A Table of Nuclear Moments, January 1950

J. E. МАСК

University of Wisconsin, Madison, Wisconsin

I. GENERAL DESCRIPTION OF THE TABLE

HIS paper consists of a table of nuclear moments, accompanied by a discussion to enhance its usefulness. It is not a general review of the subject.

Definitive tables can be compiled only in dead subject fields. Currently there is so much activity in the study of nuclear moments that any printed table of them is bound to be obsolescent before it reaches its readers; but it is at just such a time that such a table can be especially useful. Previous lists and tables of this sort^{1-14, a}

Book Company, Inc., New York, 1934). ⁶ = SH35₂ of Table I (quadrupole moments only).

⁷ H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 82 (1936). ⁸ G. Herzberg, Atomic Spectra and Atomic Structure (Prentice-Hall, Inc., New York, 1937).

⁹ R. Gregoire, Tables Annuelles de Constantes, etc., Physique Nucleaire (Hermann and Cie, Paris, 1938), No. 26.

 $^{0} =$ SH38 of Table I (quadrupole moments only).

¹¹ J. Mattauch and S. Flügge, Nuclear Physics Tables, 1941 (Interscience Publishers, Inc., New York, 1946), English translation. ¹² W. F. Meggers, J. Opt. Soc. Am. **36**, 431 (1946). ¹⁹ D. Inglie, Brookhaven rep

¹³ H. H. Goldsmith and D. Inglis, Brookhaven report BNL-1-5 (1948)

14 H. L. Poss, Brookhaven report BNL 26 (T-10) (1949). Most of the difference in completeness between Poss' excellent table and this, indicated in reference a, arises from this table's inclusion of zero moments. I am particularly indebted to Dr. Poss for his generosity in making available to me material that he received too late for inclusion in his table. His table is in certain respects more detailed than this one and more useful to workers in the field of nuclear moment determination, although a little more cumbersome for the general user, for instead of publishing a single value for μ and a single value for Q for each species, he lists all the values given by the several authors (except for obsolete spin values). I have made full use of it in the revision of the preliminary edition of this table mentioned at the end of this paper. Had I realized,

TABLE (a). The growth of nuclear moment tables

Reference	Year	Species with data	Odd species	Greatest number digits	Quad- rupole moments	Disagree- ments in I with this table (approxi- mate)
1.	1930	13	12		0	1
2.	1931	40	23		Õ	6
3.	1932	52	34		0	7
4.	1933	55	36		Ó	6
5.	1934	74	51	2	0	7
6.	1935			-	8	
7.	1936	71	64	2	3	8
8.	1937	121	72	To be set of	Taxan I.u	8
9.	1938	102	70	3		5
10.	1938				16	
11.	1941-6	81	72	4	20	4
12.	1946	89	78	5	21	5
13.	1948	107	87	5	28	5
14.	1949	112	98	7	39	3
This	1950	180	101	7	54	

show a steady growth in the number of nuclear species listed. Now we are in a transition period: Currently there is experimental evidence on the nuclear moments of all except 15 of the 109 stable isotopes with odd atomic mass integer. The emphasis has recently shifted toward increased accuracy in the determinations. Still, several of the spins already listed need redetermination, many stable even-even isotopes and an unlimited number of radioactive species remain to be studied, and the field of quadrupole and higher moments has hardly been scratched.

Table I is a compilation, prepared at the beginning of 1950, of the value of the mechanical or spin moment I, and the most probable values of the magnetic dipole moment μ and the electric quadrupole moment Q, for the normal state of each nuclear species. Here I is expressed as a multiple of the Planck-Dirac constant, \hbar , μ as a multiple of the nuclear magneton $e\hbar/2M_pc$, and Q as a multiple of the proton barn $e \times 10^{-24}$ cm², while e is the magnitude of the electronic charge in cgsesu, M_{p} is the proton rest mass, and c is the velocity of light in vacuum. Positive Q implies a prolate, and negative Q an oblate, aspherical distribution of charge, according to the defining equation $Q = \int \rho_I (3z^2 - r^2) d\tau$, where ρ_I stands for the charge density for the state $m_I = I$, and the other symbols have their usual meanings.

The several columns in the main body of the table show, respectively:

- 1. N, the neutron number (bold face, odd neutron species)
- 2. Z, the proton number or atomic number (bold face, odd proton species)
- 3. the chemical symbol for the element
- 4. A = N + Z, the atomic mass integer (*, radioactive species)
- 5. I, (unit, \hbar)
- 6. μ , (unit, $e\hbar/2M_pc$)
- 7. Q, (unit, $e \times 10^{-24}$ cm²)
- 8 the reference symbols to the literature for I
- 9. the reference symbols to the literature for μ (italicized, references used in calculations)
- 10 the reference symbols to the literature for Q (italicized, references used in calculations)
- the chemical symbol for the element, again 11.
- 12. A, the atomic mass integer, again.

Quantities that are considered somewhat doubtful are enclosed in parentheses (but where an enclosed quantity is in competition with one not so enclosed, the presumption is strongly in favor of the latter). A question mark

before the publication of this table was scheduled, that Poss' (mailed December 13) was imminent, I probably would not have undertaken the publication of this.

The development in quantity and in quality of our knowledge of nuclear moments may be gauged qualitatively from the accompanying tabulation of some previous extensive lists or tables of nuclear moments.

¹L. Pauling and S. Goudsmit, *The Structure of Line Spectra* (McGraw-Hill Book Company, Inc., New York, 1930).

² K. Murakawa, Sci. Pap. Tokyo IPCR 17, 6 (1931).

³ H. Kallman and H. Schüler, Ergeb. d. exakt. Naturwiss 11, 134 (1932).

⁴ E. Marx, Handbuch der Radiologie (Akademische Verlagsgesellschaft, Leipzig, 1933). ⁵ H. E. White, Introduction to Atomic Spectra (McGraw-Hill,

NUCLEAR MOMENTS

TABLE I. Nuclear moments, January 1950.

								References			
	Z	Atom	A	I(ħ)	$\mu(n.m.)$ ($Q(e \times 10^{-24} \text{ cm}^2)$	Ι	μ	Q	Atom	A
1	0	n	1*	1/2	-1.91280 ± 9		SI37	AC40, AQ47, BL48, RV	740	n	1*
0	1	н	1	1/2	+2.792 55 Sec. IIIA		DM27, HM30	KE39 ₂ , ML41, TH49, TA49, <i>RV49</i> , GD49, <i>HP40</i>		Н	1
1	1	Н	2	1	$^{+0.857\ 354}_{\pm 9}$	$^{+0.00273}_{\pm 5}$	FA34, MY34	KE392, AQ47, RU47, BL473, BI47, WJ49, SN49, ZI49, SR50	KE391	Н	2
2	1	н	3*	1/2	$^{+2.978\ 643}_{\pm 28}$		BL471, DQ49	AN 47, BL 47 2		Н	3*
1	2	He	3	1/2	(-)2.127414 ± 3		DS49	AN48		He	3
2 3	2 3	He Li	4 6	0 1	(0.821 89+	<9.10-4	MU29 MB37	KU492. <i>KU*49</i> 4	KU491	He Li	4
4	3	Li	7	3/2	$+3.255\frac{\pm 4h}{86}$	+(0.02) ± 2	HE30, GS30, GU31	GS32, FP35, ML41, BI49, KU492, SN49,	KU-193	Li	7
5	4	Be	9	Foot- note l	$(-)0.7849 \times I$ ±5			ZI49 KU391, DN491, CH49		Be	9
5	5	в	10	3	+1.800 4	+0.06]	GO482	ML391, BI49	GO48 2	в	10
6	5	В	11	3/2	+2.68858 +28	+0.03 +2	GO482	ML391, BI49, AD49, ZI49, AE49	GO-18 2	в	11
6 7	6 6	C C	12 13	0 1/2	$+0.702\ 25$ ± 14		MU29, HM30 TW39, HH41, JE47, TW472	HH41, <i>PH49</i>		C C	12 13
8 7 8	6 7 7	C N N	14 14 15	*0 1 1/2	+0.40365 ± 3 -0.28299	+0.02	JE48, RU48 KR28, OR28, RR29, TW471 KS38, WO38	KU392, <i>PR50</i> ZA40, <i>PR50</i>	DE46, TW471, TW48	C N N	14* 14 15
8	8	0	16	0	± 3		MU29			0	16
9 10 10	8 8 9	Ō O F	17 18 19	(1/2) (0) 1/2	+2.628 5	<0.02 <4 ·10⁻³	GA29, GO481	CA33, ML41, PH-19,	LO49 TW48	Ö O F	17 18 19
10 11	10 10	Ne Ne	20 21	(0) 3/2	~ 0 < 0 ± 7 < 0		KH49	<i>SN49, 7.149</i> HC27 KH49		Ne Ne	20 21
12 11	10 11	Ne Na	22 22*	(>3/2?) (0) 3	~ 0 +1.745 82		DI481	HC27 DI492		Ne Na	22 22*
12	11	Na	23	3/2	+2.217 11		JF33, GS33, RA34	EL34, FP35, ML41,		Na	23
12 13	12 12	Mg Mg	24 25	(0) $5/2(\pm)$	~ 0 -0.96(±)		CR493, CR50	MW31 CR493		Mg Mg	24 25
14 14	12 13	Mg Al	26 27	(0) 5/2	$5 - \frac{\pm 7}{-0} + 3.640 8 + 4$	+0.156	HN382, LE49	AR50 ML392, <i>BI49, ZI49</i>	LE48, DI493, <i>LE49</i>	Al	27
14 15	14 14	Si Si	28 29	(0) (1/2)	±.	~0			$TW49_2$ TW49	Si	28
16 16	14 15	Si P	30 31	(0) 1/2	$^{+1.131}_{\pm 20}$	~0	JE32	PO-482, BI-49, CH-49, CR495	TW492	Si P	30 31
16 17	16 16	s	32 33	$\frac{0}{3/2}$	$(+)(0.3\pm0.2, 0.9)$	0) -0.08	ND31, OL36 TW48	JD50, RU50, XX50	TW48	s s	32 33
18 19	16 16	s s	34 35*	$\binom{(0)}{3/2}$		$ < 2 \cdot 10^{-3} $	CO49		TW472, TW48 cTW48, CO49	s s	34 35*
20 18	16 17	S Cl	36 35	$(0) \\ 3/2$	+0.821 91	$< 0.01 \\ -0.079 5$	TW471	<i>BI49</i> , DI493, <i>CH49</i>	LO49 TW48, GO481, DI482,	S Cl	36 35
19	17	Cl	36*	2	±22	-0.0172	TW491		D1493 TW491	Cl	36*
20	17	Cl	37	3/2	+0.684 14 ± 24	-0.0621 ± 5	TW471	KU393, DI493, <i>PR50</i>	TW48, GO481, DI482, DI493	CI	37
18 22	18 18	A A	20	(0) (0)	\sim_{0}^{0}		MI 25 17120	KP372 KP372 MI 25 ED25 KU220		A A	36 40
20 21	19	ĸ	39 40*	3/2 4	$\begin{array}{c c} \pm 0.391 \\ \pm 1h \\ -1.291 \end{array}$		ZA42	KU40, <i>cTA49</i> ZA42, <i>c</i> TA49, DI49 ₂		ĸ	39 40*
22	19	к	41	3/2	+0.215		ML35, MB36	ML35, MB36, KU492,		к	41
20	20	Ca	40	(0)	$\sim 0^{\pm 1h}$			c1A49 FR31		Ca	40
23 24 25	20 21 22	Ca Sc Ti	43 45 47	7/2	+4.8		KP343, SH344	KP371		Ca Sc Ti	43 45 47
27 28 20	22 23	V Cr	49 51	7/2	(+)5.147 8 ±5		KP342, PR50	<i>KG49</i> 2, PR50		Ti V	49 51
30	25	Mn	55	5/2	$^{+3.468\ 1}_{\pm4}$		WH30	WH30, FI38, PR50, CH50		Сr Mn	53 55
31 32	26 27	Fe Co	57 59	7/2	~ 0 +4.648 4 ± 6		GR331, KP341, MO34, RS36	GV492, BS49, RW50 MO34, PR50		Fe Co	57 59
33 34	28 29	Ni Cu	61 63	3/2	~ 0 +2.226 17	-0.26	RT32	AR50 GQ33, SH362, SH372,	SH352, SH362, BQ492	Ni Cu	61 63
36	29	Cu	65	3/2	+2.3845 +4	$^{\pm 10}_{-0.15}$	RT32	P0481, B149, Z149 GQ33, SH362, SH372, P0481, B140 Z140	SH352, SH362, <i>BQ49</i> 2	Cu	65
34 36	30 30	Zn Zn	64 66	(0) (0)	\approx $\stackrel{-}{\sim}$	<u> </u>		MW31 MW31		Zn	64 66
37 38	30 30	Zn Zn	67 68	5/2 (0)	+0.9 ∼0		LY37, AR48	<i>LY37</i> MW31		Zn Zn	67 68

within parentheses expresses stronger doubt as to the conclusiveness of the evidence.

Space is provided in the table for the stable oddmass species for which there are no data.

In the list of bibliographical references following the main body of the paper, the information for each reference is given in four columns: first, an arbitrary symbol indicating the author and the year; second, the reference; third, the chemical symbols for the elements to which the reference pertains; and fourth, a symbol indicating the nature of the experimental evidence according to the following convention, adapted from previously published tables:^{3, 13, 14}

- atomic beam magnetic resonance A
- В band spectra
- CRaman spectra
- Η specific heat
- molecular beam magnetic resonance М
- Ν nuclear scattering
- ortho-para conversion 0
- polarization of resonance radiation Р
- R nuclear resonance absorption or induction
- hyperfine structure in line spectra SI
- W microwave absorption
- Ζ zero moment or atomic beam deflection

II. THE MECHANICAL MOMENT, I

Unlike the moments μ and Q, the mechanical moment has no small uncertainties, i.e., it is a direct consequence of the commutation relations of quantum mechanics that I is exactly an integer for even A and exactly an odd half-integer for odd A. That the I-values listed without qualifying marks are fairly reliable, may be judged from the fact that in no case (except where the later tables have been based on new information) is there disagreement in any of the postwar tables on any of the mechanical moments listed here without qualifying marks;^{b,15} at least in the case of this table the judgment

^b All cases where there is any discrepancy in *I*-values not based upon new data, among the postwar tables, are listed here.

TABLE (b). Discrepancies in I among postwar tables.

Reference	⁵ 4Be ⁹	${}^{13}{}_{12}Mg{}^{25}$	4334Se77	143,2U235
12 13 14 This table	3/2 3/2 (3/2)	5/2 5/2 (±)	$ \frac{1/2}{1/2, >1/2} \\ 7/2 \pm 1, (1/2) $	5/2 (7/2) 5/2 or 7/2 5/2, 7/2)

⁵4Be⁹: The theoretically predicted¹⁵ and usually accepted value of 3/2 for $I(Be^9)$ has little experimental basis. The exclusion of 1/2 has been suggested on plausibility arguments (KU391), and the exclusion of values greater than 3/2, on the opinion that with the known gyromagnetic ratio such a spin would have led to the partial resolution of the hyperfine structure (PD41). Alleged information that the spin is 3/2 is attributed by Allen, Burcham, and Wilkinson, Proc. Roy. Soc. **A192**, 114 (1937) to an authority who disclaims (KP50) any knowledge of the matter beyond the contents of reference PB41.

 $^{13}_{22}Mg^{25}$: Crawford estimates (CR50) the probability of $I(Mg^{25})$ being different from 5/2 at 1:10. $^{43}_{34}Se^{77}$: Both $I=7/2\pm1$, from the application of the interval

rule to a partly resolved hyperfine structure pattern (MA491),

was independent of all the other tables. Of course, we cannot exclude the possibility that a conclusion we have all trusted will turn out to be erroneous.

An extensive, but not altogether thorough, search has been made for data on the even-even isotopes; i.e., there may be information in existence further than is shown here, tending to confirm the generally-held supposition that the moments of all stable even-even isotopes are zero. There is no serious evidence against this supposition (if we neglect an undocumented indication⁹ that I = 1 for ${}^{16}_{14}$ Si³⁰).

III. THE MAGNETIC DIPOLE MOMENT, µ

III A. The Proton Moment

Just before the submission of the table there became available an important new datum: the first direct measurement of the magnetic moment of the proton in nuclear magnetons, n.m. (i.e., proton magnetons), by Hipple, Sommer, and Thomas (HP49). The ratio of the proton nuclear resonance frequency ν_p and the cyclotron frequency ν_c of the proton, measured in the same magnetic field, is directly the (diamagnetically uncorrected, see Section III C 1) value of $\mu({}^{0}_{1}H^{1})$ in the specified unit, without dependence upon any other measurement whatsoever. Although the authors warn that the ratio, which I calculate from its given reciprocal

$\mu({}^{0}_{1}\text{H}^{1}, \text{ uncorrected}) = 2.792 \ 469 \pm 0.000 \ 078 \ \text{n.m.},$

is only a preliminary one pending the completion of their search for systematic errors, still the simple directness of the method is such that I prefer to use it (after diamagnetic correction) rather than to give weight to any of the other, less direct determinations; incidentally, any of the others would have yielded higher values. The application of the diamagnetic correction factor $[1-(3\pm2)\times10^{-5}]$ increases the raw value by $(8\pm6)\times10^{-5}$ magnetons, so after rounding the last digit, the best value available at this time, used in the table, becomes

 $\mu({}^{0}_{1}\mathrm{H}^{1}, \mathrm{diamagnetically corrected})$

 $= +2.79255 \pm 0.00010$ n.m.

As a reference value where ratios are accurately known, this number is supplemented by arbitrary zeros, e.g., 2.792 550 0.

All the other μ -values in the table are derived eventually from their ratios to $\mu({}^{0}_{1}\mathrm{H}^{1}, \mathrm{uncorrected})$, and if the value accepted for $\mu({}^{0}_{1}\mathrm{H}^{1})$ changes, all the other quantities in column 6 ought to be changed in proportion.

66

and $|Q| < 2 \cdot 10^{-3}$ (GO50, TW50) seem to be rather well established for Se77. They are not absolutely exclusive mutually, although the extraordinarily low Q-value, less than that of the deuteron, has naturally led to the surmise that I might be 1/2. An experiment has been undertaken (SA50) to determine the spin independently

¹⁵ M. Rose and H. A. Bethe, Phys. Rev. 61, 205; Erratum, p. 993 (1937).

N	7	A + 0m	А	1(6)	"(n m)	$O(e \times 10^{-24} \text{ cm}^2)$	I	References	0	Atom	A
38	31	Ga		3/2	+2.0167	+0.231 8)	IA321, CA32	GQ33, SH364, BG48,	SH364, BG48, DI493	Ga	69
40	31	Ga	71	3/2	+2.5614	+0.1461	JA321, CA32	PO482 GQ33, SH364, BG48,	SH364, BG48, DI493	Ga	71
38 40 41	32 32 32	Ge Ge Ge	70 72 73	(0) (0) 9/2, >9/2	±10)	$ \begin{array}{c} \pm 15 \\ < 7 \cdot 10^{-3} \\ < 7 \cdot 10^{-3} \\ -0.21 \\ 10 \end{array} $	TW492	P0482	TW492 TW492 <i>TW49</i> 2	Ge Ge Ge	70 72 73
42 44 42	32 32 33	Ge Ge As	74 76 75	(0) (0) 3/2	+1.4	$ \begin{vmatrix} <7 \cdot 10^{-3} \\ <7 \cdot 10^{-3} \\ +0.3 \\ +2 \end{vmatrix} $	TL322, RO33, CR33, DE48	GQ33, SH352, SH363, MW50	TW492, TW492 SH352, <i>SH36</i> 3, DE48	Ge Ge As	74 76 75
40 42 43	34 34 34	Se Se Se	74 76 77	(0) (0) $7/2 \pm 1, (1/2)$	~0 2)	$ \begin{vmatrix} <2 \cdot 10^{-3} \\ <2 \cdot 10^{-3} \end{vmatrix} $	ST49 ST49 ST49, <i>MA4</i> 91	RF33	ST49, TW49 ST49, GO50, TW50	Se Se Se	74 76 77
44 46	34 34	Se Se	78 80	(0) 0	~0	$\begin{vmatrix} <2 \cdot 10^{-3} \\ <2 \cdot 10^{-3} \end{vmatrix}$	ST49 OL34, ST49	RF33	ST49, TW50 ST49, TW50	Se Se	78 80
48 44 46	34 35 35	Se Br Br	82 79 81	(0) 3/2 3/2	$\begin{array}{c} \sim 0 \\ +2.105 \ 76 \\ \pm 37 \\ +2.269 \ 6 \end{array}$	$\left. \begin{array}{c} +0.26 \\ \pm 8 \\ +0.21 \end{array} \right\}_{r}$	BU30, TL321, TW471 BU30, TL321, TW471	RF33 CA33, BR47, PO47, ZI49 CA33, BR47, PO47,	TL40, GO47, GO481, TW48, PO47 TL40, GO47, GO481,	Se Br Br	82 79 81
46	36	Kr	82	(0)	+1	±7 J		BI49, ZI49 KP332	TW48, PO47	Kr	82
47 48 50	36 36 36	Kr Kr Kr	83 84 86	9/2 (0) (0) 5/2	-0.9704 ~ 0 ~ 0 ± 1.3532	+0.15	MW32, KQ38, KH49	KP332, SH38, <i>KE46</i> KP332 KP332 KP332 <i>KU302 BL40</i>	KQ38, SH38	Kr Kr Kr	83 84 86 85
40 50	37	Rb	87	3/2	+2.7501		KP331, ML36	KU492, CH49 KP331, KU393, BI49,		Rb	87
48	38	Sr	86	(0)	~0 ±5		11.11.20	Z149 FR31 HN28		Sr	86
49 50 50	38 38 30	Sr Sr V	87 88 89	9/2 (0) 1/2	-1.1 ~ 0 -0.14		WK40. CR494	FR31 WK40, CR494		Sr Y	88 89
5 1 52	40 41	Źr Nb	91 93	5/2 9/2	+6.165 9	~0	AR491 BF34	MF47, CH50	MF47	Zr Nb	91 93
50 52	42 42	Mo Mo	92 94	(0) (0) (5)	\sim_{0}^{0}			AR50 AR50 AR50		Mo Mo Mo	92 94
53 54 55	42 42 42	Mo Mo	95 96 97	(0) (5/2)	~0			AR50 AR50 AR50		Mo Mo	95 96 97
56 58	42 42	Mo Mo	98 100	(0) (0)	\sim_{0}^{0}			AR50 AR50		Mo Mo	98 100
55 57	44 44 45	Ru Ru Rh	99 101 103	(1/22)	>0		SM37	SM37		Ru Ru Rh	99 101 103
59 60	46 47	Pd Ag	105 105 107	1/2	-0.086		JA37	JA37, CR491		Pd Ag	105 107
62 62	47 48	Ag Cd	109 110	1/2 (0)	-0.160 ~ 0		JA37	JA37, CR491 SH29 CO32, IO32, DB40		Ag Cd	109 110
03 64	48 48	Cđ	111	1/2 (0)	-0.59492 ±8 ~0		51129	PR50 SH29		Cd	111
65	48	Čď	113	1/2	-0.62238 ± 8		SH29	GQ33, JO331, PR493, PR50		Čđ	113
66 68	48 48	Cd Cd	114 116	(0) (0) 0/2	~ 0 ~ 0 $\perp 5$ 486	1 144	1A32. BA37 HD42	SH29 SH29 HD42 cT 4.49	MD50	Cd Cd	114 116
04 66	49 49	In In	115	9/2 9/2	+5.480 $\pm 3h$ +5.500	1.144	CA32, JA322, PC34	SH371, ML38, KU48,	SH352, BA37, HA39,	In	115
65	50	Sn	115	1/2	$\pm 3h \rfloor$ -0.917 79		GV491	<i>cTA4</i> 9, MD50 GV491, PR493, <i>PR50</i>	DI493, MD50	Sn	115
66 67	50 50	Sn Sn	116 117	(0) 1/2	$ \begin{array}{c} \pm 10 \\ \sim 0 \\ -0.999 82 \\ \pm 10 \end{array} $		SH33, TL33	MW31 TL33, TL41, PR492, <i>PR50</i>		Sn Sn	116 117
68 69	50 50	Sn Sn	118 119	(0) 1/2	~ 0 -1.046 00 r		SH33, TL33	MW31 TL33, TL41, PR492, PR50		Sn Sn	118 119
70 70	50 51	Sn Sb	120 121	(0) 5/2	\sim^{0} +3.7)	-0.3	BD32, CR34	MW31 GQ33, CR34	SH352, TM40, MW49	Sn Sb	120 121
72	51	Sb	123	7/2	+2.8 }r	$\pm 2 - 1.2$	BD32, CR34	GQ33, <i>CR3</i> +	SH352, TM40, MW49	Sb	123
71	52	Te	123	$\frac{1}{2}$	} <i>r</i>	± 2	MA492 FO49	MA 492		Te	123
74 76	52 52 52	Te Te	125 126 128	(0) (0)	~0~~0			RF33 RF33		Te Te	126 128
78 74	52 53	Te I	130 127	(0) 5/2	$\sim^{0}_{+2.8086}$	-0.59	MW33, GO47	RF33 PO482, ZI49	SC39, MW39, GO47,	Te I	130 127
76	53	I	129*	7/2 (+)2.74 ±8	$-0.43 \\ \pm 15 $	LI49	GO481	LN49	I	129*
75	54	Xe	129	1/2	$\pm 14h$ -0.8 { r	-	KP333, JO332, RS50	KP333	V010 CH20	Xe	129
77 78 80	54 54 54	Xe Xe Xe	131 132 134	$\frac{3/2}{(0)}$	+0.7 J ~0 ~0	< 0.1	NT333, NY38, NS30	JO332 JO332	NY38, 3 <i>H38</i>	ле Xe Xe	131 132 134
82 78	54 55	Xe Cs	136 133	$(\widetilde{0})$ 7/2	~0 +2.577 1	≤ 0.3	KP32, JA33, CO34,	JO332 CO34, KU392, B149,	SC40	Xe Cs	136 133
80	55	Cs	135*	7/2	+2.7271		FL37 NA49	D1492, <i>CH49</i> NA49, <i>D149</i> 2		Cs	135*
82	55	Cs	137*	7/2	+2.8397 $\pm 30h$		DI491, NA49	NA49, <i>DI49</i> 2		Cs	137*

TABLE I.—Continued.

_

III B. The Deuteron-Proton Moment Ratio

The most studied relationship between nuclear magnetic moments is the ratio between the moments of the deuteron and the proton. Because of the special interest of this ratio we shall consider the data in detail. While the richness and accuracy of the data available make it far from typical, the averaging procedure outlined below may be considered representative of the method of arriving at μ -values for the table.

For reasons discussed below (Section III C 2ff.) only the nuclear resonance experiments have been considered in the calculation of $\mu({}^{1}_{1}\mathrm{H}^{2})$. The data are shown in Table II. Since I have no information to guide me otherwise, the weights assigned are inversely as the uncertainties given by the respective authors. The mean value is 0.307 015 0; to this I assign an uncertainty (see Section III D) of 0.000 003, although that is higher than was assigned to most of the individual determinations, in order to have at least some overlap with the uncertainty ranges of all the determinations. Bitter (reference BI50) recommends an uncertainty assignment three times as great as mine. In view of certain physical questions involved (Section III C) it does not appear suitable to try to evaluate the uncertainty in any more detail. One of the determinations has an assigned uncertainty greater in order of magnitude than any of the others. If it had been neglected, the mean would have been different by only 0.000 000 1.

Determinations BI47 and WJ49 were made in the same laboratory, and so were SN49 and LM50. In the latter set of experiments extraordinary precautions were taken to attain a homogeneous field, and homogeneity to the order of 10^{-5} was actually attained. Whether the precautions justify giving each of the two LM50 values almost as much weight as all the others, from five laboratories, as has been done here in accepting all the \pm ranges, is debatable; but the LM50 values lie so near the mean that even completely neglecting LM50 would have led to a result only 0.000 000 6 lower.

It would be premature to discard any of the values in Table II because the samples were in chemical combination; yet in view of the chemical effects, Sec. III C 2, and the appreciable differences in physical and chemical properties between light and heavy hydrogen, objections can be raised in principle against the comparison of uncorrected deuteron-proton ratios from different chemical samples. Indeed, Lindström has shown in LM50 that the two compounds used show a relative difference of $(7\pm3)\cdot10^{-6}$ in their ratios. A redetermination of $\mu(H^2)/\mu(H^1)$ from gaseous samples, where the corrections are calculable, is needed.

A start has been made recently at the theoretical study of the deuteron and proton moments, and especially of their ratio, with the aid of the new computational techniques.¹⁶⁻¹⁸

III C. Correction Factors

The six-, seven-, and possibly eight-digit data now becoming available make discussion of certain small corrections appropriate to magnetic moment measurements almost unavoidable, even in such a simple factual presentation as this table. Some of the corrections apply only to measurements made by certain methods, and some perhaps in different amount to measurements made by different methods. The general situation is still rather obscure. The discussion below will at least contribute to an understanding of the relation between the measurements reported in the table and other values that may be quoted for the same moments from the same data.

It will be helpful in the discussion below to remember that, unlike the nuclear resonance methods, the atomic and molecular beam magnetic resonance methods, and the microwave absorption method, as well as the hyperfine structure method of optical line spectra, are essentially hyperfine structure measurements, in that they measure the energy difference between two low lying states, from which the magnetic dipole moment of the nucleus can be approximately calculated.^{19–25} In the discussion of the corrections it will be useful to consider together all the methods that fall in the category of hyperfine structure measurements. Hereafter in this paper they will all be called hyperfine structure methods. In the body of the table the moments obtained by nuclear resonance methods can be distinguished from those obtained by hyperfine structure methods as follows: A value from nuclear resonance measurements is marked with an uncertainty following the \pm sign, without any extra symbol; while one from hyperfine structure measurements either has no uncertainty specified or is marked with the letter "h" after the uncertainty. No alteration, with the exception of the diamagnetic correction (footnote c), has been made in any of the values in the table; the hyperfine structure values are distinguished only for the convenience of readers who may wish to apply differential corrections (Sections III C 3 to 6).

Among the data available for the determination of nuclear dipole moments, the measurements of many of the best known species have been made both by nuclear

- ²⁰ S. Goudsmit, Phys. Rev. **43**, 636 (1933).
- ²¹ Reference GU31.
- ²² G. Racah, Zeits. f. Physik 71, 431 (1931).

- ²³ G. Breit and L. A. Wills, Phys. Rev. 44, 470 (1933).
 ²⁴ E. Fermi and E. Segrè, Zeits. f. Physik 82, 729 (1933).
 ²⁵ M. F. Crawford, Phys. Rev. 47, 768 (1935); M. F. Crawford and L. A. Wills, Phys. Rev. 48, 69 (1935); M. F. Crawford and L. A. Kills, Phys. Rev. 76 (1940) (1940). A. L. Schawlow, Phys. Rev. 76, 1310 (1949).

 ¹⁶ J. M. Luttinger, Helv. Phys. Acta 21, 483 (1948); Phys. Rev. 75, 309 (1949); 75, 1277 (1949).
 ¹⁷ M. Slotnick and W. Heitler, Phys. Rev. 75, 1645 (1949).
 ¹⁸ K. M. Case, Phys. Rev. 76, 1 (1949).
 ¹⁹ S. Goudsmit and R. F. Bacher, Phys. Rev. 34, 1501 (1929).

								References			
N	Ζ.	Atom	<u>A</u>	I(ħ)	μ(n.m.)	$Q(e \times 10^{-24} \text{ cm}^2)$	1	μ	Q	Atom	A
78 79	56 56	Ba Ba	134 135	$\binom{(0)}{3/2}$	$\begin{pmatrix} \sim 0 \\ +0.834 & 6 \\ \pm 25h \end{pmatrix}$		MW32, HH41, AR492	AR50 HH41		Ba Ba	134 135
80 81	56 56	Ba Ba	136 137	$\binom{(0)}{3/2}$	$\begin{array}{c} \sim 0 \\ +0.935 1 \\ \pm 27h \end{array}$		KA32, MW32, HH41, AR492	AR50 HH41		Ba Ba	136 137
82 82	56 57	Ba La	138 139	(0) 7/2	~ 0 +2.776 0 +28	≠0	WH33, AO34	AR50 WK40, DK492, <i>CH49</i>	DN492	Ba La	138 139
82 83	59 60	Pr Nd Nd	141 143	5/2	+4.593 8		WH29	СН50		Pr Nd	141 143
85 87 88 90 91	62 62 63 63 64	Sm Sm Eu Eu Gd	147 149 151 153 155	(>1/2) (>1/2) 5/2 5/2	$+3.4 \\ +1.5 $	+1.2 +2.5	BQ491 BQ491 SH352 SH352	SH352 SH352	SH352 SH352	Sm Sm Eu Eu Gd	143 147 149 151 153 155
93 94 95	64 65 66	Ga Tb Dy	157 159 161	3/2			SH343			Ga Tb Dy	157 159 161
97 98 99	66 67 68	Dy Ho Er	163 165 167	7/2			SH351			Dy Ho Er	163 165 167
100 101 103	69 70 70	Tm Yb Yb	169 171 173	1/2 1/2 5/2	$\left. \begin{array}{c} +0.45\\ -0.65 \end{array} \right\} r$	+3.9	SH34₅ SH38 SH38	SH38 SH38	SH38	Tm Yb Yb	169 171 173
104	71	Lu	175	7/2	+2.6	+5.9	SH342	SH352, GL36	SH352, SH353, CC35,	Lu	175
105	71	Lu	176*	≥7	+3.8	+7 +1	SH39	SH39	SH39	Lu	176*
105 106 107 108 108 108	72 72 72 72 72 73 74	Hf Hf Hf Ta W	177 178 179 180 181 182	(1/2, 3/2) (0) (1/2, 3/2) (0) 7/2 (0)	~0 ~0 +2.1	+6	RS35 RS35 GR332, GI33	RS35 RS35 GI33 GR34	SC43	Hf Hf Hf Ta W	177 178 179 180 181 182
109 110 112 110 112 110 112	74 74 75 75 76	W W Re Re Os	183 184 186 185 187 187	1/2 (0) (0) 5/2 5/2	+3.3 +3.3 r	(+2.8) +2.6	GR34, KP48 GT30, MG31, ZE31 GT30, MG31, ZE31	GR34 GR34 <i>SH37</i> 2, SC38 <i>SH37</i> 2, SC38	SH37 2 SH37 2	W W Re Re Os	183 184 186 185 187 187
113 114 116 116 117	76 77 77 78 78 78	Os Ir Ir Pt Pt	189 191 193 194 195	$ \begin{array}{c} 1/2 \\ (>1/2) \\ (3/2) \\ (0) \\ 1/2 \end{array} $	$\begin{cases} r > 0 \\ \sim 0 \\ +0.605 92 \end{cases}$		KD38 VS35, MW50 VS35, MW50 JC36, TL37	VS35, <i>MW50</i> VS35, <i>MW50</i> FU35 SC36, PR493, <i>PR50</i>		Ös Ir Ir Pt Pt	189 191 193 194 195
118 119 118 118	78 79 80 80	Pt Au Hg Hg	196 197 198 199	(0) 3/2 (0) 1/2	~ 0 +0.20 ~ 0 +0.504 13)		ET39 SH312	FU35 <i>ET 39</i> TL31 GQ33, SH354, MR40,		Pt Au Hg Hg	196 197 198 199
120 1 21	80 80	Hg Hg	200 201	(0) 3/2	$\begin{array}{c} \pm 3 \\ -0.559 \\ 0 \end{array}$	+0.5	SH312	PR49 3 , <i>PR50</i> TL31 GQ33, SH354, <i>MR40</i>	SH352, SH354	Hg Hg	200 201
122 124 122	80 80 81	Hg Hg Tl	202 204 203	(0) (0) 1/2			SH29, SH311	TL31 TL31 GQ33, SH371, SH372,		Hg Hg Tl	202 204 203
124	81	Tl	205	1/2	+1.62750		SH29, SH311	PR491, PH49, CR492 GQ33, SH371, SH372,		T1	205
122 124 1 25	82 82 82	Pb Pb Pb	204 206 207	(0) (0) 1/2	~ 0 ~ 0 ~ 0 +0.58950		KP31, CT36	<i>PK49</i> 1, <i>PH49</i> , CR492 GE50 MW31 GQ33, CT36, PR492.		Pb Pb Pb	204 206 207
126 126 1 40 1 43 144	82 83 91 92 93	Pb Bi Pa U Np	208 209 231* 235* 237*	(0) 9/2 3/2 (5/2, 7/2) 5/2	±7 ∼0 +4.1	-0.4	GQ27 SH341 AO47, TL50 TP48	CR492, SA49 MW31 GQ33, WK40, XX50	SH361	Pb Bi Pa U Np	208 209 231* 235* 237*

TABLE I.—Continued.

induction or resonance, on the one hand, and by atomic or molecular beam magnetic resonance (hyperfine structure) methods on the other. But in every case where both kinds of measurements have been used, the claimed accuracy is better for the nuclear induction or resonance measurements. I have avoided certain complications by neglecting the hyperfine structure measurements completely wherever measurements of both types have been reported; although this procedure has, in principle, the weakness of neglecting some independent data, the relatively slight weight of those data, coupled with the unknown possible inaccuracies in the correction factors, impels me to follow this expedient.

III C 1. The Diamagnetic Correction

This is the correction for the interaction between the nucleus and the diamagnetism of the atomic electrons: The diamagnetic interaction has the same effect on the measurements of the nuclear moment as though the (actual, in contrast with the observed) nuclear moment were multiplied by a factor, one minus a quantity approximately proportional to the four-thirds power of the atomic number. It can be taken into account by dividing the observed nuclear g factor by $1-DZ^{4/3}$, where D is given by the Fermi-Thomas model as 3.19×10^{-5} , and by the more detailed Hartree model as a somewhat

smaller, slowly increasing function of Z, which has been calculated by Lamb.^{26, c. cc} The diamagnetic correction is

²⁶ W. E. Lamb, Phys. Rev. 60, 817 (1941).
^e The following values have been used in Table I; the value for 1H and that for 2H are discussed in footnote cc, and the rest are from Lamb²⁶ or from the linear interpolation (or for 81 Tl and 82 Pb, extrapolation from 74W and 80Hg) of D. Parentheses indicate that a diamagnetically corrected value was taken from reference PR50; while the correction was made by the same process as used here so that the value of the correction was presumably the same as the value given here, I have not had access to the data for verification. The long interpolation between Z=1 and Z=19 is certainly a rather crude procedure, but the corrections it yields are rather small compared with those for the heavier atoms. Throughout the list, for convenience in expressing the internal consistency of the measurements (see Section III D) the correction is sometimes carried to more places than are justified by our knowledge of the magnitude of the diamagnetic correction:

TABLE (c). Diamagnetic correction values used in Table I.

Z	$D \cdot 10^5$	Correction factor	A	Correction added, n.m.
0		1 exactly		0 exactly
1	2 1 2	0 000 07	1	0 000 084
1	3 ± 2	0.333 31	2	0.000.024
			3	0.000 020
2	2.0	0.000.020 feets	oto on 3	0.000 140
2	2.8	0.999 930, 10011		0.000 149
3	1.87	0.999 919 2	2	0.000 07
		0.000.050.5	1	0.000 20
4	1.915	0.999 878 5	9	0.000 143
5	1.960	0.999 832	10	0.000 30
			11	0.000 45
6	2.005	0.999 802	13	0.000 14
7	2.050	0.999 744	14	0.000 10
			15	0.000 07
9	2.140	0.999 611	19	0.001 0
11	2.230	0.999 456	22	0.000 95
			23	0.001 21
13	2.320	0.999 282	27	0.002 61
15	2.410	0.999 088	31	0.001 03
17	2.500	0.998 877	35	0.000 92
	21000		37	0.000 77
19	2.590	0.998 687	39	0.000 5
	21070	0,,,,0,00,	40	0.001 7
			41	0.000.3
.) 2	2.610	0.008.203	51	0.008.8
25	2.010	0.008 083	ŝŝ	(0.006.6)
23	2.02.5	0.990 003	50	(0.000 0)
20	2.045	0.997 636	67	0.005 22
29	2.060	0.997 012	65	0.005.60
21	2 (2 4	0 007 207	05	0.005 09
51	2.084	0.997 387	09	0.005 5
25	0.007	0.006.016	/1	0.000 7
35	2.695	0,996 916	79	0.000 5
24	0.407	0.001.000	81	0.007 0
30	2.697	0.996 800	83	0.003 1
37	2.700	0.996 671	85	0.004 50
			87	0.009 15
47	2.722	0.995 38	107	0.000 4
			109	0.000 8
48	2.724	0.995 248	111	(0.002 83)
			113	(0.002 96)
49	2.727	0.995 110	113	0.026 8
			115	0.026 9
50	2.729	0.994 973	115	(0.004 61)
			117	(0.005 02)
			119	0.005 26
53	2.736	0.994 553	127	0.005 30
			129	0.014 9
55	2.740	0.994 269	133	0.014 8
			135	0.015 6
			137	0.016 3
56	2.742	0.994 125	135	0.004 9
-			137	0.005 5
57	2.743	0.993 983	139	0.01672
78	2.790	0 990 702	195	(0.005.63)
79	2 795	0 990 526	197	(0.001.9.)
80	2 800	0 990 349	199	0.004 86
81	2 805	0 990 170	203	0.015.84
~.	2.000	0.770 170	205	0.016 00
82	2.810	0 989 989	207	0.005 90
02	2.010	0.909 909	207	0.003 90

^{cc} Note added in proof February, 1950: N. F. Ramsey [Phys. Rev. 77, 567 (1950)] points out that neither the Lamb atomic diamagnetic correction factor (reference 26, Eq. (6)) of 0.999 982 2 for hydrogen, nor the helium-like approximation of Anderson (AN48), which yields a factor 0.999 967 6, is exactly applicable to the experiments on molecules. Ramsey proposes a theoretical factor incorporating the spin-rotational interaction of the mole-cule and equal to 0.999 972 9 for H_2 gas. Unfortunately the experiments up to now have been carried out only with other substances applicable, according to Lamb, to hyperfine structure measurements, and it is regularly applied to all μ measurements upon atoms, i.e., upon nuclei surrounded by electrons, no matter by what method the moment is measured. While the effect depends upon the state of ionization of the atom, the correction is ordinarily made as a function of Z only, i.e., as though all the atoms under consideration were neutral.

III C 2. Chemical Effects

Among the reports in the recent literature on the most extraordinarily accurate measurements, there have been several comments on queer line shapes, and especially on asymmetries in lines expected to be single. The extensive literature on relaxation time studies will not be listed here. Questions have been raised as to whether the condition of chemical combination of an atom may affect the resonance frequency of the nucleus (cf., e.g., SN49). Pake has found (PA48) a doubling of the proton resonance in crystals, and Knight has found $(KG49_1)$ that the frequency in a metal is higher by tenths of a percent than the frequency in a salt of the same atom. Very recently some of the asymmetric lines have been resolved into complexes, and the workers in several laboratories have independently become convinced that the observations arise, not from instrumental deficiencies, but from the influence of the state of chemical combination of the atom whose nucleus is under observation (references BL50, XX50, BI50). The splittings recognized so far have relative values all the way from 10^{-5} to 5×10^{-3} , and appear to be at least roughly proportional to the external field strength; the latter value has been found (reference PR50) in 7N, where an aqueous solution of NH₄NO₃ gives two signals separated by 5.3 gauss in 1.05×10^4 gauss, and experiments with other compounds show that the ammonium radical yields higher apparent values for $\mu(_{7}N)$ than the nitrate radical.^d Beyond giving a warning as to its effect on the recognized uncertainty of the μ -values, it is too early to discuss the chemical effect extensively. Ramsey emphasizes that the separation of the chemical effects from the diamagnetic effects is artificial.

(cf. Table II), although one is to be done with H₂ gas (HP50). The important but difficult case of the boomerang-shaped water molecule has not yet been solved. At present, then, the principal use of Ramsey's equation is to serve as a warning agginst claims to too great accuracy in the application of diamagnetic corrections. In this paper the Anderson value for helium, and a compromise value approximating that of Ramsay for hydrogen, are used consistently, but all other atoms are calculated on Lamb's basis.

^d Because of the chemical effect it becomes important to record the compound upon which a measurement is made. Corresponding to the accounts generally found in the original literature, the following list shows the compounds used, presumably in water solution, for the measurements reported under reference PR50:

7N14:HNO3	$_{48}\mathrm{Cd}:\mathrm{CdCl}_2$
7N15:NH3	$_{50}$ Sn:SnCl ₂
17Cl:HCl	$_{78}$ Pt:H ₂ PtCl ₆
23V: NaVO3	80Hg:HgNO3
25Mn:LiMnO4, KMnO4	$_{81}$ TI:TI(C ₂ H ₃ O ₂)
$_{27}Co: K_3Co(CN)_6$	$_{82}Pb: Pb(C_{2}H_{3}O_{2})_{2}$

A higher-order chemical effect, namely the dependence of the resonance frequency ratio of two isotopes of the same element, upon the chemical combination, is exhibited in the two LM50 items in Table II.

III C 3. The Radiative Correction

The radiative correction is necessary on account of the behavior of the electron as though its mass depended upon the nature of the field present: Schwinger²⁷ and Luttinger²⁸ have reconciled the measured discrepancy between the ratio of the hyperfine structure splitting and the ratio of the magnetic dipole moments for the isotopes of hydrogen and several other elements^{e, 29-31} in terms of a radiative correction factor $(1+\alpha/2\pi)$ =1.001 162 in the magnetic moment associated with electron spin. Here α is the fine-structure constant, equal to approximately 1/137. Division of an observed hyperfine structure value (which measures the interaction between the nucleus and the magnetic moment of the extranuclear electrons) by this factor ought, according to this interpretation, to make it consistent with the values obtained by nuclear resonance methods.

III C 4. Relativistic Effects

An electron moving rapidly in a force field has, on account of relativistic effects, a slightly different moment, and consequently contributes differently to the hyperfine structure of an atom, from a free electron. Breit³² has discussed the magnetic moment of a heavy atom. Margenau³³ finds a correction arising from the rapid motion of a charged particle in a central field, which for an s-electron amounts to $(1-Z_0^2 \alpha^2/3n_{\rm eff}^2)$, where $Z_0^2/n_{\rm eff}^2$ is the ionizing potential of the atom in Rydberg units. This effect has a relative value of the order of 10^{-5} in typical cases. For single non-s electrons, values may be read out of Margenau's Eq. (4).

III C 5. Reduced Mass Effect

Breit and his co-workers³⁴⁻³⁵ have shown that the motion of the nucleus yields a contribution of the order

- ²⁷ J. Schwinger, Phys. Rev. 73, 416 (1948); 76, 790 (1949).
 ²⁸ J. M. Luttinger, Phys. Rev. 74, 893 (1948).

^e Hyperfine structure-dipole moment anomalies or atomic gvalue anomalies have been studied in the following elements:

н	References 29, 30
Li. Na. K. Rb. Cs	Reference KU49 ₂
Na. Ga	Reference 31
Na, Ga, In	References KU48, MD50
Cl	References DI493, PR50
TI	Reference BH50.

²⁹ Nafe, Nelson, and Rabi, Phys. Rev. 71, 914 (1947); J. E. Nafe and E. B. Nelson 73, 718 (1948).

³⁰ Nagle, Julian, and Zacharias, Phys. Rev. **72**, 971 (1947). ³¹ P. Kusch and H. M. Foley, Phys. Rev. **72**, 1256 (1947); H. M. Foley and P. Kusch **73**, 412 (1948).

Note added in proof February, 1950: A fourth-order calculation³¹ yields a factor $(1+\alpha/2\pi-2.97\alpha^2/\pi^2)$, or 1.001 147.

^{31a} R. Karplus and N. M. Kroll, Phys. Rev. 77, 536 (1950).

³² G. Breit, Nature 122, 649 (1928).
 ³³ H. Margenau, Phys. Rev. 57, 383 (1940).
 ³⁴ G. Breit and R. E. Meyerott, Phys. Rev. 72, 1023 (1947); 75,

1447 (1949). ³⁶ G. Breit and G. E. Brown, Phys. Rev. **74**, 1278 (1948); Breit, Brown, and Arfken, Phys. Rev. **76**, 1299 (1949).

TABLE II. The deuteron-proton moment ratio.

Reference	Sample	μ_2/μ_1	Weight
RU47	water	$0.307\ 002\ \pm 0.000\ 014$	7
BL473	water	$0.307\ 012\ 6\pm 0.000\ 002$	50
BI47	liquid H ₂	$0.307\ 021\ \pm 0.000\ 005$	20
W J49	water	$0.307\ 011\ 7\pm 0.000\ 001\ 7$	59
SŇ49	water	$0.307\ 018\ 3\pm 0.000\ 001\ 5$	67
ZI49	water	$0.307\ 10\ \pm 0.000\ 1$	1
SR50	water	$0.307\ 012\ 2\pm 0.000\ 001\ 4$	71
LM50	paraffin oil	$0.307\ 016\ 5\pm 0.000\ 000\ 5$	200
LM50	water	$0.307\ 014\ 3\pm 0.000\ 000\ 5$	200
١	Weighted mean	0.307 015 0	

of $(1+m/M)^{-3}$ to the hyperfine structure and a quantity that appears to be of the order of 10^{-8} to the fine structure of hydrogen, where m and M are the masses of the electron and the nucleus, respectively. It has become customary, and helps toward making the hyperfine structure measurements agree with nuclear resonance methods, although it does not appear to have been formally justified, to apply the $(1+m/M)^{-3}$ factor to isotope pairs of heavier atoms. $(1+m/M)^{-3}$ yields a correction of 8×10^{-4} between H¹ and H², and of the order of 4×10^{-4} between Li⁶ and Li⁷, and of 2×10^{-6} between K³⁹ and K⁴¹.

III C 6. Nuclear Size and Structure Effects

Rosenthal and Breit³⁶ have found that the energy levels of an atom depend quite appreciably upon the extent of the nucleus even when the nucleus is spherically symmetric. In contrast with this size effect, which is primarily of importance for heavier (larger) nuclei Bohr³⁷ has called attention to a structure effect which can be important even for the lightest nuclei. This effect arises because of the spatial extension of the nuclear magnetic moment, and depends on the way in which the magnetic moment is distributed among the nuclear particles. In the case of Rb, where the two odd isotopes ⁵⁰37Rb⁸⁷ and ⁵²37Rb⁸⁹ have ground states with different spin and there are indications of shell completion,³⁸⁻⁴⁰ Bitter⁴¹ calls attention to the presence of a hyperfine structure anomaly where it is highly improbable that there can be enough size difference to account for it; thus it is emphasized that structural effects, i.e., the distribution of the moment, have an influence at least comparable with the size effect. In rubidium the relative magnitude of the hyperfine structure-magnetic moment anomaly is of the order of 3×10^{-3} .

³⁶ J. E. Rosenthal and G. Breit, Phys. Rev. 41, 459 (1932).

 ³⁶ J. E. Rosenthal and G. Breit, Phys. Rev. 41, 459 (1932).
 ³⁷ A. Bohr, V. F. Weisskopf, Phys. Rev. 77, 94 (1950).
 ³⁸ M. G. Mayer, Phys. Rev. 74, 235 (1948); 75, 1969 (1949).
 ³⁹ E. P. Wigner and E. Feenberg, Reports on Progress in Physics, London 8, 274 (1942); E. Feenberg and K. C. Hammack, Phys. Rev. 75, 1877 (1949); Feenberg, Hammack, and Nordheim, 75, 1968 (1949).
 ⁴⁰ J. W. Mordheim, Phys. Rev. 75, 1804 (1040).

 ⁴⁰ L. W. Nordheim, Phys. Rev. 75, 1894 (1949).
 ⁴¹ F. Bitter, Phys. Rev. 76, 150 (1949).

III D. The Uncertainty in the u-Values

The uncertainty value assigned to each dipole moment is by no means the whole uncertainty in the determination of the value. Usually it is the uncertainty (probably approximately the standard deviation) assigned to the value by an author from internal consistency tests alone, although where several authors disagree beyond the range of their assignments I have increased the value. Such increases are small except in the case of Be⁹, where I have assigned $\pm 8 \times 10^{-4}$ although one of the two authors quotes hardly onefiftieth of that. No allowance is made for systematic errors, and in particular, although the diamagnetic correction has been made according to Section III C 1 and footnote c, no allowance has been made for any other effects, Sections III C 2 to III C 6. For the best measured values it would hardly be safe at present to assign a relative uncertainty less than about 10^{-3} for the chemical effect alone. Any value given without \pm assignments, i.e., never assigned uncertainties by its author or in this study, is probably good approximately to its penultimate digit.

A bracketed pair of values, with the symbol r at the vertex of the bracket, has a ratio somewhat better known than the individual values; its value may be found, usually, in a reference common to both, and always in a reference listed for at least one. In the one case of a bracket that appears without an r, Hg, the ratio was used in the determination of the moment of one of the isotopes. The symbol "r>0" at Ir, means that the moments have been reported to have the same sign.

IV. THE QUADRUPOLE MOMENT, Q

The quadrupole moments listed, although several of them have been given uncertainties of the order of one percent, can hardly be considered anything more than indications. They have been determined by several apparently inconsistent methods, and widely different values have been reported from the same data. Consideration was given to the project of studying all the quadrupole moment data from a unified viewpoint, but it has been abandoned for this table.

Brackets and r, for those instances where the ratio of the quadrupole moments is known, have been used as in the μ -column.

In spite of some positive findings by Tolansky,⁴² the evidence for octopoles and magnetic quadrupoles is inconclusive (references BG48, DI49₃).

V. THE LITERATURE

The literature in the table is not complete. An attempt has been made, however, to record at least the first paper announcing the value of a "correct" spin and enough very recent papers, in each case that has been worked on recently, in order to provide a consensus and give the reader an opportunity to work backward through the late references cited. In general the literature symbols on the spin moment are not italicized, and papers showing clearly wrong spin values have been omitted. In the dipole and quadrupole moment columns the literature used in evaluations has been italicized in case some values have been preferred over others.

References preceded by a c indicate that the reference in question was used in the calculation of the moment under consideration, although the reference itself does not give a value for the quantity in question.

VI. ACKNOWLEDGMENTS

Before submitting this table for publication, I sent a preliminary draft of it to about 30 former or present workers in the field, with a request for corrections and comments. (That draft is now quite obsolete, especially because the μ -values have all been recalculated following HP49.) The generous response to the request makes the list of acknowledgments long; incidentally, the fact that most of the omissions in the draft were pointed out by several persons makes me fairly confident that there are no major omissions left.

I am greatly indebted to each of the following for advice, corrections to the preliminary draft, aid in the calculations or in checking the final draft, or putting new data at my disposal: R. K. Adair, E. N. Adams, O. H. Arroe, F. Bitter, F. Bloch, P. Brix, L. Brodie, R. Brodie, C. R. Burnett, V. W. Cohen, E. U. Condon, M. F. Crawford, A. M. Crooker, S. Flügge, G. R. Fowles, F. E. Geiger, G. Herzberg, J. A. Hipple, J. G. Hirschberg, F. A. Jenkins, H. Kopfermann, H. Kuhn, C. C. Loomis, C. Mack, N. B. Mack, K. Murakawa, H. L. Poss,¹⁴ W. G. Proctor, E. M. Purcell, E. Rasmussen, A. Roberts, R. Rollefson, H. L. Anderson, N. Austern, R. Avery, A. Bohr, W. Gordy, C. K. Jen, P. Kusch, G. Lindström, K. W. Meissner, N. F. Ramsey, R. G. Sachs, A. L. Schawlow, K. Siegbahn, B. Smaller, S. Tolansky, C. H. Townes, and D. Williams.

REFERENCES

AC40	L. W. Alvarez and F. Bloch, Phys. Rev. 57, 111 (1940)	n
AD49	N. I. Adams, M. I. T. Research Laboratory of Electronics report (October, 1949) page	

. . .

T XX7 A1

24; N. I. Adams and T. F. Wimett, ibid. B, Rb R

A

R

- AE49 D. A. Anderson, Phys. Rev. 76, 434 (1949) B
- AN47 H. L. Anderson and A. Novick, Phys. Rev. 71, 372 (1947) H R
- AN48 H. L. Anderson and A. Novick, Phys. Rev. 73, 919 (1948); H. L. Anderson, Phys. Rev. 76, 1460 (1949) He R
- AO34 O. E. Anderson, Phys. Rev. 45, 685 (1934) La S
- AO47 O. E. Anderson and H. E. White, Phys. Rev. 71, 911 (1947) U S
- AQ47 W. R. Arnold and A. Roberts, Phys. Rev. 71, 878 (1947) **n**, **H** R
- AR48 O. H. Arroe, Phys. Rev. 74, 1263 (1948) Zn S
- AR491 O. H. Arroe and J. E. Mack, Phys. Rev. 76, 873 (1949) Zr S
- AR49₂ O. H. Arroe, Phys. Rev. 77, 745(A) (1950) Ba S

⁴² S. Tolansky, Proc. Roy. Soc. London A170, 205 (1939).

AR50	O. H. Arroe, unpublished work	Ni, Ba	S	DI4
BA37	R. F. Bacher and D. H. Tomboulian, Phys. Rev. 52, 836 (1937)	In	s	DI4
BD32	L. Back, see GQ27 J. S. Badami, Zeits. f. Physik 79 , 206 (1932);		~	DM
0.024	79 , 224 (1932)	Sb	S	\mathbf{DN}^{4}
BF 34 BC 48	S. S. Ballard, Phys. Rev. 40, 800 (1934) C. F. Becker and P. Kusch, Phys. Rev. 73	IND	3	DN
0040	584 (1948)	Ga	A	DN
BH50	Berman, Kusch, and Mann, Phys. Rev. 77 140 (1950)	, TI	A	DQ4
BI47	Bitter, Alpert, Nagle, and Poss, Phys. Rev. 72, 1271 (1947)	Н	R	DS4
BI49	F. Bitter, Phys. Rev. 75, 1326A (1949)		n	EL3
BT50	LI, B, Na, AI, P, CI, Cu, BF, E. Bitter uppublished work	KD, CS	R	FT
BIA7	Bloch, Graves, Packard, and Spence, Phys.		ĸ	EIS
BL47.	Rev. 71, 373 (1947) Bloch Graves Packard and Spence Phys	н	R	FA3
55172	Rev. 71, 551 (1947)	H	R	FI38
BL473	Bloch, Levinthal, and Packard, Phys. Rev. 72, 1125 (1947)	н	R	FL3
BL48	Bloch, Nicodemus, and Staub, Phys. Rev.	•	n	FO4
BQ491	P. Brix and H. Kopfermann, Zeits. f. Physik	n Sm	ĸ	FP3
RO40.	120, 344 (1949) D. D. D. T. Zoito, f. Dhugik 126 , 725 (1040)	Sm	s s	FR3
BQ492 BR47	Brody Nierenberg and Ramsey Phys	. Cu	5	FU3
DIGH	Rev. 72, 258 (1947)	Br	М	GAG
BS49	J. Brossel, Phys. Rev. 76, 858 (1949)	Fe	s	0111
BU30	T. L. deBruin, Nature 125, 414 (1930)	Br	S	GD
CA32	J. S. Campbell, Phys. Rev. 40, 1040A (1932); Nature 131, 204 (1933)	Ga, In	s	GES
CA33	J. S. Campbell, Zeits. I. Physik 84, 393 (1933)	; FBr	s	C13
CC35	H. Casimir. Physica 2, 719 (1935)	Lu	S	GIS
CH49	W. H. Chambers and D. Williams, Phys		-	
CH50	Rev. 76, 638 (1949) Be, P, Cl, Rb, Chambers, Sheriff, and Williams, tentative	Co, La	R	GL3 GO4
	value from unpublished work W. H. I. Childs. see HM30	Mn	R	
CO34 CO49	V. W. Cohen, Phys. Rev. 46, 713 (1934) Cohen Kocki and Wentink Phys. Rev. 76	Cs	Z	GO4
CD 22	703 (1949)	, s	W	GO4
CK35	M. F. Crawford and A. M. Crooker, Nature 131, 655 (1933)	As	s	40.
CR34	M. F. Crawford and S. Bateson, Can. J Research 10A, 693 (1934)	Sb	S	GOS
CR491	Crawford, Schawlow, Gray, and Kelly Phys. Rev. 75, 1112 (1949)	, Ag	s	GO
CR492	M. F. Crawford and A. L. Schawlow, Phys Rev. 76, 1310 (1949)	Te, Pb	S	9.5
CR493	Crawford, Kelly, Schawlow, and Gray Phys. Rev. 76, 1527 (1949)	, Mg	S	GQ
CR494	M. F. Crawford and N. Olson, Phys. Rev 76, 1528 (1949)	· Y	S	GR
CR49₅	M. F. Crawford and J. Levinson, Can. J Research A27, 156 (1949)	Р	S	GK
CR50	M. F. Crawford, private communication	Mg	S	GR
C130	A. M. Crooker, Can. J. Research 14A, 113 (1936)	, Pp	S	~~~
DE46	Dailey, Kyhl, Strandberg, Van Vleck, and Wilson, Phys. Rev. 70, 984 (1946)	i N	w	GS3 GS3
DE48	Dailey, Rusinow, Shulman, and Townes	, A	117	GS3
DI48.	гнуз. кеv. 14, 1245А (1948) L. Davis Phys. Rev. 74, 1103 (1948)	AS Na	A	ст
DI401 DI482	L. Davis and C. W. Zabel, Phys. Rev. 74 1211A (1948)	, , ,	A	CU
DI49 ₁	L. Davis, Phys. Rev. 76 , 435 (1949)	Cs	A	60

DI49 ₂	Davis, Nagle, and Zacharias, Phys. Rev. 76 , 1068 (1949) Na. K. Cs	A
DI49 ₃	Davis, Feld, Zabel, and Zacharias, Phys. Rev. 76, 1076 (1949) Al, Cl, Ga, In	A
DM27	D. M. Dennison, Proc. Roy. Soc. A115, 483 (1927) H	н
DN491	W. C. Dickinson and T. F. Wimett, Phys. Rev. 75, 1769 (1949) Be	R
DN492	W. C. Dickinson, Phys. Rev. 76, 1414 (1949) La	R
DQ49	G. H. Dieke and F. S. Tomkins, Phys. Rev. 76, 283 (1949) H	В
DS49	A. E. Douglas and G. Herzberg, Phys. Rev. 76, 1529 (1949) He	в
EL34	A. Ellett and N. P. Heydenburg, Phys. Rev. 46, 583 (1934); L. Larrick, 46, 581 (1934) Na	Р
ET39	R. M. Elliott and J. Wulff, Phys. Rev. 55, 170 (1939) Au	S
FA34	Farkas, Farkas, and Harteck, Proc. Roy. Soc. A144, 481 (1934)	0
FI38	R. A. Fisher and E. R. Peck, Phys. Rev. 55, 270 (1939) Mn	S
FL37	T. Folsche, Zeits. f. Physik 105 , 133 (1937) Cs	S
F049 FD25	G. R. Fowles, Phys. Rev. 70 , 571 (1949) 16 M. Fowland I. J. Rabi Phys. Rev. 48 , 746	3
FI 55	(1935) (1935) (1935) (1935) (1935)	Ζ
FR31	S. Frisch, Zeits. f. Physik 71, 89(1931). Ca, Sr	S
FU35	B. Fuchs and H. Kopfermann, Naturwiss. 23, 372 (1935) Pt	S
GA29	H. G. Gale and G. S. Monk, Astrophys. J. 69, 77 (1929)	В
GD49	J. H. Gardner and E. M. Purcell, Phys. Rev. 76, 1262 (1949)	R
GE50	F. E. Geiger, unpublished work Pb R. C. Gibbs, see WH29	s
GI33	J. H. Gisolf and P. Zeeman, Nature 132, 566 (1933); J. H. Gisolf, dissertation, Amster- dam (1935) Ta	s
GL36	H. Gollnow, Zeits. f. Physik 103, 443 (1936) Lu	S
GO47	Gordy, Smith, and Simmons, Phys. Rev. 72, 249 (1947); Gordy, Smith, Smith, and Ring, Phys. Rev. 72, 259 (1947). Br. I.	w
GO481	W. Gordy, Rev. Mod. Phys. 20 , 668 (1948); Gordy, Gilliam, and Livingston, Phys. Rev.	
GO48,	76 , 443 (1949) F, Cl, Br, I Gordy, Ring, and Burg, Phys. Rev. 74 , 1191	W
00102	(1948); erratum 75, 208 (1949); 75, 1325A (1949); W. Gordy, Phys. Rev. 76, 139 (1940) B	w
GO50	W. Gordy and R. Anderson, unpublished work	w
GQ27	S. Goudsmit and E. Back, Zeits. f. Physik 43, 321 (1927): E. Back and S. Goudsmit, Zeits.	
CO33	f. Physik 47, 174 (1928) Bi S. Goudsmit Phys. Rev. 43, 636 (1933)	S
9500	Cu, Ga, As, Cd, Sb, Hg, Tl, Pb, Bi	s
GR331	N. S. Grace, Phys. Rev. 43, 762 (1933) Co	S
GR33₂	N. S. Grace and E. Macmillan, Phys. Rev. 44, 325A (1933); E. Macmillan and N. S. Grace Phys. Rev. 44, 949 (1933a)	s
GR34	N. S. Grace and K. R. More, Phys. Rev. 45, 166 (1934) Cr. Mo. W	S
GS30	L. P. Granath, Phys. Rev. 36, 1018 (1930) Li	S
GS32	L. P. Granath, Phys. Rev. 42, 44 (1932) Li	S
GS33	L. P. Granath and C. M. Van Atta, Phys.	c
GT30	Kev. 44, 955 (1955) L1 W. Gremmer and R. Ritschl, Zeits. f.	5 6
GU31	D Güttinger and W Pauli Zeite f Physik	3
	67 743 (1931)	S

GV491	M. Gurevitch, Phys. Rev. 75, 767 (1949)	Sn	S	KP34 ₂
GV492	M. Gurevitch and J. G. Teasdale, Phys. Rev. 76, 151 (1949)	Fe	S	
HA39	D. R. Hamilton, Phys. Rev. 56, 30 (1939)	In	Ζ	KP343
HC27	H Hanson Naturwics 15 163 (1027)	Ne	S	
11027	11. Hallsen, Watur Wiss. 15, 105 (1921)	110	0	KP371
HD42	T. C. Hardy and S. Millman, Phys. Rev. 61, 459 (1942)	In	Α	VD27
HE3 0	A. Harvey and F. A. Jenkins, Phys. Rev. 35, 789 (1930)	Li	В	KP3/2
HH41	R H Hay Phys Rev 60 75 (1941) (Ba	м	KP48
111111		с, ва		
пмэо	64, 151 (1930); W. H. J. Childs and R. Mecke 64, 162 (1930)	н. с	в	KP50 KQ38
HN381	M. Heyden and H. Kopfermann, Zeits. f. Physik 108, 232 (1938)	Sr	s	KR28
HN382	M. Heyden and R. Ritschl, Zeits. f. Physik 108, 739 (1938)	Al	S	KS38 KU391
HP49	Hipple, Sommer, and Thomas, Phys. Rev. 76, 1877 (1949)	н	R	KU392
HP50	I A Hipple private communication	н		
JA321	D. A. Jackson, Zeits. f. Physik 74, 291		0	KU39 ₃
	(1932); 75, 229 (1932)	Ga	5	W II AO
JA32 ₂	D. A. Jackson, Zeits. f. Physik 80, 59 (1932)	In	S	KU40
JA33	D. A. Jackson, Proc. Roy. Soc. A143, 455 (1933)	Cs	s	KU48
TA 27	D A Jackson and H Kuhn Brog Pour Soc			
JAST	A159 272 (1027)	۸a	S	K 1149.
TOTA	A130, 572 (1957)	118	5	K II40
JC36	B. Jaeckel and H. Kopfermann, Zeits. I. Physik 99, 492 (1936); B. Jaeckel 100, 513	-	~	K0492
	(1936)	Pt	S	KU49₃
JD50	C. K. Jen, unpublished work	S	W	KU494
JE32	F. A. Jenkins and M. Ashley, Phys. Rev. 39,			
-	552A (1932); M. F. Ashley 44, 919 (1933)	Р	В	
JE47	F. A. Jenkins, Phys. Rev. 72, 169A (1947); 73, 639 (1948); 74, 355 (1948)	С	в	LE48 LE49
IF33	I. Joffe and H. C. Urev, Phys. Rev. 43, 761			LLH LM50
1033	(1933); J. Joffe 45, 468 (1934)	Na	В	LN49
10331	E. G. Jones, Froc. Phys. Soc. London 43, 625 (1933)	Cd	S	LO49
JU332	E. G. Jones, Nature 152, 781 (1953); Proc. Roy. Soc. A144, 587 (1934)	Xe	S	LY37
KA32	H. Kallman and H. Schüler, Ergeb. d. exakt. Naturwiss. 11, 134 (1932)	Ba	S	MA49,
KD38	T. Kawada, Proc. Phys. Math. Soc. Japan 20, 653 (1938)	Os	S	M & 40.
KE391	Kellogg, Rabi, Ramsey, and Zacharias, Phys. Rev. 55, 318 (1939); 57, 677 (1940)	н	М	1111179
KE39 ₂	Kellogg, Rabi, Ramsey, and Zacharias, Phys. Rev. 56, 728 (1939)	н	м	MB36
KE46	J. M. B. Kellogg and S. Millman, Rev. Mod. Phys. 18, 323 (1946)	Kr	A	MB37
KG49	W D Knight Phys. Rev. 76, 1259 (1949)		**	MD50
KG49 ₂	W. D. Knight and V. W. Cohen, Phys. Rev. 76, 1421 (1949)	v	R	MF47
KH49	J. Koch and E. Rasmussen, Phys. Rev. 76, 1417 (1949)	Je. Kr	s	MG31
KP31	H. Kopfermann, Naturwiss. 19, 400 (1931); Zeits, f. Physik 75, 363 (1932)	, Pp	S	ML35
KP32	H. Kopfermann, Zeits. f. Physik 73, 437 (1932)	Cs	S	ML36
KP331	H. Kopfermann, Naturwiss. 21, 24 (1933); Zeits, f. Physik 83, 417 (1933); H. Kopfer-		-	ML38
	mann and H. Krüger, Zeits. f. Physik 103, 485 (1936)	Rb	S	ML391
KP332	H. Kopfermann and N. Wieth-Knudsen, Zeits. f. Physik 85, 353 (1933)	Kr	S	ML392
KP333	H. Kopfermann, Naturwiss. 39, 704 (1933); H. Kopfermann and E. Rindal, Zeits. f.			ML41
	Physik 87, 460 (1934)	Xe	S	
KP341	H. Kopfermann and E. Rasmussen, Natur- wiss, 22, 291 (1934)	Co	s	MO34

XP342	H. Kopfermann and E. Rasmussen, Natur- wiss. 22, 418 (1934); Zeits. f. Physik 98, 624		c
XP34₃	(1936) H. Kopfermann and E. Rasmussen, Zeits. f.	v	5
KP371	Physik 92, 82 (1934) H. Kopfermann and H. Wittke, Zeits. f.	Sc Sc	5
KP372	Physik 105, 16 (1937) H. Kopfermann and H. Krüger, Zeits. f.	SC	5 c
KP48	H. Kopfermann and D. Meyer, Zeits. f.	w	s s
KP50	H. Kopfermann, private communication	Be	Č
x Q 30	(1938) Kr, P. Kronig, Naturwics 16 335 (1028)	Xe N	S B
KK20 VC20	H $K_{\rm ritgon}$ 7 oits f Dhysik 111 467 (1038)	N	R
KU391	Kusch, Millman, and Rabi, Phys. Rev. 55, 666 (1939)	Be	M
KU392	Kusch, Millman, and Rabi, Phys. Rev. 55, 1176 (1939) N, K,	Cs	М
KU39₃	P. Kusch and S. Millman, Phys. Rev. 56, 527 (1939) Cl,	Rb	М
KU40	Kusch, Millman, and Rabi, Phys. Rev. 57, 765 (1940)	ĸ	A
KU48	P. Kusch and H. M. Foley, Phys. Rev. 74, 250 (1948)	In	M
KU491	P, Kusch, Phys. Rev. 75, 887 (1949)	Li	Α
KU492	P. Kusch and H. Taub, Phys. Rev. 75, 1477 (1949) Li, Na, K, Rb,	Cs	М
KU49₃	P. Kusch, Phys. Rev. 76, 138 (1949)	Li	A
KU49₄	P. Kusch and A. K. Mann, Phys. Rev. 76, 707 (1949)	Li	A
E TE 40	L. Larrick, see EL34	A 1	٨
LE48	H. Lew, Phys. Rev. 74, 1550 (1948)		A .
	H. Lew, Phys. Rev. 76 , 1080 (1949)	AI	A
LM 50 LN49	G. Lindstrom, unpublished work Livingston, Gilliam, and Gordy, Phys. Rev. 76, 149 (1949)	н	к w
LO49	V. Low and C. H. Townes, Phys. Rev. 75, 529 (1949)), S	w
LY37	J. M. Lyshede and E. Rasmussen, Zeits. f. Physik 104, 434 (1937)	Zn	s
MA491	J. E. Mack and O. H. Arroe, Phys. Rev. 76, 173 (1949); and unpublished work	Se	s
MA492	J. E. Mack and O. H. Arroe, Phys. Rev. 76, 1002 (1949)	Te	S
	E. Macmillan, see GR33 ₂	**	
MB36	J. H. Manley, Phys. Rev. 49, 921 (1930)	ĸ	L
MB37	J. H. Manley and S. Miliman, Phys. Rev. 51, 19 (1937)	Li	Z
ME47	A. K. Mann and F. Kusch, Flys. Rev. 11, 427 (1950); 77, 435 (1950) W. W. Meeks and R. A. Fisher, Phys. Rev.	In	A
MG31	72, 451 (1947) Meggers King and Bacher Phys Rev. 38	Nb	S
MT 35	1258 (1931) S. Millman, Phys. Rev. 47, 739 (1935)	Re K	S A
ML36	S. Millman and M. Fox, Phys. Rev. 50, 220 (1936)	Rb	z
ML38	Millman, Rabi, and Zacharias, Phys. Rev. 53, 384 (1938)	In	Z
ML391	Millman, Kusch, and Rabi, Phys. Rev. 56, 165 (1939)	в	М
ML392	S. Millman and P. Kusch, Phys. Rev. 56, 303 (1939)	Al	М
ML41	S. Millman and P. Kusch, Phys. Rev. 60, 91 (1941) H, Li, F,	, Na	М
MO34	K. R. More, Phys. Rev. 46, 470 (1934); 47, 256A (1935)	Co	s

74

MR40	S. Mrozowski, Phys. Rev. 57, 207 (1940)	Ig	S	S
MU29	R. S. Mulliken, Trans. Faraday Soc. 25, 634 (1929) He, C,	0	в	SC SC
MW31	K. Murakawa, Zeits. f. Physik 72, 793 (1931) Mg, Zn, Sn, H	Ъ	s	SI
MW32	K. Murakawa, Sci. Papers Tokyo, I.P.C.R. 18 304 (1932) Kr. H	Ba	S	SI
MW33	K. Murakawa, Sci. Papers, Tokyo, I.P.C.R. 20, 285 (1933); Zeits. f. Physik 109, 162	_		SI
MW39	(1938) K. Murakawa, Zeits. f. Physik 114, 651	1	S	SI
MW49	(1939) K. Murakawa and S. Suwa, Phys. Rev. 76,	Ι	S	SI
	433 (1949)	Sb T-	S	SI
MW 50 MW 34	K. Murakawa, unpublished work As, G. M. Murahy and H. Johnston, Phys. Rev.	11	3	cı
MI134	46 , 95 (1934)	H	В	51
NA49	D. E. Nagle, Phys. Rev. 76, 847 (1949)	Cs	A	SI
ND31	S. M. Naudé and A. Christy, Phys. Rev. 37, 490 (1931)	s	В	SI
NE50	G. F. Newell, Phys. Rev. 77, 141 (1950)	H	calc	
OL34	E. Olsson, Zeits. f. Physik 90, 138 (1934)	Se	В	SI
OL36	E. Olsson, Zeits. f. Physik 100, 656 (1936)	S	В	
OR28	L. S. Ornstein and W. R. van Wijk, Zeits. f. Physik 49, 315 (1928); W. R. van Wijk,	NT	р	SI
DA 49	Zeits. I. Physik 59, 313 (1930) C. Pake I. Chem. Phys. 16, 327 (1948)	IN	D	SI
FA40	E Deschen and I S Campbell Naturwiss			
PC34	22 , 136 (1934)	[n	S	SI
PD41	W. Paul, Zeits. f. Physik 117, 774 (1941)	Be	S	CI
PH49	H. L. Poss, Phys. Rev. 75, 600 (1949) C, F, '	Γl	R	51
PO47	R. V. Pound, Phys. Rev. 72, 1273 (1947)	3r	R	SI
PO48,	R. V. Pound, Phys. Rev. 73, 523 (1948)	u	R	01
PO48	R V. Pound, Phys. Rev. 73, 1112; erratum			SI
	74, 228 (1948) P, Ga,	I	R	
PR491	W. G. Proctor, Phys. Rev. 75, 522 (1949)	Гl	R	SI
PR492	W. G. Proctor, Phys. Rev. 76, 684 (1949) Sn, H	Ъ	R	
PR493	W. G. Proctor and F. C. Yu, Phys. Rev. 76, 1728 (1949) Cd, Sn, Pt, F	ſg	R	SI
PR50	W. G. Proctor and F. C. Yu, unpublished work N. Cl. V, Mn, Co, Cd, Sn, Pt, Hg, H	ъ	R	SI
RA34	I. I. Rabi and V. W. Cohen, Phys. Rev. 46, 707 (1934)	Ia	Z	SI
RF33	S. Rafalowski, Acta Phys. Polonica 2, 119		C	
	(1933) Se, J	le	5	SF
RO33	A. S. Rao, Zeits. f. Physik 84, 236 (1933)	4S	5	~-
RR29	F. Rasetti, Proc. Nat. Acad. Sci., U. S. A. 15, 515 (1929); Nature 123, 757 (1929); 124,		0	SI
	792 (1929)	N	C	51
RS35	E. Rasmussen, Naturwiss. 23, 69 (1935)	11	5	
RS36	E. Rasmussen, Zeits. f. Physik 102, 229	` ^	s	SI
		.0 7.0	3 6	
RS50	E. Rasmussen, unpublished work	LC LC	3 6	SI
RT32	R. Ritschl, Zeits. I. Physik 79, 1 (1932)	u	3	
R137	88. Ritschi and H. Schöder, Friysik. Zeits. 38. 6 (1937)	le LI	S P	SI
RU47	A. Roberts, Phys. Rev. 12, 979 (1947)	n C	K W	T.
KU48	A. RODERIS, Phys. Rev. 13, 1403 (1948)	c c	W W	~~~
RU50	A. Roberts, unpublished work	э	vv	\mathbf{T}
RV49	E. H. Rogers and H. H. Staub, Phys. Rev. 76, 980 (1949) <i>n</i> ,	H	R	T
RW50	J. S. Ross, unpublished work	e	S	
SA49	Schawlow, Hume, and Crawford, Phys. Rev. 76, 1876 (1949)	ъ	s	T
SA50	A. L. Schawlow and C. H. Townes, private		***	T
	communication	se	w	
SC36	T. Schmidt, Zeits. f. Physik 101, 486 (1936)	rt.	5	T
SC38	T. Schmidt, Zeits. f. Physik 108, 408 (1938)	ce	5	

	SC39	T. Schmidt, Zeits. f. Physik 112, 199 (1939)	Ι	S
	SC40	T. Schmidt, Naturwiss. 28, 565 (1940)	Cs	S
	SC43	T. Schmidt, Zeits. f. Physik 121 , 63 (1943)	Ta	S
	SH29	H. Schüler and H. Bruck, Zeits. f. Physik 56, 291 (1929) Cd,	Tl	s
	SH311	H. Schuler and J. E. Keyston, Zeits. f. Physik 70, 1 (1931)	Tl	s
	SH312	H. Schuler and J. E. Keyston, Zeits. r. Physik 72, 423 (1931)	Hg	s
	51133	21 , 660 (1933)	Sn	S
	SI1341	511 (1934)	Pa	S
	SI1342	H. Schuler and I. Schmidt, Naturwiss. 22, 714 (1934)	Lu	s
	511343	730 (1934)	гь	S
	51134	H. Schuler and I. Schmidt, Naturwiss. 22, 758 (1934)	Sc	S
:	SH345	H. Schuler and T. Schmidt, Naturwiss. 22, 838 (1934) Y, Rh, Tb, T	m	S
	SH351	H. Schüler and T. Schmidt, Naturwiss. 23, 69 (1935)	Ho	s
	SH352	H. Schüler and T. Schmidt, Zeits. f. Physik 94, 457 (1935); 98, 430 (1935)	T	c
	SH35₃	H. Schüler and T. Schmidt, Zeits. f. Physik 95, 265 (1035)	п.g т.,	э с
	SH354	H. Schüler and T. Schmidt, Zeits. f. Physik 98, 230 (1935)		3 5
	SH361	H. Schüler and T. Schmidt, Zeits. f. Physik 90, 717 (1026)	ng n:	5
	SH362	H. Schüler and T. Schmidt, Zeits. f. Physik	ы	5
	SH363	H. Schüler and M. Marketu, Zeits. f. Physik	Lu A a	5 c
	SH364	H. Schüler and H. Korsching, Zeits. f.	As Ca	э с
	SH371	H. Schüler and T. Schmidt, Zeits. f. Physik 104 468 (1037)	TTI	о с
	SH372	H. Schüler and H. Korsching, Zeits. f. Physik 105 168 (1937)	TI	s
	SH38	Schüler, Roig, and Korsching, Zeits, f. Physik 111, 165 (1938); H. Schüler and H. Korsching, Zeits, f. Physik 111, 386 (1938)	11	5
	SH39	Xe, Y H. Schüler and H. Gollnow. Zeits, f. Physik	Yb	S
		113, 1 (1939)	Lu	S
	SI37	J. Schwinger, Phys. Rev. 52, 1250 (1937)	n	Ν
	SM37	L. Sibaiya, Proc. Ind. Acad. Sci. 6A, 229 (1937)	Rh	s
	SN49	L. Sibaiya, see also VS55 K. Siegbahn and G. Lindström, Nature 163, 211 (1949); Arkiv f. Fysik 1, 193 (1949) H, Li.	, F	R
	SR50	B. Smaller and H. L. Anderson, unpublished work	н	R
	ST49	Strandberg, Wentink, and Hill, Phys. Rev. 75, 827 (1949)	Se	w
	TA49	H. Taub and P. Kusch, Phys. Rev. 75, 1481 (1949)	н	М
	TH49	Thomas, Driscoll, and Hipple, Phys. Rev. 75 , 902 (1949); 75 , 992 (1949)	н	R
	TL31	S. Tolansky, Proc. Roy. Soc. A130, 558 (1931)	Hg	s
	TL321	S. Tolansky, Proc. Roy. Soc. A136, 585 (1932)	Br	s
	TL32 ₂	S. Tolansky, Nature 129, 652 (1932); Proc. Roy. Soc. London A137, 541 (1932)	As	s
	TL33	S. Tolansky, Nature 132, 318 (1933); Proc. Roy. Soc. 144, 574 (1934)	Sn	s

76	J	•	Ε.	МАСК
TL34	S. Tolansky, Proc. Roy. Soc. A144, 574 (1934)		s	VS35
TL37	S. Tolansky and E. Lee, Proc. Roy. Soc. A158, 110 (1937) Pt	t	s	WH2 9
TL40	S. Tolansky and S. A. Trivedi, Proc. Roy. Soc. A175, 366 (1940) Br	r	S	:
TL41	S. Tolansky and G. O. Forester, Phil. Mag. 32, 315 (1941) Sn	1	s	WH30
TL50	S. Tolansky, British AEC Report, 1945, and MDDC333 U	r	s	11/TT22
TM40	D. H. Tomboulian and R. F. Bacher, Phys. Rev. 58, 52 (1940) St)	s	WH33
TP48	F. S. Tomkins, Phys. Rev. 73, 1214 (1948) Np)	S	WIAO
TW39	C. H. Townes and W. R. Smythe, Phys. Rev. 56, 1210 (1939)	2	в	W J49
TW471	Townes, Holden, Bardeen, and Merritt, Phys. Rev. 71, 644 (1947) N, Cl, Bu	r	w	WK40
TW47 ₂	Townes, Holden, and Merritt, Phys. Rev. 72, 513 (1947) C, S	5	w	WO38
TW48	C. H. Townes and S. Geschwind, Phys. Rev. 74, 626 (1948); Townes, Holden, and Merritt, Phys. Rev. 74, 1113 (1948); C. H.			XX50 ZA40
	17. 782 (1949) N. O. S. Cl. Br. 1	I	w	ZA42
TW491	C. H. Townes and L. C. Aamodt, Phys. Rev. 76, 691 (1949) C	1	w	ZE31
TW49 ₂	Townes, Mays, and Dailey, Phys. Rev. 76, 700 (1949) Si. G.	e	w	ZI49
TW 50	C. H. Townes, unpublished work S	e	W	

VS35	B. Venkatesachar and L. Sibaiya, Proc. Ind. Acad. Sci. 2A, 203 (1935); L. Sibaiya, Phys. Rev. 56, 768 (1939)	Ir	S
WH2 9	H. E. White, Phys. Rev. 34, 1397 (1929); Gibbs, White, and Ruedy, Proc. Nat. Acad. Sci., U. S. A. 15, 642 (1929)	Pr	s
WH30	H. E. White and R. Ritschl, Phys. Rev. 35, 208 (1930); erratum 36, 1146 (1930); H. E. White and R. Ritschl, Phys. Rev. 36, 1146		G
	(1930)	Mn	5
WH33	H. E. White and O. E. Anderson, Phys. Rev. 44, 128A (1933)	La	s
	W. R. van Wijk, see OR28		
WJ49	T. F. Wimett, M.I.T. Research Laboratory of Electronics Report, page 29 (July, 1949),		
	p. 29	н	R
WK40	H. Wittke, Zeits. f. Physik 116, 547 (1940) Y. I	a. Bi	s
WO38	R. W. Wood and G. H. Dieke I. Chem	,	-
	Phys. 6, 908 (1938); 8, 351 (1940)	Ν	В
XX50	Authorities who do not want to be quoted		
ZA40	I. R. Zacharias and I. M. B. Kellogg, Phys.		
	Rev. 57, 570A (1940)	Ν	Μ
ZA42	J. R. Zacharias, Phys. Rev. 61, 270 (1942)	K	А
ZE31	Zeeman, Gisolf, and de Bruin, Nature 128, 637 (1931)	Re	S
ZI49	J. R. Zimmerman and D. Williams, Phys. Rev. 76, 350 (1949)		
	H, Li, B, F, Na, Al, Cu, Br,	Rb, I	R