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I. INTRODUCTION

N the recent developments in quantum field theory
" - the question of the relativistic transformation prop-
erties of the self-energy of elementary particles plays an
important role. As is well known, these self-energies, due
to the interaction between particles and fields, are di-
vergent quantities. While changing nothing in the
fundamentals of the theory, an essential progress has
been made, in first instance due to Schwinger, in that a
set of "evaluation rules" is superposed on the formalism
which makes it possible to recognize the self-energy of a
free particle, i.e., a particle which is not acted on by an
extraneous field, by its transformation properties of a
simple inertial energy. This step forms part of a proce-
dure to make an unambiguous separation between so-
called "inertial" and "reactive" eGects, aiming at a
confrontation of the latter with experiment.

It is the aim of this note to draw attention to an
aspect of relativistic theory which may perhaps be of
some methodological use to obtain more insight into the
meaning of the evaluation techniques mentioned above
and of alternative prescriptions such as the application
of "regulators" recently worked out by Pauli and his
collaborators and described elsewhere in this issue.

The point we are driving at is: I et there be an energy
momentum tensor density T„„characteristic for some
physical system. If one observer moves in the x direction
with a constant velocity v relative to another observer
considered to be at rest, and our system is stationary
(i.e., no explicit time dependence of its behavior is in-

volved), then'

E(o)—v'S(o)E=—
(1—v')"*

sider E, E(o), S(o) as expectation values referring to a
specified state of the system.

On the basis of Dirac's positon theory, we now con-
sider (1) for the case of a free electron of zero mo-
mentum. One should perhaps expect that, using the
Schwinger or equivalent techniques of evaluating, the
quantity S(o) has necessarily to be zero, as these pro-
cedures give a mass-like behavior of the electromagnetic
self-energy. One finds however that, up to the first order
in a=e'/It,

S(o)= —(ce/2s. )ns,

where m is the mass of the electron. '
At 6rst sight this may seem to be a disconcerting

paradox which might lead one to doubt the consistency
of the evaluation rules recently developed. Actually this
seems to us not to be the case.

In fact, it is just the essential ambiguity inherent in
handling divergent integrals which can make it on the
one hand very possible to make a direct calculation of E
for a state with momentum p such that the way in which
the contributions from various parts of momentum
space are added depends itself on p. One can say that the
actual evaluation technique precisely picks out that y
dependence which makes the energy as a function of p
behave as if the stress were zero. On the other hand, the
same prescription applied to the calculation of S(o)—
where there is for that matter no y dependence at all-
need then not necessarily give the result S(o) =0.' Thus,
as long as one sticks to direct calculations of E the ques-
tion of what S(o) is can simply not occur.

II. THE DERIVATION OF S(o)

The energy momentum tensor operator for electrons
interacting with the electromagnetic field is

E= T4 4dv E(o)= T'4(o)dv(o), with

S(o)= T', (o)dv(o).

Here E is the energy of the system from the point of
view of the first observer, E(o) the same quantity for the
second observer. The quantity S(o) we will call "stress. "
Equation (1) holds in classical theory as well as in
quantum theory provided that in the latter case we con-

*Now at Columbia University, New York, New York.
'The integrations are meant over, all of three-dimensional

space. The index 1 refers to the x direction. The light velocity is
put equal to unity. Quantities marked (o) refer to the rest system.
Throughout the metrical tensor is taken to be 8;I,.

Here

P is the electron wave function, q„ the electromagnetic
four vector poten-tial; a&„b„)=a„b„+a,b„Further, .

'Whether considered as "mechanical" or renormalized to its
experimental value makes in this order no difference due to the
factor u in front.' lf one calculates the energy for some value of p by so-called
non-covariant methods, one may, on the basis of (1) and (2), ex-
pect terms proportional to up' to remain in the expression for E.
This actually happens in the calculations of N. M. Kroll and W. E.
Lamb, Jr., Phys. Rev. 75, 388 (1949) and of J.B.French and 7.F.
Weisskopf, Phys. Rev. 75, 1240 (1949).
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where If'„ is the electromagnetic 6eld. This last tensor
has a zero trace. Therefore,

&»= &/—2&I O'V. 'A' '.—*O'Vu4'I.

In virtue of the Dirac equation,

(y„8„+m/h)/=0, B„*fy„—(m/hg)=0,

we have
~»™4'*PI'

Now, taking the expectation value for zero momentum,
we have for symmetry reasons,

T»dv=3S(0)+E(o) =35(o)+ye+ p,
J

where p, is the electromagnetic energy. This relation
leads to a simple formula for S(o) by means of the
following consideration:

As the Hamiltonian H of the total system involves m

explicitly only through the term Pm we have the opera-
tor relation P=BH/Bm Taking. expectation values for
the state under consideration one gets, therefore,
mJP*PP'dv=m(1+8 p/Bm) Henc. e, from (3) and (4),'

5(o) = ', [p m—(a-p/B—nz)) (5)

4The classical formula S(o)= —g/3 can be considered as a
special case of (5) as there p does not depend on m. This leads to the
well-known classical relation E=(1—v') &}m+p(1+v'/3) }.This
deviation from a particle-like behavior has always been a difBculty
in the days of classical electron theory. It is of course due to the
existence of uncompensated forces in the system, and it is well
known that for such "open" systems one generally has to expect
S(o) to be unequal to zero.

The case of the classical point electron provides an instructive
example of the role of evaluation techniques. As was shown by
L. L. Foldy and one of us, one can namely make a direct calcula-
tion of the energy in the sense mentioned above, using Fourier ex-
pansions of the 6elds in a k space, and proceeding in either of the
following ways:(a) Adjoin to theenergycontribution of a spherical
shell between k0 and kp+dko for an electron at rest, the contribu-

Using the well-known formula for p,

p=3n/2m m"[log(k/mu)+const. ),
where a is an arbitrary cut-oG length which is of course
independent'of m, and which eventually is supposed to
tend to zero, one then obtains (1).'

In conclusion, we would like to emphasize once more
that as long as one refrains from making explicit use of
tensor transformation formulas of the type (1), the fact
that S(0)&0 can by the very nature of the evaluation
techniques of Schwinger and Feynmann not cause any
trouble whatsoever, as there only direct calculations of
energies are performed. In other words, quite apart
from whatever methods of evaluation or changes of the
theory may be needed to make 5(o) to vanish, the
present heuristic methods guarantee a particle like be-
haviour for calculations of the direct type. Thus the
present form of quantum field theory is most suited to
be adapted to whatever deeper going modifications of
our notions may be necessary. There can be no doubt
that a future theory, in which divergences do no longer
occur in any physical statements, will either have 5(o)
identically equal to zero or be such as to make mean-
ingless any question as to the value of S(0).

tion between the ellipsoidal shell between k and k+dk, where
k=k0+(y —1)v '(kv)v, y=(1—v') &. This yields theaboveexpres-
sion for E. (b) Choose for k the expression k=kv+(y —1)v '(k4v) v
+yk0v. Now one gets for E an expression from which the e'/3 term
has vanished, i.e., now one has calculated as if S(o) were zero. For
v=0 both procedures coincide and give of course the above result
for S(o).

«This result we also found some time ago by following
Schwinger's method for computing the Lamb shift. In fact, one
has only to replace —j~A„'*4 in the latter calculation by 1"p to
get the formulas for the trace (3). The calculation is somewhat
simplihed by the fact that the terms of the Uehling type (vacuum
polarization) are zero. We have further gone over to the special
case p=0 at an early stage. A better derivation has in the mean-
time been given by Villars to whose forthcoming paper, which also
deals with the applications of regulators to this problem, we refer
for further details.


