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". . . Wenn die Konige bauen, haben die Karrner zu tun. "—Schiller**

The Riemannian geometries, which are derivable from a quadratic action principle, are generated by a
new mathematical approach, based on the method of the Lagrangian multiplier. This changes the 10
differential equations of fourth order for the g;g to 24 differential equations of second order for a new field

quantity. This field quantity is a tensor of third order, antisymmetric in one pair of indices, in remarkable
analogy to the fundamental A-tensor of Einstein s theory of distant parallelism. The field equations are
tied together by 13 identities. The basic structure of the field equations for infinitesimal fields is investigated
and their relations to Einstein's theory of gravity and Einstein's theory of distant parallelism discussed.

I. INTRO DUCTIO N

VER since Einstein's fundamental discovery [2]***
of the relation between Riemannian curved spaces

and physics, the speculative mind was on the lookout
for some geometrical clues which would shed some light
on the nature of physical phenomena whose origin is
not purely gravitational. The infinitesimal geometry
of Weyl, the one- geometry of Eddington, Schouten,
and recently Schroedinger, the five-dimensional theories
of Kaluza, Einstein, Mayer, Bergmann, and others,
the addition of "distant parallelism" to Riemannian
geometry by Einstein, the projective relativity of
Veblen and Hoffmann, and Pauli, are some of the major
landmarks' in the struggle for a natural generalization
of the Einsteinian field equations, with the ultimate
goal that eventually all physical action should be
explicable as the natural emanation of a definite kind
of space-time structure.

In recent years Einstein discovered a field theory
based on "bivectors, '"' and a field theory based on a
Hermitian line-element. '

The author himself [/] followed a somewhat different
path. Retaining the classical frame work of Riemannian
geometry and adhering to the principle that the funda-
mental field equations shall be derivable from an action
principle, he considered it plausible that the basic
invariant of that principle should be quadratic rather
than linear in the curvature components. ' In a later
development [8],the theory of a statistically distributed
carrier field of very high frequency was added. Such a
metrical plateau can generate an average curvature

* Present address; Institute for Numerical Analysis, U.C.L.A. ,
Los Angeles, Cal.**"When kings are at work, the carpenters are kept busy. "***References in [ ] are listed at the end of the article.'It is impossible to enumerate all the original sources. The
monography of Veblen [11]contains a representative bibliography
(see p. 68) up to 1933, while the more recent literature is partially
digested in the textbook of Bergmann [1]:see also Schroedinger
[10]and subsequent articles.

i' A. Einstein and V. Bargmann, Ann. of Math. 45, 1, 15 (1944).
'b A. Einstein, Ann. of Math. 46, 578 (1945); A. Einstein and

E. G. Strauss, Ann. of Math. 47, 731 (1946).
r H. Weyl [12]likewise advocated a quadratic action principle.

However, in his infinitesimal geometry the fundamental quadratic
invariant is much less uniquely determined; (see [12],p. 132).

radius of microscopic rather than astronomical dimen-

sions, thus providing a universal length of sub-atomic
order of magnitude for the construction of material
particles.

One of the most serious objections to this line of
thought is the fact that the basic field equations for
the g;I, come out as differential equations of fourth
rather than second order. This makes any comparison
with the classical field equations of mathematical
physics extremely dificult since the fundamental field

equations of nature seem to offer themselves as diQ'er-

ential equations of first and second order. The present
investigation completely eliminates this handicap by a
new mathematical approach to. the problem. Instead
of. operating with the g,~, the components R;I, „of the
Riemannian curvature tensor are considered as the
basic metrical quantities, restricted by the Bianchi
identities which are the auxiliary conditions of the
variational problem. This gives rise to a Lagrangian
multiplier which introduces a new fundamental field
tensor. The fundamental field equations of the new
formulation appear now as differential equations of
only second order, of the same general structure as all
the customary "nabla equations" of mathematical
physics.

Of particular interest in this development is the fact
that the new field tensor H;I, happens to be a tensor
of third order, antisymmetric in i and k. This brings
the theory directly in close relation to Einstein s theory
of "distant parallelism" which is likewise based on a
tensor of third order, A. ;I„ likewise antisymmetric in i
and k; (see [4], Eq. (10), p. 220). The principal differ-
ence between the two theories can be characterized as
follows. . In Einstein's theory the A, l, tensor is not a
primitive field quantity but derived by diGerentiatiori
from the fundamental, h'. In the present theory the
tensor H;I, is a primitive quantity, of the nature of a
"generating function, "which need not be reducible to
a tensor of lower order, although for some important
classes of solutions a reduction to a tensor of only
second order actually occurs, as Sections VII and IX
will demonstrate.

Another interesting fact deserves attention. The
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present theory is strictly shaped to the mathematical
nature of a four-dimensional manifold. The Maxwellian
equations of electromagnetic action, not less than
Dirac's equation of the electron, strongly indicate that
the specifically four-dimensional structure of the world
is not accidental but deeply interwoven with the funda-
mental symmetry patterns of nature. The nabla oper-
ator is in both cases the result of a process which has no
natural counterpart in manifolds of e dimensions. Now
in the theory pursued here, the nabla operation is not
the result of a contraction, as in Einstein's theory, but
of a specific transformation of Bianchi's identity which
is possible only in four dimensions.

The present investigation is not devoted to any of
the great unsolved problems of theoretical physics. It
is strictly limited to infinitesimal fields and linear
operators. Hence it cannot come to any valid conclu-
sions concerning the nature of material particles. Yet
even the first approximation reveals so many interesting
relations to Einstein s own discoveries, that a brief
outline of the theory may not be out of place at this
illustrious occasion.

E*;I, , =0. (II.2)

III. THE METHOD OF THE LAGRANGIAN MULTIPLIER

Let us now assume that our aim is to characterize a
Riemannian manifold by an action principle which is
quadratic in the curvature components. An investiga-
tion of the basic invariants available for this purpose
shows L9] that only two independent invariants remain
which may be combined by a constant factor. 4 We
can choose

R*il,m E. ™ and (III.1)
I

However, for infinitesimal fields the second invariant
may be omitted. The terms resulting from this invariant
are proportional to E. But the field equations which
possess a quadratic action principle reveal the general
peculiarity that A=const. is an exact first integral of
the field equations; (see L71, Eq. (5.4), p. 725). That

~The Einsteinian sum convention is adopted throughout the
paper. The "comma" refers to covariant differentiation.

4See also R. Weitzenboeck, Wien Ber. 129, 683 (1920); R.
Bach, Math. Zeits. 9, 110 (1921); F. Juettner, Math. Ann. 87,
270 (1922).

II. A REFORMULATION OF BIANCHI)S IDENTITY IN
FOUR DIMENSIONS

The 2+2 symmetry of a four-dimensional Rieman-
nian world allows a remarkable re-interpretation of
Bianchi's fundamental identity. Let us define the "dual"
curvature tensor E*;& „by the following operation:

ikmn ~ ~aPik~pvmn)

where 8 p„„denotes the completely antisymmetric
"determinant tensor. " Then the Bianchi identity for
this new tensor appears as a regular divergence equa-
tion

constant must be practically zero to allow the existence
of infinitesimal fields. But then the contribution of the
second invariant is infinitesimal of the second order
and thus negligible for our present purposes.

We do not want to express the 8;~ „ in terms of the
g,l, but consider them as basic metrical quantities, from
which the g;&, if the need arises, are uniquely obtainable
(except for infinitesimal coordinate transforrnations),
provided that the integrability conditions (II.2) are
fulfilled. These conditions are thus the auxiliary condi-
tions of our variation problem. They give rise to a
Lagrangian multiplier H;~ in the form

ik, aR ikmad7 ) (III.2)

(dr=four-dimensional volume element) which has to
be added to the action integral

(III.3)

For infinitesimal fields the covariant and contravariant
components coincide, assuming that the basic Euclidean
metric is normalized to the Pythagorean normal values

(III.4)

Covariant diR'erentiation can now
'

be replaced by
ordinary differentiation.

In this investigation the upper and lower position of
the indices shall not refer to covariant and contra-
variant components, since this distinction need not be
made. The upper index in H;I, is chosen merely in order
to set it apart from the two lower indices i and k. The
tensor H;I, is antisymmetric in i and k, while the
symmetry with respect to m is not specified.

Performing the variation we obtain, in view of the
algebraic symmetry properties of the Riemann tensor,

R*,g „H I,, „H"I,, +——H' „,i H—",;. (III.S)—
This formula is structurally similar to the definition of
Eg, „on the basis of the F-quantities. If we write this
definition (for infinitesimal fields) in the symmetrized
version

we see that the tensor H, l, is analogous to F' ~. Yet the
symmetry properties of these two tensors are quite
diGerent. The symmetry of F exists with respect to m
and k, while the antisymmetry of H exists with respect
to i and k. Moreover, F' I, is not a real tensor but can
be made locally zero at any preassigned point of the
manifold. On the other hand, H I, is a real tensor of
third order.

In the derivation of (III.S) we omitted the "cyclic
identity" of the Riemannian curvature tensor which
reduces the 21 algebraically independent components
to 20. Specifically in four dimensions the cyclic identity



LAGRANGIAN MULTIPLIER, RIEMANNIAN SPACES 499

may be written in form of the following scalar equation, Moreover

R+. g&mn 0 (III.7) P";, =h(H,+H' )—(y;„+y;), (V 2)

0 (III.8)

This leads to the following a priori restriction' of the
tensor H;I„

where we have put

@.—H. —Ha, (V.3)

where H~; denotes the "dual vector" associated with
the third-order tensor H I„

Note that the right side of (V.2) is symmetric with
respect to i and k. This gives rise to the identity

H;—H" p5 pq, . (III.9)
(P", —P'k ) —=0. (U.4)

The Eq. (III.8) expresses the "conservation law" for
the vector H*,.

IV. THE BASIC FIELD EQUATIONS

If the explicit expression (III.5) is substituted into
the Bianchi identity (II.2), the following fundamental
determining equation is obtained for the tensor H,&

(using the notation 6 for the Laplacian operator
8'/Bx '), where

P~ 0 (V.5)

The Eqs. (V.1) and (V.4) represent 12 divergence
identities, thus reducing the number of independent
field equations to 24—12=12, in strange coincidence
to the 16—4=12 independent field equations which are
demanded in Einstein's theory of distant parallelism.

One additional divergence identity can be established
in view of the u priori restriction (III.8). We obtain

P";k=AH, k—H,k +—H";k Hk, , ,—0, (I——V.1)
P ~

=P ap~appi ~ (V.6)

where two independent tensors of second order H, I, and
H; are introduced on the basis of the divergence
operations,

and
HsA: H Hc a)

H;= H'

(IV.2)

(IV.3)

P g, ~=0 (V 1)

In principle the Eq. (III.7) gives rise to an additional scalar
Lagrangian factor. One can show, however, that this factor may
be omitted and replaced by the condition (III.8), without loss of
generality.

~ See also the author's report, Dk eeue IiekQheorie Eiesteies,
in Ergeb. d. exakt. Naturwiss. 10, 97 (1931).

We thus obtain a system of 24 partial di6erential
equations of second order for the determination of the
24 field quantities H g, .

V. THE BASIC IDENTITIES

The decisive importance of identities in any generally
covariant system of field equations was often empha-
sized by Einstein. One of the strongest assets of the
contracted curvature tensor R;I,—~Rgb, is the fact that
its divergence vanishes identically. This gives rise to
the conservation laws of momentum and energy, and
leads to the geodetic motion law of general relativity.
In the theory of distant parallelism Einstein used the
principle of identities as a selection principle for setting
up the basic field equations L6j, obtaining a system of
16+6=22 field equations with 10.identities for the
determination of the 16,h" quantities, 4 of which
can be normalized due to the free choice of the coordi-
nates. '

In the present theory two independent divergence
identities can be derived, according to whether we
differentiate with respect to the upper or one of the
lower indices. First we obtain

Then also
Ha=H a, =o

y;=0.

(VI.2)

(VI.3)

The normalization (VI.2) corresponds to the equation

A. ,.I,, =0 (VI 4)

adopted by Einstein in his theory of distant parallelism;
(see t 6], Eq. (12), p. 21). Moreover, the vanishing of
the vector (VI.3) corresponds to the normalization of
infinitesimal gravitational fields of the form

gik ~ik+Vik

by the Einsteinian condition

(VI.5)

(VI.6)

With this normalization the Einsteinian field equations
of gravity for infinitesimal fields separate into the pure
nabla equations,

hing, =0. (VI.7)

The normalization (VI.2) has similar effects for the
theory here discussed, as Section X will show.

VI. NORMALIZATION OF THE TENSOR H;g

The expression (III.5) shows that the addition to
H;~ of the gradient

(VI.1)

has no influence on R*g, „.Hence the field equations
are unable to determine H I, closer than the gradient
of an arbitrary antisymmetric tensor of second order.
The freedom of adding a gradient of the form (VI.1)
may be used to normalize some property of H;&,
eliminating at the same time the uncertainty in the
solution of the field equations. The most natural
normalization is obtained if we make H;I, equal to zero;
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H ik=Fmi, k
—Fmk, i ~ (VII.1)

Substitution into (III.S) shows that the antisymmetric
part of the tensor Fik has no inQuence on R*ik „.
Hence we can assume that Fik is symmetric in i and k;

VII. SOLUTION OF THE FIELD EQUATIONS BY A
SYMMETRIC TENSOR OF SECOND ORDER

The general structure of the field equations suggests
a solution of the specific character,

(with the notation F=F ). This gives

—R**~=2(2ll—F), a (VIII.S)

In particular, the choice (VII.6), (VII.7) yields

In the case of the particular solution considered in the
previous chapter, we obtain

(VIII.3)

(VIII.4)

F k=Fk'. (VII.2) R*;k——0. (VIII.6)

I ik =—26F ik —26F k i=0. (VII.4)

These equations lead to the nabla equations for Fik,

DFik= 0. (VII.S)

We note the complete analogy which exists between
the Eqs. (VII.S), supplemented by the auxiliary condi-
tion (VII.3), and the Einsteinian field Eqs. (VI.7) and
.(VI.6) for infinitesimal gravitational fields. If we choose

Fik Pik)

277

(VII.6)

(VII.7)

then the two systems of field equations coincide. We
thus see that any Einstein field provides a particular
solution of the field Eqs. (IV.1).

This correlation is by no means trivial. It establishes
the interesting fact that for any given Einstein field a
second Einstein field can be constructed, defined by the

correluti oe

Pe ikmn awikmn. (VII.S)

In view of the strongly overdetermined nature of the
Riemannian curvature tensor, such a correlation cannot
be expected, except under strongly restricted conditions.
Yet the only condition demanded is the characteristic
property of the Einstein fields, vis. the vanishing of the
matter tensor.

VIII. THE MATTER TENSOR —R*;k

If in (III.5) we contract over j and nt and change the
sign, we obtain the matter tensor of general relativity,

R* s=Ra —,'R&u—rb;—i,+—q4;——(H,'g+EP, )—. (VIII.1)

The vector p; is here defined as

i H-: ia. (VIII.2)

Although the reduction of a tensor of third order to
a symmetric tensor of second order strongly over-
determines the field equations, yet a solution is possible
under these circumstances. The normalization (VI.2)
demands the condition

(VII.3)

where P is an arbitrary scalar function. The field
equations now give

Generally, however, the relation 2/= F is not demanded
and we obtain a class of geometries which is slightly
more general than the Einsteinian class. '

IX. SOLUTION OF THE FIELD EQUATIONS BY A
NON-SYMMETRIC TENSOR OF SECOND ORDER

A second analogous class of geometries is of particular
interest because of its close relation to the fmld equa-
tions advocated by Einstein in his theory of distant
parallelism. In this class of solutions the symmetry of
Fik is no longer required.

Once more we follow the course of Section VII, but
with one essential difference. The antisymmetric index
pair ih always possesses a "dual" index pair (e.g. , the
dual of 12 is 34, the dual of 13 is 42, etc.). Let us
denote the dual pair of ik by ik. Then we can define
the dual of the tensor H ik with respect to the anti-
symmetric index pair ik by H ik. It is now this dual
tensor H ik that we want to reduce in the previous
fashion to a tensor of second order, Fik,

H ik=F ik —F k;. (IX.1)

This relation imitates the dependence of Einstein's
A ik tensor on the h for inhnitesimal fields. In con-
trast to the case treated in Section VII, the symmetry
of F, is not demanded; hence we have 16 tensor
components at our disposal, in analogy to the 16
components of the four vectors h„.We wish to investi-
gate what the field equations request of this class of
solutions and how the results compare with the results
deduced from Einstein's 6eld equations.

If we evaluate the tensor (IV.3) for our solution,
we find that

H'k=0

Moreover, the normalization (VI.2) yields

Fi =0,

while the field equations demand

AFik= 0.

(IX.2)

(IX.3)

Fg =So,+oo„ (IX.S)
7The generalization may be characterized as follows. The

Einsteinian ds2 is multiplied by the factor 1+~p where i is small,
while P is an arbitrary. potential function (AP =0).

I et us now split Fik into a symmetric and an anti-
symmetric part,
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where Sg, is symmetric and o-;A, antisymmetric. More-
over, let us put

gives
R* =0 (IX.17)

S;, =u;,

0 ia, a=&i

According to (VIII.1) we obtain

—&*a=4;i+4, ,
where

(IX.6)

(IX.7)

(IX.8)

(IX.9)

and the field is free of matter. Once more we can
identify S,& with the components p;& of an in6nitesimal
gravitational field (see Eqs. (VI.5)—(VI.7)) and once
more we come to an interesting correspondence property
of purely gravitational 6elds, in the sense that an
arbitrary Einstein 6eld can serve for the generation of
another Einstein field. The correlation is now

The four quantities e; are the only ones by which the
antisymmetric tensor rg, participates in the curvature
components. Hence we can discard the 0.;I, themselves
and operate with the vector v; alone. This vector
satis6es the nabla equation

Av;=0,

and also the divergence equation

e, =0.

(IX.10)

(IX.11)

Au;=0,

I, =0.
(IX.12)

(IX.13)

In addition, however, the two vectors u, and v, are not
independent of each other but tied together by the
following relation:

v;, i—ei, ;+(u;, i—ui„)*=0. (IX.14)

The conditions (IX.12) and (IX.13) guarantee' the
solvability of these equations. They determine the v,

uniquely, short of the gradient of a scalar potential
function.

Let us 6rst assume that Ii;I, is symmetric. Then

and we must have
u, =5;

(IX.15)

(IX.16)

which imitates the relation (VII3). In this case (IX.9)
' The symmetry structure of the theory discussed here is such

that there are several possibilities open for an interpretation of
the Maxwellian equations. However, an investigation of purely
infinitesimal fields cannot come to any binding conclusions as to
the translation of a field theory into physical reality, because the
physical manifestation of the field equations demands the deriva-
ation of a definite law of motion for the particle. This, however,
is not possible without the investigation of -the second order
interaction effects between fields, caused by the non-linearity of
the field equations.

Hence g, has all the earmarks of the "vector potential"
of electromagnetism.

The Eq. (IX.8) appeared in one of Einstein's early
papers on distant parallelism (see L5$, Eq. (7), p. 226),
together with the tentative assumption that Q; may
represent the electromagnetic vector potential. In the
later phases of the theory Einstein dropped that
interpretation, in favor of declaring the antisymmetric
part of the h, as the electromagnetic field strength. '

The vector I; likewise satisfies the nabla equations
and the conservation law

&*,a =~;i +~'s (IX.18)

which is different from the correlation (VII.8), ob-
tained in the previous class of solutions.

We now come to the discussion of the general case in
which e; is not zero. We do not get that independence
of "gravitational" and "electromagnetic" fields that
Einstein found on the basis of his field equations; (see

$6$, Eqs. (19), (20), p. 23). The vector e; cannot exist
without the vector I;. It is the violation of the, diver-
gence condition for S~ which causes the "electro-
magnetic" part of the 6eld. While a purely gravitational
6eld can exist without electromagnetism, yet "pure
electromagnetism" is not possible. The electromagnetic
part of the field (if this interpretation is permissible)
requires "gravitational support" for its existence, since
it is determined by the vector u; (see Eq. (IX.6)) which
is generated by the symmetric tensor S;I,.

X. GENERAL SOLUTION OF THE INFINITESIMAL
FIELD EQUATIONS

If our desire is to get away from particular solutions
and obtain the complete class of possible solutions,
we have to include the entire space-time manifold in
our considerations. On the other hand, the conditions
for infinitesimal 6elds are realized in restricted portions
of the space-time world only. In the central part of
material particles the 6elds become too strong for
infinitesimal considerations. And yet, it is still possible
to include these 6elds in our discussions if we agree
that we "round o6" the sharp increases of the field

functions, replacing them by 6ctitious values which
remain inhnitesimal everywhere. By this procedure—
which may be illustrated by replacing the Laplacian
equation with singularities by Poisson s equation with-
out singularities —we will not come to any valid con-
clusions concerning the non-linear inner portions of the

. field, but w'e will come to valid conclusions concerning
the outer linear portions of the 6eld. '

This method achieves the "linearization" of a set of
non-linear differential equations by putting something
on the right side of the equations. Hence a non-linear
homogeneous set of equations is replaced by a linear

'This method of flattening out" strong central Gelds, at the
cost of a fictitious "right side" of the 6eld equations which,
however, must satisfy the conservation law' s, was utilized by the
author for the derivation of the motion law of general relativity
for the center of mass of a particle (see Zeits. f. Physik 59, 514
{1930)).
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but inhomogeneous set of equations, which in our
case may be written as

of the tensor Ii;„
(X.14)

~sV =&p sI, (X.i)

where ~ is a small constant. These equations correspond
to the inhomogeneous Einsteinian gravitational equa-
tions for infinitesimal fields,

+a —g+ga = I('psI- (X.2)

The right side p, I, is diGerent from zero only in the
non-linear central portions of the field. It is strongly
restricted by the demand for "eigen solutions. " These
restrictions are not at our disposal. But another set of
restrictions are at our disposal, vis. the tt priori restric-
tions demanded by the identities of Section V. They
yield the conditions

p,k..=0,

(p"; —p'p ), =0,

0

(X.3)

(X.4)

(X.5)

In comparison, the Einsteinian equations (X.2) demand
only one vectorial condition

(X.6)

Moreover, the tensor p;~ has to be prescribed as
antisymmetric in i and k, while the Einsteinian p;& is
symmetric in i and k.

The solution of the Einsteinian equations (X2)
separates into the 10 nabla equations

under the Einsteinian normalization condition

(X.8)

Hg, =0. (X.12)

Consequently H~; is restricted by the divergence
condition

B;, 0, (X.13)

and that again guarantees the normalization condition

which is guaranteed because of Eq. (X.6) (see $3),
Eqs. (3)—(5), pp. 689, 690).

A similar solution can be established for the field
Eqs. (X.1). Let us put

H"o=H"a+I" ', ~ I"~, , (X 9)—

where the tensor II & shall be defined by the 24
separated nabla equations,

~ a=~p .I, (X.10)

while the symmetric tensor F; shall be defined as

AIi;I, ————,'H~;. (X.11)

The symmetry of H",=Hcj, follows from (X.4). More-
over, the condition (X.3) gives

Substitution of (X.9) into the 6eld Eqs. (X.1) shows
that the field equations are actually satisfied.

tk ~sbA K FttLA 'l) (XI.2)

where the symmetry structure of Ii; is not specified.
Such solutions cannot be studied on the basis of purely
linear operators. They demand the knowledge of the
field in first and second approximation. Hence they
are outside the limits of the present investigation
which was solely devoted to the general exploration of
infinitesimal fields.
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XI. QUADRATIC REPRESENTATIONS OF THE BASIC
FIEI D TENSOR

It seems plausible to try solutions of the field equa-
tions for the following type of generating tensor

(XI.1)

where Ii;& is an antisymmetric tensor of second order,
while 4 is a vector. Another class of representations
has the form,


