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I. INTRODUCTION

~ 'HIS paper investigates the trapping of
externally incident charged particles in the

magnetic field of the sun through deflection by
the magnetic Geld of the earth, and the conse-
quent form of the cosmic-ray spectrum to be
expected at the earth, on the hypothesis of a
constant solar field and relatively small or zero
magnetic moments for the other heavenly bodies
which also intercept these trapped particles—
Mars, Venus, and the moon.

The remarkable drop of the cosmic-ray in-

tensity for particles of energy below a few Bev'—by the work first of Cosyns and later of
Millikan and his collaborators' clearly evidenced
to be a property of the radiation before it strikes
the earth —was interpreted by Janossy' in terms
of the magnetic field of the sun and its action in
deflecting away from the earth particles of lesser
energy. No other reasonable explanation for the
observed cut-off has ever been put forward.
Moreover, Janossy's idea is supported by the

~ The A.B. senior thesis of E. O. Kane, Theory of &he

Allossed Cone af Cosmic Radiation (Princeton, June 1948),
contains a preliminary account of the considerations on
absorption by the sun and radiative deceleration in the
sun's field which come into the present discussion. The
further considerations on the effect of Mars were reported
by John A. Wheeler at the Pasadena Conference, while
the detailed results given below were for the most part
obtained by T.J. B.Shanley after the time of that meeting.' Bev used here and below as abbreviation for 10' ev.

s M. G. E. Cosyns, Nature 13'7, 616 (1936), reported
definitely that the latitude e8'ect begins at about 49' and
is independent of altitude between 7 and 18 cm Hg. See
also Bennett, Dunham, Bramhall, and Allen, Phys. Rev.
42, 447 (1932);R. A. Millikan, New York Times, Dec. 31,
1933; and A. H. Compton, Phys. Rev. 43, 387 (1933) for
earlier indications that altitude does not inhuence the
position of the knee in the curve of cosmic-ray intensity
as a function of latitude. For a summary of the more
detailed investigations of the Pasadena group, see R. A.
Millikan, H. V. Neher, and W. H. Pickering, Phys. Rev.
63, 234 (1943). See especially Carmichael and Dymond,
Proc. Roy. Soc. A1"Il, 321 (1939) for evidence that the
intensity does not increase with altitude up to 88'N, even
at very high altitudes.

s L. Janossy, Zeits. f. Physik 104, 430 (1937).The solar
cut-o8 hypothesis was further developed by M. S.Vallarta,
Nature 139, 839 (1937) and P. S. Epstein, Phys. Rev. 53,
862 (1938).

agreement in order of magnitude between the
required value of the magnetic moment of the
sun and the value obtained by Hale and his
collaborators' from measurements of the mag-
netic splitting of lines in the solar spectrum.

There is, nevertheless, one consequence of the
solar cut-off hypothesis which has denied this
theory complete acceptance. Particles of mag-
netic rigidity' between the cut-off limit and a
rigidity (1+21)'=5.83 times that limit will come
from outer space into the earth's field only from
a certain cone of directions ("cone of allowed
directions;" Table I). The particles will then be
further deflected in the short scale field of the
earth itself. However complicated the resulting
pattern of allowed directions may be at the
earth's surface, it is evident that this pattern has
a fixed relation to the earth-sun line. As the
earth rotates, the cosmic-ray intensity at any
fixed geographical location will, consequently,
be expected to vary in time, as already noted by
Janossy. Moreover, the diurnal variation as
calculated on this picture by Rossi' is very
substantial at mountain elevations at geomag-

4 Hale, Scares, Van Maanen, and Ellerman, Astrophys.
J. 47, 206 (1918). Thiessen, Observatory 36, 230 (1946).
See later discussions for redeterminations of the sun's field.

~The earth and the sun are magnetic spectrometers,
and therefore fix neither the energy nor the charge nor the
mass nor the momentum of the incoming particles, but
only their magnetic rigidity. This quantity has the same
dimensions as a magnetic or electric potential, and may
therefore be expressed either in gauss cm (for example,
20X10' gauss cm) or in volts (not electron volts; in the
example, 300 X (20 X 10') =6 X 10' volts =6 Bv). Two
particles, however they may differ in mass or charge, will
behave exactly alike for the purposes either of the Stormer
theory or of the present analysis, provided only that they
have the same magnetic rigidity. This quantity is, of
course, so useful because it is a constant of the motion
for a particle moving in a static magnetic held: (magnetic
rigidity in gauss cm} = (velocity of light in cm/sec. }(mo-
mentum in g cm/sec. )/(charge of particle in electrostatic
units) = (cP/e).

'These calculations were reported by B. Rossi at the
1947 Conference on Astrophysical Implications of the
Cosmic Radiation sponsored by the New' York Academy
of Sciences and New York University. We are indebted
to Professor Rossi for sending us a fuller report of these
calculations.
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Value assumed for sun' s
magnetism, expressed in
several equivalent forms

Sun's moment
=0.42 )(1084 gauss cml
=1.26)(10» Bv cm2
=2.61 )&108 Bv (sun radius)8
=5.67 Bv (sun-earth distance)~
Sun's polar field, 25 gauss
Sun's equatorial field, 12.5 gauss

Sun's moment
=1.0)(1084 gauss cm8
=3.0)&10» Bv cm~
=6.21 )(106 Bv (sun radius)~
=13.52 Bv (sun-earth distance)I
Sun's polar field, 59.5 gauss'
Sun's equatorial field, 29.8 gauss

Magnetic
rigidity of
entering
particle

&0.97 Bv
1.15 Bv
1.42 Bv
2.04 Bv
2.78 Bv
3.63 Bv

&5.67 Bv

&2.32 Bv
2.74 Bv
3.38 Bv
4.87 Bv
6.62 Bv
8.65 Bv

&13.52 Bv

Permissible angle
with respect to
earth's directrix

for positive
particle on arrival

at earth's orbit
from outer space

Can't arrive
0 to 60.4
0 to 90
0 to 123.8
0 to 1449
0 to 1599
All directions

Can't arrive
0 to 604
0 to 90
0 to 1238
0 to 144.9
0 t,o 159.9
All directions

TABLE I. Cut-off of cosmic-ray spectrum by sun's field
expected on basis of simple theory, overlooking contribu-
tion of particles trapped in sun's field. A minimum mag-
netic rigidity is required to come in as far as the earth' s
orbit. A positive particle which just gets in so far will be
traveling in the same direction as the motion of the earth
in its orbit ("earth's directrix"). ~ For a particle of higher
rigidity the angle with respect to the earth's directrix
may have any value between 0 and the figure given in
the table (90', for example, for a 3.4-Bv particle if sun' s
moment is 103 gauss cm3).**

of a century, through collision with the earth, if
in no other way. But there will be continual
new entries into such orbits by particles which
came in from infinity on unbounded orbits,
passed through the outer reaches of the earth' s
magnetic field, and were thereby deviated into
bounded or "trapped" trajectories (Fig. 2). The
intensity of the cosmic radiation in forbidden
dire"tions in the sun's field (Table I), instead of
being zero, is therefore determined by the rela-
tive magnitudes of the scattering cross section
of the earth and its absorption cross section.
Rough estimates of these two quantities by
Alfven lead him to conclude that the intensity
in forbidden directions may be appreciable in
comparison with that in allowed directions.
Thus there appears a distinct possibility of

+ We neglect here any deviation between the direction of the sun' s
magnetic moment and the normal to the plane of the earth's orbit.
Such a deviation appeared to be indicated by the early work of Hale
and his collaborators, but the variations in solar magnetic field shown
by more recent determinations presumably render doubtful the magni-
tude found at Mt. Wilson for this eÃect, and possibly put in question
even the existence of any well defined deviation.

++ The angular opening of the allowed cone would appear to depend
upon the azimuth of the particle's velocity with respect to the earth' s
directrix, if we were to apply the Lemaitre-Vallarta theory at face
value to the present problem (see M. S.Vallarta, Theory of the Allowed
Cone of Cosmic Radiation, Section 3, Toronto University Applied
Math. Series (1935-43) for this azimuthal dependence). This theory
would only be relevant, however, if the sun were surrounded by a
sphere of solid matter which extended out to the radius of the earth' s
orbit and prevented the return of particles from smaller distances.
The absence of such absorption very much simplifies the theory, as
described below.
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netic latitudes in the range 40' to 50'. Yet no
evidence for such a large variation has been
found.

The absence of the expected large diurnal
variation in cosmic-ray intensity presents to the
solar cut-off hypothesis a fundamental difficulty,
a way out of which has only recently been
suggested by Alfven. ' He recalls the distinction
usually made between unbounded and bounded
orbits for a particle moving in the magnetic field
of the sun (Fig. 1). However, he points out
that it is incorrect to assume that there will be
no particles moving in the bounded orbits. To
be sure, Alfven notes, particles placed on such
trajectories will disappear in a time of the order

t H. Alfven, Phys. Rev. 72, 88 (1947). We are indebted
to Dr. Alfven for sending us a copy of this communication
in advance of publication.

PISTANOK

FIG. 1. Qualitative sketch of orbits of positive particles
of ~3-Bv rigidity moving in field of sun, here assumed
to have a magnetic moment of 103' gauss cm3=13.52 Bv
(earth-sun distance)~. The deviation of the orbits by the
field of the earth itself is on too small a scale to be shown
in this diagram. Full intensity will be observed near the
earth for 3-Bv particles coming from orbits unbounded at
infinity. It might appear that no particles arrive from
other directions for the corresponding orbits are confined
to a limited region of space, with no obvious source to
replenish particles lost by collision with the earth. Such a
source is, however, provided by the field of the earth
itself; it deviates into trapped orbits some of the particles
which come from infinity in unbounded orbits. To experi-
ence such a deviation a particle must pass close enough
to the earth to experience a significant magnetic field, but
not so close that it strikes any solid matter. Particles
which satisfy these conditions may subsequently circulate
in trapped orbits ~5000 years before they eventually
hit the earth or some other heavenly body. Those among
these particles which at this time strike the earth come
from directions in the sun's field which are normally
called "forbidden. " That the intensity coming from
allowed and forbidden directions cannot greatly differ
must be concluded purely empirically from the absence
of a strong diurnal variation in the cosmic-ray intensity.
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explaining the absence of any substantial diurnal
variation in cosmic-ray intensity.

tA'e take up here the idea of Alfven and
investigate it quantitatively, for the following
reasons:

(a) Recent determinations of the magnetic
field of the sun by observations of the magnetic
splitting of lines in the solar spectrum' show
apparent variations from time to time. These
variations are su%ciently great to throw some
doubt on the significance for the long range field
of the sun of any measurements which refer only
to the layer of the sun where light absorption
takes place. A quantitative investigation of the
theory of trapping should permit an independent
deterrriimotion of the magtietic moment of the sun,
based on the position of the cut-o8 of the cosmic-
ray spectrum.

(b) An investigation of the equilibrium of
particles between bounded and unbounded orbits
should provide the basis for a quantitative
discussion of the distribution of the cosmic-ruy
spectrum with respect to magnetic rigidity, and
for the prediction of the magnitude of diurnal
vanations in intensity.

Features of the present treatment which
require mention are the following:

(a) The difference between the intensity in
allowed and forbidden directions is found on the
whole not to be great. Consequently, it is per-
missible to determine the magnitude of this
differenc- and to develop the whole theory-
on the basis of certain approximations, without
which the calculations would be more diAicult

by several orders of magnitude.
(b) The sun's general field is assumed not to

change substantially over a period of the order
of magnitude of the time —say 5000 years —dur-

ing which a particle circulates in a trapped orbit.
Even a v'ery substantial fluctuation in solar mag-
netic moment about a suitable average value
might conceivably by some kind of principle of
adiaba. tic invariance leave the situation very
much as we have treated it here on the basis of a
constant moment. It would, of course, be im-

Recent indications from magnetic splitting of spectral
lines for changes in the sun's moment. Thiessen, personal
communication to the author, June 1948; H. Von Kluber,
Zeits. f. Astrophys. 24 (No's. 1-2): 1 and 21, 1947; H. W.
Babcock, Oral report at meeting of American Astronomical
Society, Pasadena, June 29, 1948.
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FIG. 2, Trapping in the sun's field of a positive particle
which has a characteristic radius, R, equal to twice the
radius of the earth's orbit —in other words, a particle of
3.38-8v rigidity, if the magnetic moment of the sun is
10'4 gauss cm' = 13.52 Bv (sun-earth distance)'. The
particular particle under discussion (upper diagram) comes
from infinity with just the right total angular momentum
(angular momentum parameter, y, equal to —0.875) to
arrive at the earth's orbit moving at an angle of 60' with
respect to the direction of motion of the earth in its orbit
(cos44=0.50). The laws of conservation of energy and
angular momentum permit this particle to move anywhere
in the unshaded region. On arrival near the earth, the
particle by chance experiences a large net deflection in
the local magnetic field. It is fortunate enough not to hit
any matter and departs from the earth in a direction
which —for an example —makes an angle of 120 with
respect to the earth's directrix (cosx = —0.50). The
scattering process changes the angular momentum of the
particle with respect to the sun. For the new value of the
angular momentum parameter, y= —1.125, the particle
is constrained to remain in the unshaded toroid-like
volume element which centers at the sun and contains the
earth. The particle circulates in this region until lost by
impact on the earth, or by rescattering, or by collision
with another heavenly body. If it hits the earth, it is
moving at the time of impact in a direction which would
normally be called forbidden, for a particle with R=2 &(
(sun-earth distance) and y= —1.125 cannot get in to the
earth from infinity. Note in the present case that the
trapped particles can strike neither Mars nor Venus nor
any other planet.

portant to investigate this point carefully. The
present work may serve as the basis for such a
more detailed study. On account of this question
of possible variations in the sun's moment it is
important in using any of the present results to
recognize that they are valid only on the basis
of the assumptions which we have explicitly
stated.

(c) Mars, Venus, the moon, and the sun
compete with the earth for trapped particles.
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TAaz.z II. Values adopted in present work. For the
magnetic moment of the earth, 8.1X10'~ gauss cms=2. 43
X10"-Bv cm'=59. 8 Bv (earth radius)'=1. 10&&10 r Bv
(sun-earth distance)'. Values adopted for dimensions
tabulated below.

Object

Sun
Earth
Moon
Mars
Venus

Distance, r,
from sun

1.49 X10's cm
1.49 X 10's
2.28X10»
1.08 X 10"

Radius, a

6.95 X 10'o cm
6.38X10'
1.74 X 10s
3.43 X 10s
6.31X10s

Geometrical
cross sect&on, ma2

1.52 X 10"cm"
12.8 X10'~
0.95 X 10'~
3-70 X 10'~

12.5 X10'~

*Only an exceedingly small fraction of the sun's geometrical cross
section has any part in the absorption of trapped cosmic-ray particles,
as will be seen below.

Some of these competitive effects, which were
not mentioned by Alfven, are quite important
for the quantitative determination of the in-
tensity in trapped orbits, and are taken into
account here.

(d) We assume that the magnetic moments of
Mars, Venus, and the moon are sufficiently small
that the scattering cross sections of these objects
can be neglected in comparison with their
absorption cross sections (see more detailed
discussion below).

(e) Clouds of particles emerging from the sun
will carry local magnetic fields. These fields may
produce deHections over and above those con-
sidered here. DeOections from this source cannot
be extremely frequent. If they were, they would
make it possible for particles of very low energy
to reach the earth via scattering into trapped
orbits. Such an eff'ect would be inconsistent with
the observed low energy cut-off of the cosmic-ray
intensity. The possible eSects of ion clouds never-
theless deserve further investigation.

Outline of Method of Analysis

The analysis of the trapped particles is carried
out in the following way. The shape of those
regions in space where these particles may move
is first determined (Fig. 2). The motion of a
particle in such a region is represented by a
trajectory which weaves about and ultimately
covers the trapped region to an eR'ectively
smooth density. A density function is therefore
de6ned for the trapped particles. Some come
close to the sun, where their increased accelera-
tion causes them to radiate. This radiation is
calculated. So likewise is the expected rate of
loss of particles by collision with interplanetary

matter. Next is considered the rate of loss by
impacts on the earth and on the moon, for each
of which objects an absorption cross section is
defined, of the order of magnitude of 10'r cm'.
Trapped particles which find the earth accessible
move. in some cases in zones which include Mars
or Venus (Table II). In these cases we define
for each of these particles likewise an effective
absorption cross section. In addition, all the
zones of trapping intersect the sun in rings of
small angular diameter near the sun's north and
south poles. The loss of particles by collisions
with this surface is also expressed in the form of
an eA'ective cross section (Fig. 3). From the
total cross section for a11 absorption processes,
and from the size of the zone of trapping, we
estimate a mean time in such a zone of the order
of magnitude of 5000 years.

The scattering of particles in the magnetic
held of the earth is next considered. The mag-
netic Geld experienced by a particle which goes
by in nearly rectilinear motion at the distance
r will be of the order (charge)&magnetic mo-
ment)/r', and the time of action will be of the
order r/velocity. Thus the deflection, e, in the
case of distant encounters will be proportional
to I/r'; or the cross section for deflections greater
than 8 will be proportional to I/O. Consequently,
the cross section, do, for a deHection into an
element of solid angle dQ at the angle 8 will be
do. (const. /8')dO. By a more detailed analysis
of this kind, together with certain simplifying
assumptions, we obtain an approximate formula
for the differential scattering cross section at all
angles.

We next formulate the general integral equa-
tion which determines how the intensity, I, of
particles of a given energy depends upon direc-
tio'n of arrival in the neighborhood of the earth
(I=number of particles per cm' and per sec.
and per unit solid angle). To solve this dificult
equation, we translate it into an equivalent
variational problem. We then represent I as a
function of angle by a suitably chosen analytic
expression with two adjustable constants. These
constants are determined to give the variational
integral a stationary value. The value of I as a
function of angle as so determined is shown in
I'ig. 4. The dotted segment of each intensity
curve represents a lower limit to the intensity
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FIG. 4. Intensity of primaries
arriving at earth's orbit from tra-
jectories trapped in sun's field.
Calculations made for sun's mo-
ment 10N gauss cm' (smooth
curves) and 0.42 &(10"gauss cm'
(dashed curves). If earth were a
pure absorber (no magnetic mo-
ment), intensity would drop
sharply to 0 instead of falling off
smoothly as shown. Lower dia-
gram shows omnidirectional flux
at earth's orbit relative to value
it would have in absence of sun' s
field.
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in the given range of angles. There our analytic
expression incorrectly predicts a rise in intensity
because it consists of only the first few terms of
an infinite series (see discussion after Eq. (66)).

Discussion of Results

From the results shown in Fig. 4 we make the
following observations:

(a) The higher the energy of the cosmic-ray
primaries the more rapidly their intensity falls
off in the so-called forbidden region of directions,
but the smaller is the angular range of forbidden

directions. Absorption becomes stronger relative
to scattering as the energy increases.

(b) The less the assumed value of the sun' s

magnetic field, the less will the intensity fall off
in the forbidden region.

(c) The integrated intensity J increases with

increasing magnetic rigidity. We have no points
on our integrated intensity curve for R/r, & 1.667
(magnetic rigidity)4. 87 Bev for sun's moment
of 10'4 gauss-cm', or )2.04 Bev for sun's mo-

ment of 0.42 X10'4 gauss-cm') because the evalu-
ation of I/Is becomes exceedingly laborious for
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greater rigidities. But we know that J=1 for
R/r, =1 (all directions allowed), so it is safe to
assume that J increases continually as R/r.
increases.

Conclusions

(a) Starting with Alfven's original suggestion,
it is possible to develop a quantitative equi-
librium theory for the trapping of cosmic-ray
particles in the magnetic field of the sun, where
in addition to the effect of scattering in the
magnetic field of the earth considered by him
there is also taken into account the direct
absorption of the rays by five heavenly bodies—
Mars, Venus, the earth, the sun, and the moon.

(b) Radiative deceleration of trapped protons
is completely negligible, but the same effect for
trapped electrons is calculated to be quite im-

portant. Neither this particular e6ect nor elec-
trons in general are considered in the present
calculations, however, because of existing experi-
mental evidence against more than 1 percent of
such particles in the primary radiation.

(c) Absorption of trapped protons by disperse
interstellar matter appears from uncertain astro-
physical evidence to be unimportant and is
therefore neglected. It may be possible to check
this conclusion from the more detailed experi-
mental study of the cosmic radiation itself.

(d) If Mars has a magnetic moment as large
as that of the earth, particles of a magnetic
rigidity otherwise insufhcient to reach the earth
directly will be passed inward through the
intermediation of Mars, and the cut-o6 of the
cosmic-ray spectrum will be substantially low-

ered, a point probably susceptible to experi-
mental check. In the present calculations it has
however appeared most reasonable to consider
the moment of Mars to be negligible.

(e) The distribution in direction has been
calculated for the cosmic-ray protons of any
given energy which arrive in the neighborhood
of the earth (Fig. 4). The expected departure
from uniformity of intensity with respect to
direction is small but finite. Consequently, a
diurnal variation is to be expected in the cosmic-
ray intensity at high altitudes and intermediate
latitudes. This diurnal variation will be small.

(f) The nature of the calculated cut-off of the
cosmic-ray spectrum at. low magnetic rigidities

is in general accord with observation if the sun
is assigned a magnetic moment about 10'4 gauss
cm'=13.52 Bv (sun-earth distance)'.

MORE DETAILED ANALYSIS

Review of Relevant Parts of Stoermer-Lemaitre-
Vallarta Theory

The equations of motion of a charged particle
in a static divergence-free magnetic 6eld of axial
symmetry contain three coordinates but ordi-
narily admit only two first integrals; the motion
itself is ordinarily quasi-ergodic. Specificall,
the two independent constants of the motion are
(a) the kinetic energy (or momentum; or ve-
locity), unaffected by a force which always acts
perpendicular to the direction of motion; and
(b) the component parallel to the axis of sym-
metry of the total angular momentum, in which
we include both the kinetic and potential angular
momenta. These quantities are most easily de-
fined by employing cylindrical coordinates p, e, z,
to describe the position of the particle in space,
and s to measure arc length along the trajectory.
Then, in terms of the momentum, p, of the
particle, the kinetic or ordinary angular mo-
mentum about the z axis is

p (pdp/ds) p, (1)
where the quantity in parenthesis is the cosine
of the angle between p and the direction of
increasing y. The increase in this s component
of the kinetic angular momentum in a given
time is equal to the integral of the applied
angular impulse, and by Lorentz' law of force is

p(force) „dt = p(e/c) (v &&I)ddt

= —(e/c) (pII.dp pH, dz). (2)—

But the value of the last integral is independent
of the path followed by the particle, because of
the fact that the divergence of H vanishes:

'L(~/~ )( H.)+(~/~ )( H.)3 (3)

Consequently, the term following the minus sign
on the right-hand side of (2), apart from a con-
stant of integration, is a function only of the

e M. S. Vallarta, Theory of the Allowed Cone of Cosmic
Radiation (Toronto University Applied Math. Series,
1935-43), Section 3.
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position of the particle. The increase in the kinetic
angular momentum is thus associated with an
equal and opposite decrease in another function,
to which we therefore assign the name of potential
angular momentum. The sum of the two is evi-
dently a constant of the motion:

= cV, =constant. (4)

The integral in (4) represents p times the
y-component of the usual vector potential. In
the case of a magnetic dipole of strength p (gauss
cm') directed along the negative s axis,"where,
for example, in the equatorial plane the magnetic
field in the s direction has the value II,= +@/r',
we have

pp'd p/ds (e/c) (I p'/r—') =m. ,

where r'= p'+s'.
We recall that for any given value of the

magnetic moment p (gauss cm' or Bv cm') and
for a positive particle of any given magnetic
rigidity, (cp/e) (gauss cm or Bv), there exists
one circular path (pdy/ds=minus 1) in which
the given particle can circulate about the given
dipole. The circle has the characteristic radius R,
where

R' =p/(~p/~). (6)

The radius R, as noted by Stoermer, provides a
unit of length convenient to describe also the
movement about the same dipole of a particle
of the same rigidity, in any other orbit. The
angular momentum of such an arbitrary motion
may usefully be expressed in terms of the char-
acteristic angular momentum, pR,

M, =pR 2y,

where y is the so-called angular momentum
parameter. For the special case of the circular
orbit, y= —1.

In terms of the characteristic radius R and the
angular momentum parameter y the law of
conservation (5) takes the form pdq/ds (=cosine
of the angle x between the momentum of the

' The magnetic moments of both the sun and the earth
are directed approximately opposite to the angular mo-
menta of rotation and revolution of the earth, which we
take to determine the direction of the positive s axis.
Thus the direction of increasing q agrees with the direction
of both terrestrial movements.

particle and the east, if we are dealing with
motion in the field of the earth —or the directrix
of the earth's motion, if we are dealing with
motion in the field of the sun)

=pR'/r'+ 2yR/p (7)

This is Stoermer's fundamental equation for the
allowed cone of the cosmic radiation.

Consider positive particles of 3.38-Bv rigidity
moving in the field of the sun, assumed for the
present to have a moment of 10'4 gauss cm'
= 13.52 Bv (earth-sun distance)'. For such
particles the characteristic distance R of Eq. (6)
is twice the radius of the earth's orbit.

Consider those among these particles which
can arrive at the world's path (p =r =R/2)
moving at the angle x=60' to the direction of
the earth's motion. The angular momentum
parameter for such particles is given by the
equation

0.50 =cosx =pR'/r'+2yR/p =4+4', (8)

whence y = —0.875. Conversely, the value of the
angular momentum parameter y determines
those points in the meridian or (p, s) plane at
which the particle might in principle arrive at
some time in the course of its motion: a11 those
points (p, s) which give to the right-hand side of
(7)—and therefore give to cosx—a value be-
tween —1 and +1. These points form an open
domain which includes the earth (upper portion
of Fig. 2).

Particles of the class we are considering, with

y in the neighborhood of —0.875, R=2)&(sun-
earth distance), arrive earth's orbit at angles
x=.' 60' with respect to the earth's directrix and
at all—or practically all—azimuths, and with
the same intensity, I0 (particles per cm' per sec.
per unit solid angle) which characterized particles
of the same rigidity at inanity. This uniformity
of the intensity in all allowed directions follows
from the well-known application of Liouville's
theorem to the movement of cosmic-ray particles.
A false impression of the number of forbidden
azimuths would follow, however, from an un-
critical application to the sun's field of the usual
Stoermer-Lemaitre-Vallarta theory of motion in
the earth's field. To take over that theory
unchanged would be legitimate if we were on
the surface of the sun, or if that body were
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surrounded by an opaque sphere with radius the
same as that of the earth's orbit. Then many
cosmic-ray trajectories would be cut off before
they got to the point of observation. But no such
great blocking effect actually occurs. Trace
backwards a trajectory with 05y azimuth and
with an angle of inclination, x =60', with respect
to the earth's directrix (upper portion in Fig. 2).
The trajectory may, for example, lead back into
the region A in the allowed zone, executing
many loops and turns. But there is only an
exceedingly small probability that the trajectory
will wind its way sufticiently far down into the
horn of region 2 to intersect the sun's surface
and be blocked. Practically all trajectories will
turn around before having reached in so close.
Followed back, they will lead to infinity. They
supply an almost full measure of channels to
supply the earth from all azimuths with particles
of the given class.

We conclude that an observer located at the
earth's orbit (but for simplicity free of the local
perturbing effects of the earth's field) will see
the full intensity of 3.38-Bv particles in the
cone of directions making an angle of 60' with
respect to the earth's directrix.

These particles advance abreast in armies.
Only a part of them actually hit the earth.
Many more are deflected in the local field of the
earth. This alteration in direction, without
change of velocity, gives these particles new
angular momenta about the sun. Consider the
particles which depart from the earth at the
angle x=120', having in this way acquired an
angular momentum parameter y = —1.125. The
allowed zone for these particles, determinable by
the condition —1~&cosx~&1, or by

—1 &~(pR'/r' —2 X 1.125R/p) ~& 1, (9)

is a bounded region (lower portion of Fig. 2). '

The particles are trapped.
If there were no matter in the bounded zone,

and if no radiative deceleration occurred, then
the trajectory of the typical particle would in
the course of time come indefinitely close to
every point of the allowed volume. Only for a
class of orbits of measure zero are certain perio-
dicity conditions fulfilled which prevent in such
cases the uniform coverage of all of the allowed
zone. Such orbits have no inRuence on intensity

questions. With this understanding we can say
that every condition of motion allowed by the
conservation laws occurs with equal probability.
Specihcally, particles of characteristic radius
R=2X(sun-earth distance), which have a rigid-
ity of 3.38 Bv if the moment of the sun is 13.52
Bv (sun-earth distance)' —or more particularly,
those among these particles which have an
angular momentum parameter, y, between
—1.125 and (—1.125+de)—will eventually be-
come distributed with equal density in all por-
tions of the meridian plane. Moreover, at any
one point (p, z) of the meridan plane, where the
particle's velocity necessarily makes an angle
between x and (x+dx) with the direction of
increasing q, and where

cosx =pR'/r' —2 X1.125R/p, (10)

d(cosx) =2dy(R/p), (11)
all values of the azimuth of the velocity vector
are equally probable.

We can summarize and generalize the fore-
going discussion of the intensity question as
follows.

(a) To particles of a given rigidity (or more
accurately, in a certain narrow band of rigidities)
we ascribe at large distances from the sun the
standard intensity of Io particles per cm' and
per sec. and per unit solid angle. (b) We denote
by R the characteristic radius of these particles
in the sun's field (Eq. (6)).

We consider for the time being particles of
such a rigidity, or of such a characteristic radius,
that coming from infinity they can arrive at the
earth's orbit, r=r„ from a certain range of
directions, between x =0 and x =xo, where xo«.
(c) Over this range of directions particles arrive
in the neighborhood of the earth with the in-

tensity Io per cm' and per sec. and per unit solid
angle. (d) For directions between xo and m the
intensity near the earth has the smaller value I,
dependent in general upon x, but not dependent
upon azimuth with respect to the earth's direc-
trix. The value of I would be zero but for the
circumstance that the stock of trapped particles
is replenished fast enough to keep pace with
losses. (e) The trapped particles which have
angular momentum parameters between y and
y+dy and which lie in the ring-like region of
space in the allowed zone in the limits p to p+d p,
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s+ds, near the earth, amount in number to the
quantity

(I/v) 2v" d(cosx) 2m.p,dpdh (12)

4vdy(I/v) 2vrR tdpds.
bounded zone

The variables p and s may be expressed in
terms of new variables, a and x, defined by the
equations

cosx = (pR'/r') + (2yR/p), (15)
cos'a = (cosx) (p'/R') —(2yp/R).

Then the expression for the number of trapped
particles reduces to the form

4vd7(I/v) 2vR R'~
~~/2

P —2y —(y'+ cos'cx) &

—(y' —cosa') &$ (4dn/cos'n)

=4mdy (I/v) 2vR'g(y). (16)

Here g(y) is a transcendental integral which has
been evaluated numerically. The solid angle
2m.d(cosx) spanned by the given class of particles
at any permitted distance p from the axis of
revolution of the earth is given from (11) by
the expression 4~de(R/p). This solid angle in-

creases or decreases as the particles approach or
recede from the sun, in just such a way as to
compensate the change in the volume 2xp associ-
ated with a unit range of p and s. (g) Thus the
number of particles per unit volume and per
unit solid angle at the general point p, s in the
trapped zone has either the value zero, or the
same value I/v which applies at the earth itself.
However, every particle which at the earth had
the direction cosine, cosx„has at the new point
the direction cosine cos x

=pR'/r~+ 27R/p,

= (I/v) 2'.2d7(R/p, ) .2v p,dpds. (13)

Here v is the velocity of the particles and I/v
the number per unit volume and per unit solid
angle. (f) At any other point (p, s) in the bounded
zone the number of particles between y and dy
per unit ranges of p and s has a value identical
with that at the earth.

Thus the total number of particles of the given
class in the bounded region is

where p is determined by the equation

cosx. =R'/r, '+ 2yR/r, .

Negligible EBect of Radiative Deceleration on
the Trapped Particles

The horn-shaped region where trapped parti-
cles move becomes narrower and narrower for a
particle which approaches close to the sun.
Moreover, the only region of the sun which the
particle can approach is the neighborhood of the
south or north pole. If the field here is 50 gauss,
a particle of rigidity 3 Bv or 107 gauss cm will,
if it moves perpendicular to the lines of force,
describe a circle with a radius, r, of 2 km. The
energy loss in one revolution at constant velocity
1S

&E= (4—v/3) (e'/r) (v/c)'(E/Mc') 4, (19)

where v is the velocity of the particle, Z its
energy, 3IE its mass, and e its charge. If the
particle is an electron, the loss of energy in one
revolution is 3000 ev. For a proton the loss is

2)&10 " ev. In either case the change in

energy is negligible. Moreover, after a few such
nearly circular turns the particle will spiral out
into the wide reaches of the horn where the rate
of radiation is smaller by many orders of magni-
tude. Thus the losses by radiation will be
negligible in comparison to the losses by such
accidents as direct collision with the surface of
the sun.

To confirm this conclusion about negligible
rate of radiation by a more detailed analysis, we
shall calculate how long a time is required for
the particles in the bounded zone to lose ten
percent of their energy by radiation. The number
of these particles with angular momentum pa-
rameters in the interval dy and with meridian
plane coordinates in the interval dpds is given by
(13). The rate of radiation by a particle at the
point p, 8 1S

—(dE/dt) = (2e'/3c') (vE/1IIc') 4

X(radius of curvature) '
= (2e'/3M4e') (p XH)', (20)

where H, the magnetic field, lies in the meridian
plane, while the momentum, y, on the other
hand, has a component in the meridian plane
which points in one direction with as much
probability as in another. Thus, averaging over
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azimuths of y, we have

(yXH)Ap=H'p' —(p H)Ap
=H' p'(1 ——', sin'x). (21)

Summing over all the trapped particles in the
bounded zone, we have for the rate of radiation
of energy

4v dy(I/v) 2sR dpdz(2e'/335 4cs)

XH'P'(1 —-', sin'x) (22)

Integral (22) receives contributions of signifi-
cant magnitude only for regions near the sun.
There our calculations will not be quite right,
because the absorption by the sun itself will

decrease the intensity I to approximately half
the value which obtains some distance from the
sun. This computation of the radiative losses is
therefore conservative.

The boundaries of the trapping region over
which we integrate are found by solving (7) for p:

p = (cos'xr'/4R' —2yr'/R) «+ cosxr'/2R' (23)

As cosx varies from —1 to +1, p varies over the
range r'/R' For th. e case of a 3.38-Bv particle
near a sun of polar field strength 50 gauss this
distance is just the 4 km expected from our
previous calculation. Moreover, compared to the
radius of the sun, a,„„=695,000 km, the value
of p itself is so small, 50,300&2 km, that we can
in evaluating the radiation integral (22) make
the following simplifications:

dpdz &dpdr~r'dr/R— s, (sin'x) A„—+ss,

H~2p/r'~2(cp/e)R'/r'. (24)

We find for the rate of loss of energy

4v dy(I/v) 2s.R(8e'c/9) (R'/a. „')(p/3IIc)'. (25)

The amount of energy present is, on the other
hand, in the approximation Z=:cp,

(cP)4s.dy(I/v)2s. R Rs (a dimensionless
factor of order unity).

Consequently, the time required for radiation to
reduce the energy of the trapped particles by
10 percent is

T 0.1giz,„s/c(e'/Mc') g(Mc/P)'. (26)

The critical time for electrons of 5-Bv
rigidity, is of the order of 2000 years, and for

T'ai.n III. Values of g(y) in Eq. (16).

large and
negative —2.0 —1.5 —1.2 —1.1 —1.0

g hr) 37r/16( —y)8 0.0762 0.1?9 0.393 0.510 0.885
—1.0

not defined,
zone not
bounded

"R. L. Hulsizer and B. Rossi, Phys. Rev. '73, 1402
(1948).

u H. C. van de Hulst, Astrophys. J. 105, 471 (1947).
Contrast his figure with the earlier value of P. van Rhyn
cited in his paper or Baumbach's value of ~10 "g/cms
for the corona (S. Baumbach, Astro. Nachr. 236, 121
(1937)).

protons of the same rigidity is roughly 10"years.
The time spent in the trapped state, on the other
hand, is comparable to 5000 years only (see
below). Consequently, for protons the energy
lost via radiation in the available time is negli-
gible. For electrons, on the other hand, these
losses are not at all negligible. If electrons
constitute a significant fraction of the incoming
radiation, then one should indeed expect on this
account a lowering of intensity near the earth
from those directions in the sun's field from
which arrival of particles if forbidden by the
simple Stoermer theory. In view of evidence"
that electrons amount to one percent or less of
the incident intensity, we disregard electrons in
the present analysis and therefore conclude that
we may neglect the radiative effect.

Losses by Collision with Dust Particles

Alfvhn has already noted the possibility of an
absorption of the trapped particles by dust and
interplanetary matter. Our calculation of the
magnitude of this effect differs somewhat from
his. (a) We estimate below for the order of
magnitude of the time of trapping' 5000 years,
instead of his 200 years. (b) We adopt for the
density of interplanetary matter the recent figure
5X10-" g/cm' given by van de Hulst. " Thus
we find for the average amount of matter
traversed (making no allowance for the quite
probable decrease of the density in regions of
the trapped zone well above and below the plane
of the earth's orbit) the figure

(5 X10' yr. ) X (10"crn/year)
X (5 X 10—"g/cm') =25 g/cm'. (27)

In contrast to this figure the mean free path of
protons for interaction with matter is of the
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order of 100 g/cm'. "Thus the calculations taken
at face value would indicate a loss of the order
of 25 percent of the trapped particles via inter-
a,ction with matter. However, we have here made
no allowance for the quite probable decrease of
the density of interplanetary matter in regions
of the trapped zone well above and below the
plane of the earth's orbit. '4 We shall therefore
assume the present absorption effect to be
negligible, as did Alfvhn. Nevertheless, we have
to recognize the existence of a large uncertainty
in all existing figures for the density of inter-
planetary matter. Instead of trying to use this
uncertain data to estimate the decrement of the
cosmic-ray intensity in the so-called forbidden
regions, it would probably be more reasonable
in future considerations of this kind to use
cosmic-ray data to draw conclusions about dust
and other matter.

Losses in Collisions with the Moon

It appears reasonable to consider the magnetic
moment of the moon so small that we can treat
this object as absorbing cosmic rays like an
opaque sphere of cross section z.(moon radius)'
=z.a~«~s ——0.95X10" cm'. (a) The moon has
only 0.012 the mass of the earth. (b) Relative
to the earth its iron content is presumably even
smaller, as indicated by the characteristic differ-
ence in density of the two planets (5.52 t/s. 3.36).
(c) Its rotation is slower by the factor 28. (d)
Even for our standard of comparison, the earth,
the magnetic scattering effect is weak enough so
that a significant fraction of this planet is
accessible to the cosmic radiation. "

Losses in Collisions with the Earth

Consider particles of a given rigidity approach-
ing the earth from random directions. If every
portion of the surface, 4s.a„,ih', could be reached
from the full solid angle of the sky, 2z. , then we
could say that the earth behaves like an opaque,
non-magnetic object, and we should attribute to
it an absorption cross section equal to the
geometrical cross section, xa„,~i,'. This is the

"See, for example, B. Rossi, Rev. Mod. Phys. 20, 587
(1948).

'4 L. Spltzer, Jr., Astrophys. J. 95, 329 (1942).
&~ Spp M. S. Vallarta, Nature 161, 646 (1948), and

Dauvillier, C.R. Acad. Sci., Paris, 225, 839 (1947), for
other arguments for a negligible magnetic moment for
the moon.

where F is a dimensionless factor less than unity.
This accessibility factor was determined as fol-
lows: (a) We integrated the curves given by
Johnson" to find

pa/s
Q(X) =2z. f sintdl'

~0

(in terms of his notation). (b) We then integrated
Q over the surface of the earth for several values
of the rigidity to obtain the accessibility factor,
F, shown in Fig. 5.

Collisions with Mars and Venus

The lower portion of Fig. 2 shows that particles
with a characteristic radius, R, in the sun's field
of twice the sun-earth distance, and with an
angular momentum parameter y = —1.125, move
in a cage, the borders of which are not far from
including Mars or Venus. For what values of R
and y does the cage include both the earth and
Marsi' For Mars to be included, the inclination
x at that planet must lie between 0 and z., or

—1 ~& R'/rM„, '+2yR/rM„, ~&1, (29)

whence we conclude that the angular momentum
parameter must lie between the limits

rMars/2R R/2rMsrs

~&rM.„/2R —R/2rM. „(30a)
(30b)

The inequality (30b) is added here as the condi-
tion for a bounded zone to exist at all (compare
upper and lower portions of Fig. 2). The upper
limit on y set by (30a) is the relevant one when
the characteristic radius, R, of the particle in the
sun's Geld exceeds 2.4142 times the radius of
Mars' orbit (3.69 times r.„t~, rigidity 13.52 Bv/
(3.69)'=0.99 Bv or less for sun moment=10"

"T.H. Johnson, Rev. Mod. Phys. 10, 221 (1938).

case for particles of rigidity 60 Bv and greater.
For particles of lower rigidity the allowed cone
fills at any given latitude, X, a solid angle, QP.),
which is, in general, less than 2x. In this case
the earth absorbs from the stream of cosmic-ray
particles like a disk of cross section

)w/2

(1/4) LQP.)/2s $u„„t~'2n coshdh
—2r(2

=—z.a...thsP, (28)
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gauss cm'). When the magnetic rigidity is greater
or the characteristic radius is less, then the
limit (30b) applies. This is the case in which we
shall be interested.

Positive particles in the range of angular
momenta set by (30b) arrive at the earth with
inclinations to the earth's directrix over the
whole range given by the limits

(cos&)min =R /re rMars/re R /rerMarsy (31)

0 7 (}.I5 060 I 35 2 40 3.75 540 7.35 9.60 l2 I5 15 00—MAGNETIC RIGIDIT Y IN Sv ~
0.6

04

0,2

(cosx) .„=R'/r s —2R/r„ (32) O.P. 0.4

insofar as these limits lie inside the geometrically
possible limits —1 &cosx&1. The various possi-
bilities are summarized in Table IV.

Consider those trapped particles of character-
istic radius R and angular momentum parameter
y to 7+de which find accessible both Mars and
the earth. The number of these particles in the
bounded zone in the range of coordinates dpds is

47th (I/v) 2m Rd pdz, (33)

where Idepends upon R and y but is independent
of p or z. We divide by 2spdpdz to obtain the
particle density, multiply by u to obtain the flux,
and multiply again by the effective cross section
of the appropriate planet to obtain the number
of particles lost per second. Thus, the rate of
loss due to the earth and moon together is

4AI(R/r, ) (su,sF+ ~0, ...'). (34)

The contribution of Mars we similarly take to be

4ndvI(R/rM. „)s.aM „,'. (35)

Thus Mars, when it can absorb at all earth-
accessible trapped particles, has the same effect
as a fictitious planet located on the earth's orbit
with a cross section

(r,/rM„, )saM„,s=2 42X10'7 cm. s.

Figure 3 shows in comparison with the cross
sections of the earth and the moon the so defined
effective cross section of Mars, for particles of
several rigidities, as a function of the inclination
of the particle's trajectory near the earth's orbit
(or equivalently, as a function of the angular
momentum).

Just as for Mars, we define for Venus the
effective cross section

(r,/rv, „„,)b'av, ,s=17.25X10'7 cms (37)

FrG. 5. Accessibility factor, F.

TABLE IV. Trapped particles which find both Mars and
the earth accessible. Here r, = radius of earth's orbit,
R = "characteristic radius" of particle = (sun's moment in
Bv cm'/particle rigidity in Bv)&.

R/re

3.69 to 2.70
2.70 to 2.414
2,414 to 1.236
1.236 to 1
Less than 1

Rigidity in Bv
for sun moment
of 10~4 gauss cms

0.99 to 1.85
1.85 to 2.32
2.32 to 8.85
8.85 to 13.52
Greater than

13.52 Bv

Limiting inclinations near earth of
those trapped particles which

find Mars accessible

Can't reach earth

r
(cosx)min 1 (cosx)max =1
0.346(R/r, )2 —1.53~ [(cosx)max

(cosx)m;n = —1 L(R/re)~ -2R/rJ
Can't be trapped if they reach earth

which applies to trapped particles which can
reach both Venus and the earth (Table V and
Fig. 3).

It is seen from Fig. 3 that Venus, while
endowed with an effective cross section much
larger than that of Mars or the earth, is able to
bring that cross section into action only for a
small fraction of the particles of interest to us
here.

In the present analysis we neglect the magnetic
moments of Mars and Venus, To do so is not
obviously legitimate. The diameter and density
of Venus agree within 6 percent with the corre-
sponding quantities for the earth. There appears
to be no reliable information about the rate of
rotation of Venus. However, the rotational
period of Mars agrees within 10 percent with
the period of the earth, and there is no evident
reason why the same should not be true for
Venus. Consequently, it would not be surprising
if Venus had a magnetic moment of the same
order as that of the earth. Such a moment would
have the following effects: (a) The absorption
cross section of Venus would be reduced by a
factor I similar to that presented graphically as
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TABLE V. Trapped particles which find both Venus and
the earth accessible.

R/re

Rigidity in Bv
for sun moment
of 1034 gauss cm3

Limiting inclinations near earth
of those trapped particles

which find Venus accessible

Above 2.13 Below 2.98
2.13 to 1.75 2.98 to 4.41

1.75 4.42

1.75 to 1

Below 1

4.42 to 13.52

Above 13.52

Can't reach earth.
(cosx); = —1;
(cosx), =0.725 —0.38R'/r, '.
(cosa);~ = —1;
(cosx),~ = —0.438.
(cosx);~= —1;
(cosx)max=& /&e M/&e
Can't be trapped if they
reach earth.

a function of rigidity in Fig. 5. (b) The losses
from the zone of trapping due to Venus, while
decreased by this reduction in absorption, would
seem at first sight to be on the whole increased
via the presence of a large scattering cross
section. In this process Venus would imitate the
action which is illustrated for the earth itself in

Fig. 2, defiecting the already trapped particles
into a new bounded zone, ordinarily even closer
to the sun. (c) But the particles thus deprived
of access to the earth, after many circuits of the
new cage, may be rescattered by Venus into an
earth-containing zone. Consequently, it is quite
conceivable that assignment of a magnetic mo-
ment to Venus will actually decrease the net
absorptive effect of that planet. (d) The absorp-
tive effect of Venus is already small when we
take into account the narrowness of the zones of
action depicted in Fig. 3. Consequently, we shall

neglect any reduction in this effect which may
come about via a possible moment of Venus.

In contrast to Venus, Mars will be expected
to have a moment much smaller than that of
the earth: (a) Its average density is 3.95, com-
pared to the earth's 5.53, indicating a lower
proportion of iron. (b) Its mass is only 11 percent
of the earth's mass, indicating even for the same
degree of magnetization a 9-times smaller mo-
ment. Thus it is not unreasonable to neglect the
magnetic moment of Mars in the present calcu-
lations.

If Mars does, nevertheless, possess a sub-
stantial moment, the consequences will be inter-
esting. To be specific in discussing these conse-
quences, let us fix on a value for the moment of
the sun equal to 1034 gauss cm'= 13.52 Bv
(sun-earth distance)'. Then the lowest rigidity

for which particles from outer space have access
to the earth is 13.52 Bv/(2. 4142)'=2.32 Bv,
which will then represent the lower limit to the
cosmic-ray spectrum. To Mars, on the other
hand, particles can arrive from outer space with
rigidities down to (r,jrM„,)'2.32 Bv=0.99 Bev.
If that planet had a scattering cross section
significant in comparison with its absorption
cross section, it could trap these particles after
the manner of the earth's trapping efFect. Some
of the thus caught particles would subsequently
reach the earth —specifically, those among these
particles which have rigidities greater than 1.85
Bv (Table IV). Consequently, the presence of
a substantial magnetic moment on Mars would'
alter the cut-off of the cosmic-ray spectrum from
2.32 Bv to 1.85 Bv, probably an experimentally
detectable effect. We look apart from such an
efFect in the present paper, but hope at a later
time to analyze the possibility of determining in
this way the magnetic moment of Mars.

The Other Planets and the Interplanetary
Transfer Process

If Mars could, in principle, pass particles of
low rigidity on to the earth, cannot planets still
further out pass on particles of still lower
rigidity to Mars for eventual delivery to the
earth& Is there any limit to the length of the
chain of planets which can be formed in this way?

It is a remarkable feature of the interplanetary
transfer process that it can take place only if the
radii of successive orbits difFer by a factor less
than 2.4142. It is an equally remarkable feature
of the solar system that the'planetary orbital
radii difFer from one another by a factor only a
little less than 2 (Bode's law). But it is most
remarkable of all that the chain which would
thus be possible is, in fact, completely broken by
the absence of a planet between Mars and
Jupiter. The radii of these two planets differ by
the factor 3.42. Instead of the planet which at
one time presumably revolved between them,
we now have only the multitudinous asteroidal
fragments. Magnetic scattering by such frag-
ments can be completely neglected. For spheres
of equal degrees of magnetization the magnetic
moment and scattering cross section decrease as
R', while the absorption cross section decreases
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only as R'. Thus the absorption dominates for
fragments of small size.

Granted that the asteroids constitute a broken
link in an otherwise possible interplanetary
transfer process, there can be no effect on the
cosmic-ray intensity near the earth of these
objects and more remote planets. Neither group
of bodies intercept any trapped particles to
which the earth is accessible.

As for planets closer to the sun than Venus,
there is only Mercury to consider. It can have
no eQ'ect at the earth if the intervening link—
Venus itself—is a complete absorber; and even
if Venus does have a signi6cant scattering cross
section, our results, as noted above will be rela-
tively little aA'ected. For these reasons we limit
our attention to Mars, Venus, the earth, the
mooa. , and the sun.

Absorption by the Sun

A particle which approaches the sun follows a
spiral path with radius of the order of magnitude
of a kilometer about a line of force which leads
in close to the north or south pole. The location
of the particle as projected onto the line of force
moves in towards the magnetic dipole, comes to
a minimum distance, and then moves away again
without any repeated in-and-out movements (so
long as the radius of the loops is small in com-
parison with distance from the sun). Conse-
quently, the sun directly decreases the number
of trapped- particles only insofar as it cuts down
to zero the flux of outward moving particles in
the horn of the bounded zone close to the sun.
But in calculating the number of impacts on the
sun we need only consider the flux of inward
moving particles.

This inward Aux can in a very good approxi-
mation be considered as unaffected by the sun,
and therefore (see Eq. (33) and following discus-
sion) amounts to

4n.dyI(R/a„) (d p/2')

particles per cm' and per sec. Here y is the
azimuthal angle of the velocity vector about an
eastbound line of constant latitude on the surface
of the sun. The particles in question move with
respect to this line at an inclination x which
varies uniformly from 0 to ~, as. we move over

the surface of the sun from one boundary of the
trapping region to the other. According to (23),
we can represent the p-coordinate of the typical
point on the surface to a good approximation by
the expression

p ( 2—ya,„„'/R)&+cosxa, „'/2R' . (39)

The direction cosine of the velocity vector with
respect to the inward drawn normal is sinx sing,
with q running from 0 to ~ only (zero outward
flux). The number of trapped particles of the
class (R; y to y+dy) lost per second by collision
with the sun is thus

flux direction cosine. d(surface)

{4' yI(R/a, „)(d q /27') }
~-1~ 0

Xsinx sing {a., 'd(cosx)/2R'}

x2~( —27a...&/R) &, (40)

= 4m d7I(ma, „.'/2) (—2ya, „'/R') &.

This rate of loss is the same which would occur
if there existed at the earth's orbit a fictitious
cross section obtained by dividing (40) through
by the expression 4n dyI( R/r, ) (see Eq. (35)).
Thus the equivalent eAective cross section of
the sun is

(~a- '/2) (r./R) (—2'--'/R') '

(was~n /2)( ag~gP gr/R)~(1 cosxrg /R )~
=24.2 X 10'~ mc'(r, ~ /R') (1—cosxr P/R~) &

=( --'".'/2){(P/)/I--}
X {1—(cP/e) cosxr I/p, „}&, (40a)

where we have expressed the angular momentum,
parameter in terms of the inclination, x, of the
particles at the time they near the earth's orbit.

It is seen from (40a) that the equivalent
effective absorption cross section presented by
the sun goes up roughly in proportion to the
rigidity of the particles under consideration, and
is ordinarily significantly greater than the ab-
sorption cross section of the earth itself. The
dependence upon rigidity and inclination can be
seen in more detail from Fig. 3.
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Time of Circulation of Trapped Particles

Imagine the earth suddenly to be demagnet-
ized. Then the absorption e8'ects of Mars, Venus,
moon, and sun as just discussed, and the full
geometrical cross section of the earth, would
cause the number of trapped particles to decrease
exponentially with time. The time, 7., for the
intensity to fall to 1/o of its present value
furnishes a crude measure of the average time of
circulation of caged corpuscles. Denoting by o-

the equivalent eA'ective cross sections of the five
heavenly bodies, we have from (16) and (III)
the result

r=2nR'r. g(y)/v(o, +o,„., +o,+o„+o.). (41)

Consider, for example, particles with a character-
istic radius, 8, equal to twice the radius r, of the
earth's orbit (rigidity 3.38 Bv if sun's moment
is 10" gauss cm' = 13.52 Bv (sun-earth dis-
tance)'), with such a value of y(= —1.125) that
when near the earth's orbit they move at an
angle of x=120' with respect to the earth' s
directrix. The numerator of the expression for 7-

then has the value 4.1&(10"cm'. In the denomi-
nator the values to be used for the equivalent
cross sections im this particular case (see Fig. 3)
are

O.„,gh =12.8X10» cm'
o-,„= 1.0X10»

= 6.4X10»
OM„, ——2.4X10"
cr~,„„.= O.OX10»

Ot,op~( = 22.6 X 1.0 CITl .

With v set equal to the speed of light we find
v. =6.0X10"sec. = 19,000 years.

The definition of the time r used here of course
overlooks the loss of trapped particles via scat-

.tering at the earth itself. It is diS.cult to define

quantitatively a time ~ which takes into account
this effect, because the earth's scattering cross
section diverges for small angles. However, con-
sidering the scattering only for angles of appreci-
able magnitude, we conclude that 0&,t, & may be
increased effectively by a factor possibly as much
as ten. Consequently, we take 5000 years as a
reasonable order of magnitude estimate of the
time of circulation of the trapped particles of
interest to us here. This is the 6gure used in the

considerations above on the inHuence of radiative
deceleration and dust.

do p, /(cP/e) (dQ/8').

A more nearly quantitative analysis must now
be made. To give a completely precise treatment
of the scattering would, of course, be much more
complicated than the still uncompleted task of
the Lemaitre-Vallarta theory to give a complete
account of the allowed cone of the cosmic radia-
tion. To avoid this prohibitive task, we shall
treat the scattering in the approximation in
which the deviation of the particle from a
straight line path is at all times regarded as a
relatively small quantity. Thus we shall have a
thoroughly accurate treatment of the deHections
of small angle, for which the difFerential cross
section, do /dQ, becomes very large. A sum

theorem for the integral cross section will then
permit us to obtain a reasonable estimate of the
number of the relatively improbable deHections
of large angle.

When we consider a particle which experiences
only small deviations from a straight line, we can
calculate its deflection by integrating with re-
spect to time over the unperturbed rectilinear
motion the component of force perpendicular to
the line of motion:

r (normal force)dh
8=

i

momentum

Expressing the force in terms of the magnetic
field and the velocity, and writing ds for the
element of distance vdt, we have

f8= (cp/e)-' ds&&H. (45)

Here the vector 6 is evidently perpendicular to
the line of motion, as it should be. This vector

The Scattering Cross Section of the Earth

The qualitative discussion in the introduction
of the scattering of charged particles by the
earth's field already gave an order of magnitude
estimate for the cross section, do. , for a deviation
of the direction vector into a solid angle element
dO, making an angle 0 with the original direction:
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gives us not only the magnitude of the deflection
but also its azimuth.

Instead of evaluating (45) by direct integration
for a general line of motion and for an arbitrary
orientation of the earth's polar axis, we can
obtain the same results much more readily by
simple considerations of vector covariance.

The deflection 8 is a linear function of the
magnetic field H. Moreover, H itself is a linear
function of the magnetic moment vector, p.
Consequently, the vector 8 may be considered
to be the sum of three parts, each one of which
is, respectively, due to one of the three compo-
nents of p,.

Let the magnetic moment p be analyzed into
two components perpendicular to the line of
motion of the particle and one component
parallel to that line. Then this third component
contributes nothing to 6: When the dipole
moment of the earth is parallel to the line of
motion of a particle, then for every element of
path length ds above the equatorial plane on
which the perpendicular component of H has
one value, there is another element of path length
an equal distance below the equatorial plane on
which the perpendicular component of H has an
equal and opposite value. Thus the integral (45)
for the deflection reduces to zero. Consequently
only components of the magnetic moment per-
pendicular to the line of motion contribute to a
deviation. More specifically, in a coordinate
system of which the s axis is paralle1 to the line
of motion, 8, and 8„must be linear functions of

and Jtly.

The deflection vector 8=(8„8„)depends not
only upon the two-dimensional vector p = (p„p„)
but also upon the vector 8=(X, Y) from the
center of the dipole to the point where the line
of motion pierces the X, Y plane.

The relation between 8 and the other two
vectors y and 8 must be covariant with respect
to coordinate transformations in the X, Y plane
Consequently, we can write 8=ay+by. Here
the coefficients a and b are invariant against
rotations of the coordinate system in the (X, Y)
plane. Moreover, u must not contain p, while b

must be linear in p. The most general expression
which satisfies these requirements has the form

~-f (P)5+X (P)(8.8)IP (46)

where P = (x'+y')'* is the so-called impact param-
eter of the scattering process and fi(p) and f2(P)
are functions thus far arbitrary.

We determine the ratio of the unknown func-
tions fi and f& by a simple physical argument.
Consider a hollow cylindrical bundle of parallel
wires each carrying the same amount of current
and lined up parallel to the s axis, with the
earth's dipole at the center of the bundle. The
magnetic field vanishes inside the cylinder.
Consequently, there is no for~e or torque exerted
on the dipole. By the law of action and reaction
it follows that the force exerted by the dipole on
a typical wire must vanish on being averaged
over wires of all azimuths. But this force is
measured by the average vahie of the deflection
6 of Eq. (4), namely,

(8)A. = I:fi(P)+kP'f2(P) js. (47)

we can examine separately the magnitude and
azimuth of the deflection:

8 = (2p,,/P') (cp/e)-'.

v=" 2P— (50)

We conclude from these results that (a) the
magnitude of the deflection is independent of the
azimuth of the impact parameter; (b) the azi-
muth of the deflection is altered by 2dP by a
change dP in the azimuth of the impact param-
eter; (c) all values of the azimuth of the deflec-
tion are covered twice as the azimuth of the
impact parameter sweeps through 2m. ; and (d)
all values of the azimuth of the deflection are
equally probable, just as if we were dealing with
deflections under the action of central forces.

The scattering cross section do. = 2mpdp associ-
ated with deflections between 8 and 8+d8 follows

We conclude that f2= 2fi/p—' To c.alculate fi
itself, we consider the case where the particle
moves in the equatorial plane of the dipole and
the integral (45) is easily computed: H=P(P'
+s') l; 8=2Pe/cpp'. Comparing with (46), we
find

e = (2/P')(cp/e)-'( —p+2(p 8) 8/pmj. (48)

Writing

(p„p„)=p, (cosn, sinn),
(p*r pw) = p(cosPi sinP)~

(8., 8„)= 8(cos', sin'),



KA NE, SHANLE Y, AN D %HEELER

directly from (49):

do =n-d(p') = hard(2p, ~/8) (cp/e)
=: p, (cp/e)

—'8-'dQ, (51)

where dQ represents the element of solid angle
d0=2x sinod|t;

The expression just derived for the differential
cross section for scattering is, of course, valid
only for small angles. It may be regarded as
merely the leading term in a power series for the
cross section as a function of 8. It being most
dificult completely to determine this function
for all angles, we shall have to use an empirical
expression for the cross section. On the choice
of this expression we impose the following
requirements:

(a) It must reduce for small 8 to Eq. (51).
(b) It must have the same value for deflections

of magnitude 8 and (2m —8).
(c) The integral J (do jdQ)2m sin8d8 for the

probability of all dellections greater than 8 must
reduce for small values of 0 to

m p' = (2m.p, /8) (cp/e)

As simplest expression satisfying these require-
ments we adopt the formula

do/dQ = (p,/8) (cp/e)-'L(sin8/2)-'+2), (52)

where the function sin(8/2) meets requirement
(b), the power —3 satisfies (a), and the constant
2 is required to fit condition (c).

Two further notes are required. First, our
later calculations will be little affected in accu-
racy and much simplified in execution by using
an average value for the perpendicular compo-
nent of the dipole moment, regardless of the
direction of motion of the particle under con-
sideration. Thus, particles which travel in the
direction of ihe motion of the earth in its orbit
will see the full value, p~=p, while particles
traveling perpendicular to that direction will see

p~ =0 or p~ =p in the two extreme azimuths,
and p~=(2/s)p, 0.636@ on the average. More-
over, such an averaging with respect to azimuths
is automatically guaranteed by ergodic consider-
ations for diferent particles whose directions of
motion make the same angle with respect to the
direction of the earth's motion. Now the diKer-
ence between 0.636p, and p itself is percentage-
wise not very great, considering the other

sin'xdxdP ' sinxdxdiP
)

= (m/4)y =0.'785@. (53)

Second, going over from the consideration of
a naked dipole as so far considered to a dipole
sheathed in solid matter, we have to recognize
that the scattering cross section will be reduced
to whatever extent absorption occurs. The ab-
sorption cross section of the earth we have
already represented in the form ~a'F, where a is
the radius of the earth and P is a factor ranging
from 1 for particles with a magnetic rigidity of
60 Bv down to 0.1 for 1-Bv particles.

Particles of rigidity 15 Bv and less, such as
we are considering here, if they had found the
earth a transparent object, would have traveled
in tortuous orbits, ordinarily with several loops,
and would have departed with nearly random
directions. The loss in scattering on account of
absorption is therefore most reasonably treated
as a reduction in that term of the empirical
expression (9) which represents isotropic scat-
tering. Combining this reduction with our earlier
averaging over values of p~, we adopt as final

simplified expression for the differential scatter-
ing cross section

do/dQ = [xp/32(cp/e) jt (sin8/2) '+25
—(1/4~) ~u'F. (54)

Equilibrium between Scattering and Absorption

Of particles of a given rigidity —or equiva-
lently of a given characteristic radius R in the
sun's field —the flux, or number, I, per cm' and
per sec. and per unit solid angle, is dependent
upon the angle of inclination, x, at the earth' s
orbit, but independent of the azimuthal angle,
y, about the earth's directrix. For inclinations
between x =0 and x=xo, where

cosxo R'/r ' —2R——/r „ (55)

the particles arrive from outer space. For these
values of x the intensity I therefore has the

approximations which we are forced to make.
Consequently, we shall here and in the following
adopt fof p~ the value

(y~) A. = p(sinx) A.
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standard value Io associated with particles of
the given rigidity at great distances from the
solar system. For inclinations between xo and m,

on the other hand, the intensity has a lower
~alue which is determined by the equilibrium
between absorption and scattering.

When a steady state has been reached, and
losses from a fixed solid angle element dQi, at
x=xi, balance gains into this solid angle from
all other solid angle elements dQ2, then the
intensity I(x) satisfies —for x between xo and x—the equation

plane containing direction 1 and the earth' s
directrix (the axis of our system of spherical
polar coordinates, x and y). In the integral on
the left-hand side of (56), the differential
dQa=sinx~dxgdy2 can be written in the equivalent
forIQ, sln8y2d8y2da!.

We perform first the integration with respect
to n. Since it occurs only in the factor exp(iran),
every term vanishes except the term m =0. What
we thus obtain we combine with the scattering
term on the right-hand side of the equation,
finding, finally, the result

dQgI(x2) (do/dQ) gidQi
QSi,CiPz, (cosx) +0 (xi)g CARPI, (cosxi) =0, (59)
L L

= I(xi)dQi 0 (xi)+ dQ2(do/dQ) u . (56)
Jq

In this equation 0(x) symbolizes the total ab-
sorption cross section of the five heavenly bodies
as represented in Fig. 3, and (do/dQ)i2 is the
differential cross section as estimated in the
preceding section for scattering from the direc-
tion 1 to the direction 2 (equal to the cross section
for scattering in the converse direction).

The integral equation (56) has only a formal
significance because the scattering cross section
diverges for small angles. The equation acquires
a better defined meaning when the scattering
terms are rearranged so that their difference

appears on one side of the equation, and when

the scattering cross section is cut oQ' at a mini-

mum angle, 8i~=e, which is later allowed in the
limit to go to zero.

The integral equation is transformed into a
more convenient form by writing

I(x) = P CARPI, (cosx).
L~O

(57)

We recall from the theory of spherical harmonics
the relation

where n is the dihedral angle between (a) the

plane containing directions 1 and 2 and (b) the

(I.—(m()!
P J.(cosx2) = Pi.'"'(cos8in)

m- —~(I,+ (m ~)!

)(Pi,&~&(cosxi) exp(imn), (58)

where Si, is an abbreviation for the "scattering
coeEficient. "

Sl,= " I1—Pz, (cos8) }(d0/dQ)2x sin8d8. (60)
Jp

By Inultiplying through by Pi, (cosx) and inte-
grating with respect to x, we can write this
equation in the equivalent form

2SiCr/(2L+ l)+ PL(cosx)0 (x)I(x)J

Xsinxdx=0, (I =0, 1, . ). (61)

In either of these forms of the equilibrium equa-
tion it will be noted that it is no longer necessary
to cut off the (physically meaningful) divergence
of the scattering cross section at small angles.
For such angles, 8, the quantity 1—Pr, (cos8)
varies as I.(I.+1)8'/4; do/dQ varies as const. /8',
and the element of solid angle as 2m8d8, giving
the integral the approximate behavior J,'d8. It
is clear from this discussion that we cannot treat
the movement of direction vectors over the
surface of the unit sphere as a diffusion process,
as might have been justified if the scattering
cross section had fallen off faster at larger
angles. Deflections of all sizes are of comparable
importance.

For the further analysis we compute the
scattering coef6cients, Sl., explicitly from ex-
pression (54) for do/dQ, finding

51.=0 for L, =o;
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otherwise

Sy. = (2I-+1)(x'/4)Lp. /(cP/e) j—ma, 2P (62)

where pe/(cp/e) represents the sq'uare of the
characteristic radius of a particle of the given
rigidity in the held of the earth's dipole moment,
ii, =60 Bv (earth radius)'.

I(x) = QCiPi, (cosx) (63)

for the intensity at the inclination x, consider
the single number J defined for every function
I(x) by the expression

J= QSi, Ci, '/(2L+1)

+ (1/2) ) I2(x)0 (x) sinxdx. (64)
D

The variation, bJ, of J with respect to a small

change bCI. in a coeScient in the Legendre series

(63) for I(x) is just the expression (61), which
vanishes for the solution of the equilibrium
equation. Consequently, J takes on a stationary
value for this particular function I(x). Con-
versely, by representing I(x) as an empirical
function with a certain number of adjustable
parameters, and adjusting these parameters to
give J a stationary value, we obtain the closest
approximation to the exact solution which is
attainable with a function of the given mathe-
matical form.

This variational procedure is a special case of
a more general procedure, in which we replace
the first term in (64) by the quantity

(1/4) ~)I }I( ) —I( ) }'(d /dQ) dQ dQ . (65)

In the present case, we must take one pre-
caution to guarantee the convergence of the
series in the (64), which for large values of L,

goes approximately as

const. g CI,',
L

Ayyroximate Solution of Equilibrium Equation
by Variational Method

Recalling the expression

specifically, we shall require continuity not only
for I(x) itself, but also for its first derivative.

In the present calculations, we took as trial
solution the expression

with two adjustable constants Xi and X2, and
with the abbreviation y=cosx. Of course we

apply this formula only from x =xo to x =x. At
smaller inclinations we assign to I the constant
value I=IO. The integral for the second part of
J is evaluated straightforwardly from (66) and
the data of Fig. 3. For example, considering the
contribution to the variational integral J from
the absorption of Mars, we have only to (a) take
one-half the equivalent effective cross section
of that planet as defined earlier, and (b) multiply
this number by the integral with respect to cosx,
between the two appropriate limiting angles, of
the square of the trial function as just defined.
All these calculations are done analytically, and
lead to a second degree function of Z'z aild E2.

'

Likewise,

Cr. = ( (2I.+1)/2} I(x)Pi(cosx) sinxdx

becomes a linear function of X~ and X2, and thus
J itself altogether a quadratic function. The
condition that J be stationary with respect to
variations in Xi and X2 thus leads to two linear
equations for these two unknowns, which are
then readily found.

The equations were solved only for values of
R/r, ~& 1.667. In these cases all the Legendre
coefficients higher than the third lead to terms
in K~ and E2 that are negligible compared to the
terms of lower order. For larger values of R/r, it
is necessary to evaluate an increasingly large
number of Legendre coeScients to guarantee
adequate convergence.

Equation (66) represents the intensity as the
sum of a quadratic and a cubic term in the
deviation of y =cosx from the value cosx =yo for
the cut-o& angle. The calculated intensity curve
reaches a minimum for some negative value of
y and then rises again as y further decreases to
—1. This eEect is a consequence of our use of
only two constants in the variational function
adopted to represent the intensity. The actual
intensity curve must decrease continuously from



p =$0 to y = —1. That our approximate curve
will cross the actual curve, lying part of the time
below it, part of the time above it, is guaranteed

by the variational principle used in our compu-
tations. Consequently, by taking the approxi-
mate curves at the minimum, and arbitrarily
cutting off' the rise for values between the mini-

mum and y= —1 (dotted lines in Fig. 4), we
obtain a reasonable lower limit for the intensity
in the "forbidden" cone of directions.

The equations were solved for two values of
the sun's moment, p, = 10'4 gauss cm' (sun's polar
field 59.5 gauss) and ti. =0.42X10'4 gauss cm'

(or 25 gauss at pole). The results of the calcula-

tions have already been shown in Fig. 4 and
discussed in the first part of the paper.
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