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1. SURVEY OF DOMAIN THEORY

1.1 Introduction
' 'N recent years there has been a major growth of the
i. body of experimental and theoretical knowledge
regarding the origin and behavior of ferromagnetic
domains. We possess now a general theoretical founda-
tion for the subject, a foundation which is intellectually
satisfying and which has been verified experimentally
in considerable detail in several simple situations in
ferromagnetic single crystals and, in less detail, in very
fine ferromagnetic powders. The results which have

5

been obtained confirm the theory in all essential aspects
and thus give one conhdence that the more complicated
situations obtaining in polycrystalline materials may
be understood, at least in qualitative terms, on the
basis of existing theory.

The present paper is undertaken as a comprehensive
review of the physical principles of domain theory and
of the crucial experiments which bear directly on the
foundations of the subject. The theory of the origin of
domains is not treated adequately in the existing text-'
books on ferromagnetism; for example, none of the
existing textbooks' discusses the original paper in this
field, written by Landau and Lifshitz in 1935.

The organization of the present paper falls into two
stages. There is erst an introductory survey which
describes the basic physical concepts of domain theory
in general non-mathematical terms. The ideas are then
developed in detail in the subsequent sections of the
paper.

1.2 The Domain Assumption

The essential aspects of ferromagnetism are illus-
trated by the implications of the following experimental
fact

It is possible to change the oner all magnetization -of a
suitably prepared ferromagnetic specimen from an initial
value of zero (in the absence of an applied magnetic geld)
to a saturation value of the order of 1000 gauss, by the

application of a geld whose strength may be of the order

of 0.01 oersteds

Such a magnetization curve is shown in Pig. j.. The
magnetization is defined as the magnetic moment per
unit volume. The ordinate axis of the curve is, however,
Qux density, which in this case is closely equal to 4x
times the magnetization,

~ A Russian book has just appeared which gives a brief treat-
ment of this subject (Vonsovsky and Shur, 1948). (An alphabetic
list of all references is given at the end of this article. )
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The fact just referred to contains two significant
observations:

(a) It is possible in some cases to attain saturation magnetiza-
tion by the application of a very weak magnetic Geld.

(b) It is possible for the magn. etization gf the same specimen
to be zero in zero (or nearly zero) applied 6eld.

The first observation is remarkable since it is known
from the study of paramagnetism that the application
of a field of 0.01 oersted has an entirely negligible
effect on the magnetization of a system of free and
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FIG. 2. Orientation of magnetic moments of electrons in
paramagnetic and ferromagnetic materials.
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FIG. 1. Magnetization curve of single crystal of silicon iron. The
8 scale is only approximate. (Williams and Shockley, 1949.)

independent elementary magnetic moments. For ex-
ample, at room temperature a field of 0.01 oersted will
increase the magnetization of a paramagnetic salt such
as ferrous sulfate (FeS04) by about 10 ' gauss, as
compared with 10' gauss in the ferromagnetic specimen.
The small e8ect in the case of the paramagnetic salt is
known to be caused by thermal agitation which acts to
oppose the ordering inQuence of the applied magnetic
field. In the paramagnetic salt electively only one
magnetic moment in 10' is "oriented" by a field of
0.01 oersted, so that the distribution of magnetic
moment directions remains essentially random. This
high degree of chaos is, as we have said, the result of
the predominant role played by thermal agitation in
a system where the electron magnetic moments are
independent, without important mutual interactions.

Pierre gneiss (1907) pointed out that the difficulty
caused by thermal agitation could be largely circum-
vented if one postulated in ferromagnetic materials the
existence of a powerful internal "molecular" field; we
describe this now as a mutual interaction between
electrons which would tend to line up the magnetic
moments parallel to one another.

The required magnitude for the Weiss molecular field
may be estimated readily. At the Curie temperature
T, the thermal energy kT. of an electron spin is of
the same order of magnitude as the interaction energy
p~H J of the Inagnetic moment p~ of an electron acted
on by the effective molecular field H J ..

kT~= p~Hm~, (1.2.1)

' A list of symbols is given in Appendix C.

so that'

H y= I4T./14m =10 "10'/10 "=10' oersteds. (1.2.2)

This is an exceedingly powerful effective held; it is
about twenty times more intense than any actual
magnetic Geld produced in a laboratory. At tempera-
tures below the Curie temperature the eBect of the
molecular field outweighs the thermal fluctuation energy
and the specimen is accordingly ferromagnetic. Mag-
netic moment orientations in paramagnetic and ferro-
magnetic materials are illustrated schematically by
Fig. 2; the variation of the saturation magnetization of
iron as a function of temperature is plotted in Fig. 3.

It is known now that the origin of the molecular
field lies in the quantum-mechanical exchange force;
another and better known manifestation of this force
is the chemical valence bond, although in the case of
the chemical bond the exchange force usually tends to
make the spins of neighboring electrons anti-parallel,
instead of parallel as in the case of ferromagnetism.
Weiss himself did not make any specific predictions
about the origin of the molecular field, but he did point
out that the ordinary magnetic moment interaction
between electrons is much too weak to account for the
molecular field. The magnetic held at one lattice point
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arising from the magnetic moment of an electron at a
neighboring lattice point is of the order of

).0
~ ~

10 "
p,g

H= —=
r3 (2X 10-')'

= 1000 oersteds, (1.2.3)

which is smaller than the effective molecular field H ~

by a factor of the order of 10 4. The magnetic moment
interaction by itself would lead to a Curie temperature
in the neighborhood of 0.1'K. The situation is quite
diferent in dielectric materials, as the order of magni-
tude of electric dipole moments is. about 100 times
larger than magnetic dipole moments, leading to inter-
action energies 10' larger. It is therefore not surprising
to find materials which are ferroelectric at room temper-
ature, as a result of electric dipole interactions.

We have now seen how the existence of the powerful
Weiss molecular field enables saturation magnetization
to be obtained. How then do we explain statement (b)
above, that it is possible for the magnetization to be
zero in zero applied field? It seems at first sight contra-
dictory, in view of the 10' oersted molecular field, to
suppose that a 10 ' oersted applied field can alter the
magnetic moment of the specimen by an appreciable
amount.

Weiss extricated the theory from this difficulty by
making the assumption that actual specimens are
composed of a number of small regions called domains,
within each of which the local magnetization is satu-
rated; the directions of magnetization of different
domains need not necessarily be parallel, however. A
schematic arrangement of domains with zero resultant
magnetic moment is shown in Fig. 4a for a single
crystal. In polycrystalline samples it was imagined by
early workers that each crystallite might contain a
single domain, and that the resultant magnetic moment
could be zero by virtue of a random distribution of
grain axes, as indicated in Fig. 4b.

The increase in the value of the resultant magnetic
moment of the specimen under the action of an applied
magnetic field may be imagined to take place on the
domain theory by two independent processes, as was
suggested by R. Becker: by an increase in the volume
of domains which are favorably oriented with respect
to the field at the expense of unfavorably oriented
domains; or by rotation of the directions of magnetiza-
tion towards the direction of the field. These two
methods by which the resultant magnetization may
change are shown in Fig. 5.

It turns out on closer examination that in weak
fields the magnetization changes usually proceed by
means of domain boundary displacements, so that the
domains change in size. In strong fields the magnetiza-
tion usually changes by means of rotation of the
direction of magnetization. A typical magnetization
curve is shown in Fig. 6, with the regions designated
in which each process is dominant.
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FIG. 3. Saturation magnetization of iron as a
temperature. At room temperature the saturation
percent below that obtaining at zero degrees Kelvin.
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We therefore see that Weiss was able to explain the
principal aspects of ferromagnetism by means of two
assumptions: the existence of the molecular field and
the existence of domain structure. Weiss did not justify
either of these assumptions in terms of atomic forces.
The explanation of the molecular field in terms of
exchange forces was contributed by Heisenberg in 1926,
and the explanation of the origin of domains in terms
of magnetic field energy was given by Landau and
Lifshitz in 1935.

We go on now to consider qualitatively the causes
responsible for the formation of domains.

/

t

FIG. 4. Schematic domain
arrangements for zero resultant
magnetic moment in a single
crystal (a) and in a polcrystal-
line specimen (b). The domain
structure of the polycrystalline
specimen has been drawn for
simplicity as if each crystallite
contained only a single domain;
this is not usually the case.

to)
SINGLE CRYSTAL

(b)
POLYCRYSTAL

1.3 The Origin of Domains

In this section we shall show that domain structure
is a natural consequence of the various contributions
to the energy —exchange, anisotropy, and magnetic-
of a ferromagnetic body. But first it is appropriate to
consider brieQy the experimental evidence for the
existence of domains. We have seen already that the
existence of domains may be inferred from the character
of the magnetization curve itself. But by far the most
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direct and cogent evidence of domain structure is
furnished by micro-photographs of domain boundaries
obtained by the technique of magnetic powder patterns.
This method, applied originally by Bitter (1931), has
in the hands of H. J. Williams and his collaborators
(1947—49) provided ample and convincing proof that
domains exist in the shapes and sizes expected theoreti-
cally, and furthermore that they behave under applied
mechanical and magnetic forces as predicted by theory.

The powder pattern method consists in placing a
drop of a colloidal suspension of finely divided ferro-
magnetic material, such as magnetite, on the carefully-
prepared surface of the ferromagnetic crystal under
study. It is found on observation through a microscope
that the colloid particles in the suspension become

UNMAGNETIZED

M AG NET IZ ED BY
DOM A IN GROWTH

(BOUNDARY. DISPLACEMENT

FIG. 5. Funda-
mental magneti-
zation processes.

MAGNET IZED BY
DOMAIN ROTATION

strongly concentrated about certain well-defined lines
which represent the boundaries between domains
magnetized in different directions. The reason why
the colloid particles concentrate near these boundaries
is that in their vicinity there exist very strong local
magnetic fields which attract the magnetic particles.

A photograph of a relatively simple domain structure
in iron is shown in Fig. 7, along with the interpretation
derived from the photograph and from certain auxiliary
experiments. A more complex type of domain structure
is shown in Fig. 8; structures with this general "tree"
character arise when the crystal surface is slightly
inclined with respect to a cube face; the explanation of

this structure has been given in detail by Williams,
Bozorth, and Shockley (1949).

We may understand the origin of domains by con-
sidering the structures shown in Fig. 9, each repre-
senting a cross section through a ferromagnetic single
crystal. In (a) we have a saturated configuration con-
sisting of a single domain; as a consequence of the
magnetic "poles" formed on the surfaces of the crystal
this configuration will have a high value of the magnetic
energy (1/Sir) J'IPd V. The magnetic energy for a
square cross section will be of the order of I,'=10'
ergs/cc; here I, denotes the saturation magnetization.

In (b) the magnetic energy has been reduced by a
factor of roughly one-half as a result of dividing the
crystal into two domains magnetized in opposite direc-
tions. The subdivision process may be carried further
as in (c):with 1V domains it turns out that the magnetic
energy is reduced (because of the reduced spatial exten-
sion of the field) to approximately 1/X of the magnetic
energy of the saturated configuration (a).

The subdivision process may be expected to continue
until the energy required to establish an additional
boundary layer or interface, separating two domains
magnetized oppositely, is greater than the reduction in
magnetic field energy consequent on the finer subdivi-
sion. It may be appreciated that a boundary layer does
indeed have a certain amount of energy associated with
it: on opposite sides of the boundary the magnetization
is directed in anti-parallel directions; now since the
exchange forces favor parallel and oppose anti-paralleI.
orientations of the magnetization, it will naturally
require the expenditure of energy to establish a bound-

ary layer. In Section 3 we shall calculate this energy
after an examination of the nature of the boundary
layer, and we shall find that the energy is of the order
of 1 erg/cm' of boundary surface. If then we suppose
tentatively that there are N=10' domains per centi-
meter, the total boundary energy in a crystal cube
one cm on each edge will be of the order of 10' ergs
and the magnetic energy will also be of the order of
10' ergs. This situation represents approximately the
equilibrium number of domains for the particular geo-

metrical arrarlgemerlt shove.
It is possible to devise domain arrangements such

as (d) for which the magnetic energy is zero. In (d)
the boundaries of the triangular prism domains (termed
"domains of closure" ) near the end faces df the crystal
make equal angles —45'—with the magnetization in
the rectangular domains and with the magnetization
in the domains of closure: therefore the component of
magnetization normal to the boundary is continuous
across the boundary, and no poles are formed anywhere
in the crystal. As there are no poles there is no magnetic
field associated. with the magnetization, and we may
speak of the Qux circuit being completed within the
crystal —thus giving rise to the phrase "domains of
closure" for the domains near the surfaces of the
crystal which act to complete the Qux circuit.
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The extent to which the subdivision of the closure
configuration (e) proceeds will depend on the energy
requirements of the domains of closure. It is not
immediately obvious that the optimum closure con-
6guration of type (e) will necessarily have a lower
energy than the optimum butt-end configuration of
type (c), and in fact approximations to both types of
termination are found in diGerent materials.

The energy required to form a domain of closure in
an uniaxial crystal such as cobalt comes principally
from what is called the crystalline anisotropy energy.
The anistropy energy tends to make the magnetization
of a domain line up along certain crystallographic axes.
The axes thus favored are known as preferred axes, or
axes of easy magnetization. Such axes are well-estab-
lished experimentally, and it is known that a consider-
ably larger amount of energy may be required to
saturate a specimen along an arbitrary axis than along
one of the preferred axes. In cobalt the hexagonal axis
of the crystal is the only preferred axis, and cobalt is
accordingly referred to as uniaxial. In iron, which is
cubic, the preferred axes are the cube edges; in nickel,
which is also cubic, the preferred axes are the body
diagonals. Fig. 10 shows magnetization curves for Fe,
Xi, and Co, in directions of easy and hard magnetiza-
tion.

In cobalt, if the basic rectangular domains are
magnetized along the easy axis of magnetization, then
the domains of closure wi11 by necessity be magnetized
in hard directions. In a cubic crystal such as iron it is
possible for both the basic domains and the closure
domains to be magnetized along di8erent easy axes.
The energy expenditure in this case arises from mag-
netostriction: since the closure domains are magnetized
along different axes from the basic domains they will
tend to be elongated by magnetostriction along different
axes, and in order to fit the various domains together
in the crystal structure we have to do work against
elastic forces.

The termination structures revealed by powder
patterns are often more complicated than the simple
cases we have discussed. But the underlying principles
are always the same: domain structure has its origi ie
the possibiLity of Lowering the energy of a system by going
from a saturated configuration such as (a) with high
magnetic energy to a domain configuration, such as (c)
or (e), with a lower energy. The domain structures
found are essentially induced by the presence of the
external surfaces of the crystal, and it is therefore not
unexpected to find that the domain structure may be
altered radically by changes in the crystal surfaces.

A particularly simple type of domain structure is
shown in Fig. 11; this structure has been realized by
Williams and Shockley (1949) with a single crystal of
silicon iron which was cut to the form of a hollow
rectangle with legs accurately parallel to $001j and
L010$ crystal axes. When the crystal is saturated
entirely in one sense the d.omain boun. daries are the

Frc. 6. Representative magnetization curve, shoveling the dominant
magnetization processes in the different regions of the curve.

Sise of Domains

An essential feature of the new viewpoint regarding
domains is that the size of domains in a single crystal
is expected to be largely a function of the size and shape
of the crystal. That is, the "size" of a domain is not a
fundamental length of physics, but is rather fairly
sensitive to the actual crystal in hand. The volume of
certain superficial domain structures may be relatively
small (say 10 ' cc), while the underlying domain
structure will usually contain larger domains ( 10 '
cc, perhaps). The limit to domain size in a properly
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FIG. 7. Simple domain structure in Si-Fe single crystal,
(Williams, Bozorth, siid Shockley. ) (&(500)

45' lines shown in (a); when part of the crystal is
magnetized clockwise and part counter-clockwise, then
the square-shaped boundary in (b) is formed in addi-
tion. Magnetization changes are then found to take
place by the movement of the square-shaped boundary;
it was observed that the flux changes for the magnetiza-
tion curve plotted in Fig. 1 actually corresponded
quantitatively to the displacements of domain wall.
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FB'. 8. Complex domain structure in Si-Fe single crystal.
(Williams, Bozorth, and Shockley. ) ()&500)

shaped crystal can be determined to order of magnitude
mainly by the crystal size itself.
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Polycrystalli rIe Materials

The greater part of this paper is directed specifically
towards understanding the domain structure of single
crystals. The magnetic materials used commercially
are, however, always polycrystalline; that is, each
specimen is composed of a large number of small
crystallites. In many materials the crystallites are
oriented more or less at random, so that for some
purposes certain properties of the polycrystalline speci-
men may be obtained by averaging the corresponding
single crystal property over al1. directions. In other
materials, in particular those subjected to cold working,

the crystallite axes are not necessarily distributed at
random, but a considerable degree of orientation may
exist. For example, in the case of rolled iron tape' the
crystallites have a strong tendency to line up in such a
way that the rolling plane is a (001) plane, and the
rolling direction is a

I
110j direction.

If there is a very high degree of orientation, the
whole polycrystalline specimen may be expected to
behave with respect to domain structure more or less
as a single crystal.

On the other hand, if the crystallites are oriented at
random, so that there is a good chance that the direc-
tions of easy magnetization of adjacent crystallites
make fairly large angles with each other, then each
crystallite may be expected to behave largely as if it
itself were a single crystal isolated from the neighboring
crystallites.

We see then that, in principle, the size of a domain
may be either larger or smaller than the size of a
crystal grain in polycrystalline material. It is, however,
quite unusual to have a sufFiciently high degree of
orientation with a single domain to encompass com-
pletely several grains. Figure 12, which is due to
Williams, shows a case in which domain boundaries
are practically continuous across more than one grain.

We may also get a certain amount of information
regarding domain dimensions in polycrystalline speci-
mens by means of measurements of the depolarization
of polarized neutron beams passing through the ferro-
magnetic specimen.

1.4 Coercive Force, Hysteresis, and
Reversible Permeability

The coercive force4 is perhaps the most sensitive
property of ferromagnetic materials which is subject to
our control, and is one of the most important criteria
in the selection of ferromagnetic materials for practical
applications. The essential diQerence between material
for permanent magnets and material for transformer
cores lies in the coercive force, which may range from
the value of 600 oersteds in a loudspeaker magnet
(Alnico V) and 20,000 in a special high stability magnet
(Fe-Pt) to the value of 0.5 in a commercial power
transformer (Silicon-iron) or 0.004 in a pulse trans-
former (Supermalloy). Thus the coercive force may be
varied over a range of 5&(10 .

(a) (b)
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(e)
Fro. 9. The origin of domains.

(c)
3 Yager has given a beautiful demonstration of the orientation

anisotropy in rolled iron tape by means of a microwave resonance
experiment.

4 The coercive force H, is defined customarily with reference to
the saturation hysteresis cycle (Fig. 13) as the value of the
magnetizing field corresponding to the point B=O; that is, it is
the reverse field necessary to carry the induction from the satura-
tion value down to zero. In theoretical work, however, it is often
more direct to consider the coercive force as the field corresponding
to the point for which the magnetization I is zero —that is, where
B—H is zero; when used in this sense the coercive force is denoted
by the symbol IH, . The distinction between H. and IH, is sig-
nificant only for large values of the coercivity —of the same orde&
as the saturation magnetization I,.



P H Y S I C A L T H E 0 R Y 0 F F E R R. 0 lVI A G N E T I C 0 0 NI A I N S 547

FIG. 10. Magnetization curves
for single crystals of Fe, Ni, and
Co. (Honda and Kaya, 1926;
Kaya, 1928.)
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The problem of the theory is to interpret the observed
values of the coercivity in terms of the physical state
of the material and to predict methods by which the
coercivity may be increased in magnetically hard
materials and decreased in magnetically soft materials.
Several theories have been advanced (Becker, 1932;
Kersten, 1938, 1943;Neel, 1946; Stoner and Wohlfarth,
1947—48) and a certain amount of progress has been
made, although the problem is beset with the usual

difhculty in explaining any material property which is

highly structure sensitive, namely, the difhculty in
determining quantitatively the relevant physical factors—such as impurities, lattice imperfections and internal
strains.

When we have understood the coercive force we will

be a long way towards understanding the saturation
hysteresis loss at low frequencies, since the area
enclosed by the hysteresis loop (Fig. 13) is a'pproxi-

mately given by the product of the saturation induction
8, times the coercive force. That is, the energy dissi-

pated on going once around a hysteresis loop is of the
order of B,H„to within a factor of 2 to 4. We may,
therefore, devote our attention to the single factor H, .

The coercive force in "magnetically soft" (low II,)
materials may be understood from the following
picture: The total energy of a given specimen may
vary depending on the position of a domain boundary,
as a result of local variations in internal strains,
impurities, crystallite dimensions, etc. ; the variation is
indicated schematically in I'ig. 14. In the absence of
an applied magnetic field the boundary will be situated
at some minimum position such as (A) in the figure.
In the presence of a field the boundary will be unable
to make a large displacement to the extreme right (D)
unless the energy is increased by a sufhcient amount to
enable the boundary to pass over the point 8 corre-
sponding to the maximum boundary energy.

The increase in energy must be furnished by the
reorientation of the local magnetization I, in the applied
field H, and the value of H which suKces to reverse
about one-half of the magnetization of the specimen
will be the coercive field H..

Qualitatively this picture of the coercive process
explains the fact that the coercive force diminishes as
the (precipitated) impurity content decreases (Fig. 15)
and also as internal strains are removed through
annealing; it also explains why it is that alloys con-
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FIG. 11. Simple domain structures in single crystal of iron in
form of rectangular loop, with legs parallel to [001$ and [010j
axes.

taining a precipitated phase are Inagnetically hard.
While there is little doubt of the general correctness of
our picture there remains the question of the detailed
quantitative correlation of coercivity with specific
physical factors; the examination of this question we
defer until Section 7.

The coercive force of one type of magnetically hard
material may be understood from a quite diferent
picture; we refer to materials composed of very small
grains or fine powders where each particle is always
magnetized to saturation as a single domain. The fact
that a suSciently small particle, with diameter less
than 10 4 or 10—' cm, is composed of a single domain is
a result of domain theory which has been confirmed by
experiment. It can be shown that with such very small
particles the formation of a domain boundary is
energetically unfavorable: this is essentially because
too large a proportion of the volume of a small particle
would be contained within the wall —the wall thickness
being independent of the particle size.

If a small particle is constrained to remain as a single
domain it will not be possible for magnetization changes
and reversal to take place by means of the process of
boundary displacement which usually requires rela-
tively weak fields; instead the magnetization of the
particle must rotate as a whole (Fig. 16), a process
which may require large fields depending on the ani-
sotropy energy of the material or the shape of the
particle: this is because we must rotate the magnetiza-
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tion over the energy hump corresponding to a direction
of hard magnetization.

The coercive force of fine iron particles is expected
theoretically to be about 250 oersteds on the basis of
rotation opposed by the crystalline anisotropy energy,
and this is of the order of the value reported by several
observers. Similarly the high coercivities of the com-
pounds MnBi (IH, &12,000) snd FePt (zII,=20,000)
seem to be in line with the rotation concept, with
anisotropy energy as the tactor opposing rotation.

—Bs

If the small particles possess an elongated shape we

may have a high coercivity because of the anisotropy
of the energy in the demagnetizing field, even if the
crystalline anisotropy energy is low. That is, the
magnetization tends to line up along the long axis of
the specimen, and a strong field may have to be applied
to turn the magnetization through the short axis. This
appears to be the explanation of the high coercive force
of the alloy FeCo in fine powder form; the alloy is
known to have a low anisotropy energy from single
crystal measurements, so that the anisotropy energy
alone cannot explain the observations, but the shape
e6ect must be invoked.

Pro. 13. Definition of the coercive force.

Reversible Permeability

The extent of the range of field strength over which
the permeability is reversible is determined by the
distance through which a domain boundary may move
without passing over a peak in the curve of wall energy
vs. distance; with reference to Fig. 14, one such region
of reversible permeability is the region CAB—when
the domain boundary leaves this region it moves
irreversibly to the extreme right or extreme left of the
figure.

The reversible permeability is determined by the
irregularities of the curve of boundary energy vs.

displacement, and thus is determined by essentially
the same physical conditions as the coercive force. A
comparison of the initial permeabilities p, ~ and the
coercive force II, for a wide range of magnetic ma-
terials is shown in Fig. 17. It is seen that there is a
very close correlation, materials with high coercivities
having low permeabilities, and vice versa.
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Barhhagsem Eeet
Since many physicists have encountered the concept

of domain structure only in elementary textbooks, in
connection with discussions of the Barkhausen eGect,
it may be well at this point to correct the widespread
notion of the connection between the size of the
Barkhausen discontinuities and the size of domains.
Recent experiments of Williams and Shockley (1949)
have shown quite clearly that there is usually no direct
connection here, but that the Barkhausen discontinui-
ties correspond to irregular fluctuations in the motion
of a domain boundary (Bloch wall) under the influence
of an applied magnetic field, rather than to a complete
domain reversal. Very pronounced and continued
Barkhausen noise has been observed attending the
motion of a single domain wall. This discovery frees
the subject from the difFiculties which had been raised
by the earlier interpretation; for example, the apparent
"domain volume" of 10 ' to 10 ' cc indicated by the
Barkhausen eGect has no direct connection with actual
domain volumes, which may be very much greater.

Perroelectri c Domains

Certain dielectric crystals such as rochelle salt and
barium titanate show ferroelectric behavior —that is,
regions of spontaneous electric polarization are found,
analogous to the regions of spontaneous magnetization
in ferromagnetic crystals.

In some crystals of barium titanate arrangements of
ferroelectric domains have been found (Matthias and
von Hippel, 1948), which at 6rst suggest that the
formation of ferroelectric domains is governed by
electrostatic energy, just as the formation of magnetic
domains is governed by magnetostatic energy. How-
ever, the electrostriction in barium titanate is 10—,
which is considerably larger than the values of the
magnetostriction ( 10 ') in ferromagnetic materials.
It is therefore likely that the electrostriction will play
an important role in ferroelectric domains, along with
considerations of closure of electrical flux. There is also
the possibility of charge neutralization by means of
free charges in the atmosphere.

The saturation polarization in BaTi03 is approxi-
mately 50,000 esu.

z
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FrG. 14. Variation in energy of specimen as a function
of the position of the boundary.

and free.energy; the di8erence is important in ferro-
magnetism only near the Curie point.

The most important equations for energy density
derived in the various parts of this section are summa-
rized here, for a cubic crystal:

Exchange: f-= J~'Ev v'

Anisotropy: f&=E&(aPn2'+u2 n32+032~P)

Magnetoelastic: f .=—,'XT sin28

Magnetic: f „=—2H I (for self-energy)

(2.1.5)

(2.2.4)

(2.3.22)

(2.4.2)

V)
O
4J
I-
V)
ec
LLI

Here J is the exchange energy integral; y is the angle
between the directions of neighboring spins S; Eq is
the anisotropy energy constant; cx&, o.2, n3 are the direc-
tion cosines of the magnetization vector referred to the
crystal axes; X is the isotropic. magnetostriction, and 8
is the angle between the tension T and the magnetiza-
tion.

2. CONTRIBUTIONS TO THE DOMAIN ENERGY

The purpose of this section is to derive quantitative
expressions for the several types of energy which enter

specifically into the theory of domain structure. The
energies with which we are most particularly concerned
and the symbols by which we denote the corresponding
energy density are: exchange energy, f, ; anisotropy
energy, f&,. magnetoelastic energy, f, ; and magneto-
static energy, f„.All of these terms are necessary;
commonly the omission of any one would cause pro-
found modihcations in the nature of the domain
structure. We neglect the distinction between energy

0
0 40 60

PERCEl4T COPPER BY WEIGHT

FIG. 15. Effect of precipitated copper on the coercive force of iron
(Kussmann and Scharnow, 1929).
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FIG. 16. Magnetization changes in very small particles occur by
rotation of the total magnetic moment of the particle.

saturation magnetization
Rgff

(Bohr magneton)
X (number of magnetic at,oms per unit volume)

Some typical values are given in Table I.
A further question is that of the relationship between

the electrons responsible for ferromagnetism and the
electrons responsible for the electrical conductivity of
the metal: are the same or diferent electrons responsible
for the two processes' It appears likely that the
electrons responsible for the ferromagnetism make only
a minor contribution to the electrical conductivity. In
the iron group of the periodic table the conduction
electrons are believed to come largely from the 4s shell,
while the ferromagnetic electrons are in the 3d shell of
each constituent atom; the 3d shell lies nearer to the
nucleus and is more tightly bound than the 4s shell.

In this connection it may be noted that materials are
known which are strongly ferromagnetic, yet are very
poor electrical conductors. Compounds such as manga-
nese ferrite MnO Fe203 and nickel ferrite NiO Fe203
have values of saturation magnetization of the order of

2.1 Exchange Energy

Ke shall start the treatment of exchange energy with
a preliminary discussion of the present picture of the
origin of ferromagnetism in relation to the electronic
structure of magnetic materials.

It is believed that nearly all of the magnetic moment
of ferromagnetic substances arises from electron spin
motion, rather than from orbital motion of the electron
around a nucleus. This conclusion is indicated by
results of measurements of the magnetomechanical
ratio. The magnetomechanical ratio is the ratio of
magnetic moment to angular momentum, and the ratio
is expected theoretically to be equal to e/mc for spin
motion, and e/2mc for orbital motion. The experi-
mental observations, as summarized by Barnett (1944),
are close to e/mc, with small but probably significant
deviations; from the deviations we may tentatively
suppose that the orbital motion electively contributes
something like 10 percent and the spin motion 90
percent of the saturation magnetization. This conclu-
sion is supported by the results of microwave resonance
experiments (Kittel, 1949a). For most purposes the
orbital contribution is neglected.

We next ask how many electron spins per atom
participate in the magnetization. We may obtain the
effective number of Bohr magnetons per magnetic
atom from the relation

200 or more at room temperature, while their electrical
resistivities are of the order of 10' to 10' ohm-cm. By
comparison the resistivity of iron is about 10 ' ohm-cm.

In semi-conducting magnetic materials, such as the
ferrites, we are inclined to believe that both the 4s
electrons and the ferromagnetic 3d electrons are more
or less fixed to individual atoms, rather than wandering
widely throughout the crystal. It appears probable
that in more metallic materials the 4s electrons con-
tribute largely to the conductivity, while the 3d elec-
trons are largely localized as before. The results of
neutron polarization experiments also indicate that the
electrons with uncompensated spins are well-localized
in the crystal.

The principal difficulty with the model of 3d electrons
fixed on individual atoms is that it does not immedi-

ately explain the non-integral values of the magneton
number obtaining in most substances. ' The alternative
model of "collective" electron ferromagnetism empha-
sizes the band concept according to which the 3d
electrons may wander more or less freely throughout
the entire crystal, and on' this picture the non-integral
values of r4rt find an easy explanation (Table I).

Neither the atomic nor collective models taken
separately in their simplest form will give a complete
and consistent description of all the numerous phe-
nomena associated with ferromagnetism. We shall in
this paper employ the atomic model exclusively, not
because of a firm belief in its universal applicability,
but because on this model one may treat in a simple
way the quantity of most direct interest to domain
theory —the exchange energy due to gradual variations
in spin direction, such as occur within the boundary
wall between domains. The good agreement which
obtains between the theoretical and the experimental
values of the surface energy of the boundary wall is,
in fact, a significant achievement of the atomic model.
It is, however, possible to give a quantitative treatment
of the boundary on the band picture, and this is accom-
plished in a forthcoming paper by Herring and Kittel.

Exchange ErMrgy on the Atomic (Heitler
London;Heisenberg) Model

We shall work then with a model on which at each
lattice point of the crystal there is situated an atom
with total spin quantum number S, where 25 is equal
to the number of unpaired electron spins in the atom
and is an integer.

The relevant result of the quantum-mechanical
treatment' of the many-electron problem may be
summarized by saying that there is a term of electro-
static origin, which does not enter on strictly classical
dynamics, in the energy of interaction between neigh-
boring atoms, and this term tends to orient the electron

~ Van Vleck (1945) has pointed out that a slight variant of the
Heisenberg model will account for non-integral values of the
average magneton number.

6 See, for example, the reviews by Van Vleck (1945, 1947).
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spins of the atoms either parallel or antiparallel to each
other —according to the algebraic sign of a certain
energy integral J, known as the exchange integral,
which enters the problem. The usual convention is to
define J in such a way that when it is positive the
energy for parallel orientation of two spins is lower
than the energy for antiparallel orientation by an
amount 2J, for spin 2.

In this review we are taking for granted the existence
of an exchange interaction with the specified properties,
as it is not possible in this space to develop the necessary
background of quantum theory. We shall, however,
give here a method whereby the exchange integral J
may be related approximately to the Weiss molecular
field H,„j.Let us imagine that the electron spin of a
given atom and its s nearest neighbors are oriented in
the same direction. The exchange energy of the selected
atom is then equal to —2sJS'. The molecular field is
essentially defined so that the energy of interaction
—2Sp~H ~ of the magnetic moment of the atom with
the molecular field is equal to the exchange energy:

2sJS'= 2Sp~Hmg, (2.1.1)

Saturation
magnetization I&

Substance Room temp. O'K &~ ~~ (0 K)
Density

gr/cc

Ferro-
magnetic

Curie
temp.'K

Fe
Co
Ni
Gd
MnBi
Cu2MnAl

1707 1752
1400 1446
485 510

1090 1980
600 675
430 (540)

2.221
1.716
0.606
7.10
3.52
3.0

7.86
8.8
8.85
7.83
9.0
1 72++

1043
1388
631
289
670*
600

+ Extrapolated; limited by apparent phase transformation at 620'K.
**Density refers to manganese atoms alone.

fundamental result of quantum theory and is the
starting point for our calculations of the exchange
energy of configurations with varying spin directions.
The equation is derived in many places, and we may
refer again to the review by Van Vleck (1945).

For many purposes it turns out that we may think
of the spin matrices as approximately related to classical
vectors, and in this sense we rewrite Eq. (2.1.3), as

TABLE I. Calculation of effective number n.yy of Bohr mag-
netons per magnetic atom; and data on saturation magnetization
and Curie points.

so that
II r sSJ/IJ,~. —— (2.1.2)

z ..= —+2J,,S' cosy;,
i)j

(2.1.4)

The effective coupling between spins caused by the
exchange effect is equivalent to a potential energy of
the form

Vg= —2J@S; S,, (2.1.3)

where J,; is the exchange integral connecting atoms i
and j, and S; is the spin angular momentum of atom i,
measured in multiples of h/2s. . This equation is a very

where y;; is the angle between the directions of the spin
angular momentum vectors, understood in a classical
sense; m„ is now the exchange energy. The circum-
stances and the extent to which the use of Eq. (2.1.4)
is justifiable will be discussed in a separate publication;
we may summarize the results by saying that the
semiclassical approximation is good when neighboring
spins make only small angles with each other, as
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within a domain boundary wall. In domain theory we
are interested in the exchange energy only for con-
Ggurations in which neighboring spins make small
angles with each other,

If we suppose that only interactions between nearest
neighbors are important for the exchange energy and
that these interactions are equal, then

w~~= 2IS Q cos(po.
i& j'

If neighboring spins make a small angle q;;«1 with
each other, then we have the important result

and the exchange energy between each pair of spins is

J= (0.15)(1043)k—160k, (2.1.14)

taking the spin as one.
Another method, used by Lifshitz' (1944), is to relate

the experimental value of the constant C in the Bloch
law

involved in the statistical theories are reviewed by
Van Vleck (1945, 1947). We summarize the results of
two methods here. P. R. Weiss (1948) finds by an
extension of the Bethe-Peierls method the results:

I=0.54kT, (simple cubic; spin i~) (2.1.12)

I=0.34kT, (body-centered cubic; spin —',) (2.1.13a)

7=0.15kT, (body-centered cubic; spin 1) (2.1.13b)

For lion,

Am;;—JS'y'. (2.1.6) I=Io(1—CTl) (2.1.15)

On summing over nearest neighbors on a body-centered
cubic lattice with lattice constant a,

Aw„~—2JS'a,'Q (n "Pn.) (2.1.8)

which may be manipulated into the form

&~ =2&S'~'PL(~n ')'+ (~n ")'+(|7n ')q (2.1.9)

by using the fact that

(2.1.10)

The exchange energy density becomes (taking account
of the two atoms per unit cell and taking care not to
count interactions twice):

f.,=A L(V'n, )'+ (V'n, )'+ (7'ns)'], (2.1.11)

where A =2JS'/a.
We have now obtained two useful forms for the

exchange energy; namely Eqs. (2.1.6) and (2.1.11).
The next problem is to relate the value of the exchange
integral J which enters these equations to some experi-
mental quantity which is strongly dependent on J,
such as the Curie temperature or the variation of the
saturation magnetization with temperature. Here we

run head on into the fact that the accurate determina-
tion of J from thermal data presupposes the existence
of an accurate statistical theory of ferromagnetism,
and this we do not possess at present.

The mathematical details of the type of calculations

It is often convenient to express Eq. (2.1.5) in

another form. I et us suppose that the direction cosines
of the spin at lattice point r; are n, *, o.p, o.,'. Now the
direction cosines 0.;, a;&, o.,' at the neighboring lattice
point r; may be expanded in a Taylor series:

n ;*=n,*+.(x,;(8/», ;)+yg(B/By;, )+z,,(B/Bs,;) )n,'

for the temperature dependence of the saturation
magnetization at low temperatures, to the effective
exchange integral by means of the equation (Bloch,
1931;Moiler, 1933)

C = (0.0587/2S) (k/2SJ)'* (2.1.16)

for a body-centered cubic structure and spin S. Now
from the measurements of Fallot (1936) we have for
iron C=3.5X10—' so that

J=205k,

for S=1, in fair agreement with Eq. (2.1.14) obtained
by a quite different method.

We shaB use the value J=205k resulting from the
Bloch theory since the spin wave picture is most closely
allied with the behavior of a domain boundary wall
and actually (as can be shown) leads to a value of A

independent of assumptions regarding the eBect of
interactions from other than nearest neighbors.

Sy use of the above value the constant A in Eq.
(2.1.11) becomes (with S=1):

2JS' 410k
= 2.0&(10 ' ergs/cm. (2.1.18)

86X10

The measurements of Fallot (1936) indicate that for
4 percent (by weight) Si-Fe one should use A—1.7
&(10 ' ergs/cm. This composition corresponds approxi-
mately to that used by H. J. Williams in his domain
pattern studies; it is used rather than pure iron because
crystals of pure iron are considerably more dificult to
pl oduce.

2.2 Anisotropy Energy

The anisotropy energy or, as it is sometimes called,
the magnetocrystalline energy of a ferromagnetic
crystal acts in such a way that the magnetization
tends to be directed along certain definite crystallo-

~ Several numerical errors in the work of Lifshitz are corrected
in the present treatment,
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graphic axes which, accordingly, are called Chrections of
easy megeeHsatioe; while the directions along which it is
most dif5.cult to magnetize the crystal are called hard
directions. It is found experimentally to require the
expenditure of a certain, and often considerable, amount
of energy to magnetize a crystal to saturation in a hard
direction, referred to the lower energy required to
saturate along a direction of easy magnetization. The
excess energy required in the hard direction is the
ariisotropy ertergy

As an example of anisotropy energy we may consider
the case of cobalt, which is a hexagonal crystal. It is
found that the direction of the hexagonal axis is the
direction of easy magnetization (at room temperature),
while all directions in the basal plane, normal to the
axis, are hard directions. The magnetization curves of
a single crystal of cobalt are shown in Iig. 10. The
energy represented by the magnetization curve in the
hard direction is given by J'IICI per unit volume and
amounts to an excess energy of about 5&(10~ ergs/cc
for the curve shown.

Matherrtatical Represemtatiort of the Anisotropy Energy

We now consider the problem of determining the
work done in magnetizing a cobalt crystal in a direction
making an angle 0 with the hexagonal axis. It is natural
to expect that the anisotropy energy density fJr may
be represented by a series expansion of the form

X IO~
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FIG. 18. Anisotropy constants for face-centered Fe-Ni alloys
at room temperature. Note the region of low anisotropy near
70 percent nickel.

the restrictions imposed by cubic symmetry. For ex-
ample, the expression for the anisotropy energy must
be an even power of each n;, and it must be invariant
under interchanges of the o.; among themselves. The
lowest order combination satisfying the symmetry
requirements is nP+n2i+nP, but this is identically
equal to unity and does not describe anisotropy effects.
The next combination is of the fourth degree: 0,~'n2'

+nPnP+o. Po!ii, which is sometimes written 'in the
equivalent form ni'+o. i+o.q. The equivalence' of the
two forms follows from the relation

fx PE„'sini~——g, (2.2.1) 1= (Ap+ ct!i +o!g ) = (11 +o!i +As

+2(&Paa +o's &a +&a &1 ) &

where odd powers of sin8 have not been included since,
by symmetry, the —0 direction is equivalent magneti-
cally and crystallographically to the +0 direction; theE„'are constants, independent of 0. In cobalt it is
actually found that a very good representation of the
experimental observations is given by the erst two
terms:

f~ E~' sin'0+Ei' ——sin'tt, (2.2.2)

where at room temperature

E~' =4.1)&10' ergs/cc Ei' 1.0)& 10' ergs/c——c. (2.2.3)

It is found unnecessary to include any terms which
distinguish among directions in the basal plane, so
that the specifically hexagonal nature of the crystal
does not emerge, but only the uniaxial character, in the
anisotropy energy.

Iron is a cubic crystal, and the magnetization curves
(Fig. 10) show that the cube edges [100], [010) and
[001J are the directions of easy magnetization, while
the body diagonals ([111]and equivalent axes) are
hard directions. The excess work done in magnetizing
along [111)is about 1.4X10' ergs/cc at room temper-
ature.

In attempting to represent the anisotropy energy of
iron in an arbitrary direction with direction cosines
a~, 0.2, n3 referred to the cube edges, we are guided by

whence

o'p&p+&u &i +&a &p= 2
—

g (&s +o'a +&i ).
The next term is of the sixth degree: n.'n2'a. 3'. This

is as far as one usually needs to go in fitting the observa-
tions, so that for iron

fx= Ei(cxq (xi +o!icia +(xi txP)+Ego!PQ!i (xi (2.2.4)

where, at room temperature,

E~ ——4.2&&10' ergs/cc; Ei 1.5&&10' ergs/cc. (——2.2.5)

Other ways of writing the E& term are given in Ap-
pendix A.

Physical Origin of the Artisotropy Energy

Before going more deeply into the experimental data
on anisotropy energy, we wish to consider the origin of
the anisotropy energy in terms of interatomic inter-
actions. Anisotropy energy in effect relates the direction
of magnetization to the crystal axes. We may at the
outset point out three very important difhculties in
the way of understanding the origin of anisotropy:
(a) the exchange energy by itself does not lead to any
anisotropy, regardless of the actual geometrical ani-
sotropy of the crystal structure; (b) the magnetic
moment interaction leads to only very small values of
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Fn. 19. Temperature dependence of the principal anisotropy constants of (a) iron, (b) nickel, (c) cobalt, (d) MnBi.

II= —2JQS,"S; (2.2.6)

and not at all to the angle between the spin and the
crystal structure; that is, we may rotate the whole
spin system by any angle with respect to the crystal
structure without changing the exchange energy of the
system.

The ordinary magnetic moment interaction between
electrons leads to too small values of the anisotropy.
In Appendix 8 we prove that the magnetic dipole
moment interaction gives zero anisotropy for an un-
strained cubic lattice; allowing a cubic lattice to deform

the anisotropy constants, much smaller than are
observed; (c) the anisotropy constants are found to be
very sensitive to temperature changes, and it is not
unusual for even the sign of the constants to change
between low and high temperatures.

First with regard to the exchange energy: the ex-
change energy operator refers only to the angle between
various spins:

spontaneously gives only very small values of the
anisotropy —about 10 ' of the observed values in iron
and nickel. In uniaxial crystals the dipole-dipole inter-
action may contribute a small amount to the ani-
sotropy energy, but the eGect is not usually significant.
The anisotropy energy of the uniaxial crystal MnBi is
of the order of 10' ergs/cc, while the dipole-dipole
energy is only of the order of I,2, or less than 10' ergs/cc.
Furthermore, the change in sign of the anisotropy
constant in the system of face-centered alloys of iron
and nickel, as shown by Fig. 18, is not intelligible in
terms of magnetic dipole interactions.

The temperature dependence of the principal ani-
sotropy constants of iron, nickel, cobalt, and the
compound MnBi is shown in Fig. 19; it is seen that
the variations are quite erratic and discourage any
simple interpretation.

The origin of the anisotropy energy is believed at
present (Sommerfeld and Bethe, 1933; Brooks, 1940;
Van Vleck, 1947) to be the result of the combined
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sects of spin-orbit interaction and the partial quench-
ing of the orbital angular momentum (by inhomo-
geneous crystalline electric fields and by orbital ex-
change interaction with neighboring atoms). In other
language, the magnetization of the crystal "sees" the
crystal lattice through the agency of the orbital motion
of the electrons; the spin interacts with the orbital
motion by means of the spin-orbit coupling and the
orbital motion in turn interacts with the crystal struc-
ture by means of the electrostatic fields and overlapping
wave functions associated with neighboring atoms in
the lattice. The theory as developed along these lines is
quite complicated, even when rather drastic approxi-
mations are made. An excellent review of the present
theoretical position is given by Van Vleck, 1947.

One result which may be anticipated from the theory
of anisotropy is that the magnetic anisotropy energy
will tend to be large for crystals where the lattice of
magnetic ions is of low symmetry, while the anisotropy
energy is expected on the whole to be low for crystal
lattices of high symmetry. This tentative rule is sug-
gested by the fact that the anisotropy energy enters
only in a higher order approximation in a cubic crystal
than in a uniaxial crystal. The observational data
support our hypothesis: the anisotropy energy of the
cubic crystals Fe and Ni is of the order of 10' ergs/cc,
while it is of the order of 10' ergs/cc for the hexagonal
crystals Co and MnBi and probably also of the order
of 10' ergs/cc for the ordered state of the alloy FePt in
which the Fe atoms by themselves form- a trigonal
lattice. There is considerable interest in high anisotropy
energy in connection with the development of perma-
nent magnet materials with high coercivity.

Experirnenta/ Data on Anisotropy Energy

of high permeability. For example, the permalloy and
allied series of Fe-Mi alloys containing about 78 percent
Ni have exceptionally high permeabilities; in the case
of supermalloy the maximum permeability is of the
order of a million. Near 75 Ni—25 Fe the magneto-
striction also is very low: this is another requirement
for high permeability. The exceptional properties of
the Permalloys are attributable to the fact that both
the anisotropy and magnetostriction are small for the
particular alloy composition.

2.3 Magnetoelastic Energy

The magnetoelastic energy is that part of the energy
of a crystal which arises from the interaction between
the magnetization and the mechanical strain of the
lattice. The magnetoelastic energy is defined to be
zero for an unstrained lattice.

The close physical relationship which exists between
the anisotropy and magnetostriction constants is not
revealed clearly in the standard discussions of the
energy relationships in ferromagnetics. It is of the
primary importance to recognize that there mill be mo

tznear rnagnetostrzction if the anisotropy energy is inde
pendent of the state of strain of the crystal. Magneto-
striction occurs because the anisotropy energy depends
on the strain in such a way that the stable state of the
crystal is deformed with respect to a cubic lattice.
That is, a crystal will deform spontaneously if to do
so will lower the (anisotropy) energy. We proceed
now to examine the nature of the interaction between
magnetization and strain in cubic crystals, and to
derive energetic relationships in terms of the experi-

5X105

We review here brieAy a selection of the experimental
material on anisotropy energy; for further data and a
description of measurement methods the useful sum-
mary article by Bozorth (1937) may be consulted.

Iron-nickel alloys. —The anisotropy constant E& at
room temperature for the face-centered (y-phase) sys-
tem Fe-Ni are plotted in Fig. 18.For pure Ni, E~= —3.4
X10' ergs/cc and E2=5.0X10' ergs/cc; for pure Fe,
Ez ——4.2X10z ergs/cc and Ez 1.5X10z ergs/cc-—.

Iron-cobalt alloys. —Results at room temperature for
the body-centered (n-phase) of the Fe-Co system are
plotted in Fig. 20. For pure Co, w ich is hexagonal,
E,'=4.1X10' ergs/cc and Ez' 1.0 10' ergs/cc. ——

Manganese coznpozznds At room.—temperature Guil-
laud (1943) gives Ez'=8.9X10' ergs/cc and Ez' 2.7——
X10' ergs/cc for MnBi; and Ez' 1.8X 10' ergs/cc an——d
Ez'=0.8X 10' ergs/cc for MnzSb.

The low values of the anisotropy energy for certain
alloys, such as those having compositions near 75
percent Ni and 25 percent Fe, and near 40 percent Co
and 60 percent Fe, are of considerable importance in
connection v ith the development of magnetic materials

4'4

V

V
CL' 0
z

«4

-5
20 40

PERCENT COBALT

Fn. 20. Anisotropy constants for body-centered
Fe-Co alloys at room temperature.

80



CHARLES K I TTE L

c»=2.41X10"ergs/cc;
c&0 ——1.46 X10"ergs/cc;
c44= 1.12 X 10 ergs/cc.

For nickel (Bozorth et at , 1949.)

c»——2.50X10"ergs/cc;
c~0= 1.60X10"ergs/cc;
c44= 1.185X10" ergs/cc.

(2.3.2)

The amisotropy erjergy density in an Nrsstrailed cubic
crystal is of the form (Section 2.2)

mental magnetostriction constants. We give a simpli6ed
treatment of the standard discussions of Seeker and
Akulov.

The elastic erIergy density in a cubic crystal is given
by (Love, 1944, p. 160)

f, t = 2c»(e„'+e»'+ e»')+ 0 c44(e»'+ e„,'+e„')
+cq0(e»e„+e„e„+e,e») (2.3.1)

where the cg are elastic moduli and the e;; are strains, as
de6ned by Love, p. 38. For iron (Kimura and Ohno,
1934)

magnetization vector:

f E—(nPa0 +n0 u0 +u0 uP)
+B~(aPe„+u0'e»+n Pe„)
+B0(n&n2e»+usage„,+n0nge, .)
+0cyy(eg +e» +eg )
+ 0 c44(e,„'+e„,'+e„')

+c~0(e»e„+e„e„+e»e»). (2.3.6)

The equilibrium configuration of the crystal, that is,
the stable state of strain, when magnetized in the
direction a may be found by minimizing f with respect
to the e;,. The solutions for the e;; may finally be
interpreted in terms of the usual saturation magneto-
striction constants X~pp and ) ~~~.

Furthermore, the solutions e;; of the minimal equa-
tions depend on the direction cosines in such a way
that the energy in the equilibrium configuration may
be expressed in the form

f= (E+EE)(aPuP+n0'n0'+n0'nP) (2.3.7)

where DE is independent of 0. but is simply related to
the elastic moduli and the magnetoelastic coupling
constants.

fx——E(nPaP+n0'n0'+ n0'aP) (2.3.3) The Minima/ Eqmatioes

to the first order. Here E is a constant independent of
the direction of saturation magnetization in the crystal;
ca~, u~, u3 are the direction cosines of the direction of
magnetization referred to the cubic axes. For iron,
K=4.2X10' ergs/cc.

To express the dependence of the anisotropy energy
on the strain we expand the energy in a Taylor's series
in the strains:

The 6rst problem is to determine the values of the
e;; which minimize f in Eq. (2.3.6):

Bf/Be„=B&nP+ C»e,+C&0(e»+e„)= 0,
Bf/Be» =Bla2 +c»e»+c10(e„+e„)=0,
Bf/Be» BqnP+ c»e„——+c~0(e„+e») =0, (2.3.8)
Bf/Be,„=B0ugn0+c44e, „=0,
Bf/Be„=B0aqn0+ C44e„=0,
Bf/Be„,=B0n0n, + c44e„,=0

The solutions are
frc= (fx)0+2(Bfx/Beg) 0e',+

Here (fx)0 must satisfy cubic symmetry, but the terms
(Bfx/Be;, )0e;; may have lower symmetry as these terms
refer to the deformed lattice.

Considering only the lowest order terms dependent
on orientation, we may take from symmetry considera-
tions

e,;=—B0n,n;/c44 (iWj). (2.3.10)

Relati orl, to MogrIetostri cti orI, Coestumts

The conventional first order magnetostriction equa-
tion which is frequently used in the analysis of experi-
mental measurements (on cubic crystals) is (Becker
and Derring, 1939)Bfx/Be» =B]n0

Bflc/Be.„=B2n jn2 ', (2.3.5)
Bfx/Be..=B0n~n0,

Bfx/Be.,=B,np;
Bfx/Be„=Bqn0,
Bfx/Be„,=B0usn„. bl—= 0~100(a1'PP+n0'P0'+u0'l4' 0)—

+3Xggg( n, ,nPP 0+u, aP0A+u,uP,P,), (2.3.11)
where 8& and 82 are constants which may in principle
be calculated knowing the details of the interactions in
the solid. The B's will be called mageetoetostic coupling
coestaets. For iron, as we shall see later, S~——2.9)&10'
ergs/cc; B0—3.2X10' ergs/cc.

The result of combining the foregoing equations is
given by the following expression for the part of the
total energy density which depends on the strain and
on the crystallographic direction of the saturation

where a= (a~, n0, n0) is a unit vector in the direction of
the magnetization, g= (p~, p0, p0) is a unit vector in the
direction in which 8/ is measured; X]pp and ) ~~~ are the
saturation values of the longitudinal magnetostriction
in the directions L1007 and [1117 respectively. We
wish now to relate the magnetostriction constants happ

and )~~~ to what we have called the magnetoelastic

(2.3.4)
eii B1LC10 ap(c»+2cy0)7/

L(c„—c„)(cgg+2cg0)], (2.3.9)
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st
=—Ze P P'' (2.3.12)

since by definition of the strains (noting particularly
the definition of the shear strains used by Love):

coupling constants, 81 and 82, which have more
fundamental signi6cance.

Now in terms of the strains we have readily

existence of magnetostriction would have no direct
effect on the result of the anisotropy measurement.
However, in practice one actually measures the ani-
sotropy at contest stress, so that the lattice is allowed
to deform under the action of magnetoelastic forces.

We consider the general expression (2.3.6) for the
energy, eliminate the strains through Eqs. (2.3.9) and
(2.3.10), and express the 8's in terms of the )1's, and
obtain finally

x'= (1+e..)x+-'2e y+-', e..s
y = 2egox+ (1+cog)y+2e2 z
s' = —

e2,.x+-2e„,y+ (1+e„)s,
(2.3.13) where

I' = (E+&E)(C21'4222+422'423'+C33'al') (2.3.17)

hE= (9/4)[(cll —C12)Xioo' —2C44X111']. (2.3.18)
whence

b(P) =2l bl=2P+e;;P, P;

+1
y y &a z

C11 C12

82
(~~—oP—.Po+~~*P*P.+~2~.PuP.)

c44

(2.3.15)
(cl1+2C12) (cll C12)

from which Eq. (2.3.12) follows immediately.
On substituting the values of the e;; given by Eqs.

(2.3.9) and (2.3.10) we have

For iron AE= —7.5X102 ergs/cc, so that here Il E/E—10 '. For nickel we have AE—2X10' ergs/cc, whence
d,E/E—10 '.

IsotroPi c Magn etostricti on

It is often assumed for the sake of simplicity that
X1pp =F111=X; this is the case of "isotropic magneto-
striction. " For Xi it is customary to take ) as —34
X10 ' and, for Fe, X= —7)&10 ', although the isotropic
assumption does not give in either case a very good
representation of the experimental results.

Equation (2.3.11) reduces to

61—= p[(C31P1+422P2+a3P3)' 1/3]—, (2.3.19)

which may be written in the form of Eq. (2.3.11) if we
set

81—= 32X[cos28—1/3], (2.3.20)
2 8'

~100
3 C11—C12

182
~111

3 C44

(2.3.16)

Contribf4tion to AnisotroPy Energy

We now wish to show that the presence of magneto-
striction gives rise to an apparent contribution to the
anisotropy energy of the crystal. If experimental
determinations of the anisotropy energy could be
carried out at coestarIt lattice dimensions —that is, on a
crystal held at constant strain by clamping —then the

and drop a residual term which is constant with respect
to 42 and g. We have thus succeeded in relating the
magnetostriction constants X1pp and )111 to the strain
gradient of the anisotropy energy and to the elastic
constants of the crystal.

For iron, ) 100=19.5X10 ' and X111=—18.8X10 ' as
the result of experiment; using these values we calculate
81 —2.9X102 ergs/cc, ——82= 6.4X10' ergs/cc. For
nickel, Amp= —46)&10 ' and X111=—25X10 '; we have
81——6.2X10' ergs/cc, 82=9.0X10' ergs/cc. The values
of the X's are from Becker and Doring (1939, pp.
277—280).

where 0 is the angle between the magnetization and the
direction in which 8/ is measured. It is seen that this
expression contains no reference to the crystal axes and
is therefore isotropic.

It is of considerable importance to calculate the
contribution to the anisotropy energy caused by a
uniform tensile stress T applied to the specimen. The
stress components relative to the crystal axes of a
tension with direction cosines y1, 72, y3 are I';y, = Ty,~l„
giving

2 44'7172 e* 2 [ 1171+ 12(72 +73 )]
where the s's are elastic coefficients. The energy terms
in Eq. (2.3.4) dependent on strain become

f~g= 81T[($11 $12)(421 Vl +C32 V2 +C33 73 )]
82T$44(cKlc32 rl| 2+422cE3r2'r3+c2341'Iro+1) ~ (2.3.2 1)

If now we suppose ) 100=)111='A, we have, from
Eq. (2.3.16),

82 (Cll C12) 281C44,

so that, using well-known relations between the c's and
s's, and the relation

cos8= (ulyl+u2y2+c23y3),

where 8 is the angle between the magnetization and the
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FIG. 2 j.. Model for the
calculation of the magnetic
6eld energy of coplanar
strips of alternate sign.

Self En-ergy of a Permanent Magnet

When the Geld against which the work is being done
is not external, but is due to the magnetization itself,
we have the usual factor of one-half coming in which
occurs in all self-energy problems. It enters because we
must not count dipoles twice —the expression (2.4.6)
when applied to self-energy effectively counts each
dipole once as a source of field and once as a magnet
in the field. The correct result is

tension, we also have

f ,= ~'AT sin'8. (2.3.22) Etti psoidal Speci men

(2.4.7)

Terms independent of 8 have been dropped. We shall
require this expression in Section 6.2.

If the specimen is in the form of an ellipsoid and is
magnetized along one of the principal axes, the self-field
is given by

2.4 Magnetostatic Energy H= —EI, (2.4.8)

f„.,= —I H, (2.4.1)

per unit volume.
(2) The self-energy of a permanent magnet in its

own field is

We shall not give a detailed discussion of the subject
of magnetic energy, for this would be a rather long
story, but we shall discuss several particular situations
of direct interest to domain theory. A more general
treatment may be found in papers by Guggenheim
(1936) and Fokker (1939).

Here we are concerned with:

(1) The energy of interaction of a permanent magnet
with a uniform external magnetic field:

where X is the demagnetizing factor. Values of E are
tabulated in useful form by Osborn (1945). Then
Eq. (2.4.7) becomes

f g= ,'iVI2. (2.4.9)

This relation is very useful.

Distribution of Poles on a P/ane

We consider the magnetic field energy of coplanar
strips of alternate sign (Fig. 21). Let the plane of the
strips be the (x, y) plane with the y axis parallel to the
axis of the strips; the width of a single strip is D and
the pole strength per unit area of strip is I. The mag-
netic energy per unit area is, from Eq. (2.4.7),

f„.,= —(-,')I H, (2.4.2) o = —(1/2) H Idk. (2.4.10)

o-,g
=0.8525I,'D, (2.4.4)

per unit area, where D is the width of a strip.
(3) The eRect of finite anisotropy energy on Eq.

(2.4.4), which holds only for the case of infinite ani-
sotropy energy (completely "frozen-in" spins):

o .,=l 2/(1+tr*)](0.8525I'D) t *=1+27rI2/E (2.4.5)

for glancing angles of the magnetization vector with
respect to the surface.

Interaction of Permanent Magnet with External Field

It is a familiar result that the energy of interaction
of a permanent magnet dipole p with an external field
H is given by the quantity —p H. The same result
holds for a rigid assembly of dipoles, so that the
magnetic energy density may be written as

.,= —I H. (2.4.6)

per unit volume, which for an ellipsoid may be written

(2.4.3)

per unit volume, where T is the demagnetizing factor;
and for parallel strips of poles of alternating sign,

Now the vertical or s-component of the magnetic field
directly below the plane of the strips is given by the
I'ourier expansion of a square-wave of amplitude —2ml.
The approximate solution of the Laplace equation is

H.= %2irIl (4/s. ) sinkx e+~'

+terms in odd multiples of k] (2.4.11)

where k= (~/D). For the present the harmonic terms
in the expansion will be neglected. Then

=4P t e"*ds(lsinkxl).

The mean value of
l
sinkxl is 2/m. , so that

o =8I2D/n-', (2.4.12)

,=0.8525I,'D. (2.4.13)

which is the contribution from the first order term
alone. The complete expression including the effect of
the harmonic terms is obtained by multiplying by
Qn ', where the sum is over odd integers and is
approximately equal to 1.0517. We have finally
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We can easily treat along similar lines the energy of
an arbitrary periodic distribution of poles on a plane.
Let p(x, y) be the surface pole density, which is sup-
posed periodic in the fundamental area which is a
rectangle of sides 2~L, and 2mL, . Then p may be
expanded in a double Fourier series

p(x, y) =P PC „exp[i(mg+nq)), (2.4.14)

where $= /xL„&=y/L„, and

in a medium of permeability (p, 1, p), subject to the
boundary condition that the diGerence in H, at the
surface shall be equal to &4xI, sin8. Suppose that the
solution for the potential problem for p 1 is y(x, s).
For the actual problem we take the potential as
Ap(x, ns) for s)0 and as Ay(x, ps) for s(0. Then the
equality of the surface charge in the two problems leads
to

An(8q/Bs), ~+pAP(8qr/Bs), 0

= 2(8q/Bs), =+, (2.4.20)

2w 2m A =2/(n+Py).C„„= I p(, g)e '~m&+. ~id dg (2 415)
~2J J ' ' "' "' ' ' ' The condition that div E=O gives

0

(2.4.21)

The surface energy density turns out to be
~**+P'v **=0, (2.4.22)

0 .,=~QQC C E (2.4.16)

which is satisfied for P=1; similarly n=1. Thus

A=2/(1+@). (2.4.23)

where
- pm't'

I,-=
I

—I+I —
I(L) EL) . (2.4.17)

In this way we find that the energy of a checkerboard
array is

Since the potential is proportional to A, the magnetic
energy is also proportional to A.

We consider the proper value to use for p—that is,
the effective permeability for small displacements about
an easy axis. For both cubic and uniaxial crystals
(with K)0) we have

a g
=0.53I2D (2.4.18)

0.=0.374I2D,

where the fundamental area is a square of side D in
which there is imbedded a circle of radius D/(2m)&.

The p~-correct oe

The question of the energy of a pole distribution on
a plane surface is not quite as simple as it may appear
at first sight. The complication arises from the fact
that the spins are not really "frozen-in" along the
directions of easy magnetization, but can deviate from
these directions under the inhuence of the Geld caused
by the pole distribution. Only for extremely high values
of the anisotropy energy can the spins be considered as
frozen-in along the easy directions.

The corrections to the magnetostatic energy which
must be made on this account will depend on the
particular situation. Various situations have been dis-
cussed by Lifshitz, Keel, and Shockley. We follow the
treatment of Shockley (1948). We consider the case of
parallel strips of poles of alternating sign &I, sin0,
where the easy axis makes a small angle 8 with the
surface of the crystal, as shown in Fig. 22. The response
of the magnetization to a magnetic held may be
described by three permeabilities p, p, and p, Here
p„—1, since the magnetization in the x-direction cannot
be increased appreciably; and p —p„bysymmetry.

The problem is first to solve for the Geld distribution

where D is the side of each minor square.
For a circle of one polarity imbedded in a square of

opposite polarity,
(2.4.19)

fmag= —&I.q
The total energy E.p' —III,p is a minimum for

(2.4.24)

so that
2Ep —III,=0,

y=HI, /2E.

(2.4.25)

(2.4.26)

Now the magnetization parallel to II is l,q, so that the
susceptibility is

y=I,p/H=I 2/2E, (2.4.27)

FIG. 22. Model for p* calculation.

where q is the angle (supposed to be small) between
the magnetization vector and the easy axis. If a mag-
netic 6eld is applied perpendicular to the easy axis,
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ization, so that there is a certain amount of anisotropy
energy associated with the wall. The amount of ani-
sotropy energy will be roughly proportional to the
thickness of the wall, since the thickness is a measure
of the total volume directed away from the axes of
easy magnetization.

The actual thickness and energy of the transition
layer is the result of a balance between the competing
claims of exchange energy and anisotropy energy, the
former tending to increase the thickness and the latter
tending to decrease the thickness.

3.2 Estimate of Thickness and Enexgy
of Bloch Wa11

We proceed to make a rough order of magnitude
estimate of the thickness and energy of a Bloch wall,
deferring' until later detailed treatments of specific
situations and comparison with experimental results.

Let us consider a wall parallel to the cube face of a
simple cubic lattice and separating domains magnetized
in opposite directions, as in Fig. 24. We wish to deter-
mine the thickness of the wall in terms of the number
.E of atomic planes contained within the wall, and we
wish also to determine the energy per unit surface
area, 0-„.

The energy per unit surface area may be represented
to a good approximation as the sum of contributions
from exchange and anisotropy energies:

&w = &ex+ &anis. (3.2.1)

0„=7r'JS'/Na'. (3.2.2)

The exchange energy is given approximately by Eq.
(3.1.3) for each line of atoms through the wall and
normal to the plane of the wall. There are 1/a' such
lines per unit area, where u is the lattice constant;
whence

The total wall energy per unit area is

0;„=2m[JE. S'/a]'*

which in iron is of the order of magnitude

o=(k.T,E/a j»= [10 "10'/10 '$»
= 1 erg/cm'.

(3.2.7)

It turns out that the exchange and anisotropy energy
contributions are equal to each other.

In the above estimate we have rather arbitrarily
supposed that the total change in spin direction is.
shared equally by each of the E atoms on a line through
the wall; we have also used a very rough estimate of the
anisotropy energy of the spin system within the wall.
These approximations are dispensed with in the more
exact and rigorous treatment which follows.

3.3 180 Degree Walls in (100) Plane of Iron

We consider now in detail the important case of a
wall parallel to a (001) plane of iron, separating domains
magnetized in opposite directions. The directions of
domain magnetization may be taken as [100) and
[100j, as shown in Fig. 24. Equivalent solutions for
the properties of the wall in this case were given by
I.ifshitz (1944) and Neel (1944a).

We suppose that the rotation of the spin direction on
passing through the wall is such that the spiv directions
lie in the plane of the wall; this is the result for this
specific case of the more general requirement that the
normal component of the magnetization remain con-
stant through the wall, so that no poles are formed.
The absence of poles is decided by considerations of
minimum magnetostatic energy: it may be noted that
the magnetostatic energy of a double layer IOOOA in
thickness with surface pole density &I, per unit area
1S

0 „=2+I,'d = (10)(10')(10 ') = 100 ergs/cm' (3.3.1)The anisotropy energy is of the order of the anisotropy
constant times the volume, or

0 ~~jg ~E'lVa

so that

which greatly exceeds the wall energy 0. =1 erg/cm'

(3 2 3) estimated above on the tacit assumption that the
change of spin direction takes place in such a way that

0. = (~'JS'/Na')+KNa

which is a minimum with respect to E when

(3.2.4)

=0= —(7r'J S'/N'a')+Ea, (3.2.5)

ol
N =$x'JS'/Ea')'. (3.2.6)

We have then the result that the thickness of the
wall measured in atomic separations is approximately
equal to the square root of the ratio of the exchange
integral to the anisotropy energy per unit cell. For
order of magnitude, in iron, [10

ohio]
N= [kT./Ea'3»= [10 '3/10'10 "j»

=300 lattice constants
= 1000A.

FIG. 24. j.80' wall parallel to the cube face of a cubic crystal
and separating domains magnetized in opposite directions parallel
to a cube edge.
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reduces to

since
f„=A (d8/ds)',

n~= cos9, n2= sine, n3 ——0.

The wall energy per unit area is then

(3.3.3)

2
"I 3o'
2

I-
CO

[Esin'8 cos'8+A (d8/ds)'$ds, (3.3.4)

which may be written more compactly as
lal

0o
Z '-3 -2 -I 0 I 2 3 4

NORMALI2ED COORDINATE PERPENDICULAR TO PLANE OF WALL

VA/ K

[g(8)+A8' jds (3.3.5)

FIG. 25. Variation of spin direction within a 90 Bloch wall,
as from L100] to [010]in the (001) plane.

the normal component of the magnetization is constant
on passing through the wall.

The calculation of the properties of the wall will
6rst be carried through neglecting magnetoelastic
energy; the eGect of the magnetoelastic energy associ-
ated with the wall will be considered subsequently.

Let 8 be the angle between the spin direction and the
x-axis. The anisotropy energy density in the x, y plane
is then, according to Eq. (2.2.4),

fry =E(n 'n '+nrsn '+nssnss) =E sin 8 cos'8 (3.3.2)

since ns ——0. The exchange energy density (Eq. (2.1.11))

f.,=A[(Vn, )'y(Vn, )'+(Vn, )sj

by setting g(8) =E sin'8 cos'8 and 8'= d8/ds.
In Eq. (3.3.5) 8 is to be determined as a function of

s to minimize the integral on the right. %e require
therefore that the variation 80. be identically zero for
any small variation 88:

[g'(8)88+2A8'd88/ds jds = 0. (3.3.6)

On integrating by parts, noting that

8'(d/ds) 88= (d/ds) (8'88) —88(d8'/d. ),
and that 8'88 vanishes at both limits, we have

8o„= [g'(8) 2A (d8'/ds) —j88ds= 0; (3.3.7)

this equation can be identically satisfied over the range
of s only if

g'(8) —2A (d8'/dz) =0. (3.3.8)

90

120

Z//A/K

60

90

This is the Euler equation of the problem.
On multiplying by 8' and integrating over s between

—~ and z, we 6nd

g(8) =A (d8/ds)', (3.3.9)

since 0'=0 at s= —~. This relation shows that at
every point of the wall the local anisotropy energy
density g(8) is equal to the local exchange energy
density A(d8/ds)', it follows that in directions of high
anisotropy energy neighboring spins make larger angles
with each other than in directions of low anisotropy
energy.

From Eq. (3.3.9) we have

-8

ds=+A
(g(8))'

so that Eq. (3.3.5) becomes

~82

~.=2+A (g(8))Id8

(3.3.10)

Fzc. 26. Polar plot of variation of spin direction with a 180
Sloch wall in iron; s is the coordinate normal to the plane of the
wall; the plane of the wall is a (100) plane.

=2(EA) I
~
sin8 cos8~ d8 (3.3.11)

40
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FIG. 27. Approximate dependence of wall energy and wall thickness on crystalline anisotropy energy;
exchange integral approximately as for iron. (180' wall)

o (Fe)=1.8 ergs/cm'. (3.3.13)

This is an important and basic result. Several remarks
may be made regarding the probable reliability of this
value for the energy of a 180 degree transition layer in
an (001) plane.

(1) The anisotropy constant E2 is omitted because
the associated energy term E2n&'n2'o. &' is zero in an
(001) plane.

(2) Neel (1944) arrives at o = 1.4 ergs/crn' for the
same situation, as a result of using an estimate of the
exchange interaction constant A obtained in a different
manner (from the Curie point, using a Weiss field);
any estimate of A must be regarded as somewhat
tentative, but we would like to suggest that the value
deduced from the experimental coefFicient in the Bloch
T' law should be used for wall energy calculations, as
the physical situation in a spin wave is quite similar to
that in a Bloch wall.

(3) It will be shown below that consideration of
magnetoelastic energy has only a negligible effect on
the numerical value (Eq. (3.3.13)) of the wall energy in
iron, although magnetostriction does have a profound
effect on the thickness of the wall.

(4) For 3.85 percent SiFe we have approximately
A=1.7X10 ' ergs/cm; E=2.8X10' ergs/cc; so that
o„=1.4 ergs/cm'. This value is compatible with the

which gives the result

o =2(EA)'*.

Value of the Wall Energy

Now for iron A = 2.0X 10 ' ergs/cm from Eq.
(2.1.18), while E~ ——4.2X10' ergs/cc, so that

rather rough experimental value deduced by Williams,
Bozorth and Shockley (1949) based on domain pattern
measurements.

or

ds= (A/E)-'*
sin0 cos0

(3.3.14)

s—so ——(A/E) l log(tan8/tan8O). (3.3.15)

Taking s'o=0 at OO=45', we have

s= (A/E)'* log tan0. (3.3.16)

This equation is plotted in Fig. 25 for the range 0(0
(s./2. The s coordinate is plotted as a multiple of the
fundamental length (A/E)' which is equal to 2.3X10 '
cm, or 230A, in iron. Of the 90 degrees change shown
on the vertical scale, 70 degrees takes place for As—3.5(A/E)'*, or (ds)~o =800A=280 lattice constants.
The angle between successive spins is of the order of
4 degree.

However, the expression 3.3.16 does not lead to a
convergent answer for even the approximate thickness
of a 180' wall; this is because the wall tends to split
up into two 90' walls, separated by an in6nite distance.
The difFiculty is somewhat 6ctitious and is removed by
the effect of magnetostriction. A large domain can be
formed at 90' between two antiparallel domains only
at the expense of a considerable magnetoelastic energy:
since each domain is elongated in the direction of its
magnetization the 90' domain does not freely jibe
across its boundaries with the antiparallel domains, and

War Tbzcumess

The thickness of the wall may be found with the
help of Eq. (3.3.10):
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Mathematically, the effect of magnetostriction wi11

be shown to be equivalent to adding to the anisotropy
energy density (Eq. (3.3.2)) the term

f . (9/4) (crt —C12))ttpp2 sin'8, (3.3.17)

where X100 is the saturation value of the longitudinal
magnetostriction in the L100j direction, and c11, c12 are
the moduli of elasticity. The proof is given here.

As a consequence of magnetostriction the part of the
crystal magnetized in the &x direction is strained by
(Eq. (2.3.9))

C11+C12

d«ooA
(c)

e = —81
(cl1 C12) (cl1+2C12)

e»= e» ——81
(Cl1 C12) (Cll+ 2C12)

(3.3.18)

(3.3.19)

Fro. 28. Stable saturated magnetic configurations. (a) Long
ellipsoid parallel to easy axis; (b) hollow rectangle with each side Here 8& is a magnetoelastic coupling constant and is
parallel to easy axis; (c}very Gne particle.

related to ) 100 by t',Kq. j2.3.16jj:
a system of stresses must be set up to make the bound-
aries jibe. As a result of this factor the 90' region
between the two 90' walls will vanish, and the two
90' walls will coalesce into a single 180' wall.

Egect of cVageetostnction

Both Neel and Lifshitz have included the term in
magnetoelastic energy in the solution of the wall
problem. We follow the treatment of Lifshitz here. '

~100
3(crt —C12)

(3.3.20)

~f„.=a,f(~, —1)e„+~2'e„„]
=Bt sin'8(e„„—e„)

or, substituting for 81, e» and e„,
(3.3.21)

Now the material in the domain wall is effectively
held at the deformation of the surrounding domains.
The excess magnetoelastic energy of the wall material
referred to the domains as a basis is, from Eq. (2.3.6),

Af, = (9/4) (c11—C12))trpp' sin'8. (3.3.22)

EASY
AXES (a) The wall thickness is derived as before from Eq.

(3.3.10), where we must substitute

g(8) =E sin'8 cos28+ (9/4) (c11—c12))ttpp' sin'8, (3.3.23)

whence

N S N S N S
(2/E) '* (sin'8 cos'8+P sin'8)'

(3.3.24)

P= (9/4)(c11—C12))ttpp /E. (3.3.25)

EASY
AXIS

S N S N S N

For iron, P=2X10 ', so that the effect of mag22etoehastic

energy on the mull energy ie irorI, is negligible.
The solution of Eq. (3.3.24) is

(1+Pp &

sinhs(E(1+P)/2) * = —
I I

ctn8 (3.3.26)
t. P )

FIG. 29. Examples of single crystal shapes which favor domain
structure: (a) Hollow rectangular specimen with legs parallel to
L110j and equivalent axes; (b) Crystal with rectangular cross
section with easy axis as shown.

Noel's treatment is somewhat in error since he fails to recognize
the distinction between anisotropy energy at constant lattice
dimensions and at constant stress {see Eq. (2.3.17) above); this
leads him to associate with magnetoelastic energy a term which
is automatically included in the experimental value of the ani-
sotropy energy.

P
d(./(a/E) &]

(3.3.27)

for P((1, which shows again that for I'=0 a 90'

where s is taken from the midpoint of the wall. In the
neighborhood of the midpoint
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domain may exist between the two halves of the wall.
The angle variation is plotted in Fig. 26 for P= 2)& 10
as for iron.

In Fig. 27 we give the approximate dependence of wall
energy and wall thickness on the crystalline anisotropy
energy. The exchange energy constant is taken as for
iron: A=2X10 ' ergs/cm.

4. THEORETICAL DOMAIN STRUCTURES

4.1 Introduction

The size and shape of domains are not constant
attributes of bulk ferromagnetic material but are func-
tions of the dimensions and the orientation of the
boundary surfaces of the crystals as well as of the state
of strain and of the magnetic field in tensity. The
essential reason why domains exist is that their forma-
tion in general reduces the magnetic field energy which
would be associated with a saturated magnetic con-
Gguration.

The incentive that a given specimen has to form
domains will then depend on the magnitude of the
demagnetizing eBects associated with a single domain
or saturated conGguration in the specimen. For example,
all of the arrangements shown in Fig. 28 are stable.
In (a) we have a long fine prolate spheroid with a
direction of easy magnetization parallel to the shape
axis; for sufficiently large values of the axial ratio the
saturated single domain configuration will have a lower
total energy than an arrangement with domain struc-
ture. That is, the decrease in magnetic energy accom-
panying domain structure can be in this case less than
the energy required to set up the requisite transition
layers (Bloch walls) between domains.

In (b) we have a structure with four domains. There
is no magnetic Geld energy here, since there are no poles
anywhere (except for a relatively trivial pole strength
on the edges of the Bloch walls). The normal component
of the magnetization is continuous across the diagonal
Bloch walls shown as dotted lines, and this is the
condition that there be no poles on the walls. A crystal
with the domain structure discussed here has been
produced by Williams and Shockley (1949).

In (c) we have a very fine particle, with a diameter
of the order of (for iron) 100A or less. Here a single
domain structure is stable because the amount of
exchange energy required to set up a non-magnetic
configuration will exceed the magnetic energy of the
single domain configuration. This inequality is only
valid for very small dimensions. There is considerable
experimental evidence for the stability of single domain
structure in small particles, as will be discussed in a
later section.

The crystal shapes shown in Fig. 29 are, on the other
hand, favorable to domain structures along the lines
indicated, provided always that the crystals are of
macroscopic dimensions. We shall consider now the
optimum slab thickness D for a domain structure as

IX
4Jz
LLI

DOMAIN WIDTH, D

FzG. 30. Energy of domain structure as function
of domain width D.

shown in (b) for a uniaxial crystal in the form of a
rectangular cylinder.

The area of Bloch wall is L/D per unit area of the
crystal surface, looked at from above, The wall energy
is then

ol
~=~wall+ ~magq

w =o„L/D+1.7I,'D,

(4 1 3)

(4.1.4)

0 +—

EASY
AX!.S 1(

Xl-V-'V-~~

FzG. 31. Flu& closure domain configuration in uniazial crystal.

per unit, surface area, where o- is the surface energy
density of a Bloch wall. The magnetic field energy
associated with the parallel charged strips normal to
the paper is, according to Eq. (2.4.4),

wm, g
——1.7I,'D

per unit surface area when both top and bottom surfaces
are taken into account; here I, is the saturation magnet-
ization. The variation of x,~~ and w „with D is
plotted in Fig. 30. For large D the magnetic field energy
is dominant, and for small D the wall energy is domi-
nant.

The total energy per unit surface area is
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FIG. 32(h). Details of flux closure of "domain of closure" Q.

FiG. 32(a). Retouched photograph of domains of closure
in Si-Fe crystal (Williams).

which is a minimum with respect to the domain width
D when

or
Bw/BD= —(o„L/D')+1.7I '=0,

D= [o.„L/(1.7I e)]'.

Therefore, the width is of the order of

(4.1.5)

(4.1.6)

D=[(2)(1)/(1.7)(1.7X10')']'*=10 ' cm (4.1.7)

for a crystal with X=1 cm. The domain width D
should not be confused with the transition layer thick-
ness 6 which is of the order of 10 ' cm.

The energy of the domain structure is

w =2[1.7I 'oL]'*-
which is of the order of

(4.1.8)

w= 2[(1 7) (1.7X10')'(2) (1)]'=7 X 10' ergs/cm'. (4.1.9)

Since the crystal was taken with L=1 cm, the energy
per unit volume is of the order of 7X10' ergs/cc,
whereas the magnetic field energy density obtaining
with a saturated single domain structure would be of
the order of I,'=10' ergs/cc. This shows that, quali-
tatively, the formation of domairts has reduced the energy

of the system by a very considerable amount
If we had taken L= j.0 ' cm, as in a thin film, then

the energy density of the domain structure would also
have been of the order of 10' ergs/cc, which is of the
same order as the magnetic energy density of the
saturated film. It becomes apparent that size plays an
important role in domain structure.

4.2 Flux Closure Domain Con6gurations

It is possible to devise a domain arrangement for the
rectangular slab just discussed which will have no
magnetic poles. Such an arrangement, first treated by

w,„,,=ED/2. (4.2.2)

The wall energy tends to increase the domain width,
while the anisotropy energy tends to decrease the width.

The total energy is

w= (o L/D)+(ED/2) (4.2.3)

per unit area, and this is a minimum with respect to
the domain width D when

(Bw/BD) = (o„L/D')+(K/2) =—0. .

The condition for the minimum is then:

(4.2.4)

D= [2o„L/E]t (4.2.5)

FIG. 33. EGect of magnetostric-
tion on domains of closure. Dotted
curve shows on exaggerated scale
the volume which would be occu-
pied by the material in a domain
of closure if the constraint exerted
by the rest of the crystal were
removed.

Landau and Lifshitz (1935) for a uniaxial crystal, is
shown in Fig. 31. A similar structure (Fig. 32(a)) has
been observed by H. J. Williams on an iron crystal, in
unpublished work. Iron is, however, cubic.

The "flux circuit" is completed entirely within the
crystal by means of the small triangular prisms on the
upper and lower surfaces of the crystal. As shown in
Fig. 32(b) these domains of closure" transfer the
magnetization lux from the upward-directed domains
to the downward-directed domains without any poles
being formed. The absence of poles is the result of the
continuity across the prism sides of the normal compo-
nent of magnetization. We proceed to calculate the
optimum value of the domain width and the corre-
sponding energy density. The wall energy per unit area
of the crystal surface is approximately

wwatt= &uL/D. (4.2.1)

The magnetic energy is zero, but the anisotropy energy
is not zero (if the crystal is uniaxial). The volume
contained within the domains of closure is oriented in a
direction of hard magnetization and involves an energy
IC per unit volume, where E is the anisotropy constant.
Per unit area of crystal surface on one side the volume
in the domains of closure on both sides is D/2, so that
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and the corresponding energy per unit area is

w =[2rr„I.E]'* (4.2.6)

The energy per unit volume is

fsetlLee s [20to%/~ 3 (4.2.7)

f=[(2)(2)(4X10s)/(1)]'=1.3X10s ergs/cc. (4.2.9)

For these values of the various constants the energy
of the fiux closure con6guration Fig. 31 is somewhat
lower than that of the simple slab con6guration Fig.
29(b), but with increasing values of the ratio IC/I s

the domains of closure gradually open up and for
E/I, '))1 the simple slab arrangement prevails.

Cubic Crystals with Positive Anisotropy Constant

In cubic crystals with the anisotropy constant E)0
the directions of easy magnetization are the cube edges,
so that in this case the direction of magnetization in
the domains of closure can be in an easy direction at
the same time that the magnetization in the basic
slab-like domains (Fig. 31) is in another easy direction.
It would appear then that the domain width will be
free to increase almost without limit until the whole
specimen consists of four domains. Usually, however,
this condition is not expected to occur because of the
eGect of magnetostriction.

There will be in general a magnetostrictive energy
associated with the domains of closure. This results
from the tendency of domains to change slightly in
length in the direction of magnetization, so that
domains magnetized along different lines will- not fit
together smoothly except by the expenditure of elastic
energy in forcing the material to 6t together. The
domains of closure, for example, may be regarded as
being squeezed to join on to the basic domains, as
shown in exaggerated form in Fig. 33.

In the case of a domain of closure the strain imposed
by the basic domain structure is of the order of the
longitudinal magnetostriction constant happ as may be
understood by referring back to Section 2.3. The elastic
energy density of the closure domains is then (approxi-
mately)

If we arbitrarily substitute the approximate values
of the constants for iron, and take the length I.as 1 cm,
we have

D= [(2)(2)(1)/4X10s]''=3X10 ' cm (4.2.8)

FIG. 34. Domain branching near
the crystal surface, as discussed by
Lifshitz. This structure would be
expected when the anisotropy is
high, and related structures have
been observed.

Numerically, for iron, with I.= 1 cm,

and
D—[(4)(2) (1)/(10')j'=0.1 cm (4.2.13)

fq —[(2)(10')/(1)]'*=50 ergs/cc. (4.2.14)

General Case

The nature of the domain structure near the crystal
surfaces may actually be expected to be more compli-
cated than the simple situations we have discussed.
For example, I ifshitz has shown that the arrangement
shown in Fig. 34 has under certain conditions a lower
energy than the triangular prism arrangement. The
complete variational problem to find the nature of the
domain structure which minimizes the total energy has
not been solved; instead we assume certain types of
domains on the basis of physical insight, and then
minimize the energy with respect to one or more
adjustable parameters.

In general it is probably a fair approximation to
suppose that the total energy consists of two parts:
one part being the energy of the Bloch walls, m «, and

fel 2cll)tloo i (4.2.10)

which is of the order of 500 ergs/cc in iron.
For the situation in this type of cubic crystal we

have as the domain width

D= [40wL/cllX100 j (4.2.11)

and as the energy density of the domain structure

fdo [&wert%os IL] (4.2.12)
FlG. 35. Powder pattern on hexagonal face of cobalt

single crystal (Williams).
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FIG. 36(a). Arrangement for detecting surface magnetic
6elds by electron scattering.

~mali=& L/D (4.2.15)

where I. is same characteristic average length, while

w,„~,„y„,i g(D)—— (4.2.16)

is some function of the slab width. The nature of the
dependence is determined by the structure of the
surface domains. The minimum energy occurs for the
slab width Do for which

(& I-/Dos)+g'(Do) =O. (4.2.17)

It is important to appreciate the fact that the
domain structures of most crystals fall naturally into
two classifications, a superficial domain structure which
is connected with the local details of Aux closure on the
crystal surfaces, and the basic domain structure running
through most of the volume of the sample. The super-
ficial structure very often assumes a highly complicated

the other part, m, &„f,„,t, the local energy associated
with the outer surfaces of the crystal. We may suppose
that for slab-like domains

pattern, such as shown in Fig. 8, whereas the under-
lying basic structure in single crystals is believed to be
fairly simple in most cases (Fig. 7).

The width of the basic structure is determined by
the surface energy density g(D) of the superficial struc-
ture and the wall energy o.„.The nature and scale of
the superficial structure depends on the relative values
of magnetic, anisotropy and magnetoelastic energies
at the crystal surface.

In cobalt the anisotropy energy is dominant and as
a result the Aux closure is incomplete. A typical domain
pattern obtained on a hexagonal face of a cobalt crystal
is shown in Fig. 35. L. H. Germer (1942) has confirmed
by electron beam methods the existence of strong local
magnetic fields of the order of 10,000 oersteds just at
the hexagonal face of a cobalt crystal. 30 kilovolt
electrons scattered from a hexagonal face produce on a
photographic plate an exceedingly complex pattern
(Fig. 36) made up of curves or arcs interlaced in elabo-
rate fashion. Iron and nickel crystals show no similar
phenomenon, and it may be inferred that the magnetic
fields are very weak, as would be expected from domain
arrangements in which the Aux circuit is closed inside
the crystal. The results for cobalt, of course, suggest
that the Qux circuit is not closed inside the crystal, in
this case, and this conclusion is in agreement with
theoretical expectation.

In the extreme case of very high anisotropy energy
one may expect the domains to be slab-like over their

~ ~ I
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Fro. 36(b). Results obtained in scattering of electrons from the hexagonal face of a cobalt single crystal (Germer, 1942).
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entire extent, and there will then be no special super-
ficial domains. In the other extreme, where the ani-
sotropy and the magnetostriction are both zero, all
semblance of a discrete domain structure disappears,
and the requirements of Aux closure are over-riding,
except when signi6cant changes in direction of magnet-
ization on a scale of 10 ' cm is required —in which case
the exchange energy must also be considered. Two
possible domain structures for this case are shown in
Fig. 37. The domains have swollen so that each domain
occupies a large part of the volume of the crystal.
This limiting case may be expected to set in when the
thickness of a Bloch wall becomes comparable with the
crystal dimensions. For a thickness of 10 ' cm, the
anisotropy energy must be of the order of only one
erg/cc. It is barely possible that we are approaching
such a situation in supermalloy in thin tape form
(Bozorth, 1948).

%le have not discussed in this section the question of
domain structure in the presence of applied magnetic
fields. The calculations proceed along the same general
lines as above, and for details the reader may consult
the papers by Neel (1944c) and Kholodenko (1947).
Hates and Neale (1949) have confirmed experimentally
the predicted dependence of domain width on applied
magnetic Geld in the [011$direction in silicon iron.

S. EXPERIMENTAL STUDIES OF DOMAINS

In the preceding sections of this review the general
theoretical basis of the structure of ferromagnetic
domains has been described in considerable detail. We
now discuss some aspects of the experimental basis of
the theory.

There are a number of diGerent sources of experi-
mental information concerning domain structure. By
far the most important source, with regard to funda-
mental understanding, is that of magnetic powder
patterns. The powder pattern technique was introduced
by Bitter, Elmore and others, and finds its highest
development in the definitive papers of Williams,
Bozorth, and Shockley (1949) and Williams and Shock-
ley (1949). The principle of the method is analyzed in
Section 5.1, and a selection from the experimental
results is discussed in Section 5.2. For further details
the reader is referred to the papers of Williams and
his collaborators.

Other experiments on domain structure include:

(a) Scattering of electron beams (Germer, 1942; Marton, 1948);
(b) Depolarization of beams of polarized neutrons (Surgy,

Hughes, and %allace, 1948);
(c) Sixtus and Tonks (1933) domains in stressed wires;
(d) Dependence of magnetostriction and magnetoresistance on

applied field and stress (Bozorth, 1946).

(a)

Fxo. 37, Theoretical possibilities for domain structures in the
limit of zero anisotropy energy.

investigation. The liquid contains a colloidal suspension
of a fine ferromagnetic powder, which is usually
magnetite with a particle size of the order of one micron.

We are now going to show that a great local concen-
tration of particles in the colloid 61m is expected as a
result of variations in magnetic Geld at the edge of a
Bloch wall,

The magnetic particles are acted on by a force when
in the presence of an inhomogeneous magnetic field,
and are drawn to the points on the surface of the sample
where the magnetic 6eld intensity is highest. Actually,
it appears as if the particles are in thermal equilibrium,
so that the density distribution of particles in the liquid

32
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5.1 Magnetic Powder Pattern Technique

The magnetic powder pattern technique consists in
the application of a thin liquid layer to the carefully
prepared surface of the ferromagnetic sample under

0
3 4
x = &H/yT

Fzo. 38. Plot of particle density function (sinhx)/x vs, parameter
x=pH/kT, where p is the magnetic moment of a single particle.
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particle makes with the field H. Here we assume that
the particle has a permanent magnetic moment; also,
we neglect particle-particle interactions. On averaging
p(H, 8) over all angles 8, we get the mean value

1 t" &pH cos8i
p(H) =—

~l exp~ — ~2z- sin8d8,
kT )

MAGNETIZATION NOR MAL TO SCRATCH
= (sinh(iiH/k T)/(liH/k T)). (5.1.2)

~ ~ ~

~ ~ ~

MAGNETIZATION PARALLEL TO SCRATCH

FIG. 39. Determination of the magnetization axis by
means of the scratch technique.

is given by the Boltzmann distribution function. That
is, the particle density p(H) at a point where the field
intensity is H is related to the density p(0) where the
field is zero by the relation

p(H, 8) =p(0) exp(liH cos8/kT), (5.1.1)

where 8 is the angle the magnetic moment p of the

Fzo. 40. Drawing of colloid pattern on a (100) surface with a
set of scratches parallePto the L010) axis. The magnetization is
parallel to L010$';.in~regions where the scratches do not appear,
and is parallel to L001j where the scratches are visible,

A plot of the function p(H) = (sinhx)/x, where
x=iiH/kT, is given in I'ig. 38. It is seen that the
particle density rises sharply when x is of the order of
3 or greater; that is, when pIJ)3k'l. Taking, as a
rough estimate, I, for the particle as 400 and the
particle volume as 10 " cc, we must have a field
variation

3(1.4X10 ")(3X10')
H) (3kT/ii) = =3X10 4 oersteds

(4X 10s)(10-»)

in order that an appreciable density variation may
occur. For a particle volume of 10 "cc, corresponding
approximately to a diameter of 0.1 micron, the magnetic
field variation must exceed 0.3 oersteds.

Now there are field variations at the surface of a
ferromagnetic crystal greatly exceeding 0.0003 or 0.3
oersteds. On a crystal surface with a Aux closure
domain configuration, as in Fig. 31, there will be local
fields along the lines where the plane of the Bloch walls
intersect the surface. As the change in spin direction
within a Bloch wall occurs in the plane of the wall, it is
evident that if we cut oG the wall, as we must do at the
crystal surface, then the spins in the wall will have a
component of magnetization normal to the crystal
surface. ' That is, there will be a line of either S or 5
poles wherever a Bloch wall comes out on the surfaces
of the specimen. These lines of free poles produce a
magnetic field which is quite adequate for the purpose
of forming a dense line of colloid particles. As a very
crude estimate, we may consider the perpendicular
intersection of a wall with the surface of a crystal of
iron to produce a pole density I, on a strip about 10 '
cm wide, corresponding to a linear pole density

g= (1700)(10 ') =0.02 gauss/cm.

At a distance of one micron from the wall this produces
a field H= 2g(r = 2(0.02)/10 '=400 oersteds.

This estimate shows that the field intensity due to
the edge of a Bloch wall is several orders of magnitude
greater than that needed to form a dense line of colloid
particles. Actually our estimate must be corrected for
the p*-eGect discussed in Section 2.4. That is, we must
allow for the fact that the line of poles rests on perme-
able material, with permeability p*=1+2rrI.s/E. The
solution to the boundary-value problem of the field due
to a line of poles on a uniform permeable half-plane

'gee Fig. 23,
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shows that the 6eld in the air is reduced with respect
to the free space field by the factor 2/(1+p~), which is
equal to 0.047 for iron. The corrected field intensity
at one micron distance is about 20 oersteds, which is
still ample for the formation of a dense line of colloid
particles, as is actually observed.

The theory of line formation has also (Kittel, 1949b)
been developed for the case of colloid particles which
are not permanent magnets, but which are permeable
spheres, as is probably more often the case.

Particle concentration will also occur, and often to a
great degree, in cases where there is not a Aux-closure
domain configuration, but where domains themselves
come to an abrupt end on the crystal surface. This is
expected to occur in materials of high anisotropy energy,
and is in fact commonly found in cobalt and on a (111)
plane of iron.

We have shown that large local concentrations of
colloid particles occur on the faces of ferromagnetic
specimens. These concentrations may be observed under
an optical microscope, when the specimen is suitably
illuminated.

5.2 Selection of Results of Powder Pattern Work

We discuss now some of the results which have
emerged from powder pattern studies. We shall treat
these three topics:

1. Determination of direction of magnetization by scratch
technique (Williams, 1947)

2. Correlation between magnetization changes and boundary
displacement {Williams and Shocl~ley, 1949)

3. Dagger blade domains around cavities and crystal imper-
&ections (Williams, 1947).

5.Z.1. 5cratch TechrIique

In the absence of a magnetic field the direction of
magnetization of the domains will be along the axes of
easy magnetization of the crystal. In an iron crystal
there are three axes of easy magne tization, the
three being mutually perpendicular and along the cube
edges.

In interpreting a powder pattern we wish to know
the direction of magnetization in all parts of the
pattern. We may determine the axis of the magnetiza-
tion in some important cases by what is known as the
scratch technique; and the setose is then determined by
observing the expansion or contraction of the domain
when acted on by an external magnetic 6eld parallel to
the domain axis.

The scratch technique may be understood by refer-
ence to an (001) surface of an iron crystal. The preferred
axes are parallel to [100] and [010]. If we make a
fine scratch on the surface parallel to [100], we shall

get colloid deposition on the scratch from domains
parallel to [010], but the scratch will not collect
colloid particles from domains parallel to [100].That
is, colloid collects when the magnetization crosses the
scratch, but not when the magnetization is parallel to
the scratch. The situation is made clear by Fig. 39.
It is the leakage Qux that attracts the colloid particles,
and there is no leakage when the magnetization is
parallel to the scratch.

A drawing of a domain pattern demonstrating the
effect is shown in Fig. 40, which was obtained by
Williams (1947).
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FIG. 42. Domain structure around cavities: the structure in the left-hand drawing was predicted by Neel (1944b) on energy
considerations; the predicted pattern was found experimentally by Williams (1947).

5.Z.Z, Correlation betzeem 3Eagnetisatioe Charges aed
Boundary Di sP/acemeut

In Fig. 11 we have given a sketch of the simple
domain structure found by Williams and Shockley
(1949) in a single crystal of iron (containing a small
amount of silicon). Reversal of the magnetization
circuit shown in Fig. 11 (a) proceeds by the formation
and movement across the crystal of the Bloch wall
shown in (b) in the form of a rectangle. The rectangle
expands or contracts in size according to the relative
amounts of Aux carried clockwise or counterclockwise.

If the wall shown goes straight through the crystal,
then we would expect to find a linear relationship
between the change of magnetization and the displace-
ment of the Bloch wall relative to the side of the crystal.
This result is verified by the measurements shown in
Fig. 41. This experiment must be considered as one of
the most fundamental experiments in the field of
ferromagnetism, as it shows that there is a direct
proportionality between wall displacement and net Aux.

5.Z.3. Domain Structure Around Cavities

Noel (1944b) pointed out that the presence of a
cavity in the magnetic material included in a domain
will give rise to a considerable amount of magnetostatic
energy because of the formation of E and S poles on
opposite faces of the cavity. He suggested that a local
domain structure such as that shown in Fig. 42 would

form around the cavity, with a reduction in the total
energy. The Keel structure has the effect of distributing
the poles along the curved portions of the boundaries.
As the domain elongates the magnetostatic energy
decreases and the wall energy increases, and that
structure occurs for which the sum of the two energies
is a minimum.

Williams (1947) has found domain patterns of the
expected type around holes in a silicon iron crystal.

Measurement of the ratio of length to width of the
Weel domains offers a possible experimental method for
determining 0. , the surface energy density of a Bloch
wall. Values estimated in this way are of the correct
order of magnitude.

6. MAGNETIC PROPERTIES OF
SMALL PARTICLES

If the specimen is cooled from above the Curie point
in field-free space, it is a matter of common observation
that the demagnetized state is the stable state in large
ferromagnetic crystals. In the demagnetized state
the domains are oriented so that the magnetic Aux

circuit lies almost entirely within the specimen, and the
overall magnetic moment of the specimen is approxi-
mately zero.

As the dimensions are diminished, the relative contri-
butions of the various energy terms to the total domain

energy are changed, and surface energies become more
important than volume energies. The surface of the
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transition layer (Bloch wall) between domains is a
surface energy, while the energy in the magnetic field
(magnetostatic self-energy) is a volume energy. When
very small dimensions are reached, there will be a point
at which it is favorable energetically to do away with
the domain walls, so that the whole specimen becomes
one domain and acts as a permanent magnet. This was
first predicted by Frenkel and Dorfman (1930), al-
though in their note the surface energy of the boundary
between domains is over-estimated by a factor of the
order of 50, leading to much too high values of the
critical dimensions for single domain behavior. Im-
proved and corrected calculations were first published
by Kittel (1946); followed by Neel (1947a) and Stoner
and Wohlfarth (1947; 1948).

Experimental evidence of the intrinsic permanent
magnetization of small ferromagnetic particles was
demonstrated first by Elmore (1938, 1941), although
the eAect had been suspected earlier, as for example by
Antik and Kubyschkina (1934), on the basis of evidence
regarding the magnitude of the coercive force. The gen-
eral agreement of experiment with theory in the small
particle area is not as good as might be desired, but in
many cases it seems pretty clear that the theory is on
the right track. Complications due to agglomeration in
actual materials have not been discussed adequately.

The single domain behavior of small particles prom-
ises to be of great practical importance in connection
with materials for permanent magnets. This is because
of the very high values of the coercive force which it is
possible to obtain with single domains.

Similarly, single domain behavior is expected in very
thin films (Kittel, 1946), and experimental evidence for
this is suggested by the recent work of Origo and Pizzo
(1948) on the Barkhausen effect in thin films of Fe, Ni,
and Co. They find that the Barkhausen eGect disap-
pears when the thickness of the films is reduced to
10 ' cm, in good agreement with the theoretical value
of the critical thickness for single domain behavior.

radius R, the energy is

w= fV = (1/2)(4n/3)'R'I ' (6.1.2)

and is approximately 24)&10' ergs for X=1 cm and
24)&10 "ergs for 8=10 ' cm.

We now must consider the energy of simple arrange-
ments of domains. If the anisotropy is low it appears
reasonable to take the circular configuration shown in
Fig. 43(a) as the most favorable Aux-closure configura-
tion, whereas if the anisotropy is very high we may
expect a situation as shown in (b) for a cubic crystal
and as shown in (c) for a uniaxial crystaL These three
cases will now be treated individually.

6.1.1 I.ow Amsotropy
L

The energy here is largely in the form of exchange
energy. Consider the spins on a circular ring of radius
r. There are 2~r/u spins on the ring, where u is the
length of a side of the unit cell. The total change in
angle in going around once is 2x, so that the angle y
between successive spins is

q =u/r,
and

w„;„~=(1/2) J(u/r)2(2irr/u) = vrJu/r,

(6.1.3)

(6.1.4)

by Eq. (2.1.5), with S=1. Now consider the sphere
made up of circular cylinders (Fig. 44), each one unit
cell in thickness. The number of rings in a cylinder is
(2/u)(R' —r')«, so that

(a3

FiG. 43. Types of simple domain arrangements in a small
sphere: (a) Applies for low anisotropy, (b) for high anisotropy
in a cubic crystal, and (c) for high anisotropy in a uniaxial crystal.

6.1 Critical Particle Size for Single
Domain Behavior

w i 2'J(R——2 r2)«/r, —

~B
w,„i„„,= (2m J/u) [(R'—r')«/rjdr

(6.1.5)

f= 'IHIP =2~I '/3- (6.1.1)

for a sphere. The numerical value is approximately
6X10' ergs/cc in the case of iron. For a sphere of

We shall consider a small spherical ferromagnetic
particle of radius R; it is supposed for the sake of
concreteness that the particle is a single crystal. We
are interested first of all in the critical particle size for
which the energy of the single domain configuration is
lower than the energy of configurations in which there
is a domain structure tending towards Qux closure.

The energy density of the saturated single domain
con6guration is in the form of magnetostatic energy,
and is equal to, from Eq. (2.4.3),

=(2%rJR/u)DB(2R/u) —1j (6.1.6)

or, per unit volume,

f,.= (3/2) (J/uR') )le(2R/u) —1]. (6.1.7)

This energy density depends on the size of the sphere.

rFn. 44. Decomposition of sphere into
circular cylindrical shells.
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Fxc. 45. Geometrical situation for
the calculation of the coercive force
resulting from magnetocrystalline ani-
sotropy, for the case of a uniaxial
crystal. ~uiall 2&m~+ ~ (6.1.9)

For an iron particle with J'=10 ' cm we have m, ll—14X10 "ergs; but the value of the critical radius is
about 0.7X10 cm, since

possible for the critical radius to exceed appreciably
the wall thickness. When this condition is satisfied the
critical radius may be calculated by use of the model
shown in Fig. 43(b). The energy here is essentially in
the form of wall energy and is equal to

f.~= 0.8X 10' ergs/cc.

The values of m may be compared with those calcu-
lated following Eq. (6.1.2) for the saturated configura-
tion. It is seen that the Aux-closure configuration has

by far the lower energy when the radius is 1 cm, but
when the radius is 10 ' cm the saturated configuration
has the lower energy.

Thus for sufficiently small particles the saturated
configuration has a lower energy than the Qux-closure
configuration. The critical radius E, is given by

(1/2)(47r/3)'Ec'I'= (irJR,/o) Lln(2R, /u) —1j, (6.1.8)

and is approximately inversely proportional to the
saturation magnetization. The value of the critical
radius for iron is ~10 ' cm.

An expression practically equivalent to Eq. (6.1.8)
was first given by Neel (1947a).

6.1.2 High Anisotropy, Cubic Crystal

In the preceding calculation the anisotropy energy
associated with the Qux-closure configuration was neg-
lected in comparison with the exchange energy; this is
justifiable if the critical radius is appreciably smaller
than the thickness of a Sloch wall in the material.
This follows because the anisotropy and exchange
energies are equal in a Bloch wall, but the exchange
energy will be dominant if the change in spin direction
is constrained to take place in a distance less than the
wall thickness.

But if the anisotropy energy is high it may be

ThsLE Il. Maximum coercive forces of small particles due to
various causes. (Complete orientation assumed; packing effects
neglected. ) T=2X10"dynes/cm'.

Expression
Fe
Co
Ni

Anisotropy

2E/I,
500

6000
135

Shape

2m-I,
10,700
8,800
3,150

Internal strain

AT/I.
600
600

4000

Using the value I/a=2X10 ' ergs/cm for iron from
Eq. (2.1.18), we have

(a) 8=1 cm
m„=1,3X10 4 ergs

(b) 2=10 ' cm

m.~=23X10 "ergs

which leads to
R.=9o/4irI, '. . (6.1.12)

This is identical with Eq. (6.1.10). For MnBi we may
estimate

L20/(600)'j 4X 10—' cm,

while the wall thickness is of the order of 8=2&10 '
cm, so that in this case the basic assumption b/R, ((1
of the calculation is valid.

Similar calculations for fine wires and thin films, as
well as for fine particles, were given by Kittel (1946).

6.2 Coercive Force of Small Particles

We have just seen that the formation of domain
boundaries is energetically unfavorable in the case of
suf5ciently small particles. Now in the absence of
domain boundaries changes of magnetization cannot
proceed by the "easy" process of boundary displace-
ment (Fig. 5) but must rather proceed exclusively by
the "hard" process of rotation of the total magnetic
moment of the particle (Fig. 16).

When we have ruled out the possibility of boundary
movement we may obtain large increases in the coercive
force by means of increasing the effective anisotropy of
the specimen —that is, by making it as difficult as
possible to rotate the magnetization of the domain as a
whole. This was pointed out Grst by Kittel in 1946.
In order to reverse the direction of magnetization in a
small particle it is necessary that the magnetic energy
acquired by the particle in the external magnetic Geld

be greater than the internal energy tending to prevent
rotation of the domain direction. The effective internal
anisotropy will be high if the magnetocrystalline ani-
sotropy energy is high (Kittel, 1946), or if the shape of

R,= (9/4~) (o. /I, ') (6.1.10)

as follows from equating Eq. (6.1.9) with Eq. (6.1.2).
This value for the critical radius is less than the wall
thickness so that the calculation is not applicable. If
the anisotropy energy were increased by a factor of 10
or more, then the calculation would be applicable.

6.1.3 High Anisotropy, IIniaxial Crystal

For the model shown in Fig. 43(c) the energy balance
is roughly given by

(1/2) (1/2) (4n/3) 'E.'I 2+mrE, 'o
= (1/2) (4s/3)'R'I ' (6.1.11)
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the particle is very elongated (Neel, 1947b), or if a
severe strainis applied in an anisotropic manner (Stoner
and Wohlfarth, 1947). The first of these causes is most
probably responsible for the highest observed values of
the coercive force, namely, 12,000 oersteds in MnBi
and 20,000 oersteds in FePt.

We discuss now the coercive force due to each of
these three causes separately. It is assumed in all cases
that only single domains occur. We first treat the case
of a single particle, and later consider the modifications
introduced when a collection of particles are packed
together densely. Table II compares the values of the
coercive force of fine particles of Fe, Co, and Ni, as
calculated for various mechanisms.

12,000
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I'IG. 46. Coercive force in an iron particle due to anisotropy of
shape, as a function of the axial ratio of the particle.

fx=Ki sli18, (6.2.1)

according to Eq. (2.2.2); 8 is the angle between the
crystal axis and the direction of magnetization. The
magnetic energy density is, for an applied magnetic
field Ho parallel to the crystal axis,

f„.,=HpI, cos8 (6.2.2)

where the choice of sign was made to correspond to a
field direction opposite to the projection of magnetiza-
tion on the crystal axis (Fig. 45).

The total energy is

f=Ki'sin'8+HpI, cos8 (6.2.3)

6.2.1 Coercive Force Resulting from Magnetocrystalline
Anisotropy

The anisotropy energy density in a uniaxial crystal
may be written, to the first order,

usually oriented at random. In this case Neel (1947a)
has shown that for cubic crystallites oriented at random
the coercive force for the average hysteresis loop is

(H,)~„=0.64K/I, (6.2.10)

for E&0. This is about 160 oersteds for iron. If we
assume the same factor for cobalt, which is uniaxial,
we get (H,)~„=2500oersteds.

6.Z.Z Coercive Force Resulting from Anisotropy
of Particie Shape

We suppose that the particle is in the shape of a
prolate spheroid. We restrict the discussion to the case

and is a minimum with respect to 0 when e= 0 0-

or
Bf/88=0=2Ki'sin8cos8 —HpI, sin8 (6.2.4)

Hp=(2Ki'/I, ) cos8 (6.2.5)

which is a maximum (and therefore equal to the
coercive force) when 8=0. Thus,

H, =2Ki'/I, . (6.2.6) e =90' 0-

This result also applies to the case of cubic crystals
if the field is applied along a $001$ direction. For a
small 8 the anisotropy energy is

fK=K18

according to Eq. (A.3). The total energy is

f=Ki8'+HpI, cos8,

which is a minimum with respect to 8 when

8f/88=0=2Ki8 HpI sin8—
which, in the limit 0=0, gives

H, =2Ki/I,

(6.2.7)

(6.2.8)

(6.2.9)

e =45' 0-

0
H

2rrIS

Pro. 47. Magnetization curves for elongated particles, for the
applied field parallel, perpendicular, and at 45' to the long axis

In actual samples of powder materials the grains are of the particle.
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of a long circular cylinder; here

H, = 2prI, =8,/2. (6.2.13)
08
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U
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~ = EXPERIMENTAL POINTS FROM
GUILLAUD S DATA ON Mn Bi. USING

Hc = 20 000 ~ dp = 9.0 MICRON S Matenal
Fe
Co
Ni.

Max. H, (oersteds)

10)700
8,800
3,150

Values of the theoretical maximum H, for several
materials on the basis of the shape eAect are listed
below. These values do not consider interaction eGects,
which are discussed later.

0.2

0
0

dp d

10 '12

FIG. 48. Comparison of Guillaud's data on MnBi with theo-
retical lower limit to coercive force, H„asfunction of particle
diameter d.

where the applied magnetic field Hp is parallel to the
long axis of the spheroid, but opposite to the original
direction of the magnetization.

Let N p denote the demagnetizing factor of the prolate
spheroid in the direction of the major axis, and let N~
denote the demagnetizing factor in any direction at
right angles to the long axis. YVe have Np&N~, . for a
long circular cylinder Np=0 and N& ——2m,. for a sphere
Ão= 1Vc=47r/3.

The energy is cVg—lIt'p=8v e/5 (6.2.15)

The nature of the magnetization curves when the
shape e8ect is predominant is shown in Fig. 47, where
curves are given for the applied field parallel, perpen-
dicular and at 45' to the long axis of the particle.

Stoner and Wohlfarth (1948) have shown that for
particle axes distributed in random orientations, the
average coercive force is given by

(H,)g, =0.48(1V(—cVp) I, (6.2.14)

so that the above estimates should be reduced by
about one-half where the orientation is random.

Neel (1947b) has considered the case when the axial
ratio c/a of the prolate spheroid is nearly unity:

c/8= 1+s.
Here we have, by manipulating the analytical expres-
sions for the demagnetizing factors,

f„„=(1/2)I, '(Xp cos'8+Nq sin'8)+HpI. cos8 (6.2.11) so that, from Eq. (6.2.13),

where the first term is the energy of the demagnetizing
field and the last term is the magnetic energy due to
the applied field Hp. The energy is a minimum with
respect to 0 when

Bf/88=0=I, '(X~ Np) cos8 sin8 ——HpI, sin8.

The coercive force corresponds to 0=0 and is equal to

H.= P~—&o)I' (6.2.12)

Values of the coercive force calculated for iron
(I,=1700) using this equation are plotted in Fig. 46
as a function of the axial ratio of the prolate spheroid.

The coercive force is a maximum for the limiting case

i[

I „p ~

fz,
I'

H, 87reI/5— (6.2.16)

If the directions of the major axis are distributed at
random, Neel finds by graphical calculations that the
average coercive force is reduced by the factor 0.48,
so that

(H,)g„—0.48(8v./5) eI,

which gives (H.)g,=4100e for iron.

(6.2.17)

6.Z.3 Coercive Force Resulting from Longitudinal Stress

The magnetoelastic energy density is (for isotropic
magnetostriction), according to Eq. (2.3.22),

f,= ssXT sin'8, (6.2.18)

f= sPXT sin'8+HI, cos8,

which is a minimum with respect to 0 when

Bf/88=0=3XT cos8 sin8 —HI, sin8,

or, for 0=0,

(6.2.19)

where X is a magnetostriction constant and T is the
applied stress. The total energy density in an applied
field Hp parallel to the stress is

H, =3XT/I„ (6.2.20)
FH;. 49. Initial stage of magnetization reversal by formation of

Bloch transition wall of width 8. as was given by Stoner and Wohnarth. Where the
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stress is due to internal strains a reasonable upper limit
to the stress is taken by these authors to be 200 kg/mm',
or 2X10" dynes/cm'. The maximum coercive forces
for iron, nickel, and cobalt are then 600, 4000, and 600,
respectively.

6.ZA DePenderice of the Coercive Force ori, Particle Size

It is an experimental fact that the coercive force
increases rather gradually as the particle size is de-
creased. The variation of coercive force is probably
more gradual than can be accounted for by the disper-
sion in the dimensions of the particles in any sample.
The experimental results of Guillaud (1943) on fine
powders of the compound MnBi are shown in Fig. 48;
it is seen that there is a considerable variation in
coercive force H, over the range of diameters from 3 to
100 microns.

A rough theoretical explanation of this variation has
been given by Kittel (1948), using a model (Fig. 49)
which applies to spherical particles of high anisotropy
material.

We consider a small sphere magnetized to saturation;
when the field H, is applied it is supposed that a
domain wall forms as shown in Fig. 49. In this position
the energy balance is given approximately by the
equation

o(~p /4) =H,I, (m'p 8/8)+iI U(5/2d). (6.2.21)

Here 0- is the surface energy density of a Bloch wall,

p is the wall diameter, and 8 is the wall thickness; U is
the volume of the sphere. The term on the left approxi-
mates the energy of formation of the wall; the first
term on the right approximates the magnetic energy of
the wall material in the applied field H„while the
second term on the right is a crude estimate on dimen-
sional grounds of the change in the magnetic self-energy
of the sphere.

Using the geometrical relation p'=48d, we may write
Eq. (6.2.21) in the form

H,/H;=1 —(d/d, ),
where H,"=2o/8I, and do ——2. 4o/I 2 Now, from th.e
theory of the Bloch wall, o (EkT,/u) & and

(kT,/Eu)', so that H," 2E/I„ in agreement with
the value obtained from domain rotation. For MnBi,
we calculate H,"=40,000 and dp 7&&10 ' cm. The
estimated value of dp is uncertain by an order of magni-
tude, because of the crudeness of the estimate of the
change in self-energy of the sphere. The theoretical
curve plotted in Fig. 48 was fitted to the data using
H,"=20,000 and dp ——9&10 ' cm.

The present theory may be regarded as setting an
approximate looser limit to the coercive force as a
function of particle size—a lower limit because it is not
clear without very detailed calculation that the situa-
tion pictured in Fig. 49 actually corresponds to the
maximum energy barrier for wall formation.

On this model the particle diameter for H, =H,"/2
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FIG. 50. Approximate upper limit to particle diameter for
manifestations of single domain behavior.

is given by

D= do/2 = 12o/Ia . ' (6.2.23)

This relation is plotted in Fig. 50; the coordinates
calculated for Fe, Co, Xi, and MnBi have been plotted
as short lines, so as to suggest the approximate nature
of the calculation. The particle diameter calculated
from Eq. (6.2.23) may be considered as an approximate
upper limit for pronounced manifestations of single
domain behavior. The relation assumes a high aniso-
tropy energy, so that it is not really applicable to nickel
and iron.
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FIG. 51. Effect of density of packing on the coercive force of
70 Fe 30 Co 6ne powder magnets, according to Weil (1947).
The packing factor is the fraction of the volume of the magnet
which is 6lled by magnetic material.
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6.Z.5 Dependence of the Coercive Force on the

Density of Paching

The mutual interaction of the magnetic moments of
the particles in a fine powder matrix causes in some
cases a reduction of the coercive force. For situations
where the effect occurs it is greater the denser the
packing. Figure 51 shows results obtained by Weil
(1947) with fine powders of an Fe-Co alloy.

The eGect is expected to be most important for
elongated particles, whose coercivity is determined
principally by the shape eGect discussed in Section
6.2.2. For a square lattice of infinite fine circular
cylinders Shockley and Kittel have shown in unpub-
lished work that the coercive force is given by

II= (1—Pp)2mI„ (6.2.24)

where P is a coefficient which is equal to 1.1 for cubic
packing and to 1.0 for hexagonal close packing; p is the
packing factor. The calculation is somewhat too lengthy
to be given here.

6.Z.6 Dependence of the Coercive Force on Temperature

When the coercive force of a fine powder is deter-
mined by magnetocrystalline anisotropy the tempera-
ture variation of the coercivity will be determined by
the temperature variation of K/I„when the coercive
force is determined by shape anisotropy, the tempera-
ture variation of the coercivity will be determined by
the temperature variation of the saturation magnetiza-
tion. In Fig. 52 we compare the results of calculations
on these two types of temperature variation for the
case of fine iron powders.

The results of experimental measurements on fine
nickel particles by Weil and Marfoure (1947) are shown
in Fig. 53. The increase of coercive force with decreasing
temperature is very marked, but is not as rapid as
would be expected if the coercive force were due entirely
to crystalline anisotropy.

V. INITIAL PERMEABILITY AND COERCIVE FORCE

7.1 General Remarks

The initial permeability and the coercive force are
structure sensitive properties of magnetic materials;

Is
V////////////////////////////////////////////////////////r //'/'//A

FiG. 54. Displacement of domain boundary by an applied field.

that is, they may change in value by large amounts as
a result of small changes in the metallurgical treatment
and chemical composition of the material. By contrast,
properties which are not normally structure sensitive
are the density and the saturation magnetization. In
general our knowledge of the physics of structure
sensitive properties is not very detailed. The reason for
this is that the physical dimensions of the impurity
aggregates or strain centers (or whatever is the cause
of the structure sensitivity) are quite small, often of
the order of one micron or less, so that we find it
dificult to get reliable information as to the actual
physical state of the material. Further, it is dificult to
perform controlled experiments with a single foreign
aggregate or strain center on the required small scale.

In practice the very existence in bulk material of a
non-infinite initial permeability and non-zero coercive
force suggests that the specimen is imperfect and non-
uniform. In an ideal specimen the boundary wall
separating two domains magnetized in opposite direc-
tions should be easily displaced (Fig. 7.1.1) by the
application of an exceedingly small applied field H.

The essential physical problem of the coercive force
may be reduced to the problem of determining the
threshold magnetic geld IIs necessary for translational
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motion of the transition layer or boundary wall separating
domains magnetized in opposite directions. What the
theory must do is to provide a mechanism whereby the
energy of the specimen will vary in a more-or-less
irregular way with the position of the Bloch walls. If
the energy varies irregularly there will then be positions
of minimum energy, and the walls will naturally take
up these positions. The walls may be displaced from
these positions by the application of a magnetic field,
which in e8ect exerts a pressure on a wall tending to
displace it so as to increase the magnetization in the
direction of the field. The initial permeability is a
measure of the intrinsic restoring force on the wall for
small displacements, while the coercive force is a
measure of the magnitude of the maximum restoring
force on the wall. The coercive force tells us the field
strength needed to carry a wall from one potential
energy valley to another potential energy valley, past
the highest intervening energy hump.

I.et us, formally, associate all energy changes attend-
ant on the wall motion with changes in energy of the
wall itself. Suppose that wall energy per unit area o.

must increase by 60;, in order that the wall may
traverse a distance d,x. The required energy is provided
by the reversal of the magnetic moment I,hx of the
volume affected, in a magnetic field H' just sufhcient
to induce the desired displacement. Then

2H'I, kx =Ao.„, (7.1.1)

where the term on the left is the decrease in magnetic
energy of the system resulting from a change in direction
of the magnetic moment I,dx from an orientation
anti-parallel to H' to an orientation parallel to H'.
The magnetic energy is converted into surface energy
of the boundary wall. The effective pressure exerted by
the field is 2H'I, .

The threshold field Ho for the displacement of a
boundary over the length of a domain will be deter-
mined by the largest local obstacle encountered in
passage, so that

Po (1/2I.) (do /dx——)„., (7.1.2)

This gives the order of magnitude of the coercive force.
The problem is now reduced to the estimation of
(do /dx) ...

There are three principal types of mechanisms which
have been considered in connection with the theory of
coercive force. F. Bloch first suggested that inhomo-
geneous internal strains might play a role in determining
the resistance to boundary motion, and this idea was
developed by Kondorsky (1937) and Kersten (1938).
The theory of the effect of aggregates or inclusions of
foreign atoms was developed by Kersten (1943). An
important criticism and extension of both of these
theories has been put forward by Neel (1946), who
stresses the part played by the demagnetizing energy
resulting from magnetization variations produced by
both internal strains and inclusions.

Frc. 55. Model for calculation of coercive force on
Kersten impurity center theory.

It appears probable that experimental work now
going on will in the near future give us a better physical
picture of the actual mechanisms at work, thereby
making possible theories better grounded in experi-
mental fact than are any of the present theories of
coercive force.
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FIG. 56. Coercive force of iron with heterogeneous inclusions of
precipitated copper, as a function of the excess of copper over
and above the solubility limit 0.5 percent Cu at 600'C (after
Kersten).

7.2 Kersten Inclusion Theory

As an example of the nature of the calculations
involved we give here a short estimate of the eGect
of non-magnetic inclusions on the wall energy.

' The
coercive force on this model arises because the wall in
a position where it intersects a number of inclusions
will have a smaller area, and therefore a lower energy,
than in a position where no inclusions are intercepted.

We use a highly simplified model in which the in-
clusions are pictured (Fig. 55) as spheres of diameter
d arranged in a cubic lattice with lattice constant s.
When the boundary intersects a sphere the wall energy
is lowered by an amount corresponding to the energy
in the wall area which is effectively removed or "short-
circuited" by the presence of the inclusion.
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Kersten gives
(H,) „=(K/I, )n*.

(H,) ..=2.5(E/I, )ni;

(7.2.7)

(7.2.8)

these values are plotted in Fig. 56 and are compared
with the experimental values of H, for iron with
precipitated copper.

and the half-width 8 of the boundary wall, which is of
the order of o /E, where E is the anisotropy energy.
Then

H, = (K'/I, ) (8/d) n*. (7.2.6)

This is derived on the supposition that the inclusion
diameter d is much greater than the wall thickness 6.
We may, to a rough approximation, suppose that the
maximum value of II, will occur when b=d, so that

FIG. 57. Wall displacement in presence of a sinusoidal
stress distribution (Kersten).

Consideration of Fig. 55 shows that the wall energy
is given by

s' —m L(d'/4) —x'j
o(x) =op

$2

Initial Permeability orI, the Iecllsioe Model

The initial susceptibility xo is given by

gp = (dI/dx)/(dH/dx) . (7.2.9)

The magnetization change AI associated with the
boundary shift Ax between oppositely magnetized do-
mains is given by

for j x~ &d/2. Taking the derivative,

(do/dx) = 2ops x/ss

so that
(do/dx) ..=oped/s'.

dZ =2I,Phx/s (7.2.10)

(7.2.2) where P=s/h; here ls is the average thickness of a
domain. From Eqs. (7.1.1) and (7.2.2),

H = (1/2I, ) (do/dx) = 7r(o./I, ) (x/s'), (7.2.11)

By combining Eqs. (7.1.2) and (7.2.3), the coercive
force is found to be dH =pr(o/I, ) (dx/s') = 27r(K/I, ) (h/s')dx (7.2.12)

H.= ( /2)( -/I. )(d/ ')
~ ~

(7.2.4)
Xp ——(pI ss/27rK6). (7.2.13)

Introduce now the inclusion packing fraction

n =xd'/6s' (7.2.5)

On taking account of 90' as well as 180' walls,

iup =47rxp ——1 6PI,'d/k8n'.

for po))1, d))8.

(7.2.14)
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7.3 Strain Theory

In the presence of a stress T the surface energy
density of a Bloch wall can be shown, by the application
of the reasoning of Section 2.3 to the subject matter of
Section 3.3, to be approximately equal to

o. =2[A(E+XT)j' (7.3.1)

where we neglect numerical factors of the order of
unity. Here X is the saturation magnetostriction. The
only new idea in this equation is the explicit introduc-
tion of strain anisotropy as represented by the XT term.

Suppose that T varies with position in the following
way:

10 20
T' IN KGJ'MIH2

30 T= Tp+hT sin2~x/l, (7.3.2)

FIG. 58. Coercive force P. of nickel as a function of the average
internal stress T;: {a) Recrystallized wire, {b) hard drawn wire
{Kersten, 1938).The T; are estimated through independent mag-
netic measurements.

as shown in Fig. 57. Then

do„/dx=7 [a/(K+ZT)] '(dT/dx)-
= (2mAAT/l)LA/(K+AT)]' cos2mx/l (7.3.3)
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which assumes the maximum value

(do/dx) .,= (2m.XET/l) [A/(E+) T)]'. (7.3.4)

This gives approximately

(7.3.5)

where 6 is the thickness of the Bloch wall and / is the
scale of the stress variation.

From Eqs. (7.1.2) and (7.3.5),

(7.3.6)
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Experimental results showing the dependence of II, on
the magnitude of the internal stress AT are given in
Fig. 58.

This sketchy calculation should be adequate to get
across the idea that the coercive force depends on the
magnitude of the stress variation as a consequence of
the dependence of the wall energy on stress. We might
expect this mechanism to be of importance in material
with high magnetostriction such as nickel. For further
details it is suggested that the reader consult the
original papers of Kondorsky (1937) and Kersten
(1938).

tv. = (1/2) (4v./3) (4v a'/3) I.', (7.4.1)

7.4 Neel Magnetization Fluctuation Theory

Neel (1944b, 1946) has suggested that the inclusion
and strain theory calculations are seriously in error in
several respects. First, the implicit assumption of a
regular distribution of irregularities, as for example the
assumption of inclusions on a cubic lattice, greatly
overvalues the coercive force for actual materials where
the perturbations might be supposed to be more-or-less
random. Second, the assumption of rigid domain walls
also acts to give too high values of the coercive force.
When the appropriate corrections for these factors are
made the maximum coercive force yielded by the
theory, according to Xeel, is of the order of one oersted,
which is much too small to account for the coercivity
of many magnetic materials.

Neel points out that the magnetic energy associated
with inclusions or stress variations may be considerably
greater than the changes in wall energy associated with
the same structure. Consider for example the two
positions of the wall shown in Fig. 59. In the position
(a) the magnetic energy of the inclusion' in the form
of a sphere of radius g is, from Eq. (2.4.3),

Fro. 59. Figure illustrating the dependence of magnetic energy of
an inclusion on the position of a boundary wall.

By a sophisticated development of this basic idea in
the 1946 paper, Xeel obtains

Iron: H, =2.1v+360v' oersteds, (7.4.3)

Nickel: H, =330v+ 97v' oersteds. (7.4.4)

Here L' is the fraction of the volume occupied by
inclusions and v is the fraction of the volume subjected
to irregular internal stresses of magnitude 30 Kg/mm'.

The work of Williams and Shockley on an iron
crystal with simple domain structure suggests that the
interaction of the principal domain boundaries with the
dagger blade domains (Section 5.2.3) around crystal
imperfections plays an important part in determining
the coercive force of this particular educated crystal. It
appears likely that further work of this character will
give a more satisfying physical basis to our under-
standing of the mechanism of coercive force.
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APPENDIX A

Mathematical Expressions for the Anisotropy
of Cubic Crystals

The expression (Eq. (2.2.4))
whereas the magnetic energy in position (b) is

xg= 0.46m, (7.4.2)

fK =+1(~12~22+~12~32+22~32) (A.1)

in the direction cosines n1, n2, n3 of the magnetization referred to
the cubic axes becomes

according to a potential theory calculation given in
Neel's 1944 paper. The difference in energy between
m and m~ is a measure of the field which must be
applied in order to make the wall move from position
(a) to position (b).

f~= E1 sin20 cos20= 4'E1 sin20

in the (001) plane, where n3=0.
For small a2, n3'.

f~~E.102

where e is the polar angle between n and the L100$ axis.

(A.2)

(A.s)
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If we write Eq. (A.1) in terms of a polar angle g and an azi-
muthal angle q, then (Neel, 1944)

f~ =Xi(sin'g ——,
' sin4g —

8 sin g cos4q) (A.4)

when the polar axis is a cube side; and

/ E(-; ='3+'t '3—3 i '3 3g (A 3)
3

when the polar axis is a body diagonal; finally,

fx —,'E= 3$(1—4 sin'8+4 sin48)+ (6 sin'8 —4 sin48)sinsq
—3 sin48 sin422$ (A.6)

when the polar axis is a face diagonal. The azimuthal angle q is
referred to a cube edge.

APPENDIX B

for a face-centered cubic lattice, where

3 1 5l4S=-z,'
2 (Pym'+n')"' (P+m'+n')'f' (B 7)

For b.c.c., S=0.4; while for f.c.c., S=0.6. We have then for iron,
which is body-centered,

Calculated: B3=—0.7X10' ergs/cc; B2=0.5X10' ergs/cc
Observed: B3=—2.9X10' ergs/cc; B2 6 4X——10.' ergs/cc

and for nickel, which is face-centered,

Calculated: B3= —0.04X 10"ergs/cc; B2=0.03X 10' ergs/cc
Observed: B3= 6.2 X10"ergs/cc; B2=9.0 X10' ergs/cc.

The comparison of calculated with observed values demonstrates
the inadequacy of dipole-dipole interactions.

Magnetic Interaction Energy of Dipoles on
a Cubic Lattice

P+n '(m' —P)+o.P(n' —P)—3 Z'
(P+m'+n')@' (B.3)

where we have omitted across terms in lm, ln, etc. , since these
obviously sum to zero. Now

l2 m2 n2= Z' = Z' (B.4)
$~„(P+m+n') ~ $~ {P+m'+n )5~'

) (P+m'+n') "
by symmetry, so that the terms in n2, n3 are identically zero,
which leaves only a term independent of the direction of magnet-
ization. There is therefore no anisotropy for a simple cubic
lattice; the same result applies to body-centered and face-
centered cubic lattices. It may further be seen that f=0.

If, however, we allow the lattice to deform spontaneously the
magnetic dipole interaction will give rise to magnetostriction and
thus, by an argument which we have given earlier, to an apparent
and small contribution to the anisotropy. Becker (1930) has
shown that the magnetostriction resulting from dipole-dipole
interactions is only about one-fifth of the observed magneto-
striction in iron, while in nickel the magnetostriction calculated
on this basis does not agree with the observed value even in
algebraic sign. We, therefore, see that the magnetic dipole inter-
action from saturation magnetization on a regular lattice explains
neither the observed anisotropy nor the observed magnetostric-
tion.

On Becker's calculation the magnetoelastic coupling constants
(Eq. (2.3.5)) are equal to

Bi=—6SI,'; B2=4SI,' (3.5)

for a body-centered cubic lattice, and

Bi=—3SI ' B2=2SI ' (8.6)

We propose to prove now the well-known fact that the magnetic
moment interaction between dipoles on an infinite unstrained
cubic lattice gives no anisotropy energy. The magnetic interaction
energy between any two dipoles of the array is

p"p 3(p' r';)(p; r';)
r rs

so that the total dipole interaction energy density of a saturated
simple cubic lattice is

1 3(l~,+m, +~,)2

(12+2322+ N2) 3/2 (12+3/32+ N2) 3/2

where N is the number of dipoles per unit volume, n is the direc-
tion of the magnetization, and r=(z, y, s)=(la, ma, Na) is the
vector from the dipole at the origin to the dipole at the lattice
point (l, m, n). The first term in the sum does not contain any
reference to the direction of magnetization and therefore cannot
give anisotropy. The second term may be rewritten, using

nP=1 —n22 —nP, as

APPENDIX C

List of Symbols

B= Magnetic induction =H+4m I.
H= Magnetic field intensity.

H y= Effective molecular field.
I= Magnetization =Magnetic moment/volume.
I,=Saturation magnetization.
Io= Saturation magnetization at O'K.
E=Anisotropy energy density constant.
J=Exchange integral.

T,= Curie temperature.
k=Boltzmann constant=1. 38X10 " ergs/degree abso-

lute.
rr= (nr, n2, n2) = (n2, n„,32,)=direction cosines of magnet-

ization vector, referred to the crystal axes.
xiii, &ioo= Saturation magnetostriction constants.

c», c», c44= Elastic moduli of cubic crystal.
e;;=Components of strain.
f= energy per unit volume= energy density.f„=exchange energy density.

f3333 anisotropy energy density.f,=magnetoelastic energy density.
f „=magnetic energy density.
f.3= elastic energy density.

Bi, B2=magnetoelastic coupling constants.
N= number of atoms per unit volume.
u = lattice constant.

0„=Bloch wall energy per unit area.
q =angle between directions of adjacent spins.

n,fy= effective number of Bohr magnetons per atom.
A = exchange energy constant.

/3/3 —Bohr magneton= 0.927 X 10 "ergs/oersted.
T= stress; absolute temperature.
g= linear pole density.
S=spin quantum number.
x= susceptibility per unit volume I/H.
p =permeability = 1+4rx.

p*=effective permeability of a single domain for fields at
right angles to the direction of domain magnetization;
see Section 2.4.
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