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I. INTRODUCTION

1. Shock Waves

w HEN disturbances of finite amplitude are propa-
gated in perfect Quids or gases, that is, those

with no viscosity or heat conductivity, discontinuities
in pressure and velocity of the medium may occur.
These are called shock waves or shocks. The reason for
their development may be readily seen in the case of
one-dimensional Qow such as occurs in a tube of uni-
form cross section when a disturbance caused by the
motion of a piston at one end is propagated down the
tube.

The velocity u of the piston at any time is communi-
cated to the gas and propagates down the gas with the
velocity of sound c relative to the gas. ' Hence, relative
to the tube, the velocity u is propagated with the
speed c+I in the direction away from the piston. Now
if the piston moves to compress the gas in the tube,
that is, to decrease the volume of the gas, then the
velocity of sound increases since the temperature and
density increase. Thus, the greater the velocity the
greater the speed with which it is propagated. If this
process continued indefinitely, lesser velocities would
be overtaken by greater ones and we would have two
values of the velocity at a given place in the gas,which
is impossible.

However, before this occurs, there will be a time at
which the velocity profile of the gas, that is, the
velocity versus distance curve, has a vertical shape. In
this case, the differential equations governing the
motion break down and the basis for the statement that
the Quid velocity u is propagated with the velocity
c+I, is no longer true. However, the laws of conserva-
tion of mass, momentum, and energy may be applied
to give a description of the behavior of such discon-
tinuities.

Before formulating these laws for a perfect Quid it
may be pertinent to point out that it is a consequence
of the non-linear character of the equations governing
the propagation of finite disturbances that is in part
responsible for the prediction of the formation of the
discontinuities. Thus, in the example mentioned above,
it is essential to the argument that the local velocity of
sound c be greater at points where the velocity of the

*This work was supported in part by the ONR N6ori-105,
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See Appendix D for a collected list of symbols.

gas is large than where it is small. This is the case for
a compressive motion of the piston because the dis-
turbances which have passed over the gas have changed
its character (heated it) and hence subsequent dis-
turbances are traveling in a different medium than the
original ones. This taking into account of the change
in the medium produced by one part of the phenomenon
in the discussion of a subsequent part is accomplished
mathematically by the non-linear terms in the equa-
tions of motion.

The non-linear character alone is not enough to cause
discontinuities for if, in the example given above, the
piston motion were such as to increase the volume of
the gas in the tube, that is, if a rarefaction wave were
propagated down the tube, then the local velocity of
sound would decrease with increasing Quid velocity
and even if a discontinuity were originally present it
would disappear with time. The fact that only com-
pression shocks are found in media which behave
approximately like ideal gases is in agreement with the
second law of thermodynamics as will be seen later.

In the above discussion we have neglected the eRects
of heat conductivity and viscosity which may be
expected to be of importance where large gradients in
temperature and velocity develop. We shall see that
taking these into account has the eRect of smoothing
out the discontinuities, thus giving the shock wave a
structure as contrasted to a mathematical discontinuity.
However, this structure is confined to a very small
region and away from this region the theory of a
perfect Quid is a good approximation.

x'=x'(&' t) (2.i)

2. Conservation Equations

The differential equations of hydrodynamics are the
mathematical formulation of the laws of conservation
of mass momentum and energy. We shall first state
these laws in integral form and thus obtain the equa-
tions governing the motion irrespective of the existence
of discontinuities.

Let P (i=i, 2, 3) be the Cartesian coordinates
(relative to a Axed coordinate system) of a particle in
the Quid at some time to, and let x' be the Cartesian
coordinates of the same point at some later time t.
The P are the so-called Lagrange coordinates and the
x' the Euler ones. The path described "by the particle
$'" is then given by
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This curve is also called the stream line of the particle
P'. The velocity of any particle of the Quid is given by

u'= dx~/dt)

write

I(t) = fd V+ fd U= fd V. (2.7)
~J p'&(]) ~ V2(i) ~ V|+V2

where the $"' are kept constant. In general, any function
of the x's and f may be regarded as a function of the
$'s and t and conversely. We shall denote partial
differentiation with respect to t for fixed g by the
symbol d/dt and partial differentiation with respect to
t with fixed x' by 8/Bt Th.us, in general we will have

df elf dx' Bf (3f—=—+ =—+u'
df Bt dt Bx' Bt

where we have used the convention that a repeated
index is summed unless otherwise noted.

Let V(t) be the volume occupied at time t by the
Quid originally in the volume Vo enclosed by the surface

So, and let S(t) be the surface enclosing V(t) and hence
that surface which contains the particle originally in So.
We shall want to consider integrals of the form

The bounding surface S of V will be divided into two
parts by the curve of intersection of the surface Z with
S.We shall denote the parts of 5 which partially bound
V& and V2, respectively, by S& and S&. Then

dI 1. Bf
dV+ l~ fuX'dS+ ~f)V dZ (28)

V1+V2 ~~ St+S2

where

Uj=f f, — (2 9)

that is, D'j is the difference of the values of f on the V,
and V2 sides of 2 and V„is the component of the
velocity of Z in the direction of the normal to 2 drawn
from Vg to Vg.

If the function f in Eq. (2.4) is identified with p(x, t),
the density of the gas, then

I(t)= I f(x', t)dV
~~.()

and their time derivatives. We note that

(2.2)
M= pdU

0 p'(~}

is the mass of the gas contained in the volume V(t).
The law of conservation of mass is the statement that

f
I(t)= f(x(~, t), t)JdV„

J~,
(2.3)

J= det(Bx"/8&') (2.4)

where I is the Jacobian of the transformation $'~x'
given by (2.1). That is,

dM/dt =0

for arbitrary volumes V(t) Thus, in. regions of con-
tinuous flow we must have (see Eq. (2.6))

Bp B(pu") d p Bu'—+ =—+p
Bt Bx' dt 0x'

dJ Bu' 8$' Bu'
—J —J

dt BP Bx' Bx"
(2 3)

J p'0 Vo

and from the law for diRerentiating a determinant we Incidentally, we may note that a 6rst integral of this
have equation may readily be obtained. U po($) is the density

of the fluid at time to then from (2.3) it follows that

It follows directly from (2.2) or by use of (2.3) to
(2.5) that if f has continuous derivatives with respect
to x, y, s, and t throughout the volume U(t), then

for arbitrary volumes Vo. Hence, we must have

po/p=~ (2.10)

dI ~ Bf—d V+ fu "X,dS
dt y(g) Bf 8(g)

(aj B(fu))'
i
—+ — idU, (2.6)

v(g) (Bt Bx )
where X, is the normal to the surface S(t) drawn away
from the volume of integration. The quantity N%; is
the velocity of the fluid normal to the surface S(t).

If there exists a surface Z(t) inside V(t), which for
simplicity we assume divides V(t) into two parts Vi(t)
and V2(t) such that f is discontinuous across Z but has
continuous derivatives in Vi(t) and Vz(t), then we may

P

dI/dt= [f(u' —V"))) d—X=0
J~,

(2.11)

In order to see what form the conservation of mass
takes across a discontinuity, we consider a disk-like
volume enclosing the surface Z, one base of which (Si')
is a surface parallel to 2 and a distance e inside the
original Vi, the other base (S2') is another surface
parallel to Z and an equal distance inside the original
V2. The other bounding surface consists of a portion of
a cylinder whose axis is perpendicular to a point on Z.
Let Z' be the portion of 2 cut out by the cylinder.
When we take the limit e~o, S~' and S2' approach 2'
and Eq. (2.8) becomes
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where now ); are the direction cosines of the normal to
Z drawn from the region V~ to the region U2. The
square bracket is defined as in (2.9), and V' are the
components of velocity of 2, that is, U9;= U .

Since (2.11) must hold for arbitrary Z' in Z, we must
have as the law of conservation of mass across discon-
tinuities

Equations (I), (II), and (III) are the usual hydro-
dynamical equations describing continuous Qow and
(Ia), (IIa), and (IIIa) are the so-called Rankine-
Hugoniot equations. ' It is sometimes more convenient
to replace Eq. (III) by a consequence of it and (I) and
(II). Thus, multiplying Eqs. (II) by u' and summing,
we obtain

pi(ui' —V')X = pg(N2' —V')X;=m. (Ia) BE
(1/2) p—u'+ u'= 0.

dt Bs'The quantity m is the rate at which matter is crossing
unit area of the discontinuity surface Z.

The component of momentum in the x' direction Subtracting this from (III) we obtain
contained in a volume V(t) is given by

dU Bu'
p +P =0.

Bx'pu'd V
V(~)

(dU P dpi

& dt p' dt &

In virtue of (I) this may be written as
The law of conservation of momentum for a perfect
Quid which has only normal pressures is contained in
the statement

pu'dV=—
V(~)

f
E'dS =—

S(t)

BI'
dU,

~ v(]) BX'
Now from the first law of thermodynamics we have

TdS =d U+Pd(1/p),
where E is the pressure, and ponderomotive forces are
assumed to be absent. A repetition of the argument
given above leads to the equations

dl' BE
p + =0

dt

in regions of continuous Qow and

where S is the entropy per unit mass. Hence, as a
consequence of (I), (II), and (III) we have

pT(dS/dt) =0. (III')

Equation (III') is the statement that in a perfect Quid
the entropy is constant, along a stream line which does
not cross a discontinuity. The entropy may, of course,
be diGerent for diferent stream lines. That is,

(Pl P2)~ =m(&1 &2 ) (IIa)

across discontinuities, where m is given by (Ia).
Similarly, if U is the internal energy per unit mass of

the gas, then the energy contained in the volume V(t) is

p(n'/2+ U)d V.

The conservation of energy is contained in the state-
ment that

p (&'/2+ U) =——
dt

8(Pu")

in regions of continuous Row and

m(gi'/2+ Ui) m(u2'/2+—U2) =P,u,9„.—P2N29. ;, (IIIa)

across discontinuities.

d/dt p(u'/2+ U) =—
V(5)

The integral on the right-hand side of this equation is
the work done by the Quid on the material outside the
surface S(t). By using the argument given above, this
equation may be written as

3. Consequences of the Rankine-Hugoniot
Equations

If we multiply Eqs. (IIa) by X; and sum we obtain

Pi Pg =m(Ni+ N—2+), (3 1)

m(N —u ')=0 (3.2)

Thus if m/0 we see that the tangential components of
the velocity are continuous across Z.

Discontinuities for which m=0 are possible and are
called slip streams It follows from. (IIa) or (3.1) that
for such discontinuities the jump in pressure is zero.
Moreover, from (IIIa) it follows that the component

See, for example, G. I.Taylor and J.W. Maccoll, Aerodynamic
Theory, Vol. III (Verlag. Julius Springer, Berlin, 1935), edited
by W. F. Durand, Div. H, p. 217.

where N&=N9; and uj- is the component of the particle
velocity normal to the discontinuity. Thus the change
in the velocity normal to the discontinuity is governed
by Eqs. (3.1).

If we multiply Eqs. (IIa) by p; and sum where the
p; are the direction cosines of any unit vector in the
surface Z (i.e., X'p;=0) we obtain



I N TE RA C T I ON OF SHOCK WA VES

of particle velocity normal to the discontinuity is
continuous across it. From (3.2) it is evident that the
component of velocity parallel to such a discontinuity
need not be continuous.

In case m+0 the discontinuity is called a shock or
shock wave. In terms of the quantities I&, n'1 the
Rankine-Hugoniot equations may be written as

m = pi(xi~ —V) = P2(N2~ —V)

Pi P2=—m(Bi N2 ) Bi =N2

(3 3)

(3.4)

m=a (P2—Pi)
)1 iq

(pl p23—

= pi(mi& —U) = P2(e2i—U). (3.6)

Equation (3.5) may be written as

(3 7)

When the internal energy is known as a function of P
and p, Eq. (3.7) determines the relation between Pm

and p2 for known Pi and pi. Thus in the P, p plane
(3.7) describes a curve through Pi, pi, consisting of all
states that can be attained from the given state P~, p~

by passing the gas through a shock. This curve will
differ from the adiabatic through Pj, p~ and hence the
state P2, p2 will have a different entropy than that of
the state P~, p&. In accordance with the second law of
thermodynamics it will be possible to achieve by means
of a shock only those states P2p2 for which the entropy
is greater than the state P~, p~.

When U is a linear function of the temperature as is
the case for a perfect gas, then the state P2, p2 will have
greater entropy if and only if P»P&, p2) p&. This
follows from the fact that for a perfect gas we have

1 P
U=

p

where y is the ratio of the specific heats.
The states P'~, p~ and P2, p2 could have been inter-

changed in the above argument since they enter the
formula symmetrically. However, the gas must always
be compressed in passing through the shock. Hence the
sign to be used for m in Eq. (3.6) in front of the radical
must be the same as the sign of I'2 —P'~.

P,ei —Pmum'= (m/2) I (mi')' —(~2')'}
+m(Ui —U2), (3.5)

where V is the velocity of the shock normal to itself.
The first of Eqs. (3.4) may be written as

m{(V—N2') —(V—Ni&) }=Pi P2—
or in consequence of (3.3) as,

4. Viscosity and Heat Conductivity

If viscosity or heat conductivity or both are taken
into account, then the discontinuity called the shock
front is replaced by a continuous region of transition
which propagates in the gas without changing shape.
The "thickness" of this region will depend on the
magnitudes of the viscosity and heat conductivity.

It can be shown that the transition region carries the
gas from one constant state characterized by P&, p&, I&,
S& to another characterized by P2, p2, N2, and $2, where
S2,S& and the relations between the other quantities are
those given by the Rankine-Hugoniot equations.

L. H. Thomas' has shown on the basis of the approxi-
mate value of the coefficient of viscosity and heat
conductivity given by the simple kinetic theory of
gases that the transition region even for very large
changes in pressure is between one and two mean free
paths and for moderate changes in pressure it is of the
order of a few mean free paths.

In the remainder of this paper we shall ignore the
viscosity and heat conductivity effects and consider a
shock as a mathematical discontinuity in pressure,
density, entropy, and particle velocity.

5. The Interaction Problem

It has been shown that due to the non-linearity of
the hydrodynamical Qow phenomena in a perfect Quid
shocks develop. The properties of such discontinuities
may be studied in terms of the phenomena occurring
when they interact with boundaries of some sort "in the
Quid.

Two of the simplest types of boundaries that might
be considered are density discontinuities or other
shocks. One problem which may be considered as a
limiting case of both of these is the problem of the
oblique reQection of a plane shock from a rigid wall.
It is obvious that the rigid wall may be considered as
the limiting density discontinuity in which one medium
has infinite density. Along the wall the velocity of the
Quid must always be parallel to the wall. Thus, in the
problem of the reQection of a shock wave from a rigid
wall the e8ect of the wall is to specify that along a
certain plane the Quid velocity is tangential to the
plane.

If two plane shocks of equal strength intersect then
from symmetry it follows that the Qow of the Quid must
be in the plane passing through the line of intersection
of the shocks and bisecting the angle formed by the
two forward moving sides of the shocks (see Fig. 1).
Hence, the conditions in this plane are exactly those
obtaining in the case of the reQection from a rigid wall.
This problem is then mathematically identical with the
problem of the reQection of a plane shock from a wall.

In such a problem there are two parameters available,
namely the strength of the shock as measured by the

~ L. H. Thomas, J. Chem. Phys. 12, 449 (1944).
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FIG. 1.The interaction of
two equal plane shocks. The
conditions along the plane
8'W are the same as those
occurring in the reQection of
an oblique plane shock from
a rigid wall.

pressure jump, P2 P~ —(or P~/P~) and the angle of
incidence of the shock o.. We shall define a as the angle
between the normal to the incident shock and the
normal to the wall. If the pressure jump is small the
shock wave should behave as a sound wave, and it
might be expected that some insight to the problem
may be obtained from ordinary acoustic theory. How-

ever, that theory has the following very puzzling
feature: If the "over-pressure" on the wall is plotted as
a function of the angle of incidence then it is constant
and equal to twice the "over-pressure" in the incident
shock. If P2' is the pressure behind the reQected wave,

P,'—P„=2(P,—Pg)

for all angles of incidence except 90'. At 90'

P2' —P'g ——P2—Pg.

Hence there is a discontinuity in this curve which does
not seem reasonable. We shall see later (III-5) that
there is a mechanism called Mach reQection which

smooths out this discontinuity when the sound waves

are considered as weak shocks.
The problem of reQection from a rigid wall may be

considered as a steady-state phenomenon for some

angles of incidence. Consider the region in the neighbor-

hood of the intersection of the shock wave with the
wall at any time. This region is unaffected by the past
history of the reQection process when signals from

points along the wall previously encountered by the
shock wave move more slowly relative to the wall than

does the shock wave. We shall see later that for a range

of angles of incidence this is the case. For angles of
incidence outside this range it is possible for the past
history of the shock to inQuence it at any time.

6. Need for Experiments

In the foregoing discussion we have seen that when

compressional disturbances of finite amplitude are

propagated in a gas discontinuities develop. We have

derived the differential equations which hold in regions

of continuous Qow and the conditions obtaining across
discontinuities. In both cases the equations are the
mathematical expression of the laws of conservation of

mass, momentum, and energy. However, in deriving

the mathematical expressions of these laws it was

assumed that the microscopic view of a gas or Quid as a
continuous medium was justified and that heat con-

ductivity and viscosity could be neglected. The work
of Thomas referred to in I-4 shows that these assump-
tions are approximately justified. However, the role
that heat conductivity and viscosity play in various
problems having to do with shock waves and their
interactions can at present best be determined from
experiment. Evidence exists which indicates that these
effects cannot explain some experimental results which
will be described in the following chapter.

In the theoretical discussion of the reQection of an
oblique shock from a rigid wall, it is assumed that a
reQected wave exists and that in the angular regions
between the various shock waves and the wall the
medium is in a uniform state. These assumptions reduce
the mathematical problem to a purely algebraic one
which ~ill be discussed in some detail in Chapter III.
It is worth noting that without them one would have
to solve the differential Eqs. (I), (II), and (III) subject
to the algebraic conditions (Ia), (IIa), and (IIIa)
across discontinuities. The position and slope of all
discontinuities other than that describing the incident
wave would have to be determined from these equations
and the boundary condition that the particle velocity
at the wall must be tangential to the wall. The theory
of such mathematical problems is in its infancy and
hence one must resort to making various simplifying
assumptions. Experiments can verify such assumptions,
either directly or by verifying consequences of them.

We shall see that from photographic experiments on
the reQection of oblique shocks all the evidence available
at present verifies one set of simplifying assumptions
only for limited ranges in the variables. Moreover, the
situation which obtains for values of the variables
outside these ranges is still obscure both from an
experimental and a theoretical standpoint.

The remainder of this report will be concerned with
the discussion of theoretical and experimental aspects
of the problem of the reQection of a plane oblique shock
from a rigid wall. This problem was first discussed by
von Neumann. '

II. EXPERIMENTAL ASPECTS OF THE STUDY OF
SHOCK WAVES

1. Experimental Methods

From the preceding discussion it is obvious that any
method of producing a compression wave of large
amplitude in a Quid having appropriate properties may
be employed to create a shock wave. The early observa-
tions were made on the shock waves from explosions
and the muzzle blast from guns. In the laboratory the
condensed spark served as a useful source in much of
the early work and was used by Mach in his historic
experiments. ' Detonation of small amounts of explo-

3 J. von Neumann, "Oblique ReQection of Shocks, " Explosive
Research Report No. 12, Buord. U. S. Navy Department (October
1943).

4 E. Mach, Akad. Wiss. Wien 77, 819 (1878).
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sives and sparks still represent the most convenient
laboratory sources of spherical shock waves.

As soon as weapons employing supersonic projectiles
came into use another source of shock waves was found
in the bow wave emanating from the neighborhood of
the nose of the projectile. Since firing a bullet at
supersonic speeds is cheap and easy to do this means is
often employed, especially since these shock waves
have a direct bearing on supersonic flight.

The use of the wind tunnel is well known in aero-
dynamical studies and in recent times many supersonic
tunnels have been constructed. These serve as excellent
devices for the study of problems in steady Row but
are very elaborate and expensive. Shock waves are also
associated with the Row in high speed jets and nozzles
and in recent times these devices have assumed great
importance.

In speaking of useful sources of shock waves the
water surface analogy should be mentioned. ' It turns
out that surface waves on water exhibit many of the
properties of shock waves in a gas having a y of two
and therefore the scheme is a good analogy device for
studying those properties of a gas which depend little
on variations in y.

A very convenient method of studying the transient
eGects of shock waves is that of the "shock tube. "
Since this paper deals almost exclusively with transient
effects and the experimental data are mainly drawn
from the shock tube and since it has been described
only in rather inaccessible reports we include here a
more detailed account of it and its use.

The propagation of waves of finite amplitude in tubes
seems to begin with Davy' in 1816 followed by Bunsen
in 1867. Berthelot and Le Chatelier both observed the
high velocity of propagation in 1881 and Mallard and
I.e Chatelier obtained photographs of the phenomenon
in 1883. In more recent times Payman' photographed
explosions in tubes by an ingenious method. Most of
the work mentioned above was concerned with the
propagation of the explosion process in gases. Vielle'
however observed that pressure waves of high velocity
are created when a collodion or paper diaphragm
separating a compression chamber from an expansion
chamber was burst. This is exactly the principle on
which the modern shock tube operates. Payman and
Shepherd used this technique during World War II as
did several people at Princeton University. ' Unfortu-
nately the reports of these latter efforts are rather
inacessible.

5 R. T. Knapp, Analogy between Surface Shock Waves on Liquids
and Shock in Compressible Gases (Hydrodynamics Laboratory,
California institute of Technology, Pasadena, 1946).

'A survey of the early work is given by Dixon, Phil. Trans.
A200, 315 {1903).' W. Payman, Proc. Roy. Soc. A120, 90 (1928).' P. Vieille, Comptes Rendns 129, 1228 (1899).

'W. Payman and W. C. F. Shepperd, Proc. Roy. Soc. A186,
293 (1946). The work at Princeton is described in reports by
G. R. Reynolds, OSRD No. 1519 (1943); Fletcher, Read, Stoner,
and Weimer, OSRD No. 6321 (1946).
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FIG. 2. The pressure distribution in a shock tube before and
after the diaphragm is broken. The curve showing the pressure
distribution in the gas passed over by the rarefaction wave is not
a straight line but differs appreciably from one only when strong
shocks are formed.

"H. Schardin, Physik. Zeits. 33, 60 (1932).

The shock tube of most interest in connection with
the results to be discussed in this report is of uniform
rectangular cross section so that plane windows may be
installed Gush with the inside of the wall for photo-
graphic investigations. It consists of two parts, the
compression and expansion chambers which are of the
same cross section and are clamped together in such a
way as to hold a plane diaphragm between them. The
expansion chamber is usually long compared to both
its width and the length of the compression chamber.
The windows in the expansion- chamber are installed
near the end remote from the diaphragm where observa-
tions may be made of the phenomena passing by. The
compression chamber is then 6lled with a gas at pressure
Pj and the expansion chamber at a lower pressure Po.
The whole is allowed to come to temperature equi-
librium Tp. If the diaphragm is suddenly burst (if
made of Cellophane this may be accomplished by
pricking it with a sharp point) a rarefaction wave is
propagated into the compression chamber and a com-
pression wave which turns into a shock propagates
down the expansion chamber.

If it is assumed that the diaphragm is plane and
disappears instantly and the shock wave is formed at
this moment, a simple first-order theory of the tube
may be applied. "A temperature and density discon-
tinuity occurs at the plane which separates the gas
originally at pressure Po and now compressed to P from
the gas originally in the compression chamber at P&
and now expanded to the same pressure P. This plane
moves with a velocity acquired by an element of the
medium (the so-called particle velocity) in the expan-
sion chamber when the shock wave passes over it and
this must simultaneously be the velocity of an element
of the medium in the compression chamber when the
rarefaction wave passes over it. The situation is illus-
trated in Fig. 2. The particle velocity imparted by a
shock wave is a known function of P/Pp. That imparted
by the rarefaction wave is a different function of Pt/Pp.
Equating these functions gives a relation between P/Pp
and Pt/Pp.

The particle velocity I acquired from the shock wave
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is obtained from the relations of Rankine and Hugoniot
(Eq. (A7), Appendix A)

FIG. 3. Shock strength &=Po/P as a function of compression
chamber pressure, P&/Po. The solid curve is a graph of Eq. (1.2).
The shaded region covers experimentally observed results.

(I'/~o)'=1+ (v+1)(y—1)/2v. (1 3)

be written as

~r/~o =yL1 —(y—1)/(&+42y)'1-'
=(1/8)L1—(1—5)/Ik(75+42) I'1 ' (1.2)

where y=1/$.
It is evident from (1.1) that for a given value of y,

Pr/Po is a function of the sound velocity ratio cr/co
which decreases as cr/co increases, the amount of
decrease depends on the values of p and 7&. Thus, by a
proper choice of the gases in the two chambers greater
shock strengths may be achieved for a given Er/Eo.
For example, if air is in both chambers P&/Ps=5. 4 for
y= 2.2, while if helium" is in the compression chamber
and if air is in the expansion chamber, Pr/Ps=3. 3 for
p= 2.2.

Now the ratio y=P/Po can be expressed in terms of
the velocity of the shock wave (see Appendix A, Eq.
(A5)).

Here cp is the velocity of sound in the undisturbed gas
in the expansion chamber, y is the ratio of speci6c heats
of this gas, and y=I'/I'o.

The velocity acquired by a particle from the rare-
faction wave may be shown (see Appendix B, Eq. (B5))
to be

I/~r= [2/(Vr —1)71—(y&o/& )"' """j,
where c~ and y~ are the sound velocity and. specific
heats ratio, respectively, for the gas in the compression
chamber. Equating the two expressions for I, we obtain

t y~o/~rJ"' """=1—~o(vr —1)(y—1)/
c&$2y f y —1+(y+ 1)y}1'*. (1.1)

If air is in both chambers and if these are at the same
temperature, pp=py= 1.4, cp= cy and this equation may

rs :s

One way, therefore, to determine the pressure in the
shock wave is to measure its velocity and compute $ or

y from the above expression. This has been done a
number of times at Princeton by diKerent people during
the war. "

A plot of the relation (1.2) is given by the solid curve
of Pig. 3. The shaded region covers the experimentally
observed results. It is expected that the theoretical
curve should be too low since the diaphragm does not
break in the ideal manner assumed.

From the simple theory of the tube one would expect
the pressure immediately behind the shock front to be
uniform. This is confirmed by experiments from two
sources (1) photographic studies show no large changes
in density behind the front provided sufficient time has
elapsed for the front to assume a stable condition, and

(2) measurements of the pressure with piezoelectric
gauges verify the conclusion within their limits of
accuracy. Figure 4 is a reproduction of an actual record
obtained with a quartz gauge. Experience has shown

that the oscillations in the record are to be ascribed to
vibrations in the crystal mount rather than in the
pressure itself.

A number of desirable qualities are now evident in
this apparatus for the study of shock waves. (1) The
tube gives a plane shock wave which is the type most
amenable to mathematical analysis. (2) The result is

a "step-function, " i.e., the pressure is constant for some
distance behind. the shock front. (3) Within reasonable
limits the shock is not attenuated as it passes down the
tube. " (4) The shock and the flow behind it may be
reproduced time after time with remarkable precision.

FIG. 4. A quartz gauge pressure-time oscillogram of a shock
wave in the tube. The vertical displacement represents pressure.
Also shown is a 1000-cycle sine-wave which determines the hori-
zontal time scale.

"The efIIcacy in using helium in the compression chamber was
demonstrated by I. G. Smith at Princeton and more extensively
by C. %. Mautz at the University of Michigan (to be published)."See OSRD reports in reference 9.

& R. J. Emrich and F. 8. Harrison, Phys. Rev. 73, 1255(A)
{1948).
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(5) Boundary layer effects and turbulence seem to be
vanishingly small for some distance behind the shock. "

Only two remarks will be made regarding the tech-
nique of operating -the apparatus. The tube should be
rather long so that little irregularities introduced at the
time the diaphragm breaks have time to catch up and
merge with the shock front before the point of observa-
tion is reached. The other is that the compression
chamber should not be too short since the rarefaction
reQected from the closed end catches up with the shock
eventually and the region of constant pressure behind
the shock then disappears. An interesting feature,
mentioned only in passing, is the fact that the Qow
behind the shock may be made supersonic for suf6ci-
ently strong shocks and under these circumstances the
Qow behind the temperature discontinuity attains a
high Mach number.

2. Methods of Measurement

The physical quantities which are of general interest
in studying the interaction of shock waves consist of
such things as temperature, density, pressure, and
velocity of the medium, at all points in the Geld and
the configuration in space and time of the discontinuities
in these quantities. Simple techniques may be adequate
if the phenomenon under investigation is stationary or
quasi-stationary, since instruments may then be used
which do not have rapid response. The Pitot tube,
thermocouple, and hot-wire instruments are of this
character and their use is so well known it is unnecessary
to describe them here. The many photographic tech-
niques may also be employed in quasi-steady Qow

without resorting to short, duration light sources.
For transient phenomena devices having rapid re-

sponse are needed. Useful instruments are the piezo-
electric pressure gauge and the electrical strain gauge.
These were used quite extensively during the war to
measure the intensity of shock waves. As applied to
the shock tube a quartz wafer or more usually a pair of
wafers in a suitable mounting covered with a diaphragm
or piston whose face is mounted Qush with the inside
surface of the tube gives good results. An insulated
conductor separates the quartz plates and is connected
through a suitable amplifier to a cathode-ray oscillo-
graph. The rise time for the pulse recorded in this way
is limited by the time required for the shock to pass
over the face of the gauge which in practice is usually
not smaller than 40 ' sec. This time is much shorter
if the application is such that the shock is reQected
normally from the face of the piston.

For the study of shock waves in the laboratory
optical methods are by far the most powerful. One
great advantage of such devices is that no disturbance
to the Qow is introduced by the observation itself. A
second important consideration is resolving power, i.e.,

"Evidence for this assertion is to be found, for example, in the
sharpness of the slip stream in Fig. 10.

ability to sense changes in the variables over short
distances, and in this respect the optical methods are
unrivaled. Thirdly, if one uses a photographic technique
a detailed map of the phenomenon may be covered in
a single photograph for one instant of time and when
coupled with sparks of short duration as sources of
light, even the most rapid transient phenomena may be
observed in great detail. The three most common
optical arrangements are frequently referred to as
shadow, .schlieren, and interferometric, a brief descrip-
tion of which follows. '4

I'" The three optical arrangements are shown, respec-
tively, in Fig. Sa, b, and c. The parallel shadow method
consists of a small light source such as the pinhole at S,
and collimating lens I» to cast parallel light on the
photographic plate or screen I' after having passed
through the windows which enclose the region of
interest. Disturbances in this region alter the uniform
illumination originally falling on I'. Reproductions of
several photographs taken by this method will appear
below.

In a typical schlieren arrangement, the pinhole is
replaced by a slit or knife edge S~ and lens 1.2, knife
edge S2 and camera C are added. S~ and S2 are at
conjugate foci and in operation S2 is adjusted parallel
to S& and advanced transversely until most of the light
is cut off. The camera is focused on the region of interest
between the windows. The medium under investigation
may deviate light rays either toward or away from the
knife edge, thus producing changes in the illumination
of the plate. Illustrations of the use of this technique
will be found in some of the figures which follow.
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F&G. 5. A schematic diagram of the optical arrangement for
(a) parallel shadow, (b) schlieren, and (c) interferometric pho-
tography.

~4 A more detailed description of these methods may be found
in the book by H. W. Liepmann and A. K. Puckett, Introductiol
to the Aerodynamics of u Compressible Fluid (John Wiley and
Sons, Inc., New York, 1947).



W. BLEAKNEY AND A. H. TAUB

90

80

70

CX
60

MACM
REFLECTION

50

40

20

REGULAR
REFLECTION

lo

0 .I 2 .5 4 5 .6 .7 .8 .9 I.O

FIG. 6. Regions of regular and Mach reQection in the a, $
(angle of incidence, shock strength) plane. The curve labeled a.
is the limiting curve above which regular reQection is theoretically
impossible; that labeled n, marks the boundary below which the
past history cannot a8ect the reQection process, and that labeled
ao marks the smallest a at which Mach reQection is observed.

The third technique interposes an interferometer in
the light path as shown in C of the figure. The camera,
again focused on the region of interest, forms a pattern
of interference fringes on the screen I'. Changes in
density of the fluid between the windows induces shifts
in the position of the fringes on the screen.

The theoretical aspects of these three methods of

observation have been reviewed by Weyl. "When the
deviation of an optical ray from its normal path in the
absence of the disturbance can be treated as infini-

tesimal, he has shown that the interferometer measures
the change in optical depth, that is, the integrated
difference in local index of refraction. Under the same
conditions the schlieren method is sensitive to the
component of the gradient of the optical depth perpen-
dicular to the knife edge while the shadow method
responds to the second derivative of the optical depth.
Essentially, therefore, the three techniques measure,
respectively, the density, the first derivative, and the
second derivative of the density.

The shadow method is cheap and easy to use and
enables one to make quantitative measurements on the
geometry of density discontinuities such as shock waves
to which it is particularly sensitive. The schlieren
arrangement is more elaborate and requires optical
parts of high quality but. it gives additional information
about continuous variations of the density. Up to the
present time the method has been used chiefly in a
qualitative manner. Of the three methods the inter-
ferolnetric one is much the most elaborate and costly
but it has many important advantages. Among these
are quantitative evaluations of the density directly and
high resolving power. It is the only optical method
which has been used extensively to measure densities
continuously over an extended region of a fluid in
motion. "From the values of the density the behavior
of the quantities such as pressure, temperature sound
velocity, and flow velocity may be calculated from the
equations discussed earlier.

3. Results

A summary of all pertinent observations on the
interaction of two shock waves is presented in this
paper. Most of these data are taken from the work of
Smith, " some from later experiments of our own and
other sources as noted. Since most of the data come
from studies of the reflection of shock waves from a wall
a detailed description of the main features of this phe-
nomenon is in order.

We shall discuss experiments involving a plane shock
wave in air falling obliquely on a plane rigid wall and
shall suppose that the phenomenon is viewed in the
direction of their intersection. Observations are con-
veniently made by the parallel shadow method dis-
cussed earlier, the axis of the optical system having
been adjusted parallel to the intersection of wall and
shock. It is convenient to describe the results of such
experiments in terms of two parameters. The first is
the angle of incidence n which is defined as the angle

FIG. 7. A shadow picture of a regular reQection. The incident
wave I is vertical and traveling to the right it makes an angle
of 29' with the barrier which is represented in the figure by the
solid black portion. The reQected wave E makes an angle of 27'
with this barrier. The solid black line is a plumb line used for
reference.

'5F. J. Weyl, Analytical Methods in Optical Examination of
Supersonic glom, Navord Report 211-45, Buord. U. S. Navy
Department.

"See, for example, Ladenburg, Winckler, and Van Voorhis,
Phys. Rev. 73, 1359 (1948).

'7 L. G. Smith, "Photographic Investigations of the ReQection
of Plane Shocks in Air, "OSRD No. 6271 {1945).
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between the normals to the shock wave and the wall.
The second is the shock strength which is defined as
the ratio of the pressure ahead of the shock to that
immediately behind it.

$ = 1(y=Po/P.

The observed effects can be divided into two main
categories called "regular" reflection and "Mach"
reflection. The situation may be described with the
help of Fig. 6 where any point on the diagram corre-
sponds to a particular choice of the independent
parameters n and g. In a.ir, regular reflection occurs for
small n at all values of f Let . us fix our attention on a
particular value of $= $~ and note what happens to the

0reflection process as a goes from zero to 90, that is,
from head on to glancing incidence.

A typical example of the regular reflection observed
for small o. is shown in Fig. 7. This picture was taken
in the shock tube by the parallel shadow method and
represents the reflection of the shock from an inclined
barrier placed across the tube between the two observa-
tion windows. The only observable features are plane
incident and refIected shocks and it will be noted that
the angle of incidence is not equal to the angle of
reflection, o;Wo.'. The speed with which the point of
intersection 0 of the two shocks and the wall moves
a.long the wall is given by V)sinn where V is the velocity
of propagation of the incident shock. Evidently this
speed is very high and for sufIiciently small o. must be
supersonic with respect to the medium behind the
reflected shock. This means that the past history of
the reflection process cannot influence its behavior in
the future and to an observer moving with the point 0
a steady state exists in the neighborhood of this point.

In Fig. 8 is reproduced the result of a schlieren
photograph of a similar reflection but o. is now a little
larger. We shall describe this figure in terms of an
observer at rest with respect to the point 0. A sound
signal arising from the corner where the shock wave in
the tube first struck the inclined barrier can be seen
behind the reflected shock. That part of it which moves
along the wall is behind the point 0 showing that the
flow in this region is still supersonic with respect to the
chosen observer. At some point along. the reflected
shock, however, the component of the flow perpendic-
u].ar to the sound wave will be just sonic and beyond
this point the shock wave is curved. This curvature
can be ascribed to the influence of the sound wave.

An inspection of the schlieren photograph of Fig. 8
reveals that in the neighborhood of the point 0 there
is no detectable departure from uniformity of the
density in each of the angular domains formed by the
two shocks and the wall. The theory of regular reflection
given in III makes use of this result.

As the angle of incidence n in Fig. 6 is increased, the
point at which curvature begins in the reflected shock
moves closer to the point 0. There is a critical value of
n denoted here by n. (for a-sonic) at which the sound

:.=:~gl1%%li~

FIG. 8. A schlieren photograph of regular reflection. I and R
are the incident and reflected shocks. The sound wave from the
corner can be seen in the lower left-hand portion of the figure.

FIG. 9. A double exposure of Mach reflection by parallel
shadovr. 9a is tne orIgina an.9 '

h
' '

l d 9b is a tracing of the discontinuities.

I, R, and M represent the incident, reflected, and Mach shocks
and S represents the slip stream.
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FIG. 10. A photograph of Mach reRection taken
by the schlieren method.

wave extends to the point 0 and the Qow behind this
point is just sonic. The value of o., can be computed as
a function of $ and n (see III, Section 6) and the lower
curve of I'ig. 6 is the result.

The distances traveled by the foot of the sound wave
and the point 0 from the corner can be measured in the
photographs. From the nature of the ratio of these
distances as a function of n for fixed. $, an experimental
value for 0., can be determined. Smith' found good
agreement between theory and experiment on this point.

Returning again to the sequence of phenomena
observed as n is increased holding P constant, suppose
that a large value of angle of incidence is chosen so that
the point n, $i lies in the region labeled Mach reflection
in Fig. 6. The photographs of Figs. 9 and 10 are typical
of the shock configuration in this type of reflection.
The reflected shock E now curved over its entire length
intersects the incident shock I in a point T removed
from the wall and a third shock M sometimes called

IO

55 60 65 70 75 80 85
GC (deg.)

FIG. 11. Curves for the determination of the
onset of Mach reQection.

the Mach shock extends from this point to the wall.
The common point of intersection T of the three shocks
will be referred to as the triple point.

In addition to the three shocks, and successive
pictures confirm the fact that they are moving at
supersonic speeds, there is visible a fourth discontinuity
trailing behind the triple point. This is the slip stream
marking the boundary between two regions of diGerent
density and temperature but the same pressure. Since
the Qow near the wall must be parallel to the wall and
since the motion of the slip stream when lying in this
region is inappreciable in the perpendicular direction,
evidently this discontinuity cannot be a shock. More-
over, the existence of the slip stream is consistent with
theoretical considerations of the problem, since the
Quid which has been passed over by the two shocks I
and E will undergo a smaller change in entropy than
that which has passed through the single shock M. The
total energy is the same on the two sides of the slip
stream and hence the density and the Quid velocity
are greater above this boundary while the temperature
is greater below.

Experimentally the whole reflection phenomenon is

very reproducible in the shock tube. For a given gas
every feature of the configuration seems to be a definite
function only of the parameters n and ( to the precision
with which the measurements can be made which is,
to date, roughly one percent in P and one-tenth degree
1Q CL.

It should be remembered that the plane of the
photographs is perpendicular to the line of intersection
of the three shocks and every point on the photograph
represents a projection of a line perpendicular to the
sides of the shock tube. The phenomena are two-
dimensional and, therefore, the state of affairs in all
planes parallel to the photograph is the same.

It has been observed that the triple point which, of
course, is the projection of the intersection of the four
discontinuities, moves along a straight line passing
through the corner and making an angle which we will

call x with the wall. In fact, if any point of the con-
figuration having the plane radius vector r with the
corner as origin is transformed to a new point cr where
c is a scalar, . constant, a new configuration can be
constructed corresponding to one physically observable.
This means that instead of three independent variables

(x, y, t) the phenomenon is describable in terms of two
(x/t, y/t). The variables x and y may be measured
relative to any point moving with constant velocity
with respect to the corner. In particular, they may be
measured from T. Figure 9 is a double exposure of a
Mach reQection in two di6erent positions from which
it may readily be verified that one Mach configuration
is a dilitation of the other centered about the corner.

Experiment shows that for constant $ the angle x is

an increasing function of 0.. As n decreases along a
vertical line in Fig. 6 from a point in the region of
Mach reflection, a critical value 0.=0.0 will be reached
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at which the Mach wave can no longer be detected and
the triple point T seems to coincide with the wall.
This angle 0.0 is rather well determined by experiment
by plotting x versls n curves for constant $ and extra-
polating to X=O. Examples of such curves are shown
in Fig. 11.The result of a whole series of such measure-
ments is given by the upper curve in Fig. 6. The middle
curve in this figure is a theoretical one giving the
extreme angle a, above which regular reQection is
theoretically impossible. The derivation of this curve
is given in III, Section 4.

Qualitatively, one can say that the regions of regular
reQection below' 0., and Mach reQection above 0.0 have
been fairly well mapped out experimentally and that
below n, an adequate theory, to be discussed presently,
exists. There is no adequate theory of the Mach reQec-
tion as will be evident in the later sections of this
report while between the curves o., and 0.0 both theory
and experiment are confused.

Having given the broad features of the situation, it
is now desirable to give a summary of the quantitative
results which have been achieved by experiment. These
consist at the present time almost entirely of angle
measurements as functions of the parameters n and $.
However these data are so voluminous that we can find
space for only a few typical series of observations in
this review.

In presenting the data and in discussing their
theoretical interpretation, it is convenient to make a
transformation to a coordinate system in which the
triple point T in Mach reQection or its counterpart 0
in regular reQection is at rest. Angles will be given
with respect to the line joining the triple point and the
corner which, in the case of regular reQection, is the
boundary of the wall itself. In the actual experiments
angles were measured from the wall but since x is well
defined and can be measured with precision the trans-
formation introduces no significant errors. The four
discontinuities I, R, M, and S of Fig. 12 make angles
u, u', ), and ~, respectively, at the triple point with the
line TC. Also

M=rl Xr ca =cr +Xt

and co and co' reduce to the angles of incidence and
reflection for regular reflection (x=0). It will be
noticed also that to the observer at rest with respect
to T the incoming Qow of the Quid is in the direction
of the line TC.

A comparison between theory and experiment may
be made by referring to Fig. 13. Data are plotted for
the two shock strengths $t ——0.8 and kg=0. 2 representing
weak and strong shocks, respectively. The solid curves
were plotted from values computed by Polachek and
Seeger" according to the theory outlined in III and IV,
the curve labeled "two-shock theory" being one of the

b See, however, Appendix C.
'8 H. Polachek and R. J. Seeger, "Regular ReQection of Shocks

in Ideal Gases, " Explosives Research Report No. 13, BuOrd.
U. S. Navy Departmettt (1944).

FIG. 12. Notation of angles used in Mach reQection, I, R, M,
and S have the same signiicance as in Fig. 9b. C locates the
position of the corner of the barrier shown by the shaded band.

family shown later in Fig. 15 of this report. The circles
and crosses are experimental observations of regular
and Mach reQections, respectively. The photographic
plates were obtained and measured by Smith' and
re-measured with some revisions by Harrison and
Bleakney. "The revised points are plotted in Fig. 13.
The decision on the point at which regular reQection
ended and Mach reQection began was based on the
extrapolation to g=0 of the curves of Fig. 11.

Figure 13 represents a small portion of the data
available. Smith in his report gives similar plots for
)=0.9 to 0.2 in one-tenth steps and a plot for )=0.15.
In addition, he gives extensive data on all the other
angles around the triple point.
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FIG. 13. Comparison of theory and experiment in regular and
Mach reQection. The points enclosed in square boxes represent
values of co and co' at which the total Qow behind the incident
shock is just sonic with respect to an observer moving with the
triple point. There can be no solutions for co greater than this
limiting value.

~ F. B. Harrison and W. Bleakney, "Remeasurement of
ReQection Angles in Regular and Mach ReQection of Shocks
%aves, "Report to ONR, Contract N6ori-105, Task II (1947). .
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FIG. 14. Notation for theory of regular reQection.

There is good agreement between the theory of
regular reflection and the observations for a&0., for all
shock strengths $ with one qualification. For the very
strong shocks, $—0.2, the points for n near n, fall
consistently below the two-shock curve. It is possible
that some error may account for this but it seems
unlikely. Seeger has suggested that the change in p for
air at high temperatures may be responsible.

For strong shocks the agreement of the observations
for 0.&no with the three-shock curve is not bad but
certainly not as good as that for regular reflection.
The deviations from the curve are consistent and
above any normal experimental error.

Photographs taken by Ladenburg, Winkler, and Van
Voorhis"" in their study of jets show shock configura-
tions similar to those observed in Mach reflection.
Unpublished measurements on similar photographs by
Ladenburg and Wachtell confirm Smith's results for g
about 0.5 and ~ of about 50'. For these values Smith
found little disagreement with the three-shock theory.
Ladenburg and Wachtell's angular measurements are
not in complete agreement with this theory, but the
disagreement cannot be considered as disproving the
theory since the discrepancies are within the extremes
of the experimental errors. The deviations found are in
the same direction as Smith's.

Wind tunnel measurements" made at the National
Physical Laboratory in England by G. H. Lean indicate
a large discrepancy between three-shock theory and
experiment for weak shocks and some agreement for
strong shocks.

Both the jet and the wind tunnel experiments
referred to here involve stationary three-dimensional
shock configurations. The agreement of these experi-
ments with those of Smith indicates that the configura-
tion around the triple point is mainly determined by
the flow in the immediate neighborhood of this point
and does not depend greatly on the transient or sta-
tionary character of the flow.

Another feature to be noted in the results shown in
Fig. 13 is that for weak shocks the points for Mach
reflection seem to join on smoothly where regular
reflection stops while for strong shocks there is a sharp

20 See also J. Winckler, Rev. Sci. Inst. 19, 307 (1948).
2~ G. H. Lean, "Report on further experiments on the reQection

of inclined shock waves, " National Physical Laboratory, London,
1946.

discontinuity in co' when Mach reflection begins. In all
cases the experiments indicate that 0.0&n., that is,
regular reflection seems to persist beyond the angle of
incidence at which the theory gives no solutions for
regular reflection. Perhaps the strongest evidence
pointing toward the inadequacy of the three-shock
theory is to be found in the data representing Mach
reflection for weak shocks where many of the points fall
in a region where this theory predicts no solutions.

In view of the fact that the three-shock approach
assumes that the state of the gas is uniform in the
angular domains bounded by the discontinuities in the
neighborhood of the triple point and in view of the wide
discrepancies between theory and experiment, it is
natural to look for departures from this basic assump-
tion. Pictures of the reflection process taken by the
shadow and schlieren methods have so far failed to
reveal any angular variation in the density in the
domains of interest. The schlieren pictures such as
Fig. 10 seem to show some variations' immediately
behind the reflected and Mach shocks, but these
variations are not of the angular character one is lead
to expect from the analysis given in Chapter IV.

Further discussion of the difficulties in explaining the
results will be found in IV.

III. THEORY OF REGULAR REFLECTION

1. Introduction

We now turn our attention to the theoretical discus-
sion of the regular reflection of a plane shock wave from
a rigid wall. We shall assume in accordance with the
experimental results for regular reflection that when a
plane shock wave is incident upon a rigid wall a plane
reflected shock is created and that in any of the angular
domains involved the fluid is in a perfectly uniform
state. Thus we effectively assume that the instantaneous
situation is as in Fig. 14 where WW is the rigid wall,
OI is the incident shock, and OR is the reflected shock.
In the region WOI the fluid is characterized by the
constant values of pressure, density, sound velocity,
and particle velocity denoted, respectively, by I', p, c,
and Z. In the region IOR we denote the corresponding
quantities by a prime and in ROW by a double prime.

It is convenient to work in the coordinate system in
which the point 0 is at rest. Then the assumption of
constant conditions in each of the angular domains is
equivalent to assuming that the phenomenon of reflec-
tion is stationary in this coordinate system.

The vectors Z and Z' denote the flow incident on
and emergent from the incident shock wave I. We
have already seen that the tangential components of
particle velocity are conserved in crossing a shock wave.
Moreover, the normal components are decreased since
shock waves are compression waves and we must have

pl =pQ

' See, however, Appendix C.
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Hence the Qow vector is deflected away from the normal
to the shock crossing it. We shall denote the angle
between the vectors Z and Z' by 5 and call this the
angle of deflection of the Qow. It will be said to be
positive if it is counterclockwise when measured as
stated above. In Fig. 14, Xy and kg are the normals to
the incident and reflected shocks, respectively. The
angle measured from the normal to a shock to the flow
vector incident upon it is denoted by 7 with or without
a pnme, depending on whether the shock is the incident
or the reflected one. These angles are positive if they
are counterclockwise when measured as stated. Thus
in Fig. 14 7- and 6 are positive and ~' and 6' are negative.
The angle 6' is de6ned similarly in terms of the flow
vectors Z', incident on the reflected shock, and Z"
emergent from it.

The problem of reflection of a plane shock is reduced
by the assumption of constancy in the angular regions
to that of given the angle of incidence, n= (m/2) —r and
the strength of the incident shock, P'/P, to determine
the position and strength of the reflected shock, that is,
n' (or r') and P". The condition that must be satisfied
is that the Qow Z" must be parallel to the wall. That
is, we must have 8+5'=0.

The Rankine-Hugoniot equations enable us to deter-
mine the deflections produced by a shock wave in terms
of the strength of the shock and the angle of incidence
of the flow. These will now be used to obtain the
mathematical formulation of the condition that the
total deflection be zero.

We shall do this in terms of the angles ~ and 7.'. It
is evident from Fig. 14 that

n+r=7r/2, n' —8' —r'=m/2.

2. The Rankine-Hugoniot Equations

If s denotes the magnitude of Qow vector Z incident
upon a shock, then s cosr is the magnitude of the
component of velocity normal to the shock and (s/c) cosr
is the Mach number of this flow. The relation between
pressure ratio and Mach number for a perfect gas with
ratio of specific heats y is

P' P2v (s) '—
cos r 1—

P v+1 (c)

or, conversely,

(v+1)n —(v —1)

(v+1)—(v —1)n

(2.2)

The two remaining Rankine-Hugoniot equations we
take in the form

and

|'s l' 1
cos'(7.+6) =—v —1+(v+ 1)—

Ec) 2v

tan(r+8) = g tanr.

(2 3)

(2.4)

Equation (2.3) is the statement that the relation
between the Mach number of the Qow emergent from a
shock wave and the strength of a shock wave is that
given by (2.1) with y replaced by 1/y. Equation (2.4)
is a consequence of the fact that tangential components
of the Qow are continuous whereas normal components
are compressed in the ratio 1/q. This equation may be
solved to give

(q-1)x

1+gx'
(2.5)6= tanb=

Equations (2.1) to (2.5) hold across the shock I.
The equations holding across E. may be obtained from
these by replacing each quantity properly. In our
notation this is achieved by placing an additional
prime on all quantities where

x'= tanr', g'= p"/p', y'=P"/P'.

3. The Deflection Condition

The deflection by the reflected wave is given by

(2.6)

y' —1= [2v/(v+ 1)][(s'/c')'/(1+ x")—1].

Substituting from (2.3) for (s'/c')' we obtain after
some algebraic manipulation

3,' = tanh' = (g' —1)x'/(1+ g'x"). (3.1)

This equation may be written in terms of g, x, and x'
alone, for p' is related to y' by the analog of (2.2) and
y' is given in terms of x', p, and x by the analog of
(2.1). Thus

If we set
x= tanr, y =P'/P.

This may be written as where

(v+1)&'

(v —1)(&'—1)+(v+1)n

(3.2)

2v (s)' 1

v+1' (c) 1+x'
(2.1)

8'= (1+q'x')/(1+x").

Hence (3.1) may be written as

The relation between pressure ratio and the compres-
sion ratio is given by

. (v+1)y+v-1

(v —1)y+v+1

, [2(&'—1)—(~—1)(v+1)]*'
gl

(v+ 1)(1+gx') q —2 (8'—1)

[2(~'x' —x")—(~—1)(v+1)(1+x' )]x'

(v+ 1)(1+x")(1+gx') rl
—2 (vPx' —x")

(3.3)
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The values of x' obtained by using the equality sign
are such that the rejected wave is just sonic.

If x and q are such that
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1+(1/2) (v+1) (~—1)

then the Qow behind the incident wave is subsonic and
no reflected wave can exist. If the inequality is replaced
by an equality, the Qow behind the rejected wave is
sonic. The condition for this is

cota= tan7 =x= (1/g) [(1/2)(y+1)(q —1)$'. (3.5)

For angles smaller than r given by (3.5) the assumed
configuration can not exist. We shall then assume that
r is greater than this value.

The deAection condition is equivalent to the require-
ment that 5+6'=0, that is, to

0 10 20 30 40 SO 80 70 80 90
MlNCIOENT
( DEGREES)

(qx —x') (y+ 1)(1+x")(q —1)(1+gx')
+2(g'x' —*")(x'(1+qx') —(q 1)x)=—0. (2.6)

FIG. 15. Angle of incidence ~erszss angle of reaction for shocks
of different strengths undergoing regular reQection. This is a cubic equation in x' from which we are to

determine x' as a function of g and x. It is immediately
evident that one root of this equation isWe are assuming that the reQected wave is a shock

wave, that is q &1.This condition gives us a limit for
the possible values of x', for it follows from (3.2) that
g' &~ 1 if and only if

x'=gx) ix~'i,

1+x"~&1+x~"——

if q) 1. Hence this root lies outside the limits obtained
above and is not admissable. Dividing (3.6) by the

(34) linear factor (gx—x'), we are left with a quadratic
1+(1/2)(y+1)(~—1) equation for x' whose roots are negative and given by

—x(1+rPg2) +fg2(1+ rPx2) 2—(1+gx2) ((y+ 1)(g —1)+2)(g —1)((p —1)(1+gx )+2)]'*

(1+vx') (v+1) (n —1)+2
(3.7)

From Eqs. (3.7), (3.1), and (1.1) we can compute n',
the angle between the normal to the reQected wave and
the normal to the wall, as a function of (=1/y, and a.
Graphs of these functions for )=0.8 and (=0.2 are
given on the curves labeled "two-shock" in Fig. 13.
The upper portions of these curves correspond to the
use of the plus sign in front of the radical in (3.'7), the
lower portion to the minus sign. Figure 15 taken from
the report of Polachek and Seeger" gives a set of
curves each of which represents n' as a function of n
for the fixed value of $ given on the curve and 7= 1.4.

Thus there are two possible positions for the reflected
shock. For each of these we may compute the pressure
behind the rejected wave by computing p' from Eq.
(3.2) and y' from the analog of (2.2). It is evident from
their equations that p' and y' are monotonic increasing
functions of 8' for fixed q and hence monotonic de-
creasing functions of x". Hence for the root given by
the plus sign in Eq. (3.7) the pressure on the wall is
greater than for that given by the minus sign. Moreover
as g approaches one, that is, the incident wave becomes

sonic, the root given by the plus sign approaches zero
and the pressure on the wall approaches infinity whereas
that given by the minus sign approaches —x and the
pressure on the wall remains 6nite. Thus in this limiting
case the root given by the plus sign seems contrary to
the predictions of the acoustic theory and must be
discarded. It is to be expected that it is also to be
discarded when g is appreciably diferent from one.
In the various experiments on regular reflection the
measurements show that the position of the rejected
wave is always that corresponding to that given by the
minus sign in front of the radical in Eq. (3.7). The
heuristic reasoning given above seems to be borne out
by experiment.

4. The Extreme Angle

When

x'(1+~'g') & (1+~x') (~—1)((7+1)(~—1)+2)
X((~—1)(1+„x)+2), (4.1)

the roots given by (3.7) become complex. Hence the
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assumed configuration is impossible for such values of
x and q. That is, there is no position of the reflected
wave within the sonic lines x'=& ~xm'~ such that the
total deflection of the Qow is zero. The experiments
show that for most angles of incidence and shock
strengths such that the inequality (4.1) holds, Mach
reQection takes place.

When the inequality sign in (4.1) is replaced by an
equality sign we obtain a condition for the smallest
value of v, and hence the greatest value of 0,, the angle

of incidence, for which the two shock configuration is
possible. We shall call these angles v-extreme and
O.-extreme, respectively. We have called the region in
the q, 7 or $, cx plane where the two-shock configuration
is found experimentally the region of regular reflection.
A theoretical boundary of this region is given by

x'(1+ '*')= (1+nx') (~—1)((v+ 1)(~—1)+2)
&&((v-1)(1+~+)+2). (4.2)

This may be rewritten as

—(1—2g(1+A))+ [(1—2q(1+A))' —4g(1 —A (v —1)(g —1))]l
1+vx'=

2'�(1—A (v —1))
(4.3)

where

A = (g—1)(2+(v+1)(q—1)).

The positive sign must be taken in front of the radical
since 1+qx' must be positive.

In the case of weak shocks we may write p=. 1+e
and neglect higher powers of e than the first. Then,

*'=2~(v+1) =2(v+ 1)(y —1)/v,
7 = (z./2) —a= [2(v+1)(y—1)/v$'*. (4.4)

This gives the angle of incidence for weak shocks at
which regular reQection is theoretically no longer
possible.

5. Sonic Angle

In the region of regular reRection, the two-shock
configuration is determined as above for a given incident
shock strength and angle of incidence less than the
extreme angle. We now consider the Mach number of
the flow behind the reflected shock, namely, z"/c" where

(z"/"')'= (1+v"x")L(v —1)y'+(v+ 1)j/2vy' (3 1)

In this expression p', x', and y' are known functions of
q and x. Hence for each p we may determine the value
of x such that z"/c"= 1. The corresponding value of r
and a denoted by v, and o., will be called the sonic angle.
If this condition is satisfied, signals sent out at points
along the wall as the incident wave passes over these
points will travel along with the point of intersection
of the incident shock wave and the wall.

This angle is plotted as a function of n and )=1/y
for v=1.4 (air) in Fig. 6. It is evident from this plot
that a, is less than one degree smaller than n-extreme.

For angles of incidence less than o., it is evident that
the assumption, that the Row is stationary in the
coordinate system in which the line of intersection of
the incident shock and the wall is at rest, is correct.
In such a case z"/c") 1 and signals cannot reach this
point. Hence the reRection process cannot be influenced
by its past history. However if 0. is greater than n, the
stationary assumption has no real justification and the

phenomenon may bc transient,

6. Pressure Behind the Rejected Wave

In II, Section 5, it was pointed out that the usual
acoustic theory determines the dependence of pressure
behind the rejected wave as a function of the angle of
incidence n and that this function is discontinuous at
o.=90'. If we regard sound waves as weak shocks we
may replace acoustic theory by that developed above.
We they. find that at values of n near 90', i.e., values
of n greater than that given. in (4.4), the assumption of
two shocks in the reRection process is an impossible one.
Thus, the usual acoustic theory is not valid near n= 90'
and the discontinuity in the pressure behind the
reQected wave as a function of the angle of incidence
must not be taken seriously. Presumably the mechan-
ism of Mach reflection smooths out this function so
that the excess pressure behind the reflected wave
varies smoothly from twice the excess pressure behind
the incident wave to one times this value. However,
for weak shocks and for angles of incidence near and
less than n-extreme the excess pressure behind the
reflected wave can be calculated to be approximately
three times the excess pressure behind the incident
wave. Thus the transition provided by the Mach
reAection seems to smooth out the discontinuity men-
tioned by introducing a sharp maximum around
n-extreme.

Yon Neumann was the first to point out these facts
about the pressure behind the rejected wave as a
function of the angle of incidence. His discussion,
which uses different variables, may be found in Navy
reports. ' In terms of the notation used here, these
results may be obtained as follows: From the analog
of Eqs. (2.1) we have

(P"/I") 1= $' 1= [2v/(v+ 1)j[z'~/c'~(1+x'2) 1j-
= L2v/(v+ 1)3[(z'/c')'(1+m'x')

&& cos'(r+ 8)/(1+ x'2) —1].
Substituting from (2.3) for z'/c' and performing some
algebraic manipulation, we obtain

&"/&=1+(~'—1)(1+y(v —1)/(v+1).
This equation gives the pressure behind the reQected



600 W. BLEAKNEY AND A. H. TAUB

pic

FIG. 16. Notation for the theory of Mach reflection.

and hence

&'—1=4x'= 3(v+1)b —1)/2v

(&"/&)—1=3(y—1)

7. Summary

We have thus seen that for each value of $ or rt there
is an angle O.-extreme denoted by u, such that for
0.&n, the two-shock theory has two solutions for the
position and strength of the reflected wave. For O. =o.,
these two solutions coincide and for a&a, there are
no real solutions. Thus the curve given by n, as a
function of $ divides the $, n-plane into two parts which
overlap the regions we have called regular refection
(n&n, ) and Mach refection (n) np), where n &n &np.

In the discussion of the experimental results given
above, it was pointed out that the theory of regular
reAection was verified for all angles of incidence less
than o.„and that Mach reRection seems to take place
for angles of incidences greater than 0.0. The band in the
$, n-plane given by n, &n&np includes the angle
n-extreme. The resolving power of experiments per-
formed to date is not great enough to determine where
in this narrow band the onset of Mach reflection takes
place.

The remarkable agreement between theory and
experiment for regular reQection for shocks of all
strengths (with the possible exception of some cases for
)=0.20 and )=0.15) would seem to verify the assump-
tions made in the theory. In particular, this seems to
justify the neglect of viscosity and heat conductivity
in these cases. We shall find that by making similar
assumptions in the case of Mach reflection the theory
obtained disagrees at times very violently with experi-
ments. The theories to be discussed briefly below have
been criticized because they do not take heat conduc-

wave as a function of x and g as soon as x' is determined
from (3.7) and substituted into 8'.

For weak shocks when x is given. by (4.4), we have

x (y+1)x= —— 1—
2I 2

tivity and viscosity into account. It may be that this
is a crucial defect. However, if these played an impor-
tant role one would expect that some evidence of this
would be found in the comparison of theory and
experiments in the case of regular reAection.

IV. THEORETICAL ASPECTS OF MACH REFLECTION

1. Introduction

The experimental result that the triple point of a
Mach configuration travels along a straight line making
an angle z with the corner was anticipated theoretically
by von Neumann from simple arguments based on
dimensional analysis. Since there is no length inherent
to the problem if heat conductivity and viscosity are
ignored, new solutions of the hydrodynamical equations
can be obtained by replacing the variables (x, y, t) in
one solution by (sx, sy, st) for arbitrary s. If, as seems
to be the case experimentally, a unique solution is to
exist then all these solutions must be the same. That
is, the transformation (x, y, t)~(sx, sy, st) must leave
the solution unaltered. Thus the dimensionless quanti-
ties involved must be functions of x/t and y/t.

This experimentally verified result implies that if at
any time t there exists a small region around the triple
point in which the variables such as pressure or density
are independent of distance from the triple point, then
at later times the size of this region will expand in
proportion to the time interval. The functions describ-
ing the Row around the triple point are of course
singular at T. If this singularity is such that in a
region around T at some time the Row is independent
of the distance from the triple point, then for later
times (and earlier ones) in different sized regions the
Row variables must depend only on an angle variable
measured around T. If the curvature of one of the
various discontinuities meeting at T increased indefi-
nitely as one approached T along the discontinuity,
then one would not expect the assumption regarding
independence of the Qow with distance to hold at any
time. There may of course be other reasons for dis-
carding this assumption.

The resolving power of the existing experiments is
insufIicient to decide definitely whether the curvature
of the discontinuities other than the incident shock is
finite at T. The measurements by Bleakney and
Harrison of Smith's photographic plates gave slightly
different results from Smith's original values which can
be ascribed to different methods of estimating the final
6nite curvatures. However, it is possible that new
experiments with better resolving power may indicate
that the change of curvature of the discontinuities near
the triple point increases markedly. This may explain
the paradoxical situation with which we are now faced
and which will be described below.

2. Three-Shock Theory

We begin with the assumption that not only does
there exist a region around T where the Qow variables
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pff p 1 (2.1)

We shall denote as in the two-shock case the angle
between the normal to a shock and the flow incident
upon it by 7. with appropriate primes and subscripts to
distinguish between shocks. Similarly the angles of
deflection of the Qow will be denoted by 8 with suitable
primes and subscripts.

In addition to the requirement (2.1) we must have

8i——8+8'. (2.2)

The two conditions (2.1) and (2.2) serve to determine
the allowed configurations in terms of 7 and P (or g).
The explicit formulas may be obtained by specializing
the formulas given by Taub" in a paper on refraction
of shock waves.

The solution is again not unique. For example, one
possible solution may always be obtained by assuming

22 A. H. Yaub, Phys. Rev. 72, 51 (1947), Eqs. (7.5), (7.3), and
(5.6) with y1=y and 1 =1.

are independent of distance from T but also that in
this region the Qow variables are constant in each of the
angular domains around T delineated by the various
discontinuities. This strong assumption seems to be
borne out by the schlieren photographs of which Fig. 10
is a typical example. It is, of course, a natural assump-
tion to make in view of the success of the two-shock
theory and has the virtue that it reduces the theoretical
discussion to an algebraic problem. However, it has
the fault that it deals only with local aspects of the Qow

around the point T and hence it cannot give any
prediction as to the value of the angle x for an incident
shock with a given n and $.

Thus we assume that three plane shocks all meet in
a line and see how such a conhguration is to be deter-
mined in terms of the strength of one, called an incident
one, and the angle of mass flow incident upon this
shock. The notation will'be a simple extension of that
used in Fig. 1.4. Figure 16 illustrates the shock con6gura-
tion assumed in the coordinate system in which the
line of intersection of the three shocks is at rest.

The line TI represents the incident shock, TR the
reflected shock, and TM a third shock which we wil].

call the Mach shock. The line TD represents the
direction of the flow incident on TM and TI (the path
of the triple point) and the line TD', the slip stream
represents the Qow emergent from T. In the angular
regions MTI, ITR, RTD', D'TM all quantities of
interest will be assumed to be constant. This is the
stationary hypothesis. The pressure, density, sound
velocity, and particle velocity in the region MTI will
be denoted by P, p, c, and Z. In the region ITR they
will be denoted by the same letters with a prime, in
STD' by the same letters with a double prime and
D'TM by the same letters with a subscript 1 and a
prime. The lines Xy, Ãg, and X~ are the normals to
the incident, reflected, and Mach shock, respectively.

If only three shocks are to be present we must have

that TM is a continuation of TD and that TE. is a
sound wave (g'=1). Such solutions will be called
trivial ones.

Solutions of these equations have been given by
Polachek and Seeger." The results of one family of
such solutions are plotted in Fig. 13 as the curves
labeled "three shock. " Other families exist but they
have not been considered seriously because of heuristic
arguments such as those given in III, Section 3, for
discarding one solution of the two-shock theory. The
experimental results seem to come closest to the solu-
tions plotted and this gives a justification of sorts for
discarding the others. There is one feature of these
solutions which can be proved analytically and which
is important for comparison with experiment. It is the
following: There exists a value for co corresponding to
co, in the two-shock theory such that for ~ larger than
this value no non-trivial solutions to the three-shock
equations exist. Moreover, for weak shocks this value
is smaller than ~, for the two-shock theory.

It has been pointed out earlier that the experiments
on Mach reflection, especially those involving weak
incident shocks are in disagreement with the three-shock
theory. The most violent disagreement is that Mach
reflections exist where there are no non-trivial solutions
for the three-shock configuration.

3. Prandtl-Meyer Variations

We have seen that if we weaken the uniformity
assumption we can only admit angular variations in the
state of the Quid around the triple point unless we are
willing to admit some violent singularity at T such as
inhnite curvature of the discontinuities. Continuous
angular variations in the state of a compressible fluid
are known as Prandtl-Meyer variations and the equa-
tions describing them are given by Taylor and Maccoll. '
They have the property that the component of the Qow
normal to the radius vector is always sonic. Moreover,
the radial component increases outward in such a
variation and the Qow is always turned toward the
point around which angles are measured.

It can be shown from these properties that the
Prandtl-M eyer variations cannot follow the Mach
shock. but can exist in the other angular regions in-
volved. It is, of course, natural to assume that they do
not precede the incident shock. Bargmann and Mont-
gomery" found solutions for the equations describing a
configuration of three shocks and a Prandtl-Meyer
variation following the reflected shock for )=0.8 and
all values of cv between co, and the value of ~ correspond-
ing to glancing incidence. They failed to find any for a
configuration in which a Prandtl-Meyer variation
preceded the reflected shock but did find solutions for
a condguration in which it preceded the Mach shock.
The values of the angles computed in the last case

~IV. Bargmann and D. Montgomery, "Prandtl-Meyer Zones
in Mach ReQection, "OSRD No. 5011.
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agreed with Smith's experimental values much better
than did those of the 6rst case.

Thus some measure of agreement with experiment
may be achieved by inserting Prandtl-Meyer variations
in the configuration. However, the best agreement is
obtained by placing them in a region where it is dif6cult
to conceive of how they can be formed. Moreover, the
schlieren photographs show no signs of angular varia-
tions in this region. As mentioned earlier, no evidence
of these variations have been found in any region to
date. Here again improved resolving power may throw
further light on the matter.

It is apparent that a complete solution of the hydro-
dynamical problem of Mach reflection is beset with very
great difhculties. However, the special case of nearly
glancing incidence has been solved by Sargmann24 but
at the time of this writing no experimental data are
available~ for comparison with the theory.

The present situation regarding Mach reflection may
be summarized as follows. The mass of experimental
data accumulated cannot be explained by any existing
theory. The assumption of uniformity in the various
domains in the neighborhood of the triple point is in
disagreement with experimental results. However, there
is no experimental evidence at present for the existence
of the only types of variations which seem to be
possible, namely, angular variations. It is hoped that
future experiments using interferometric optical meth-
ods will either discover such variations or disclose the
nature of the singularity at the triple point and give a
better understanding of the phenomena involved in
the interactions of shocks. "

APPENDIX A. CONSEQUENCES OF THE
RANKINE-HUGONIOT EQUATIONS

In this appendix we derive some consequences of the
Rankine-Hugoniot Eqs. I (3.6) and I (3.7) which have
been used in the text. We shall assume that we are
dealing with a perfect gas and shall first express the
shock velocity, the change in particle velocity, and the
ratio of the density behind the shock to that in front
as functions of the ratio of the corresponding pressures.
The subscript 1 will denote a quantity in front of the
shock and the subscript 2 will denote a quantity behind
the shock.

For a perfect gas Eq. I (3.7) may be written as

t' 1 1 ) 1 t'Es Eri
s(&j+&s) f

———
I
=

Epr ps) y —1i ps pr)

'4V. Bargmann, "On Nearly Glancing Reflection of Shocks, "
AMP Report 108.2R National Defense Research Committee
(March 1945).

See, however, Appendix C.
"A discussion of some of the problems treated in this review is

to be found in a paper by H. Polachek and R. J. Seeger, "On
Shock Wave Phenomena: Interaction of Shock Waves in Gases.
Non-Linear Problems in Continua, " Proceedings of Symposia in
Applied Mathematics, Vol. I, American Mathematical Society,
New York {1949){in press).

or as

where

(v+ 1)y+v —1

(v —1)y+v+1
(A1)

7
MP —1= (y—1)

27

(A6)

From these equations and the fact that y& 1 and y &~ 1
it is evident that M~ &~1 and %2 ~&1.

Equation I (3.6) may also be written as

[(u,&—u,&)/cr]'= (1—1/q)'(V —ur)'/cP

substituting from (A1) and (A3) we obtain

[(us&—ur&)/cr j'= 2(y —1)'/p[(&+1)y+p —1j (A7)

as the expression for the change in particle velocity in
passing through the shock as a function of y.

In terms of the Mach number 3E~ of the shock we

may write (A7) as

(u,.—uP)/c, = [2/(p+ 1)XX,—1/mr]. (As)

n= ps/pr y=I's/I'r. (A2)

As y varies from 1 to eo, p varies from 1 to (y+1)/
(p —1). For y= 1+e where e' may be neglected relative
to e, we have

ri =1+(1/y) e

which agrees with the adiabatic curve. Note that if in

(A1) y is replaced by 1/y then r) is replaced by 1/rl.
One of Eqs. I (3.6) may be written as

(I'—»'/cr)'= (y—1)/v(1 —1/n)

where c~ is the velocity of sound in front of the shock,
i.e.,

cP=yI'i/pi

Substituting for g as a function of y we obtain

[(I'—»')/cia'= (1/2v)[(v+1)y+v —13 (A3)

Using the other Eq. (3.6) we obtain

[(I'—»~)/cs7= (1/2v) [(&+1)/y+~ —13
c '=ps, /p, . (A4)

The quantities on the left of these equations is the
square of the speed of the shock wave relative to the
medium in front of the shock and behind the shock,
respectively, divided by the velocity of sound. These
quantities are also the Mach numbers of the flow ahead
and behind the shock relative to the shock wave. We
thus have the result that the Mach number behind the
shock is the same function of 1/y as the Mach number
ahead of the shock is of y. Equation (A3) may be
written as
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8r Br—+ (c+u)—=0
(9'

This follows from the equation before (A7) on substi- Adding and subtracting we then find
tuting for q from (A1) and for y from (A5).

From the deinitions of c~ and c2 and the relations
derived above we have

(c2/ci)'= y/)t
=y[(v —1)y+7+Ij/[(~+1)y+7 —13. 8$ 8$—(c—u)—=0

Bt Bx

(86)

APPENDIX B. SIMPLE SOLUTIONS OF THE
EQUATIONS OF MOTION

In this appendix we derive the corresponding results
for a one-dimensional rarefaction wave which we
assume carries the medium from one constant state
denoted by the subscript 1 to another denoted by the
subscript 2. In this case there are no discontinuities in
the Row and if we assume that all the medium ahead
of the disturbance is at the same entropy it will remain
so. Hence the relation corresponding to (A1) is the
equation of the adiabatic for the gas:

P2/Pi= (p2/»)' (81)
The velocity and pressure profiles in the disturbed

region are not constant in this case. Each portion of the
profile moves relative to the medium around it with a
speed given by the velocity of sound at that portion of
the medium. Thus the beginning and the end of the
disturbed regions move with velocities ci+ui and
c2+u2, respectively, where ci and c2 are given by .

cl 'rPi/P1) c2 )/P2/p2
and in general c'=dP/dp, (82)

respectively.
In order to determine Q2 we must discuss the diBer-

ential equations expressing the conservation of mass
and momentum which we take in Eulerian form,
namely,

where
r=-,'((o+u), s=-', ((o—u).

where

BM BM—+I'((o)—= 0,
8$ Bs

I'(o&) =c((v)+(o

(87)

and c(co) is the function obtained from solving (85) for
p/pi as a function of &v and substituting this in the
expression for c as a function of p/pi, namely,

+P& ( p ~
(v—i) /2

= (~—»~/2+ci
E /tp ) pi (pi/

These equations state that constant values of r and
s are propagated with velocities u+c and —(c—u),
respectively. For a disturbance traveling in only one
direction we have either r or $ constant. By the intro-
duction of the lower limit of integration we have
insured that ~~=0 and hence Q—Q~= ~co. This equation
together with (85) enables us to determine the expres-
sions analogous to those derived in Appendix A.

-In case s=constant we may solve the remaining
equation of (86) by the following procedure. If r= con-
stant a similar discussion can be made. The first of
Eqs. (86) becomes

and

8p Bp BQ—+u—+p—=0
8t Bx Bx

8Q BQ dI' 8p—+u—+ —=0.
Bt 8g dp 9g

(83) I'(co) = (y+ 1)or/2+ ci.

The general solution of (87) is

f(a)) =x I'(a))t, —
I.et where f(ra) is an arbitrary function of &. I'or any

speci6c problem it must be determined from the bound-
ary conditions describing the disturbance.

APPENDIX C. DENSITY FIELD IN
MACH REFLECTION

- ( P q
(7—1)2/y

y —1 &Pi)
(85) At the time this paper was submitted (November

1948) no data were available on the detailed density
field associated. with the Mach reflection of a shock
wave although some interferometric measurements had
been made on shock intersections in wind tunnels and
jets."Recent new results makes it advisable to bring
the subject up to date by the addition of this appendix
as the manuscript goes to press (July 1949).

In the shock tube now in use at Princeton the
density 6eld" associated with the reAection phenomenon

2~ Bleakney, Weimer, and Fletcher, Phys. Rev. 75, 1294A
(1949).

where the last two expressions hold in virtue of the
perfect gas assumption which leads to (81).We rewrite
Eqs. (83) and (84) in terms of co and u and after
multiplying (83) by c/p, obtain:

BM BG0 BG0—+u—+c—=0
t9$ Bx Bx

BQ 8Q Bcv—+u—+c—=0.
Bt 8x Bx

~P dp pP ( dPq dp 2ci ( p q
&'/ )/—

"pi p ~pi &dp~ p y —1 &pi)
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FIG. 17. Interferogram of Mach reRection (n=68.2', &=0.88).
The fringes represent density contours or isopycnic lines in the
gas.

has been examined with an interferometer. A Qash

photograph, reproduced in Fig. 17, is made with the
"single fringe" adjustment of the instrument, i.e.,
constant diRerence in light path over the entire field of
view in the absence of any disturbance. The fringes
that appear as a result of the reQection process are
contours of constant fringe shift and hence contours of
constant density in the gas. The parameters a and P
have the values 68.2' and 0.88, respectively. The angle
x in this case is 1.5'. The weak shock following the
reQected wave looks suspicious but investigation has
shown that it arises from some extraneous disturbance
having no relation to the reflection phenomenon. For
such weak incident shocks the density jurnp across the
slip stream is too small to be evident.

If the fringe number is taken to be 0 in the undis-
turbed region ahead of the incident shock in Fig. 17
then, to the nearest fringe, the number is 6 between the
incident and reflected shock and 16 for the first white
fringe behind the Mach shock near the wall. As one
proceeds down the inclined wall the numbers decrease
in order.

There are several points of interest in these new
results. The density and pressure are uniform in the
angular region between the incident and reQected wave
to a high degree. Behind the Mach branch and near
the wall the density falls (gradp points forward toward
the shock). Behind the reflected wave and near the
triple point the density rises to a maximum and faOs
again (gradp points away from the shock but reverses
as the point of observation moves toward the corner).
Near the triple point the density behind the reflected
wave varies strongly with angle and very little with
radius from this point. The variation does not seem to

be truly angular however since all of the contours do
not converge toward the triple point.

Since the characteristics of the density pattern in
Fig. 17 resemble those in the solution of Bargmann'4 for
the case of nearly glancing incidence, it becomes
especially interesting to examine experimental results
for an angle of incidence as close to this case as possible.
In his paper Bargmann shows that for weak shocks
()=0.8) and nearly glancing incidence the density jump
across the slip stream, the vorticity behind the curved
reflected wave and the anisentropy in this region are
negligible. Under these conditions he solved the hydro-
dynamical problem of Mach reflection for the positions
and strengths of the shocks, the density pattern and the
flow velocities in terms of e= tan(~/2 —n) when this
quantity is small. It turns out that in first approxima-
tion in e the reflected wave R is not a shock at all,
that is, the pressure varies continuously across it but
there is a discontinuity in the pressure gradient at R.
In second approximation the pressure is discontinuous
at R so that the strength of this shock is of order e'.
However in this approximation the strength of the
reflected shock still goes to zero as the triple point is
approached. This means that a maximum must exist at
some point along its length.

Figure 18 is a "single fringe" adjusted interferogram
of a Mach reflection with n=80' and )=0.8. The
numbers on this figure refer to calculated fringe shifts
and the accuracy is of the order of &0.5 fringe. The
curves drawn in the figure represent the position of the
shock waves and the density contours computed by
the method given in Bargmann's paper.

It will be noticed that the theoretical positions of the
shocks and the observed ones agree almost perfectly
in the vicinity of the triple point and above this point.
However, the observed and theoretical positions of the
Mach shock are not quite the same near the wall.

There is some disagreement between the computed
density contours and the lines of constant fringe shift.
As has been remarked, the latter may be somewhat in
error. Bargmann's results agree better with experiments
on weaker shocks being reflected at more glancing
angles as is to be expected from the approximations
and boundary conditions he uses. However for the
conditions under which Fig. 18 was obtained there is
still qualitative agreement between the shape of the
fringe pattern and the computed density contours in
the vicinity of the reflected shock. Near the wall the
disagreement is more pronounced. This is probably
due to the fact that the boundary conditions used by
Bargmann in his weak shock and glancing incidence
theory are not applied at the wall itself but at a hori-
zontal line through the corner of the wall. Thus one
would expect the difference between theory and experi-
ment to be more noticeable near the wall. The fact that
the Mach wave is observed ahead of its predicted posi-
tion is consistent with the higher than predicted density
just behind it.
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APPENDIX D. LIST OF SYMBOLS
IIll+ll J%IIIII

C

p
g'
d/dt

V(t), Vo,

V&(t), Vs(t)

S(t), Ss,
St(t), Ss(t)
)i

V', V, V

S

y

Velocity and velocity components
of a gas or piston
Velocity of sound
I.@grange coordinates
Euler coordinates
Partial differentiation with respect
to t for Axed x'
Partial differentiation with respect
to t for fixed x'

Volumes occupied by a fluid at
time t

Surfaces bounding volumes V(t)
Direction cosines of the normal to
a surface
The discontinuity in a function f
Rate of matter crossing unit area
of a discontinuity
Velocity components of a discon-
tinuity
Pressures
Density
Internal energy per unit mass
Temperature
Also used to denote triple point
Entropy per unit mass
Angle of incidence
Ratio of specific heats of a gas
Ratio of pressure behind a shock to
that in front
Ratio of pressure in front of a
shock to that behind
Sonic angle of incidence
Angle the line of travel of the triple
point makes with the wall
Angle of incidence for which x=0

584
584
584
584

585

585

585
585

585

585
586
586
586
586
594
586
586
590

590

590
593

594
595
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GO

Z) Z ) Z$
I

7 ) 7

Angle between Qow and incident
shock (Fig. 12) 595
Angle between reQected shock and
path of the triple point (Fig. 12) 595
Velocity of flow vectors (Fig. 14) 596
Angles between Qow vectors and
normals to shocks (Fig. 14) 597
Angles of deQection of a Qow by a
shock (Fig. 14) 597
Compression ratio, ratio of density
behind a shock to that in front of it 597
Extreme angle, angle of incidence
for which regular reQection is no
longer theoretically possible 599

Intro. 18. Isopycnic interferogram of Mach refiection (a=80',
)=0.8). The curves superposed on the photograph represent the
calculated positions of the shock waves and the density contours.
















