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The decomposition of tensors into irreducible representations of the orthogonal groups is calculated for
three and four dimensions. The connection is shown with the problem of the allowed values of ordinary and
isotopic spin for a given symmetry of the spacial eigenfunction of a nuclear system.

' 'T is a known fact' that a tensor which is irreducible
~ . in the alone space, i.e., which cannot be decomposed
by imposing further symmetry conditions, may be de-
composed in the metric space by the contraction of
some indices. Particular examples of this decomposition
are given by Schouten, ' but the problem of determining
the decomposition of a tensor of given symmetry has
not yet been solved in general. '

It is the purpose of this paper to solve this problem
for three and four dimensions, i.e., to determine how the
irreducible representations of the linear groups GL(3)
and GL(4) break up as representations of the proper
orthogonal groups 0+(3) and 0 (4).

The four-dimensional case is of particular interest
for a better understanding of the diGerent attempts to
construct a relativistic theory of particles with integer
spin. Another application of the four-dimensional case,
which will be treated at the end of this paper, is con-
nected with the symmetry of nuclear systems.

It is known that an irreducible representation of
GL(n) is characterized by a diagram of Young, ' i.e.,
by a set of m numbers

ft&~fo&~ ~~f;

this representation will be denoted by (P(ftfo f~)) or
by (P(f,)). It is also known that' if we restrict GL(n)
to its unimodular subgroup SL(n), the representations
(P(f,)) and (P(f,+e)) become equivalent,

(P(f,+e))=(P(f,)) in SL(n), (2)

and tha, to (P(f;)) and (P(f )) are contragredient to
each other if

,'= e—f„+t;., (3)

if we restrict SL(n) to its orthogonal subgroup 0+(n),
also contragredient representations become equivalent,
and break up in the same parts:

(Pu, ))=(P(f, » .0 (). (4)

'H. Weyl, The Classical Groups (Princeton University Press,
Princeton 1939), Chapter VB.' J. A. Schouten, Der Ricci-Ealkul (Verlag Julius Springer,
Berlin 1924), pp. 266, 288.' Reference 1, p. 158. Editor's Note: It has been pointed out to
us by Professor Hermann Weyl that a fairly explicit solution for
general e is contained in theorem (7.9.C), p. 229 of Weyl's book
(reference 1). It would still need further computation to derive
therefrom Racah's explicit theorem.

4 Reference 1, p. 120.' Reference 1, p. 132.' Reference 1, p. 135.

THE THREE-DIMENSIONAL CASE

The irreducible representations of 0+(3) are the
representations D(L), whose substratum are the 2L+1
spherical harmonics of degree L; according to (2) the
number of times that a representation D(L) appears
in the decomposition of (P(ftfofo)) depends only on the
differences between the f;, and we shall write

(P'(J+f E+ff))=ZzNr(J E)D(L) ' (5)

it follows from (4) that

Nr, (J,E)=Nr, (J,J E). — (6)

In order to calculate the Nr, (J,E) we shall build a
recursion formula based on the comparison of the de-
composition laws of the products of the representations
of GI (3) and of 0+(3), with the representation (P(100))
=D(1). The decomposition law of D(L) XD(1) is well
known:

D(0)XD(1)=D(1) (7a)

D(L)XD(1)=D(L,—1)+D(L)+D(L+1) (L &1). (7b)

The decomposition law of (P(ftfofo)) X(P(100)) is

(P(ftfofo)) X(P(100))=(P(fr+»fofo))
+(P(ftf.+1,fo))+(P(ftfofo+1)); (8)

this law holds, however, only for ft) fo)fo, since for
ft f2 the second——term is missing, and for fo= fo the
third term is missing.

Introducing (5) in (8), taking into account (l), and
equating the coeflicients of the various D(L), we have

No(J+1,K)+No(J, K+1)
+No(J 1,E1)= Nt(J, E) —(9a)' —

Nr, (J+1)E)+Nr.(J)K+1)+Nr,(J 1,E 1)——
=Nr t(J)K)+Nl (J)E)+Nz+t(J)K) (L &~ 1) ) (9b)

owing to the limitations of (8), these equations hold
only for J&E&0, but it is possible to consider them
valid for J&~E &~0, if we put conventionally

Nz(J, J+1)=Nr, (J,—1)=0. (10)

If all values of Nr, (J',E') are known for J'~&J,
Eqs. (9) determine the Nr, (J+1,E) for E &J, and the
Nz, (J+1,J+1) are then given by (6). All Nr, (J,E)

'We are unable to give a direct reference. since, owing to war
conditions, we have no free access to the University grounds and
to ito library; we may only refer to reference 1, Chapter VII l22),
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may therefore be deduced from the XL(0,0), and these
are

since
XL(0,0) = ALP,

(p(ooo)) =D(o).

If we are able to find a function EL(J,K) which
satisfies the system (6), (9a), (9b), (10), and (11), we

may be sure that this function will solve our problem,
since we saw that this system has only one solution.

It is evident that (9b) is satisfied by

2VL(J,K) =f(J—L)+g(K—L)+g'(J —K—L), (12)

where f, g, and g' are functions whatsoever of their
arguments; we shall seek to specialize these functions
in order to satisfy also the other equations of the system.

It follows from (6) that g= g', and from (10) that

f(J L)+g—(J+1 L)+g—( 1 L)—= o— (13)

varying J and I. by the same amount, we obtain that g
is a constant for negative values of its argument; since

f and g contain an arbitrary additional constant, we
shall put

g{22)=0 for 22&0

and deduce from (13) that

g(N) = —f(22-1).

Assembling our results, we have

XL(J,K) =f(J L)—
f(K L 1)—f(J—K—L —1) (—14)— —

8(R,S)=D(R) XD(S),

and we shall write

(21)

(P(fif2f2f4))=E iVRs(fif2fsf4)8(R, S) .(22)

The four-dimensional extension of (9) does not allow
a direct calculation of X~g as in the three-dimensional
case, and it appears more convenient to proceed by
successive steps.

The decomposition of (P(fooo)) is easy to obtain:
a symmetric tensor of rank f and vanishing trace is the
substratum of the representation 8(f/2, f/2), and the
trace of a symmetric tensor of rank f is a symmetric
tensor of rank f 2; we ha—ve, therefore,

(P(fooo)) =(P(f—2,000))+8(f/2, f/2)

8(R,R), 2R—=f(mod2). (23)
8&f/2

In order to obtain the decomposition of (P(fif200)),
we consider at first the external product (P(fi000))
X(P(f2000)) and its decomposition as representation
of GL(4), 2

THE FOUR-DIMENSIONAL CASE

It is known that the group 0+(4) is not a simple group,
but is homomorph with the direct product of two uni-
modular groups iri two dimensions; its irreducible
representations are the (2R+1)(2S+1)-dimensional
representations

with
f(22) =0 for n& —1. (15a) (P(fiooo)) X (P(f2000)) =P.(P(fi+n, f2—n,oo), (24)

0

Equation (11) is satisfied by (14) and (15a) if L)1;
it is satisfied also for I.= 1. and I.=O if

f( 1)=0— (15b) (P(f f 00))=(P(f 000))X(P(f 000))
(P(fi+1,000—)))&(P(f2—1,000)) (25)

15c
with the convention

(26)(p(—1ooo))= o.

The decomposition of the product (24) as representa-
tion of 0 (4),

(P(fiooo)) X(P(f2000))=Q ~Rs(fif2)8(R)S), (27)

and therefore

f(o) =1.
Introducing (14) in (9a), we have

f(J+1)+f(J) f(K) f(K 1)— — —
f(J K) f(J—E —1)=—0; (—16)—

putting K=O and taking into account (15), we get

f(J+1)=f(J—1)+1 (1&)

f(22) = LP(22+2)/2], (18)

where Lx] means the greatest integer contained in x, and

P4') =5+IXI)/2= ~ "~& (19)

It is easy to verify that (18) satisfies (16) also for
E&0, and therefore

+L(J,K) = LP(J—L+2)/2]—EP(K L+ 1)/2] EP(J K L—+1)/2]. (20)— — —

may be obtained from (23) and from the well-known
decomposition law of the product D(R)XD(R'); the
result is that ~dRs(fif2) vanishes unless

R,S &~(fi+f2)/2, 2R= 2S=f,+f2 (mo—d 2),—
and that, if these conditions are satisfied, and fi&~ f2,

~RS(flf2) =~RS(f2fi) = y(f2+ 2
~

R S
~ )—y(f2+1 R S)+y(R+S—f—i 1)——

—2~(R+S—~R —S~ fi+f2+1), (28)—
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where

22(x) = Lx2/47 for x &~0

y(x)=0 for x&0.

From (25) and (27) we obtain

NRs(flf200) =4dRB(flf2) ~Rs(f)+1)f2 1)~ (29)

The calculation for the general case is based on the
following relation between representations of 0+(4):

(&(f,f,f,f.))= (~(f -f„ooo))x(r(f, —f„ooo))—g'(fl —f4+1)000))XP'(f2 —f2—1,000))
—(r(f,—f,—1,000))x(z(f,—f,—1,ooo)); (3o)

if this relation holds for fl ~&f2, it may be proved for
f,=f2+1, f2~&f2, by using (24) and the four-dimen-
sional extension of (8), and for f2 fl by ——using (24)
and (4); since it holds for fl 0, it ho——lds, therefore, in
general. Introducing (27) into (30), we obtain

NRS(flf2f2f4) 4))RS(fl f2 f2 f4)
~RS(fl f4+1) f2——f2—1)

4dR8(fl —f2 1,f2—f4—1). —(31)—

SPIN, ISOTROPIC SPIN, AND SYMMETRY
OF NUCLEAR SYSTEMS

In the classification of the nuclear states arises the
question of the determination of the allowed values of
the spin S and of the isotopic spin E of a nucleus, when
the symmetry of the spacial eigenfunction is given. '
Since the whole eigenfunction must be antisymmetrical,
the function of spin and charge is the substratum of a
representation (P(flf2f2f4)) of SL(4), and the sym-
metry of the spacial eigenfunction is characterized by
a Young diagram with four columns whose lengths are

1& 2y 3y 4.

The separation of the spin coordinates from the
charge coordinates is equivalent to the restriction of
SL(4) to the product of two SL(2), and since the group
0+(4) is homomorph with this product, the NRB(f2 f2fsf4)
calculated in the preceding section give us also the
number of terms with ordinary spin 5 and isotopic
spin E which are allowed for a nucleus with a spacial
eigenfunction of given symmetry. (Wigner supermul-
tiplet).

E. Feenberg and M. Phillips, Phys. Rev. 51, 597 (1937),
Appendix 2.


