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UCH recent work has been done in the study of
& ~ isotropic turbulence, particularly from the point

of view of its spectrum. But the underlying concept is
still the assumption of the similarity of the spectrum
during the process of decay, which is equivalent to the
idea of self-preservation of the correlation functions
introduced by the senior author. It is however generally
recognized that the correlation function does change
its shape during the process of decay, and hence the
concept of self-preservation or similarity must be
interpreted with suitable restrictions. Under the limita-
tion to low Reynolds numbers of turbulence, the original
idea of Karman-Howarth has been conhrmed. Then
the decay consists essentially of viscous dissipation of
energy separately in each individual frequency interval.
However, when turbulent diffusion of energy, i.e.,
transfer of energy between frequency intervals, occurs
at a signi6cant rate, the interpretation of the decay
process and the spectral distribution is quite varied.
This can be seen by a comparison of the recent publica-
tions of Heisenberg, ' Batchelor, ' Frenkiel, ' and the
present authors. 4' The purpose of the present paper
is an attempt to clarify this situation.

Since some of these discussions are presented in terms
of the correlation functions and others in terms of the
spectrum, we shall begin by giving a systematic
demonstration of the relation between these two
theories. This can be easily done by a three-dimensional
Fourier transform of the equation for the change of the
double correlation tensor:

8/Bt(u"R v) —u"(8/8$ )(T,,a+Ty;) =2vu"R, p, (1)
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where I"is the mean square of the turbulent of velocity,
t is the time, v is the kinematic viscosity coeKcient,
and R,~(t~, t) and T,;~($~, t) are the double and the
triple correlation tensor dered by Karman and
Howarth for two points I' and I" separated by a space
vector $&. By contracting the resultant equation and
multiplying it with 4n.~ /3, where x is the wave number,
we obtain the following equation for the change of
spectrum:

where
BF/N+W = —2v~'F, (2)

F= (4n ~'/3) F „,

F (~ ) = u/(2n)' ~ Ro, (gt, t)e'&".&-'dr(t),

W= (4r~'/3) 2ia;W„s,
(3)

W "~(g)) =u"/(2g)' T;;~(g~, t)e""- 'dr(c).

F~(~)= 2u"/m f(r, t) cosrrdr;
ai p

W= 3 {~'IIg" (a) —~II('(~) I,
(4)

~8'q(g) = 2u"/n h(r, t) sinardr
Jp

where f(r, t) and h(r, t) are the double and triple
correlation functions satisfying the Karman-Howarth
equation:

8/Bt(u"f)+ 2u" (Bh/Br+4h/r)
=2vu" (8'f//Br'+ (4/r) (Bf/Br)) (5).

The relations (4) which connect (2) and (5) have been
obtained previously (1947) by the junior author. ' The

6 C. C. Lin, "Remarks on the spectrum of turbulence, " pre-
sented at the First Symposium of Applied Mathematics, American
Mathematical Society, August, 1947; to appear in the Proceedings
of the symposium.

16

Evaluating these integrals in terms of spherical co-
ordinates in the $-space we obtain

F=-,'{~'Fg"(K) —aF~'(~) I,
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function Ii is essentially identical with Heisenberg' s
spectral function, whereas Ii& is the spectrum function
introduced by Taylor about a decade ago on the basis
of a one-dimensional Fourier analysis of wind-tunnel
turbulence. The tensor F;q in (3) was introduced and
studied by Batchelor and Kampb de F6riet in 1948.

In this note, we shall restrict ourselves to the spectral
theory. We propose to analyse the spectrum and its
change during the process of decay. We distinguish
two extreme cases: (a) the Reynolds number of turbu-
lence is initially very large, and (b) very small initial
Reynolds numbers. The latter case is very much
simpler, and can be explained in a few words after the
first case is investigated. We shall therefore now
consider the case of very large ReynoMs numbers.

There is no general principle known which would
determine the most probable energy distribution over
the spectrum. The problem we deal with is not a
question of statistical equilibrium in the proper sense.
We shall base our investigations on the concept that
during the process of decay the spectrum shows a
tendency to become similar. Similarity in this case
means that the spectrum can be expressed in the form

F= U'l(p(d), (6)

It is reasonable to assume that at the lower end of this
a-range, the spectrum becomes independent of v. Then.

where U is a typical velocity and l a typical length.
The problem is to connect these typical quantities with
measurable ones, such as the kinematic viscosity v,
Loitsiansky's invariant Jp, and the rate of energy
dissipation e. Full similarity would mean that it is
possible to express U and l by unique relations for all
values of ~ and for the whole process of decay. Dealing
with the experimental evidences and by dimensional
considerations, one readily recognizes that this is not
possible. Hence, one looks for a solution which best
satisfie the similarity requirement.

All the authors agree in the following picture: the
low frequency ranges contain the bulk of energy, while
the viscous dissipation is negligible. They furnish energy
by the action of inertial forces to the high frequency
ranges, where it is converted into heat. Physically, this
was seen by Taylor in the early stages of the develop-
ment of the theory, but KolmogoroG made these ideas
more precise.

KolmogoroG recognized that based on this physical
concept the parameters which determine U and l for
the high frequency range are the coefficient of kino-
matic viscosity s and the rate of energy dissipation ~.

The rate of dissipation in any case is equal to 10vu"/X',
where ) is the microscale in the dissipation mechanism.
It is essential in Kolmogoro8's concept that I' and ) do
rot appear explicitly in the similarity analysis. Thus,

tr= (v.)&, i= ("/.)~.

necessarily
P~gfg-&/3

(7a)

For the lowest and the medium ranges, we postulate
the existence of a, parameter (in general variable with
time) which is common to these ranges, and governs
the complicated mechanism of energy transfer in these
low frequency ranges as the viscosity governs transfer
of energy into heat in the high range. The formal
statement of this hypothesis is

V*L*=VL= D. (9)
We may call this parameter D the transfer coefficient
or eddy diffusion coeKcient of the turbulence rnechan-
ism. Obviously, it has a significance only when turbulent
diGusion is active.

By introducing this hypothesis, we come to the
following picture. In the lowest range, as it was pointed
out, the invariant Jp has a decisive inQuence. Hence,
the characteristic parameters must be determined by
Jp and D. In the medium range, they must depend not
oily on D, but also on e, since this range supplies the
energy to be dissipated in the high frequency range.
Thus, we have

V= (De)&, and L= (D'/e) &,

for the medium range, analogous to (7a), and

V*= (D'/JD)& and L*=(JD/D')~,

(10)

for the range of lowest frequencies.
The three ranges, with characteristic quantities (7a),

(10), and (11) appear clearly separated when their
scales are much diGerent from each other. Thus, when./L=(D/ )-~&1, (12)

as it was concluded by several authors.
On the other hand, concerning the low frequencies,

the junior author has first shown' that the lowest
frequencies involve a fixed parameter, i.e., Loitsansky's
invariant Jp, and indeed that the spectrum is of the
form Jp~.'

This situation clearly shows the infeasibility of one
similarity range extending from x=0 to I(:= ~, and
furthermore makes it necessary to consider at least
three ranges: that of the lowest frequencies essentially
determined by Loitsiansky's invariant, an intermediary
range which not necessarily complies with the similarity
characteristics of the high range but is significantly
influenced by the rate of dissipation e (though not
directly by v), and the high frequency range in the
sense of Kolmogoro8.

We therefore introduce. three sets of characteristic
quantities, namely, V*, L*; V, L; and v, p for the
lowest, the medium, and the high frequency ranges
respectively. The problem is how to connect them with
each other and with other physical quantities.

Equa, tion (7) gives

'v= (v6)~) YJ= (v /6)'.
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that a perfect similarity of the correlation function
exists with the exception of correlations of points
between very large distances. Accordingly V and I are
constant multiples of e and g. Hence,
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FIG. 1. Spectrum during early period.

the high and intermediate ranges appear clearly defined
over significant parts of the whole spectrum. In be-
tween, there is a transition range depending only on
the parameter e common to both ranges. From dimen-
sional arguments, we have for this transition range

F~e It.
—'~' (13)

in accordance with Kolmogoro6's result for high
Reynolds numbers. We shall see later that the condition
(12) warrants the high value for the Reynolds number.
Similarly, when

and because vg= v, D is a constant. On the other hand,

(17)

Thus, in the early stage, the spectral function for the
lowest frequency range appears to be independent of
time. This fixed range extends as far as the linear part
of the spectrum described by (15).

The spectrum is thus as shown in Fig. 1. (after
Batchelor). By integration, one arrives at

"o
P(K)dK =Collst, .U —ND,

DpI"=—t ' —Nn' V = 10vt I 1—10uD't/Do })
io (19)

where I&' is represented by the shaded area. By
computing e= du"/Ct—and using the relation (10),
we see that V'~t —', and

L/L, *=(2'/2'*)'*((1, (7=L/U, T*=L*/V*), (14)

we have a transition range between the low and medium
frequencies. In this transition range, the spectrum
depends only on D. Again, dimensional arguments
show that there

Eg=E),o I 1—10ugPt/Do I,

where Ezp is the initial Reynolds number

Ei,o ——lim (u'X/ v),
t-+0

(20)

F~D K.

(21)The physical significance of (14) will be explained bel
The exact behavior in the medium range will be

determined by the fact which of the fixed parameters s

or Jp has the predominating influence. We believe that
we can arrive at a satisfactory description of the actual
process by assuming that a change over takes place.
We may divide the process into three stages: (I) the
early stage, in which we shall see that q.'I.=constant,
(II) the intermediate stage, in which we shall see that
L:L* constant, and (III) the final stage, in which the
distinction of several scales is impossible. This last
case is the well-understood case of complete similarity
at extremely low Reynolds numbers.

(I) The early stage. The turbulence 6eld is actually
created by some mechanism, natural or artificial, which
produce individual eddies. Apparently, these eddies
converge toward a kind of statistical balance through
exchange of energy. The first period after homogeneity
and isotropy are established shall be designated the
early stage of the decay process. Experimental evidence
on the decay law in these early stages shows that the
similarity prevailing at high frequencies extends to the
medium range. This statement is identical with the
conclusion reached by the junior author, ~ assuming

A formula of the type of Eq. (21) for the diffusion
coefficient has been suggested previously (1937) by the
senior author. 7 The law of decay (19) was given by the
junior author. ' The role of the relatively invariant
low frequency components has also been discussed by
Heisenberg and Batchelor.

By using the law (19), one can see from (14) that the
linear range of the spectrum would exist essentially for
small values of t/T*. This sets a limit to the period of
validity of the law of decay (19). One can easily see
the same limitation from the law (19) itself.

It can now be seen that the condition (12) is essenti-
ally the requirement that the Reynolds number is large
(see (21)).It should be noted however that the existence
of the ~ ~~'-range is not essential in the above discussion
of the decay process. Hence, the Reynolds number need
not be large, in order that the law (19) holds. In fact,
for small initial Reynolds numbers, the Reynolds num-
ber at the end of the early period may be so small that.
the 6nal period already sets in. This explains the

~ Th. v. Xkrmt'Lii, J; Ae Sci. 4, 1.31 (1937).

and D, is a quantity proportional to D, defined by

ow. Do lim (u'9, '/v). ——
t—A
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agreement obtained by the junior author for almost
the whole process of decay in comparing his theory
with the experiments of Batchelor and Townsend. '

(II) The intermeChate stage Fo. r large Reynolds num-
bers, after the disappearance of the linear part of the
spectrum, the scales I and I*become of the same order
of magnitude, and it may be expected that the bulk of
turbulent energy of scale 1. shares the behavior of the
large eddies of scale I.*. The ratios 1./I.* and V/V*
are expected to be constants. These conditions lead at
once to the law of decay discussed by the senior author. 4

It is characterized by dX'/d(vt) =7
During this period, the spectrum at low and medium

frequencies depends only on the parameters Jo and v,

and must therefore be of the form

F=Jp«%(«L), (22)

' ~r. K. Batchelor and A. A. Townsend, Proc. Roy. Soc. London,
A 194, 527 (1948).

where C(«L) behaves as («1.) ""for «L))1, and ap-
proaches unity when Kl.—&0. An interpolation formula
for C has been suggested and checked by correlation
measurements by the senior author.

The diffusion coeKcient in this range is easily seen
to be proportional to u'9P/v. Hence, the condition
(12) is again that the Reynolds number should be large.
When the Reynolds number becomes very small, the
scales q and I. are of the same order, so that there is
only one scale for all frequencies. %e then approach a

complete similarity, and are at the beginning of the
final period. With reference to (12), we see that it
should happen when E~ is of the order of unity. Ac-
cording to the experiments of Batchelor and Town-
send, the final period sets in at 8~~5.

The intermediate stage is very long, if the initial
Reynolds number is very large. It begins with some
value of Eq close to Rqo. During this period, R), changes
according to the power law 5 'l'". Although the supposed
origin of time in this formula is unknown, it must be
before the beginning of the early period, since the slope
of the )' eersls vt curve decreases. Thus, E~ become of
the order of unity only when t is of the order of T*E),0"~'.

One expects therefore to find an intermediate stage
many times the early period for high initial Reynolds
numbers.

The above predictions are based on some simple
hypotheses and physical picture, and should be con-
firmed experimentally. Unfortunately, there does not
seem to be any experimental data available for suKci-
ently high Reynolds numbers and over a suKciently
long period. Most of the decay measurements at high
Reynolds numbers hardly extend beyond the early
period, when the law of decay (19) is quite adequate.
Also, it must be kept in mind that the above discussions
hold only for an infinite field of turbulence. In an actual
experiment, the scale of the apparatus might become
comparable with the scale of turbulence. In such cases,
the signihcance of Loitsiansky's invariant becomes
uncertain.


