REVIEWS OF MODERN PHYSICS

VOLUME 21,

NUMBER 3 JULY, 1949

An Example of a New Type of Cosmological
Solutions of Einstein’s Field Equations of
Gravitation

Kurt GODEL
Institute for Advanced Study, Princeton, New Jersey

1. THE MAIN PROPERTIES OF THE NEW SOLUTION

LL cosmological solutions with non-vanishing den-
sity of matter known at present! have the com-
mon property that, in a certain sense, they contain an
“absolute” time coordinate? owing to the fact that
there exists a one-parametric system of three-spaces
everywhere orthogonal on the world lines of matter. It
is easily seen that the non-existence of such a system
of three-spaces is equivalent with a rotation of matter
relative to the compass of inertia. In this paper I am
proposing a solution (with a cosmological term =0)
. which exhibits such a rotation. This solution, or rather
the four-dimensional space .S which it defines, has the
further properties:

(1) S is homogeneous, i.e., for any two points P, Q
of S there exists a transformation of .S into itself which
carries P into Q. In terms of physics this means that
the solution is stationary and spatially homogeneous.

(2) There exists a one-parametric group of trans-
formations of S into itself which carries each world
line of matter into itself, so that any two world lines of
matter are equidistant.

(3) S has rotational symmetry, i.e., for each point P
of S there exists a one parametric group of transforma-
tions of S into itself which carries P into itself.

(4) The totality of time-like and null vectors can be
divided into 4-- and —-vectors in such a way that:
(a) If £is a +-vector, —£ is a —-vector, (b) a limit of
+- (or —-) vectors, if #0, is again a +- (or —-) vector.
That is, a positive direction of time can consistently be
introduced in the whole solution.

After a direction of time has been introduced in this
way, a temporal orientation is defined for the world
line of every (real or possible) particle of matter or
light, i.e., it is determined for any two neighboring
points on it which one is earlier. On the other hand,
however, no uniform temporal ordering of all point
events, agreeing in direction with all these individual
orderings, exists. This is expressed in the next property:

(5) It is not possible to assign a time coordinate ¢ to

each space-time point in such a way that ¢ always in-

ereases, if one moves in a positive time-like direction;

1 Se)e, for example, H. P. Robertson, Rev. Mod. Phys. 5, 62
(1933).

2 As to the philosophical consequences which have been drawn
from this circumstance see J. Jeans, “Man and the Universe,”
Halley Stewart Lecture (1935), and my article forthcoming in the
Einstein volume of the Library of Living Philosophers.

and this holds both for an open and a closed time
coordinate.

(6) Every world line of matter occurring in the
solution is an open line of infinite length, which never
approaches any of it’s preceding points again; but
there also exist closed time-like lines.® In particular, if
P, Q are any two points on a world line of matter,* and
P precedes Q on this line, there exists a time-like line
connecting P and Q on which Q precedes P; i.e., it is
theoretically possible in these worlds to travel into the
past, or otherwise influence the past.

(7) There exist no three-spaces which are every-
where space-like and intersect each world line of matter
in one point.

(8) If 3 is any system of mutually exclusive three-
spaces, each of which intersects every world line of
matter in one point,® then there exists a transformation
which carries S and the positive direction of time into
itself, but does #of carry 3 into itself; i.e., an absolute
time does not exist, even if it is not required to agree
in direction with the times of all possible observers
(where “absolute” means: definable without reference
to individual objects, such as, e.g., a particular galactic
system).

(9) Matter everywhere rotates relative to the com-
pass of inertia with the angular velocity : 2(w«p)?, where
p is the mean density of matter and « Newton’s gravita-
tional constant. ‘

2. DEFINITION OF THE LINEAR ELEMENT AND
PROOF THAT IT SATISFIES THE
FIELD EQUATIONS

The linear element of .S is defined by the following
expression :°

a*(dace® — dxi®+ (€2°1/2)dx? — dx?+ 2e'duodx,),

3If the tangent of a line is discontinuous, the line is to be con-
sidered as time-like only if the corners can be so rounded off, that
the resulting line is everywhere time-like.

4“World line of matter’’ without further specification always
refers to the world lines of matter occurring as such in the solution
under consideration.

5 Another hypothesis about 2 under which the conclusion holds
is that 2 is one-parametric and oriented (where the orientation
refers to the space whose points are the elements of 2).

6 This quadratic form can also be written thus

231
a? [(dxo+ e’ldxg)’-'—- dxﬁ-— e%—dx«f -— dx32],
which makes it evident that, as required, its signature is every-

where —2. The three-space obtained by leaving out the term
—dx3? has a simple geometric meaning (see below). Essentially the
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where ¢ is a positive number. The matrices of the g
and g, therefore, are the two:

1 0 et 0 —1 0 2e= 0
a0 =1 0 o 1] 0-1 0 0

ert 0 e2*1/2 0 g2 |2eor 0 =221 0

0 0o 0 -1 0 0 0 —1|i.

Owing to the fact that only two of the forty dg:/dx:
are +0, namely dges/dx1 and dges/dx1, the T';r and
I'ri* can very easily be computed. One obtains the
values:

To12=—T100=T901=(a?/2)e*,

Ty 00=—Tg 12= — (a¥/2)€**,
Toi®=1, T '=Tgl=e1/2,
P22!=€2“/2, P012= — 1,

These Ty, and I'yi%, and those obtained from them by
interchanging the last two (or the lower two) indices
are the only ones that do not vanish.

Using for R, the formula’

d 19%logg
I“_ 11
2 dx:0x5

d logg
T'u”

0%,

=TT,

and taking account of the fact that d/dx;, except for
i=1, vanishes for every magnitude of the solution,
and that g=(a®/2)e**1, we obtain

<}
Riy=—T !+ Tt —ToTor’
X1

This yields the values for the R
Roo=1, Ra=¢€*1, Rp=Ry=e"
all other R, vanish. Hence,
R=1/a%

The unit vector # in the direction of the x-lines has
the contravariant components 1/a, 0, 0, 0 and, there-
fore, the covariant components a, 0, ae*t, 0.

Hence, we obtain:

R¢k= 1/(12 UL

Since, furthermore, R is a constant, the relativistic
field equations (with the xo-lines as world lines of
matter), i.e., the equations?®

Riv—3giR=8mxpust+Ngar

same three-space, but with the signature 4-3 and with more gen-
eral values of the constants, has been investigated in connection
with the theory of continuous groups, without any reference to
relativity theory. See, for example, L. Bianchi, Lezioni sulla teoria
dei gruppi continui finiti di transformazioni (Pisa, 1918), p. 565.

7 Note that physicists frequently denote with —R;; what is
here denoted with R;z, with a corresponding change of sign in the
field equations.

8 The linear element is supposed to give time-like distances in
seconds and space-like distances in light seconds. Therefore, the
coefficient of u;uy differs from the usual one by a factor ¢%,
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are satisfied (for a given value of p), if we put
1/a*=8wkp, A= —R/2=—1/2a*= —4mw«p.

The sign of the cosmological constant here is the oppo-
site of that occurring in Einstein’s static solution. It
corresponds to a positive pressure.

3. PROOFS FOR THE PROPERTIES ENUMERATED

That there exists no-one parametric system of three-
spaces orthogonal on the xo-lines follows immediately
from the necessary and sufficient condition which a
vector field v in a four-space must satisfy, if there is to
exist a system of three-spaces everywhere orthogonal
on the vectors of the field. This condition requires that
the skew symmetric tensor

dvr 0y dv;  Jv; v, OJvg
aiklz'vi(_’“—""")’*‘vk(‘—“ )‘HH —"‘—)
6.’)61 axk / 6x1 6xl axk ax,;

should vanish identically. The components of the cor-
responding vector

elikl

W= @1,

oz

however, in our case (i.e., for v;=;) have the values
0, 0, 0, V2/a?. The non-vanishing of %* shows, more-
over, that there exist no surfaces orthogonal on the
xo-lines in the subspaces x3=const.

If v is the unit vector representing the velocity of
matter, the vector w (which evidently is always or-
thogonal to v) is twice the angular velocity of matter
in a local inertial system in whose origin matter is at
rest at the moment considered.® Hence, property (9)
follows at once.

The properties (1) and (2) follow from the directly
verifiable fact that the space .S admits the following
four systems of transformations into itself,

(I) x0=x0’+b (II) x2=x2’+b

x;=x; for 10 x;=x; for i%2
(I1I) x3=wxs'+b (AIV) xm=ax/+0b
xi=x; for i%3 Xy=x5"e"

x0=x0'

x3=x3'

where b is an arbitrary real number.

A division of the time-like and null vectors into +-
and —- vectors as required by (4) can be effected by
defining £ to be a 4-- or a —-vector according as to
whether the inner product (£u) =g &u* is > or <O0.

In order to prove (3) we introduce new coordinates
7, @, t, v (where r, ¢, ¢ are cylindrical coordinates in the
subspaces x3=const., and y, up to a constant factor,
is =x3) by the following formulas of transformation,

9 This is an immediate consequence of the definition of a local
inertial system, which requires that gix==8;° and dgir/9x:=0
for every 4, k, I,



EINSTEIN’'’S FIELD EQUATIONS

which are easily solvable with respect to the x;,
e = ch2r-cospshlr
x9e®t=V2 sin psh2r

o x—2 ©
tg( —t )= —2rtg—, where
2 22 2

™
<_
2

.’X?o—‘zt

x3=2y.
This leads!? to the expression for the linear element,
4a2(dR2— dr*— dy*+- (sh'r — sh?r)d o2+ 2V2shird dt)

which directly exhibits the rotational symmetry, since
the gix do not depend on ¢.

Property (6) now follows easily: If ¢ is defined by
shce=1 (i.e., c=log(14V2)), then for any R>¢ we have
sh*R—sh?R>0; hence, the circle defined by r=R,
t=y=0 is everywhere time-like (the positive direction
of time, by the above definition, being that of increasing
¢). Hence, the line defined by

(0< p<2m)

for sufficiently small « also will be everywhere time-like.
However, the initial point Q of this line (i.e., the point
corresponding to ¢=0) and the end point P (i.e., that
~ corresponding to ¢=2m) are situated on the #line:
r=R, y=¢=0, and P precedes Q on this line if a>0.
Repeating this procedure any point preceding Q on its
t-line can be reached, and because of the homogeneity
of the solution the same can be done for every point.

Property (7), in view of (2) and (4), is an immediate
consequence of (6). For, a three-space satisfying the
two conditions stated in (7) in conjunction with time
measured along the world lines of matter in their
positive direction would yield a coordinate system with
the property that the 0% coordinate always increases if
one moves in a positive time-like direction, in contra-
diction to (6), which implies that all coordinates of the
initial and the end point of a time-like line are equal in
certain cases.

Property (5), for an open time coordinate, is an im-
mediate consequence of the existence of closed time-like
lines; for a closed time coordinate it follows from the
fact that the subspaces ¢=const. would contradict
property (7) (as can easily be shown owing to the simple
connectivity of .S).

In order to prove property (8), let U be an element
of >~ ; then U intersects the subspace Sy of S defined by
x23=0 in a surface V (for it has one point in common
with each xo-line situated on .S;). Now, according to
what was proved, V cannot be orthogonal on all x,-lines

T=R, 3’=0; I=—ap

10 This computation is rather cumbersome. It is simpler to
derive both forms of the linear element independently from each
other from the geometrical meaning of S given below. The first form
is obtained by taking for the x1xs-space of the coordinate system the
point set corresponding to any two-parametric subgroup of the
multiplicative group of the hyperbolic quaternions as defined in
footnote 14.
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in So. So let / be an x-line in .Sy on which it is not or-
thogonal, and P the point of intersection of V and 1.
Then by rotating Sy around / (and every S, defined by
%o=>b by the same angle around the w-line obtained
from I by the translation x3’=x345), U goes over into
a three-space different from U, but passing through P,
hence not contained in ), since the elements of Y, were
assumed to be mutually exclusive. Hence Y goes over
into a system different from 3.

4. SOME ADDITIONAL THEOREMS AND CON-
SIDERATIONS ABOUT THE SOLUTION

I am mentioning. without proof that, disregarding
the connectivity in the large (which can be changed by

" identifying the points of certain point sets with each

other), the solution given and Einstein’s static universe
are the only spatially homogeneous cosmological solu-
tions with non-vanishing density of matter and equi-
distant world lines of matter.!!

The space S has a simple geometric meaning. It is
the direct product of a straight line and the three-space
So, defined by x3=0; and Sy is obtained from a space R
of constant positive curvature and signature +——
by stretching the metric'® in the ratio v2:1 in the direc-
tion of a system of time-like Clifford parallels.’

This definition of .Sy also leads to an elegant repre-
sentation of its group of transformations. To this end
we map the points of R on the hyperbolic quaternions
g+ u1j1+usjo+usjs of positive absolute value by
means of projective coordinates'® wuguiusus so chosen,
that Klein’s fundamental quadric takes on the form

1 There exist stationary homogeneous solutions in which the
world lines of matter are not equidistant. They lead, however,
into difficulties in consequence of the inner friction which would
arise in the “gas” whose molecules are the galaxies, unless the
irregular motion of the galaxies is zero and stays so.

2 By “stretching the metric in the ratio x in the direction of the
lines of a system 7 “I mean that a new distance PQ’ of neighboring
points is introduced by the equation (PQ')2= PR2+ (u+ RQ)?, where
R is the foot of the perpendicular drawn from P on the line of =
passing through Q; or, in other terms: (ds")2=ds>+ (u?— 1) (v;dx;)?,
where v is the field of the tangent vectors of unit length of the
lines of .

13 That is, a system of pairwise equidistant straight lines which
for each point of space contains exactly one line passing through it.

14 Here the #; are real numbers and the units j, are defined by
J1=11, je=1-1s, js=1 13, where the 7, are the units of the ordinary
quaternions and ¢ the imaginary unit, which is assumed to com-
mute with all 7,. The term “hyperbolic quaternions” occurs in
the literature in a different sense, but the number system just
defined evidently is what should be so-called. For: norm(u)=u-4
=ug?+u?—ul—ug?, and moreover, the multiplicative group of
these quaternions, if quaternions differing by a real factor are
identified, is isomorphic with the group of transformations of the
Lobatchefskian plane into itself. That the metric of R remains
invariant under the transformations given in the text follows
immediately from the equation norm(#v) =norm(x) -norm().

15 It is to be noted, however, that there exist different topo-
logical forms of spaces of constant positive curvature and signature
—1, and that that form which can be represented in projective co-
ordinates in a one-to-one manner does not lead exactly to the
space S defined before, but rather to a space obtained from S by
identifying any two points which are situated on the same line
of the system = and whose distance on that line is equal to a cer-
tain constant. A corresponding difference subsists for the groups
of transformation.
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o+ u?—u—us?. Then, any motion u—u’ of R into
itself can be represented in the form #'=p-u-9, where
p and 9 are hyperbolic quaternions of positive norm.
A system 7 of Clifford parallels can be represented by
o*-u, where ¢ is a hyperbolic quaternion depending
on 7 alone, and the individual lines of 7 are obtained
by assigning a fixed value to.# and varying « from — «
to 4 . It follows that those motions of R into itself
which leave 7 (and the orientation of its lines) invariant
are represented by #'=¢f-u%-9, where B8 varies over all
real numbers and g over all hyperbolic quaternions of
positive norm. These motions, however, evidently form
the four-parametric continuous group of transforma-
tions which carry Sy into itself. The lines of m, of course,
are the world lines of matter.

Evidently, in whatever ratio p the metric of R is
stretched in the direction of the lines of m, the resulting
space R’ has rotational symmetry. Therefore, the con-
tracted Riemann tensor of R’ X! (! being a straight line),
if the coordinate system in the point considered is
orthonormal, and its first basis vector ¢ has the direc-
tion of the m-lines, its last one ¢® the direction of /, has

a

the form Ob bO , where @ and b are functions of u.

0
Computation shows that u=V2 yields 5=0, ie.,
R=a-e;©e;©, which makes it possible to satisfy the
field equations in the manner described above.

As the the physical meaning of the solution proposed
in this paper, it is clear that it yields no red shift for
distant objects. For, by using the transformation (I)
defined in the proof of the properties (1) and (2), one
proves immediately that light signals sent from one

KURT GODEL

particle of matter (occurring in the solution) to another
one arrive with the same time intervals in which they
are sent. For the period of rotation one obtains 2-10
years, if for p the value of 1073 g/cm? is substituted.
Assuming galactical systems were formed by condensa-
tion of matter originally distributed uniformly, and
taking for the ratio of contraction 1:200 (which is sug-
gested by the observed average ratio of 1:200 between
diameter and distance of galaxies), one obtains (using
the law of conservation of angular momentum) for the
average period of rotation of galactic systems 5-10°
years. This number is of the correct order of magnitude,
but, in view of the fact that this would have to be
approximately the period of rotation in the outer parts
of the nebulae, the observed value is found to be con-
siderably larger.!® Of course such comparison with
observation has very little significance before an ex-
pansion has been combined with the rotation. More-
over, an explanation would have to be found for the
apparent irregularity of the distribution of the axes of
rotation of the galaxies. This, however, is perhaps not
impossible, since there exist various circumstances
which would tend to blur the original order, or make it
appear blurred, especially if the axes of rotation of
matter in different places (unlike in the solution de-
scribed above) were not parallel with each other. The
radius of the smallest time-like circles, in the solution
given in this paper, is of the same order of magnitude
as the world radius in Einstein’s static universe.

16 From the numerical data which E. Hubble, Astrophys. J.
79, 74 (1934) gives about two galaxies of medium size follow
periods of rotation of 2-107 and 7-107 years at a distance of about
half the radius from the center. The period of rotation of the

Andromeda Nebula in the central region is estimated at 1, 5-107
years.



