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One electron molecular orbitals for mobile electrons, subject to the potential energy of a molecular
skeleton, are considered. If the atoms are far apart, the orbitals can be built up exactly from 2p atomic wave
functions. The molecule in natural size is formed by adiabatic approach. It is shown that all the nodal sur-
faces reach into infinity, if the atoms are all alike, but that closed nodal surfaces may exist, if they are not.
It is proved that the number of electrons inclosed in nodal surfaces is invariant against adiabatic change.
Nodal surfaces for antisymmetrized molecular orbitals are then discussed.

I. INTRODUCTION: DISCUSSION OF THE PROBLEM

F one solves the wave equation of a single valence

electron for an atom, subjecting the electron to a
field of central symmetry, the variables can be sepa-
rated. In that case, the nodal surfaces can be divided
into three mutually orthogonal families, and any solu-
tion is characterized by three quantum numbers; the
energy increases if any one of the quantum numbers is
increased.

The general problem, in which the wave equation is
not separable, has first been touched by Sommerfeld.!
Wintner? has then extended Sturm’s oscillation theorem
to this case. His investigation is applicable to the case
of one electron wave functions and gives the following
result. Consider, for a given wave function, a region,
bounded by nodal surfaces and possibly infinity, in
which the wave function does not change sign. Then a
wave function with higher energy will change sign in
that region at least once. Moffit and Coulson?® have in-
vestigated the nodal surfaces in hybridized (and there-
fore non-separable) atomic wave functions. Hund* has
considered diatomic molecules as being formed either
by separating parts of a “united” atom, or by bringing
an atom and an ion together. In this case there is no
change in the number of nodal surfaces, but this pro-
cedure has not been applied to the consideration of the
usual molecular orbitals in polyatomic molecules.

In this paper we are mainly interested in the nodal
surfaces of wave functions of mobile electrons (con-
jugated double bonds) where the interaction is not as
strong as in.o—o bonds. To permit a discussion of nodal
surfaces in the usual sense, the wave function must be
real, except for a space independent phase factor. In
the present problem, this is always the case for non-
degenerate wave functions. For degenerate functions, it
it always possible to form real linear combinations.

If one uses one electron molecular orbitals built up
from atomic wave functions, the problem of finding the
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coefficients is analagous to that of finding the modes of
vibration of a properly selected arrangement of coupled
particles. The author has pointed out in a previous
paper® that in such a vibration problem one can also
order the states into a series with ascending number of
nodes, each number being represented, and that the
frequency (for the molecules: the energy) increases with
the number of nodes. This however says only something
(in the case of the wave function) about the number of
nodal points on the lines joining the atoms, not about
the number of nodal surfaces. For example, in the wave
function for a four carbon molecule C:C2C;3Cy which has
two nodal points, namely, the one in which the sign of
the coefficients is +——+-, there might be a single
closed surface inclosing the two central carbon atoms.

The present author has investigated® the ways by
which the number of nodal surfaces of a solution might
change if the boundaries or the wave equation is
changed adiabatically. This paper is an attempt to dis-
cuss the shape and number of the nodal surfaces.

II. ONE ELECTRON ORBITALS
(a) Assumptions, Notations

The following assumptions are made: We consider
one electron in the field of the molecular skeleton; this
field is considered as originating from charges in the
close neighborhood of the atomic nuclei. (This is a good
approximation for the field due to electrons in inner
shells and involved in ¢-¢ bonds, but not for that part
of the field due to other mobile electrons.)

We select an arbitrary origin within the molecule,
an arbitrary direction of the polar axis, and introduce
atomic units (the radius R measured in Bohr radii,
the energy E measured in the ionization energy of the
ground state of H). Define 8;=Z;/n/** where Z is the
effective charge and »;* the effective quantum number
of the 2p atomic wave function of the 7t atom. Further-
more we introduce a function

u=y/R.

5K. F. Herzfeld, Chem. Rev. 41, 233 (1947). See also: J. R.
Platt, “Classification of spectra of catacondensed hydrocarbons,”
J. Chem. Phys. 17, 484 (1949).
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Let

u ou 1—p?d¢
(u=cos?)

be the Legendre operator. The Schroedinger equation
then takes the form?

3u/dR*+ (1/R?) Lu+ (E—V)u=0. (1)
Here E is a negative quantity.

(b) Limiting Behavior at Large Distance

Draw a sphere of radius R’ around the origin which
fulfills the following conditions:

|E[>|V(R)]. )

At distances several times larger than the molecular
dimensions, V will represent the potential of a pole,
and a few Bohr radia beyond the farthest atom will in
general be sufficient to satisfy (2). Furthermore for the
majority of directions, there is then also

|E| ] >1/R| Lu|. 3

(3) is not valid near the angular nodes.

If (2) and (3) are satisfied, it follows from (1) that
9%u/0R? has the same sign as «. If one goes out along a
radius, in a direction for which (3) is satisfied, it follows
then one cannot find® for such a direction the value
#=0 beyond R’. In other words, beyond R’ no nodal
surface can cut a radius vector for any direction for
which (3) is satisfied; the farther out one goes, the
fewer the directions in which (3) is not satisfied.

One can, by using the B—K—W method, write

approximately for R>R’
u=C exp(— (— E)!R){B+Z'/ZE InR}S, 4)

where S depends® on the angles only and Z’ is the total
charge on the skeleton.

(c) Atoms Far Apart

Assume the atoms arranged in a pattern geometrically
similar to the molecular pattern but with all nuclear

7 In the following it is assumed that V is a potential energy. If
it includes a Fock operator, b and ¢ still hold but d and III have
not been proved. .

8 This implies that « changes sign on crossing a node. That has
been proved in reference 6. .

9 § will in general 7ot be a spherical harmonic. To force a sepa-
ration into solutions with spherical harmonics of different order,
one would have to go close enough so that the term (1/R?)L(u)
matters and then the asymptotic solution is not applicable any
more. To illustrate this, consider an imaginary molecule of four
atoms at the corners of a square of side 2a in the x—y plane, very
large compared to the Bohr radius (see ¢), and write a one elec-
tron molecular orbital for the mode which has the wxz plane as
nodal plane. The function is, for R>>a,

Y= AzeFE sinh(Ba sind cosg)cosh(Ba sind sing). ©)

In other words, however far away one goes, the angle dependence
is given by the same series of spherical harmonies. The dependence
on R agrees with (4) since for this large value of R the energy
is not different from that of a single atom.
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distances multiplied by the same factor >>1. Then all
the nuclear distances will be many Bohr radii, and the
one electron molecular orbital will be very exactly
given by a linear combination of unperturbed atomic 2p
functions.

The only node of the atomic wave function is the
symmetry plane of the (atomic) spherical harmonic.
These will combine in the molecular orbital to a single
open surface going to infinity. Let the molecular orbital
have s nodal points, as determined by the changes in
sign of the coefficients, and follow a nodal surface
(called here molecular node) outward. It is entirely
possible that inside the extended molecule, a single
molecular nodal surface passes through more than one
nodal point. This will be mainly determined by the
molecular symmetry (degeneracy), as illustrated in the
case of benzene (see reference 5). .

For the behavior outside of the molecule, two cases
must now be distinguished.

(a) All the atoms involved are alike, i.e., their
atomic wave functions decrease in the same manner
with the distance from the atomic nucleus (same g;).
Since at a nodal surface the atomic wave functions from
two or more atoms cancel and since the atomic wave
functions are now practically unchanged and since
finally the atomic distances in the magnified arrange-
ment are many times the Bohr radius, it follows that
the nodes will not approach any atomic nucleus closer
than many Bohr radii, but will instead be nearly equi-
distant from the atomic nuclei involved. But according
to II &, no nodal surface can be cut by a radius vector
at large distance over a wide steric angle, so that all
nodal surfaces which cross nodal points must go to
infinity.

It is imaginable that closed nodal surfaces exist
which do not cross a nodal point. Such surfaces could
either lie entirely within an extended (non-linear)
molecule or could be small and lie at great distance in
a direction violating (3). However this possibility has
never been encountered and seems very improbable.

It is possible to write the general wave function for
distances R>R’. Let ¢; be the coefficient of the jt
atomic 2p function in the molecular orbital, v; the angle
between R and the axis of the p function, and xj,y5,3;
the coordinates of the j* nucleus. Then

Y=ARe PR > ¢; cosy;
Y

Xexp[ —Bz; cosd— B sind(x; cosp+y; sing) ]t.  (6)

(B) This argument does not hold if different atoms are
involved. If one writes the exponential factor in the
atomic wave function e %% one sees that nodal surfaces
may be closed. Consider an imaginary linear molecule
A B A B, and the one electron molecular orbital which
has as signs of the coefficients +—-+—. Assume
Br>pB4. In the immediate neighborhood of an atom,
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the sign of the wave function is determined by the wave
functions of that atom, i.e., near an atom A4 it has the
sign of 43z, near an atom B the sign of —z. At large
distances however the wave functions with smaller 8
prevail and the sign is that of the 4’s, i.e., 4-z. Therefore
the B atoms are enclosed by closed nodal surfaces.

(d) Natural Size of the Molecule

If the atoms are brought closer together until the
natural size of the molecule is reached, the best atomic
wave functions from which to build a one electron
molecular orbital will not be the unmodified 2p function
any more; nonetheless, one can follow the fate of the
wave functions by the arguments developed in refer-
ence 6. If only 2p functions of one kind are involved
(Sec. c,a) one starts out exclusively with nodal sur-
faces going to infinity, asymptotically parallel to R
(excluding the possibility of closed nodal surfaces not
passing through a nodal point). Because of (3), two
such nodal surfaces may not, upon decrease of the
atomic distance, join in infinity, and therefore two
nodal surfaces may not merge upon further decrease of
the molecular size (this differs from the case of a
boundary problem with finite boundary). Nodal sur-
faces may approach each other and cross, but this
process does not change their total number. Therefore,
the number of nodal surfaces cannot decrease. The only
imaginable way by which the number may increase
would be if a nodal surface, at distances not very much
greater than R’ (R’ decreases with the size of the “mole-
cule”), formed a small sack, which would then be sepa-
rated from the original surface through ‘“Abschnuer-
ung,” forming an additional nodal surface, which would
be small, outside the molecule and closed. This process
however seems very improbable.

In the case in which not all atoms have the same 3
and closed nodal surfaces exist, this argument is not
applicable, since the total number of closed surfaces
may increase by the formation of a “waist” which goes
over in a double cone, which then leads to separation
by ‘“‘Abschnuerung,” or two closed surfaces may merge,
decreasing the total number of nodal surfaces.

Similar processes might conceivably occur when 3p
atomic functions are involved, since these have inner
closed nodal surfaces.

To sum up: The nodal surfaces in a one electron
molecular orbital all go to infinity provided the separate
atoms had all 2p wave functions of the same size.
One of the nodal surfaces originates from the nodal
plane of the individual atoms, the number of the other
molecular nodes can be found by considering the dif-
ferent modes of coupled oscillators.!® Asymptotically all
the nodal surfaces are parallel to R.

If other than 2p functions are involved, or if not all

0 Te., if N atoms are involved, there exist modes with any
number of molecular nodal surfaces from zero to a maximum
which is N—1 in absence of degeneracy, lower in the presence of
degeneracy.
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atoms have functions of the same size, there will exist
closed nodal surfaces, at least in some modes. In that
case it has not been possible to make general statements
about the number of nodal surfaces.

It follows from the preceding together with Wintner’s
arguments . . . for the case in which all 2p functions
are alike, no two states of different energy can have the
same number of nodal surfaces, and that this number
increases by one if one goes to the state of next higher
energy. On the other hand, the four states of a molecule
ABBA have the following molecular nodes: None, a
plane node bisecting the molecule, a closed node en-
closing BB, a plane plus a closed node.

III. A THEOREM ON THE CHARGE BOUNDED
BY NODAL SURFACES

The following theorem will be shown to hold, without
limitation to molecular wave functions:

Consider a region bounded by nodal surfaces and
possibly reaching to infinity. If the nodal surfaces are
changed adiabatically, the amount of charge contained
in the region is conserved, at least if the wave function
is non-degenerate.

Call the amount of material (electrons) involved g.

o= [vrvar,

the integral being extended over the region defined
above. Then

dq/di= f 8/atyp)dr-+ f WS ()

where .S is the boundary surface and W, its velocity
in the direction of the outer normal. Using the con-
tinuity equation and Gauss’s Theorem, one finds

dq h
—_—= dy*—y¢* . *YW , rdr.
- f {Wi(sb grada*— ¢ grad ) +4 ] ®

According to the adiabatic law,! a system described
by a wave function in which a parameter is slowly
varied is described at every instant by the same wave
function with the momentary value of the parameter.
Therefore if in the case of a non-degenerate state with
real wave function (apart from a phase factor) a pa-
rameter is slowly varied, the wave function will stay
real, and on the momentary nodal surface and in in-
finity ¥ will disappear, so that dg/dt=0.

Degenerate wave functions can, as mentioned in I,
be combined to real ones; in this case coefficients may
so change in the adiabatic process that one ends up
with a linear combination of degenerate eigen functions
which is complex. However in the process described in

uH, A. Kramers, Grundlagen der Quanten Theorie (Akademische
Verlagsgesellschaft, Leipzig, 1933) p. 215.
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II, the symmetry of the configuration is maintained,
and therefore the adiabatic process will not split the
degenerate eigen functions, and a real combination will
remain real.

For the case of the one electron molecular orbitals
treated in II ¢, one considers a region bounded by nodal
surfaces and possibly by infinity, in which ¥ does not
change sign. For this region ¢=3 3 ¢,%

Here ¢; is the normalized coefficient of the j* atomic
2p wave function in the particular mode, and the sum-
mation extends over the j’s corresponding to those
nuclei which are situated on the boundary of the region.
The formula remains exact for the natural size of the
molecule, in spite of the fact that then the exact mo-
lecular orbital cannot be built up from 2p atomic func-
tions. The ¢; continue to have the ‘“naive’” values which
are correct for the enlarged molecule.

In the example discussed in Section Ilc,8) there is
exactly § of an electron in the region around an atom B,
bounded by the xy plane and the closed nodal surface.

IV. ANTISYMMETRIZED MOLECULAR ORBITALS

Assume one builds now antisymmetrized molecular
orbitals. Call N the number of electrons involved and
assume a resultant total spin o; therefore assign to
1(N+0)=K one electron molecular ¢rbitals the spin e,
to 3(N—o) the spin 3; number the first from 1 to K,
the second from K-4-1 to N. The antisymmetrized
molecular orbital is then:

1
‘I’=—M7 2 P(—=DA1(Day2(2)e- - -
V(K)o (K+1)8- - -yn(N)B, (9)

where P as usual signifies all the electron permutations.
It is clear that one has to consider ¥ in the 3N di-
mensional configuration space #1y:- - -zy. A nodal sur-
face is a manifold of 3N—1 dimensions. However one
can easily see that a node for ¥ has no meaning.
Instead we divide the N! permutations into sub-
groups. Such a subgroup, which shall be called a spin
island, is defined as a permutation which exchanges all
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electrons with « spins among themselves and all elec-
trons with 8 spins among themselves, but not electrons
with « spins with those of 8 spins. Each spin island has
K{(N—K)! terms and there are [N!/K!(N—K)!] spin
islands. In a particular spin island, one can write, apart
from the normalization factor,

oF{20 P(—=1)PY1(19a(2) - - ¥ (K)}
XY P (= )P Yra(K41) - - -yw(N)}. (10)

Therefore, one has the following results: The nodal
surfaces of different spin island differ only by different
numbering of the coordinates, i.e., go into one another
by a suitable number of two-dimensional rotations by
90°. v

In one spin island, the nodal surfaces of the a spin
states and the B8 spin states are calculated independ-
ently; they are cylinders, the former with a 3K—1 di-
mensional cross section and a 3(V— K) dimensional axis,
the latter with a 3(V— K)—1 dimensional cross section
and a 3K-dimensional axis. The axes of these two groups
are orthogonal (in the 3NV-dimensional space) to each
other. :

That is as far as the author has been able to proceed
with certainty. To get further insight consider, as
simplest case, that the a-part of a spin island contains
just two one electron states, ¥, and ¢». Then the corre-
sponding bracket expression in a particular spin island,
which is zero on a nodal surface (more exactly, the
equation for the 5-dimensional cross section of the

cylinder), is
¥2(1) (1) =92(2) /$1(2). (11)

The node of the atomic wave function is only a 4-fold
manifold (3;=0, 2,=0), not a 5-fold nodal surface.
If the two dimensional surface in three dimensional

space
U=f(xy,5)=v/¥1 . (12)

has no maximum or minimum, (11) has as solution one
nodal surface. If (12) has one maximum, there are fwo
nodal surfaces, which cross. For more complicated cases
the author has not been able to give a satisfactory
discussion.



