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INTRODUCTION

HK entropy of classical thermodynamics is dined
only as a di6'erence for a final and an initial state

of a system, subject to the restriction that the 6nal
state can be reached by some reversible process from
the initial state. Classical thermodynamics has had
comparatively little to say about irreversible processes
and that little has been of a qualitative character, to
the eGect that during an irreversible process there is an
ineradicable increase of the total entropy of the uni-

verse. But how much the increase is or where it is

located is not specified, and in fact the increase of
entropy itself has meaning and is dehned only if re-

versible processes exist by which every part of the
universe may be brought back from its 6nal to its
initial state. But it is safe to say that the majority of
actual processes are irreversible, and worse still, most
of the objects of daily life, such as a plastically strained
metal exhibiting hysteresis, are completely surrounded

by irreversibility, it being impossible to leave the
present state of the body by any path whatever that
is not irreversible in detail. The classical entropy con-

cept is thus a concept which is applicable only to a
highly idealized set of conditions and is not applicable,
ie principle, to the commonest situations of daily life.
Yet the entropy concept and the associated second law

of thermodynamics are commonly thought to formulate
one of the most sweeping generalizations that can be
made.

Recently there has been a growing feeling that some
extension of the methods and de6nitions of classical
thermodynamics should be possible in order to deal
more adequately with irreversible phenomena. Physics,
whether we choose to call it thermodynamics or not,
should not be impotent in the face of any situation
which can be completely characterized by measure-

ments with macroscopic instruments. Vet many essen-

tially irreversible processes can be completely charac-
terized in terms of a few simple measurements. For
instance, the irreversible process of heat conduction is

exhaustively characterized in terms of a temperature
gradient and the thermal conductivity of the material,
and the irreversible generation of Joulean heat is fixed

by current density and speci6c electrical resistance.
A number of years ago' I attempted to generalize the
thermodynamic method of attack by postulating that
each of these essentially irreversible processes always

' P. W. Bridgman, Proc. Nat. Acad. Sci. 15, 765 (1929);18, 242
(1932); The Thermodyeam~cs of E/ectrical Eheeomeea ie %dais
(Macmillan Company, Ltd. , London, 1934), especially Chapter II
and pp. 120-122, 136, 141, and 147.

has associated with it its own characteristic rate of
entropy increase, whether or not other processes are
occurring simultaneously. It was easy to write a detailed
quantitative expression for' this characteristic entropy
increase. An application of this point of view to the
thermoelectric circuit made possible a deduction of the
Kelvin relations free from the universally recognized
logical objections to Kelvin's analysis. The application
of this method to the thermoelectric problem was later
reformulated in my book, The Thermodynamics of E/ec

trical Phenomena in Metals, and applied to several other
situations presented by electrical phenomena in metals.
Kckart' later discussed the processes of flow in a viscous

liquid and of di6usion down a concentration gradient,
two essentially irreversible processes which can be
exhaustively described in terms of a few simple meas-

urements. In proving in detail that these processes are
always accompanied by an increase of entropy, he found
the characteristic increase of entropy to be associated
with them. More recently, Tolman and Fine, ' in a
summarizing article dealing with irreversibility, have

explicitly adopted the point of view that there are
characteristic increases of entropy and have discussed

the application to the sort of examples just mentioned.
The same method of approach should be applicable

to every other situation in which there are reproducible
phenomena which can be described in terms of 6nite
measurements with finite instruments. One, of course,
makes the first attack on the simple situations. In this

paper I discuss some of the aspects of extending this

point of view to certain irreversible processes taking
place in solids. The cases previously considered have

had this simplifying feature in common, namely, that
the body which is the seat of the irreversible phenomena
is itself in a steady state, so that its entropy can be
taken as constant, as e.g. , a piece of metal in which

heat is steadily flowing down a constant temperature
gradient. We now desire to extend the treatment to
such systems as a metal showing hysteresis in the rela-

tion between stress and strain, where part of the
problem is to assign an entropy to the body which is

the seat of the irreversibility. There is a twofold problem
here —the problem of extending the conceptual ma-

chinery so as to be capable of handling the new situa-

tions, and the experimental problem of finding what the
facts are in the new domain. We shall be concerned
almost not at all with the latter aspects of the problem,
mostly for the reason that there is practically no experi-

' C. Eckart, Phys. Rev. 58, 267, 269 (1940).' R. C. Tolman and P. C. Fine, Rev. Mod. Phys. 20, 51 (1948).
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mental knowledge of the properties of plastically
strained bodies over the range of conditions demanded

by a thermodynamic approach. For instance, probably
no attempt has been made to find whether there is any
connection between stress hysteresis and. temperature
hysteresis.

Apart from the experimental problem, there is a very
real conceptual problem here, as has already been
suggested. by the fact that the entropy concept is not
applicable in principle to a system completely sur-

rounded by irreversibility, as is any plastically de-

formed solid. In the following I shall endeavor to show

that the concept of entropy and related points of view

may be plausibly extended to handle what we may
anticipate to be the experimental situation in the
domain of certain irreversible phenomena in solids.
There will be a certain intrinsic interest in this; it will

at least show that the method of attack of thermo-
dynamics does not lead to a logical impasse when

applied to common situations. Whether the conceptual
extensions which we find suggested wiLL prove to be the
best possible with which to meet the actual experi-
mental situation will have to await more adequate
experimental knowledge.

GENERALIZED "STATE"

The recognition that there may be states completely
surrounded by irreversibility makes necessary a re-
examination of the concept of "state" on which thermo-
dynamics is based. Ordinarily the state of a body is
characterized by all the measurable properties of the
body. The dilemma which presents itself when the
state is completely surrounded by irreversibility is how

to assign operational meaning to "alt the measurable
properties" when measurement of a single property
such as thermal expansion, for instance, which involves
a displacement of temperature, removes the body
irreversibly from its initial state so that we may not
then return to the initial state to measure some other
property. The dilemma may be resolved by the assump-
tion of the possibility of an indefinite number of replicas
of the original system, all in the same state. Any
desired property which determines the state may then
be found, in spite of the island of irreversibility, by
making the appropriate measurement on a fresh replica.
Identical replicas may be prepared by starting each
replica from the same initial condition (the initial
condition by hypothesis not being subject to insular
irreversibility) and subjecting it to the identical history.
For instance, the "state" of a given piece of plastically
deformed stee1 is described in terms of the measure-
ments which can be made on a number of replicas pre-
pared by starting from similar pieces all cut from the
same homogeneous cast ingot and subjected to the
same subsequent history. The "state" is determined by
the instantaneous values of certain parameters and
their history. It is instructive to see how in a situation
Like this we have extended the ordinary operational

meaning of such a concept, for example, as "sameness. "
For by hypothesis, we are estopped from applying our
ordinary operational test to check whether all the
properties of the so-called "identical" replicas are the
"same, " and can only say that they must be the same
because we see no reason why they should be di6erent.
We have here a situation where a desired extension in

meaning demands the cooperation of the "principle of
sufhcient reason. " We have not thereby, however, de-

parted from our operational requirement on our con-

cepts, because we give an operational characterization
of the conditions under which we say that the principle
of sufhcient reason applies.

One is strongly reminded here of the situation in
wave mechanics where the only meaning that can be
given to "identical" systems is, systems that have been
identically "prepared. " I suspect there are other situa-
tions where dilemmas which are apparently forced on
us by wave mechanics could be shown by a more search-

ing analysis to already exist in classical physics.
We recognize, then, that the possibility of insular

irreversibility demands an extension of the fundamental
notion of "state, " and that this extension can easily
be made in the framework of traditional points of view.
In extending classical thermodynamics to irreversible

systems and processes, we shall now assume that the
diKculties all arise from the entropy concept and the
second law, and that the first law is valid. In particular,
we shall assume that the system has an internal energy,
and that this energy is recovered when and if the state
is recovered. "Insular irreversibility" does not neces-

sarily mean non-recoverability, but it is possible that
the intial state may be recovered under proper condi-
tions by a finite excursion. The simplest example is of a
material which has been put into a steady state by
being put through many cycles of stress —each cycle is
accompanied by a hysteresis loop, and any displace-
ment from any point of the loop is essentially irre-
versible, but the body may be restored to its state at
any point of the loop by carrying the stress through a
complete cycle.

3QDY WITH STRESS-STRAIN HYSTERESIS CYCLE

I.et us consider more in detail the case of a body so
conditioned as to perform a repeatable stress-strain
hysteresis loop under the same repeated cycles of stress
at constant temperature (Fig. 1).Associated with every
point of the loop we assume there is an internal energy.
This means that the energy at any point of the loop
may be assigned arbitrarily and that the energy at any
other point may then be found in terms of the experi-
mentally determined mechanical work and heat ab-
sorbed in passing from the initial point to the chosen
point. Since the mechanical work and heat along the
hysteresis loop have an independ. ent operational mean-

ing it is a question for experiment to decide whether
the total energy change is zero on describing a complete
loop from any point and returning to the initial point.
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FIG. 1. Repeatable stress-strain loop.

Strictly the experimental confirmation should be given,
for it is conceivable that our extended notion of "state"
is not adequate under our broader conditions, but I
imagine that few physicists would anticipate that there
is any diAiculty here or would be unwilling to examine
the consequences of assuming the first law and putting
the brunt on the second.

Assuming, then, the first law, what shall we say about
the entropy associated with the body at various points
of the loop? It would be in the spirit of thermodynamics
to say that when the body returns to its initial state
the entropy returns to its initial value. Hence, although
strictly the entropy at every point of the loop is un-

defined under our conditions, nevertheless we would

like to be able to say that at every point entropy is
restored after performance of a complete loop—that is,
from this point of view it appears that the essential
thing in determining whether entropy is definable or
not is the restorability of a state, not the reversibility.
This point of view has been considerably elaborated in

my Eatlre of Tltermodyrsumics The imm. ediate question
now is, can we extend the entropy concept so that
entropy is restored after a complete cycle?

In order to make the extension we introduce the
other classical attribute of entropy in addition to its
being a state function, namely, that every irreversible
process is accompanied by an increase of entropy of the
universe. If this is applicable in the present situation,
and it is under this fundamental assumption that we

are trying to extend the entropy concept, then we must

say that after the performance of every closed hysteresis
cycle, starting from any initial point on the hysteresis
loop, the entropy of the outside universe, which in this
case may be a temperature bath in which the body is
immersed, is increased by a definite amount, since the
entropy of the body itself does not change after a cycle.

Performance of the cycle demands the continual per-
formance of mechanical work. What we have, therefore,
in the outside universe is a weight continually lower

after each cycle, and a reservoir continually increasing
in heat content after each cycle (manifested perhaps by
mounting the body in an ice calorimeter), whereas at
each cycle the work and the heat received by the body
exactly balance. At intermediate stages we would like

to say that the entropy of the whole universe is con-

tinually increasing because of irreversibility. We can

say this at the termination of each cycle starting from

any arbitrary initial point. We cannot say it for inter-
mediate points, however, unless we have some way of
defining the diBerence of entropy of the working body
between diferent points of the loop. Suppose that we

can do this, and that we have an entropy and an energy
at all points of the loop. Then what sort of picture do
we get of the energy and entropy changes during the
performance of successive cycles? Figure 2 shows quali-

tatively the nature of the relations. For comparison in
the same diagram are shown the relations for a per-
fectly elastic body. The diagram makes plain the mecha-

nism of the changes of entropy. During the part of the
cycle during which heat would be Rowing in from the
outside if there were no hysteresis, less heat Rows in

than otherwise would because the irreversible internal
generation of heat takes the place of the heat of ex-

ternal origin, so that during this part of the process the

entropy of the external universe decreases less than it
otherwise would (that is, there is an equivalent algebraic
increase). On the other hand, during the part of the
process during which without hysteresis heat would

Row out of the body to the surroundings, more heat
Qows out than otherwise would, the excess being
generated by the irreversible transformation within the
body. Again the result is a greater than normal increase
of entropy of the external universe. On balance, there-
fore, the total entropy increases as it should after every
cycle. We ought to be able to describe the phenomena
at all intermediate stages, and we seem almost forced
to try to extend the entropy concept so as to be
applicable to all intermediate stages.

Is there any simple and natural quantitative way in
which entropy can be associated with the material
undergoing hysteretic straining at every stage of the
process? A natural working-out of the qualitative ideas
just mentioned at once presents itself. We demand, in
the first place, a complete knowledge of the properties
of the body which are pertinent to a thermodynamic
analysis. This means knowledge of both mechanical and
thermal properties. If, for instance, the system is a
simple one in which the body is subjected only to
changes of mechanical tension and to temperature
changes, then we demand to know how the length
changes under arbitrary changes of temperature and of
tension and also how much heat is adsorbed under the
same changes. Now if the body is the seat of only
reversible changes, not all these quantities are inde-
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pendent, but the second law imposes certain conditions.
In particular, the heat absorbed when the stress changes
at constant temperature is simply connected with the
change of length when temperature changes at constant
tension:

(BQ/BT), = r(Bl/Br) r,

(BQ/Bl), = 7(Bl/Br)z (BT/Bl), .

In virtue of this relation, not all the heats have to
be determined experimentally for reversibly strained
bodies, but only the heats involving temperature
changes. If the body is the seat of irreversibility, the
basis for the above relation fails, and we have to suppose
that in fact it does fail, making necessary the actual
experimental determination of the heat absorption
corresponding to an isothermal change. This experi-
mentally determined heat we may write for emphasis
as (BQ/BT).. . ,. The heat that would have been ab-
sorbed if the relations demanded by reversibility held
we may write by contrast as (BQ/BT), , ~h„. This is

equal to r(Bf/Br)r by the relation above, and may be
expressly evaluated, because (B//Br)r is an experi-
mentally determinable quantity.

Let us now consider what relation we are to expect
between the two known quantities (BQ/BT), , ~ and

(BQ/BT), , ~~„. We expressly limit ourselves here to
isothermal cycles. The body is the continued seat of
irreversibility, which expresses itself as a continual
internal generation of heat at all stages of the cycle.
In virtue of this irreversible internal generation of heat,
less heat has to Bow in from outside to maintain the
system isothermal than otherwise would during those
parts of the cycle when heat is fiowing in (here, during
increasing tension) and conversely during those parts
of the cycle when heat would otherwise have to Row

out to maintain temperature constant (here, during

decreasing tension), more heat has to Row out than
otherwise would. The continued result is that the out-
side reservoir is always gaining more heat than it
otherwise would, which results in a continued increase
of entropy of the universe.

This simple picture at once provides a possible answer
to our two questions as to what is the precise entropy
increase associated with the irreversibility and as to
how an entropy may be associated with the irreversibly
strained body at all stages of the process. The difference
between the "thermodynamic" and the "experimental"
heats represents the heat generated internally by irre-
versibility. The associated characteristic entropy is this
heat divided by temperature. Or in other words

~ --= (1/r) [(BQ/BT)., ~'.—(BQ/BT); .*.]»,
or, in our particular case:

d5;„, = (1/r)[r(Bl/Br)r (BQ/—BT).. .p]AT.

%ith regard to the body itself, all our demands will be
met if we say that the entropy of the body changes at
every stage of the cycle by

(1/r) (BQ/BT),g„~T,
or here,

(N/Br)r~T.

Obviously this integrates to zero for any complete
stress cycle, at least to the approximation to which

(B//Br) ™ybe taken as constant, and our demand on
the body is met.

There is nothing in our analysis to compel this as a
unique solution, but we would obviously be going out
of our way not to take the simplest solution that
presents itself. %hen the experimental data are sufB-

ciently well known, there will be the possibility of an
experimental check, for this point of view demands that

(1/ )r[( QB/ B)T„„., (BQ/BT), .„,]aT—

1 E
NORMAL BODY- ISOTHERMAL

WORK RECEIVED
BY BOD»

HEAT RECUVED
BY BODY

ENERGY IN

OF 8
ENTROPY INCREASE

OF BODY
ENTROPY INCREASE

OF RESERVOIR
ENTROPY INCREASE

OF UNIVERSE

ge

BOOY WITH HYSTERESIS-
STEADY STATE

TENSION
HEAT RECEIVED

BY BODY

FIG, P. The qualitative relations in a repeatable stress-strain loop compared with those in the corresponding elastically stressed body.
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be intrinsically positive (or zero) at all stages of any
actual operation.

It may seem surprising at first that the "generalized"
entropy which we have been led to associate with the
body which is the seat of the irreversibility bears no
trace of the irreversibility, but is

or in other words, the entropy change that would have
been associated with it had the phenomena been re-
verisble and the second law applicable. On second con-
sideration, however, I think this appears natural and
unavoidable. For we are assuming that the condition
of the body can be completely speci6ed in terms of two
(or a 6nite number) of large scale parameters and their
history. In these parameters and their smooth history
there is nothing of the chaos or disorder associated with
entropy, so that we would not expect any corresponding
term in the entropy. The irreversible generation of
entropy manifests itself exclusively in an altered Qux of
heat. This altered heat Aux is such that the final abiding
place of the entropy of irreversibility is in the heat
reservoir surrounding the working body, the entropy of
the reservoir increasing steadily above that which it
wouM otherwise be as the process proceeds.

It is evident that the argument just presented is in
no way restricted to bodies which have settled down to
a steady state or which are performing closed hysteresis
loops. Formally, we may extend this point of view to
any sort of irreversible isothermal change such as
bodies with strain hardening. If the parameters of the
system are specified, then we may calculate by con-
ventional thermodynamic methods, assuming reversi-
bility, what would be the heat associated with any
isothermal change of parameter. This we may call the
"thermodynamic heat. "The actual "experimental heat"
may then be found by measurement corresponding to
the same change of parameter. The difference of the two
may be described as the heat generated by the irre-
versibility, and this divided by the temperature may
be taken as the characteristic increase of entropy to be
associated with the irreversibility. This we expect to be
always positive (or zero), thus aGording the possibility
of an experimental check. And we may associate with
the substance in which the irreversible change is
occurring a "generalized entropy" change equal merely
to that which would be deduced thermodynamically
assuming reversibility. In order that this "generalized
entropy" satisfy our demands it is necessary that the
integral over any path which restores the body to its
initial state vanish. It is obvious that this requirement
is met to a first approximation, for the integral of

I
dQ. , ah:

T

over a complete isothermal path for any body which
remains reversible everywhere is automatically zero,

and it is only departures from this behavior that are
going to make trouble. This is not likely to be the case
to a first approximation. Thus in the specific example
used above, of a system under tension, the requirement
is automatically met over the range in which the thermal
expansion may be taken to be a constant. It is to be
recognized, however, that there is no automatic reason
why

has to vanish over every closed cycle, since dQth„may
in general refer to eGectively diBerent bodies at diferent
stages of the cycle. There is here, therefore, an addi-
tional requirement which may have to be checked by
experiment. In view, however, of the complete absence
of any suitable experimental material, we may for the
present defer the exceedingly complicated task of work-
ing out theoretically the additional demands thereby
placed on the experimental data, and content ourselves
with the observation that at least we have here no
evidence of inconsistency. It Is further to be remembered
that it is by no means true in general that the body has
been restored to the initial state when the controllable
parameters have been carried through a closed cycle.

STRESS
C HEAT OUT

HEAT QQT

FIG. 3. The stress-strain relations in the "ideal" plastic body.

IDEAL PLASTIC BODY

Let us now inquire how our point of view may be
applied to the case of an ideal plastic body, which has
the sort of ideal stress-strain diagram shown in Fig. 3.
The body may be brought to any point D in the stress-
strain plane within the band of plasticity by a com-
bination of inclined paths, corresponding to elastic
deformation, with horizontal paths at the plus or minus
plastic stress level. %'e assume that the "state" of the
body is fixed at the point D. If the body is brought to
a given point D by diGerent paths, its energy must be
the same, independent of the path, because of the first
law. We are also going to try to make the same require-
ment of its generalized entropy. The requirement of the
first law means that the total heat absorbed in any
possible loop is equal to the mechanical work done
during the same loop. Since, by the thermodynamics of
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reversible bodies the heats and works are equal on the
two elastic branches of any complete loop, this means
that on the horizontal, plastic, branches, the work and
heat are equal in detail. Or in other words, for this
kind of a plastic body the work of plastic deformation
is completely converted into heat, which forthwith Bows
out of the body, thereby increasing the entropy of the
external universe. The characteristic increase of entropy
to be associated with this sort of plastic deformation is,
therefore, merely the work of deformation divided by
the temperature. Here we have a possibility for about
the only experimental check which at present seems
feasible in this 6eld. Taylor and Quinney' found that
during the torsional deformation of rods of copper or
iron, substances which roughly approximate to this
sort of a plastic diagram, the larger part of the work of
deformation, approximately 85 percent, forthwith Bows
out of the specimen in the form of heat.

We next have to ask whether a "generalized entropy"
can be assigned to the body at D. We attempt to apply
the same method as before, namely, to assign the

entropy which it would have had if it had reached D by
a reversible path. This indicates at once that the entropy
in the body arising from the plastic deformation itself
is zero, so that the entropy at every point on the hori-

zontal line passing through D is the same as that at the
point A, where it is to be calculated by the methods of
reversible thermodynamics. That is, the integral of

dQ, , ~h„, along the plastic path BC is identically zero,
because on this path the stress does not change, or the
analog of AT in our previous analysis is zero. Or if we

take l as the independent variable, we have

(BQ/Bl)„g„,= r(B1/Br)r (BT/Bl)„
which vanishes because (BT/Bt), vanishes. This again
is all as it should be, because our assumption that the
body recovers its state when the point D is recovered
means that there is no progressive disorganization
within the body as it is carried through one plastic
cycle after another. The behavior is what would be
produced by internal slippage on one or another well

organized plane, that is, a purely mechanical affair with
no associated change of entropy.

BODY WITH SINGLE PARAMETER
OF IRREVERSIBILITY

We now turn to the consideration of an entirely
different sort of irreversible process within solids, such
as is m'et with in changes from order to disorder.
A typical example would be a binary alloy, in which
the atoms of the two elements may be either arranged
regularly on the space lattice, each element being con-
6ned to one sort of site, or else in which the two ele-
ments may occupy either sort of site at random. Ke
suppose that the degree of internal disorder may be
speci6ed by a parameter 0. in addition to the ordinary
pressure (p) and temperature (r) which we will suppose

'G. I. Taylor and H. kinney, Proc. Roy. Soc. 143, 307
(1933-34).

necessary for the description of this system. The param-
eter 0. is not directly connected to any additional
external force variable, so that we cannot directly alter
0. as we wish by appropriate external manipulation.
It is, however, a property of the system that at any
temperature and pressure the system slowly assumes an
equilibrium condition with the appropriate value of n.
If pressure and temperature of the system are rapidly
changed, o. does not change and ordinary reversible
thermodynamics applies. If, on the other hand, pressure
and temperature are changed infinitely slowly, the
system is always in equilibrium, with equilibrium values
of 0., and again reversible thermodynamics applies, but
naturally with different values for the physical con-
stants of the system. By combining rapid changes with
waiting until equilibrium has completely or partially re-
established itself, we obviously acquire control over the
variable 0. within the limits set by its equilibrium values.
What the values are at any stage of the process we

suppose ascertainable by some process, such as x-ray
analysis, which has no thermodynamic coupling, so
that the parameter a has an "operational" signjLficance.

The problem we now set ourselves is a discussion of
the entropy changes associated with the irreversible
changes of 0. as it slowly assumes its equilibrium values.
It is obvious that "rapid" and "slow" as characteriza-
tions of the changes have no absolute signi6cance but
depend on the dimensions of the system and the thermal
conductivity of the surroundings.

Let us first consider the consequences of assuming in
addition to p and T such a concealed parameter, a, in
a conventional reversible thermodynamic system. There
is to be no new external "force" associated with this
parameter, so that we have the canonical expression
for the work, namely dW= —pds. Taking r, p, and n
as independent variables, we now have the formal ex-
pressions for heat and work:

dQ = (BQ/Br) „,gr+ (BQ/BP), , gp+ (BQ/Bn), , Pa.
dW = P[(Bv/Br) „—, gr+ (Bv/BP) ...dP+ (Bv/Ba), , Pn j
Since the system is assumed reversible, d8' must be a
perfect differential at constant temperature. This gives
at once:

(Be/Ba), „=0,
Furthermore, dQ/r is an exact differential. A trifling
manipulation, replacing dQ by its equivalent dE dW, —
yields at once:

(BQ/Ba), , „=0.
These two equations state that there is neither volume
change nor absorption of heat on changing o. alone. In
other words, in a reversible system, the assumption of a
third concealed parameter of this sort is entirely sterile
and conventional, with no thermodynamic consequences
whatever. A third parameter has thermodynamic con-
sequences in a reversible system only if it carries with
it a new kind of "force" so that an additional term
appears in the work. There are, of course, many ex-
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amples in which a new»~d of force does enter, as for
instance, in systems the seat of magnetic phenomena.

If, however, we assume that changes of the third con-
cealed parameter 0. are associated with irreversible

changes, we do not have degeneration to a triviality.
To show this, subject the system to a cyclic process as
follows. It will be sufhcient to suppose the pressure
negligible, so that we consider only changes of tem-

perature; this is the sort of change that we usually en-

counter in practise, We now start the system at v & and

a&, the equilibrium value of n at rj. We rapidly raise
the temperature to v2, u remaining constant. At r2 we

wait until 0, has slowly assumed its equilibrium value a2.
We then bring the system rapidly back to v&, 0. re-

maining constant at n2. Finally we allow 0. to slowly

assume its equilibrium value O.j. There are two irre-

versible processes here, associated with the slow change
of n at the two temperatures. These two irreversible

processes we must assume to be associated with thermal
eGects, as a result of which the heat content, and so
the entropy content, of reservoirs at 7- j and v2 have been
altered. We may for this purpose neglect the speci6c
heat of the body, or better, assume it to be independent
of n. This means that the heat absorbed irreversibly at
~& while n changes from aj to 0.2 is equal to the heat
given out irreversibly at 7& while n changes irreversibly
from n2 to 0.~. This is because the 6rst law applies,
the body having recovered its initial condition, so that
the total heat absorbed is zero, there being by hypothesis
no work. In other words, under these conditions the
heat associated with the given change of n is inde-

pendent of the temperature at which it occurs. We may
represent the total heat absorbed under these condi-

tions by
g+2

d n q(a2) —=q(ng)—J., g

Since closed cycles may be described not only between
the equilibrium values of 0. at the two temperatures
but also between intermediate values of n, it follows

not only that q(n2) —q(0.,) is independent of tempera-

ture, but that also BQ/Bn is independent of temperature,

LLL
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FIG. 4. Diagram shovring the entropy relations (areas) in a body
arith one internal parameter of irreversibility.

or a function of n only. An extension of the same argu-
ment, utilizing the condition that dE is a perfect
differential in dr, dp, and da, and s is not a function
of a, shows that BQ/Bn is independent of pressure also.

We now see at once where the ineradicable increase
of entropy associated with the irreversibility is located.
Since the body has returned to its initial condition we

must say that its entropy has not changed. The entropy
change of the universe is located in the reservoirs.
The reservoir at the higher temperature loses

Lq(~2) -q(N~) 7/r2

and the reservoir at the lower temperature gains

Lq(~2) —q(~»7/r ~

making a net gain of

((r2—r ~)/r2ri7R(~2) —q(~i)7

It is obviously demanded that q(0.2) q(n—&) be positive.
This is already demanded by classical thermodynamics&

because we know that if an equilibrium is shifted by an
increase of temperature it is shifted in such a direction
that heat is absorbed when equilibrium automatically
restores itself.

We have then found the entropy increase associated
with the net irreversibility of the total cycle. It remains

to discover a possible distribution of this in detail, so
that we may attach its own characteristic ineradicable
increase of entropy to every inhnitesimal change of n,
and also so that we may associate with the body in

which 0. is changing the proper change of entropy at
every intermediate stage of the cycle.

The problem of the ineradicable entropy increase of

the universe may be solved at once by a simple graphical
construction. We assume that the heat q(e) is known as
a function of a and also that n at equilibrium is known
as a function of temperature, f(r). Plot the curve

giving equilibrium nL
—f(r)7 as function of temperature

in a plot in which q(n) is taken as abscissa and 1/r as
ordinate (Fig. 4). Any admissible change in the body
at constant temperature corresponds to motion along
the q axis in Fig. 4 to the right (heat absorbed) below

the curve, and along the q axis to the left (heat given

out) above the curve. Counterclockwise cycles subject
to this restriction, as ABCDA, represent possible

processes. It is at once obvious that the area of the

cycle ABCDA, which by construction is

Lq(~~) —q(&~)7L(~/r ~)
—(~/&2)»

is the ineradicable increase of entropy of the universe

associated with the cycle. Because of the additivity of
areas a possible increase of entropy to be associated
with the single process AB is the area between AB and
the equilibrium curve, or ABGHA as indicated by the
cross hatching, and the entropy associated with the
corresponding reverse process, CD, by the area CDBGC.

The graphical construction is obviously applicable to
any shaped cycle or part of a cycle instead of to the
rectangular path indicated in Fig. 4. The result may be
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formulated analytically as follows:

(Total irreversible entropy
increase of universe)

where 7- is the actual temperature at which the absorp-
tion of dq is taking place, and ~~„; is the temperature
at which the value of n corresponding to the running q
is the equilibrium n. The factor L(1/r) —(1/r~;) j may
be described as a measure of the degree of irreversibility
under which dq is absorbed, this measure of irreversi-
bility vanishing when v=7~„;. Our expression for the
irreversible generation of entropy thus has a form which
appears intuitively natural.

It is to be noticed that dq is only the part of the heat
absorbed corresponding to the irreversible n. The
separation of total absorbed heat into two parts, one
corresponding to the ordinary speci6c heat, must be
made experimentally by methods suggested above.

Ke now can find the entropy to ascribe to the
body which is the seat of the irreversible process. Ke
consider at first only the entropy changes associated
with the irreversible change of n. The relations are
clear from Fig. 4. Consider the change of n represented
by AB, during which irreversible heat is absorbed from
the reservoir at 7.2. The decrease of entropy of the
reservoir is the area ABFEA and the total increase of
entropy of the universe is the area ABGHA. Hence the
entropy increase of the body is EIiGHE. Similarly for
the reverse process CD. The increase of entropy of the
reservoir at ~1 is the area EFCDE and the total increase
of entropy of the universe the area CDHGC. Hence
the body decreases in entropy by the area GHEFG.
Hence, in general, the entropy change of the body is
the area between the equilibrium curve and the axis
(1/r=0), taken positive if the change is from left to
right, corresponding to absorption of heat, and nega-
tive if from right to left with liberation of heat.

Superposed on the entropy changes due to the changes
of n are the normal entropy changes due to change of
pressure and temperature, which are unaffected by those
due to n. This means that we can write the total entropy
as S=S(p, r)+S(a), where

t dq(n)
~( )=~'

7(n)

Notice that 7 (n) is the temperature on the equilibrium
curve, not the current r, so that S(n) is formally not
the same as for a reversible process. Ke can obviously
write a similar equation for the energy, or

E=Z(p, 7)+q(a).
Xo new information can be extracted from these

equations from the conditions that dS and dE are per-
fect diBerentials; the information has already been
utilized in deducing the functional forms.

Having now found a possible solution, we are now
presented with the question of experimental check of
its correctness. From one point of view the check is

superQuous, because the solution has been so drawn
that the only conditions on the entropy which have
operational meaning are automatically satis6ed, namely,
the condition that the total entropy of the universe
continually increase during all stages of the perform-
ance of an irreversible process, and the condition that
the entropy of the working body, the seat of the irre-
versibility, return to its initial value when the body
returns to its initial state. The most important question
for experiment to decide here is whether the scheme of
description adopted is adequate, especially whether, in
addition to pressure and temperature, a single internal
parameter associated with the irreversibility is su%-
cient. This means that the total energy absorption in

any closed cycle of pressure, temperature, and param-
eter must be zero, and this may be checked by experi-
ment. If the check fails, the natural conclusion is that
other parameters are necessary, and experimental search
for them may be initiated. Other parameters are to be
handled by a straightforward extension of the methods
applied above to one.

From the immediate point of view of this paper the
analysis of this particular situation only reinforces the
conclusion from the analysis of the two other situations,
namely, that it is possible to generalize the entropy
concept so as to apply to intrinsically irreversible
processes, and employing only the macroscopic methods
and instruments of classica1. thermodynamics, without
entering the domain of the microscopic analysis of
statistical mechanics, provided that the irreversible
process is simple enough to be characterized in terms
of a small number of macroscopic measurements. One

may anticipate that the extension of the entropy con-

cept to more complicated phenomena, perhaps including
ultimately the biological phenomena of life, is co-
extensive with the discovery of macroscopic parameters
adequate for the exhaustive description of these phe-
nomena. In the extension to biological phenomena the
method of identical replicas may be expected to play
an important part. It is apparently possible to prepare
identical replicas of the simpler biological systems in

spite of the fact that the changes which such systems
experience are all irreversible. Some such method as
this seems necessary to avoid the dilemma which other-
wise arises in applying the concept of entropy to bio-
logical systems because of the fact that at present life
cannot be applied or withdrawn reversibly.

Note added on reading proof: Since writing this article I have
become better acquainted with the work of the Belgian school of
thermodynamicians, founded by DeDonder and especially the
recent work of I.Prigogine. His thesis: "Etude Thermodynamique
des Phbnomhnes Irrhversibles, " Liege, 1947, deals with many
aspects of irreversibility, with the chief emphasis on chemical
reactions, but including also thermo-electric phenomena and the
diBusion phenomena discussed by Eckart and Tolman and Fine.
As far as I know, however, all the examples treated by the Belgian
school are such that some reversible method exists for getting
from any state of the system to another, so that the entropy is
defined and may be evaluated by conventional methods. The
extension of the entropy concept to situations in which the entropy
may not be so defined does not appear to have been considered.


