(8)=f-..(8)+f.«(8),
f--(8)= (k)U(8)+f(~ 8)—j, (2 1g)
f.«(8) = (2)U(8) f(~ —8)j—

Clearly this split can be made for fc«& and f„.sepa-
rately. The cross section then becomes:

der=(( f, , (8) ['+3~j,«(8)
~

')dQ. {2.19)

This equation shows that the contributions of the
even and odd parts of f(8), (2.15), are incoherent. In
particular, there are no interference terms between
S-wave and P-wave scattering, even in the di8erential
cross section. The even parts of f(8) are associated with
scattering in the singlet spin state, the odd parts with
scattering in the triplet spin state. It is well known that
the Legendre polynomials I'~(cos8) are even for even
values of /, odd for odd values of /. Hence the separation
(2.18) is equivalent to separating the terms with even
and odd l, respectively, in the sums (2.3) and (2.15).

As far as the nuclear interactions are concerned, the
Pauli principle demands that two protons in a state of
even / must have opposite spins; hence we can deduce
information about the nuclear force between two protons
in the singlet spin state from the observed nuclear phase
shifts b~ with even values of /. Conversely, the nuclear
force between two protons in the triplet spin state can
only be found from the nuclear phase shifts b~ with odd
values of /. In practice, vre have rather detailed informa-
tion about 80, so that the force in the '5-state is fairly
well known (much of the rest of the paper will be de-
voted to making this statement more precise). Only
indications, but no reliable values, are available as yet
for any of the other phase shifts. Furthermore, we shall
show in Section V that very high accuracy is necessary
before one can determine whether a given deviation
from pure S-wave nuclear scattering is due to a P-v ave
or a D-vrave nuclear interaction. In view of the great
interest in the P-state interaction as far as general
nuclear physics is concerned, in particular in connection
with the observed saturation of nuclear binding energies,
the authors feel that an attempt should be made to
ascertain the precise nature of the deviations from pure
5-wave nuclear scattering (if any), in spite of the great
experimental di6iculties.

Of course, the states of higher angular momentum
will give rise to more and more scattering as the energy
is increased. Nevertheless, we feel that very careful
measurements should be made belovr 10 Mev, to detect

the small discrepancies there, in addition to measure-
ments at higher energies. The reasons for this recom-
mendation are:

(1) At low energies, one can be fairly sure that nuclear
interactions in states with /~&3 can be neglected. Hence
one has to determine at most 6ve parameters from the
data (the phase shifts for the 'S- and 'D-state nuclear
scattering, and three phase shifts for scattering in the
'P-state, in case a tensor force should exist in that
state).

(2) Furthermore, there is good reason to believe that
the number of unknown parameters in the scattering
can be reduced to three: As long as the phase shifts in
the 'P-states are sma, ll enough so that one can neglect
their squares and products, the P-wave nuclear scat-
tering can be described by one (mean) phase shift, even
in the presence of a tensor force. (See Section V.)

(3) Some of the experimental corrections which have
to be applied to the scattering data (e.g. , corrections for
penetration of the slits in the collimating system) are
less serious at lower energies.

Thus it appears reasonable that careful low energy
experiments should be performed, as well as experiments
at higher energies (e.g. , 32 Mev, and higher). With good
low energy measurements (where the effects of waves of
higher angular momentum are presumably small, but
should be relatively simple to understand), the inter-
pretation of the higher energy data will be made more
secure and freer from ambiguities than vrithout such
data. Considering the time it takes to make careful ex-
periments in this 6eld, it is very desirable that both low

energy and high energy experiments should be con-
ducted simultaneously.

III. THE DIFFERENTIAL CROSS SECTION FOR
PROTON-PROTON SCATTERIN-

QUALITATIVE DISCUSSION

The quantitative formulation given in the preceding
section leads to formulas which are suKciently complex
so that a more qualitative discussion may be helpful. %e
shall start out by considering the pure Coulomb (Mott)
scattering only. It di8ers from the Rutherford scattering
in two ways: symmetry around 8=90' (in the center-of-
mass system), and the presence of interference terms be-
tween the two contributions fc,„~(8)and fc,„~(s—8).
For reasonably high energies (above 0.5 Mev) g=e'/hv
will be small compared to unity, and the cosine in the
interference (third) term of the Mott formula (2.10) can
be replaced by unity, provided 8 is around 90 . The
behavior of the cross section as a function of angle vrill

be smooth. The interference term is negative, decreasing
the cross section below its "classical" value (2.'I). As the
angle 8 is decreased (or increased beyond 90') the
interference term vrill start Quctuating more and more
rapidly. However, for 8((1, the first term of (2.10) is
entirely dominant, so that the rapid Quctuations in the
interference term as a function of angle do not induce
appreciable Quctuations into the cross section as a vrhole.
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Formula (2.10) breaks down at very small angles
(8 8„;i,(2.5)) where screening becomes important. If
one replaces the pure Coulomb 6eld by the screened
field: V(r)=(e2/r) exp( —r/p), and uses the Born ap-
proximation to estimate the scattering cross section, the
result is that the cross section levels oG for 0&8„;&and
approaches a constant value as 8 approaches zero. A

simple order of magnitude estimate shows that most of
the total (transmission) cross section for proton-proton
scattering comes from this region of angles. Hence the
transmission cross section, even with a very thin target,
cannot be used to 6nd information about the nuclear
interaction between two protons. In that respect
proton-proton scattering is appreciably more dificult
than neutron-proton scattering; diGerential cross-sec-
tion measurements are necessary.

%e shall now assume that the nuclear forces aBect the
scattering in the '5-state only. Ke must then compare
the nuclear scattering amplitude (from (2.15)):

f„„,(8) = exp(2iao)k ' exp(iso) sin(8o) (3.1)

with the even part of the Coulomb scattering amplitude;
from (2.2) and (2.16) this latter is given by:

Pc,„i(8)]„„„=exp(—2iao)
X (a2/2rgg)~) 2iL(sjn2(8/2)) '~'+ (cos2(8/2)) '~q ('3 2)

We can disregard the phase factor exp(2iao) since it
occurs in both scattering amplitudes. At low energies
(below 2 Mev) the nuclear 5-wave phase shift 6o is much
less than a radian. The nuclear scattering amplitude
(3.1) is therefore almost real. It is positive for an
attractive nuclear potential, negative for a repulsive
potential. At higher energies, 80 becomes comparable to
unity, so that exp( —2iao)f„„ceasesto be even ap-
proximately a real number.

Again apart from the phase factor exp(2iao), the even
part of the Coulomb scattering amplitude (3.2) will be
approximately real at high energies, where g becomes
very small (we recall that q=0 1588 & wher. e E is the
energy in the laboratory system measured in Mev).
Even at energies as low as 2 Mev, however, the square
bracket in (3.2) will be approximately real at angles
around 90'. The negative sign in front of (3.2) comes
from the fact that the Coulomb force between two
protons is repulsive.

There is thus a region of energies, somewhere between
-', and 1 Mev, in which both the nuclear scattering
amplitude (3.1) and the even part of the Coulomb scat-
tering amplitude (3.2) are approximately real (apart
from the exp(2iiro)) and have opposite signs. Appreci-
able destructive interference can be expected between
these two contributions. At energies below some critical
value, E„;&,the magnitude of (3.1) will be less than even
the minimum magnitude of (3.2) (which occurs at 90').
Thus the interference, though it exists, will not be com-
plete at any angle.

At energies above E„;&,the magnitude of (3.1) will
exceed the minimum magnitude of (3.2). There will

therefore exist an angle, gtt call it 8, at which the
magnitudes of (3.1) and (3.2) will be equal. Since the
relevant quantities are still approximately real and of
opposite sign, the singlet state scattering cross section
(due to the even parts of the scattering amplitudes) will
become very small due to the destructive interference.
The region of angles in which the destructive interfer-
ence is important is rather limited: The nuclear scatter-
ing amplitude for pure 5-wave scattering is independent
of angle, while the even part of the Coulomb scattering
amplitude is a very rapidly varying function of 8. Thus
the interval of angles in which both are of approxi-
mately equal magnitude will be rather narrow.

Of course, the cross section will not vanish even at
8= 8, for two reasons: (1) The interference is not com-
plete since the phases of (3.1) and (3.2) on the complex
plane will not be exactly opposite to each other, and (2)
there will still be the contribution from the odd part of
the Coulomb scattering amplitude (the triplet state
scattering) which suffers no interference at all (see
Eq. (2.19)).

The most favorable case for interference obtains when
the destructive interference in the singlet scattering
occurs at 90'; the triplet scattering (the second term of
(2.19)) is zero at that angle. Since the magnitude of (3.2)
has its minimum at this angle, also, the cross section
will be extremely small (actuallv of the order of 10 "
cm' per steradian). This situation will occur right at. the
critical energy E„;t,. At higher energies than that, the
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Pro. 2. Differential
scattering cross section
in the center-of-mass
system, solid line-nu-
clear plus Coulomb, dot-
ted line-Coulomb alone;
and S, the ratio of total
to Mott scattering at an
energy of 250 kev {less
than E„;~)in the labo-
ratory. The destructive
interference efFects are
apparent near 90 de-
grees.
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'tt'tl There will be two such angles, of course: 8 and x—6~, since
the cross section is symmetric about 90'. We shall consider angles
below 90' only from now on; the symmetry about 90' will be
understood.
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2n
Q2

exp(2m g) —1
(3.3)

This factor is always less than unity due to the
Coulomb repulsion between the protons. However, when
C' is close to unity this means that the Coulomb force is
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FIG. 3. Differential
scattering cross section
in the center-of-mass
system, solid line-nu-
clear plus Coulomb, dot-
ted line-Coulomb alone;
and S, the ratio of total
scattering to Mott scat-
tering at an energy of 2.4
Mev (greater than Ecrit)
in the laboratory. The
scattering is predomi-
nantly nuclear except at
small (and large) angles.
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interference angle 8 will move away from 90', and the
interference will be less pronounced, mostly because of
the contribution of the triplet state Coulomb scattering.

In Figs. 2 and 3 we have plotted typical cross section
vs. angle curves at an energy E&E„;&and E&E„;&re-

spectively. The Mott cross section is shown dashed. We
have also plotted the ratio of observed cross section to
Mott cross section at these two energies. It is seen that
for E&E„;&there is an appreciable central region of
angles around 90' where the scattering is mostly due to
the nuclear forces. There is then a shallow interference
minimum at 0=8 . For smaller angles the Coulomb
cross section takes over completely. The figures do not
show the leveling off of the Coulomb cross section due
to the screening, because of the limitations of the scale.

We still have to estimate the value of the critical
energy E„;&.We can get a rough upper limit for E„;&as
follows: The nuclear force is known to have a short
range. Hence it acts only when the protons are es-
sentially at the same place. Ke can compare the proba-
bility of finding two protons close together with the
probability of finding two uncharged particles together,
other things being equal. The ratio of these two proba-
bilities is determined by the "Coulomb penetration
factor" C':

ineffective in keeping the protons apart. Consequently
the nuclear scattering will be important. The energy
above which C' is greater than one-half is approximately
800 kev (in the laboratory system). This can serve as a
rough upper limit for the critical energy E„;&for proton-
proton scattering, since at higher energies the nuclear
scattering will be predominant (at least at large scat-
tering angles), while at lower energies the nuclear and
Coulomb scatterings are expected to compete.

Ke have not used any information about the nuclear
force in this estimate except its short range. Clearly the
precise magnitude of the critical energy E„;&must de-

pend upon the strength of the force as well as its short
range (actually, it will depend upon the product Vob', Vo

being the depth and b the range of the well).
The more detailed analysis of the data shows that

empirically the critical energy E„;&is close to 400 kev in
the laboratory system. At this energy q=0.25 and the
Coulomb penetration factor is C'=0.41.

Experiments at energies around 400 kev are highly
recommended and di-cussed in some detail in Section
VII of this paper. While a differential cross-section
measurement near 90' is necessary, one might be able to
use the fact that the Coulomb cross section (which is
presumably well known) is predominant at other angles
in order to obviate the necessity of an absolute yield
measurement. One could measure the relative yield at
two angles, 90' and some smaller angle (such as 40')
where the scattering is predominantly Coulomb. The
ratio of the two yields is sufhcient to determine the
nuclear phase shift 5o uniquely. While this technique
avoids the necessity for calibrating the beam current
and the pressure in the chamber, it is suggested for use

only at rather low energies. For energies in excess of
about 1 Mev, the angles for which the Coulomb scat-
tering is dominant become so small that accurate
measurements (even of relative yields) are very diificult.
The determination. of the nuclear phase shift from the
relative yield measurement suggested above amounts to
a calibration of the strength of the (unknown) nuclear
forces in terms of the (known) electrostatic forces be-
tween two protons.

Finally we wish to mention the multiple Coulomb
scattering. The scattering cross section for small angle
single scattering is so large (even with the correction for
screening) that the observed small angle scattering
through any physically realizable layer of matter is due
to many successive scattering events. While this does
not matter greatly in itself (we are not interested in the
small angle scattering) it acts as a disturbing inhuence in
the measurement of the large angle scattering cross
section. One cannot assume that a proton enters the
scattering chamber, proceeds in a straight line to the
scattering volume selected by the co1limating and de-
tector slits, gets scattered there and proceeds from there
in a straight line to the detector. Rather the paths before
and after the main scattering event will show smaH

random curvatures due to multiple Coulomb scattering.
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TABI.E I. Mott cross section o~ and quantities q and since for
larger scattering angles. E is in Mev in the laboratory system. 8 is
in the center-of-mass system. cr ~ is in 10 cm' per steradian in the
center-of-mass system.

system; 0 jr(8) is the Mott cross section (2.10). 80 is the
nuclear 5-wave phase shift. The quantities q and co are
functions of the energy and scattering angle only, and
are de6ned by:

Scatter-
ing angle

lIl Quantity

40' sinu

I eading tcrtn

0.80796E '
0.33520E

Corrections
(1+ctF '+r~F. -"+ . .}

—0.29269 0.02308—0.05415 0,00388
0.00764 —0.000065

2/q+'tl
tancv —=

X

costs, (4.3)
50

70'

85'

since

agf

SlIlu

&kf

sinu

&M

since

0.32495E '
0.13481E

0 1554&E '

0.06449E-

1
0 086570E '
0.035916E

1
0.057927E '
0.024032E '

0.051890E '
0.021528E

1
0.049966E '

0.020730E '

—0.14510—0.01401
0.00762

—0.08883—0.00831
0.00646

—0.06408
—0.010295

0.004148

—0.05312—0.013685
0.001368

—0.050734
—0.014889

0.000370

—0.049966
—0.015332

0

0.00461
0.000249

—0.000037

0.00192
0.000162

—0.000016

0.00121
0.000207—0.000004

0.000953
0.000258

—0.0000004

0.000900
0.000277

0

0.000884
0.000283

0

where, in the notation of BTE,

cos(il ln sin'8/2) cos(i1 ln cos'8/2)
X=- +

sin'8/2 cos'8/2

sin(s ln sin28/2) sin(g ln cos28/2)
Rj =— ——+

sin'8/2 cos'8/2

~Ma'p '-

m=]Ee')
The formula (4.1) can be solved for 280 to yield:

(8)
280 sin ' sinid———q(

—1
40 u(8) J

(4.4)

(4.5)

This eGect tends to smooth out the cross section as a
function of angle, and is particularly disturbing when
the variation of cross section with angle is rapid (as in the
Coulomb scattering itself). While no discussion of these
and similar corrections to the raw data will be given in
this paper, we mention this because it is the one cor-
rection which one can never quite get rid of." If one tries
to eliminate the multiple Coulomb scattering, say by
decreasing the thickness of the scatterer, one also
eliminates the eGect one is trying to observe.

IV. DETERMINATION OF THE 8-WAVE PHASE SHIFTS
FROM THE EXPERIMENTAL CROSS

SECTIONS —THEORY

The techniques of determining phase shifts from the

experimental data have been described in detail by
BTE, and in other papers by Breit and collaborators. It
will suKce to describe a somewhat simpler formula for
the phase shift than has been given previously, and to
tabulate the few auxiliary quantities necessary for its
use.

For energies below 10 Mev, the scattering is almost
entirely made up of S-wave nuclear scattering and
Cou1omb scattering. %ith the assumption that the
nuclear scattering is only S-wave scattering, the diBer-
ential cross section in the center-of-mass system (2.16)
can be written in the form:

~r(8) = ow(8) f1+9 '(since —sin(280+co)) j, (4.1)

where 8 is the scattering angle in the center-of-mass

Rapidly convergent expansions for 0.M, q and since in
inverse powers of the energy can be obtained from their
analytic forms. Such expansions are collected in Table I
for center-of-mass scattering angles of 40 to 90 degrees.
The leading term given in column 3 is to be multiplied
by the corresponding correction term involving c& and
c.. For example, the value of a.~y in barns per steradian
at 8=40' is given by

0.00764 0.000065
0 ir(40') =0.3352E, 'i 1+ —— +

I; r.2

Q=q secre (4.6)

and tan&a yield useful expansions for small angles. %ith
this defmition of Q, formula (4.5) is replaced by:

(8)
280 =sin ' sinu& —Q cosco) —1

~

—cu. (4.7)
(aw(8)

In Table II we give expansions for ~~, Q, and tanco for
center of mass scattering angles from 16 to 40 degrees

where E is the energy in the laboratory system. By
means of these expansions and trigonometric tables the
phase shifts can be found from the experimental data
v ith a minimum of eRort.

At small scattering angles the expansions for since and

q are inconvenient due to slow convergence even at
energies above 1 Mev. It has been found that the
quantity Q defined by
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for use with formula (4.7). It is seen that the conver-
gence of the expansions of Q and tan&a is rather poor for
the two smallest angles (8 and 10 degrees in the labo-
ratory). At the larger angles, however, the correction
terms given are seen to be adequate except for low

energies.
For energies considerably below 1 Mev the expansions

in Tables I and II are not correct, and use must be made
of the exact expressions (4.2) and (4.3) for tanco and q,
or the numerical tables of BTE. In this connection it is
useful to note that tan~ is just the ratio of the quantity
(4/g'Et+2'JJ/gBR) given by Table II of BTE to the
quantity 2X/gBR given by Table I of BTE. Similarly, Q
is just g times the ratio of BR (Table V of BTE) to X
(Table III of BTE) by definition. Once tanru and Q are
known, formula (4.7) can be applied in the usual way.

It should be remarked that (4.5) or (4.7) leads to
certain ambiguities as to the sign and magnitude of
2bp+ar. The correct, value of bp cannot be determined
from the value of the cross section at one angle and one

energy. It is necessary to know the magnitude and
angular distribution of the scattering in order to de-
termine the correct sign and magnitude of the phase
shift, from the interference of the nuclear scattering
with the Coulomb scattering. For example, suppose the
correct value of bp is a. For 5-wave scattering alone, a
would be independent of scattering angle. Now (4.5) or
(4.7) allows another solution, Ba'=~/2 —co—a. How-

ever, co = &a(8) so that Ba' would have the dependence on
scattering angle characteristic of co, hence this solution
can be excluded provided the scattering is known at
more than one angle. Physically, the phase shift can be
seen to approach zero very rapidly at zero energy

(8 e '~' for small k (large y), from (1.1) and (1.2)) be-
cause the Coulomb repulsion keeps the protons apart,
far outside the range of the nuclear force.

In order to establish the uncertainty in a value of the
phase shift implied by an experimental measurement
with certain experimental uncertainties in cross section
and energy, it is convenient to have tables of the
quantities o(BBa/Bo). s and E(BBa/BE), that is, the
variation in 8p due to a change in the cross section with

energy kept constant, and the variation in Sp due to a
change in the energy keeping the cross section fixed.
These quantities, when multiplied by the relative
uncertainties in cross section and energy respectively,
give directly the uncertainty in the phase shift bp.

o(88a/Ba)z and E(BBa/BE), are, of course, dependent
upon the scattering angle and energy, and upon the
actual value of the scattering cross section at that angle
and energy. In order to tabulate these functions, one
must assume, eGectively, the functional dependence of
8p on energy, since that is the only unknown in the
formula for the scattering cross section (4.1). BTE
give tables (Tables VI and VIII in their paper) of
0.01a(BBa/Bo)a and 0.01E(Bba/BE), for energies from
0.175 Mev to 2.4 Mev and angles from 8=30' to 90',
under a reasonable assumption as to the dependence of

TARSI.E II. Mott cross section o~ and quantities Q and tana for
smaller scattering angles. E is in Mev in the laboratory system.
8 is in the center-of-mass system. y~ is in 10~4 cmm per steradian in
the center-of-mass system.

Scatter-
ing angle

8 Quantity Leading term

Corrections
(1+ctB 1+cd ~+ )

Cl cR

16'

20'

25'

30'

35'

tanco

Q

tancv

0

tanu
0

tanco

tanu
Q

0.24034E&
7.8474E-~

13,546E

0.37004E~
4.9306E &

5.5280E

0.56499E&
3.0657E &

2.2511E

0.79084Ei
2.0616E &

1.08153E

1.0407 1E&
1.44758E &

0.57707~

—2.3533
0.19443
0.003875

—1.3024
0.15335
0.004824

—0.70526
0.11740
0.005846

—0.41985
0.091816
0.006644

—0.26766
0.072901
0.007268

—0.28984
0.03075—0.000124

—0.12319
0.01887—0.000121

—0.049009
0.01081—0.000110

—0.021717
0.006428—0.000096

—0.010372
0.003915

—0.000081

40' tan~
0

1.30702E&
1.05602E-~
0.33520E

—0.180087 —0.005244
0.058449 0.002418
0.007639 —0.000065

8p on energy. These tables have been extended to
smaller angles and to energies up to 10 Mev assuming
the energy dependence of 8p implied by the linear fit of
K (1.1) as. k' to the Van de Graaff data (see Section VII).

The constants used were:

a= —7.66X10 "cm,
rp=2. 62)&10 "cm. (4 8)

Use of (1.1) and (1.2) with these parameters yields the
following values of bp as a function of energy:

E 2 3 4 5 6 7 8 9 10

~o 45.6 50.9 53 5 54 8 55 5 55 7 55 7 55.6 55 3

The values of bp above 4 Mev should be considered as
approximate since they are based on an extrapolation of
the linear fit of K to the low energy data. In the
energy range up to 2.4 Mev, the values of bp used
here agree closely with those employed by BTE. In
Tables III and IV, the quantities a(BBa/Ba)s and
E(Bha/BE), in degrees are listed Par.t of the tables are
taken directly from BTE, and only quoted here for
completeness. The rest of the tables are the extensions to
smaller angles and higher energies.

It should be noted that a(88a/Bo)@ and E(88a/BE)
are approximately equal for energies above 2 Mev, and
are almost constant in angle at any one energy, except at
small scattering angles. The latter corresponds to the
fact that the scattering is predominantly nuclear except
at small angles, and is therefore almost isotropic in the
center-of-mass system. Typical curves of a(BBa/8&r)z
and E(Bba/BE) are shown in Fig. 6. A discussion of
their implications will be deferred to the next section
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TABLE III. Values of 0.{B8&/Ba}zin degrees. E is in Mev in the laboratory system; 8 is in the center-of-mass system
(laboratory scattering angle is 8/2).

0.175
0.275
0.375
0.450
0.550
Q.650
0.750
0.850
1.21
1.60
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

16

—1954.—682.—453.—382.—332.
—307.—296.—294.—349.—562.—2186.
+410.

207.
148.
119.
103.
91.1
83.7
76.8

20

—819.—382.—276.
—240.—216.
—207.—206.—213.—319.

—1650.
+453.

128.
84.2
67.6
55.8
53.5
49.6
46.8
44.7

3o'

—23Q.—140.—120.—110.—110.—120.
—150.—220.
+180.

66.
46.
35.1
33.5
33.2
33.2
33.1
33.0
32.9
32.8

4o'

—97.—71.—64.—67.—85.—220.
+310.
+85.

30.
25.
25.
27.6
30.0
31.6
32.7
33.3
33.6
33.7
33.8

500

—51.—40.—42.—55.—310.
+50.

27.
21.
18.
20.
22.

60

—28.
—23.
—29.
—85.
+29.

14.
12.
12.
16.
19.
22.
28.2
31.7
33.8
35.1
35.8
36.2
36,4
36.2

70

—16.
12 p—19.

+34.
+8.8

8.3
9.4

11.
15.
19.
22.

so'

—10.—6.1—9.1
+49
+4.7

6.8
8.5

10.2
15.
19.
23.
29.2
32.8
35.0
36,3
37.0
37.3
37.3
37.2

90

—8.2—3.9—1.3
+1.7
+3.9

6.4
8.3

10.1
15.
20.
23.
29.3
32.9
35.1
36.4
37.0
37.4
37.4
37.3

TABLE IV. Values of E(B80/BE), in degrees. E is in Mev in the laboratory system; 8 is in the center-of-mass system
(laboratory scattering angle is 8/2}.

0.175
0.275
0.375
0.450
0.550
0.650
0.750
0.850
1.21
1.60
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

16

—3930.—1380.—917.—888.—676.—625.—607.—607.—722.—1160.—4480.
+825.

406.
285.
225.
190.
166.
150.
136.

20

—1650.—774.
—563.—492.—445.
—429.—426.—441 ~—661.—3370.
+911.

242.
151.
115.
90.
84.2
75.6
69.3
64.7

3o'

—460.—290.
—240.—230.—230.—260.—320.—470.
+360.

110.
71.
45.4
39.3
37.0
35.6
35.4
34.1
33.5
33.1

4o'

—200.
—150.
—140.—150.
—180.—460.
+610.

160.
43.
29.
26.
26.9
28.7
30.1
31.0
31.6
31.9
32.0
32.0

50

—105.—86.—91.—119.—65.
+90.

41.
27.
17.
18.
20.

60

—60.—51.—65.
—180.
+51.

17.
12.
10.
12.
16.
19.
25.5
29.3
31.6
33.1
33.9
34.4
35.4
34.6

7o'

—36.—30.
—46.
+63.

8.1
4.9
5.5
6.7

11.4
16.
19.

so'

—23.—17.—26.
+2.7—0.4
+1.8

3.8
5.6

11.3
16.
20.
26.7
30.6
33.1
34.5
35.3
35.8
35.8
35.8

90

—19.
—13.—10.—4.5—1.8
+1.2

34
5.5

11.4
16.
20.
26.9
30.8
33.2
34.6
35.4
35.8
36.0
35.9

where E-wave and D-wave effects will be considered as
well.

V. DETERMINATION OF PHASE SHIFTS FOR HIGHER
ANGULAR MOMENTA —THEORY

Breit, Condon, and Present' have given formulas for
proton-proton scattering including the effects of all
angular momenta, and in particular for the case where
the nuclear scattering is important in the 5, P, and D
states, but unimportant for orbital angular momenta
l&3. The analysis of experimental cross sections for
I'-wave and D-wave phase shifts, using these formulas
directly, is rather cumbersome. Under the assumption
that the higher phase shifts o~ (P-wave), b2 (D-wave),
etc., are very small, one can And a relatively easy method
for such an analysis. The higher phase shifts are ex-
pected to be small for energies below j.o Mev, say. In

o = o(E, 8; 8„0,0, 0, ). (5.2)

If the higher phase shifts are actually zero, the apparent
5-wave phase shift 5 will be equal to the true 5-wave
phase shift bp, and will therefore be independent of the
scattering angle 8 at a given energy. If the higher phase

that energy region, most of the nuclear scattering is in
the 5-state. %e therefore introduce the concept of an
"apparent 5-wave phase shift" defined as follows: the
experimental cross section at a given energy E and angle
8 depends upon the nuclear phase shifts 8p, 61, 62

o= cr(E, 0; bp, hg, 82, ).
The apparent 5 wave phas-e shift b, is defined by setting all
the higher phase shifts equal to sero and solving (5.1) for
the resulting "apparent" 80, thus
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TARSI.K V. Values of p&{E, e). E is in Mev in the laboratory system; 8 is in the center-of-mass system.

2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
7.0
8.0
9.0

10.0

16

137.0—67.40—31.52
—22.40—18.24
—15.88—14.32—12.41—11,26—10.47—9.89—9.44

20

—4S.29
—21..22—15.07—12.31—10.73—9.70—8.97—7,98—7.32—6.84—6.47
—6.17

24

—17.31—11.51—9.140
—7.868—7.062—6.50—6.08

5 4 53—5.13—4.82—4.56—4.35

30o

—7.831—6.057
—5.127
—4.572—4.191
—3.91—3.69—3.36—3.11
—2.92
—2.76
—2.62

40o

—3.196—2.665—2.356—2.150—2.000
—1.883—1.787—1.64—1.52—1.43—1.35—1.28

SO

—1.504—1.290—1.159—1.068—0.999—0.944—0.898—0.825—0.767—0.719—0.679—0.644

60

—0.6958—0.6047—0.5473—0.5067—0.4755—0.450—0.429—0.394—0.367—0.344—0.324—0.308

70o

—0.2734—0.2392—0.2174—0.2017—0.1896—0.180—0.171—0.158—0.147—0.137—0.130—0.123

80

—0.06381—0.05603—0.05101—0.04740—0.04458—0.0423—0.0403—0.0371—0.0345—0.0323—0.0305—0.0289

90

TAaLK VI. Values of p&(E, 8). E is in Mev in the laboratory system; 8 is in the center-of-mass system.

2.0
2.5
3.0
3.5
40
4.5
5.0
6.0
7.0
8.0
9.0

10.0

41.77—18.61
—7.984—5.252—3.974—3.224
—2.71—2.03
—1.58
—1.23
—0.954—0.717

2O'

—7.795—2.767
—1.464
—0.8532—0.4822—0.221S—0.0206
+0.284

0.519
0.712
0.879
1.028

24

—0.4221
+03542

0.6918
0.8918
1.0339
1.1476
1.243
1.38
1.51
1.62
1.72
1.81

30

1.580
1.695
1.756
1.805
1.848
1.889
1.925
1.99
2.06
2.11
2.16
2.21

40

1 ~ 577
1.582
1.S87
1.594
1.601
1.609
1.617
1.63
1.65
1.66
1.67
1.69

so

0.5726
0.5733
0.5739
0.5747
0,5754
0.5761
0.577
0.578
0.580
0.581
0.582
0.583

60

—0.6374—0.6389—0.6398—0.6402
—0.6403—0.6400—0.640—0.640—0.639
—0.638—0.638—0.637

zoo

—1.711—1.717—1.719—1.720—1.720—1.718—1 ~ 717—1.71—1.71—1.70
—1.70—1.70

80

—2.437—2.447—2.451.—2.452—2.451—2.448—2.45—2.44
—2.43—2.42—2.41
—2.41

90o

—2.693—2.704—2.709—2.7 li—2.709—2.706—2.70—2.69—2.68—2.67—2.66—2.66

where
8.= 8o+pi8i+ P282+. . . , (5.3)

P„(E,8, 8o) = (8o/88. )/(Bo/88o). (5.4)

The partial derivatives are to be taken at the correct
value of 80 but at 81=f4= -.=0.

The crucial point here is that the functions p„donot
depend very critically upon 80. Hence an approximate
value of Bo substituted into (5.4) will not lead to a large
error in the values of the higher phase shifts inferred by
the use of the expansion (5.3). In particular, the ex-
pansion (1.2) can be used to interpolate or extrapolate
80 as a function of energy from the measured values. We
have used the linear fit of K vs. k' with the constants
(4.8) to determine 8o(E) and evaluate P~(E, 8) and
p2(E, 8). The results are given in Tables V and VI for
scattering angles from I6' to 90' in the center-of-mass

shift is not zero, 8, will be a (slowly varying) function of
8 at constant energy E. Thus the presence of higher
phase shifts shows itself directly in a plot of the ap-
parent S-wave phase shift vs. angle of scattering.

We now use the fact that the higher phase shifts are
small in two ways: First (5.1) can be expanded in a
Taylor series in the higher phase shifts and we can drop
all but the leading (linear) terms; second, (5.2) can be
expanded in a Taylor series in the difference between the
apparent and true 5-wave phase shifts, which difference
is presumably a small number. Equating the two ex-
pansions, keeping only the linear terms, yields

system and energies from 2 to 10 Mev in the laboratory
system. The results are shown graphically in Figs. 4 and 5.
For a more detailed discussion of these functions and
their explicit forms see Appendix I.

These functions are to be used as follows: One 6rst
determines the apparent S-wave phase shifts and their
probable errors from the measured cross sections using
formula (4.5) and Table I (or formula (4.7) and Table II
for the smaller scattering angles) and Tables III and IV.
If 8, shows no variation with 8 outside the experimental
errors, one concludes that the nuclear scattering occurs
only in the S-state within the accuracy of the measure-
ments. If 8, does show a systematic variation with 8, one
plots 8, vs. p~(E, 8). If 82, 8~ etc. , can still be neglected,
formula (5.3) shows that this plot will turn out to be a
straight line of intercept bo and slope b1, so both phase
shifts can be read oft directly from the graph, and their
errors can be determined by inspection.

If the plot of bo vs. p~(E, 8) should show appreciable
curvature, several causes may be responsible (1) 8z ma, y
be large enough so that the linear term in a power series
does not sufhce; estimates show that with the best ex-
perimental accuracies attainable, the linear approxima-
tion used here will be adequate as long as 8& is less than p
radians (less than 2 or 3 degrees at 10 Mev); (2) the
D-wave phase shift 82 may not be negligible. To test for
this, one can select a trial value of Bq and plot (8,—Pqhq)
vs. p2. According to (5.3), this ought to be a straight line
of intercept 5f) and slope b~. The trial value of 8~ should
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TAaLE VII. Values of the 5-eraes o e 5-@rave phase shift, q, h I(q), and k' for the exp
c i the ene gy in the labe a oratory system.

91

Energy
(Mev)

0.1765
0.2002
0.2259
0.2495
0.2753
0.2983
0.3214
0.670
0.776
0.867
0.860
1.200
1.390
1.830
2.105
2.392
2.42
3.04
3.27
3.53
2.42
3.04
3.28
3.53

S-wave
phase shift

(degrees)

5.78~0.35
6.80~0.32
7.82&0.30
9.03~0.30

20.06~0.28
20.96~0.26
2 2.82&0.30
24.68+0.40
27.12~0.40
29.32~0.40
29.28~0.40
35.94'0.40
38.76+0.40
44.02~0.40
46.28~0.40
48.08~0.40
48.24~0.50
50.95~0.50
52.89~0.50
52.58a0.50
47.92~0.40
50.80~0.30
51.77~0.40
52.20~0.30

h(g)

3.79&0.26
3.82~0.14
3.87a0.22
3.83~0.2 2

3.82&0.09
3.92a0.09
3.93~0,25
4.00a0.10
4.22~0.08
4.27~0.07
4.25~0.03
4.32a0.03
4.42&0.03
4.59~0.02
4.72~0.03
4.85a0.03
4.86&0.05
5.25~0.06
5.24a0.06
5.36&0.07
4.90~0.05
5.17~0.05
5.26a0.06
5.42w0, 06

0.552
0.600
0.644
0.686
0.719
0.758
0.787
2.121
1.178
1.230
1.226
1.383
1.453
2.586
1.653
1.716
2.725
1.834
1.870
1.907
1.725
1.834
1.870
1.907

(b). Data obtained w'thwi cyclotrons

0.376
0.353
0.333
0.316
0.303
0.289
0.279
0.1931
0.1795
0.1697
0.1704
0.1444
0.1341
0.1169
0.1090
0.1022
0.1016
0.0906(5)
0.0874
0.0841
0.1016
0.0906{5)
0.0873
0.0841

{a). Data obtained with Vanwi an de Graaff' generators

k2
(X1024 cm ~)

0.213
0.241
0.272
0.301
0.332
0,359
0.387
0.807
0.935
1.045
1.036
1.446
1.675
2.206
2.537
2.883
2.917
3.664
3.941
4.254
2.917
3.664
3.953
4.254

Source

RKT
RKT
RKT
RKT
RKT
RKT
RKT
HHT
HHT
HHT
HKPP
HKPP
HKPP
HKPP
HKPP
HKPP
BFLS%
BFLSW
BFLS%
BFLSW
RWH
R%'H
RWH
RWH

Energy
{Mev)

4.2
4.94~0.04
7.03a0.06
8.0 ~0.2

14.5 ~0.7

S-wave
phase shift

(degrees)

52.7~2.0
54.7~2.0
52.0~0.6
52.7a2.0
52.2~3.5

0.0771
0.0714
0.0598
0.0559
0.0415

h(y)

1.995
2.070
2.243
2.31
2.62

5.83%0.30
6.02~0.28
7.63~0.22
8.00a0.40

10.78~0.80

k~

( X1024 cm~)

5.06
5.95+0.06
8.48+0.07
9.64a0.22

27.5 ~0.8

Source

MP
M
DOP
WC
WLRWS

-2—

4—

-6—

very accurate absolute l f e
matter what high 1

e va ues for thef e cross sections no
vo tage generator is

0 I I

however, that on d
use, We now see

ne oes not need hi h ab

II

I

dt tth 'h' '
ce of zgher phase shi t

0 2-
I

merely high reLati

ase s ives in the scattering
o e restricts oneself

creen 81 and m
—8

I

hus lt appears

I

y f l l
determinations with

ative cross-section
wi protons from c cl

i

r

y oros. Oe t
e, at the s sterna

e,
l

Ie,
I

I

y tic error~ are th
I

I w-e l

es o scatterin .

I

w-e, l~-e,

he next
'

i ispoint to observe in Fi . 6 is

I

I

I

I

p dpi hl t 1 p o gcen ra region. Exce t f
I

g y parabolic
I

I

L g nca
een -zeal and D-

-3

the scattering.
-mane contributions to

l

We now investigate the region wheeglon w ere the lnterferen ce
I

Pg

ca erl g pot
~ . g 5'

h gher phase shifts Howev

th
this regard thanis muc more serious in

what
, .e., g begins to rise ra i

n tr. ls ls
ll ch

(A =001 (8
ave (pm) phase shifts of

ensi ve to nuclear effects.

one degree on th
1 and

as a unction of the scatterin g g m e ce -o-
cv in the laboratory system.



J. D. JACKSON AND J. M. BLATT

55 9—

So ~ 52.56'

$C ~ -QQ
II) 25+50/E,
82~12+30/E, (5.6)

They can be inferred from Tables III and IV for any one

energy. Reasonable interpolation formulas for energies
from 2 to 10 Mev are

54 0—

ao

530I—

25'
C)

C)

s0

4C7 C)

35 C)

so'C)

de Graaff generators can give protons of very accurately

known energy, while absolute cross-section measure-

meots are considerably harder to make experimentally.

Figure 6 shows that there is sense im control/ing the

voltage to 0.1 Percent, say, while rneasctring cross sections

only to —', Percent or ecten f Percent The very. different be-

havior of Pc and P2 in this region of scattering angles

implies that one will be able to differentiate between

P-wave and D-wave effects by measurements there. *

The angles 8~ and 8~ depend upon energy, of course.

52 0—

p, fe)—
I I I I I I I I I
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Fn. 7. Apparent 5-wave phase shifts from BFLSW data at 3.53
Mev plotted vs. P1(8). A slight repulsive interaction in the P-state
seems to be indicated, although the experimental uncertainties are
relatively large.

where E is the laboratory energy in Mev and 8& and |t&

are in degrees, in the center of gravity system.
The experimental data available at present are dis-

cussed in Appendix II and the next section. Whenever
the accuracy of the data allow, an analysis in terms of
apparent S-wave phase shift is made there in order to
obtain estimates of the higher phase shifts. The S-wave
phase shifts implied by the experimental data are col-
lected in Table VII, along with other quantities of
interest for the further analysis.

VI. PHASE SHIFT ANALYSIS OF EXPERIMENTAL DATA

The available experimental data are analyzed for the
apparent S-wave phase shifts by means of formula (4.5)
or (4.7). The data at higher energies are examined for
I' wave (or D--wave) effects wherever the accuracy
warrants it. For convenience the data are broken up into
two groups —the data obtained with Van de Graaff
generators, and that obtained with cyclotrons. The Van
de Graaff data are, in general, more precise than the
cyclotron data. The S-wave phase shifts implied by the
data are given in Table VII with probable errors esti-
mated from experiment. A detailed tabulation of the
phase shifts is given in Appendix II; the values in
Table VII represent averages over the scattering angles.

The following data are available at this time:

So & 52.20'
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FIG. 8. Apparent 5-wave phase
shifts from R%'H data at 3.53 Mev
plotted es. P1(8). A slight repulsion
in the 'P-state is implied.
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~ Professor Breit has pointed out that if there are three P-wave phase shifts (due to the presence of a tensor force), their quadratic
terms (which can be appreciable even though the linear term (3.5) is small) might give rise to a spurious D-wave contribution to the
scattering that could not be distinguished from a true D-wave &Rect by this method of analysis,
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I'zG. 9. Apparent 5-wave
phase shifts from RKH
data at 3.53 Mev plotted
vs. p2(8}. The points imply
an unreasonably strong at-
traction in the 'D-state, as-
suming no interaction in the
'P-state. The somewhat
better ht of the R%'H data
to a D-wave effect rather
than a P-wave effect (see
Fig. 8) is not to be re-
garded as significant.
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1. Data Obtained with Van de Graaff Generators
(in Order of Increasing Energy)

RKT.—Ragan, Kanne, and Taschek" have made
measurements in the 200—300 kev region. Their high
voltage apparatus was actually a transformer-rectifier
device, not a Van de Graaff generator. However, for
simplicity their measurements have been grouped with
those made with electrostatic generators as distinct from
data obtained with cyclotrons. The measurements were
mostly exploratory in character and do not claim very
high accuracy. The points at 90 degrees were corrected
most carefully for various sources of experimental error;
therefore these points were used to determine the phase
shifts.

HHT. —The data of Heydenburg, Hafstad, and
Tuve" in the 670—870 kev region were analyzed by
BTE. Later, Creutz" reanalyzed these data obtaining
slightly different results for the phase shifts. Creutz
looked for P-wave effects and found some; however, he
interpreted them as being spurious. The S-wave phase
shifts found by Creutz are given in Table VII.

HKPP.—The data of Herb, Kerst, Parkinson, and
Plain' were taken with extreme care, and are still the
most accurate data available today. BTE showed that
these data, covering the energy region from 860 kev to
2.4 Mev, could be interpreted in terms of S-wave phase
shifts only. The phase shifts found by BTE for these
data will be used here.

8FLS%.—More recently, Blair, Freier, Lampi,
Sleator, and Killiams21 have extended the measure-

"Ragan, Kanne, and Taschek, Phys. Rev. 60, 628 (1941),
referred to as RKT.

"Heydenburg, Hafstad, and Tuve, Phys. Rev. 56, 1078 (1939),
referred to as HHT."E.C. Creutz, Phys. Rev. 56, 893 (1939}.

2' Blair, Freier, Lampi, Sleator, and %'illiams, Phys. Rev. 74, 553
(1948), referred to as BFLS%.

ments to higher energies (from 2.4 Mev to 3.5 Mev). An
analysis of these data by Critchfield and Dodder"
showed that they could not be fitted by S-wave phase
shifts only. Furthermore, Critchfield and Dodder stated
that a combination of S-wave and P-wave phase shifts
still does not give good agreement with the experimental
data. For comparison, a plot of the apparent S-wave
phase shift 8, vs. p~(e) for the data at 3.53 Mev is shown
in Fig. 7. A slight downward trend of 8, with increasing

pi seems to exist, indicating a small P-wave phase shift
of the order of 0.13 degree, with a negative sign (re-
pulsive potential in the 'P-state). Critchfield and
Dodder, by a rather different method of analysis,
arrived at a value of —2.3 degrees for the P-wave phase
shift at this energy. In view of Fig. 7 such a large nega-
tive value of bi is rather difficult to reconcile with the
analysis given here.

It should be noted that the data represented in Fig. 7
do not appear to be incompatible with a zero or slightly
positive value for the P-wave phase shift. The experi-
mental errors are large, and it is felt that definite con-
clusions about P-wave effects cannot be drawn from
these data. As far as determining 8I is concerned, the
experimental errors shown in Fig. 7 could. be considered
as over-estimates since they include all experimental
errors, whether they aifect all angles equally or not (see
discussion in Section V). However, the scatter of the
points themselves indicates that the errors shown are
not gross over-estimates, and are probably quite reason-
able. In consequence the possible P-wave effects indi-
cated will be ignored; only the S-wave phase shifts will
be utilized. These S-wave phase shifts were computed
independently of Critch6eld and Dodder (see Appendix
II); the values found are in close agreement with theirs.
They do not quote any error for the phase shifts. The

~ C. L. Critchaeld and D. C. Dodder, Phys. Rev. ?5, 419 (1949}.
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errors given in Table VII appear to be reasonable from
an examination of the experimental data.

R%'H.—The most recent Van de GraaG data are
those of Ralph, Worthington, and Herb, "taken at the
same energies as those of the Minnesota group. They
state that the data cannot be 6tted by a 5-wave
anomaly only. A plot of b, vs. P~(8) for their data at 3.53
Mev is shown in Fig. 8. The experimental errors shown
egclgde errors in pressure and current measurement
(which affect all angles nearly equally), and are assumed
to be reasonable errors as far as the slope determinatioo
is concerned. The two limiting straight lines drawn on
the 6gure indicate that the P-wave phase shift lies be-
tween —0.15 and —0.45 degree (RWH put it at —0.30
degree), i.e., a repulsive potential in the 'P-state.

However, two additional views can be taken. If one
suspects that the experimental errors have been under-
estimated, only a slight stretching of the errors would
make the points in Fig. 8 not inconsistent with a hori-
zontal line, i.e., pure 5-wave scattering, with no P-wave
eGects at all. On the other hand, from the discussion
based on Fig. 6, it is clear that the data could probably
be 6tted by a D-wave contribution just as well as by a
P-wave contribution (or by a mixture of the two). The
fact that the points in Fig. 8 lie on a smooth curve more
closely than on any straight line might imply such a
thing, disregarding for a moment the relatively large
experimental uncertainties. The possibility of a D-wave
effect instead of a P-wave effect is illustrated in Fig. 9
where 8, is plotted us. P2(8). The D-wave phase shift
(assuming the P-wave phase shift is zero) is seen to lie
between +0.07 and +0.24 degree, and the points fall

along a straight line more closely than in the P-wave
case. The data at 2.42, 3.04, and 3.28 Mev all give
slightly better its to the D-wave anomaly than to the
P-wave. However, the D-wave phase shifts so de-
termined are abnormally large. If one assumes that the
potentials in the '5 and 'D are the same, the theoretical
estimates (see Section XII) for 82 are from 5 to 50 times
smaller than the values implied by these data, depending
upon the well shape assumed. In addition, the energy
dependence for 82 (or else for 8&) implied by the data is
not at all reasonable. It is unlikely that the slightly
better fit to the D-wave anomaly is signilcant in view
of the relatively large experimental uncertainties and
the possibility of unknown systematic errors. As was
indicated earlier, measurements between 20 and 40
degrees (between 82 and 8q of Section V) would almost
certainly settle this point.

There is even reason to question the existence of a
P-wave eBect. If one compares the pre-war values of
apparent 5-wave phase shift found by the VVisconsin

group at 2.39 Mev (which were interpreted in terms of
S-wave effects only) with the recent values at 2.42 Mev,
one sees a marked diBerence in trend and a considerable
diGerence in numerical values at the smaller angles. The
over-all accuracy of the present measurements is not
signiacantly greater than that of the earlier measure-
ments. Because of this discrepancy at the one point of
overlap of the two sets of data and all the other un-
certainties involved, it seems unwise to draw any
de6nite conclusions about P- or D-wave eGects at this
time. Only the values of the 5-wave phase shift from
these data are used in the analysis.

t)504
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8Io
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50o
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Fro. 10.Apparent S-wave
phase shifts from the data of
Meagher at 4.94 Mev plot-
ted es. pI(8). A small %trac-
tion in the 'P-state seems
indicated. However, the ex-
perimental points are com-
pletely consistent with no
interaction in the IP-state.
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~ Ralph, Worthington, and Herb (private communication), referred to as RWH.
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FrG. 11.Apparent 5-wave phase shifts from the DOP data at 7
"4ev plotted t)s. pl(8). The dotted line is the Gt given by DOP. A
small repulsive interaction in the P-state seems indicated.

2. Data Obtained with Cyclotrons

MP.—May and Powell" determined the ratio of ob-
served scattering to Mott scattering at 90 degrees with
4.2 Mev protons using photographic techniques. The
ratio has an uncertainty of about 6 percent, and is there-
fore of negligible value to this analysis. The only reason
for mentioning this experimental point is the fact that it
was used incorrectly by Lubanski and de Jager."These
authors misstated the most probable value of the S-wave
phase shift implied by these data (it is 52.7 degrees
rather than 54.0). Since their analysis depends very
critically on this particular point, their result cannot be
considered as valid (although, by a combination of
errors, it is rather close to the truth).

M.—Very recently, Meagher" has made measure-
ments at 4.94 Mev using photographic plate detection.
A plot of the apparent S-wave phase shift 8, implied by
these data vs. p~(e) is given in Fig. 10. The horizontal
line is the best 6t to the points near 90 degrees assuming
8~=0. It is seen that the data allow such a 6t, but that a
line of positive slope would provide somewhat better
agreement. In view of the fact that the (more accurate)
Van de Graa6' data at 3.5 Mev indicate a zero or
negative P-wave phase shift, the slight positive P-wave

4o
X .~

FIG, 12. Relative values of the
apparent 5-wave phase shifts from
the data of Wilson (relative meas-
urements on angular distribution
of scattering) at 10 Mev plotted
mls. P~(8) for various reasonable
assumptions as to the absolute
value of the cross section at 90
degrees. The slope of the line is
seen to be insensitive to the choice
of the normaliz, ation of cross sec-
tion. The data are very inaccurate,
but seem to imply a slight repul-
sion in the 'E-state.
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24 A. ¹ May and C. F.Powell, Proc. Roy. Soc. A190, 170 (1947), referred to as MP.
~ J. K. Lubanski and C. de Jager, Physica 14, 8 (1948).
~' R. E. Meagher, Ph.D. thesis, University of Illinois (1949); see also papers submitted to Phys. Ic'.ev, with P. G. Kruger, H, A.

I eiter, and F. A. Rodgers, referred to as M.
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FIG. 13. h{p) as a function of the energy in the laboratory.

phase shift indicated here should be taken very
cautiously.

DOP.—Dearnley, Oxley, and Perry" have used the
same technique at 7 Mev. They state that their data are
in agreement with a slightly negative I'-wave phase
shift. Figure I I shows a plot of 6, ss. pi(8) which bears
out this analysis. The dotted line represents their values
of the P-wave phase shift (—0.22 degree) and S-wave
phase shift. It is seen to give a reasonable Gt to the
experimental points although the large experimental
uncertainties allow considerable leeway. The accuracy
of the data is too low to draw dehnite conclusions about
the P-wave phase shift. The 5-wave phase shift implied

by these data is very hard to reconcile with the lower

energy measurements quoted above. (See Sections VII
and XI.) A redetermination of the scattering at this

energy would be very desirable.
WC.—Wilson and Creutz27 have made measurements

at 8 Mev in which they determined the absolute value
of the cross section at 90 degrees, and made relative
measurements at other angles. The accuracy of their
absolute measurement was about &5 percent. The data
at other angles based on the point at 90 degrees are
consistent with 5-wave scattering only, but the accuracy
is comparatively poor, and a detailed analysis is got
warranted. The value of the 5-wave phase shift de-
termined from these data is given in Table VII.

W.—Wilson" has made relative measurements of the
angular distribution of scattering at 10 Mev. A theo-
retical analysis of his data has been given by Peierls and
Preston" and by Foldy" with somewhat different re-
sults. Preston and Peierls find that the P-wave phase
shift is approximately —0.8 degree, and state that a
repulsive square well potential of range 2.5)(10 " cm
and depth 10 Mev will give this value of 6& at an energy
of 10 Mev. Foldy claims that the data imply a E-wave
phase shift of about —0.4 degree, in disagreement with
Preston and Peierls. For comparison purposes, Fig. 12
shows a plot of h, iis. p~(8) under various reasonable
assumptions as to the absolute value of the cross section
at 90 degrees. The actual magnitude of 8, has no

meaning, only the change with scattering angle is im-

portant. Accordingly, the differences 8,—8, (90') are

I.20 'I I

Energy in Iob system (in Mev)

I.I8

I.I4

eo
I

n(n +g )

FrG. 14.Auxiliary summation
occurring in h{q) as a function
of q. The limiting value of the
summation as q vanishes is
&I"n '=1.202.
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I.06
0 OI 0.2 04

2' R. R. Wilson and E. C. Creutz, Phys. Rev. 71, 339 {1947),referred to as WC.
s' R. R. Wilson, Phys. Rev. 71, 384 {1947);see also reference 31.
"R.E, Peierls and M. A. Preston, Phys. Rev. 72, 250 {1947).
I' I. I,.Foldy, Phys. Rev. 72) 125, 731 {1947).
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plotted. The errors indicated are due to statistics only
(about 2 percent) and are therefore likely to be an
underestimate. It is seen that the over-all variation of 10
percent in the normalizing values for the cross section at
90 degrees produces a change in the relative position of
the points that is small compared to their statistical
uncertainties. The two dotted lines indicate possible
extremes (—0.80 and —0.12 degree) in the value of 8~,
while the solid line, giving some sort of average 6t,
implies 8 j

—0.5 degree. The analysis given here
shows that (1) the data are sufficiently uncertaui to
make any detailed interpretation doubtful; (2) the data,
assuming no unknown systematic errors, imply a small
repulsive potential in the 'P-state (or else a small
attractive D-potential, since for the angular region in
question, a D-wave 6t would give just as good agreement
as a P-wave (see Section V)); (3) the value of the
P-wave phase shift found here is more in accord with
Foldy's value than that of Preston and Peierls; however,
the difI'erence is within the experimental errors.

WLRAVS. —Wilson, Lofgren, Richardson, %right,
and Shankland" have made measurements at 14.5 Mev.
Their measurements were absolute in nature, but rela-
tively inaccurate. The point at 90 degrees was de-
termined with more precision; accordingly it was used
to evaluate the S-wave phase shift. It is seen from
Table VII tha, t the uncertainty in the phase shift is
quite large.

VII. THE DETERMINATION OF THE EXPANSION PA-
RAMETERS FROM THE EXPERIMENTAL DATA

In the definition of K (1.1) the function h(g) was not
defined. The definition of h(g) is:

(7 1)

Here Ee stands for the real part of the logarithmic deriv-
ative of the I'-function. The function h(g) is shown
plotted against energy in the laboratory system in
Fig. 13. For more accurate work h(g) can be written in
the form:

00

h(g) = —in' —0.5772 +g' Q (7.2)
~ n(n'+ g')

where 0.5772 is Euler's constant. The sum in (7.2) is
plotted as a function of g in Fig. 14. This sum is a slowly
varying function of energy, and for energies over 200 kev
enters only as a small correction term. Thus formula
(7.2) in conjunction with Fig. 14 gives considerably
more accuracy than is necessary considering the un-
certainties in the experimental data.

The values of I (1.1) determined from the experi-
mental data were given in Table VII. These values are
plotted against k (i.e. , against energy) in Fig. 15 (Van
de Graaff data) and Fig. 16 (cyclotron data). It is obvi-

5.0

Fn. 15. The experi-
mental values of K
plotted vs. 0'= 1.20(5)
X10"Z (Mev) cm for
the Van de Graaff data.
The best linear approxi-
mation is shown, along
with two parabolic 6ts
to the data. The experi-
mental points lie very
closely along the straight
line. 'pRKT, &HHT,
QHKPP, gBFLSW,
gRWH.
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"Wilson, Lofgren, Richardson, Wright, and Shankland, Phys. Rev. 72, 1131 (1947), referred to as WLRWS.
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Pro. 16. The experi-
mental values of K
for the cyclotron data
plotted vs. k', with the
best linear and several
parabolic fits to the Van
de Graaff data extra-
polated. The cyclotron
data favor a negative
value for the well shape
parameter P.
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ous from Fig. 15 that the Van de Graaff data allow an
extremely good straight line fit. The best straight line is
drawn in on the figure. Its parameters, as determined by
a least squares analysis with proper weighting of the
data according to the probable errors given in Table VIIa,
are:

—R/a =3.755&0.024,
a= —'7.67~0.05X10—"cm,

(&)Rro=0.382&0.010X10 '4 cm',
r()=2.65%0.07X10 "cm.

(7.3)

Since the data of Heydenburg, Hafstad, and Tuve"
show evidence of systematic deviation from the slope of
the I vs. k' curve, it is of interest to determine the best
linear fit to the data omitting the HHT points. When
such a fit is made, the resulting values for the coeK-
cients are:

—R/a=3. 757,
—,'gg, =0.381X]0—&4 cm&

These values are seen to be almost exactly the same as
those given in (7.3).

Having determined the best values of the coeKcients
in the expansion (1.2) for the shape-independent ap-
proximation, it is pertinent to ask just how much the
data delimit the shape of the nuclear potential. The
seemingly obvious method to answer this question is to
make a least squares 6t to the data with a polynomial of

higher order in k' than the linear approximation, and
thus determine higher coeKcients in the expansion which

are sensitive to potential shape. However, the probable
errors of the data are so large that such a determination
has doubtful significance. One must therefore resort to a
somewhat less direct method of approach. For that
purpose we assumed that the terms in k' and higher
powers of k in (1.2) do not contribute appreciably to the
value of K. The one remaining shape-dependent parame-
ter, P, was then assigned various values and least
squares fits were made to the data. Two typical "best
fit" parabolas are shown in Fig. 15.These two parabolas,
with P=+0.22 and —3.5, appear to be excluded by the
experimental data. The large asymmetry in the values

of P for curves which appear essentially as mirror

images of each other in the P= 0 curve (straight line) is

due to the fact that the quantity in the expansion (1.2)
which determines the curvature is Pro'E, not P. For P
negative, the "best" value of rf) is smaller than for P= 0;
for P positive, it is larger than for P=0. Hence, to give
the same value of ( Pro'Rj, (

P ( will be much larger for
negative P (rp is smaller) than for positive P (ro larger).

The cyclotron data are plotted in Fig. 16. The point
of Meagher at 4.9 Mev is reasonably accurate and is

seen to lie on the extrapolated best linear fit to the Van

de Graaff data; it might have been used in the least
squares analysis above. However, the other points (ex-
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cept the DOP point at 7 Mev) are rather inaccurate, and
it was felt that until the accuracy of the data obtained
with cyclotrons is improved, all cyclotron data should
be consistently excluded from the least squares analysis.
The peculiarities of the DOP point will be examined
below.

In spite of its relatively poor accuracy, the cyclotron
data can be used in a qualitative way to narrow the
limits on P somewhat. In Fig. 16, in addition to the best
linear fit to the Van de Graaff data extrapolated to
higher energies, several "best fit" (to the Van de Graaff
data) parabolas are shown for comparison. The cyclo-
tron data are seen to exclude any large positive value of
P, and perhaps any positive value of P. They are also
seen to exclude negative values of P as large (negatively)
as 3.5. In fact, except for the DOP point at 7 Mev, these
data seem to exclude negative P's appreciably greater
than 0.5. The DOP point, on the contrary, implies that
negative values of P less (in absolute value) than 0.5
should be excluded. If we neglect the WLRWS point at
14.5 Mev for a moment, we see that the other cyclotron
points are not inconsistent with the DOP point, although
full use must be made of the probable errors on both the
Meagher point and the DOP point to give agreement.

In this connection it should be remarked that the
limits of uncertainty on the Meagher point are con-
servatively large. The charge measurement in this ex-
periment was made in two ways (resistor method and
capacitor method), the measurements differing by 1.3
percent. The capacitor value is believed to be more
reliable; accordingly, we use that value here. However,
the uncertainty given is sufFicient to include both points
and their extremes in uncertainty, and so can be con-
sidered as an overestimate of the error if anything. With
this generous error estimate the Meagher point and the
DOP point are just barely consistent with each other.

If the trend indicated by the DOP point (i.e., a rather
large negative value for P) were correct, the nuclear
interaction would be more compact (in some sense) than
a square well potential (see Section XI for the variation
of P with potential shape) —a not completely unreason-
able possibility with velocity-dependent forces. We
prefer to wait for more experiments and to conclude
meanwhile only that the value of P is probably less
negative than —0.8 or so, and probably not more
positive than +0.15.

For each assumed value of P within a reasonable
range (+0.2 to —1.0, say) one gets "best" values for the
scattering length a and the effective range ro by a least
squares ht. The values of u and ro can deviate around
their "best" values somewhat without destroying the 6t
to the data entirely. For example, for P=O (shape-
independent approximation) the possible deviations are
given in (7.3) by the probable errors attached to a and
ro. One therefore gets an allowed region on a plot of
a ~s. P and also on a plot of ro vs. P. These are shown in

Fig. 17 and Fig. 18 respectively. The arrows indicate
that the deviations from the most probable value are
correlated, i.e., if one picks a scattering length somewhat
smaller (more negative) than the best fit, the corre-
sponding effective range is somewhat larger than the
best 6t.

It will be seen from Figs. 17 and 18 that the best
values of a and ro depend considerably on the value
assumed for P. In that sense the linear (two term) ap-
proximation to the series (1.2) is not really shape inde-
pendent (since P=O in itself implies a certain shape of
potential). The reason for this behavior is the fact that
there are no data at all at zero energy (unlike neutron-
proton scattering, where the best data are at zero energy
and at the negative energy corresponding to the binding
energy of the deuteron), and there are only very inade-

- 7.4

0 (Io cm)

FIG. 17.Ordinate, a; abscissa,
I'. Values of the scattering
length a implied by experiment
(Van de Graa6 data} as a func-
tion of the mell shape parame-
ter E.The linear approximation
to K(P=O} implies a= —7.67
~0.05X10 "cm. -7.8,

- 7.9
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quate data at energies lower than 800 kev. From that
point of view it might have been advantageous to
expand K in a power series in the energy centered
around 2 Mev, say, rather than about zero energy. The
two term approximation to a series centered around
2 Mev would really be shape-independent i.e., the coefKi.-
cients of these two terms would then not depend upon
the shape of the well (the value of P) H.owever, even
though at present the best data are in the region between
one and three Mev, there is no reason why very good
data cannot be taken at lower and higher energies. If
and when this is done, the choice of 2 Mev as the center
point in an expansion of K will be just as arbitrary (and
more tedious from a computing point of view) than the
zero energy center chosen here.

As an aid to planning future experiments it is of
interest to know how sensitive the function K is to
errors in cross section and energy measurements at
various scattering angles and energies. For that purpose
the quantities E(BK/BE), and o(BK/Ba)x have been
computed for the energy range up to 10 Mev. These
derivatives, when multiplied by the relative error in E
and 0 respectively, give directly the resulting error in K.
The phase shift 80 enters these derivatives. As was done
for pi(B) etc. , the linear approximation to K given by
(4.8) was used to determine Bo(E) over the energy range
in question. This will not lead to appreciable error in the
results. The quantities E(BK/BE), and o(BK/Bo)z are
shown in Figs. 19 and 20 for various scattering angles as
functions of the energy.

The curves in both 6gures all show a characteristic
behavior with energy. The curves of E(BK/BE), are
very similar to those of o(BK/Bo)x, but with a constant

displacement upward. At a given angle, o(BK/Bo)s
decreases with energy to a minimum, then increases
rapidly to inhnity at a certain energy. Above that
energy the function decreases in absolute value from
minus inanity, has another minimum, and then in-
creases (negatively) in a regular fashion.

The infinite value of o.(BK/Bo.)~ (or of E(BK/BE),) at
a certain energy does not mean that the value of K is
infinitely sensitive to errors in cross section (or energy)
at that energy. Rather, it means that the error in K will
be of the order of the square root of the relative error in
cross section (or energy). This can be seen readily when
one considers the cross section as a function of energy
and phase shift. At the singularities in a(BK/Bo)s the
cross section can be shown to be insensitive to first-order
changes in the phase shift, depending only upon second-
order variations i.e., ho (68o)'. This means that o is
insensitive to first-order variations in K (since K is a
function of 5 and E), and hence Ao. (hK)'. In conse-
quence, the curves cease to have more than qualitative
meaning in the immediate neighborhood of their singu-
larities. Investigation shows that for the 8=90' curve
the region of non-validity is con6ned to an energy range
of +1S kev about the singularity if the relative error in
cross section is less than 10 percent, or &10 kev, if the
relative error is less than 5 percent. Measurements are
not likely to be made at exactly the energies and angles
corresponding to these singularities because of the very
high accuracy necessary to get useful data. Hence the
fact that the curves are not valid in the immediate
neighborhood of these points is no serious drawback.

One interesting point is the behavior of o(BK/Bo) E at
scattering angles near 90' at energies around 400 kev.

t", (lO
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Pro. 18. Ordinate, ro, ab-
scissa, P. Values of the effective
range r0 implied by experiment
(Van de Graaff data) as a func-
tion of the well shape parame-
ter P. The linear approximation
to K(P =0) implies ro= 2.65
~0.07X10 "cm.
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This energy range is where the interference between
Coulomb and nuclear scattering produces the pro-
nounced minimum in the scattering. Exactly at the
minimum ( 400 kev) the value 0(BK/Bo)~ at 90'
becomes inhnite. But on either side of the minimum it
has a very small absolute value. This means that on
either side of the interference minimum a very precise
value of K could be determined with reasonable ex-
perimental uncertainties. Long ago, Breit, Thaxton, and
Eisenbud' arrived at what amounts to the same con-
clusion from a diferent point of view. Measurements
exactly at the minimum (or within five or ten kev of it)
are not useful because of the fact that (1) the errors in K
will be proportional to the square root of the relative
error in 0 (2) the differential cross section itself is ex-
tremely small (a few millibarns per stera, dian) so tha. t
accuracy of any sort is very dificult to attain.

Since a very accurate determination of K in the low

energy region seems both possible and desirable, it is
worth while to discuss some of the considerations which
enter into the planning of such an experiment. First of
all, with present day machines with very good voltage
control, it is not too difFicult to keep the error in the
voltage of the beam low enough so that it does not
influence the value of K appreciably. A voltage con-
trolled to +0.1 percent is adequate for that purpose
(Fig. 19 shows that the resultant uncertainty in K is
about &0.005 which is quite small compared to the
errors on the values in Table VII). Second, it is not
possible to eliminate certain systematic errors in the
calibration of the yield of the apparatus; in particular,
the calibration of the current to much better than &1
percent seems to present great experimental diRiculties.
This implies that one should take measurements at
energies E not too far removed from the energy E; of
the interference minimum, in order to take full ad-
vantage of the small values of 0.(BK/Bo) g in that region.
Third, the scattering cross section near the minimum

energy is very small so that one encounters difhculties
due to the low counting rate and due to in-scattering
from angles of scattering different from 90' (since the
scattering cross section is much larger at these other
angles). This implies that one should stay away from
E; as much as possible. Clearly, the second and third
points narrow down the useful energy region to two
strips at somewhat lower and somewhat higher energy
than the interference minimum. There remains the
choice of going either higher or lower in energy thanE;„.It appears that the behavior of the cross section as
a function of angle implies that one should go to energies
somewhat abo~e E;„,since there the difterential cross
section is rather Rat around 8=90, whereas it rises
rapidly on both sides of 90' at energies below E;„.
Hence in-scattering ought to be a much less serious
eBect at the higher energies, allowing one to use wider
slits and correspondingly greater counting rates. In view
of all these considerations, we wouM like to recommend

measurements of 90' scattering in the energy region
420—450 kev with an energy de6nition of &0.1 percent
and an over-all error in cross section around &1percent.
In view of the fact that no efFects due to waves of higher
angular momentum have been found at considerably
larger energies, an angular distribution measurement
seems to be an unnecessary luxury here.

Figure 15 shows that a very accurate point around
400 kev would narrow down the possible values of the
shape-parameter P considerably. Furthermore, it would
make the variation of c and r with the choice of P much
less pronounced, i.e. the two-term approximation to the
series (1.2) would become much more shape-independent.

Breit, Broyles, and Hull". have given arguments for
accurate measurements in that same energy region.
They claim that such a measurement, in conjunction
with the data at higher energies, wiU allow one to say
something quite de6nite about the shape of the well.
In their paper they present the picture that the repul-
sive Coulomb 6eld shields the central part of the
attractive nuclear potential for low energies, and the
observed scattering should be sensitive to the strength of
the "tail" of the potential.

To examine this idea, let us consider the quantity of
interest in this regard, namely the ratio of the range b of
the nuclear forces to the characteristic distance E. for the
electrostatic repulsion. If (b/R) is very small, the nuclear
potential acts only in the region where the Coulomb
potential varies too rapidly to have a large eGect on the
detailed behavior of the wave function (i.e., the WEB
approximation for the wave functions in a pure Coulomb
potential fails in the significant region). For distances
much smaller than E, the Coulomb wave functions be-
have very similarly to the wave functions without the
Coulomb 6eld except for the constant penetration
factors in front (see Appendix III). Consequently, one
cannot speak of the Coulomb potential "shielding" all
but the tail of the nuclear potential at low enough
energies unless the tail of the potential is appreciable at
distances of order E. The usual potential shapes simply
do not have tails extending that far out. Hence the
Coulomb field "shields" all the pote'ntial, or none of it.

For example, Breit, Broyles, and Hull find that with
an experimental accuracy of one percent in scattering
one could detect a lump of potential (e'/mc') wide of
strength 1 kev at a distance of 5 (e'/mc'), and of strength
10 kev at 3 (e'/mc'). For comparison, we examine the
corresponding strength of a Yukawa potential (the
longest-tailed of the conventional well shapes) at these
distances. At 5(e'/mc'), the Yukawa potential giving the
best 6t to the experimental data has a value of about
2X10 ' kev; at 3(e'/mc') it has a value of about 4 kev.
The ratios of actual to detectable potential in this case
are approximately 1/50 and 2 at the two distances
quoted. Actually, one should compare di6erences of
potentials for various shapes. This would make the
comparison even worse.
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the data will imply a closer evaluation of the shape-
parameter E itself.

Breit et al. point out that in order to determine four
parameters from the data it is necessary to have two
regions of sensitivity, and recommend measurements
near 400 kev plus measurements above 10 Mev for this
purpose. However, the analysis presented here indicates
that to determine even three parameters with any accu-
racy measurements must be made over an energy range
wide enough to bring out the curvature (or lack of it) in
the K vs. k' plot. In any event, the recommendations to
the experimentalists made here are in full agreement
with those made by Breit, Broyles, and Hull, even
though the opinions as to detailed interpretation dHFer

somewhat.

IP—
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Fxo. 19. Ordinate, E{BK/BE)„abscissa, E. The function
E{BK/BE) plotted as a function of the energy in the laboratory
(in Mev) for various scattering angles in the center-of-mass
system. Multiplication by the relative uncertainty in energy gives
directly the uncertainty implied in K, assuming the cross section is
known exactly.

Breit, Broyles, and Hull do point out that the presence
of the interference minimum is also a factor contributing
to the increased sensitivity of the low energy region.
From the analysis given here, this is the only eGect

which can (and does) make it advantageous to perform

measurements near' 400 kev.
If, and when, such measurements are made, the value

of K at 400 kev should be known to much higher accu-

racy than at one or two Mev. Then the measurement at
400 kev will provide a fulcrum, so to speak, around which

a K vs. k' plot will turn; but this measurement will not
determine the shape of the well to any appreciable ex-

tent. Rather, one will need ta have measurements over a
wider range of energies, at least up to 7 or 8 Mev, before

the curvature of the K vs. k' plot (i.e., the value of Pro' )
can be determined with sufhcient accuracy to say some-

thing about the shape of the potential well. The main

advantage of accurate measurements at very low

energies e.g. , near 400 kev is that they will allow a mare

accurate determination of the e8'ective range, sa that a
determination of the curvature (1'ro') by means of all

L
—(d'/dr )+(1/Rr) jp(r) =k'p(r), (8.1)

where y(r) =rfo(r); R was defined in connection with
the expansion (1.2); and k'= 2nsE/Iri' is the square of the
relative wave number. The wave function y(r) for the
region outside the range of the nuclear force can be
written as

y(r) =G(r)+ cotbF (r), (8.2)

where G(r) and P(r) are the irregular and regular solu-
tions of the equation (8.1) describing two charged par-
ticles in an 5-state under electrostatic interaction only.
They go over into sines and cosines in the absence of the
Coulomb fiel (i.e., asR~~). These solutionshavebeen
treated by Yost, %heeler, and Breit" and others, and
are considered in some detail in Appendix III where an
expansion in powers of the energy is obtained for G(r)
analogous to that deduced by Beckerley33 for F(r). 8 is
interpreted as the phase shift in p(r) caused by the
specifically nuclear force, i.e., the 5-wave phase shift
used in the preceding sections.

For small values of r and low energies (kr((1 and

~ Yost, Wheeler, and Breit, Phys. Rev. 49, 174 {1936).
~ J. G. Beckerley, Phys. Rev. 67, 11 {1945).

VIII. LANDAU-SMORODINSKY RESULT AND AN AP-
PROXIMATE RELATION BETWEEN THE

NEUTRON-PROTON AND THE
PROTON-PROTON SCAT-

TERING LENGTHS

Before describing the variational derivation of the ex-
pansion of K (1.2), it is worth while, because of the
qualitative understanding gained, to examine the
Landau-Smorodiosky result for the energy independent
approximation to (1.2) and to make a simple extension
of their result in order to relate the neutron-praton
singlet scattering length to the proton-proton scattering
length for the same nuclear potential.

Outside the range of nuclear forces, the wave function
of the system of two protons satisfies the Schrodinger
equation for a pure Coulomb potential. The partial
wave of zero angular momentum satisfies:
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r((R), F(r) and G(r) become (see Appendix III):
F(r) =Ckr(1+r/2R+ ),
G(r) = 1/CL1+ (r/R) (ln(r/R)

+2y —1+k(g))+ j,
where

C2
g2 sl's7

(8.4)

is the Coulomb penetration factor and can be interpreted
as the relative probability of finding two protons to-
gether compared with the probability of finding two
uncharged particles together, other things being equal.
h(rt) is given by (7.1), and &=0.5772 is Euler's con-
stant. In the absence of the Coulomb held C'= 1, E= ~;
and F(r) and G(r) in (8.3) go over into the first terms in
the expansions of sin(kr) and cos(kr), namely kr and 1
respectively.

Landau and Smorodinsky proceed to match the
logarithmic derivative of the wave function inside the
nuclear potential with the logarithmic derivative of
q(r) (8.2) at the boundary of the nuclear potential. r
times the logarithmic derivative of q (r) at r=r~ (range
of the nuclear force) is:

ax-' =— f~/ro,— (8.9)

where f~/re is the logarithmic derivative of the zero
energy neutron-proton wave function at r= ro (formally
(8.9) can be obtained from (8.7) by letting R +~). A-s a
very crude approximation one would expect that the
Coulomb 6eld would have a negligible eGect on the wave
function so that one could substitute f~ for fo in (8.7) to
get an approximate relation between the two scattering
lengths. However, the terms in R ' in (8.7) are first-
order effects due to the Coulomb heM so that it is
necessary to include the erst-order change in the
logarithmic derivative as well.

actually negative implies that there cannot be any
stable He' in nature. The beauty of this argument lies in
the fact that nothing need be assumed about the nuclear
forces except the experimentally kriown parameter a.

The neutron-proton formula equivalent to (8.6) is:

f/ro kc——otb —ag '+xrk'+

so that the neutron-proton scattering length u~ is
defined by:

V '(ro)
f(r,) =ro (kro)C' cotb

V (ro)

+(r,/R)(ln{r, /R)+2q+h(~)), (8.5)

where terms of order (kro)' and (ro/R)', etc. , have been
neglected. The logarithmic derivative of the wave func-
tion inside r = ro is nearly independent of energy for low
energies at least, since the strength of the nuclear po-
tential is much greater than the kinetic energy outside
the range of nuclear forces. Therefore, f(ro) inside is
approximated by its value fo at F.=O. Putting (8.5)
equal to fo and dividing by ro leads to:

kC cotta+1/RDn(ro/R)+2y+h(g) j fo/rq. (8.6)

Use is made of the relation 2kgE=1, and the singlet
proton-proton scattering length u~ is delned by:

a~ '—= fo/ro+1/R[ln{ro/—R)+2y]. (8.7)

The result (8.6) can then be written as:
K—= (z- cotb)/(e' &—1)+h(g)~ —R/aa. (8.8)

0
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{8.8) js the result obtained by Landau and Smorodinsky,
and served as the basis of their analysis of the experi-
mental data. The form (8.8) is seen to be the same as the
expansion (1.2) in the limit of zero energy.

As was mentioned in Section I, Landau and Smor'o-
dinsky found that the "constant" c& ' was experi-
mentally very nearly a linear function of the energy (see
Fig. 15), and interpreted this correctly as meaning that
a range correction was necessary. They also showed that
there witt be a stable di proton if and only -if the proton
proton scattering length is positive The fact .that a is

FIG. 20. Ordinate, o (8K/8 cr) g, abscissa, E. The function
cr(BK/80) z as a function of the energy in the laboratory (in Mev)
for various scattering angles in the center-of-mass system.
Multiplication by the relative uncertainty in cross section gives
directly the uncertainty implied in K, assuming the energy is
known exactly.
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The first-order change in the logarithmic derivative at
r= ro due to a change in potential is (see Section X):

8 f(r,)
I'(ro)

~o

W'(r) u,'(r) dr,
~n

where N(r) is t.he wave function inside the range of
nuclear forces in the absence of the Coulomb field, and
the (attractive) potential is changed from W(r) —+W(r)
+oW'(r). W(r) = (—2mo/k') V(r). If the Coulomb po-
tential is switched on, in addition to the nuclear
potential, then W(r)~W(r) —1/Rr, that is, o= 1/R and
W'(r) = —1/r It is. assumed that the nuclear potential
stays the same, i.e., the comparison is between scattering
lengths for a given nuclear potential in the absehce and
presence of the Coulomb potential. Consequently, the
logarithmic derivative in the proton-proton case is
approximately:

fo(ro) f~(ro) 1 a -f(ro)-
-+—— + 0 ~ ~

)
Bc p'pro

.The proton-proton scattering length a~ (8.7) is:

a p ~a~ +1/R[ln(ro/R)+ 2p —0.824]
a~ '+1/R[ln(ro/R)+0. 330], (8.10)

where a~ is the corresponding neutron-proton scattering
length for the same nuclear potential, and ro is the
"range" of the nuclear force. Estimates show that this
relation (8.10) is valid to within about 2.5 percent for
the commonly assumed potentials which fit the proton-
proton scattering data (see Section XI). The values ob-
tained for ap are low in absolute value by about 2.5
percent for the square well, and high in absolute value

by the same amount for the Yukawa well. For these
numerical estimates the value of ro was taken to be equal
to the effective range of the potential as defined in

Eq. (9.6).
Betheo has obtained a relation quite similar to (8.10)

from somewhat diferent considerations, based on the
fact that at some distance of the order ~b the logarithmic

where the quantities on the right-hand side involve
the neutron-proton wave function. To evaluate
r'I/Bo[f(ro)/ro] exactly one must know the wave function
for the neutron-proton system inside the range of
nuclear forces. However, one can obtain a reasonable
approximation by using I sin(mr/2ro) (this expression
is exact for a square well potential with a depth such
that. av ' ——0; i.e., resonance at zero energy). The result
is:

8/Bo[f(ro)/ro] -', [1nm+y —Ci(m)]=0.824,

where Ci(x) is the cosine integral. Thus the logarithmic
derivative is given by:

fo(ro)~—aN '+—(0.824).
fo R

derivatives of the proton-proton wave function and the
neutron-proton wave function are equal.

Chew and Goldberger' have given a more exact rela-
tion than (8.10) taking into account higher order changes
due to the Coulomb field. When more accurate esti-
mates of the scattering lengths are needed, one must
resort to their formula, or to the results of Section XI.
However, (8.10) allows a rapid comparison of scattering
lengths and is useful as a first approximatioo.

The fact that an approximation for ap accurate to
only a few percent is at all useful is connected with the
closeness of the scattering to a "resonance at zero
energy" (ai ' ——0). The value of ai is large compared to
the range of the forces. In consequence, a small change
in the force strength implies a large change in the scat-
tering length. Conversely, an error of a few percent in
the comparison of scattering lengths for proton-proton
and neutron-proton (singlet) scattering implies an error
of only a few tenths of a percent in the comparison of the
force-strengths.

IX. DEMVATION OF THE EXPANSION (1.2)f

Since a detailed derivation of the Schwinger varia-
tional method for scattering problems has been given in
our earlier paper on neutron-proton scattering, ' it will
sufhce to restrict the presentation to the special features
which show up when the method is applied to proton-
proton scattering. We assume only S-wave nuclear
scattering in addition to the Coulomb interaction. The
quantity of interest is the nuclear scattering. Ac-
cordingly, the asymptotic wave function q (r) (outside
the range of the nuclear force) will be a linear combina-
tion of the Coulomb wave functions F(r) and G(r) given
by Eq. (8.2), where 8= 8 isothe 5-wave nuclear phase
shift.

Equation (8.2) is valid only outside the range of the
nuclear force. Actually, oo(r) (r times the 5-state radial
wave function) satisfies the equation:

( d'/dr' k'+1/R—r)u(r) =—W(r)u(r), (9.1)

where k'= (2mE)/k' is the square of the relative wave
number in the center-of-mass system, R=k'/(3A')
=2.88(15)X10 "cm, and W(r) is related to the nuclear
potential V(r) through

W(r) = —(2m/k') V(r) = —(M/k') V(r), (9.2)

3f being the proton mass. W(r) is assumed to approach
zero rapidly outside the range b of the nuclear force. In
that limit, the right-hand side of (9.1) is zero, and the
solution takes on the form (8.2).

In analogy with the derivation of formula (2.11) in

reference 6, one introduces a Green's function K(r, r')
for the left-hand side of Eq. (9.1). K(r, r') satisfies the
equation

(—d'/dr' —k'+ 1/Rr) K(r, r') = o(r r')—
fA simpler non-variational derivation is presented in Ap-

pencbz IV. See an earlIer footnote.
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and ls given by:

K(r, r') = (1/k)F(r&)G(r)),

where r& means the smaller of r and r', r& means the

greater of r and r'. The derivation then proceeds just as
for neutron-proton scattering with sines and cosines
replaced by F(r) and G(r), respectively. The resulting
variational principle is:

QO QO ~QO

W(r)uo(r)dr —
!I dr dr'W(r)u(r)K(r, r') W(r')u(r')

"0
k cot8=—

~
QO -2

(1/k)
'

W(r) u(r) F(r)dr
J0

(9.3)

Equation (9.3) is stationary with respect to first-order
changes in u(r), as can be shown by direct substitution.

It will be necessary to have expansions of the Coulomb
wave functions in powers of k'. The necessary de6nitions
and formulas are given in Appendix III. The convention
adopted is that all auxiliary functions de6ned in Ap-
pendix III approach unity as r—4. Furthermore, in the
limit R~ pp and it—4 (i.e., in the limit of neutron-proton
scattering) all these functions can be replaced by unity.
Since the expansions for F(r) and G(r) must reduce in
that limit to the well-known power series expansions for
sin(kr) and cos(kr), respectively, this gives a simple way
of checking these more complicated expressions.

The variational principle (9.3) can be used to obtain a
simple expression such as (1.2) for the energy depend-
ence of the phase shift, 8. To do this, the wave function
u(r) in (9.3) is replaced by a trial wave function up(r)
which is the correct expression for u(r) at some particu-
lar energy, say k0'. Then the error in k cotb will be in the
terms proportional to the square of the difI'erence io the
energies (i.e., in the coefficient of (k' —kp')') because of
the stationary property of (9.3). It is most convenient to
choose up(r) appropriate to zero energy, and to expand
(9.3) in powers of k', retaining the first two terms (since
the terms in k' and higher are in error). This will be the
linear (shape-independent) approximation discussed
above.

The two independent solutions of the equation for a
free particle at zero energy are 1 and r. The corre-
sponding solutions for a particle of zero energy in a pure
Coulomb field (i.e., solutions of Eq. (9.1) with k'=0 and
W(r)=0) are Hi(r) and rLi(r) (see Appendix III).
Hence the correct wave function (including the effect of
the nuclear potential) at zero energy will behave in the
"outside" region (beyond the range of the nuclear
forces) like

uo(r) H, (r) —(r/a)Li(r) —= ppo(r) for r))b. (9.4)

The quantity a defined by this equation is the proton-
proton scattering length which enters into the expansion
(1.2). The solution uo(r) is substituted into (9.3), and the
integrals are manipulated in a manner completely
analogous to the derivation in reference 6. The resulting
two-terrw (shape iudependertt) ap-prox&rtation is:

h(it) 1
C'k cotb= — ——+-', rpk'+0(k'),

R a
(9.5)

where the effective range rp for proton-proton scattering
is:

ro =—2) [pro'(r) —uo'(r)]dr,
0

(9 6)

in complete analogy with formula (3.9) of reference 6.
Equation (9.5) clearly reduces to the first two terms of
the expansion (1.2) (2kitR = 1!).This result was 6rst de-
rived by Schwinger. '

The next step is to derive the expressions for the next
two terms in the power series (1.2). Since (9.3) is a
variational expression for k cotb, an error of order k4 in
the trial wave function implies an error of order k' in the
result. Hence we can obtain the terms to k' inclusive by
the use of a trial wave function correct to order k' only.
The non-variational derivation (see Appendix IV) of the
expansion (1.2) would lead one to suspect that a knowl-
edge of the wave function to order k'" gives tbe coefIi-
cients in (1.2) only up to the order k'"+', whereas actu-
ally it gives the coefficients up to order k4"+'. This
statement does not imply that these coefIicients cannot
be derived directly from the diGerential equation with-
out variation principles. However, the derivation then
involves integrations by parts which are not always
obvious. The variational approach makes it perfectly
evident that coeScients of order k4"+' and lower are
expressible in terms of the wave function correct only to
order k'", even though the detailed derivation is slightly
more lengthy.

Unlike the work of reference 6, we shall not use the
integral equation to iterate on the wave function.
Rather, we will use the difkrential equation directly.
The wave function u(r) is written as an expansion in k'.

u(r) =up(r)+k'vi(r)+k4vo(r)+ ~ ~ (9.7)

where only the first two terms need be considered in
order to obtain terms up to k' in the expansion (1.2).
Substitution of (9.7) into the differential Eq. (9.1) and
the equating of coefFicients in k' leads to the differential
equation for vi(r):

d'/dr +1/oRr W(r))vi(—r) =uo(r). (—9.8)

This equation must be solved (usually numerically) sub-
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where a is defined by (9.4), ro is given by (9.6), and

and

Pro' —J~ Lyo(r)xi(r) —uo——(r)vi(r))dr (9.14)
0

Q»o'= ~ LXi'(r) —»'(»)]«
0

(9.15)

Equation (9.13) is seen to be just the expansion (1.2) for
K (1.1) correct to terms in k' inclusive.

In reference 6 the expansion for kcotb and the
variational parameters u and r0 were used to define an

ject to the initial condition vi(0) =0.The solution is then
defined up to the addition of an arbitrary constant
multiple of uo(r) which can be easily shown' to be
equivalent to a change of normalization of the trial wave
function and hence without inQuence on the fina result.
It is convenient to normalize u(r) (i.e., vi(r) in this case)
and it asymptotic form q (r) so that:

22(r) =CG(r)+C cotbF(r). (9.9)
If we write:

o (r) =
q o(r)+koxi(r)+k'x2(r)+, (9.1o)

then ooo(r) is given by (9.4) as before, while the asymp-
totic form of vi(r) is:

vi(r) xi(r)=2»o»Li(r) 2r M(r—)+(r'/6a)L2(r). (9.11)

In numerical integration of (9.8) the solution obtained
will, in general, be of the form, asymptotically:

xi(r)+ ~ o2o(r) =DHi(r)+ E»Li(r)
'r'M—(r-)+ (r'/6a) L2(r).

From (9.4) and (9.11) it is apparent that the following
relations hold:

A= D, ro/2=E+D/a (9.12)

Since ro has previously been determined by use of uo(r)
in (9.6) and a is known if uo(r) is known, the second
relation (9.12) provides a valuable check on the results
of the numerical integration for vi(r). The convenient
normalization for vi(r) given by (9.9) and (9.11) is
readily obtained by subtracting A po(r) from the result
of the numerical integration.

In analogy to the derivation of the shape-independent
approximation, the first two terms of (9.7) are substi-
tuted into (9.3) as an approximation to u(r). Again use
is made of the diGerential equations involved, integra-
tions by parts are performed, and the numerator and
denominator of (9.3) are expanded in powers of k' to
terms of order k' inclusive. The result for the expansion
ls:

k(2t)
K/E=C2k cotb+.

E
1

= ——+2rok' —Erook4+Qrooko, (9.13)

"intrinsic range" and a "well depth parameter" for the
nuclear potential. A similar specification could be made
here for the proton-proton system. However, the need
for two sets of parameters to describe the same nuclear
potential, depending upon whether the Coulomb field is
switched on or o6, is unnecessary and superAuous. In
addition, a proton-proton range defined in analogy with
the neutron-proton intrinsic range would not be an
intrinsic property of the nuclear potential since another
length would enter in, namely the characteristic length
R of the Coulomb field. Accordingly, we will use the
conventions of reference 6 as to the specification of the
nuclear potentials. It should be remembered that a well
with well depth parameter s= 1 does not lead to a zero
energy resonance in proton-proton scattering (i.e., the
proton-proton scattering length is not infinite). Rather,
a well with s = 1 would lead to a resonance at zero energy
only in the absence of the Coulomb field.

X. THE EFFECT OF SMALL CHANGES IN THE PO-
TENTIAL ON THE EXPANSION PARAMETERS

Unlike neutron-proton scattering, the data in proton-
proton scattering are sufficiently accurate and sufh-

ciently easy to interpret (only one phase shift at low
energies) so that the effective range and scattering
length are known to a reasonable accuracy (see Section
VII). Hence it is advantageous to make calculations
with each potential well shape for only one choice of the
intrinsic range b and well depth parameter s, and to find
u and r0 for slightly diGerent choices of b and s by a
perturbation calculation.

The variational principle (9.3) provides an easy means
of getting the answer. Assume we know the wave func-
tion u(r) appropriate to a potential W(r). Now consider
scattering due to the modified potential W(r)+4W'(r)
where ~ is a small number. The correct wave function for
this modified potential will differ from u(r) by terms of
order o. Since (9.3) is a variational expression for k cotb,
we will obtain k cot8 correct to terms of order e inclusive

by substituting the unperturbed wave function u(r)
instead of the correct wave function. Hence we can get
the first-order change of k cotb with a small change in
the potential directly from the unperturbed wave func-
tion, by a process of quadratures only.

There is one caution to be observed here. The trial
wave function which we are going to substitute in (9.3)
divers from the true wave function for two reasons:
(1) It is not correct for the energy in question, i.e., it
will differ from the true u(r) in the unperturbed po-
tential by terms of order k'"+'; (2) it is a wave function
appropriate to the unperturbed potential rather than
the perturbed potential, i.e., it diBers from the true u(r)
by terms of order e. The error in k cot8 will be of the
order of the square of the error in the trial wave func-
tion, i.e., it will be of order

(k2n+2+ o)2 k4a+4+2&k2a+2+ 22

The occurrence of errors of order ek'"+' shows that a
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wave function correct to order k'" will give the change
of the variational parameters with small changes in the
potential only up to the coefBcients of k'", whereas it
will give the parameters in the unperturbed potential
(«=0) up to the coefficients of k'"+'.

In particular, we have calculated numerical wave
functions up to order b' inclusive (i.e., we know Np(r) and
p&(r) in each case). Hence we can get a, rp, P, Q for the
unperturbed potential, and Ba/Be, Brp/Be for small
changes in the potentiaL Since the terms with P and Q
already are quite small corrections to the value of K,
this is not a serious shortcoming. The calculations of
reference 6 have shown that I', at any rate, is a slowly

varying function of the well parameters s and b. Hence
it is perfectly permissible to use the unperturbed values
of I' and Q for the perturbed potentials. This procedure
will give much better accuracy than necessary for the
interpretation of the experimental data.

It should be pointed out that the first-order changes
in a and ro due to a change in potential can be obtained
directly from the diBerential equation, without varia-
tional methods, by considering the change in the
logarithmic derivative of the wave function at large
distances. '

By either of these methods we obtain the first-order
variation in K (1.1) due to a change of potential
W(r)-+W(r)+ eW'{r}:

BK/Be= R —t W'(r)n'{r)dr (10.1)

Using the expansion (9.7) of N(r) in powers of k' and the
expansion (1.2) for K, we find that the changed coeffi-

cients a' and ro can be written as:

a' = a—ea')t W'(r)N pe(r) dr,

r, '= r, 4e, I W'(r)np(r—)e~(r}dr.

(10.2)

%'e note that, in accord with the predictions based on
the variational principle, to obtain the first-order
changes in higher coefficients than a and re (P, Q, etc.) it
would be necessary to have knowledge of higher terms in
the expansion of et(r) in powers of b'.

Of particular interest are the variations in a and ro due
to changes in the well depth parameter s and in the
intrinsic range b of the nuclear potential. W(r) can be
written for each well shape in the standard form:

W(r) =sb 'f(r/b) (10.3)

where f(x) specifies the well shape. A change in the well

depth parameter s by an amount hs leads to a perturbed
potential of the form:

W(r)+ efV'(r) = W(r)+ (Ds/s) W(r). (10.4)

If the small change consists of a change in the intrinsic

range b by an amount Ab, the perturbed potential is:

W(r)+ eW'(r) =W(r)
—(hb/b)[2W(r)+sb '(r/b)f'(r/b)7 (10.5)

where f'(x) is the derivative of f(x). With Eqs. (10.2)—
(10.5) the quantities (Ba/Bs), (Brp/Bs) (Ba/Bb) (Brp/Bb)
can be readily calculated.

XI. NUMERICAL RESULTS FOR VARIOUS POTENTIAL
SHAPES AND COMPARISON WITH EXPERIMENT

We have calculated the variational parameters and
their derivatives with respect to small changes in the
potential for the four usual choices of potential (square,
Gaussian, exponential, and Yukawa wells). As was
pointed out in reference 6, although the calculations
have been performed only for static potentials, the ex-
pansion (1.2) is valid for more general interactions
described by %heeler's velocity-dependent forces. "
This is apparent in view of the fact that the expressions
(9.6), (9.14), (9.15) for the coefficients involve integrals
over the wave functions only; the potential W(r) does
not appear explicitly.

For the sake of convenience, the specification of W(r)
and V(r) given in reference 6 will be repeated here:

Square mell

W(r) = s(x/2)'b '(r(b); W(r) =0(r) b),
Galssi an mell

W(r) = sb '(5.5296) exp L
—2.0604(r/b)'j,

Exponential
W(r) = sb e(18.1308) exp( —3.5412r/b),

YNkama mell

W(r) = sb '(3.5605)(b/r) exp( —2.1196r/b).

Here W(r) is in cm ' if b is given in cm. The conversion
to energy units is slightly di8erent from the neutron-
proton case because the reduced mass in the neutron-
proton case divers slightly from the reduced mass in the
proton-proton case (i.e., from -', M„).Since the neutron-
proton mass-difkrence is very small, this change in the
conversion to energy units has no practical significance
in the interpretation of scattering experiments. Below
we give the expressions for the potential V(r) in Mev
under the assumption that b is measured in units of
10 "cm, correct for proton-proton scattering:

Sqgare mell

V(r) = —sb '(102.35)(r(b); V(r) =0(r&b),
Gaussian mell

V(r) = —sb P(229.37) expL —2.0604(r/b)P],
Exponential well

V(r) = —sb '(752.06) exp( —3.5412r/b),
Fgkama mell

V(r) = —sb '(147.69)(b/r) exp( —2.1196r/b),

The conversion factor used was

t'p'/HI~=41. 480X 10 n MevX cm'.

For the Yukawa well, the equivalent meson mass is
@=818.57b 'm, .
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TABLE VIII. Calculated values of the variational parameters
and their derivatives for various potential well shapes. All lengths
are in units of 10 "cm.

Well shape

Square
Gaussian
Exponential
Yukawa

Well shape

Square
Gaussian
Exponential
Yukavra

s b

Q.890 2.626
0.900 2.540
0.900 2.500
0.924 2.400

Oc/Bs

—33.521—34.654—33.813
-39.399

—7.7930 2;6388—7.7797 2.6055—7.4235 2.6776—7.6512 2.6756

ar(/as

—1.5300—1.8553—2.5690—3.6387

—0.03313—0.01936
0.00907
0.05540

—2.0824—2.0966—2.0510—2.1002

0.00179—Q.Q0073
0.00089
0.019

Bra/8b

0.94975
0.98193
1.Q439
1.1157

In the calculations the Coulomb potential was as-
sumed to be valid right down to r=0 ie Eq. (9.1) was

used, with W(r) given by (11.1).Present concepts about
the nature of the nucleons themselves makes such an
assumption questionable. Deviations from the purely
Coulomb form of the electromagnetic interaction most
probably occur at distances of the order of, or smaller
than, the range of nuclear forces. However, the Coulomb
field itself produces little change in the variational
parameters' except the scattering length a (see Section
VIII). Consequently, deviations from the Coulomb law

at small distances can be assumed to produce no
significant. changes in the higher coefFicients in (1.2), and

only slight modification in a. In any event, when the
actual form of these deviations is known, the parameters
can be corrected accordingly by the methods of Sec-
tion X.

The results of the calculation are collected in
Table VIII. The first column of the table speci6es the
potential shape. The second and third columns give the
values of the well parameters s and b for which the
calculation was carried out. The next four columns give
the variational parameters a, rv, P, Q. Finally the last
four columns give the derivatives Ba/Bs, Br&/Bs, Ba/Bb,
Brv/Bb which one needs to compute the effects of small
changes in the well parameters.

These numbers can be compared with those obtained

by Hatcher, Arfken, and. Breit'4 for the Gaussian and
Yukawa well shapes. These authors computed 5-wave
phase shifts, then evaluated K (1.1), and made a least
squares fit with a second-degree polynoInial over the
energy range up to 10 Mev. The comparison is satis-
factory.

They can also be compared with the corresponding
parameters for neutron-proton scattering. ' The scat-
tering lengths differ appreciably, as expected from
Section VIII. However, the higher coefficients agree
quite well. For the same values of s and b as given in
Table VIII, a comparison with the curves of reference 6
shows that the eGective ranges dier by 6 percent at
most (the difference is 0.2 percent for the Yukawa well,
and 5.6 percent for the square well). Similarly, the values
of I' in the two cases diGer by 10 percent at most for all
the we11 shapes considered. This gives a clear indication

'4 Batcher, Arden, and Breit, Phys. Rev. 75, 1389 C'„1949).

that the Coulomb potential can be treated as a small
perturbation on the higher parameters in (1.2).

The 6rst thing to note in the comparison with experi-
ment is the very small value of I' for all four well shapes.
In view of the fact that the present experimental data
are not in disagreement with values of P anywhere in
the range +0.15 to —0.8, one can conclude that all four
commonly osslmed well shapes give equally good fils to the
Van de Gruag data, the fits being quite excellent com-
pared to the experimental errors. Conversely, the dis-
agreement of the DOP point at 7 Mev cannot be used as
an indication of well shape since this point is in dis-
agreement no matter which well shape is assumed.

The present results are in essential agreement with
the results of Breit, Thaxton, and Eisenbud. ' However,
they disagree with the results of Hoisington, Share, and
Breit" concerning the exponential veil shape. These
authors claim that the exponential well provides a
significantly poorer fit to the then available data than
the Yukawa well. They attribute this difference to the
longer tail of the exponential well, claiming that the 1('r
singularity at the origin in the Yukawa well compen-
sates for its tail. Their 6t to the data with the exponential
well was made using the well parameters determined by
Rarita and Present" (s=0.885, b=3.08X10 " cm).
These well parameters give too large (absolute) values
for both o( —8.10X10 " cm) and r&( 3.32X10 "
cm) so that a plot of K vs. k' would lie across the best
linear 6t shown in Fig. 15, passing below the lower
energy points and above the higher energy points of
HKPP. But it just happens that the Rarita-Present
well predicts the same value for the phase shift as de-
termined from the HHT data at 670 kev. This point will
be seen to lie considerably below the best 6t in Fig. 15.
Hojsington, Share, and Breit remark that their corn-
parison may be unfair since they choose to fit their
theoretical curve exactly to the HHT point at 670 kev.
However, they go on to argue that this really should
make no difI'erence since the curvature of the bo vs. E
curve for the exponential well is too great to be in
agreement with all the experimental data no matter at
what energy it was fitted, and that a change in the range
of the potential primarily aRects the slope, not the
curvature of such a plot. It is clear that, since the
present data do not discriminate between well shapes,
the earlier data (which covered a narrower energy
range) certainly discriminate even less. With the proper
choice of range and depth (see Table IX) the exponential
well gives as good a 6t to the data (either as it was then
or as it is now) as any of the other usually assumed
shapes. The conclusion to be drawn from the work of
Hoisington, Share, and Breit is that the Rarita-Present
exponential well gives a poor 6t to the data, but not that
the exponential well per se gives a poorer 6t than any
other well shape. This situation illustrates the difFi-
culties involved in deciding what is a "good fit" if one

~ Hoisington, Share, and Breit, Phys. Rev. 56, 884 (1939).
36 W. Rarita and R. D. Present, Phys. Rev. Sl, 793 (1937).
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TAM, K IX, The variational parameters and well parameters which give the best weighted
least-squares fit to the experimental data below 3.6 Mev.

well shape

Square
Gaussian
Exponential
Yukawa

—0.033—0.019
+0.009
+0.055

a{10»cm)

—7.66~0.05—7.66(5)~0.05—7.68~0.05
—7.70~0.05

ro(10» cm)

2.60&0.07
2.62+0.07
2.67a0.07
2.76a0.07

0.889m 0.003
0.896~0.003
0.907~0.003
0.922~0.003

b{10»cm)

2.58%0.06
2.55~0.06
2.51+0.06
2.47~0.06

does not have a simple functional form such as (1.2)
with which to 6t the data.

The results in Table VIII are not in the most con-
venient form for comparison with experiment since we
want to find s and b from the measured a and ro, rather
than the other way around. The quantities in Table VIII
are used as follows:

a ao+(rIa/Bs)(s so)+—(Ba/rIb)(b bo),—
r r p+ (rIr/res) (s sp)+—(r7r/r7 b) (b bp)

These equations can be treated as a pair of linear
simultaneous equations in two unknowns (s and b), and
can be solved for these unknowns in terms of (a—ap) and

(r—rp). The resulting expressions, given below, corre-
spond to the linear terms in a Taylor series around the
computed points.

Square mell

s=0.890—0.02712(a+ 7.793)
—0.05946(rp —2.639), (11.3S)

b =2.626 —0.04369(a+ 7.793)
+0.95716(ro—2.639).

Gaussian meQ

s =0.900—0.02590(a+ 7.780)
—0.05529(ro —2.606), (11.3G)

b =2.540—0.04893(a+ 7.780)
+0.91395(ro —2.606).

ExPomential well

s=0.900—0.02573(a+ 7.424)
—0.05056(ro —2.678), (11.3E)

b = 2 500 0 063.33(a—+7. 424).
+0.83354(rp —2.678).

Vukama mell

s =0.924 —0.02162(a+ 7.651)
0.04070(rp 2.676) (11.3Y)

b= 2 400 0 0705. 1(a+—7 .651).
+0.76353(ro—2.676).

All lengths in these formulas are in 10 "cm.
Using the results of the weighted least squares fitting

to the Van de Graaff data for arbitrary values of I'
which are summarized in Figs. 17 and 18 we can de-
termine the best values of a and ro for each well shape.
Then we use Eqs. (11.3) to determine the best well

parameters s and b in each case. These results are given
in Table IX. The first column of the table gives the well

shape, the second column the value of I' for that well.
The third and fourth columns give the corresponding
values of a and ro with their probable errors, while the
next two columns give the implied values of the well

parameters s and b with their probable errors. The
potentials corresponding to these values of s and b can
be found by reference to Eqs. (11.2). For the Yukawa
well the "meson" mass turns out to be 332+8 electron
masses. The values of b are seen to be determined to
within 2.5 percent, while the values of s are determined
to within 0.3 percent.

The results summarized in Table IX are in essential
agreement with the results of Breit, Thaxton, and
Eisenbud' for the square and Gaussian well shapes (they
obtained s =0.872, b = 2.8i for the square well; s =0.887,
b= 2.78 for the Gaussian well), and those of Hoisington,
Share, and Breitoo for the Yukawa well (they got
s=0.920, b=2.51).The differences can be accounted for
by the fact that Breit et a/. had only the data of HHT
and HKPP available for their analysis at that time. As
pointed out by Bethe, ' the errors can now be narrowed
down somewhat, both because the data extend to higher
energies and because the simple functional form (1.2)
allows one to make a reasonable estimate of error by
simple inspection rather than by complicated com-
putations.

Bethe' has given a discussion of the assumption of
charge independence of the specihcally nuclear forces.
He has shown that the recent data for the epithermal
neutron-proton cross section dehnitely imply a neutron-

Yon de Grooff
Qoto

I&Q Cm k

I I I I I I I I I I I I I I I

2 4 6 8 IQ 12 14 16

FIG. 21. The function K plotted vs. k~ for the square and
Yukawa wells giving equivalently good fits to the Van de Graaff
data (see Table IX). The shaded regions are those allowed by the
uncertainty in the least-squares fitting to the data at the lower
energies. The allowed regions overlap below 7 Mev, preventing
effective discrimination between the two well shapes at lower
energies (except insofar as the curves will be spread farther apart
in the high energy region by a precise measurement near 400 kev}.
Similar plots for the Gaussian and exponential wells would lie
between those shown.
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proton potential in the singlet state with a bigger value
of s than the proton-proton force, assuming the same
intrinsic range and shape for the potentials. To obtain
quantitative information on this diBerence, we take the
values of b given in Table IX for each potential shape,
and assume that the neutron-proton singlet potential
has the same value of intrinsic range. Then the value
—(2.376+0.010)X10 " cm for the singlet neutron-
proton scattering length (obtained from the coherent
and incoherent m-p scattering cross sections)6 and these
values of b determine corresponding values of (nb) for
the singlet e-p state. From Fig. 4 of reference 6 we 6nd
the implied values of the well depth parameter s for the
singlet n pp-otential. Comparison of these e pvalues-
with the corresponding p-p values of s in Table IX
shows that the n-P interaction in the singlet S-state is

stronger than the p-p interaction (assuming the same
intrinsic range and shape) by 3.3 percent for the square
well, 1.6 percent for the Yukawa well, and in between
for the other two well shapes.

The same results can be obtained by means of the approximate
relation (8.10}between scattering lengths together with the values
of r0 and Ba/Bs from Table IX and Table VIII. This (less accurate)
method of comparison leads to the conclusion that the n-p inter-
action is stronger than the p-p interaction by about 3 percent for
the square well and about 2 percent for the Yukawa well, in good
agreement with the more precise comparison.

The differences in strength of the n-p and p-p po-
tentials in the singlet state are small, but seem definitely
outside the limits of experimental error, so that the hy-
pothesis of the charge-independence of nuclear forces is
not exactly satisfied. However, while the disagreement
seems to be definite enough, one should perhaps empha-
size that it is quite small numerically. Hence the general

~ Note added ie proof.—Schwinger (private communication)
has pointed out that if, in addition to the electrostatic Coulomb
interaction, we consider electromagnetic interactions between the
nucleons of a magnetic nature, such as the interaction between
two magnetic dipoles, we find that the charge-independence
(in the narrow sense used here} of the specifically nuclear force
is improved. In an S-state, the dipole-dipole interaction is:
V; ~= —{8~/3){p1p,.)e1 e28{r1—r2) {see, 'for example, L. Rosen-
feld, nuclear Forces {Interscience Publishers, ¹wYork, 1948),
p. 95). Due to the difference in sign between the magnetic mo-
ments of the neutron and the proton, V; t is attractive in the
neutron-proton singlet state, and repulsive in the proton-proton
singlet state (e1 ~ 0'2= —3 in the singlet state}. Thus, with the same
nuclear force, the effective neutron-proton interaction will appear
slightly more attractive than the effective proton-proton inter-
action (after correction for the Coulomb field). We can readily
estimate the effect of the dipole-dipole interaction on a and ro
(and hence on the strength of the nuclear force} by means of the
formulas (10.2). The result is that the inclusion of the dipole-dipole
interaction produces a change of the order of one percent in the
strength of the nuclear force, and improves its charge-independ-
ence. There is a negligible change in the range of the nuclear
interaction. Schwinger has made detailed calculations (to be
published} of the effects on charge-independence of the magnetic
dipole-dipole interaction, and other related effects (such as the
interaction of the proton current with the magnetic moment of
the other nucleon). He finds that the inclusion of these magnetic
effects improves the charge-independence of the nuclear force for
all the conventional potential shapes, but that the improvement
is least for a square well, and most for a Yukawa well, this latter
shape giving exact charge-indepeg, dence within the experimental
uncertainty of +$ percent.

conclusions of %'igner" regarding the spectroscopic
classi6cation of nuclear energy levels are not aGected by
this result. One might argue that the presence of the
nuclear force distorts the Coulomb field for values of r
less than the nuclear range. If so, the distortion has to be
in such a way that the e6'ective Coulomb potential is
increased. One of the other aspects of charge-independ-
ence, namely the charge independence of the intrinsic
range of the nuclear potential, has no direct experi-
mental verification at present. The present neutron-
proton scattering data are not accurate enough to settle
this point (see reference 6). And, of course, the question
of potential shape is completely unanswered by present
experimental data of any sort. The closer equality of the
neutron-proton and proton-proton forces found by
Breit and collaborators" was due to the use of Simon's"
value of the epithermal neutron-proton scattering cross
section, which has since been shown to be considerably
too low. Their calculations with 0.0=20 barns are in
accord with the results given here.

In conclusion we will give some indication of the
accuracy necessary for a hypothetical experiment at 10
Mev to discriminate between the Yukawa and square
well shapes (these being the two extremes in well shapes
usually employed). The parameters specifying the
Yukawa and square wells giving the best fits to the Van
de Graaff data are given in Table IX. The curves of K
vs. k' implied by the variational parameters c, rt), I' and

Q for these two potentials are plotted in Fig. 21. For
each potential there is an allowed region (shaded area)
for the values of K due to the leeway in the values of
a and ro as determined from the fitting of the Van de
Graaff data. We see that below 7 Mev (k' 8X10'4
cm ') the allowed regions overlap making it virtually
impossible to discriminate between the well shapes (as-
suming that the experimental point falls within the
shaded zone). At 10 Mev the difference between the
values of K for the best fits (the center line of the shaded
areas in each case) for these two potentials is hK 0.3,
while the gap between the shaded regions (the most
pessimistic choice) is about AK~.16.

To determine the accuracy in cross section and energy
measurements necessary to discriminate between values
of K diGering by an amount hK we turn to Figs. 19 and
20 to fmd the values of E(BK/BE), and o(BK/Bo)~ At.
10 Mev (and at moderate scattering angles) we 6nd that
E(BK/BE) ~ 4, while 0(BK/Bo)s——8 i.e., the un-
certainty in cross section is twice as important as the
uncertainty in beam energy as far as errors in K are
concerned. Since the signs of the experimental errors are
presumably unknown, it is necessary to consider the
worst possible case namely,

'~ E. Wigner, Phys. Rev. 51, 106, 947 (1937).
"Breit, Hoisington, Share, and Thaxton, Phys. Rev. 55, 1103

(1939).
g' L. Simons, Phys. Rev. 55, 792 {1939).
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If hK is taken to be equal to the gap (lehK=0. 16) be-
tween the shaded areas for the two potential shapes, a
reasonable estimate will be found for the accuracy needed
to discriminate between the two shapes. The chart
below shows how the allowable uncertainties go.

(~~)1~ 0 0.01 0.02

l=1
l=2
l=3

Square
well

0.4935
0.3525
0.2742

Gaussian
well

0.6031
0.7318
1.243

Exponential
well

0.7814
1.869
8.348

Yukawa
well

1.058
4.712

44.05

TABLE X.Values of f&&+2 for the usually assumed potential shapes
and l=i, 2, 3.

0.04 0.02

%e see that to differentiate between extremes in po-
tential shapes it is necessary to have an over-all uncer-
tainty in cross section measurement of two percent or
less, assuming no accompanying uncertainty in beam
energy. However, in view of the cyclotron measure-
ments at 7 and 8 Mev an energy accuracy of around one
percent seems to be the lower practical limit, so that the
cross section measurement must be accurate to about
one and a half percent, or better —a not impossible re-
quirement with careful work. It appears, then, that a
measurement in the neighborhood of 10 Mev that would
discriminate between extremes in well shapes is possible
with existing equipment and techniques, but only if
considerable care is taken to reduce all possible errors to
an absolute minimum.

In these considerations we have tacitly assumed that
the hypothetical experimental point falls on, or between,
the shaded regions in Fig. 21. There is, of course, no
theoretical reason why it should do so. A good measure-
ment (of the accuracy estimated above) at 10 Mev,
wherever it falls on the K es. 0' plot, will at least exclude
some potential shapes from the array of possibilities (it
being far easier to exclude some interactions than to
determine the correct one). For that reason, as well as
reasons cited earlier, we recommend that careful meas-
urements be made at energies considerably above 3.5
Mev, and that particular attention be paid to the
elimination of systematic errors (which might, for ex-

ample, account for the peculiar BOP point at 7 Mev).

XII. A ROUGH ESTIMATE OF THE PHASE SHIFTS
FOR HIGHER ANGULAR MOMENTA FOR P-P

AND N-P SCATTERING

It is an easy matter to write the generalization of the
variation principle for orbital angular momenta l differ-
ent from zero. Indeed, all one has to do is to replace
F(r) =Fo(r) and G(r) =Go(r) by the appropriate Coulomb
wave function for orbital angular momentum l, i.e. by
the F~(r) and G~(r) given in Yost, Wheeler, and Breit. 32

(The replacement must be made also in the definition of
the Green's function it ~(r, r'), of course. ) The derivation
of an expansion similar to (1.2) presents no difficulties.
Indeed, the result has been derived by Chew and
Goldberger' for /=1. The generalization of (1.2) to
arbitrary l was given by Landau and Smorodinsky' for
the zero-range approximation.

However, such a detailed treatment for higher angular
momenta is unnecessary at this time. As can be seen
from Section VI, the experimental evidence for P- or
D-wave contributions to the scattering is only of a

qualitative nature. All that is necessary at present is a
rough, order of magnitude, estimate of these higher
phase shifts. Breit, Thaxton, and Eisenbud' have given
estimates for the Gaussian and exponential well shapes.
%e give here estimates for the four usual well shapes in
terms of the well depth parameter s and the intrinsic
range b for both P-P and S-P scattering. %e consider
the P-P case 6rst.

For a erst orientation, it is sufhcient to use the Born
approximation for the phase shifts~

b(~~ k' ~ F——)'(r)W(r)dr.
~0

(12.1)

The potential W(r) is written in the standard form
(10.3).Then the estimate for the phase shift b~ becomes:

b ~~~C 's(kb) "+'f (12.4)

where f„is the Nth moment of the shape function
f(r/b) defined in (10.3):

f„= x"f(x)dx
0

(12.5)

Formula (12.4) shows that b~rr is proportional to (1)
the barrier penetration factor (which for P Pscattering-
is a function of energy), (2) the well depth parameter s,
(3) the (l+2) power of the energy, (4) the (2l+1) power
of the intrinsic range, (5) a pure number depending only
upon the shape of the well and increasing rapidly as the
well gets to be more "long-tailed. "

8 ~ will be positive for
a, ttractive potentials (positive s) and negative for re-
pulsive potentials (negative s).

In Table X we have collected the values of f2~+2 for

' Reference 14, pp. 28, 90.

Furthermore, we shall approximate the regular Coulomb
wave function by its behavior near the origin (see
reference 32):

F)(r)~C)(kr) '+' (12.2)

Here C~ is the penetration factor for the combined
centrifugal and Coulomb barriers, given by

22l

C 2 (l'+n')
(2l+ I)!'
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Thar. z XI. Estimates of Bf. The sets of three numbers at each
energy are the estimated values of bI, b~, and 53 in degrees for P-I'
scattering with s = 1 and b given in Table IX.The ratio of 5~(SE)
to bf(EP) is given in the last column. This ratio is just the recipro-
cal of the 5-state Coulomb penetration factor (i.e., C ). The
values of the energy are in the laboratory system.

Energy Square Gaussian Exponential
(Mev) well well well

0.14 0.17 0.21
2 0.00065 0.0013 0.0030

0.0000017 0.0000069 0.000042

Yukawa C 2 =
well bi(XP) /b&(PP)

0.27
0.0070 1.45
0.00020

0.44 0.52 0.65 0.84
4 0.0041 0.0080 0.019 0.044

0.000021 0.000087 0.00052 0.0025

0,85 1.01 1.25 1.61
6 0.012 0.023 0.054 0.13

0.000090 0.00038 0.0023 0.011

1.30

1.23

1.35 1.60
8 0.025 0.049

0.00025 0.0011

1.93 2.27
10 0.044 0.087

0.00056 0.0024

1.97 2.54
0.12 0.27
0.0064 0.030

2.81 3.62
0.20 0.48
0.014 0.067

1.20

1.17

the four commonly assumed well shapes and for the first
few values of /.

The values of 8~ for P-P scattering at a few repre-
sentative energies are given in Table XI under the as-
sumption that W(r) for the higher angular momenta has
the same intrinsic range b as the best 6t (see Table IX)
for the S-wave phase shifts, and a well depth parameter
s= i. In order to get 8 IPP for diferent assumptions about
s or b, it is only necessary to remember the proportion-
ality of 6 P to g and b l+

To evaluate the E-P phase shifts for higher angular
momenta we just use the E-P equivalent of formula
(12.1). Instead of the regular Coulomb wave function we
now have the regular spherical Bessel function j~(kr)
times (kr). In the approximation equivalent to Eq. (12.2),

krj)(kr) B((kr) '+' (12.6)

where 8~ is the centrifugal barrier penetration factor

2'l t 1
BI,=—— (12.7)

(2l+1)! 1X3X5 (2l+1)

The .V-P phase shifts b&~P are then given by:
g xP~B 2g(kg)2l+1f (12.8)

One can easily see that C~ (12.3) reduces to B~ in the
limit g—4, as required. Furthermore, q'& 0.01 for
energies above 2 Mev. For such energies the combined
Coulomb and centrifugal barrier penetration factor is
given to a good approximation by the product of the
S-state Coulomb factor C (defined by Eq. (8.4)) and the
centrifugal factor 8~.

2'l t ! 2iri!
Ci—

I i
= B&XC. (12.9)

(2t+1)!Ee" —1i
In this approximation the ratio of the S-P phase shifts

5PP given by (12.8) to the P-P phase shifts JIP~ given
by (12.4) is just

8P /8( =BP/CP 1/C' (12.10)

so that the ratio is dependent upon energy, but ap-
proximately independent of l (the approximation being
better the larger the values of the energy and I). The
sixth column in Table XI gives the value of the ratio
(12.10) for the energies quoted there. With this ratio the
values of 8&(P P) can -be readily converted to estimates
for the corresponding S-P phase shifts. As before,
estimates for any other values of s, b, or energy can be
easily obtained by means of the proportionality of 8&~P

to s, b"+', and E'+&.

It should be emphasized that the numbers in Table XI
are very rough estimates, and are to be used only in that
sense. The possibility of a tensor force contribution in
the states of odd angular momentum has not been
included, since detailed considerations of this type seem
premature. The absolute value of b~ in higher approxi-
mation for a given potential depends on whether the
force is attractive or repulsive. The values in Table XI
are approximately the mean of the absolute values for
attractive and repulsive potentials, the attractive po-
tential giving a somewhat larger value for 8E, and the
repulsive potential a smaller (absolute) value.

The following preliminary conclusions can be drawn
from the estimates summarized in Table XI: (1) A P
wave phase shift of the order of half a degree at an
energy around 3 Mev is not unreasonable. (2) A D wave-
phase shift of the order of magnitude O. i degree at that
same energy is considerably higher (by a factor of 5 to
50) than the expected values. (3) At energies of the
order of 8 or 10 Mev the P-wave phase-shifts (assuming
that they exist at all) are likely to become large enough
so that the linear approximation of Section V will be
invalid. If this turns out to be the case, one will also
have to include tensor force effects more carefully at
those energies (i.e., the replacement (5.5) will no longer
be vahd). (4) It is clear from (12.4) that the phase shift
estimates depend quite strongly upon the shape of the
well; hence one can always get larger estimates by using
longer-tailed wells. However, the evidence summarized
in Section VII limits the value of P (the amount of
tailing of the well) that one can permit for the force in

the 'S-state. At present, it is a matter of taste whether
one is willing to assume a potential with a very long tail
in the states of higher angular momentum. In this con-
nection, it should be noted that the analysis of the ex-
periments given in Section VI indicates that the P-wave
phase shifts, if real, are of the order of, or less than, one
degree even up to io Mev. Hence there is no need at
present to postulate long-tailed potentials in the states
of higher angular momentum.
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Similarly, the limiting form of pp(8), from (AI. 1) and
(AI.3) is:

lim pp(8) =5Pp(cos8). (AI.5)

insensitive to hp. Of course, (AI.2) does not involve hp at
all.

Of some interest, as far as the general behavior of

Pq(8) and Pp(8) is concerned, are the limiting forms for

p& and p p as E becomes very large. It is easily seen from
examination of (AI.1) and (AI.2) that:

lim p&(8) = L
—18'/sin(2hp)] cot'8. (AI.4)

APPENDIX I. FORMULAS FOR THE DETERMINATION
OF HIGHER PHASE SHIFTS

The functions p„(E,8, hp) defined by:

(8o/8h„)
p„(E,8, hp)=

(8o/8hp)
(5.4)

can be readily found by means of the formulas of Breit,
Condon, and Present' for m=1, 2. Thus

(Mv') ' Bo- —2X

& e'I 8hp
cos(2hp)

t4 2Yy
+

~

—+—l»n(»p) (AI 1)„)
where X and Y are dehned by Eqs. (4.4). Similarly

t Mv') '-8o. 18 ( cosn

( e' & 88, g (sin'8/2

cosPy
iP&(cos8) (AI.2)

cos'8/2)

tt'Mo'q ' 8o 40—sinhp cos(hp —2op+2op)
4 e'- ) 8hp

10 ( cosnp cosPp
I Pp(cos8), (AI.3)

g I sin'8/2 cos'8/2)

where n, and P; are de6ned in BCP. It should be noted
that while (AI.1) and (AI.3) involve hp, they are rela-
tively insensitive to variations in 80 over the energy
range of interest. The higher phase shifts are certainly
negligible for energies below 2 Mev while the assumption
that 8& and 82 are small probably is not valid above 8 or
10 Mev. In this energy range of 2—10 Mev where the
functions p„arepresumably useful, the value of 80 is in
the neighborhood of 50 degrees. Thus sin(2hp) is near
unity, and a slowly varying function of hp, while cos(2hp)
is small, From this it is seen that (AI.1) and (AI.3) are

It is interesting to note that the limiting form of p~(8) is
proportional to pl, so that P&(8) vanishes in the limit of
very high energy (or when the electric charge is made to
vanish). This is because p~(8) arises from an interference
between the 'P-nuclear scattering and the Coulomb
scattering in all the higher odd angular momentum
states (the Pauli principle prevents interference effects
between states of even and odd angular momentum). In
the transition to neutron-neutron scattering (electric
charge to zero) such a term must vanish if it is assumed
that higher odd angular momentum states do not con-
tribute to the nuclear scattering. In consequence, the
P-wave phase shift 6rst appears quadratically in
neutron-neutron scattering, but appears linearly in
proton-proton scattering if all 5's above b~ vanish in both
cases. On the other hand, the limiting form of pp(8) does
not depend on the Coulomb scattering in the even
angular momentum states, but involves only an inter-
ference effect between 'S- and 'D-nuclear scattering.
Hence, the D-wave phase shift appears linearly in both
neutron-neutron and proton-proton scattering.

The values of p~(E, 8) and pp(E, 8) which were com-
puted using (AI.1), (AI.2), and (AI.3) are given in
Tables V and VI for energies from 2 to 10 Mev in the
laboratory and angles from 16 to 90 degrees in the center
of gravity system (the functions are symmetrical about
8= 90 degrees).

Since the need for interpolation in energy occurs more
often than the need for interpolation in angle, plots of
p&(E, 8) and p&(E, 8) as functions of the energy E for
various scattering angles 8 are quite useful. Such plots
are shown in Figs. 4 and 5. It is seen from Fig. 5 that
p p(E) is almost constant at any given value of 8 over the
whole energy range, for 0's between 40 and 90 degrees;
in this angular range the asymptotic form (AI.5) yields
very good values of pp independent of energy

It should be pointed out that numerical interpolation
in angle for p&(8) from Table V can be made quite
accurate if the asymptotic behavior (AI.4) is divided out
before interpolation; that is, the interpolation should be
carried out between values of P~(8) tan'8, rather than
between values of p~(8), because p~(8) tan'8 is a much
more slowly varying function of angle than is p&(8)
itself.
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APPENDIX D. APPARENT S-%PAVE PHASE SHIFTS
FROM EXPERIMENT

The values of the apparent S-wave phase shifts for the
experimental data are tabulated below. The manner in
which the S-wave phase shift given in Table VII was
determined is also stated.

(1) RKT "—The values quoted in Table VII were
computed from the experimental cross sections at 8=90
degrees (center of mass).

(2) HHT. "—The numbers given in Table VII were
determined from the data by Creutz. 20

(3) HKPP. '—These data were analyzed by Breit,
Thaxton, and Eisenbud. ' The values of 8, from 8=40
degrees to 8=90 degrees are given by them. The S-wave
phase shifts in Table VII are averages of the four values
of 8 from 8=60 degrees to 8=90 degrees in each case.

(4) BFLSW."—Critchfield and Dodder~ have pub-
lished values of 8, for 8=50 degrees to 90 degrees from
these data. Values of b, have been computed for a wider
range of scattering angles than given by them. These
numbers are tabulated below. They have been corrected
for the second-order geometry effect discussed by
Critchfield. The 5-wave phase shifts given in Table VII
are averages over the Ave values of 8, from 8=50
degrees to 8=90 degrees.

BFLSW
E (Mev)

3.04
8

{degrees) 2.42

25
30
35
40
50
60
70
80
90

48.75
48.78
48.47
48.22
48.65
48.20
47.95
48.20

51.28
51.18
51.63
50.96
51.26
50.91
50.70
50.62
51.25

53.30
52.91
52.50
52.11
52.59
51.67
52.08
51.57
51.55

53.54
53.16
52.54
53.30
52.66
52.27
52.62
52.77
52.58

(degrees)
40
50
60
70
80
90

2.42
48.76
48.54
48.31
48.09
47.99
47.64

R%'H
E (Mev}

3.04 3.28
51.32 52.07
51.24 52.00
51.01 51.90
51.01 51.85
50.88 51.79
50.74 51.?4

3.53
52.86
52.68
52.45
52.30
52.20
52.21

(6) MP. '4—May and Powell determined the ratio of
proton-proton scattering to Mott scattering at 8=90
degrees to be 94&6 at E=4.2 Mev by photographic
plate techniques. This ratio leads to the value of S-wave
phase shift given in Table VII. May and Powell incor-
rectly state 80= 54.0~2.5'.

(5) RWH."—The apparent S-wave phase shifts im-

plied by these data have been computed and are tabu-
lated below. The values of the S-wave phase shift
quoted in Table VII were found by making a reasonable
linear 6t to. the points on a 8, vs. pq(8) diagram, and
taking the intercept to be the S-wave phase shift. An
example of this procedure for the 3.53 Mev data is
shown in Fig. 8.

(7) M."—Meagher made measurements at an energy
E=4.94&0.04 Mev with the Illinois cyclotron, using
photographic plate techniques. The apparent S-wave
phase shifts from these data are given below.

30 50 70

53.29 53.43 54.04 53.56 53.87 54.20

80 90 110

54.22 54.06 54.04 54.06 54.02 53.75

21.02

53.28

25.18

53.26

30.12

53.33

39.90

52.21

49.98

52.12

52.17

69.66

51.87

79.74

52.03

89.24

51.79

The S-wave phase shift given in Table VII was de-
termined by Oxley from a least squa. res 6t to the cross
section, assuming S- and P-wave anomalies. Figure 11
(where 8, is plotted vs. p&(e)) shows that this is a
reasonable value of the S-wave phase shift.

(9) WC. '"—These data, taken at E=8 Mev, involved
a series of comparative measurements at different angles
based on the average of two absolute measurements at
8=90 degrees. The apparent S-wave phase shifts com-
puted from these data are:

30

51.51 53.13

50

53.61 54.00

70

53.61

80

53.13

90

52.72

96

51.79

The S-wave phase shift in Table VII is just the value of
b, at 8=90 degrees (from the absolute measurement).

(10) Wilson. "—These data consist of relative meas-
urements on angular distribution at E=10 Mev. In
order to examine the data for P-wave effects and to
determine the sensitivity of such effects to changes in
the absolute value of the cross section, three values of
the differential cross section (center of mass system) at
8=90 degrees were assumed, and the apparent S-wave
phase shifts determined in each case. The three nor-
malizing values of 0 (90') were (1) 0.0490 barn, (2)
0.0515 barn, and (3) 0.0540 barn. These lead to
reasonable values of the function K, namely (1) K = 8.87,

The value in Table VII is an average of the eight values
of b, from 60 to 110 degrees.

(8) DOP. "—The apparent 5-wave phase shifts im-

plied by these data are tabulated below. E=7.03
~0.06 Mev.

DOP
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(2) K=8.47, and (3) K=8.08 (see Fig. 16). The values
of the apparent 5-wave phase shifts for each case are
given in the chart below.

Wilson
(90') =0.0490 (90') =0.0515 (90'}=0.0540

54.74 56.48 58.27
54.63 56.28 57.93
54.23 55.85 57.46
54.06 55.69 57.34
53.37 54.94 56.59
53.40 55.04 56.63
53.69 55.34 57.01
53.41 55.07 56.82
53.58 55.32 57.01
52.59 54.26 55.94
52.83 54.58 56.35

G(r) cos(kr q l—n(2kr)+go). (A3.5)

Sex14' has examined the behavior of the irregular
solution near the origin. He found that G(r) can be
written as:

F(r) is normalized asymptotically (k'Rr»1) to the
form:

F(r)~sin(kr r—l In(2kr)+ o 0) (A3.4)

where eo ——argl'(1+irl). The irregular solutions are
known4' to differ from F(r) asymptotically only by the
insertion of an arbitrary phase in the argument of the
sine. The usual choice for the irregular solution G(r) is
that solution which asymptotically (k'Rr»1) has the
form:

(11) WLRWS."—These data consist of absolute
measurements taken at E= i4.5 Mev& "a few percent. "
The apparent 5-wave phase shifts implied by these data
are: where

G(r) =Re[y(r) j, (A3.6)

20

50.90

WLRWS

28

57.42

36

51.42

i
90 y(r) =—e ""[I++(2zkr) "c„Iln(2ikr)+d„}j,

C n=1
52.16

The uncertainties in these measurements are rather
large. The value of the cross section at |3=90 degrees
was determined with the greatest precision. Accordingly,
the S-wave phase shift quoted in Table VII is the value
of 8, for 8=90 degrees.

The probable errors for the phase shifts shown on the
points in the various 6gures in Section VI and given in
Table VII were determined from the experimental
uncertainties in cross section and in energy as they were
evaluated in the original experimental papers.

APPENDIX III. 8-STATE COULOMB WAVE FUNCTIONS

The wave equation for the partial wave of zero
angular momentum in a repulsive Coulomb field is:

[ d'/dr'+ I/Rr7 p—(r) =k'p(r), (A3.1)

where R=h'/2me' k'=2mE/h', m is the mass of the
particle (the reduced mass), and F is the kinetic energy
of relative motion. q (r) is r times the radial factor of the
wave function.

This equation is a special case of the conAuent
hypergeometric equation, " the solutions of which are
well known. The regular solution (bounded at the
origin) can be shown to be:~

F(r) =Ckre'"'F(1+i q; 2; —2ikr), (A3.2)

where g= 2/fin= (2kR) ', and

1(N z~)—
C

r(~) I'(~+ I)r(—z~)

oc

=is(v'+vP)
—lng —y.

(A3.8)

+ + 0 ~ 0 +—ig i—iq

1 t' 1 1+——
2~ 1+-'+ +—~+2y,

n & e&

y=0.5772 is Euler's constant. The function y(r)
= —Cy&"'(kr) in Sexi's notation.

The behavior of F(r) and G(r) for kr«1 and r«R can
be found by expanding (A3.2) and (A3.6). The results
are:

F(r) =Ckr[1+ (r/2R)+ ~ ~ j,
G(r) = (1/C) [1+(r/R) [In(r/R) (A3.7)

+2& I+h(n)—j+

h(q) was also defined in (7.1) and (7.2), with a graph of

(A3 3) h(g) given in Fig. 13 and a graph of the summation,

OG

a(a+1)
F(a; b; z) = 1+ z+ g + I ~ t

bX1 b(b+1)X1X2
given in I'ig. 14.

)
~~ v(e'+ rP)

4' E. M. Whittaker and G. N. Watson, Modern Analysis (Cam-
bridge University Press, London, 1945},Chapter 16.

~ Reference 14, p. 39.
"W. Gordon, Zeits. f. Physik 48, 180 (1928).
44 T. Sexi, Zeits. f. Physik 56, 72 (1929).



J. D. JACKSON AN D J. M. BLATT

The expansions (A3.2) and (A3.6) are inconvenient
since they involve real and imaginary quantities while

the result is real. Yost, Wheeler, and Breit" have given
power series expansions of F(r) and G(r) in terms of real
quantities only. They also give an expansion for the
regular solution F(r) in powers of the energy, involving
Bessel functions of argument 2(r/R)1. The expansion of
F(r) in powers of k' has been treated in more detail by
Beckerley. "

Several combinations of Bessel functions arise in the
expansions of F(r) and G(r). To be consistent, the
following convention will be adopted: all the auxiliary
functions de6ned below approach unity at r=0. Fur-
thermore, in the limit R—+ ~ and ~0 (i.e., in the limit
of vanishing Coulomb field), all these functions can be
replaced by unity. Since the expansions for F(r) and

G(r) go over in that limit to the well-known power series
expansions for sin(kr) and cos(kr), this gives a simple
method of checking these more complicated expansions.
The following auxiliary functions are needed:

'J ll

L„(r)=I!
I

—
I I„[2(r/R)&], (A3.9)

r3

L„(r)=1+—+ -+ + +
2R 12R' 144R' 2880R4

2 !rr yt"
H.(.) =

I

—
I z„[2(./R)1], (A3.10)

(I—1)!(R)

where I„(s)and E„(s)are the modified Bessel functions
defined in Watson. "The expansions of L„(r)and H„(r)
for the 6rst few values of n are:

1 (kr)' (kr)'
G(r) = H, (r—) — M(r)+ V(r)—

C 2 24

1 r (kr)'
+—h(q) —Li(r) — Lp(r)

C R 6

(kr)' (10 1
+ I

—L.()—L() i-
120 E 9 9 )

(A3.14)

2R
M(r) =-—LLi(r)-H2(r)]

3 r
(A3.15)

From the expansions (A3.11) and (A3.12) it is readily
seen that M(r) has the expansion:

4r 67r'
M(r) =1——— ~ 0 ~

9R 216R' 2160R'

r q t
r r' r'

+I »—+» II
—+ + + "

I «316)
R ) L3R 9R' 72R'

In terms of the auxiliary functions (A3.9), Beckerley's
(Yost, Wheeler, and Breit's) expansion for F(r) can be
written as:

F(r) =Ckr[Li(r) —((kr)2/6)L2(r)
+((kr)'/120) [(10/9)Li(r) —(1/9) L4(r)]— ]. (A3.13)

In the limit of vanishing Coulomb field, (A3.13) obvi-
ously reduces to the expansion of sin(kr).

The expansion for the irregular function G(r) can be
written as:

Li(r) = 1+—+ + +
3R 24R' 360R'

La(r) = 1+—+ + +
4R 40R' 720R'

H„(.) =1+ (./R) Dn(r/R)+2~ —1]+(./2R')

X[»(r/R)+2y —(5/2)]+ (r'/12R')

X [in(r/R)+2~ —(1O/3)]+

H2(r) = 1—(r/R) (r'/2R')—
X [ln (r/R+ 2y —(3/2) ]—(r3/6R')

X [in(r/R)+2q —(17/6)]— . ,

H3(r) = 1—(r/2R)+ (r'-/4R')+ (r'/12Ri)

X [ln(r/R)+ 2y —(11/6)]+(r4/48R')

X[!n(r/R)+ 2y —(37/12) ]+ .

(A3.11)
The function iV(r) is:

N(r) = (4/3) (R/r) [L2(r)+ (2R/r)H3(r)
+'(12/5) (R'/r~) (H4(r) —I.i(r))]. (A3.17)

X(r) can be expanded in a power series, similarly to
M(r), i.e.,

X(r) = 1+(r/5R)(ln(r /R)+2y —(23/15))+ . (A3.18)

The expansion (A3.14) for G(r) reduces properly to the
expansion of cos(kr) in the limit of vanishing Coulomb
field; the first line becomes the expansion of cos(kr),
while the coefficient h(rl)/R of the second line vanishes
in that limit.

An alternative expansion for G(r) has been stated
recently by Breit and Bouricius. ' Their result can be
obtained from (A3.14) by the additional (more re-

strictive) assumption that g»1. For q»1, h(ii) (A3.8)
can be approximated by:

~ G. N. %'atson, Theory of Besse/ Functions (Cambridge Uni-
versity Press, London, 1944). h(i7)—(1/3)k'R'+ (2/15) k'R'+ . (A3.19)
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With this substitution in (A3.14), the result is:

1
G(r) =—Hi(r)+ i3kiRrH2(r)

C

I 4E2r2
p 6Z

+ I H&(r)+ H4(r—) ~+ ~ (A3 20)
9 4 Sr )

which is equivalent to Eq. (7.26) of Breit and Bouricius.
The expansion (A3.14) for G(r) can be obtained in a

straightforward (although tedious) manner from the
power series expansions given by Sexi" or Yost,
%heeler, and Breit."Alternatively, it may be obtained
by examining the representation of G(r) as a contour
integraL4' The expansion (A3.13) for F(r) can also be
derived readily in this manner. Still another method
(the one actually used) is the use of a Green's function
iteration scheme to obtain succeeding terms in the ex-
pansion of G(r) in powers of k' in terms of the lower
order coeScients. For the details of the derivation the
reader is referred to a previously mentioned thesis by
J. D. Jackson.

APPENDIX IV. THE BETHE DERIVATION OF THE
EXPANSION (1.2)

The simplicity of the final formulas (9.6), (9.14),
(9.15) for the coefficients rb, I', and Q in the expansion
(1.2) for K leads one to suspect that such an expansion
can be derived from the fundamental properties of the
diGerential equation involved, without recourse to the
less obvious variational principle (9.3). Indeed, the
rudiments of such a derivation lie in the work of Landau
and Smorodinsky, ' described in Section VIII. Recently,
Chew and Goldberger' and Bethe, ' as well as Barker and
Peierls, ' have given simple derivations using non-
variational methods. %e will follow the work of Bethe
here.

If u, (r) is the radial wave function of the proton-
proton system in the 5-state (multiplied by r) at an
energy E„then u, (r) satisfies Eq. (9.1):

Now consider the asymptotic form p(r) of u(r). p(r)
satisfies the Eq. (8.1). For si,(r) and pb(r) a relation
analogous to Eq. (A4.1) holds, namely:

8 R

yeso —
V yb = (kbb ko2) JI po pbdr .(A4. 2)

The next step is to subtract (A4. 1) from (A4.2) to get:

Pb Pa Pa Pb +b+a ++a+b

R

—(kb k )JI ((p Ipb u,ub)dr. (A4.3)
r

Now if the upper limit E is chosen large compared to the
range of the nuclear force, there is no contribution to the
integrated term (left-hand side) from the upper limit
because each function I;will be equal to its asymptotic
form q;. For the same reason, the integral on the right
can now be extended to ininity. If the lower limit r is
chosen very small (in the limit going to zero), then
N, =nb=0, and we are left with:

pb(r) y, '(r) —q, (r) q b'(r)

= (kb' —k.') Jr (p, pb u,ub) dr. (A4.4)—
r

We must now examine the f9rm of p(r) and its first
derivative at small distances. The normalization of vp(r)

will be chosen to be that of Eq. (9.9):

p(r) =CG(r)+C cothF(r). (9.9)

vp (r) =CPk; cot8;+(1/R) Lln(r/R)+2y j
+ (1/R) h(itf;) (A4.5)

From Eq. (8.3) or (A3.7) we see that in the limit of very
small r the p's are equal to unity; and from Eq. (8.5) we
see that in that same limit:

1

. +d'r' Er
W(r) u, =k.'u. .

where R now means the Bohr orbit of a proton as defined
in Section I. Using the definition (8.4) of the Coulomb
penetration factor C', we can write (A4.4) in the form:

x COtbb
—+h(itb)—

(9.1a)
1

+
dr' Er

W(r) ub=kb'ub

For another energy Eb, the wave function ub(r) satisfies:
~ cotb,

——h(it. )
g2'trito

=RJ (v, vb u, ub)dr (A4.6)—
0

Multiply Eq. (9.1) by ub and Eq. (9.1a) by u„subtract
and integrate from some (small) lower limit r to an
arbitrary upper limit E. The result is:

'R R

ubu,
' u,ub' ——(k—b' —k, ') ~ u,ubdr

r

4' Reference 14, p. 38.

where we see that the troublesome logarithm term has
disappeared because it was independent of energy. This

(A41) equation is exact, and relates the function K at one
energy to that at another energy through a simple
integral over the wave functions at the two energies in

question.
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It is convenient to choose the energy E, to be zero,
and to express things relative to zero energy. If we
write E and g for Eb and on then (A4.6) becomes:

m cotb
K—= +h(g)

g2x of

oo

(V oq uou)«—,
u ~0

(A4.7)

where the constant a is the same one dered in the text.
Equation (A4.7) is seen to be essentially the expansion
(1.2) of K.

If one now substitutes the expansions of u(r) and so(r)
in powers of k' (Eqs. (9.7) and (9.10)), then the first
term in the expansion of the integral is exactly the ex-
pression (9.6) for one-half the effective range ro. Simi-
larly the term in k' in the expansion of the integral is
equal to —I'roo given by Eq. (9.14). It would aPPear
that all succeeding terms in the expansion of K would
follow directly from this substitution of the expansions
of u(r) and &p(r) in powers of ko into (A4.7). In fact they
do, of course. However, as was mentioned in Section IX,
the forms thus obtained lead one to believe that he needs
to know higher terms in the expansion of u(r) than are
actually necessary to calculate a given coeKcient. As an
illustration consider the k' term in the expansion of the
integral in (A.4.7), that is, the expression (9.15) for Qro'.
The variational principle told us that we need only have
knowledge of the first two terms in the expansion of u(r)
in order to find Qro', as is borne out by the form of
(9.15).However, let us look at the k' term obtained from

the above integral; it is:

d2 1
+——W(r) o„(r)=o„g(r)

dr' Rr
(A4.8)

of which Eq. (9.8) is the first. Similarly, x„(r)satisfies
(A4.8) with W(r) put equal to zero. By means of these
equations and those satisfied by uo(r) and po(r), one can
perform an integration by parts on the above integral
for Qro' to put it into the form (9.15).

In a similar manner all higher terms in the expansion
of the integral in (A4.7) can be reduced so that the
minimum number of terms in the expansions of u(r) and

q (r) are needed to evaluate them. The advantage of the
variational principle method is that it tells one im-
mediately what the minimum number of terms is, and
gives the coeKcients directly in their reduced forms.
Perhaps the most profitable compromise is to know that
the expansion of K can be deduced from a variational
principle, and to use that fact to guide the manipulations
and the not-always-obvious integrations by parts that
are necessary to reduce the expressions to their most
convenient form.

(Ooo Xo—uooo) «.
0

We see that it apparently involves v~ and g2, the third
terms in the expansions of u(r) and y(r), in contradic-
tion to (9.15) and the general conclusion following from
the variational principle. This contradiction is only
apparent, and can be removed as follows: The set of
functions o„(r)satisfy the following equations:


